
PERSONALIZED SUMMARIZATION WITH
SHARED ATTENTION AND CONCEPT SPACES

by

Mihai George Mehedint

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
 for the degree of Master of Science

 in Computer Science

Charlotte

2019

Approved by:

Dr. Wlodek Zadrozny

Dr. Samira Shaikh

Dr. Xi Niu

@2019
Mihai George Mehedint

ALL RIGHTS RESERVED  

!ii

ABSTRACT

MIHAI GEORGE MEHEDINT. Personalized summarization with shared attention and
concept spaces. (Under the direction of Dr. WLODEK ZADROZNY)

 The information available to users is overwhelming in today’s world. Therefore, it

is essential to filter and convey only the essential information in a personalized fashion.

We explored the automatic summarization of text as a means to address this problem. In

addition, the current work explores two mechanisms: the shared attention and conceptual

spaces aiming to extract abstract ideas from text and personalize them according to the

users’ interests.

 The CNN_DM database was used as a source for both text and ground truth

summarizations. User profiles were extracted from user generate commentaries in NYT,

to provide insight into how individuals use abstraction. We utilized several recurrent

neural networks with an attached attention mechanism. The results were comparable to

the state of the art pointer generator network (0.145 F1 score). The shared attention RNN

had an F1 score of 0.13. Moreover the Recurrent Neural Network equipped with a

conceptual space mechanism scored 0.079 F1 on the same dataset.

 Summarization is the process of condensing the source text with loss of

information and preservation of essential ideas.

 The existing methods of summarization, whether done by humans or automatic

systems, create impersonal summarizations without the user profile in mind. In the

current work we show that personalized summarization can be achieved by utilizing

!iii

neural networks of cells equipped with attention mechanisms and by introducing

semantic information via concept spaces.

 The models proposed here achieve similar performance as the state of the art

while having user’s content as a guide to their interests.  

!iv

ACKNOWLEDGMENTS

 I thank my committee members, Dr. Wlodek Zadrozny, Dr. Samira Shaikh and Dr.

Xi Niu.  

!v

TABLE OF CONTENTS

LIST OF TABLES viii ..

LIST OF FIGURES ix ..

LIST OF ABBREVIATIONS xi ...

CHAPTER 1: INTRODUCTION 1 ..

1.Introduction 1 ...

2.Goal 4 ...

3.Contributions 4 ..

CHAPTER 2: BACKGROUND AND EXPERIMENTAL SETUP 6

1. Corpora: 6 ...

2. Embeddings: 7 ..

3. Recurrent neural networks: 10 ...

4. LSTM 12 ..

5. TensorFlow 13 ..

6. Keras models and custom layers 14 ...

7. Neural models of summarization - state of the art approaches 15

8. Attention 16 ..

9. Models (experimental setup) 19 ...

CHAPTER 3: RESULTS 32 ...

10. Sequential model (S): 33 ..

11. Recursive model 1 (R1) 36 ...

12. Recursive model 2 (R2) 38 ...

13. Extractive (E) 40 ..

14. Recursive model 2 with attention (R2+A) 42 ..

!vi

15. Recursive model 1 with shared attention (R+SA) 42 ...

16. Pointer generator network with coverage (PG) 45 ...

CHAPTER 4: CONCEPT SPACES 47 ...

17. Background 47 ...

18. Methods 49 ...

19. Results 53 ...

CHAPTER 5: DISCUSSION 54 ...

CHAPTER 6: CONCLUSIONS 57 ..

REFERENCES 58 ..

APPENDIX A: RECURRENT MODEL R1. 62 ..

APPENDIX B: RECURRENT MODEL R2. 63 ..

APPENDIX C: RECURRENT MODEL R2+A. 64 ...

APPENDIX D: RECURRENT MODEL WITH SHARED ATTENTION. 65

APPENDIX E: RNN WITH SHARED ATTENTION - ATTENTION HIGHLIGHTS 66....

!vii

LIST OF TABLES

TABLE 1: Performance of models…………………………………………………. 32

!viii

LIST OF FIGURES

!ix

FIGURE 1: Sample CNNDM story and highlights with NYT comments ………….. 7

FIGURE 2: Distributed representations of word vectors …………….…………….. 9

FIGURE 3: Unrolling RNN .…………..…………..…………..…………………… 11

FIGURE 4: LSTM cell..…………..…………..…………..…………………………13

FIGURE 5: Pointer generator model.…………..…………..…………..……………16

FIGURE 6: Attention mechanism .…………..…………..…………..………………18

FIGURE 7: Sequential-Model Schema. .…………..…………..…………..………..21

FIGURE 8: Recursive model R1..…………..…………..…………..……………….22

FIGURE 9: Recursive model R2..…………..…………..…………..……………….23

FIGURE 10: Recursive R2-model with attention..…………..…………..………….. 25

FIGURE 11: Recursive model with shared attention (R+SA)..…………..………….26

FIGURE 12: Sequential model predicted sequences..…………..…………..……….33

FIGURE 13: Rouge and BLEU scores for the Sequential model.………..………….34

FIGURE 14: The heat map of a Sequential RNN summarization result.………..…..35

FIGURE 15: Recursive model R1, summarizations generated………..………….… 36

FIGURE 16: ROUGE and Bleu scores R1 model………..………………..…………36

FIGURE 17: HeatMap comparison in R1 model.………..………………..…………37

FIGURE 18: Recursive model 2. Summaries generated.………..………………..….38

FIGURE 19: Recursive model 2. BLUE and Rouge scores.………..………………..38

FIGURE 20: Heat map model R2.………..………………..………………..………..39

FIGURE 21: Heat map Extractive Summary.………..………………..…………….. 40

FIGURE 22: Rouge and BLUE scores for the Extractive model.………..…………. 41

FIGURE 23: Extractive model: Top 3 sentences.………..………………..………… 41

FIGURE 24: Rouge and BLUE scores for the R2+A model.………..……………….42

FIGURE 25: Summaries and commentaries generated by the R1 +Attention shared..43

FIGURE 26: Rouge-BLEU scores for the Recursive model with Shared Attention .. 43

FIGURE 27: Heat map Recursive Attention Shared model.………..………………. 44

!x

FIGURE 28: The hybrid Pointer Generator network: predicted summaries.………. 45

FIGURE 29: Heat map representation of the PG network.………..…………………46

FIGURE 30: Contextual clustering ………..………………..………………..……. 48

FIGURE 31: Concept spaces distance from anchor example………..………………49

FIGURE 32: Concept space embedding of user comments .………..………………. 51

FIGURE 33: Recursive mechanism for capturing the Concept Spaces information.. 52

FIGURE 34: ROUGE-BLUE measurements for RNN with Conceptual Spaces …… 53

LIST OF ABBREVIATIONS

!xi

RNN ……………………………………………………….. Recurrent Neural Network

LSTM ……………………. ……………………………….. Long Short Term Memory

ATS …………………………………………………… Automatic Text Summarization

TS ………………………………………………………………… Text Summarization

Rouge …………………………… Recall-Oriented Understudy for Gisting Evaluation

BLUE …………………………………………….. BiLingual Evaluation Understudy

NYT …………………………………………………………………. New York Times

CNNDM ……………………………………………………… CNN & Daily Mail data

CBOW ……………………………………………………… Continuous Bag of Words

TF ………………………………………………………………………Term Frequency

TF-IDF …………………..……………. Term Frequency Inverse Document Frequency

OOV ………………………………….. ………………………Out of vocabulary words

PG …………………………………………………………………… Pointer Generator

CHAPTER 1: INTRODUCTION

1.Introduction

 Worldwide, digital corpora amass information beyond human mental capacity to

interpret and structure in its entirety. This unstructured data represents a difficult task for

automatic processing, due to the elusive nature of semantics in various contexts, to

language differences and to the lack of clearly defined rules to accomplish text

processing. In addition, user interests vary between individuals and therefore it is

imperative to process text in a manner that is efficient and relevant to user’s needs for

information.

 The current work shows that automatic personalized summarization can be

accomplished via two mechanisms: attention on contexts and concept spaces.

