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ABSTRACT 

 

 

ROSHONDA BARNER JONES. Next-generation sequencing based quantification of   

microbial communities and gene pathways. (Under the direction of DR. 

ANTHONY A. FODOR) 

 

 

 Humans act as a host to trillions of microorganisms. The collective of these 

microorganisms is called a host’s microbiota. There is a growing interest in the bacterial 

composition of the gut microbiome of humans (structure) and the role of the microbiome 

in human diseases (function). Many methods are used to define the structure and the 

function of a microbial community and there are concerns about how the use of these 

varying methods can impact the reproducibility of microbiome research. In this 

dissertation, we aimed to determine how different measurement techniques impacts the 

understanding of the structure and function of the gut bacterial communities in humans and 

in model systems such as non-human primates and rodents. Along with determining these 

different techniques to quantify the structure and function of the gut microbiome, this 

dissertation applies these different techniques to determine how dietary sugars impact 

microbial community composition and determine factors that are associated with the gut 

microbiome in patients with colorectal adenomas, a benign tumor which is often times a 

precursor to colorectal cancer. 
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CHAPTER 1: MEASUREMENT TECHNIQUES USED IN MICROBIOME 

RESEARCH 

 

 

1.1 Introduction 

Animals act as a host to trillions of microorganisms. The collective of these 

microorganisms is called a host’s microbiota. While the human genome has about 26,000 

genes, the bacterial community of the human gut is predicted to have close to 3 million 

genes1. From this fact, one can assume that all of the functions that the body needs to 

maintain itself are not strictly coded in the human genome but that the collective genomes 

of the microbiota that we house, namely our microbiome, is involved in carrying out some 

of these functions. Some examples of this symbiotic relationship include but are not limited 

to: immune protection2; digestion3; and protection from pathogens4, 5.  

There are many factors that can shape the microbial community of an animal host 

including the site of the microbial community on the body6, age of host7-10, the host’s diet11-

13, and disease state of the host2, 14-17. Disease can play a role because it is associated with 

dysbiosis or a disruption of the microbial-host relationship. Dysbiosis has been correlated 

with a number of conditions such as inflammatory bowel disease (IBD)11, obesity18, 

diabetes19, and many others. The host’s housing environment has also been shown to have 

an impact on their microbial community20, 21. Examples of this phenomenon include elderly 

humans whose microbiota differs based on where they live9 and mice whose microbiota 

differs based on the cage that the mouse is housed22. 
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In microbiome research, the questions that we often ask are: What bacteria are 

present in a community and how the composition of these communities change and what 

these microbes are functionally capable of doing. To determine which bacteria are present 

in a community we often look to the 16S small subunit ribosomal RNA gene (16S). This 

marker gene is useful because it is composed of regions that are variable from species to 

species and 16S sequence reads can be classified into clusters based on sequence similarity. 

Other methods that are used to elucidate these bacterial communities include whole-

genome metagenome shotgun (WGS) sequencing in which all DNA in a sample is 

sequenced and RNA-seq which measure the transcriptome of a system at a given time.  

Research in the field of metagenomics and microbiome studies can be complex 

There are a large number of methods used to define the structure and the function of a 

microbial community and there are concerns about how these methods impact the 

reproducibility of microbiome research23. Some of the factors that impact the outcome of 

an analysis are the type of sequences that are used such as 16S gene sequences versus 

sequences generated using WGS sequencing. These sequences types can differ such that 

16S rRNA marker gene sequence reads primarily gives insight about what bacteria are in 

a community and WGS sequence gives insight about what genes are in a community. 

However, there have been cases in which 16S rRNA sequences are used to predict the gene 

profile of a microbial community and WGS sequences reads are normally used to give 

insight about the composition of a community 24, 25.  

1.2 Problem Statement 

In this work we aim to determine how different measurement techniques impact 

our understanding of the structure and function of the gut bacterial communities in humans, 
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primate and rodent model systems. Along with determining these different techniques to 

quantify the structure and function of the gut microbiome, this work will apply these 

different techniques to determine how dietary sugars impact microbial community 

composition and determine factors that are associated with the gut microbiome in patients 

with colorectal adenomas. 

1.3 Significance  

One goal of this dissertation is to compare a number of different ways that microbial 

communities can be studied. We first compare whole-genome sequencing, 16S rRNA 

sequencing techniques and methods that simulate whole-genome from 16S sequence reads. 

We then compare the quantification of gut microbial communities using stool samples 

versus swab samples. This is of great interest because collecting stool samples is much 

more prevalent in gut microbiome research in part because stool samples are an easily 

collectable source of ample microbial DNA 26. However, swab samples have also been 

used27 and may in some cases be easier to collect than stool samples so it would be 

beneficial to determine the differences in microbial quantifications from these sample 

types.  

Our second overall goal involves a biological applications of the technical 

considerations of our first goal. Our first biological question involves the role of dietary 

sugar in shaping the microbial community. Increased sugar consumption is linked to the 

obesity epidemic that has swept the United States and much of the world over the last three 

decades. Obesity can lead to a number of other conditions such as diabetes, high blood 

pressure and high cholesterol 28. It is believed that the increase use of fructose, mainly high-

fructose corn syrup, in our diets is a major contributor to this epidemic29. Increased 
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amounts of high-fructose corn syrup have been introduced into our diets over the last 

several decades through increased consumption of soft drinks30. It has been shown that rats 

that are fed high-fructose corn syrup exhibit signs of obesity31. We aim to determine if 

sugar in general, and fructose in particular, has an impact on the gut microbial makeup of 

these rats, and towards this aim we have 16S sequences collected from rats fed a sugar 

solution and those on a control diet.  

Lastly, we aim to determine how changes in the microbial community are 

associated with the presence of colorectal adenomas in multiple studies. This is important 

because patients with adenomas have a high risk of developing colorectal cancer. Finding 

any microbial associations with colorectal adenomas could allow for creation of a new non-

invasive diagnostic to determine whether or not a patient has colorectal adenomas and 

should be further screened for the presence of colorectal cancer. It is also as important to 

determine if these microbial associations are reproducible across multiple cohorts.  

1.4 Research Objectives and Approaches 

The four research questions that we address in this work are summarized as follows: 

Aim 1. Can swab samples adequately replace stool samples when analyzing the microbial 

community of the human gut? 

Aim 2. How well does the functional profile of a microbial community predicted by 16S 

marker gene sequences match the functional profile of a microbial community 

calculated with whole-genome shotgun metagenome sequences on a non-human 

primate system? Does the amount of fructose in diets of primates impact the gut 

microbial communities of non-human primates? 

Aim 3. How does fructose amount impact the microbial community of rats? 



5 

Aim 4. Are the microbes that are associated with colorectal adenomas in one study 

reproducible in other studies? 

1.5 Statistical Approach 

Throughout this dissertation we will employ linear models as an approach to 

describe aspects of our data. There are a number of assumptions that these models make 

about the data including the assumptions of normality, homogeneity, and independence, 

among others. The violation of the assumption of independence is said to be the most 

dangerous violation because tests that violate this assumption tends to produce many false 

positives32. A violation of independence occurs when values of certain explanatory 

variables influence each other. An example of this is when longitudinal samples are taken 

from multiple subjects but then these samples are treated as if they were sampled from 

different individuals. Since violating this assumption can be a major source of error in 

inference we will often utilize marginal linear models, which relaxes the assumptions of 

independence.  

Marginal linear models follow the standard linear model 𝑌𝑖 =  𝑋𝑖  ×  𝛽 +  𝜀𝑖  such 

that 𝑌𝑖 is normally distributed with a mean of 𝑋𝑖  ×  𝛽 and a variance of 𝑉𝑖 for each group 

i. Examples of groups include subjects, hospitals, or the cages that subjects are housed for 

any study. The simplest scenario for 𝑉𝑖 is to assume that the samples are independent as 

follows for a case where n=3 samples within some group i: 

𝑉𝑖 = [
𝜎2 0 0
0 𝜎2 0
0 0 𝜎2

] 
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In the above case, the variance is 𝜎2 and the co-variances (represented by elements off the 

diagonal) are all zero. To represent sample errors that are dependent within some groupi 

the variance matrix 𝑉𝑖 could be a general correlation matrix  

𝑉𝑖 = [

𝜎2 𝑐2,1 𝑐3,1

𝑐1,2 𝜎2 𝑐3,2

𝑐1,3 𝑐2,3 𝜎2

] 

where there are (
𝑛
2

) additional parameters that need to be estimated in addition to the 

variance. The general correlation matrix is rarely used because the number of parameters 

that need to be estimated is always larger than the sample size.  A useful alternative is the 

compound symmetric correlation matrix:  

𝑉𝑖 = [

𝜎2 𝜑 𝜑

𝜑 𝜎2 𝜑

𝜑 𝜑 𝜎2

] 

where there is only one other parameter besides the variance that needs to be estimated 

since any samples in the same group are assumed to have the same co-variance 𝜑.32 For 

this dissertation we will use the compound symmetric correlation matrix because with n2 

parameters to be estimated it is impossible to meaningfully fit the general correlation 

matrix. 

 1.6 Normalization of 16S counts 

In a next-generation sequencing experiment, there are inevitably different numbers of 

reads that are obtained from different samples. In order to make meaningful statistical 

comparisons across the samples, throughout this dissertation we will use the following 

normalization technique 17: 
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log10 (
𝑅𝑎𝑤 𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖
∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 #𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖

+ 1) 

 

  



 

CHAPTER 2: LITERATURE REVIEW 

 

 

2.1 Introduction to microbiome studies and metagenomics 

Bacteria and other microorganisms have proven to be among the most adaptive and 

diverse of all living things. They are able to live in a range of environments from the soil, 

aquatic environments and even other living organisms. When other living organisms act as 

hosts to microbial organisms, the relationship between the host and the microbes can be 

described as having no effect on the host (communal), being beneficial to host (symbiotic) 

or being harmful to the host (parasitic). Understanding how the relationship between host 

and its collective microbes impacts the health of the host is of great importance. This body 

of work will focus on the techniques used to quantify the composition and functional 

abundances of microbiota in a host-microbiota system. 

2.1.1 Initial microbial community characterization focused on the 16S rRNA gene. 

Before the modern techniques of next generation sequencing were developed, 

identification of the microbial organisms in a community classically involved culture-

dependent techniques. A limitation of culture-dependent methods is that they have a 

tendency to underestimate the diversity of a community since only cultivable species will 

be observed33. An alternative to culturing is the use of culturing-independent methods in 

which DNA sequences that are conserved across species are used to determine which 

microbes are present in a community.

 



9 

The use of molecular sequences to determine phylogeny, or the evolutionary history 

of organisms, began when Carl Woese and his group found a set of bacteria that are 

morphologically diverse methane-producing bacteria34. Their study sought to discover a 

way to relate these organisms based on more than physiological traits, since many bacteria 

look similar but are distant relatives, using the essential highly-conserved 16S small-

subunit ribosomal RNA (rRNA) to assign phylogeny. Ten years later, Woese described 

how the sequences of the 16S rRNA gene can be used to build molecular sequence based 

phylogenetic trees35. 16S rRNA acts as a chronometer because changes in the sequences of 

the molecule can be used to tell the amount of time since some ancestral sequence. Another 

factor that makes the 16S rRNA gene an outstanding candidate to be sequenced as a 

phylogenetic marker is that it has both conserved and variable regions. The conserved 

regions can be used as hybridization region for primers while the variable regions can be 

sequenced and compared across organisms to determine phylogeny. There are a total of 

nine variable regions in the 16S rRNA gene including the regions V1-V3, V3-V4 and V6, 

which are popular choices for PCR primers36. Even to this day, Woese method of target 

sequencing the 16S rRNA gene is the primary technique used to measure the diversity and 

abundance of a microbial community. 

2.1.2 Shotgun sequencing can yield information about the entire microbial community 

Though 16S rRNA gene sequences can give researchers an idea of who is in a 

microbial community, 16S rRNA gene sequences are not sufficient if one is interested in 

what the microbes in a community are capable of doing. A culture-free method that can 

address this problem is whole-genome metagenome shotgun (WGS) sequencing in which 

all of the DNA in a microbial community37 is extracted, sequenced and aligned to a 
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database of multiple bacterial genomes. WGS sequencing can yield insights about what the 

microbes in the community are capable of doing even for those microbes whose whole 

genome is not yet sequenced.  

2.1.3 Using 16S rRNA sequence reads to predict metagenomic data 

The cost of WGS sequencing can be quite expensive in comparison to the 

sequencing of a marker gene such as 16S rRNA38. For this reason, many studies only 

conduct 16S sequencing. However, 16S sequences only give insights about the 

phylogenetic diversity in a microbial community, but not the functional capability of the 

microbial community. There have been efforts to predict the functional capabilities of a 

microbial community using only 16S rRNA sequence reads. One example of a software 

program that makes these types of predictions is called PICRUSt (Phylogenetic 

Investigation of Communities by Reconstruction of Unobserved States) developed by 

Curtis Huttenhower and his colleagues39. PICRUSt infers metagenomic functional content 

by taking operational taxonomical units (OTUs), which represent a collection of microbes 

that share some threshold of 16S sequence similarity, and mapping these OTUs’ 

representative sequence to previously sequenced bacterial genomes. The OTUs that one 

uses as input for PICRUSt must be generated by mapping sequences to a reference database 

of 16S sequences. This dissertation will evaluate the use of the PICRUSt algorithm to 

predict functional abundances. 

2.1.4 Metatranscriptomics to understand function of microbial community at a given time 

Another important area in the field of microbial genomics is metatranscriptomics 

in which all the transcripts, RNA sequences generated as a result of transcription, of all 

microorganisms in a system is collected. Metatranscriptomics is beneficial because one can 
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discover differences in gene expression of a microbial community as a result of a disease 

state as opposed to the simple metagenomics that can only reveal the genomic capabilities 

of a community40, 41.  

2.2 Humans and our microbiome 

In order to understand the shifts in the makeup and functional capabilities of a 

microbial community in humans with a given disease, it is first necessary to define 

microbial community composition in healthy humans. This was the goal of The Human 

Microbiome Project (HMP)6, 42 which sought to discover the relationship between humans 

and the microbes they host in a healthy human cohort of 242 subjects between the ages of 

18 and 40. The HMP consortium has shown that across 15-18 sampled body sites, microbes 

have a distinct distribution of relative abundance and diversity and that there were no taxa 

common in all of the sites. For example, Streptococcus is the prevalent bacterial genus in 

oral sites, Lactobacillus in vaginal sites and Bacteroides in the gut. HMP has shown that 

while the composition of a microbial community, as measured with 16S rRNA sequences, 

may vary from subject to subject, the functions of genes as measured with whole-genome 

metagenome sequences are much more consistent across subjects. This variation in 16S 

sequences from subject to subject occurred even within the same sites providing evidence 

that although there are common taxa present in certain sites, each individual has their own 

microbial signature6. There have been studies that have shown that not only does the 

environment of the body site affect the makeup of a bacterial community, but factors such 

as diet11, 14, disease15-17, 43, age7, and living conditions20, 22 also play a role in shaping the 

structure of a bacterial community. However, within the healthy HMP dataset, patient 

characteristics had little association with the microbiome and that the individual signature 
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in the microbiome is fairly resistant to change over time. Winglee et. al. have argued that 

while the literature shows that environmental factors such as change in diet can lead to 

changes in the microbiome, these changes are small compared to the differences in the 

microbiome between individuals44. It has also been shown that in addition to the 

microbiome of an individual being resistant to change, when the microbiome is perturbed 

there is a state of equilibrium to which the community tends to return5. 