 Summarization reduces the length of the original document while preserving the

ideas within. During this process, less relevant information from the source document is

discarded. Therefore, automatic text summarization is a process of compression with loss

of information (Knight 2002).

 Creating summaries can be accomplished by humans or by automatic

computerized systems. Both avenues have strong and weak points.

 The human process of summarization stems from understanding the source

documents. In addition, the text being generated is highly influenced by external factors

as: knowledge, background, affect, personal opinions, education and life experience. This

massive information that gives them identity to the summarizer determines the quality of

the summarization. Research has shown that these factors lead to a different

summarization outcome of the same source document if the process is repeated after a

!1

few days (Torres-Moreno 2014). Ergo, the summarization is not consistent and the

cognitive processes play an important role in it.

 In contrast, the automatic summarization of the same source document is

consistent. The process is devoid of emotion and personal experience and it is completely

rational, objective, and impartial. From this point of view, it comes close to the public

sphere concept proposed by Habermas(Habermas 2015). This concept represents an ideal

of objectivity and rationality as well as understanding of the topic at hand. However, by

embracing a rational and dispassionate approach to the task we reject subjectivity,

passion and emotion. By discarding this information, the summarization becomes

desirable for a larger public target but too generic and less appealing individually.

 The current work aims to improve the automatic summaries created for a specific

user profile.

 According to Radev et.al., “Text Summarization is the process of identifying

salient concepts in text narrative, conceptualizing the relationships that exist among them

and generating concise representations of the input text that preserve the gist of its

content.”(Radev 2000)

 Summarizer thus has the task of selecting the important parts of the source

document and generate text that contains the information presented in them. This decision

is not well defined since summaries pertain to various categories related to a specific

topic or query and stemming from one or multiple documents.

 Humans approach this task by analyzing the source text in two steps as illustrated

by Cremmins et.al. (Cremmins 1992, Cremmins 1996). Local attention to sentence

content, but also a global attention to key ideas emerging from the entire document.

!2

 Automatic summarization mimics the human approach to the process, and

consequently the extractive and the abstractive summarizations types were created. The

extractive approach selects sets of words of the original document and quantifies their

importance within the source text. Meanwhile, the abstractive approach uses algorithms

for generating text with new words while preserving the ideas promoted by the source

text.

 An important leap forward in natural language processing was made by the

introduction of word embeddings (i.e.sets of numbers organized in a vector object with

magnitude and direction). By employing vectors we can treat texts as collections of

words which map into collections of vectors (i.e. vector spaces). Ergo, word embeddings

facilitate a distributed representation of words in a vectorial space (Mikolov, Sutskever et

al. 2013). Specifically, this method positions words in space according to their meaning

thereby increasing the quality of text processing.

 Distributional conceptual spaces are another notable approach to model

semantics. This theory makes use of prototypes, and helps the models make higher level

abstractive connections between categories of items. Therefore, words can be organized,

grouped and understood by their semantic meaning.

 The advent of neural networks further enhanced the quality of text

summarizations. The Recurrent Neural Networks facilitate the discovery and

memorization of complex relationships and temporal distributions of words in a sentence.  

!3

2.Goal

 To create models for automatic personalized summarizations.

 All summarization techniques whether done by humans or software discard

information. In particular, automatic summarization systems look for patterns that are

appealing to most users and extract words that have the highest statistical probability to

represent the source document. This approach however, creates impersonal and generic

summarizations learned during training from data that contains no personal information

about the user. Consequently, the text generated is less appealing to individual users but

universally acceptable. We aimed to improve this approach by introducing user generated

content to the model in addition to the source data. Moreover, we attempted to improve

the existing machine learning models by allowing complex patterns to be learned from

the corpora, thereby leveraging abstraction.

 To accomplish this we explored two avenues: the distributed attention mechanism

and the concept spaces. Both approaches required word embeddings and machine

learning techniques based on recurrent neural networks.

3.Contributions

 We proposed two novel approaches to automatic personalized text summarization

grounded in the abstraction mechanisms: the attention mechanism and the distributional

conceptual spaces. While these methods were applied by others to text processing and

even summarization, to our knowledge they have not been used to personalize the

generation on text.

 The use of the attention mechanism is innovative, and leads to decreased

computation time. The summarization model utilizes the information resources available

!4

from the user generated content while learning to summarize. While the model can be

further improved, we show that it achieves performances comparable to the state of the

art models.

 Semantic representations have progressed in recent years, however they are still in

their infancy. The goal of creating performant semantics models remains a new stepping

stone for high quality summarizations. In this work, we show that conceptual spaces can

be used as a platform to extract additional meaning and information from text, and thus

providing unstructured data to complex neural networks. This approach can be further

refined by introducing the notion of concept memory into the neural cell.

 The pointer-generator hybrid architecture was used as a reference model in this

study. The attention mechanism is similar to (Bahdanau, Cho et al. 2014) but has a

different coverage mechanism. In our approach, the attention layer captures information

from two sources and is not used as force-feeding the Decoder.  

!5

CHAPTER 2: BACKGROUND AND EXPERIMENTAL SETUP

 The model proposed in this work aims to accomplish personalized summarization

 of text from news articles. The task required several models based on abstractive,

extractive and point-generator summarization. In addition, the corpora used for training

and evaluating our models was freely available. All resources used here are open source

libraries and their functionality is described below.

1. Corpora:

 The CNNDM (CNN_Daily-Mail)(Nallapati, Zhou et al. 2016) database provides

article bodies along with a few ‘highlights’ : short paragraphs consisting of one to several

sentences generated by humans in reaction to the content. Each article and its ‘highlights’

provide insight into how humans summarize and react to the ideas within the source text.

This database became over the years a reference source for testing new models of

summarization (See, Liu et al. 2017). However, this database provides less information

about the user generated content.

 The aim of the current work is to summarize articles based on user preferences.

As such a second source of information was provided to the model in regards to a

specific user profile. For this process we gathered information from the New York Times

API (NYT). This second source comes with a wealth of information for any given user:

names, geolocation, comments to specific articles, topics of interest, occupation, links to

the original article as well as the leading paragraph from the article itself. The comments

provided by NYT from real users were employed to personalize the summarizations.

 The article bodies along with the highlights were utilized to create the reference

summaries. Random and unique NYT comments with a length similar to a summarization

!6

were randomly selected and paired with the CNNDM article bodies and highlights. The

new article-summary-comment pairs were then subjected to text preprocessing as

described below.

 Figure 1: Sample CNNDM story and highlights with NYT comments.

2. Embeddings:

 Word vectors enable us to map words into a metric space. This represents a leap

forward in our ability to analyze mathematically and computationally the relations

between words and sentences. Moreover, this creates the opportunity to compute and

measure the meaning of words.

 There are different types of word vectors (word embeddings). (Levy and

Goldberg 2014, Levy, Goldberg et al. 2015). For our purpose:

• frequency based and

• prediction based embeddings.

 The frequency based embeddings are:

• count vectors,

!7

• TF-IDF vectors,

• co-occurrence vectors

 The prediction based embeddings:

• CBOW

• Skip-gram

 One type of word vectors used in the current work in the final phase of decoding

is the 1of N. This representation establishes a one to one relation between the vectors and

the words. Also known as one-hot this mapping attributes a value of 1 to a certain

element in the vector corresponding to a unique word while the other elements harbor a

value of 0. This representation is commonly used for classification.

 Later, Mikolov et. al. used a more refined representation of words in vectors

known as Word2Vec (Mikolov, Chen et al. 2013). A distributed encoding allows all the

elements of the word vector to contribute to the definition of the current. Ergo, a vector of

100 elements has all 100 relevant values for the definition of a certain word. Moreover,

all 100 elements contribute to the definition of all the words. This distributed

representation enables a profound approach of semantics. As such, Word2vec can make

approximations of a word meaning given extensive training on large data. A famous

example of this is:

 KING - MEN + WOMAN = QUEEN

 PARIS - FRANCE + ITALY = ROME

 Concretely, Word2Vec is a shallow 2 layer neural network developed by Mikolov

et. al. at Google. It takes an input text and outputs vectors with numerical values as

!8

elements. In other words it takes an input of discrete states and creates a numerical

representation where properties like co-occurence and discreetness are translated.