2.3 Model organisms used for microbiome studies 

In order to better understand how our microbiome works it is common to use model 

organisms to address questions regarding the human gut microbiome. In general, human 

studies can be challenging because clinicians cannot ensure continued participation outside 

of incentive, controlled diets are hard to enforce for ethical reasons and the microbiome 

cannot be directly manipulated without potential harmful consequences to patients. Human 

studies can also be difficult because of the variation in genotypes and in bacterial species 

within each individual45. Model organisms allow the researcher to control perturbations in 

the host-microbiota system in a manner that is not feasible in a human-microbiota system. 

In order to determine which model organism is most appropriate, one must understand what 

aspects of the host-microbiota relationship the researcher would like to investigate46. For 

example, zebrafish is a simple vertebrate model with a complex microbiota and an adaptive 

immune system that recognizes the microbes that it hosts. Also, since zebrafish embryos 

are transparent, their microbes could be fluorescently labeled and visualized in real-time47. 

Zebrafish has been used in a range of gut microbiome research from inflammatory bowel 

disease48 to fatty acid absorption3. Rodents, however, are the most widely used model 

organism to study gut microbiome in mammalian systems45. This is partly due to the fact 
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that rodents and humans share 99% of their genes49 and the same two phyla, Firmicutes 

and Bacteroidetes, dominate the guts of both mice and humans18 making rodents an 

appropriate system to study the role that host genetics have on the microbiome46. Using 

rodents as a model host system comes with the benefit of controlling the environment of 

the experiment. Despite the similarities between human and rodents, a disadvantage to 

using rodents is that rodents have subtle differences in the structure of the mouth, 

oropharynx and gastrointestinal tract that could shape differences in microbial 

communities between rodents and humans46. Rodents are also very coprophagic in that 

they consume their feces. This can complicate any studies that examine gut microbiota.  

In general, the microbiome among different mammalian host species can vary 

vastly. It has been shown that a possible reason for these differences could be because of 

the differences in the diets of the host species50. Ley et al. found that host species who were 

carnivores and herbivores had distinct microbial communities with omnivores showing a 

microbial community composition between the two50. The number of phylum present in 

the hosts increases from carnivores to omnivores to herbivores. Ley at al argued that this 

was because adaptation to a plant-based diet required the digestion of complex 

carbohydrates leading to the need of more different microbiota to assist with digestion. 

Therefore, the use of a model organism whose diet is similar to humans, such as an 

omnivorous non-human primate, may produce studies with insights that cannot be obtained 

only by use of rodent model systems. Because each model system has distinct advantages, 

this dissertation will focus on both rodents and primates as a host system. 
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2.4 Systematic biases in quantifying a microbial community 

 Microbiome research can be challenging as artifacts caused by systematic biases 

that are introduced in sample collection, sequencing and data analysis can produce features 

of the dataset that do not reflect the structure of the underlying bacterial communities. 

These biases include PCR amplification biases, sampling and sequencing depth biases and 

the source of the samples 51-55. 

2.4.1 PCR amplification bias 

In order to produce enough copies of the 16S rRNA gene sequence fragments to 

generate libraries for sequencing, polymerase chain reaction (PCR) is essential. In spite of 

the usefulness of PCR amplification, PCR amplification can introduce a number of 

biases56. These biases include primer design which affects how the well primer anneals to 

the DNA57, 58 and the number of PCR cycles leading to overrepresentation of a 

community’s richness due to chimeric sequences59. Chimeric sequences are formed when 

amplicons are terminated prematurely and during the next cycle of PCR the amplicon 

anneals to DNA from a different source60. Methods of decreasing the biases due to PCR 

amplification have been introduced and they include using real-time PCR57 and de-noising 

the sequences after the PCR amplification53. Although these methods attempt to decrease 

biases, there is no way to completely avoid amplification biases. One possible way to 

measure PCR bias is to compare 16S and whole-genome shotgun metagenome sequences 

using programs such as MetaPhlAn, to make taxonomic predictions derived from WGS 

sequences 61. 
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2.4.2 Sequencing depth bias 

Insufficient sequencing depth can introduce its own biases. These biases can lead 

to the underestimation of rare operational taxonomic units (OTUs). By definition, a rare 

OTUs is absent in most samples 62. OTUs can be absent for biological reasons (the taxa 

was truly not present in the sample) or for technical reasons (the OTU was not detected 

because the sequencing depth was not sufficient)62. To avoid this sequencing depth bias, 

normally the variable region of the 16S rRNA gene is deeply sequenced (sequenced 

hundreds and sometimes thousands of times over the same region) in order to identify low 

abundance microbiota, but in practice there is no way to determine if for a given sample, 

more sequencing might have found a missing OTU.  

Lagier et al. attempts to address sequencing depth biases by the use of 

culturomics63. They collected three stool samples (two from lean African males and one 

from an obese French male) and designed 212 culture settings (varied by physiochemical 

conditions) and incubated the cultures with the stool samples. Antibiotics, bacteriophages 

and active and passive filtration was applied to the cultures in order to eliminate dominant 

gut bacteria so that the culture analysis could be selective for rare taxa. They used a type 

of mass spectrometry (MS) called Matrix-assisted laser desorption ionization time-of-flight 

(MALDI-TOF) to identify microbial species from the 3000 colonies they isolated. The use 

of the MALDI-TOF MS eliminates the need to use Gram-staining and other biochemical 

tests to distinguish different species of bacteria in a culture64. The bacterial community of 

the three samples were also identified using the culture-independent method of deep 

sequencing the 16S rRNA gene targeting the V6 region for comparison. Lagier et al. found 
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that 341 species were identified using culturomics and 698 species using pyrosequencing 

but the two methods shared only 51 species.  

 Paulson et al. attempted to address the problem of sequencing biases using a more 

statistical approach62. They introduce two methods: one to decrease biases due to uneven 

sequencing depth and another to decreasing biases due to undersampling. The first method 

used to address the issue of disproportionate sequencing depth was to normalize the read 

counts by the cumulative sum up to some given percentile threshold. For example, for a 

threshold of 75, raw counts would be divided by the cumulative sum of the top 75th 

percentile of nonzero counts. The second method was to account for low sequencing 

depths. Paulson et al. introduced what they call a zero-inflated Gaussian (ZIG) distribution 

mixture model. This model is meant to determine the probability that a zero OTU count 

was a result of undersampling or absence of the OTU, and it could be used to help 

researchers determine if it is more likely that they have a sequencing depth problem or that 

there is a higher probability of an absence of a given OTU.  

2.4.3 Source of samples used to quantify microbial community 

The prevalence of particular microbes in a sample could be indicative of the 

environment in which the sample was taken such as the previously mentioned Bacteroides 

in stool. Depending on the source of the sample, some samples are more prone to 

environmental contamination than others. In order to elucidate the microbiome of the gut, 

stool samples are commonly used. However, attempts to standardize fecal sample 

handling65 are still ongoing66 and differences in handling stool samples can lead to 

differences in relative abundance of bacteria in the samples26, 67.  
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Huse et al. have compared the use of biopsy samples of the intestinal mucosa versus 

samples taken by brushing the intestinal mucosa68. They were interested in comparing 

biopsies with intestinal brushing because biopsies only cover a small area leading to a 

potentially biased distribution. The group took 16 matched biopsy and brush samples from 

4 patients with a history of ulcerative colitis (UC) in a longitudinal study. They found a 

high degree of similarity between the two techniques (with Pearson’s R generally > 0.9), 

although samples taken using the brushing technique had a higher bacteria DNA to human 

DNA ratio. From this the authors concluded that brushing is the better technique because 

there is more bacterial DNA, the brushing covers a larger area and it eliminates infection 

risk in the subject.  

Huse et. al. were particularly interested in microbes that are associated with the 

intestinal epithelium, so for this reason they did not include stool samples in the study since 

they felt that stool samples missed mucosa-related taxa. While this may be true, most 

studies of the gut microbiome use stool samples because of the abundance of DNA 

sequences in the stool samples, which are easily collected while avoiding the intrusive 

biopsy. For this reason, it would be beneficial to know how stool samples compare with 

biopsy samples, brush samples or any other sources used to obtain samples that represent 

the human gut microbiome. In this dissertation, we include a study designed to determine 

if rectal swabs can be used as an alternative to stool samples. We will examine this question 

with a dataset for which we have both swab and stool samples from patients and from those 

samples we extracted whole genome shotgun sequences and 16S rRNA gene sequences.  
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2.5 Dietary Fructose and its impact on the American digestive system 

2.5.1 Fructose have largely been introduced into the American diet in the form of high-

fructose corn syrup (HFCS) 

The 1970s introduced high-fructose corn syrup (HFCS) as a replacement for 

sucrose (table sugar) as a sweetener in soft drinks in the United States. Fructose utilization 

was driven by availability as fructose is derived from corn, which is in abundance in the 

Midwest region of the United States and cost compared to that of sucrose. HFCS is a liquid 

sweetener that is made of a combination of fructose and glucose, usually 55% fructose and 

45% glucose69. Soft-drinks are the primary source of HFCS in our diets but it is also in 

present in breakfast cereals, jams, and canned drinks70. At the molecular level, HFCS 

differs from sucrose in that HFCS is a mixture of unbounded fructose and glucose 

monosaccharides while sucrose is made of disaccharides in which glucose and fructose 

components are joined by a glycosidic bond71.  

2.5.2 Increased consumption of fructose may have contributed to obesity epidemic  

HFCS has been controversial because the increase in usage has paralleled the 

obesity epidemic in America. It has therefore been suggested that HFCS may play a role 

in the development of obesity. Bocarsly et al. have shown that rats that were given access 

to HFCS not only gained significantly more weight than their counterparts who were given 

equal access to sucrose, but also had higher triglyceride levels and more abdominal fat31. 

Bocarsly et al. have shown that although fructose and glucose are present in similar 

proportions in the blood stream, the two sugars had different effects on weight gain. This 

difference could be because fructose from HFCS is metabolized at an earlier point than that 

of sucrose which could result in unregulated creation of carbon molecules that are 
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transformed into fatty acids72. Since one of the main roles of gut microbiota is metabolism 

it would be of interest to determine if there are differences in the microbiota of subjects fed 

different types of sugar. This dissertation addresses this problem in a rodent animal model. 

2.6 Association of gut microbial dysbiosis and colorectal cancer  

Colorectal cancer (CRC) is the third deadliest cancer with close to 50,000 people 

succumbing to the disease in 201573 in the United States alone. CRC has a higher incidence 

in the U.S. compared to other areas in the world, and it has been suggested that this could 

be due to the heavy intake of animal protein in the Western diet compared to other diets 

such as the Mediterranean diet74. In the 1940s and 1950s CRC was the deadliest cancer, 

but the advancement of treatments, early detection tests and the reduction of risk factors 

such as smoking and eating red-meat have helped to increase the 5-year survival rate to 

65.4% 73. There have been studies that have shown that the lack of protective bacteria in 

the gut has an effect on the development of colorectal cancer74. Bacteria such as 

Bacteriodes and Prevotella have a significantly higher abundance in patients with CRC75. 

Sanapareddy et al. found that people who had colorectal adenomas, which is a benign 

tumor that is precursor to CRC in many cases, had an overall higher gut microbial richness 

than people without colorectal adenomas. Many of the bacteria contributing to the higher 

microbial richness were pathogenic or belonged to the Proteobacteria phylum17. It is not 

clear whether or not these bacteria that are associated with CRC actually cause CRC. There 

is still more to be understood about the impact of the gut microbiome on CRC before 

microbial interventions are introduced as a tool to combat CRC. Despite this incomplete 

knowledge, knowing which bacteria are more prevalent in CRC patients might make it 

possible to develop a non-invasive screening tool to detect CRC. Such a screening tool has 
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been proposed by Zackular et al76. which they used a Bayesian model to predict whether a 

person was healthy, had colorectal adenomas or had CRC using microbiota abundances as 

the input variables. In this dissertation, we determine if the same microbiota that are 

associated with colorectal adenomas in one dataset are same microbe that are associated 

with colorectal adenomas in other datasets. 

2.7 Conclusion 

As previously described humans are hosts to thousands of species of bacteria and 

the symbiotic relationship between humans and our microbiota can be both commensal and 

parasitic. To understand these relationships, it is imperative that we acknowledge the many 

biases and inconsistencies that are introduced when we attempt to quantify the distributions 

of the organisms and their gene families and attempt to work towards a standardization of 

methods used to quantify the structure and function of a microbial community. This 

dissertation aims to do so by calculating the variance of microbiota and gene family 

classifications measured using different sample sources, different 16S rRNA databases and 

sequence types and to apply these methods to ask how does sugar intake impact the 

microbial community and how consistent are changes to the microbial community 

associated with colorectal adenomas.



 

CHAPTER 3: COMPARISON OF MICROBIAL COMMUNITIES OF SWAB AND 

STOOL SAMPLES 

 

 

3.1 Abstract 

3.1.1 Background. Stool samples are the standard sample type from which sequences are 

extracted in human gut microbiome studies. In spite of this, in clinical trial and citizen 

science there is a growing interest in using swab samples to represent the gut microbiome 

because it is easier to collect and handle especially when subjects are collecting the samples 

themselves.  

3.1.2 Methods. Here we use 16S rRNA sequence reads to assign taxonomy in a gut 

microbial community in swab versus stool samples and we also compare the use of WGS 

sequence reads to elucidate gene families present in a gut microbiome in swab versus stool 

samples.  

3.1.3 Results. We found that the taxonomic classifications generated by 16S sequences, 

exhibited a large difference between swab samples and stool samples.  

3.1.4 Conclusion. We conclude that swab samples are unlikely to replace stool samples as 

they generate a different picture of gut microbial community composition. 



 

3.2 Introduction 

 Microbiota in the human colorectum are responsible for a substantial number of 

physiological functions within the gut that have both localized and systemic effects 

including immunity, nutrient metabolism, growth, and energy harvesting77-80. Advances in 

next-generation sequencing promise to yield new insights into the role of the microbiota in 

health and disease. Compositional shifts in the diversity or relative 

distributions of members of the gut microbiota have begun to be linked to several diseases 

including atherosclerosis81, obesity82, and inflammatory bowel disease78, 83, 84 among 

others. 

 The function and prevalence of microbiota within the colorectum likely varies by niche 

(i.e. luminal vs. adherent mucosa)85-87. To elucidate the true composition of the microbiota 

of the total colorectum, it is therefore necessary to sample various site in the colorectum 

via biopsies. Unfortunately, collection of mucosal samples by biopsy is a highly invasive 

procedure with risks of perforation that make it unfeasible for large scale studies. Further, 

studies have found the colon has one of the steepest oxygen gradients in the body, which 

reduces rapidly from the mucosa to near anoxia at the middle of lumen 88. Thus, luminal 

microbes are more likely to be anaerobic than mucosal communities 85. Anaerobic bacteria 

may play a key role in fermentation and metabolism of luminal contents (e.g. nutrients or 

carcinogens)88-90 while mucosal bacteria may possibly be involved with autoimmune 

functions. In addition, previous studies have found adherent mucosal communities are less 

diverse than luminal bacteria although they share many of the same predominant species86-

89, 91, 92. Rectal swabs may prove to be a simple and inexpensive collection method that 

samples mucosal communities. Comparisons between swab and mucosal biopsy samples 
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have found swab samples may be capable of capturing many of the same bacteria as 

mucosal biopsy samples but also may be different than fecal samples27, 85, 91.  

 Differences in microbial communities are not only driven by niche, but are also by the 

individual that hosts the microbial community. There have been many studies, including 

the Human Microbiome Project6, 66, that have observed large individual differences in the 

microbiome leading to the conclusion that each person has an average unique microbial 

signature4, 87, 93, 94. These studies have used fecal or biopsy samples, however, and there 

have been no studies showing the stability of the microbiome for rectal swab samples. It 

has been proposed that individuals can be grouped into three “enterotypes”95, however, the 

three enterotypes have been shown not to remain constant across time10, 94, 96 and the 

enterotype abstraction has proven controversial96-98. Furthermore, since the enterotype 

studies were all based on fecal samples, the identified enterotypes may be highly weighted 

by luminal anaerobic microbiota and may not represent well the entire microbiome of the 

colorectum88.  