 This is achieved via 2 models the CBOW and Skip-grams. The Skip-grams were

66.1% versus CBOW 57.3% superior as accuracy on semantic tasks and 65.1% versus

68.9% on syntactic tasks, with a total of 65.6% Skip-grams to 63.7% CBOW accuracy.

CBOW predicts the current word based on its context, while Skip-grams predict the

surrounding words given a base word. CBOW performs slightly better on more frequent

words 64% versus 59% for Skip-gram syntactic accuracy.

Figure 2: Distributed representations of word vectors. Models for learning Word2Vec
distributed representations (Mikolov, Sutskever et al. 2013).

 GloVe was created at Stanford by Pennington et.al. and it is an unsupervised

learning algorithm for obtaining representation of words based on co-occurrences

!9

(Pennington, Socher et al. 2014). It combines global matrix factorization and local

context windows methods. The sole objective is to learn word representations such that

the dot product equals the logarithm of word co-occurrence.

 Term frequency matrices contain words on rows and documents on the columns

(term-document frequencies) or words on columns (term-term frequencies). The global

matrix factorization is employed to reduce a large term-frequency matrices via matrix

factorization.

 Secondly, the local context window makes use of a sliding window over the

corpus with the purpose of learning to predict one word (CBOW) or the surrounding

words (Skip-gram).

 The result of the two combined algorithms is incorporated into a least squares

regression with f as a weighing function (Pennington, Socher et al. 2014):

 ! ,

where ! is the least squares objective function, ! and ! are context vectors.

 Pre-trained vectors of GloVe 100 were used in the current work as described

(Pennington, Socher et al. 2014)

3. Recurrent neural networks:

 Artificial neural networks belong to a class of systems where connections and

information processing emulates neurobiological systems. Their purpose is to learn by

applying the Hebbian rules of neuroplasticity: as a neuron triggers another neuron the

connection between them gets stronger (Hebb 2005). In the original approach, the

relation between input and output is governed by propositional logic as demonstrated by

(McCulloch and Pitts 1943). This approach evolved, and today in a simple feed-forward

̂J = ∑
i, j

f (Xij)(wT
i w̃j − logXij)2

̂J wi w̃

!10

ANN, the input data and the activation function changes the internal state of the artificial

neurons and finally produces output data.

 This concept is taken one step further by the RNN. The feed forward data flow

from the input through the activation in the hidden layers towards the output is followed

by a back propagation of the inputs from the output back to the recurrent neurons.

Consequently, the neurons receive input from the current step x(t) as well as the output

from the previous step h(t-1) (Géron 2017).

 This relatively simple fact gives the network the ability to process data organized

in time series: atmospheric events, stock prices, words in a sentence. Upon training, the

network is able to make time dependent predictions. In natural language processing, the

network is able to process sequences of variable length and predict sentiments, or create

speech from text, or translate from a different language.

Figure 3: Unrolling RNN. A recurrent neuron (left) unrolled through time, where t
is the current time step (Olah 2015).

 An RNN unit has two vectorial weights, one for the input x(t) at time t and the

second for the output h(t-1): wx and wh respectively. For the entire recurrent layer this

translates into the matrices Wx and Wh. Ergo, if Φ is the activation function, and b is the

bias the output of one instance is:

!11

 !

4. LSTM

 Cells preserve some state over time, therefore RNN is the simplest (memory) cell.

In the case of RNN the hidden state is a function of the input at time t and the output at

time t-1. However, the hidden state, the state and the output are the same in this case.

This means the states are changed with every input.

 This model is improved in the Long Short-Term Memory (LSTM) cells created in

1997 (Hochreiter and Schmidhuber 1997). LSTMs harbor two different state vectors: for

the cell state c and the hidden state h (also named output). Each state is dedicated to a

different kind of memory: h(t) is responsible for the short term memory and c(t) is

managing the long-term state. Thus, LSTMs are empowered to use long term

dependencies to extract complex patterns in time series.

 This process starts by recognizing key inputs and storing them in the long-term

cell state. The data is retained as needed, managed via forget gates, and consecutively

extracted at the opportune moment. To do all this, an LSTM encompasses the following

architecture: The gate controllers: forget gate f, input gate i, output gate o, are layers in

LSTM that regulate the main layer g. Under their control, the cell state c and hidden state

h accomplish the memory function and are calculate as follows:

 ! ,

 !

h(t) = ϕ(WT
x ⋅ x(t) + WT

y ⋅ h(t−1) + b)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t)

y(t) = h(t) = o(t) ⊗ tanh(c(t))

!12

Figure 4: LSTM cell: tanh=tanh activation; 𝜎 = logistic activation; ⊕ addition
element wise; ⨷ element wise multiplication (Olah 2015)

5. TensorFlow

 It is an end-to-end open-source framework developed by Google Inc. for machine

learning, used extensively in this work. It was conceived with versatility in mind and

therefore it can be used without changing the code on a plethora of mobile systems,

workstations, multicore CPUs and large distributed systems with multiple GPUs. Its

purpose is to create deep or shallow nets that can be easily trained and used for inference.

 The underlaying architecture is based on directed acyclic graphs (DAGs). Here,

layers are the graph nodes and are composed of mathematical operators (Abadi, Barham

et al. 2016). In fully connected layers the input is multiplied by the weight matrix, a bias

value is added and a non-linear activation function is applied to the result. This is a

typical instantiation of an operation in TensorFlow. A scalar loss function is applied to the

!13

output to measure the difference between the predicted values and the ground truth

values. The data populates the graph via tensors.

 To perform the actions described above, TensorFlow runs computations on

tensors. They are a generalization of matrices and vectors to higher dimensions.

TensorFlow builds the DAG using the tensor objects as units (Abadi, Agarwal et al.

2016). The researcher builds the graph, performs the transitive closure of nodes and

computes the outputs using an interface. After this, the graph can be executed on the data.
	

6. Keras models and custom layers

 Keras functions as an API wrapper for TensorFlow. It is a high-level neural

networks API that facilitates prototyping, modularity and extensibility. The framework

made the transition seamlessly from CPU to GPU for the experiments ran as part of this

work. Keras can be used at any level of an experiment from text preprocessing libraries,

to tokenizers, to organizing data batches, custom layers, and optimizer functions (like

tanh or the adam optimizer) (Kingma and Ba 2014, Keras 2019).

 This API was used in the current experiments to organize the layers of LSTM

cells in sequential or non-sequential fashion. Keras also facilitated the implementation of

custom layers like the Attention layer constructed for the current experiments. The

activation functions (example ReLU) (Ramachandran, Zoph et al. 2017) are attached to a

certain layer as function arguments. Similarly, the size of the network can be adjusted in

terms of depth and number of cells.

!14

7. Neural models of summarization - state of the art approaches

 Summarization using neural networks is far superior to other methods of

abstraction in text. The results are concise while preserving the meaning. But the state of

the art summarization model used in this work for comparison indicates that

summarization methods abstractive and extractive can be used together to improve the

results.

 The extractive methods have a longer history. Briefly, Hans Peter Luhn, a pioneer

in the field of automatic text summarization (Torres-Moreno 2014) created the first

extractive summarization. His algorithm used the word frequency distribution to weigh

sentences in articles (Luhn 1958). Later, Pollock et. al. (Pollock and Zamora 1975) used

sentence compression by deleting words and expressions from the original source. In

1995, Edmundson’s method used a Bayes classifier to determine which sentences from

the source are likely to be included in the summary. Other, notable approaches to

summarization include the Hidden Markov Model (Conroy and O'Leary 2001) and the

artificial neural networks (Svore, Vanderwende et al. 2007).