 Strong individual signatures over time have also been evident in longer longitudinal 

studies. Rajilić-Stojanović et al. collected fecal samples up to 9 times from 5 individuals 

over a decade and found that although there were some changes in abundances with age, 

individual-specific patterns persisted94. The findings from their study also indicated a 

single spot fecal sample was not able to capture the presence of all core colonizers. Thus, 

in order to plan the most effective large-scale studies, it is necessary to evaluate whether 

multiple collections at different times may be more informative than one spot sample to 

define an individual’s microbial signature and whether rectal swab alone or in combination 

with fecal samples yields a significantly better representation of the gut microbiota than 
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fecal collection alone. 

 Based on these needs, in this study, we first compared the microbial composition of 

rectal swabs versus fecal samples. We then addressed the question of whether or not a 

microbial signature could be as strongly detected in swab samples as has been previously 

demonstrated in fecal samples. Lastly, we compared the functional content of swab versus 

stool samples whole-genome shotgun (WGS) sequencing. We hypothesized that rectal 

swabs have a different bacterial composition than fecal samples but are not so different in 

functional composition. We also found that two collection time points may more reliably 

reflect the long-term diversity of microbiota than a single spot collection. 

3.3 Methodology 

3.3.1 Study Population 

The participants in this study were selected from the Personalized Prevention of 

Colorectal Cancer Trial (PPCCT), which is an on-going, double-blind, placebo-controlled, 

randomized clinical trial of 12 weeks of personalized magnesium supplementation 

designed to test magnesium and the interaction between TRPM7 genotype and reduction 

of calcium/magnesium intake ratio by magnesium supplementation on colorectal 

carcinogenesis biomarkers. From the parent study for sample selection for this analysis, 

eligible participants were 40-85 years of age, in good health, able to participate in a low-

to-moderate intensity supplement intervention, had a personal history of colorectal 

hyperplastic and/or adenomatous polyps, had known TRPM7 rs8042919 genotype, and, 

based on two 24-hour dietary recalls, had daily calcium intake between 700-2000 mg/day 

and a ratio of daily intake of calcium and magnesium greater than 2.6. Participants were 

identified from two on-going studies of colorectal polyps99, or from medical record review 
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of individuals diagnosed with colorectal polys at Vanderbilt University between 4/14/1995 

and 11/22/2013. Exclusion criteria included any personal history of cancer other than non-

melanoma skin cancer, colon resection or colectomy, gastric bypass, organ transplantation, 

inflammatory bowel disease, chronic diarrhea, chronic renal diseases, hepatic cirrhosis, 

chronic ischemic heart disease, or Type I diabetes mellitus. Also excluded were individuals 

using medications that may potentially interact with magnesium, or who were 

breastfeeding or pregnant. Eligible participants were randomized to receive either placebo 

(microcrystalline cellulose) or magnesium supplementation (combinations of pills 

containing 104.1 mg, 77.25 mg, and 73.35 mg elemental magnesium as glycinate) for 

twelve weeks. Participants, health care providers and investigators were blinded to 

treatment assignments. The study was approved by the Vanderbilt Institutional Review 

Board. Participants included in this analysis were selected and assayed at two different time 

points from individuals who had completed the trial at the time of selection and who 

provided relevant samples at the beginning and end of the trial period. Participants were 

excluded from selection if they used oral or injected antibiotics in the past 12 months before 

the study or during the study period. From these criteria, individuals were randomly 

selected such that 50% were from the placebo arm and 50% from the treatment arm. A total 

of 60 individuals were selected from 150 participants enrolled between 4/11/2011 and 

12/11/2013.  

3.3.2 Sample Collection 

 Every participant was asked to collect a stool sample at home up to three days prior to 

their three in-person clinic visits. Participants were provided with instructions and a kit to 

collect four sterile vials of stool from a single bowel movement. The samples were 
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immediately frozen in their home freezer. They were also provided with a Styrofoam cooler 

and ice pack to use to transport the sample to their visit where they gave their sample to 

the research staff. Upon receipt, the samples were placed in -80˚C freezers for future 

analysis. 

At the baseline and final clinic visits, the study physician inserted a culturette swab 

about 2 inches into the rectum, swabbed the rectal mucosa, and immediately placed the 

swab into the storage vial. Then the physician took the biopsies at 10 cm above the anal 

verge through an anoscopy and put the fresh biopsy specimens into separate storage vials. 

All the samples were immediately frozen at 80˚C until use. No colon cleansing preparation 

was used prior to collection. For the participants selected for this study, the mean (standard 

deviation) days between the first sample collection (clinic visit 1) and the last sample 

collection (clinic visit 3) was 86.4 (6.6) days. 

3.3.3 Microbial Classification and Assignment of Functional Content 

3.3.3.1 Preprocessing of 16S Sequences  

Raw Illumina base call outputs (BCL) obtained from the MiSeq were converted, 

but not demultiplexed, to paired-end fastq files using CASAVA100. The resulting paired-

end fastq files were joined into single-end reads using fastq-join101, 102. Quality filtering 

was applied to the output of fastq-join requiring that greater than 80% of the base pairs be 

specified with a quality score of at least 25 in order for a read to be retained. The quality 

filtered reads were then demultiplexed. Reads whose index sequence was not an exact 

match to the specified barcode were eliminated (Table 3.1). Demultiplexed reads followed 

the QIIME103 split_libraries.py output convention and were suitable for subsequent 

analysis. 
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3.3.3.2 Phylogenetic Assignment of Reads 

Demultiplexed reads were passed through QA/QC filtering pipeline leaving 

73,665,484 sequences reads that were then classified using a naïve Bayesian classifier 

(version 2.10.1 of the RDP classifier104, 105). Additionally, the 16S rRNA gene sequence 

reads were clustered into de novo Operational Taxonomic Units (OTUs) with 97% identity 

using QIIME. OTU abundances were normalized using the normalization technique 

described in Section 1.617. 

3.3.3.3 Whole Genome Shotgun (WGS) Functional Classification 

Whole-genome shotgun metagenomics DNA sequencing was conducted for 50 participants 

(42 during the first wave of selection and assay and 8 during the second wave) including 

100 stool samples, 28 rectal swabs, and 16 tissue samples. Paired-end FASTQ files 

containing WGS sequences were converted to FASTA format. After filtering sequences 

mapping to the human genome forward WGS sequence reads were then queried against the 

KEGG gene family protein database106, 107 using BLAST108. Only BLAST hits that had an 

E-value equal to or less than 1 × 10−3 were kept. KEGG pathway abundances were 

calculated using HUMAnN109. KEGG gene families and pathways which were not present 

in at least 20% of the samples were removed (Table 3.2) (Figure 3.1). The counts were then 

log-normalized (Section 1.6). 

3.3.3.4 Multidimensional Scaling (MDS) 

Multidimensional scaling (MDS) was performed on the data generated by RDP 

classifier (microbial classification) and BLAST (functional classifications) using Bray-

Curtis dissimilarity. The R package “vegan”110 was used to calculate the MDS axis. 
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3.3.4 Statistical Analysis 

Descriptive statistics of mean (standard deviation) for continuous variables and frequencies 

for categorical variables were derived for characteristics of the study participants. For the 

analysis of 16S data, the R package “lme4” was utilized to perform a mixed linear model 

to evaluate the amount of variance due to stool vs. swab measures:  

𝑀𝐷𝑆_𝑎𝑥𝑖𝑠 𝑂𝑅 𝑡𝑎𝑥𝑜𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑇𝑦𝑝𝑒 + 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 + 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +

(1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) +  𝑒, {Model 1} 

In this model, the type of sample (stool or rectal swab), whether or not the sample was from 

a participant given a magnesium treatment and time are fixed effects while participant (ID 

of participant) is a random effect. The model was evaluated for the first 15 MDS axes and 

all taxa. ANOVA was used on the mixed models to test the null hypothesis that sample 

type (stool versus swab), magnesium treatment and time did not contribute to the model. 

In order to determine if there was a difference in functional composition between 

the stool and swab sample types, two types of statistical tests were performed. First, mixed 

linear models were evaluated using matched stool and swab samples (n=14 participants) 

with participant as a random variable. Second, mixed linear models were performed using 

distinct participants for stool and swab samples. There were two samples from each 

participant representing two different time points.  

𝑀𝐷𝑆_𝑎𝑥𝑖𝑠 𝑂𝑅 𝐾𝐸𝐺𝐺_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑇𝑦𝑝𝑒 + 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 + 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +

(1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) +  𝑒, {Model 2} 

We performed each of these test for all MDS axes, KEGG pathways and gene families. 
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3.4. Results 

3.4.1 Comparison of Taxa from 16S rRNA Amplicon Sequencing between Stool and 

Rectal Swab Samples 

In order to compare stool and rectal swab sampling of the gut microbiome, we 

sampled 60 patients from our on-going clinical trial on the effect of magnesium 

supplementation on development of colorectal cancer (see methods). In an initial analysis, 

samples were subjected to 16S rRNA sequencing. We found substantial areas of similarity 

and differences between stool and swab samples based on the MDS ordination of 16S 

rRNA amplicon sequencing data (Figure 3.2). The first two MDS axes, which accounted 

for nearly 27% of the total variation of the microbial communities in the samples, showed 

almost entirely distinct clusters between the stool and swab. However, the 4th MDS axis, 

which accounts for 5.1% variance of our data, shows almost no separation between stool 

and swab but instead shows strong clustering based on the subject ID.  

To evaluate the statistical significance of these differences in MDS axes, we 

generated a mixed linear model with time point and sample origin as fixed terms and 

subject as a random term (Model 1; Table 3.3). We also ran the model with participant as 

a fixed variable and we have found similar results (data not shown). For the analysis of the 

first 15 MDS axes, the first few MDS axes were significantly associated with stool versus 

swab and also associated with participant. However, there was little evidence of separation 

that is associated with the time point in which the sample was collected (Figure 3.3). Taken 

together, our modeling suggests that some taxa are highly sensitive to a certain collection 

type (stool versus swab) while other taxa can be detected with both methods. With both 
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methods, however, there is a strong tendency towards stability of each individual 

microbiome as changes with time are not pronounced. 

To explore which taxa are more sensitive to sampling method, we built mixed linear 

models for the log-normalized relative abundance of individual taxa at the phyla (Table 

3.3) and family levels (Figure 3.4). At the phylum level, 7 out of 8 phyla were significantly 

different between stool and swab samples, all phyla were significantly associated with 

participant but only 3 of the 8 phyla was associated with the time in which the sample was 

taken. We observe substantial taxa-by-taxa variation in that there are particular families 

that vary by sample type but not participant (e.g. Thermaceae), participant but not sample 

type (e.g. Desulfovibrionaceae), or 3) both participant and sample type (e.g. 

Enterobacteriaceae) (Figure 3.5).  

Using a chi-square test of independence, we found that there was a significantly (p 

< 0.0219) higher proportion of aerobic genera that were significantly more abundant in 

swab than in stool including Acinetobacter, Anoxybacillus and Geobacillus (Appendix A). 

This is in line with our hypothesis that there may be a decreasing aerobic microbiota 

gradient radially inward towards the lumen of the colorectum. 

3.4.2 Comparison of WGS Functional Classifications between Stool and Rectal Swab 

In addition to classifying the bacteria composition of swab and stool samples, we 

also wanted to determine if there is a difference in the functional capabilities of the two 

types of samples. To address this, we have collected WGS sequences. As was the case for 

16S sequences, there are clear differences between stool and rectal swab based on MDS 

ordination of WGS sequences (Figure 3.6). In order to statistically evaluate these 

differences, we consider statistical models using two sets of samples: the first model was 
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built with only samples for which we had both swab and stool samples for the same subjects 

and evaluated as a paired statistic with n = 28 pairs; the second model was built comparing 

70 samples taken from stool and 28 samples taken from swab where there were no 

overlapping samples from the same subjects. (see Methods for details). These tests were 

performed for all MDS coordinates (Table 3.4) (Figure 3.7), KEGG gene pathways (Table 

3.5) (Figure 3.8) and KEGG gene families (Figure 3.9). We found that a substantial number 

of functional families and pathways were significantly different among stool and swab 

samples under either statistical model.  

The pathways in which we observe significant differences by sample type including 

those that were related to the KEGG pathway group classified as “human diseases” and 

were higher in swab samples than in stool samples (Figure 3.8). While there are many 

KEGG gene families and gene pathways that are associated with sample type, we also 

observe the abundances of KEGG gene pathway category “Genetic Information 

Processing”, which includes the KEGG pathways “transcription” and “translation”, are 

associated with participants. 

3.5 Discussion 

The goal of this chapter was to determine differences in the microbial communities 

of rectal swab samples versus that of stool samples taken from 60 participants who were a 

part of the Personalized Prevention of Colorectal Cancer Trial (PPCCT) and had a history 

of colorectal adenomas. From these participants we obtained samples from two time points 

from both rectal swabs and stool from which we performed 16S rRNA sequencing. Using 

these 16S sequence reads we found that there were indeed differences in the makeup 

between stool and swab samples. This difference in the structure of the gut microbiome 
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appears to be driven by the increase of anaerobic microbes that are higher in abundance in 

rectal swab samples than in stool samples. Despite the structural differences due to sample 

type, the individual signature of each participant was still strongly evident and stable over 

time. 

In addition to 16S rRNA gene sequences, from a subset of the participants we 

extracted whole-genome shotgun (WGS) sequences from rectal swab and stool samples. 

Using these WGS sequence reads we aimed to elucidate differences in the microbial gene 

pathways of the microbial communities between the two sample types. The microbial gene 

pathways that are significantly different between the two sample types are those pathways 

belonging to the groups “human disease” and “organismal systems”. Most of these 

significantly different pathways have a higher abundance in swab samples than in stool 

samples. We also see that there are microbial gene pathways that are associated with 

participants and these gene pathways belong to the immune system pathway and pathways 

relating to genetic information processing such as translation and transcription. This shows 

us that despite the differences between WGS sequences of the two sample types we are 

still able to observe the participant’s microbial signature in the microbial gene pathways.  

Overall our work suggests that when designing studies that aim to investigate the 

gut microbiome, the sample that is best to use for sequences extraction highly depends 

upon what about the colorectum one wishes to understand. For example, in obesity studies 

in which it is most appropriate to study the bacteria that are involved with metabolism14, 18, 

19, 80 it may be best to use fecal samples since those samples have a higher abundance of 

anaerobic bacteria which is more dominant in the center of the lumen. On the other hand, 

if the association of microbes and tumor progression is the aim of a study, then it might be 
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best to collect swab samples from the patients since these samples are likely to pick up 

microbes that are closer to the epithelium in which is when a tumor would begin to grow. 
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Figure 3.2: Multidimensional scaling (MDS) of RDP calls at the family level. 

There are four samples (one "pre" and one "post" treatment for both stool and 

swab) from each of the 60 participants in our study colored by sample origin. 

The distinct separation of colors shows that there is separation by sample 

type in MDS axis 1 and MDS axis 2 (A,C) but not in MDS axes 3 and 4 (B). 

However, the variation in the mean of the bar plots proves clustering by 

participant in MDS axis 4 (D). 
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Figure 3.4. Some bacteria families are significantly different between sample type 

while others differ by study participant. For each taxa at the family level present in at 

least 25% of samples, p-values for a null hypothesis of no difference by stool vs. 

swab vs. by participant.  
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Figure 3.6. Plot of first two coordinates of an MDS ordination of the KEGG gene 

pathways (level 3) abundance table for WGS swab samples, and stool samples. A. 

All samples B. samples from the same participant and C. samples from distinct 

participants 
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Figure 3.8: Abundances of some KEGG pathways differ by participant while others 

differ by sample type. 
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Table 3.3: Differences in 16S sequences due to sample source (stool vs. swab) and 

participant source. a p-value derived from mixed model in which participant is random 

term and sample origin and time point are fixed terms. The p-values shown are adjusted 

at Benjamini Hochberg correction threshold of 10% b Limited to phyla present in at least 

25% of samples. 

Item Stool vs. Swab 

p-valuea 

Participant 

p-valuea 

Time 

point  

p-valuea 

Analysis of MDS axes (phylum level)    

Axis  Percentage Explained    

   MDS1 18.97 1.43x10-30 4.65x10-10 0.562 

   MDS2 16.41 1.58x10-15 4.03x10-10 0.360 

   MDS3 11.49 9.25x10-06 3.72x10-09 0.519 

   MDS4 8.81 0.004 0.055 0.742 

   MDS5 7.39 0.001 2.86x10-09 0.024 

   MDS6 5.21 0.352 0.217 0.415 

   MDS7 4.58 0.771 6.41x10-06 0.625 

   MDS8 3.04 0.018 6.49x10-08 0.308 

   MDS9 2.56 0.385 0.0009 0.277 

   MDS10 2.30 0.906 0.230 0.565 

   MDS11 2.13 0.969 0.006 0.022 

   MDS12 1.81 0.813 0.500 0.734 

   MDS13 1.57 0.907 0.0006 0.437 

   MDS14 1.26 0.419 0.346 0.236 

   MDS15 1.08 0.752 0.139 0.298 

    

Analyses of Phylab    

Actinobacteria 0.0005 0.0002 0.330 

Bacteroidetes 0.353 0.001 0.048 

Deinococcus.Thermus 3.54x10-34 0.054 0.086 

Firmicutes 0.013 3.74x10-08 0.072 

Fusobacteria 3.11x10-09 5.49x10-13 0.452 

Proteobacteria 7.43x10-05 1.58x10-07 0.440 

Synergistetes 0.109 6.81x10-15 0.386 

Verrucomicrobia 0.004 8.31x10-15 0.345 
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Table 3.4: Differences in KEGG gene pathways (level 2) inferred from WGS sequences 

due to sample source (stool vs. swab) and participant source (distinct participants). a p-

value derived from mixed model in which participant is random term and sample origin 

and time point are fixed terms. The p-values shown are adjusted at Benjamini Hochberg 

correction threshold of 10%  

Item Stool vs. Swab 

p-valuea 

Participant 

p-valuea 

Time point  

p-valuea 

Analysis of MDS axes    

Axis  Percentage 

Explained 

   

   MDS1 72.9 2.04x10-14 0.313 0.195 

   MDS2 5.84 1.18x10-05 0.158 0.416 

   MDS3 2.70 0.040 0.019 0.291 

   MDS4 2.06 0.026 0.170 0.483 

   MDS5 2.01 0.188 0.306 0.963 

   MDS6 1.37 0.291 0.432 0.007 

   MDS7 1.24 0.500 0.055 0.622 

   MDS8 1.05 0.309 0.222 0.869 

   MDS9 1.04 0.383 0.006 0.030 

   MDS10 0.95 0.964 0.121 0.293 

   MDS11 0.90 0.114 0.031 0.654 

   MDS12 0.78 0.883 0.478 0.542 

   MDS13 0.63 0.463 0.500 0.711 

   MDS14 0.51 0.013 0.103 0.380 

   MDS15 0.50 0.958 0.011 0.586 
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Table 3.5: Differences in KEGG gene pathways (level 2) inferred from WGS sequences 

due to sample source (stool vs. swab) and participant source (distinct participants).  

 

Item Stool vs. 

Swab 

p valuea 

Participant 

p value (BH 

adjusted) 

Time point  

p value (BH 

adjusted) 

Metabolism of Terpenoids and Polyketides 0.068 0.732 0.804 

Metabolism of Cofactors and Vitamins 0.317 0.202 0.569 

Transcription 0.817 0.010 0.823 

Signaling Molecules and Interaction 2.47x10-10 0.999 0.840 

Nucleotide Metabolism 0.001 0.999 0.840 

Immune System 8.39x10-10 0.206 0.980 

Xenobiotics Biodegradation and Metabolism 0.497 0.999 0.840 

Membrane Transport 0.390 0.999 0.840 

Cell Growth and Death 0.652 0.999 0.840 

Folding Sorting and Degradation 0.006 0.999 0.677 

Cancers 2.81x10-05 0.999 0.843 

Circulatory System 1.59x10-05 0.999 0.597 

Transport and Catabolism 1.04x10-08 0.999 0.804 

Development 1.55x10-06 0.999 0.569 

Excretory System 5.56x10-05 0.999 0.840 

Neurodegenerative Diseases 4.90x10-07 0.999 0.804 

Metabolism of Other Amino Acids 0.041 0.999 0.569 

Glycan Biosynthesis and Metabolism 0.135 0.206 0.804 

Nervous System 0.019 0.999 0.569 

Lipid Metabolism 0.245 0.999 0.981 

Cell Motility 3.50x10-07 0.415 0.569 

Infectious Diseases 1.16x10-05 0.999 0.804 

Translation 0.706 0.126 0.840 

Signal Transduction 3.79x10-05 0.999 0.569 

Immune System Diseases 1.83x10-05 0.732 0.840 

Replication and Repair 0.003 0.999 0.843 

Carbohydrate Metabolism 0.0005 0.999 0.843 

Cardiovascular Diseases 1.42x10-08 0.999 0.823 

Environmental Adaptation 0.0005 0.206 0.840 

Sensory System 4.86x10-08 0.278 0.979 

Biosynthesis of Other Secondary Metabolites 0.011 0.999 0.840 

Amino Acid Metabolism 6.46x10-06 0.999 0.823 

Endocrine System 0.0008 0.999 0.843 

Digestive System 1.83x10-05 0.999 0.843 

Cell Communication 1.84x10-10 0.999 0.843 

Energy Metabolism 0.0007 0.999 0.843 

Metabolic Diseases 3.81x10-06 0.999 0.968 



 

CHAPTER 4: EVALUATION OF PREDICTED MICROBIAL GENE PATHWAYS IN 

A NON-HUMAN PRIMATE SYSTEM 

 

 

4.1 Abstract 

4.1.1 Background. Whole-genome shotgun (WGS) sequencing is expensive in comparison 

to the target sequencing of a marker gene such as 16S rRNA. 16S sequencing, however, 

only provides insights about the phylogenetic diversity and not the functional capability of 

the microbial community. Here we evaluate an algorithm that attempts to predict the 

functional capabilities of a microbial community using only 16S rRNA sequence reads.  

4.1.2 Methods. Our study involved vervets (Chlorocebus aethiops) that were either fed a 

high fructose or control diet. The vervets were housed in cages with one monkey per diet 

in each cage. Stool was collected over the course of the study and both 16S rRNA gene 

sequence reads and WGS sequence reads were extracted from the samples. We compared 

statistical inferences performed using WGS data and functional pathways predicted from 

16S rRNA gene sequences.  

4.1.3 Results. We found that the distributions of predicted gene pathway assignments and 

the pathway assignments made using WGS sequence reads were broadly similar. We 

observed pronounced clustering by cage in the functional profiles of microbial 

communities both quantified with WGS sequences and predicted functional profiles. 
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However, there were numerous predicted gene pathways that were associated with cage 

effect in the predicted functional pathways which were not significant in the actual WGS 

reads.  

4.1.4 Discussion. We conclude that while 16S rRNA sequence reads can be useful in 

viewing the overall distributions of functional content, these predicted functions tend to 

incur a high proportion of false positives when used to make statistical inferences. 

4.2 Introduction  

There has been considerable recent interest in determining the role that gut 

microbes play in driving disease and maintaining health in the host. Whole genome 

metagenome shotgun (WGS) sequencing – sequencing in which all DNA in a sample is 

used to generate sequences – is a commonly used method to study the functions of complex 

microbial communities. While informative, obtaining WGS sequences can be more costly 

than 16S rRNA sequencing38, can require a large amount of input DNA and the analysis of 

WGS sequences can be time consuming. In this study, we measured the accuracy of 

functional profiles of gut microbiota predicted by 16S sequence reads and compared them 

to functional profiles generated using WGS sequence reads in a study investigating if there 

was a link between hepatic steatosis (HS) and dietary fructose111.  

Hepatic steatosis (HS) is a condition in which fat accumulates on the liver. HS has 

been associated with the development of diabetes. It has been hypothesized that one 

possible cause of HS is the leakage of bacteria from intestinal sites to surrounding organs, 

a process known as microbial translocation (MT)112. The increased use of dietary fructose, 

which has grown in recent decades via increased consumption of soft drinks has been 

associated with increased Type 2 diabetes113. The current study is part of an on-going series 
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of studies to test the hypothesis that there is a possible link between HS and high dietary 

fructose consumption. We have previously published 16S data111, 114 on a vervet 

(Chlorocebus aethiops) colony in which fructose was changed via a dietary manipulation 

and here present for the first time WGS sequencing from these samples.  

Because the cost of WGS sequencing can be quite expensive in comparison to target 

sequencing a marker gene such as 16S rRNA, many studies only conduct 16S sequencing. 

However, 16S sequences only give insights about the phylogenetic diversity in a microbial 

community and not functional profiles of the microbial community. There have been 

efforts to predict the functional capabilities of a microbial community using 16S rRNA 

sequence reads. One example of a software program that makes these types of predictions 

is PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States)39. PICRUSt infers metagenomic functional content by taking operational 

taxonomical units (OTUs), which represent a collection of microbes that share some 

threshold of 16S sequence similarity, and mapping these OTUs representative sequences 

to previously sequenced bacterial genomes. The PICRUSt developers used data in part 

derived from the Human Microbiome Project (HMP)6, 42 to test their algorithm. The 

creators of PICRUSt found that their algorithm had a high accuracy (Spearman R = 0.9, p-

value < 0.001) when predicting the functions of the human microbiome community using 

data from the HMP. One goal of our analysis was to see how well this algorithm performs 

on a non-human primate system. We found that while the PICRUSt was reasonably 

accurate in predicting functional profiles, its predictions were less reliable when used for 

inference within linear models.  



51 

4.3 Methodology 

4.3.1 Sample Description 

10 vervet monkeys from the Wake Forest Primate Center that were involved in a 

previous study that determined dietary fructose caused liver injury in primates111 were used 

for this study. For six weeks, half of the 10 monkeys were fed a diet that was high in 

fructose (24% of the caloric intake of the diet was from fructose) (HFr diet) and the other 

five were on a control diet (<0.5% of caloric intake of the diet was from fructose) (Chow 

diet). Stool samples were collected over the course of the study creating 52 matched WGS 

sequences and 16S rRNA samples. Six of the vervets were classified as “old” (more than 

15 years old) while the remaining four were classified as “young” (less than 9 years old). 

For the duration of the study the monkeys were housed in 6 cages (two monkeys were in 

cages alone and the other four cages housed two monkeys each) (Table 4.1). We have 

previously used the 16S rRNA sequences that were generated from the 52 samples to 

determine associations between the makeup of the microbial communities of the monkeys 

and factors such as diet and age114. 

4.3.2 Classification of 16S sequences  

In order to classify the bacteria in the gut of the vervets, we first clustered reads 

from 16S sequences into groups called operational taxonomic units (OTUs) using the 

program AbundantOTU115. To assign taxonomy, consensus sequences from each of the 

OTUs were ran against a 16S rRNA database called the Ribosomal Database Project 

(RDP)104, 105 using the RDP classifier. To account for differences in raw counts across the 

samples, the taxonomic classification table was log normalized17. We then filtered out 

columns in which taxonomic classifications are only in 20% or less of the samples (Table 
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4.2). Multidimensional scaling (MDS) ordination was done with Bray-Curtis similarity 

using the vegan package in R 

4.3.3 Assigning gene functions to whole-genome sequences  

WGS sequence reads were generated from the 52 vervet stool samples. To ensure 

that only sequence reads originating from bacterial gene functions were used, vervet 

sequences were removed by running the reads against the vervet (Chlorocebus aethiops) 

genome using BLAT116. Next, the WGS reads were searched against the KEGG protein 

database106, 107 using BLAST108 to map the WGS reads to KEGG gene families. The 

BLAST hits were further investigated using HUMAnN (The HMP Unified Metabolic 

Analysis Network)109. The resultant pivot table was then log normalized using the 

normalization method described in Section 1.6. 

To visualize similarities in the gene pathways in the community we conducted a 

MDS analysis on the KEGG gene pathway abundance tables using the “capscale” function 

in R’s vegan package. We used the Bray-Curtis metric to define the dissimilarity matrix 

for the MDS. 

We then predicted the microbial functions from the 16S reads using PICRUSt with 

the default parameters25. For each sample, we performed a nonparametric Spearman 

correlation on the list of KEGG gene pathway abundances from both WGS and PICRUSt 

to determine the accuracy of PICRUSt predicted functional abundances compared to WGS-

derived functional abundances. 

4.3.4 Predicting gene functions using PICRUSt  

In order to predict the microbial functions from the 16S reads, we used the software 

package PICRUSt. PICRUSt works to predict metagenomic content of a microbial 
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community using marker gene sequences. PICRUSt first uses a reference OTU tree and 

uses the tips of the tree whose gene content is known to help infer gene content of OTUs 

with unknown gene content using ancestral state reconstruction methods. From this step, 

PICRUSt creates a table with OTUs as rows and gene content predictions as columns called 

a “gene content predictions table”. As an input, PICRUSt takes an OTU table derived from 

16S rRNA sequences, multiplies the OTU table by the “gene content predictions table” to 

create a predicted gene family table using the OTU table.  

 In order to obtain KEGG pathways or KEGG modules, the predicted KEGG gene 

families from PICRUSt are then used as inputs for the HUMAnN program109. KEGG 

pathways are a quantification of molecular interactions and networks and KEGG modules 

are collection of functional units such as structural complexes in a living system106, 107. 

4.3.5 Statistical Analysis of gene pathways  

4.3.5.1 MDS association models 

We utilized marginal linear models to determine the associations between the MDS axes 

generated from KEGG gene pathway abundances using each of the following factors as 

fixed variables: age, diet type, days into the study in which the sample was taken. The “(1| 

Cage/Individual)” represents a term that tells the model that samples within the sample 

cage are correlated and within each cage samples from the same animal have an even higher 

correlation and the different cages will contribute a different value to the intercept (the “1” 

in “(1|Cage/Individual)” represents the intercept): 

𝑀𝐷𝑆 𝑎𝑥𝑖𝑠 𝑜𝑟 𝐾𝐸𝐺𝐺 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑎𝑦𝑠 + 𝐷𝑖𝑒𝑡 + 𝐴𝑔𝑒 + (1|𝐶𝑎𝑔𝑒/𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙)  +

 𝑒, {Equation 4.1} 
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4.3.5.2 KEGG pathway association models 

In order to test how the vervets’ diet, age, cage assignment and time in the study all 

contribute to the variance of the KEGG pathways of the microbial communities of the 

vervets’ guts we used marginal linear models (Equation 4.1). The terms for these models 

are same as the terms described above. These models were generated on both the PICRUSt 

predicted gene pathways and WGS-gene pathways.  

4.3.5.3 PICRUSt statistical inference performance  

To determine whether the cage effect in both PICRUSt and WGS derived gene pathways 

match we run a marginal model similar to that of Equation 4.1 but with the all the samples 

treated independently (Equation 4.2). 

𝑀𝐷𝑆 𝑎𝑥𝑖𝑠 𝑜𝑟 𝐾𝐸𝐺𝐺 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑎𝑦𝑠 + 𝐷𝑖𝑒𝑡 + 𝐴𝑔𝑒 +  𝑒, {Equation 4.2} 

We then run an ANOVA comparing Equations 4.1 and 4.2, which generates a p-value using 

the likelihood ratio test. The p-value that is generated for this ANOVA will be used to 

quantify the cage effect.  