 The pointer generator networks model with coverage (See, Liu et al. 2017) can

extract words from the source text via pointing and at the same time creates words not

encountered in the source text via the generator (Figure 5). The model is based on an

Encoder-Decoder with an attention mechanism similar to Bahdanau et. al. (Bahdanau,

Cho et al. 2014).

 The model created by See et.al. (See, Liu et al. 2017) is aiming to create

summarizations from long sequences of text. This is challenging due to the repetitive

nature of learning with attention mechanisms. Moreover, longer source texts involve

!15

complex abstractions and the results are not always desirable. However, by employing

the coverage mechanism this net avoids most of these shortcomings.We utilized this

model as a reference in the current work.

Figure 5: Pointer generator model. PG compares the probabilities for generating versus
extracting the next word from the source (See, Liu et al. 2017).

8. Attention

 The attention mechanism utilized in our model is derived from the NMT model

with attention developed by Badhanau et. al. (Bahdanau, Cho et al. 2014). This

mechanism can be defined as a probability distribution over the source words, that

focuses the decoder on a specific context from the source that may most likely generate

the correct word in the target (i.e. the summary). This process is intentionally non-

monotonic and non-sequential. Meaning that the order of the chosen words for the next

relevant context and the next generated word does not necessarily depend on the temporal

!16

distribution of the words in the source. Therefore, the abstraction process can be more

effective having a more general view over the source text.

 This approach is a new way to align sequences by soft-searching for context parts.

Before the advent of attention the Encoder-Decoder architectures were based on a fixed

length vector which is a vectorial representation of the source sequence. This impedes the

process of learning for some tasks. While the LSTM is using long term dependencies to

retain information in a sequential fashion, it is not performing as well in tasks where the

order of words in a phrase is changed like it is the case in language translations.

 This leads to the need to search for relevant information in a focused area

containing the relevant information. The task was accomplished by encoding the source

sequence in several context vectors harboring just pieces of information instead of one

single vector. Consequently, the model can choose from several vectors for each target

word, therefore improving the performance on long sentences. In short, the soft

alignment can be written as follows:

 ! , where ! .

 In the above example, p() is the conditional probability for predicting word !

given the previous words and the current source text x; g() is a non-linear function based

on GRU which takes as arguments the previous word the current hidden state ! and the

relevant context for the current word ! . As we can see, the hidden state ! depends both

on the previous hidden state as well as the previous word and representative context.

 The two models of attention proposed in the current work for personalized

summarization stem from the approach of Bahdanau et. al. The soft-alignment of

sequences permits searching for relevant contexts ! in the users comments while

p(yi |y1, . . . , yi−1, x) = g(yi−1, hi, ci) hi = f (hi−1, yi−1, ci)

yi

hi

ci hi

c(c)
i

!17

learning a summarization for the current word ! . This approach improves the flow of

information from the user content via the hidden state of the Encoder into the linear layer

of attention which in turn provides the context vector to the Decoder at step i.

Figure 6: Attention mechanism Bahdanau et. al. (Bahdanau, Cho et al. 2014) At step t the
model creates the target word ! given a source sentence !

 However, the use of the context vectors can be multiple. We tested two

approaches. The first approach involves creating the context vectors from the comments

sequence for each word ! generated at time i. (Figure 32)

 ! , where ! .

 The second approach uses a linear attention layer that selects relevant contexts

from the source article while the model generates words simultaneously for comments

! and for summarization ! at time i (Figure 10).

 ! , where ! .

wi

yt (x1, x2, . . . , xT)

wi

p(yi |y1, . . . , yi−1, x) = g(yi−1, h(a)
i , c(c)

i) h(a)
i = f (h(a)

i−1, yi−1, c(c)
i)

w(c)
i w(s)

i

p(yi |y1, . . . , yi−1, x) = g(yi−1, h(a)
i , c(s)

i , c(c)
i) h(a)

i = f (h(a)
i−1, yi−1, c(s)

i , c(c)
i)

!18

 The sequential fixed length static vectors retrieve information relevant to the

order of words however, ipso facto they limit the non-monotonic extraction of

information. With this limitation in mind, both attention methods described in this work

extricate the non-monotonic information and relay it to the Decoder.

9. Models (experimental setup)

 The models built to complete the summarization tasks are based on the Encoder-

Decoder architecture. The source document is fed to the Encoder (E) which converts it

into an internal vectorial representation with a fixed length. The Decoder (D) processes

the emerging vector into a summarization. This architecture enables the recurrent neural

networks to predict sequences with variable numbers of inputs and outputs. As such,

given an input sequence of words ! we can express the expected results as:

 !),

where D and E are non-linear functions in this case LSTMs.

 For all the abstractive models we used 20K pretrained GloVe word embeddings of

length 100. The text was fitted with Keras tokenizers and the resulting (word, value)

tuples were employed to create a matching embedding matrix as (value, !). The

tokenizer objects where saved as pickle objects and later used during the evaluation.

Consecutively, the word vectors were fed to the Encoders.

 The Keras framework was used to stack the layers of all RNN described in the

current work.

 The hidden LSTM layer in each Encoder comprises of 128 units which channels

the information flow to a Decoder hidden layer of the same size. The information enters

changes the weights of the cell states. It further exits into a linear function (i.e linear

(w1, w2, . . . , wn)

(̂y1, ̂y2, . . . , ̂yn) = D(E(w1, w2, . . . , wn))

⃗glove

!19

dense layer) which conveys it to a single output unit equipped with a Softmax function.

Consequently, the Decoder outputs one word at a time t for the Recursive models. As an

exception, in the case of the Sequential S-Model, the data is time distributed and thus the

output is a sequence of words. The results are in the form of a one hot vector.

 The training was relayed by a Batcher module which limits the amount of data

stored in the memory at any one time with a size set to 10 sample. Moreover, an early-

stopping mechanism supervised the loss function with a patience set to 20 epochs. The

learning rate was set to 0.005 for the Sequential model and 0.001 for the Recursive

models with or without Attention.

 The loss function computed for all the models can be described as the negative

logarithmic value of the predicted versus actual word value for each token in the

sequence. The optimization was achieved using Adam the adaptive learning rate

mechanism.

 ! ,

where N is the number of tokens (time steps) in the sequence and ! is the predicted word

at time t.

9.a. Sequential model (S)

 The S-model is a simple Seq2seq model built on the Encode-Decoder

architecture. Its inputs and outputs are fixed length vectors of size matching the largest

number of words in an article and, respectively, in a ground truth summarization. This

sequence the sequences encode the words in their original position in the sentence.

 The model depicted in Figure 7 is constructed via Keras framework as described

in Chapter 2 and was stacked in a sequential fashion.

loss =
1
N

N

∑
n=0

− log(P(̂yt))

̂yt

!20

Figure 7: Sequential-Model Schema. Seq2seq model with Encoder-Decoder architecture
based on a recurrent LSTM network. The output sequence is generated in one single pass

Here the encoder LSTM generates the entire single context vector of the input sequence

and directs it to the Decoder. The output sequence is generated by the Decoder in a single

pass with multiple outputs coming from the liner Dense output layer which is time

distributed.

 The time distributed wrapper applies one layer to each temporal slice of the input

as described (Keras 2019). Consequently, the entire output sequence is generated in a

single pass.

!21

9.b. Recursive model 1 (R1)

 The R1-model, depicted in Appendix B, was created as described (Ludwig 2017).

This is a recursive model fundamentally different from the S-model. The model uses 2

Encoders working jointly to embed and relay the input sequences to the Decoder

(Figure). The word generated at time ! is appended to the input of the current summary.

In this fashion, the summary built until ! is used to predict the word ! at time-step

! .

 The prediction of a word can be described as:

 ! ,

 where ! and ! are the encoders for the article and the summary respectively and D is

the decoder. They are non linear LSTM functions. This approach puts a heavy burden on

the Decoder handling both embedded sequences. However, the R1-model is superior to

the sequential model described above since Decoder is aware of the order of words

already present in the current summary at time ! .