 

4.4 Results 

4.4.1 Distribution of structure and functions of vervet gut microbiome similar to that of 

the human gut microbiome 

We generated 16S rRNA and WGS sequence reads as a part of an on-going study 

of the effects of a diet high in fructose in a vervet colony111. As was the case for the Human 

Microbiome Project, samples showed a good deal of differences in their 16S profiles while 

WGS sequence reads mapped to the KEGG gene pathway database were much more 
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consistent (Figure 4.1). We conclude that vervets, like humans, share a good deal of gene 

function even though this function is encoded in taxa that differ between individuals. 

4.4.2 Clear clustering by cage and individual vervet but not by diet 

Multidimensional scaling (MDS) of the counts of WGS reads assigned to KEGG 

gene pathways revealed, as previously reported114 for the 16S sequences, there was a lack 

of clustering by diet (control or high fructose), age and date (Figure 4.2). We observed that 

there was a strong clustering by cage based on 16S taxonomic classifications (Figure 4.3) 

and this clustering by cage is also evidenced in clustering based on KEGG gene pathways 

(Figure 4.4). Statistical analysis found significant associations with cage for the first two 

MDS axes which collectively explains ~65% of the variation in the functional profiles of 

the samples (Table 4.5).  

For each KEGG gene pathway that was identified in the WGS sequences reads, we 

ran marginal regression models to discover associations between the pathway abundances 

and diet, days, age and cage effects. We found that there were no KEGG gene pathways 

that were associated with amount of days that the vervets were on this study. We also found 

when we collapse KEGG gene pathways to a higher level that 77% (22/27) of these higher 

level gene pathways are significantly associated with cage at a 10% FDR (Table 4.6).  

4.4.3 PICRUSt Predicted gene functions are consistent with WGS gene functions 

In order to determine whether or not we can reproduce our WGS KEGG pathway 

findings using 16S sequences, we compared PICRUSt KEGG pathway predictions to WGS 

KEGG pathway profiles. In general, the KEGG gene pathways quantified using WGS 

sequences and PICRUSt predicted KEGG gene pathways were well correlated with 

Spearman coefficient averaging ~87% across the samples (Figure 4.5) (Table 4.7). The 
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distribution of KEGG gene pathways of gene families predicted from PICRUSt was largely 

uniform across the samples much like that of the distribution of KEGG gene pathways 

calculated using the WGS sequences (Figure 4.5 A, B). As was the case for the WGS 

sequences, PICRUSt predicted KEGG gene pathways showed little significant differences 

due to the diet, time and age but a significant cage effect (Table 4.9). 

4.4.4 PICRUSt cage effects in predicted gene functions are inconsistent with cage effects 

in WGS gene functions  

For each of the WGS-derived and PICRUSt-predicted functions, an ANOVA test 

was performed to test for the strength of cage effects. For the KEGG gene pathways at the 

most specific level (level 3), 57.2% (83/145) of the WGS-derived functions had a 

significant association with cage at a 5% FDR threshold, while over 80% (136/168) of the 

PICRUSt predicted gene pathways showed significant differences. In comparing the p-

values from an ANOVA test under the null hypothesis of no association with cage for the 

PICRUSt predictions and the WGS-derived functions, we found that there was a significant 

correlation between the p-values that were generated from PICRUSt predicted functions 

and p-values generated from WGS functions (Appendix B) (Figure 4.7). There were 

numerous gene pathways, however, that did not have an association with abundance and 

cage but were significantly associated with cage in PICRUSt predicted abundance. We 

noticed that while both “real” WGS sequences and PICRUSt predicted sequences can 

report cage effects, there was a tendency for PICRUSt to over predict differences in gene 

family abundances that are associated with cage. 
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4.5 Discussion 

This study was part of an on-going series of studies designed to determine if there 

is a difference in the gut microbiota of vervets fed a diet high in fructose versus vervets fed 

a controlled diet. We found no significant difference in the microbial communities due to 

the increase of fructose in the diet of the vervets. Despite the lack of differences in taxa 

associated with the vervets’ consumption of fructose this does not necessary mean that 

fructose has no impact on the gut microbiota of the vervets. The lack of signal in the 

microbiota associated with fructose could be explained by the small sample size of the 

vervets that were used for this study. Another explanation is that the gut microbiota of these 

animals could be quite resilient to short term changes in the diet, but a longer study might 

have found more differences. We also saw no significant differences in age of the vervets 

or the day in which the sample was taken. By contrast, there was a large association of the 

microbiota with cage, which is clearly a strong confounding variable in this study. We note 

that age is confounded with the family history of the monkeys as related animals tended to 

be co-housed; we did not attempt to separate these variables in our current analysis. In 

addition, for several years before the animals were placed in housing assignments for this 

study, they were historically housed in a total of only 3 cages. Again, we did not attempt 

to resolve the history of co-housing in our analysis. 

A strong cage effect has also been observed in mouse models11, 22. Intriguingly, a 

potentially similar phenomenon has been observed in humans where patients in nursing 

homes have a distinct microbiome when compared to the general population 9, although 

this was not discussed as a “cage effect”. We used our observed cage effect in the vervets 

to test the ability of PICRUSt, a program which infers functional content of microbial 
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communities using 16S rRNA sequence read counts, to make inferences about differences 

in functional content due to different conditions (in our case the cage in which the vervet 

was housed). Testing this was possible because we had both the PICRUSt predicted 

functional content and functional content inferred from WGS sequence reads.  

Through this test we found that PICRUSt functional predictions was highly 

correlated with the functional abundances that were inferred from WGS sequence reads. 

This suggests that PICRUSt can successfully be extended to non-human primate samples 

when determining the overall functional content of a microbiome. We also found that 

PICRUSt had some limitations. When used for hypothesis testing, PICRUSt generated 

gene pathways with p-values indicating a significant cage effect when these same pathways 

were not significant using abundances that were directly from WGS data. There were also 

cases when the PICRUSt predicted functions did not detect a cage effect when there was 

one according to KEGG pathway abundances measured using WGS sequence reads. This 

shows that although PICRUSt may be a powerful tool to use to find out the functions of a 

microbial community using 16S rRNA sequences, the predicted functional data from 

PICRUSt may not be very reliable for making statistical inferences. In fairness, the creators 

of PICRUSt warns users that if the Nearest Sequenced Taxon Index (NSTI) per sample is 

too high ( ≥ 0.15), then the results from PICRUSt could be of low quality. Our samples 

from vervets had an average NSTI of ~ 0.16. This may have impacted our results. This 

work suggests that due caution should be used in using tools like PICRUSt for inference in 

animal systems that are used as models for host/microbiome relationships such as mice, 

drosophila and non-human primates.  
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Figure 4.2: Multidimensional scaling (MDS) shows that while the age, time and diet has 

little differences, samples were different based on individuals. The x-label shows the 

amount of variation explained by the first MDS axes and the y-label is the amount of 

variation explained by the second MDS axes. The points represent each sample and are 

colored by diet (A), age (B), date (C), and individual (D).  
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Figure 4.3: Multidimensional scaling (MDS) shows that samples were different based 

on cage. 
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Figure 4.4: Multidimensional scaling (MDS) of WGS data shows that while the age, time 

and diet has little differences, samples were different based on individuals and cage. The 

x and y labels show the amount of variation explained by the first and second MDS axes, 

respectively. The points represent each sample and are colored by diet (A), age (B), date 

(C), individual (D) and cage (E).  
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Figure 4.5: Correlation of KEGG metabolic pathway abundances predicted by 

PICRUSt and those calculated from WGS sequences reads were was fairly high. (A) 

Spearman correlation of predicted KEGG pathway abundances and KEGG pathway 

abundances calculated from WGS sequences across the 52 samples. (B) Scatterplot of 

PICRUSt-predicted KEGG metabolic pathway abundances and WGS-derived 

metabolic pathway abundances for one sample. The functional profiles (as shown by 

KEGG metabolic pathways) of the vervets (C) are very similar and likewise the 

functional profiles predicted by PICRUSt appears to be very similar (D). 
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Figure 4.6: Multidimensional scaling (MDS) of PICRUSt data shows that while the age, 

time and diet has little differences, samples were different based on individuals and cage. 

The x and y labels show the amount of variation explained by the first and second MDS 

axes, respectively. The points represent each sample and are colored by diet (A), age (B), 

date (C), individual (D) and cage (E).  
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Table 4.3: 16S Results of an ANOVA that tests the null hypothesis that there is no 

association between cage and coordinate for the first 10 coordinates at the family 

taxonomic level. 

 

MDS Axis % of 

variation 

explaine

d 

Diet p-

value 

Age p-

value 

Time p-

value 

Cage p-value 

1 29.638 0.068 0.9259 0.44 4.07E-12 

2 13.216 0.3453 0.7415 0.893 4.07E-12 

3 8.85 0.9683 0.9259 0.334 1.00E-05 

4 7.705 0.1574 0.0649 0.893 7.26E-06 

5 5.737 0.078 0.9259 0.878 0.000173 

6 4.576 0.068 0.9259 7.95E-07 0.01665 

7 4.108 0.4828 0.7222 0.415 1.00E-05 

8 3.44 0.7213 0.7415 0.483 0.085795 

9 2.902 0.0682 0.9914 0.893 0.000269 

10 2.533 0.9269 0.7661 0.878 0.154449 
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Table 4.4: 16S Results of a marginal linear model for all taxa at the phylum level. p-

values are adjusted at a 10% false discovery rate. 

 

Phylum 

classification 

Diet p-

value 

Age p-

value 

Time p-

value 

Cage Effect p-

value 

Actinobacteria 0.5115 0.181 0.846 2.22E-06 

Bacteroidetes 0.8909 0.362 0.846 0.001422 

Chlamydiae 0.8909 1 0.846 0.61765 

Chloroflexi 0.9491 1 0.846 0.656927 

Elusimicrobia 0.9491 1 0.898 0.977519 

Fibrobacteres 0.5115 0.635 0.846 0.42251 

Firmicutes 0.9367 0.143 0.846 4.61E-05 

Fusobacteria 0.9491 1 0.846 0.656927 

Gemmatimonadetes 0.8909 1 0.846 0.0019 

Lentisphaerae 0.0936 0.515 0.112 0.001422 

Proteobacteria 0.0936 0.181 0.112 0.005008 

Spirochaetes 0.3152 1 0.596 0.019451 

Tenericutes 0.8909 1 0.846 0.656927 

Verrucomicrobia 0.8909 1 0.846 0.000921 
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Table 4.5: WGS sequences classified to KEGG pathways and ordinated. P-values from 

marginal model of the first 10 MDS axes. P-values are corrected at a 10% false discovery 

rate. 

 

MDS Axis % of 

variation 

explained 

Diet p-

value 

Age p-

value 

Time p-

value 

Cage p-value 

1 51.583 0.8 0.9631 0.712 0.0107 

2 13.194 0.719 0.8652 0.641 2.72E-05 

3 6.613 0.154 0.1162 0.712 0.6864 

4 4.974 0.429 0.8652 0.972 0.4284 

5 3.267 0.154 0.5155 0.896 0.4284 

6 2.938 0.8 0.8652 0.972 0.4284 

7 2.317 0.154 0.0995 0.397 0.6864 

8 2.145 0.278 0.9332 0.986 0.7623 

9 1.916 0.8 0.8652 0.896 0.8162 

10 1.51 0.8 0.8652 0.712 0.8104 
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Table 4.6: WGS KEGG pathway (level 2) Results of a linear marginal model for all taxa 

at the phylum level. P-values are adjusted at a 10% false discovery rate. 

 

  

KEGG pathway classification Diet p-value Age p-

value 

Time p-

value 

Cage p-

value 

Metabolism of Terpenoids and 

 Polyketides 0.92 0.9736 0.405 0.00882 

Metabolism of Cofactors and  

Vitamins 0.549 0.9736 0.405 0.05732 

Transcription 0.991 0.9736 0.88 0.05386 

Nucleotide Metabolism 0.92 0.9736 0.88 0.0033 

Immune System 0.991 0.9736 0.88 0.49502 

Xenobiotics Biodegradation  

and Metabolism 0.991 0.8992 0.88 0.00102 

Membrane Transport 0.991 0.9736 0.88 0.00658 

Cell Growth and Death 0.991 0.9736 0.405 0.02692 

Folding Sorting and Degradation 0.92 0.9736 0.88 0.03211 

Transport and Catabolism 0.988 0.9736 0.971 0.12146 

Excretory System 0.991 0.9736 0.981 0.99933 

Neurodegenerative Diseases 0.92 0.0304 0.88 0.00934 

Metabolism of Other Amino Acids 0.075 0.0304 0.88 0.00882 

Glycan Biosynthesis and  

Metabolism 0.991 0.9736 0.88 0.00102 

Lipid Metabolism 0.905 0.8992 0.145 

6.08E-

06 

Cell Motility 0.991 0.9736 0.88 0.01134 

Translation 0.991 0.9736 0.981 0.00343 

Infectious Diseases 0.991 0.1405 0.405 0.00882 

Signal Transduction 0.905 0.9736 0.88 0.00263 

Replication and Repair 0.402 0.9736 0.88 0.0421 

Carbohydrate Metabolism 0.991 0.3926 0.405 0.03488 

Environmental Adaptation 0.991 0.9433 0.88 0.11217 

Amino Acid Metabolism 0.991 0.8992 0.706 0.0421 

Biosynthesis of Other 

 Secondary Metabolites 0.301 0.8992 0.88 0.00698 

Endocrine System 0.991 0.9433 0.405 

6.32E-

06 

Digestive System 0.999 0.9736 0.981 0.36216 

Energy Metabolism 0.075 0.9736 0.971 0.03211 
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Table 4.7: Correlation of KEGG metabolic pathway abundances predicted by PICRUSt 

and those calculated from WGS sequences reads was higher as higher levels. Spearman 

correlation of predicted KEGG pathway abundances and KEGG pathway abundances 

calculated from WGS sequences across the 52 samples. 

 

 Average 

Accuracy (%) 

Maximum 

Accuracy (%) 

Minimum 

Accuracy (%) 

KEGG Gene 

Pathways (Level 1) 

100.00 100.00 100.00 

KEGG Gene 

Pathways (Level 2) 

94.31 96.52 91.58 

KEGG Gene 

Pathways (Level 3) 

88.94 91.18 86.50 

KEGG Gene 

Pathways (Level 4) 

86.85 89.76 83.94 
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Table 4.8: PICRUSt-predicted KEGG pathways (level 2) were ordinated and here we show 

p-values from marginal model of the first 10 MDS axes. P-values are corrected at a 10% 

false discovery rate. 

 

MDS 

Axis 

% of variation 

explained 

Diet p-

value 

Age p-value Time p-value Cage p-

value 

1 70.189 0.977 0.85 0.847 0.0156 

2 14.241 0.611 0.675 0.847 0.0361 

3 5.665 0.611 0.224 0.847 0.1915 

4 2.501 0.977 0.667 0.847 0.0201 

5 2.152 0.977 0.85 0.847 0.0608 

6 0.857 0.779 0.85 0.847 0.6344 

7 0.785 0.863 0.85 0.847 0.0763 

8 0.576 0.977 0.85 0.847 0.7123 

9 0.531 0.611 0.943 0.847 0.0505 

10 0.356 0.977 0.85 0.847 0.825 
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Table 4.9: PICRUSt-predicted KEGG pathway (level 2) p-values from a linear marginal 

model. P-values are adjusted at a 10% false discovery rate. 