Figure 8: Recursive model R1. The Encoder (Embedding + LSTM) takes as inputs the
article bodies and the summary generated until time t. The Decoder (Concat+Dense)
generates the words one at the time.

ti

ti wi+1

ti+1

̂yi = D(Ea(w(a)
1 , w(a)

2 , . . . , w(a)
n), Es(w1, w2, . . . , wi−1))

Es Ea

ti

!22

9.c. Recursive model 2 (R2)

 The R2-model is a recursive network built as described (Brownlee 2019). This

network is similar to the R1 model (Appendix C). It outputs a predicted word-vector at

time ! based on the preceding set of words ! . However, there is a

crucial difference in the way it handles the summary input as a set (i.e the order of words

is disregarded). This allows for a different kind of output where the information is

flowing from the article in a sequential manned and non-sequentially from the summary

(Figure). Ergo, a higher level of abstraction can be attained on the summary side while

creating the one single context vector, at the expense of losing the temporal order of

words in this sequence.

 The formula encapsulates this reality:

 ! , where ! is a linear

dense layer function.

Figure 9: Recursive model R2. Similar to the model R1 with the exception that the
Encoder (Embedding + LSTM) takes as inputs the embedded sequence temporal
dependent from the article bodies (left) and the embedded summary generated until time
t-1. The Decoder (Concat+Dense) generates one word at the time t.

ti {w1, w2, . . . , wi−1}

̂yi = D(Ea(w(a)
1 , w(a)

2 , . . . , w(a)
n), f s({w1, w2, . . . , wi−1}) f (s)

!23

9.d. Extractive model (E)

 The sentence level extractive model is fundamentally different from the other

models used so far in the current work. Concisely, it extracts the information from the

original text without changing the words nor their sequence. To achieve this, all the

experimental setup was changed. First, the articles’ corpora was preprocessed while

preserving the sentence structure. The stop words were eliminated along with the

punctuation and numerical features, and the words were lowercased where needed. This

step is crucial for selecting the relevant sentences from the text in preparation for the tf-

idf sentence ranking.

 The frequency of unique words (i.e. document frequency) for a given article was

calculated as the ratio between the number of times a given word appears in a document

and the number of words in the article body: ! . In terms of term frequency (tf)

this value can be expressed as: ! , where N =1 represents the number of

documents analyzed for a given word, and ! is the document frequency of the word !

(Wu, Luk et al. 2008).

 Based on the above, the inverse document frequency is:

 !

 The ranking of a sentence is the sum of the ! of a given unique word ! divided

by the total number of words in the sentence. This measure prohibits sentences with

repeating words to have a higher score.

 ! .

 The ranking will return a value for each sentence which can be used to create a

scoring matrix . The values will allow us to chose the sentences with the highest

d fi =
ni

N(d)

t fi =
N
d fi

d fi wi

id fi = {1 + loge(t fi) i f t fi > 0,
0 other wise

id fi wi

rank ing(s) = (
1
N

)
N

∑
i=1

wi

!24

cumulative tf-idf scores. In this experiment the threshold was set to top 5 sentences

(Figure 21).

 The algorithm creates summarizations that contain precise extracts of the original

article and thus can be used to see how much of the information from the original article

is reflected in the ground truth summarizations.

9.e. Recursive model 2 with attention (R2+A)

 This model is derived from the R2-model described above (2.9c). In addition to

the R2 Encoder-Decoder, we added a second source of information coming from the user

generated content (i.e the comments) via a simple Embedding layer. As in the R2-model,

the predicted word vector ! at time ! is fed back into the input sequence of the current

summary ! . The Decoder is therefore aware of the words (in sequence)

added to the summary at previous time steps. This information is used to shape the

hidden state of the Decoder ! and further output of the model.

 Figure 10: Recursive R2-model with attention. The information from the user is
embedded and organized into a set of context vectors and consecutively sent to the
Decoder (Concat+Dense) where it alters its hidden state.

ŵi ti

{w1, w2, . . . , wi−1}

hi

!25

 The attention model is graphed hierarchically onto the R2 model. It solely handles

the task of managing the user information by creating a set of user context vectors. This

information is concatenated with the summary hidden state and relayed onto the Decoder

LSTMs. Consequently, the trainable weights of the Decoder are shaped both by the user

content and the summary being created one word at a time.

9.f. Recursive model with shared attention (R+SA)

Figure 11: Recursive model with shared attention (R+SA). The Encoder processed the
information channeled from 3 input sources: the article, the summary generated at time t
and the commentary generated at time t. The two Decoders (S+C) process the
information and generate the two words (one for comments and one for the summary)
both output at time t.

 The R+SA model, depicted in Appendix D, uses an Attention mechanism that

processes and conveys sets of context vectors from multiple input sources. In short, the

recurrent hierarchical network harbors two Encoders and two decoders with trainable

weights. The Encoders shared the information conveyed by the Shared Attention (2.8.

details on shared Attention) as well as the information coming from the article body at

!26

any given step ! . The Decoders LSTMs are simple and process the information for the

given output: comments and, respectively, the summary.

 This architecture learns to produce comments and summaries at the same time and

one word at a time.

 The combined results of the networks at each one of the two Encoder level can be

formulated as:

 ! ,

as described in (2.8) where g is a non-linear LSTM function. The context vectors ! and

! are added into one vector value by the linear dense function f into a common set of

context vectors.

 ! .

 The shared set of context vectors encode relevant segments of information from

the article body for any given word in the comments and any word in the summary at the

same time. We hypothesize that this shared information is relevant for the creation of

personalized summaries as it brings relevant information from the summary and the user

content (i.e the comments).

9.g. The pointer-generator reference model with coverage (PG):

 This model is considered the state of the art hoc tempore and it was utilized in the

current work as described (See, Liu et al. 2017).

 Briefly, the pointer-generator is a seq2seq recurrent model equipped with an

Encoder-Decoder mechanism. The hidden state has 256 dimensions and harbors 128 units

for handling the word embeddings. Its pointer-generator (PG) handles a vocabulary set of

50K words which is symmetrically used for the source text and the target summary. This

ti

p(yi |y1, . . . , yi−1, x) = g(yi−1, h(a)
i , c(s)

i , c(c)
i)

c(s)
i

c(c)
i

c(shared)
i = σ (tanh(f (c(a)

i , c(c)
i)))

!27

is roughly half the size used by others (Nallapati, Zhou et al. 2016). This reduction is

facilitated by the PG’s ability to handle out of vocabulary words (OOVs).

 The pre-trained model and weights were downloaded from the source (See 2017

May 1) and ran on the CNN-DM dataset. The authors incorporated an Adagrad mini

batch stochastic-gradient mechanism for training the network. The output values are fixed

length sequences of vectors.

 The attention distribution mechanism follows the same model described by

(Bahdanau, Cho et al. 2014) and has the role of producing the relevant context vectors

from the encoder hidden states:

 ! ,

where ! is the attention vector and ! is the hidden state.

 The pointer generator extractor is built on the following function:

 ! ,

where the ! is the context vector, ! is the decoder state and decoder input is ! and ! is a

sigmoid function. All the other weights parameters are subjected to the learning

mechanism.

 A coverage mechanism is added to the attention vector to eliminate the repetition

effect observed during long sequence procession in some nets. The ! is the coverage

vector:

 ! .

 The pointer_generator hybrid network with coverage reduces inaccuracies and

repetitions and significantly outperformed previous models by ROUGE estimations. We

h*t = ∑
i

at
i hi

at
i hi

pgen = σ (wT
h* * h*t + wT

s * st + wT
x * xt + bptr)

h*t st xt σ

ct

ct =
t−1

∑
t′�

at′�

!28

used this model to produce test summaries and evaluate the results using ROUGE, BLEU

and Jaccard measurements described in Chapter 3.

10. Metrics

 The summaries generated by the reference model as well as the extractive and

abstractive neural models were evaluated quantitatively using several techniques such as:

ROUGE, BLEU and Jaccard.

10.a.ROUGE

 Usually, the text generated by the model is compared against a control summary.

In our case, the ground truth was defined by human annotated text found in the CNNDM

data. ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation (Lin 2004)

and counts the number of overlapping n-grams, sequences or pair of words.

 Lin et.al. created four types of ROUGE: ROUGE-N, ROUGE-L, ROUGE-W and

ROUGE-S.

• ROUGE-N: In the above formula, n is the length of the n-gram, and

Countmatch(gramn) stands for the maximum number of n-grams co-occurring in the

automatic summary and in the reference summary.

• ROUGE-2: (used in Table 1) stands for the ratio between the actual number of co-

occurring bigrams from the total number of co-occurring bigrams possible

between the automatic summary and the reference summary.

!29

ROUGE − N =
∑

S∈ReferenceSummaries
∑

gramn∈S
Cou ntmatch(gr a mn)

∑
S∈ReferenceSummaries

∑
gramn∈S

Cou nt (gr a mn)

• ROUGE-L: counts only in sequence co-occurrences, and gives results in the

interval [0,1] where 0 represents no overlap between a sequence X and a sequence

Y and 1 when X=Y. The values in between stem from the longest common

subsequence (LCS). ROUGE-L uses LCS based F-measures to compare X and Y.

• ROUGE-W: measures the weighted longest common subsequence of two given

sequences X and Y. It gives a better distinction between results with consecutive

words and non-consecutive overlapping words by favoring the consecutive

sequences.

• ROUGE-S: measures skip-gram co-occurrence. Skip-gram represents any pair of

words having the same order as in the original sentence but harboring arbitrary

gaps.

10.b.BLEU

 BLEU (bilingual evaluation understudy) is an automatic precision-measure

typically used in machine translation algorithms like the Open-NMT. It counts the

percentage of n-grams in the candidate text that overlap with the source text (Papineni,

Roukos et al. 2002), therefore the range is [0,1] similar to ROUGE. The algorithm first

computes the n-gram modified precision on blocks of text:

!

 BLEU penalizes the candidate summary by introducing the penalty factor for text

that is either too long or too short compared to the reference. This measure ensures that

pn =
∑

C∈Candidates
∑

n−gram∈C
Countclip(n − gram)

∑
C′�∈Candidates

∑
n−gram′�∈C′�

Count (n − gram′�)

!30

the candidates match the translation length besides the word choice and word order

introduced.

 !

Therefore:

 !

10.c.Jaccard

 The Jaccard index computes similarity between two sets (Jaccard 1901). In the

current work, the sets are represented by words tokenized from the reference, source and

candidate (i.e generated) summaries. In this case the order of words does not matter,

which explains the use of sets. Given two tokenized and pre-processed sets of words A

and B the J(A,B) (Kosub 2019) is:

 !

 This index allows us to quantify the result of a non-monotonically generated text

from the abstractive methods.  

BP = { 1 i fc > r,
e(1−r/c) i fc ≤ r

BL EU = BP ⋅ exp(
N

∑
n=1

wnlogpn)

J(A, B) =
|A ∩ B |
|A ∪ B |

=
|A ∩ B |

A + B − |A ∩ B |

!31

CHAPTER 3: RESULTS

Results overview:

Table 3.1: Performance of models. All models were trained on the same data. RNN R1 is
the recursive model 1; RNN-R2 is the recursive model 2; R2+Attention is the model R2
with attention; R1+SA is the R1 model with shared attention. ROUGE-2 stands for the
ratio between the actual number of co-occurring bigrams from the total number of co-
occurring bigrams possible between the automatic summary and the reference summary.

!32

Models Rouge-2

F1-values

Rouge-2

Precision

Rouge-2

Recall

BLUE

cumm4

Jaccard

Sequential (S) 0.085 0.211 0.24 0.68 0.183

Recursive

RNN (R1)

0.126
0.117 0.137 0.61 0.171

Recursive

RNN (R2)

0.104 0.104 0.106 0.62 0.214

R2+Attention 0.130 0.137 0.125 0.57 0.237

R1+SA 0.141 0.203 0.109 0.462 0.077

Extractive (E) 0.009 0.3 0.0058 0.68 0.08

Pointer

generator (PG)

0.145 0.172 0.123 0.54 0.275

11. Sequential model (S):

 The encoder captures the information of the input sequence and relays it to the

Decoder. As such, the encoder has the important task of determining how to process the

information and what is important in the input sequence. However, in the S-model, by

encoding the source vector into a single fixed length vector of a given size and the output

of the model is entirely dependent on the order of tokens in it without having the ability

to create a higher level abstraction nor to introduce new tokens in the created

summarization. While we can observe that the beginning of the sequence resembles

closely the summary, it is evident that this pattern is not sustained throughout the

sequence (Figure 12).

Figure 12: Sequential model predicted sequences. Predicted from the sequential model
(Summary 0-3) and the corresponding actual summary (Reference 0-3)

 This type of networks while simple and easy to use do not scale up very well to

large applications with long sequences.

!33

 The pattern distribution between the predicted summary and actual summary is

more evident in Figure 14, where the similarity between two random words is computed

based on their W2V word-vector values and the cosine similarity function. By examining

the Rouge values we can see the decreasing trends from ROUGE-1 to ROUGE-4. with

increased dimensions. Not surprisingly the trend in the BLEU score cumulative values is

increasing.

 Figure 13:Rouge and BLEU scores for the Sequential model. The F1 score for this model
is 0.085. This simple model has a overlap of bigrams between the actual summary and
the predicted summary that offers a baseline to compare the other models against.

!34

Figure 14:The heat map of a Sequential RNN summarization result. The pattern is
calculated by cosine distance between 2 given word vectors. Here, the actual summary is
on the X axis and the predicted summary is on the Y axis. Values are between [0,1].

!35

12. Recursive model 1 (R1)

 Figure 15_: Recursive model R1, summarizations generated.

 Model R1 uses a recursive method of training, generating one word at a time

(Ludwig 2017). This method allows for a longer sequence to be trained. We observe this

aspect in model R2 as well. Moreover, in faster time we achieved better results with

0.126 F1 Score versus 0.145 achieved in the PG control model. Figure 15 indicates a

repetitive pattern that does not disappear, typical to RNN trained on longer sequences.

 Figure 16: ROUGE and Bleu scores R1 model. The F1score is 0.126 for ROUGE-2 and
is comparable to the PG control model at 0.145.

This was the reason from adding coverage to the PG control model which effectively

eliminated the patterns. Our scope however was to improve a basic model without added

mechanisms.

!36

 Similar trends of decrease in trend from for ROUGE-N can be observed with

increased N (Figure 16).

Figure 17: HeatMap comparison in R1 model. Recursive R1 model cosine similarities
between the words distributed in the predicted sequence versus the actual summary (X
axis). Longer sequences similar to the ground truth summary can be observed. Training is
faster.  

!37

13. Recursive model 2 (R2)

	

	

 Figure 18: Recursive model 2. Summaries generated. The sequence generated is similar
but not identical to the actual summary (in Summary 1 word ‘Jamaica’ is eliminated). The
model learns fast and the summarization is meaningful.

Figure 19: Recursive model 2. BLUE and Rouge scores. Rouge 2 F1 scores values are
close to the ground truth values of 0.145 for the F1 score.  

!38

 Figure 20: Heat map model R2. Heat map of predicted summarization (y axis) versus
actual summarization Complex pattern of words is similar partially to the original but not
identical .  

!39

14. Extractive (E)

 This model is fast and easy to use and, at the same time, it preserves the grammar

and accuracy of the original text. However, it is incapable to incorporate novel

knowledge from the outside world. Moreover, it cannot use skills like high level

abstraction or phrasing to increase the quality of the summary.

 Figure 21: Heat map Extractive Summary. Summarization using the extractive model
using sentence scoring with tf_idf at the sentence level followed by extraction. On the y
axis, are the top 5 sentences selected from the article body, while on the x axis is the
actual article.

!40

 Figure 22: Rouge and BLUE scores for the Extractive model. Surprisingly this simple
and fast model scored a ROUGE-2 value that is competitive with the rest of the models.

 Figure 23: Extractive model: Top 3 sentences are extracted from a given article based on
cumulative tf_idf values.  