 

KEGG pathway level 2 classification Diet p-

value 

Age 

p-

value 

Time p-

value 

Cage 

Effect p-

value 

Metabolism of Terpenoids and 

Polyketides 

0.99 0.98 0.17762 0.000173 

Metabolism of Cofactors and Vitamins 0.99 0.531 0.14314 0.000173 

Transcription 0.99 0.531 0.14314 0.000724 

Nucleotide Metabolism 0.99 0.591 0.03927 6.67E-05 

Immune System 0.99 0.975 0.12776 0.000368 

Xenobiotics Biodegradation and 

Metabolism 

0.99 0.531 0.17762 0.000328 

Membrane Transport 0.99 0.337 0.26813 0.164971 

Cell Growth and Death 0.99 0.975 0.23321 0.000398 

Folding Sorting and Degradation 0.99 0.531 0.14314 0.064925 

Transport and Catabolism 0.99 0.017 0.58872 0.854975 

Excretory System 0.99 0.226 0.13312 0.50562 

Neurodegenerative Diseases 0.99 0.577 0.45842 0.000398 

Metabolism of Other Amino Acids 0.99 0.534 0.0658 0.000398 

Glycan Biosynthesis and Metabolism 0.99 0.226 0.12776 0.079297 

Lipid Metabolism 0.99 0.324 0.1001 0.003907 

Cell Motility 0.99 0.975 0.17223 0.000206 

Infectious Diseases 0.99 0.591 0.00197 2.11E-06 

Translation 0.99 0.975 0.17223 0.000368 

Immune System Diseases 0.99 0.26 0.14314 0.164971 

Signal Transduction 0.99 0.975 0.14314 0.000398 

Replication and Repair 0.99 0.98 0.17223 0.000208 

Carbohydrate Metabolism 0.99 0.531 0.14314 0.000336 

Environmental Adaptation 0.99 0.577 0.21116 0.002884 

Amino Acid Metabolism 0.99 0.531 0.0093 5.00E-05 

Biosynthesis of Other Secondary 

Metabolites 

0.99 0.531 0.57969 0.245539 

Endocrine System 0.99 0.151 0.12776 0.003965 

Digestive System 0.99 0.577 0.06809 0.000724 

Energy Metabolism 0.99 0.975 0.17762 0.000234 

  



 

CHAPTER 5: IMPACT OF FRUCTOSE AND GLUCOSE ON THE GUT 

MICROBIOME OF RATS 

 

 

5.1 Abstract 

5.1.1 Background. While the obesity rise in the United States is well correlated with the 

rise of the used of high-fructose corn syrup in the Western diet, it is unknown whether this 

relationship is causal. In this chapter, we sought to determine the impact of varying sugar 

solutions of glucose and fructose on the gut microbiome of rats.  

5.1.2 Methods. We fed rats sugar solutions that were either equal parts glucose and 

fructose, mostly glucose or mostly fructose. We generated 16S rRNA sequences from 

extracted stool samples to measure the composition of the gut microbiota of these rats as 

well as a no-sugar control group. 

5.1.3 Results. We observe that the microbiota of rats that consumed sugar had a distinct 

microbiome from those given water instead of a sugar solution. Despite differences in the 

microbiota associated with the consumption of sugar, the type of sugar that was consumed 

appeared to have little association with the composition of the gut microbiota. 

5.1.4 Discussion. Our results suggest that sugar can profoundly impact microbial 

community composition in juvenile rats, but the type of sugar (glucose/fructose ratio) does 

not appear to have a significant impact.
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5.2 Introduction 

The increase of dietary fructose in the American diet has coincided with the 

country’s growing obesity epidemic. The United States has a higher per-capita intake of 

fructose than any other country30. A large portion of the fructose that is introduced in our 

diet is in the form of soft drinks sweetened with high-fructose corn syrup (HFCS), a liquid 

sweetener comprised of fructose and glucose and contains varying concentrations of 

fructose/glucose combinations. This increase in fructose associated with HFCS can lead to 

metabolic diseases and other problems such as fatty liver disease, obesity, and diabetes29.  

In collaboration with Dr. Michael Goran of the University of Southern California 

School of Medicine, 42 rats, which were housed individually, were used for this study. 

These rats were stratified into four groups that were given differing amounts of sugar. We 

found, independent of weight gain, that rats fed any of the sugar solutions had distinct 

microbial communities from the control group, but that microbial community composition 

was insensitive to the type of sugar fed to the rats. 

5.3 Methodology 

5.3.1 Experimental design 

Forty-two juvenile, male Sprague Dawley rats (Envigo; PND 26; 50-70g) were housed 

individually in standard conditions with a 12:12 light/dark cycle and were classified into 

four groups based on solution feeding of: 1) 35% fructose and 65% glucose, 2) 65% 

fructose and 35% glucose, 3) 50% fructose and 50% glucose and 4) control (no sugar). For 

each of the sugar groups, the concentration of total sugar in solution was 11% w/v 

(comparable to sugar-sweetened beverages (SSB)s typically consumed by humans) in 

reverse osmosis-filtered water. In addition to sugar solutions (or an extra water bottle for 
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the control group), rats were given access to standard chow and water ad libitum. Food 

intake, solution intake and body weights were monitored thrice weekly. After 6 weeks in 

respective conditions, feces were collected from the animals according to the following 

methods: each animal was placed in a sterile cage and gently restrained while lifting the 

tail until defecation occurred. Feces was immediately placed into dry ice and stored at -80 

°C until time of processing for RNA sequencing. All experiments were performed in 

accordance with the approval of the Animal Care and Use Committee at the University of 

Southern California.  

 A separate group of male Sprague Dawley rats (n=42, PND 26; 50-70g) were 

housed individually in standard conditions with a 12:12 light/dark cycle and were classified 

into four groups in an identical design to cohort 1. After 6 weeks in respective conditions, 

body weights, chow intake, and sugar intake were similar to cohort 1 (data not shown). 

Body composition was assessed using a Bruker NMR minispec LF 90II (Bruker Daltonics 

Inc., Billerica, MA, USA). Adiposity index was calculated as fat mass (g)/lean mass (g) 

*100.  

5.3.2 Taxonomic Classification of 16S rRNA gene sequence reads 

Fecal microbiome populations were identified using next-generation high-throughput 

sequencing of the V3-V4 variable region of 16S rRNA (Vaiomer SAS, Labege, France). 

Genomic DNA was isolated and collected from fecal samples and DNA concentrations 

were determined using UV spectroscopy (Nanodrop2000, ThermoScientific). PCR 

amplification was done using 16S universal primers targeting the V3-V4 region of the 

bacterial 16S ribosomal gene (Vaiomer universal 16S primers), with a joint pair length 

encompassing 476 base pair amplicon tanks to 2 x 300 paired-end MiSeq kit V3. The 
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detection of sequencing fragments was performed using MiSeq Illumina® technology. 

FastQ files were generated at the end of the run to perform the quality control and filtering. 

The 16S targeted sequences were then clustered of into OTUs before taxonomic 

assignment and analyzed using the bioinformatics pipeline as described 117, 118. The paired 

sequence reads were then assigned taxonomy using Ribosomal Database Project (RDP) 

classifier 104 using a boostrap cutoff of 80%. Reads were also clustered at 97% similarity 

to obtain operational taxonomic units (OTUs) using the script “pick_de_novo_otus.py” 

from the QIIME software with default parameters 103. The OTUs and taxonomy 

classifications were tabulated and to account for differences in raw counts across the 

samples, the tables were log normalized. Multidimensional scaling (MDS) was performed 

on the tables using the “capscale” function of the R statistical software package “vegan” 

119 with Bray-Curtis dissimilarity. 

5.3.3 Differences in microbiota of samples given the type of sugar consumed 

In order to determine differences in classifications between rats fed sugar versus water 

(control), we used the following model: 

Abundance of bacteriai = SugarVsControl + e, {Equation 5.1} 

The term “Abundance of bacteriai” represents the log-transformed normalized counts 

assigned to bacteria at a given taxonomic level. We determine the significance of 

differences in abundance of bacteria classified at a given taxonomic level relating to the 

type of sugar consumed using the following model: 

Abundance of bacteriai = FructoseFraction + e, {Equation 5.2} 
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where the fructose fraction was a quantitative variable ranging from 35 to 65. Statistical 

models were only built for “non-rare” taxa, which were present in at least 25% of all 

samples. 

5.3.4 Relationship between bacteria and biomarkers 

In addition to determining whether there are differences in the microbiome with respect to 

overall sugar intake or monosaccharide ratio, we examined whether bacterial type could 

explain differences in body weight (grams) or energy intake (kCal). A series of linear 

models were built to examine the association with these variables, which we will call intake 

variables: 

Abundance of bacteriai = SugarVsControl + IntakeVariable + IntakeVariable ∗

SugarVsControl + e, {Equation 5.3} 

One model was built for each combination of the Abundance of Bacteria (the log-

normalized counts at a phylogenetic level) and the intake variables (body weight (grams), 

energy intake (kCal)).  

5.3.5 Differential analysis of bacterial taxa using LEfSe 

To identify bacterial taxa that were differentially abundant in the different dietary groups, 

Linear Discriminant Analysis Effect Size (LEfSe) analysis was performed on the RDP 

classification tables using the online Galaxy interface. Using the LEfSe algorithm, bacterial 

taxa that were differentially abundant in pairwise analysis of dietary groups were first 

identified and tested using the Kruskal-Wallis test. The identified features were then 

subjected to the Linear Discriminant Analysis (LDA) model with a threshold logarithmic 

LDA score set at 3.0 and ranked. Respective cladograms were generated with genus at the 

lowest level. 
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5.4 Results 

In order to determine the effects of sugar on the microbial community, we 

performed an experiment with 42 individually housed rats in which 32 were given sugar 

solutions with varying glucose/fructose combinations and 10 received no sugar solutions 

and were used as controls. Fecal samples were taken from the animals and 16S rRNA 

sequencing on the Illumina platform was performed to characterize the microbial 

community. The RDP classifier was used to assign taxonomy to the 16S rRNA sequence 

reads and QIIME (Table 5.1) was used to cluster the sequence reads into operational 

taxonomic units (OTUs).  

5.4.1 Effects of dietary sugar on abundance of fecal microbiota at different taxonomic 

levels 

Results from our multidimensional scaling analysis (MDS) on the taxonomic classification 

tables at all phylogenetic levels represent a summary of gut microbial composition (Figure 

5.1). Rats fed the sugar solution (red) compared to water (blue) had distinct clustering 

patterns (Figure 5.1 A-F). In order to determine whether similar clustering occurred as a 

function of monosaccharide ratio in the sugar solutions, we performed MDS analyses on 

rats that were fed either 35% fructose: 65% glucose, 50%F:50%G or 65%F:5%G. There 

was no clear separation based on the monosaccharide ratio of the sugar solutions given 

(Figure 5.1 G-L). The distribution of p-values derived from t-tests performed separately 

for each family show that about one-quarter of non-rare bacteria at the family level were 

significantly different between samples from rats given a sugar solution and control 

samples at a 10% false discovery rate (FDR) (Table 5.2) (Figure 5.2). By contrast, p-values 

derived from linear models with glucose/fructose as an independent variable were 
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approximately uniform (Figure 5.3); None of the family-level bacteria had a difference in 

abundance with respect to sugar group at a FDR threshold of 10%. We conclude that the 

presence or absence of sugar has a large impact on the microbial community, but the type 

of sugar (glucose vs. fructose) did not produce significant differences in our experiments. 

In order to further visualize our results within a phylogenetic context, pairwise 

comparisons were made comparing sugar with control at each phylogenetic level (Figure 

5.4) with the program LeFSe (see methods). At the phylum level, Proteobacteria and 

Actinobacteria were elevated in all sugar groups compared with controls. At the class level 

Actinobacteria and Bacilli (of the phylum Actinobacteria and Firmicutes, respectively) 

were significantly elevated by sugar, as were Alpha-, Beta-, and Gamma- Proteobacteria 

(of the phylum Proteobacteria). Bacteria of the order Lactobacillales, Actinobacteridae, 

Burkholderiales, and Enterobacteriales were significantly elevated by dietary sugar. Under 

our LeFSe analysis, many taxa were significantly different between sugar and control at 

the family level, for example Clostridiaceae_1, Lactobacillaceae, Rikenellaceae, 

Porphyromonadaceae, Bacteroidaceae, Bifidobacteriales, Sutterellaceae, and 

Enterobacteriaceae were elevated by sugar, whereas Prevotellaceae, Ruminococcaceae, 

and Lachnospiraceae were reduced due to sugar consumption. At the genus level, 

Prevotella and Lachnospiracea (incertae sedis) were reduced by sugar consumption, 

whereas Bacteroides, Alistipes, Lactobacillus, Clostridium (sensu stricto), 

Bifidobacteriaceae and Parasutterella were all significantly elevated by sugar 

consumption (p-value < 0.05 and false discovery rate < 10% after correcting for multiple 

comparisons).  
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5.4.2 Relationship of fecal microbiota to body weight and energy intake 

To determine how members of the microbial community are associated with body weight 

and calorie intake, we executed a series of linear regression models comparing these intake 

variables to log-normalized adjusted counts. Using Equation 5.3 as described in the 

methods, at a 10% FDR threshold, there were no significant associations with body weight 

or food intake to any member of the microbial community and there was no association 

with any of the interaction terms at any phylogenetic level. Likewise, the distribution of p-

values for body weight or calorie intake generated by Equation 5.3 produced near-uniform 

p-values suggesting little association (Figure 5.5).  

5.5 Discussion 

This study aimed to determine the impact that varying fructose content in sugar 

solutions on the gut microbiome of rats. We found that while there was no association 

between the type of sugar consumed and the composition of the gut microbiota, there are 

some bacteria that distinguish between rats that consumed sugar and those who did not. 

From this we can conclude that despite the type of sugar that these rats consumed did not 

matter, but the presence of absence of sugar made a large difference in microbial 

community composition. This is significant to because as of lately there have been more 

soft drinks that are advertising that they are replacing their high-fructose corn syrup with 

“pure cane sugar” and while this may have an effect on other bodily functions, we find that 

this will not likely have an effect on the microbiome.  

We did not find many interactions between measurements such as food intake (data 

not shown), and body weight with sugar versus control diet status that were associated with 

microbes. The microbes that we find that are higher in rats who consumed sugar are 
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commonly associated with dysbiosis including families belonging to Proteobacteria 

including Burkholderiales and Enterobacteriales. Further studies could focus on the use of 

WGS sequencing to determine the KEGG gene pathways that could be associated with 

sugar intake. While we believe there will be little to no difference in the overall function 

of the gut microbiome of rats by the type of sugar solution, it would be useful to determine 

if there are any KEGG gene pathways that are significantly different in rats fed glucose vs. 

fructose. As part of my post-doctoral work, I will be involved with a study in which we 

will determine if there are differences in the gut microbial communities of obese human 

adolescents who are on a normal diet versus those who are on a reduced sugar diet. This 

would give us a better understanding of the role of gut microbiota and how it relates to 

sugar intake in human populations. 
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Figure 5.2: Numerous bacteria classified at the family are shows significant separation 

between sugar and control but only one shows significant separation by the type of sugar 

solution. The points in red denotes a Benjamini-Hochberg corrected p-value < 0.10 for 

separation by sugar versus control samples and no points were significantly separated by 

type of sugar solution consumed. P-values for the x-axis were generated by Equation 5.2 

and are negative if the mean bacterial abundance in control samples is higher than the 

mean bacterial abundance in sugar samples and positive if the reverse is true. P-values for 

the y-axis were generated by Equation 5.2 
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Figure 5.4: LEFsE analysis shows differences between sugar and control at phylogenetic 

levels.  
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Table 5.1: Statistics of 16S rRNA sequence reads from fecal samples after various 

filtering steps. 

 

 Number 

of 

Samples 

Number 

of OTUs 

or Taxa 

Number 

of 

Sequence 

Reads 

Mean 

Reads per 

sample ± 

SE 

Minimum 

reads per 

sample 

Maximum 

reads per 

sample 

16S reads 

generated 

42  1,237,456 29,463.24 ± 

411.07 

21,939 34,034 

RDP classified 

(Phylum Level) 

42 11 1,208,210 28,766.9 ± 

394.82 

21,508 33,392 

RDP classified 

(Class Level) 

42 21 1,191,926 28,379.19 ± 

393.58 

21,191 32,837 

RDP classified 

(Order Level) 

42 35 1,187,343 28,270.07 ± 

392.22 

21,127 32,733 

RDP classified 

(Family Level) 

42 84 1,086,649 25,872.6 ± 

383.17 

19,116 30,283 

RDP classified 

(Genus Level) 

42 211 738,112 17,574.1 ± 

327.48 

12,728 21,924 

QIIME OTUs 

(more than 25% 

of samples) 

42 4,703 918,964 21,880.1 ± 

394.77 

15,833 28,531 
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Table 5.2: Numerous bacteria classified at the family are shows significant separation 

between sugar and control. Shown are those bacteria at the family level whose 

abundances are significantly different at with a Benjamini-Hochberg corrected p-values 

<0.10. The t-statistic is positive when the mean abundance of the bacteria is higher in 

sugar samples and negative if higher in control samples. 

Name Mean 

abundance 

in Sugar 

samples 

Mean 

abundance 

in Control 

samples 

t-

statistic 

Sugar Vs 

Control t-

test p-

value 

BH 

corrected 

p-value 

Enterobacteriaceae 1.523928 0.476978 7.081674 2.35E-07 1.67E-05 

Carnobacteriaceae 0.900052 0.183798 7.24809 4.03E-07 1.67E-05 

Corynebacteriaceae 0.264873 0 4.789857 3.92E-05 0.000813 

Bifidobacteriaceae 1.749449 0.60922 4.518762 0.0001312 0.001795 

Rikenellaceae 2.970002 2.425188 5.511121 0.0001509 0.001795 

Clostridiaceae.1 2.610721 1.580377 4.91767 0.0001514 0.001795 

Cryomorphaceae 0.317821 0.057283 4.150955 0.0001962 0.002036 

Lactobacillaceae 2.684286 2.26594 4.467189 0.0003783 0.003488 

Moraxellaceae 0.420717 0.085992 3.800526 0.0004838 0.004016 

Micrococcaceae 0.499164 0.099367 3.866189 0.0005926 0.004472 

Bacteroidaceae 3.370912 3.150676 4.101558 0.0007051 0.004877 

Prevotellaceae 3.582735 3.804264 -3.52052 0.0020766 0.012311 

Coriobacteriaceae 1.842191 1.636179 3.074537 0.0053029 0.029343 

Pseudomonadaceae 0.427897 0.190659 2.629361 0.0124471 0.064569 

Sutterellaceae 2.565381 2.15203 2.630552 0.0175206 0.085542 

Deferribacteraceae 1.278364 1.763033 -2.6485 0.0190084 0.08765 

 



 

CHAPTER 6: COMPARISON OF MICROBIAL ASSOCIATIONS WITH 

COLORECTAL ADENOMAS ACROSS MULTIPLE STUDIES 

 

 

6.1 Abstract 

6.1.1 Background. There have been studies that have shown that there is a link between 

colorectal cancer and the gut microbiome. Reproducibility across studies, however, has yet 

to be established. In this chapter, we aimed to compare the taxa that are associated with 

colorectal adenomas status in multiple studies.  

6.1.2 Methods. We obtained mucosal biopsy samples from 435 patients (217 with 

colorectal adenomas and 218 without) in which we extracted 16S rRNA sequence reads 

and clustered into operational taxonomic units (OTUs). We test for differences in these 

OTUs due to adenomas status in our dataset plus two previously published datasets (one 

using mucosal biopsy samples as well and another using fecal samples) from studies in 

which 16S rRNA sequences and colorectal adenomas status was collected. 

6.1.3 Results. We found that there were 59 OTUs that did have a significantly different 

relative abundance in adenomas versus control samples in our dataset. Taxa were also 

found to be significant in a re-analysis of previously published datasets. However, the taxa 

that were different in each dataset did not overlap. That is, no taxa were significantly 

different in any two of the three datasets. In all three datasets, significantly different taxa 

tended to be low-abundance taxa.   

6.1.4 Discussion. While there are differences in the microbiome of colorectal adenomas 

subjects, these are driven by low abundant taxa that appear to be irreproducible across 
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multiple data sets. Larger sample sizes and consistent sampling and sequencing techniques 

may potentially alleviate this issue. 

6.2 Background 

While previous studies have shown that there are associations between colorectal 

cancer and microbial dysbiosis75, little is known about the causal role the gut microbiome 

has in colorectal cancer. We know that there is a difference in the richness of the gut 

microbiota that is associated with adenomas status17 and also that there is a higher presence 

of pathogenic bacteria in the gut of subjects who with colorectal adenomas120. This chapter 

examines the relationship between patients who have colorectal adenomas, which is often 

times an early symptom of colorectal cancer, and the microbial signatures in these patients. 

In collaboration with Dr. Temitope Keku of the Division of Gastroenterology & 

Hepatology at the University of North Carolina - Chapel Hill we analyzed 16S sequence 

data from a total of 435 biopsy samples from 217 patients with colorectal adenomas and 

218 people without colorectal adenomas who were used as controls. Utilizing statistical 

models, we determined which bacteria has a significantly different abundance in subjects 

with colorectal adenomas versus subjects used as controls. We also compared our results 

to two previously published datasets: a study published by Sanapareddy et al17 which 

demonstrated that on average subjects who have colorectal adenomas had a higher number 

of taxa in the gut microbial community than those subjects who do not have colorectal 

adenomas; and a study published by Zackular et al76 examining the how microbiota could 

be used as a screening tool for colorectal cancer. 
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6.3 Methodology 

6.3.1 Classify 16S rRNA sequence reads and determine bacteria discriminating case and 

control samples 

To determine the differences in the gut microbial communities of patients in 

relation to colorectal status, DNA sequences were extracted from mucosal biopsy samples 

of patients and the 16S rRNA gene was sequenced. 16S sequence reads were separated into 

separate fastq files per sample and quality-filtered with the default Phred score of 25 using 

QIIME’s “split_libraries.py” script. Paired sequences were merged using FLASh (Fast 

Length Adjustment of Short reads)121. The merged 16S sequence reads were then clustered 

at a 97% similarity to obtain operational taxonomic units (OTUs) using the UCLUST 

algorithm122 in QIIME. We then assigned taxonomy for the OTUs by running a BLAST 

search for each of the OTU’s representative sequence against the GreenGenes database. 

We only kept OTUs that were present in at least 25% of the samples. To account for 

differences in raw counts across the samples, the taxonomic classification table was log-

normalized (Section 1.6). This resulted in a table with samples as rows and OTUs as 

columns. We performed multidimensional scaling (MDS) on the resulting table to reduce 

the table to a matrix in which the columns are eigenvectors that account for some percent 

of the variation among the samples. 

We then ran a non-parametric Wilcoxon rank-sum test123 for each OTU using the 

log-normalized abundance of that OTU as the dependent variable and whether the sample 

comes from a patient with colorectal adenomas (case) or not (control) as the independent 

variable. We also ran the Wilcoxon rank-sum test using MDS axes instead of OTUs in 

order to examine the changes in the microbiome as a whole. P-values were adjusted for 
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multiple hypothesis testing using the Benjamini and Hochberg method for false discovery 

rate (FDR) correction. 

6.3.2 Collect previously published colorectal adenomas microbial datasets to help 

validate our findings 

 In addition to the data provided by Dr. Keku that we are using for this chapter, we 

also used other gut microbiome studies in which the authors recorded adenomas status for 

the participants. We used these studies to determine if any microbial associations that we 

find in our dataset that are different between colorectal adenomas and microbial abundance 

have a strong enough signal to discriminate between case and control in other datasets as 

well. To be considered as a possible dataset for validation, the dataset must contain both 

samples from both subjects with colorectal samples and subjects that will be used as 

controls. The first dataset that will be used for validation is published by Sanapareddy et 

al. 17 in which mucosal samples are collected from 71 patients (33 adenomas and 38 

control). These samples were collected from subjects as a part of a colonoscopy at the 

University of North Carolina – Chapel Hill under the guidance of Dr. Keku so it is possible 

these samples were similar to those in our study because of similar sample origins. This 

dataset is also similar to our data because the samples are also mucosal biopsies. Our last 

dataset that is used for validation involves 60 (30 adenomas and 30 control) fecal samples 

that was published by Zackular et al 76 (Table 6.1). The samples that are used for Zackular 

et al. dataset was taken from hospitals in Houston, TX, USA; Toronto, ON, CAN; Boston, 

MA, USA; and Ann Arbor, MI, USA. These were fecal samples that were extracted from 

subjects who came to the hospitals for a colonoscopy for colorectal cancer screening. We 
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obtained the 16S sequence reads from all these studies and then ran sequences through 

RDP classifier and QIIME to obtain OTUs in the pipeline described above. 

6.4 Results 

In an effort to characterize the gut microbiota of patients with colorectal adenomas we 

sampled 217 patients with colorectal adenomas and also sampled 218 patients who did not 

have colorectal adenomas as control as part of a screening by colonoscopy. 16S sequence 

reads were extracted from the samples and these reads were clustered into operational 

taxonomic units (OTUs) (see Methods).  

6.4.1. Determination of taxa that are discriminant for case versus control 

A multidimensional scaling (MDS) analysis that there is not much separation 

between adenomas samples and control samples in our data (Figure 6.1A). However, linear 

regression models for each of the OTUs with case and control as an independent variable 

and OTU abundance as the dependent variable (see methods) found 50 out of the 1127 total 

OTUs that differed in case samples versus control samples at a 10% false discovery rate 

(Figure 6.1 B). 

6.4.2 Microbial associations with colorectal adenomas status was not reproducible in 

datasets used for validation 

In addition to the colorectal adenomas case and control samples that were generated for 

this study, we sought to determine if OTUs that are associated with case and control were 

associated with OTU with colorectal adenomas status in other published datasets. We used 

two outside datasets that are described in Methods section. Although all three datasets 

aimed to measure gut microbial abundance in patients with and without colorectal 

adenomas, plotting the first two MDS axes against each other proved that these datasets 
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were strongly different (Figure 6.1) showing a strong batch effect. We would expect these 

differences given the extraction of the sequences were different (i.e. fecal versus mucosal 

biopsy; 454 pyrosequencing versus Illumina sequencing; etc.). We noticed that similar to 

our dataset, in the other two studies there was little separation between the adenomas and 

control samples based on the first two MDS axes.  

Our findings have shown that although there was not much separation by adenomas 

status in the overall microbial community, there were many closed-reference OTUs that 

were significantly different due adenomas status in the other two datasets (Figure 6.2). 

When we plot the average logged abundance of the microbes against the abundance rank 

of the microbes, we notice that many of the microbes that are significantly different 

between case and control are ones that have a relatively low abundance. This led us to 

believe that since these OTUs were low abundant than they are most likely exclusive to 

their relative dataset which proved to be the case for the most part (Figure 6.3). We 

collapsed the OTUs to taxa at the genus to the phylum level and found that the three 

datasets shared a higher number of taxa at these levels. A pairwise comparison between the 

p-values testing the microbial-adenomas associations in the three datasets at all taxonomic 

levels, however, found little correlation between the microbial-adenomas associations in 

any of the datasets suggesting scant evidence for a common signal of adenomas across the 

three datasets (Figure 6.5). 

6.5 Discussion 

Our study aimed to determine the gut bacteria that were determined to have a 

different abundance in adenomas and control patients in what is, to our knowledge, the 

largest study of gut microbiota and adenomas. Despite lack of clear separation of the 
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overall gut microbiota of subjects with colorectal adenomas and those who were used as 

control, we found that there were over 50 OTUs that had a significant difference in 

abundance in patients with colorectal adenomas. This finding was in line with previous 

studies that determined that there were microbes, specifically Fusobacterium, that were 

associated with colorectal cancer74, 120. These studies, along with our study, suggests that 

changes in the gut microbiota could act as an early sign of colorectal cancer as these 

changes are associated with colorectal adenomas which in itself is a precursor to colorectal 

cancer. There are also studies showing that Escherichia coli was able to induce interleukin-

8 (IL-8) which is a pro-inflammatory cytokine124, 125 allowing for the progression of 

colorectal adenomas to colorectal cancer. 

We not only wanted to determine if microbial associations with adenomas in our 

study were reproducible in two other published datasets. Surprisingly, while we observed 

taxa with significant differences between case and control samples in all three datasets, 

when we collapsed OTUs to taxonomic levels none of these same taxa were significantly 

different in any two of the datasets. 

There are many reasons that could lead to these differences in the datasets 

including: the type of technology used for the sequencing; the variable region used for the 

16S rRNA sequence reads; the type of samples that were sequenced and even the location 

of the subjects in which the sample is extracted. 

Two of the datasets used in this study extracted sequences using Illumina MiSeq. 

These two datasets shared some of the OTUs although these shared OTUs were not 

associated with colorectal adenomas status. Not surprisingly, these datasets shared no 

OTUs with the Sanapareddy et al. dataset that was sequenced using Roche 454 technology. 
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Illumina MiSeq is a next-generation sequence technique that is able to generate more 

sequence reads at a fraction of the price of 454 sequencing but with shorter read lengths126. 

This increase number of reads and shorter reads is more likely to create more OTUs which 

lead to more OTUs being able to be compared across the two sample sets.  

Another factor that could possibly drive the differences in the OTUs that are 

significantly different over the three datasets is the region of the 16S rRNA gene that was 

used to extract sequence reads. Two of the datasets used V2-V4 region while the other used 

the V6 region. This makes a difference in the types of OTUs that are obtained because it is 

possible that one of the regions may evolve at a faster rate than the other regions127. This 

would make it harder to directly compare the OTUs that are generated using the different 

methods. The region in which there is faster evolution may result in a higher amount of 

OTUs. Also more tools may be trained using certain variable regions so that could impact 

accuracy of taxonomic classifications that are assigned to reads128. 

Yet another difference in the datasets is the type of sample that is collected in order 

to extract the sequences. We have datasets that are using fecal samples and also datasets 

using mucosal biopsy samples. The datasets from the mucosal biopsy samples would most 

likely have less bacterial sequences and more sequences that map to human. For this 

reason, there is at minimum a difference in the amount of bacterial sequences that are 

generated when using difference sample types. The dataset used for this study also has 

differences in the location in which the sample subjects live. We have seen this have an 

effect on the gut microbiome before93 and it is possible that this is the case for this dataset 

as well. 
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This study not only shows us that there are microbes whose abundances are 

different given adenomas status, but also, surprisingly, that the microbes that are associated 

with colorectal adenomas does not seem to be the same in multiple datasets. This is 

discouraging because this can have drastic effect on the reproducibility of the studies that 

are conducted. This is yet another reason that it is important to create a standard protocol 

in the field of microbial studies.  

Despite the technical reasons that may explain our observed lack of reproducibility, 

it remains a possibility that different cohorts sampled at different times or in different parts 

of the country express the gut dysbiosis associated with adenomas in unique ways, and this 

explains part of the differences between the cohorts that we describe. Further studies will 

be needed to determine whether the differences we observed between cohorts reflects true 

biological differences or can be resolved by standardizing collection and sequencing 

techniques.  Resolution of this issue will be crucial if the microbiota are to be used as a 

diagnostic technique for the presence of colorectal adenomas. 
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Figure 6.3: Closed-reference OTUs tend to be exclusive to each dataset although our 

dataset and the Zackular dataset shares a relatively small number of OTUs between 

each other. 

 

 

  



103 

 

F
ig

u
re

 6
.4

: 
O

T
U

 A
b
u
n
d
an

ce
 p

lo
ts

 c
o
lo

re
d
 b

y
 s

ig
n

if
ic

an
ce

 w
it

h
 o

ra
n
g
e 

p
o
in

ts
 r

ep
re

se
n
ti

n
g
 O

T
U

s 
w

it
h
 a

 B
H

-c
o
rr

ec
te

d
 p

-v
al

u
e 

<
 

0
.1

. 
A

) 
K

ek
u
 u

n
p
u
b
li

sh
ed

, 
B

) 
S

an
ap

ar
ed

d
y
 e

t 
al

.,
 C

) 
Z

ac
k
u
la

r 
et

. 
al

. 