!41

the consumer electronics show brings a slew of new gadgets tablets running android and
windows will debut a new type of thinner are expected to make a splash but some of the
largest players in the consumer electronics industry are shunning ces

sara sidner sees another world in a tunnel below tripoli gadhafi may have recorded his taped
messages in a studio there rebels are methodically searching through the winding passages

15. Recursive model 2 with attention (R2+A)

 Figure 24: Rouge and BLUE scores for the R2+A model. The F1 score for the ROUGE-2
bigrams is 0.13 which is comparable to the state of the art PG at 0.145.

16. Recursive model 1 with shared attention (R+SA)

 The RNN Recursive model 1 was modified by attaching the Attention mechanism.

The new architecture gives the Decoder access to non-monotonic context vectors

generated from the body of articles. Commentaries and summaries were generated at the

same time during prediction. We can observe repetitive patterns due to the long

sequences used during training and the long prediction sequences both for the summary

and the commentary.

!42

Figure 25: Summaries and commentaries generated by the R1 +Attention shared model.
Summaries and commentaries are shown, both for the ground truth and the predicted
sequences. We observe repetitive patterns typical to long sequences during training of
RNN.

 Figure 26: Rouge and BLEU scores for the Recursive model with Shared Attention. The
value of Rouge-2 is similar to the reference model pointer generator, not taking into
account the differences between the evaluations  

!43

Figure 27: Heat map Recursive Attention Shared model. The attention is focused only on
the body of the article. Repetitive patterns are observed.

!44

17. Pointer generator network with coverage (PG)

 The pointer generator model and weights were downloaded from (See 2017). The

pertained model was fitted on the CNN_DM database and measured against a selected subset of

1000 article summary predictions. The coverage mechanism eliminates the repetitive learning

patterns observed in the other models presented above (Figure 28).

 Figure 28: The hybrid Pointer Generator network: predicted summaries. The coverage
mechanism eliminates repetitions while the insertion of extracted words and numerical
values is evident.  

!45

Figure 29: Heat map representation of the PG network with predicted (y axis) versus
actual (x axis) summaries and values computed based on cosine similarity. Interestingly
the numerical value stand out and are missing from the abstractive reference summary.

We can observe slight differences in the values published before for the PG. These
can be explained by the further training and slight differences in preprocessing.

!46

CHAPTER 4: CONCEPT SPACES

18. Background

 During learning and communication humans use abstraction as an essential skill.

The distinction between “abstract” and “concrete” is important and yet it is hard to define

a clear philosophical standard for it (Rosen 2001). In recent years, theories on geometric

conceptual spaces put forward a solution to this problem (Gärdenfors and Williams 2001,

McGregor, Purver et al. 2016).

 Concept spaces were created on a geometrical representation of concepts via

Region Connection Calculus. They provide a framework for modeling concepts and

consequently for governing semantics. To define the concepts, Gärdenfors (Gärdenfors

and Williams 2001) make use of the categorization process.

 Creating categories is a fundamental cognitive activity that can be used to clarify

the notion of abstraction (i.e. concept). Understanding the process of building categories

is instrumental in developing powerful artificial intelligence in general and it was proven

very effective on natural language understanding. However, the approach is not without

flaw due to inherent complexity of the semantics of words.

 McGregor et.al. (McGregor, Agres et al. 2015) note that the ability to map the

word meaning to the mental representation of world experiences depends on cognition

and language. Since the concept relations are complex, any representation including our

natural language is insufficiently effective to describe them completely. Therefore, the

language semantics is flexible and vague. Yet the concepts framework make the process

of modeling semantics computationally feasible.

!47

 Figure 30: Contextual clustering. (McGregor, Purver et al. 2016), two different
perspectives group the words in close proximity to the word-vector ! by their specific
contexts.

 The neural network approach used to generate the GloVe pretrained word-vectors

is leveraging each of the multiple space dimensions. It is capturing the lexical space

relations between words and concepts. However, this popular approach is static and hard

to use for interpreting words in regards to their contexts to further infer complex semantic

mechanisms that link contexts together. A more dynamic mechanism is needed.

 The analysis of the word vectors can reveal which dimensions are instrumental for

capturing the word meaning in its context (Figure 30). We can select dimensions on the

basis of context that will produce contextual spaces where analogical terms always satisfy

the relation ! (e.g. !). To this end we

can create a matrix of word vectors M based on the context co-occurrences of two words

w and c and the number of occurrence of words in the vocabulary W satisfy the

following:

 ! ,

⃗cat

A − B ≈ C − D France − Par is ≈ Italy − Rome

Mw,c = log2(
nw,c × W

nw × (nc + a)
+ 1)

!48

where ! .and ! are the frequencies of words c and w in the text, while ! is the

frequency of co-occurrences of the two words.

 The dimensions are selected to describe the dynamic distributional concept space

by selecting the dimensions with the largest value for:

 ! .

19. Methods

 The language model employed to create the distributional concept spaces was

utilized as described in (McGregor, Purver et al. 2016, McGregor Dec6 2018). The

functional model was downloaded from the repository (McGregor Dec6 2018) and

consecutively changed to generate words representative to conceptual spaces

automatically. The training was performed on a Wikipedia training corpus (Shaoul 2010).

Building the model created a concept space with 35k sparse vectors from 1.15 million

word types and a context window size of 5. There were 51551 words accepted by the

model and incorporated into the concept spaces. The trained model received 20

dimensions for the subspace selected and the output of word-vectors was set to top 5 for

each input word given using the distance from anchor rule.

Figure 31: Concept spaces distance from anchor example. The word “congress” was used
as anchor and 5 words were retrieved: representatives, speaker, committee, delegates and
passed; with the corresponding distances from anchor. The words are representative for
different concept spaces where “congress” is an element of the set.

nw nc nw,c

μc =
1
3

(∑
w∈{A,B,C}

Mw,c)

!49

 The user comments were processed by removing the stop words and the most

common words were removed by using the inverse term frequency values. The order of

words for this particular text was disregarded. Therefore, the neural model processing the

concepts emerging from the comment text only used the information stored in the

word_vector and not its position in the text. This operation was different to the actual

article body and the ground truth summary where the order of words is crucial for

creating a meaningful text. The resulting words representing the concept space they

emerged from created a new set of words that served as input for neural network and

helped in the decision made for generating the next word in the predicted summary.

 The recurrent-recursive LSTM neural network is using three inputs: article body,

the summary and the comment body. Each of them is tokenized, the punctuation signs are

removed and the words lowercased where necessary and the stop words where kept in

place. The comments body was further processed as described above to select words with

increased inverse term frequency.

 Input word_vectors (Figure 32) are processed by the Encoder-Decoder. First, the

Encoder’s embedding layer processes each of the three inputs. LSTM stateful layers are

fitting the inputs vectors from the article and the summary and learn the order of words at

the same time via long-term dependency loops.

 The Encoder-Decoder model is somewhat similar to the recursive RNN model 2

(Appendix B). The tokens from the article body pass through the LSTM layer and capture

the information from the current token ! as well as the information from the previous

step ! . This type of information retention is also applied for the tokens emerging from

the body of the summary. However, the comments’ tokens follow a different path.

wi

wi−1

!50

 Figure 32: Concept space embedding of user comments. Words provided by the user are
mapped into their concept space. The model returns words picked from the concept space
using the smallest distance from a central point. These words are fed into the Encoder.

 The same network has to channel the information from a given token ! in the

user comments. Since we process these in a manner that disregards the order of tokens in

a sentence, we have to use a simpler feed forward Dense layer instead of an LSTM layer

for the Encoder part. The information from the 3 inputs is fed to the Decoder after

concatenation to allow the prediction of the current word ! (Figure 33). Given this

architecture we can calculate the probability of a sequence of N words.

 For a given set of words ! and taking into consideration the fact

that the order of words matter, the probability distribution is given by the formula:

 !

To this end we can calculate the output of the linear Encoder layer ! for the embedded

concept words from comments ! as ! , where ! are the weights

of the layer.

Therefore, the output of the Decoder hidden state ! is :

 !

wi

ŵi

{w1, w2, . . . , wn}

P({w1, w2, . . . , wn}) =
N

∏
i=1

P(wi |w1 . . . wi−1)

y(c)
t

x(c)
t y(c)

t = W (c)
t (x(c)

t) + b(c) W (c)
t

ht

ht = W (hh)(ht−1) + W (hx)(h(a)
t + h(s)

t + y(c)
t)

!51

Here, the ! are the weights of the LSTM for the previous hidden state ! and the

! are the input weights for the current state t. The ! , ! are the hidden states of

the Encoder layer for article body (a), for the summary (s) and ! is the output from the

linear Encoder for the comments.

Finally, the prediction of the current word at time t is calculated by applying the weights

and Softmax function to the Decoder’s hidden state and can be equated as:

 !

The loss for a given target word ! during training is the negative log likelihood.

Therefore, for the entire predicted summary the loss function is:

 ! ,

where N is the number of tokens (time steps) in the sequence and ! is the predicted word

at time t.

Figure 33: Recursive mechanism for capturing the Concept Spaces information. The
words extracted from concept spaces related to user content are fed to the Decoder.
Softmax normalizes the output into probability distribution.

W (hh) ht−1

W (hx) h(a)
t h(s)

t

y(c)
t

̂yt = W (s) f (ht)

̂yt

loss =
1
N

N

∑
n=0

− log(P(̂yt))

̂yt

!52

20. Results

Figure 34: ROUGE-BLUE measurements for RNN with Conceptual Spaces. The F1-
score is low compare to the state of the art PG model. However we expect abstraction to
alter the number of overlapping bigrams in the predicted summary due to the conceptual
spaces method.

 The abstraction changes the original text and words, while preserving the main

idea. This is why some of the measurements like ROUGE and BLUE which are based on

similarity of n-grams to the source text may not reflect accurately the quality of the

summarization.  

!53

CHAPTER 5: DISCUSSION

 There is no precise formula for automatically creating the perfect summary. Even

humans are inconsistent in producing the same summarization over time, given the same

source document. Moreover, the best professional summarizers admit that the results no

matter how good leave something to be desired. This dilemma stems from the simple fact

that the summarization process is hard to define exactly.

 The main reasons are the loss of information and the abstraction process. The

traditional methods of automatic text summarization are based on information extraction

and compression (Knight 2002). During this process, some of the original information is

discarded. However, this simple process involves cognitive mechanisms that are typically

associated with intelligent beings.

 Similarly, the quality of the abstraction process is increased by the knowledge of

the outside world and experiences (Giunchiglia and Walsh 1992). It leverages the ability

to synthesize or incorporate new words and relevant information while preserving the

essence of the message from the source text. Ipso facto, this process involves cognitive

mechanisms that give humans the ability to categorize and classify various entities

material or immaterial. Gardenfors et.al. (Gärdenfors and Williams 2001) propose the

prototypes extraction theory as a basis for making abstraction work in biological or

artificial intelligent systems.

 Language cannot perfectly define the mental representations of the real world

experiences (Sperber and Wilson 1986). Some believe this is intentional and not just an

undesirable trait (Barsalou 1993). Humans share these linguistic representations and have

their own personal unique versions of these experiences. By this very fact, we can infer

!54

that machine learning mechanisms such as the ones presented in the current work, will

have a difficult time creating similar abstract representation using the knowledge encoded

in the corpora (Gärdenfors and Williams 2001). Secondly, different human individuals

have different views of the same representations. As such, there is no perfect summary

that will satisfy everyone’s impressions of the source text. Therefore, the traditional

extractive approaches or more recently the recurrent neural networks for sequence

transduction (Vaswani, Shazeer et al. 2017) present only partial solutions to the task at

hand.

 The personalized summarization presents a solution to the problems described

above. Intelligent systems can accomplish their tasks automatically but also in a more

individualized and unique fashion. This can be achieved by allowing the models to learn

user preferences and create user profiles. The user generated content provides insight

into how people use language to express abstract thoughts. Beyond this aspect, written

language sheds light on unique user preferences that are part of human personality and

make us unique.

 Beyond the addition of user related information, information processing is another

crucial element in creating quality summarizations. The current work explores the

attention based mechanisms and the concept spaces as novel ways to improve

transduction of text sequences.

 The attention mechanisms described here harvest information encoded in

language in a non sequential fashion. Words that are not in the same context and not in

their natural position in a sentence convey additional information. This mechanism was

!55

first applied in Neural Machine Translation and lately has been used in most of the areas

where machine learning and artificial intelligence can be applied.

 Simply put, the attention mechanism searches for a sets of relevant context

vectors stemming from one or many words that are part of a source document. These

vectors can be utilized to generate words that are part of more refined languages

techniques involving paraphrasing, generalizations and possibly even metaphors.

However, more recent techniques such as the theory of conceptual spaces are built

specifically to govern language abstraction.

 In our efforts we show that concept spaces can be used as an efficient platform for

machine learning. The seq2seq techniques employing Recurrent Neural Networks can

further benefit from utilizing prototyping via concept spaces. The essential information

encoded in words is structured dynamically depending on the context. This allows the

RNN to learn from the source text not only sequentially (monotonically) but also non-

sequentially.

 In conclusion, the mechanisms for personalized summarizations via concept

spaces or attention are an efficient method to automatically generate text that is appealing

to users.  

!56

CHAPTER 6: CONCLUSIONS

	 In a world where the information is constantly surrounding us, it is imperative to

present the relevant data succinctly. Inputs have to come at the opportune moment, in an

easy to digest form and preferably in tune with our latest preferences. One of the ways we

can achieve this is to create models able to deeply understand encoded meaning in text.

Here, we presented the abstraction mechanism in two of its latest forms: the attention and

the conceptual spaces. Both of these approaches focus on extricating information from

text in a non-sequential non-monotonic fashion.

 The RNN with shared attention (R+SA) achieved similar performance to the state

of the art model (See, Liu et al. 2017). Similarly, the conceptual spaces model creates a

deeper understanding of the old concept of meaning via context. The theory puts forward

the idea that neighboring words-vectors may share only some dimensions and learning

about them can lead us to the discovery of prototypes.

 Future work may explore the possibility of integrating concepts into neural

networks at the cell level.

!57

REFERENCES

. "Keras Distributed Wrappers." 2019, from https://keras.io/layers/wrappers/.

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean and M. Devin (2016). "Tensorflow: Large-scale machine learning on
heterogeneous distributed systems." arXiv preprint arXiv:1603.04467.

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.
Irving and M. Isard (2016). Tensorflow: A system for large-scale machine learning. 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16).

Bahdanau, D., K. Cho and Y. Bengio (2014). "Neural machine translation by jointly
learning to align and translate." arXiv preprint arXiv:1409.0473.

Barsalou, L. W. (1993). Theories of Memory.

Brownlee, J. (2019). "Machine Learning Mastery." from https://
machinelearningmastery.com/encoder-decoder-models-text-summarization-keras/.

Conroy, J. and D. O'Leary (2001). Text summarization via hidden Markov models.

Cremmins, E. T. (1992). "Value-added processing of representational and speculative
information using cognitive skills." 18(1): 27-37.

Cremmins, E. T. (1996). The art of abstracting. Arlington, VA, Information Resources
Press.

Gärdenfors, P. and M.-A. Williams (2001). Reasoning about categories in conceptual
spaces. IJCAI.

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow:
concepts, tools, and techniques to build intelligent systems, " O'Reilly Media, Inc.".

Giunchiglia, F. and T. Walsh (1992). "A theory of abstraction." Artificial intelligence
57(2-3): 323-389.

Habermas, J. (2015). Between facts and norms: Contributions to a discourse theory of
law and democracy, John Wiley & Sons.

Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory,
Psychology Press.

!58

Hochreiter, S. and J. Schmidhuber (1997). "Long short-term memory." Neural
computation 9(8): 1735-1780.

Jaccard, P. (1901). "