104 

 

Figure 6.5: OTU Abundance plots colored by significance with orange points 

representing OTUs with a BH-corrected p-value < 0.1. A) Keku unpublished, B) 

Sanapareddy et al., C) Zackular et. al. 
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Table 6.1: Description of colorectal adenomas datasets. 

Data Set Name Keku Sanapareddy Zackular 

Study Unpublished Sanapareddy et al., 

2012 

Zackular et al., 

2014  

Total Number of 

Samples 

365 71 60 

        Adenomas         190         33         30 

        Control         175         38         30 

Sample Source Mucosal Biopsy Mucosal Biopsy Fecal 

Sequencing Technology Illumina MiSeq 454 Illumina MiSeq 

Study Participants UNC 

Colonoscopy 

patients 

UNC Colonoscopy 

patients 

Colonoscopy 

patients from 

four locations: 

Boston, Toronto, 

Houston and 

Ann Arbor 

  



 

CHAPTER 7: SUMMARY 

 

 

7.1 Conclusion 

It has been shown that the trillions of microbes that reside in our bodies are essential 

for human health. Dysbiosis and lack of diversity in some body sites, is correlated with a 

number of problems such as obesity, colorectal cancer, and eczema among others. To better 

understand the relationship the microbiome has on our health, it is imperative to understand 

who is there (the composition of our microbial communities) and what they are capable of 

doing (the function of our microbial communities). There are many methods used to 

quantify the composition and function of microbial communities and this dissertation 

compares a few of those methods.  

In this work, we addressed this by first determining whether swab samples could 

serve as a replacement method for sampling the microbial community of the human gut. 

Our findings showed that there was a significant difference between the profiles of the 

microbial communities of the swab and stool samples. Thus while there would be a loss of 

information if one sample type was used instead of the other, these samples used in 

conjunction with one another can provide a more complete view of what is happening in 

our gut microbiome.  

We next calculated how well 16S rRNA sequences, normally used to classify the 

bacteria in a community, can be used to predict the functions of microbial communities in 
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non-human primates using PICRUSt. This was a vital question because WGS sequences, 

which are more traditionally used to quantify the functions of community, are expensive 

in both time and cost. We found that while there was a greater than 85% accuracy of the 

distribution of the predicted functional profile, these functional predictions were not 

reliable enough to make statistical inferences. This could be because the majority of fully 

sequenced bacteria (PICRUSt uses fully sequenced bacteria to help make gene family 

abundance predictions) are those that are prevalent in humans.  

In addition to the analyses focusing on the techniques used to quantify the 

composition and function of a gut microbial community, we proposed some biological 

hypotheses in collaboration with researchers at a number of universities. First, we 

examined the impact of dietary sugar in the gut microbiome of juvenile rats that were fed 

sugar solutions with varying levels of fructose versus rats that were given water. This work 

is important because there is a need to better understand the role of the microbiome in 

metabolizing the fructose that we consume and to see if there is a negative impact of 

overconsumption of high fructose. I plan to extend this work to examine the impact of 

sugar on the gut microbiome of adolescents. 

 Lastly, we sought to find any associations between the gut microbiota and 

colorectal adenomas and, if present are these associations reproducible across multiple data 

sets. We found that while there were differences in microbial abundance with respect to 

adenomas status, these microbes that were different were not reproducible in other datasets. 

These other datasets had their own set of microbes that were associated with colorectal 

adenomas status. These differences could be technical differences in the sample type (as 
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we have previously reported with swab and stool samples), sequencing technology and 

location of the sample source. 

.  Overall, this dissertation aims to measure the overlap in the techniques used to 

quantify the microbiome and also aims to apply these techniques to quantify the changes 

in the gut microbiome associated with high consumption of sugar and with colorectal 

adenomas. Although the efforts presented in this dissertation will help to gain an 

understanding of gut microbiome and how it is associated with many external factors such 

as diet, cage housed, disease state, these are simply associations. There is still much to be 

understood about the how the microbiome impacts diet and disease and there is a huge gap 

between our knowledge of what microbes are in the gut and what role does these microbes 

play. The future of microbiome research will rely on gaining a clearer understanding of the 

functional pathways that microbes are involved in order to create therapies for conditions 

that are caused or exacerbated by dysbiosis in microbial communities. 
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APPENDIX A: CHAPTER 3 SUPPLEMENTAL INFORMATION 

 

 

Appendix Table 3.1: P-values for differences in swab and stool samples for microbes at 

the genus level. 

 

Bacteria (Genus level) Stool 

Means 

Swab 

Means 

Origin (adj. 

p-value) 

Individual 

(adj. p-

value) 

Culture 

Medium 

Peptoniphilus 0.573 2.504 2.00E-44 0.008767758 Anaerobe 

Anaerococcus 0.285 2.023 2.01E-42 0.007168463 Anaerobe 

Finegoldia 0.307 2.076 5.32E-40 0.174296052 Anaerobe 

Anoxybacillus 1.327 2.904 3.12E-35 0.005530238 Aerobe 

Thermus 0.208 1.576 1.29E-32 0.110924627 Anaerobe 

Geobacillus 1.635 3.119 7.36E-32 0.311352651 Aerobe 

Anaerosphaera 0.057 1.281 2.50E-31 0.011836674 Anaerobe 

Porphyromonas 0.458 1.800 3.24E-27 2.90E-06 Anaerobe 

Acinetobacter 0.067 0.977 1.56E-22 0.129185675 Aerobe 

Campylobacter 0.332 1.479 1.76E-22 1.57E-05 Aerobe 

Murdochiella 0.120 1.257 3.64E-22 0.002064769 Anaerobe 

Prevotella 1.714 2.828 7.93E-22 6.75E-22 Anaerobe 

Negativicoccus 0.013 0.747 4.76E-18 0.059020817 Anaerobe 

Asaccharobacter 1.372 0.731 1.00E-15 3.79E-17 Anaerobe 

Peptostreptococcus 0.183 1.009 4.70E-14 0.000103966 Anaerobe 

Corynebacterium 0.104 0.826 8.88E-14 0.315438076 Aerobe 

Escherichia_Shigella 0.992 1.828 9.88E-13 2.12E-12 Aerobe 

Granulicatella 0.776 0.263 4.19E-12 0.044420738 Aerobe 

Varibaculum 0.008 0.466 1.73E-11 0.341347701 Aerobe 

Peptococcus 0.154 0.615 3.56E-11 2.50E-06 Anaerobe 

Alicyclobacillus 0.028 0.438 1.23E-10 0.258065479 Aerobe 

Fusobacterium 0.347 0.991 1.23E-10 5.61E-08 Anaerobe 

Fusibacter 1.391 0.912 9.69E-10 1.02E-27 Anaerobe 

Mobiluncus 0.054 0.552 1.95E-09 0.159505854 Anaerobe 

Gordonibacter 1.411 0.854 4.23E-09 2.78E-09 Anaerobe 

Dialister 1.417 2.089 8.83E-09 1.61E-18 Anaerobe 

Streptophyta 0.745 0.249 1.02E-08 0.157669247 Unknown 

Roseburia 3.425 3.150 1.87E-07 3.45E-10 Anaerobe 

Clostridium_XlVa 3.181 3.389 4.79E-07 1.65E-17 Anaerobe 

Anaerofustis 0.611 0.272 5.76E-07 0.000648252 Anaerobe 

Alistipes 3.346 2.988 1.71E-06 2.88E-19 Anaerobe 

Dorea 3.150 2.905 3.52E-06 2.50E-06 Anaerobe 

Hallella 0.230 0.679 4.93E-06 5.87E-11 Anaerobe 

Brevibacillus 0.066 0.349 1.14E-05 0.625656653 Aerobe 

Lachnospiracea_ 4.089 3.902 3.54E-05 8.40E-06 Anaerobe 
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incertae_sedis 

Salmonella 0.142 0.388 9.96E-05 2.11E-11 Aerobe 

Aminiphilus 0.309 0.146 0.000492147 2.02E-16 Anaerobe 

Clostridium_ 

sensu_stricto 

1.410 1.014 0.000521715 1.33E-16 Anaerobe 

Veillonella 1.350 1.056 0.000592687 2.69E-22 Anaerobe 

Parvimonas 0.153 0.452 0.000908254 0.003362417 Anaerobe 

Acetivibrio 0.515 0.308 0.001523335 1.04E-18 Anaerobe 

Ethanoligenens 0.945 0.694 0.001847183 2.36E-16 Anaerobe 

Turicibacter 0.833 0.552 0.002147057 1.08E-12 Anaerobe 

Phascolarctobacterium 2.673 2.419 0.002215804 1.94E-36 Anaerobe 

Coprobacillus 1.307 1.618 0.002411893 3.72E-16 Anaerobe 

Lactococcus 1.042 0.731 0.002764843 0.000246714 Aerobe 

Actinomyces 1.314 1.004 0.003385329 0.107328641 Aerobe 

Enterobacter 0.497 0.779 0.003850286 6.23E-12 Aerobe 

Rothia 0.420 0.239 0.004346593 1.05E-08 Aerobe 

Bifidobacterium 0.422 0.251 0.004724779 4.91E-10 Anaerobe 

Megasphaera 0.317 0.544 0.005613704 1.95E-23 Anaerobe 

Sporobacter 0.522 0.354 0.006704599 1.16E-15 Anaerobe 

Akkermansia 1.553 1.199 0.00752196 1.50E-14 Anaerobe 

Clostridium_IV 3.045 2.863 0.007665329 6.92E-11 Anaerobe 

Anaerostipes 1.826 1.586 0.008880383 1.48E-06 Anaerobe 

Erysipelotrichaceae_ 

incertae_sedis 

2.148 2.328 0.011109228 4.95E-27 Aerobe 

Slackia 0.606 0.444 0.018996542 5.39E-34 Anaerobe 

Clostridium_XI 1.894 1.662 0.022150998 1.65E-15 Anaerobe 

Allisonella 0.148 0.267 0.031759994 0.001813023 Aerobe 

Parasutterella 2.144 2.337 0.063174084 7.71E-44 Anaerobe 

Acetanaerobacterium 1.169 1.016 0.068139724 0.008682801 Anaerobe 

Subdoligranulum 3.002 2.893 0.074902901 3.82E-37 Anaerobe 

Marvinbryantia 0.434 0.566 0.091126708 2.11E-11 Anaerobe 

Collinsella 2.231 2.075 0.096709769 2.11E-29 Anaerobe 

Gemella 0.697 0.509 0.096709769 0.258065479 Aerobe 

Allobaculum 0.521 0.661 0.108278438 1.47E-14 Anaerobe 

Bacteroides 4.554 4.506 0.12532248 1.68E-12 Anaerobe 

Atopobium 0.348 0.486 0.12602787 0.157669247 Aerobe 

Gemmiger 0.954 0.878 0.12602787 1.15E-38 Anaerobe 

Lactonifactor 0.596 0.495 0.12602787 0.000505061 Anaerobe 

Robinsoniella 0.272 0.373 0.138188163 1.87E-05 Anaerobe 

Enterococcus 0.293 0.383 0.1392714 7.89E-27 Aerobe 

Anaerotruncus 2.410 2.278 0.157432437 5.13E-15 Anaerobe 

Clostridium_XlVb 2.596 2.701 0.157432437 1.29E-14 Anaerobe 

Propionibacterium 0.163 0.234 0.162330417 4.08E-05 Anaerobe 
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Pseudoflavonifractor 2.430 2.517 0.19737728 8.08E-06 Anaerobe 

Paraprevotella 1.887 1.788 0.206864475 2.03E-29 Anaerobe 

Oribacterium 0.268 0.199 0.219549255 0.000175607 Anaerobe 

Sutterella 0.950 1.039 0.219549255 2.53E-37 Anaerobe 

Desulfovibrio 0.867 0.760 0.224943627 3.27E-36 Anaerobe 

Butyrivibrio 0.825 0.722 0.250002192 2.56E-15 Anaerobe 

Succinispira 0.325 0.405 0.256838055 6.04E-36 Anaerobe 

Parasporobacterium 0.192 0.140 0.27333161 3.91E-05 Anaerobe 

Ruminococcus 2.645 2.545 0.285489331 4.79E-27 Anaerobe 

Blautia 3.633 3.569 0.286143306 0.08244119 Anaerobe 

Butyricicoccus 2.612 2.561 0.357118294 5.85E-05 Anaerobe 

Eubacterium 0.383 0.305 0.363379784 3.60E-06 Anaerobe 

Bilophila 1.573 1.638 0.373100237 1.05E-28 Anaerobe 

Acidaminococcus 0.409 0.468 0.378145501 2.60E-34 Anaerobe 

Klebsiella 0.381 0.307 0.422711268 3.47E-27 Aerobe 

Ralstonia 0.427 0.492 0.453455241 0.000212985 Aerobe 

Streptococcus 2.736 2.799 0.456861711 1.09E-11 Aerobe 

Megamonas 0.226 0.266 0.458810949 4.62E-43 Anaerobe 

Hydrogeno- 

anaerobacterium 

0.725 0.659 0.480372208 7.55E-11 Anaerobe 

Anaerovorax 1.997 1.949 0.519909747 6.02E-11 Anaerobe 

Catenibacterium 0.504 0.438 0.519909747 2.50E-31 Anaerobe 

Cloacibacillus 0.273 0.239 0.536501097 7.19E-39 Anaerobe 

Clostridium_XVIII 2.603 2.558 0.543957598 2.07E-10 Anaerobe 

Faecalibacterium 3.567 3.630 0.565109956 7.12E-36 Anaerobe 

Mogibacterium 0.711 0.676 0.586216285 1.68E-14 Anaerobe 

Parabacteroides 3.362 3.323 0.586216285 5.08E-38 Anaerobe 

Haemophilus 0.539 0.491 0.588769273 2.21E-09 Aerobe 

Sphingomonas 0.141 0.168 0.590499898 1.54E-06 Aerobe 

Lactobacillus 0.877 0.941 0.633819521 3.66E-05 Anaerobe 

Clostridium_XIX 0.377 0.390 0.636197976 5.87E-24 Anaerobe 

Syntrophococcus 2.240 2.211 0.636197976 1.40E-24 Anaerobe 

Beijerinckia 0.333 0.299 0.645807341 0.00040064 Anaerobe 

Holdemania 1.450 1.494 0.667921606 5.70E-07 Anaerobe 

Coprococcus 2.787 2.810 0.672182935 2.41E-25 Anaerobe 

Odoribacter 2.184 2.162 0.721376895 2.72E-29 Anaerobe 

Oscillibacter 3.277 3.294 0.721376895 3.88E-16 Anaerobe 

Anaerofilum 0.852 0.820 0.753482449 2.51E-07 Anaerobe 

Microbacterium 0.285 0.311 0.753482449 6.54E-18 Aerobe 

Howardella 0.747 0.774 0.764992442 2.60E-45 Anaerobe 

Hespellia 0.266 0.278 0.812712922 4.58E-05 Anaerobe 

Solobacterium 0.494 0.510 0.832128945 2.26E-11 Anaerobe 

Lachnobacterium 0.283 0.290 0.898669253 0.096244136 Anaerobe 
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Eggerthella 1.600 1.602 0.905995774 9.34E-13 Anaerobe 

Barnesiella 1.771 1.750 0.942779361 5.69E-45 Anaerobe 

Aquabacterium 0.689 0.693 0.980503912 2.10E-43 Aerobe 

Flavonifractor 2.667 2.668 0.987162038 2.54E-05 Anaerobe 

Butyricimonas 1.488 1.487 0.989886347 6.76E-36 Anaerobe 

 


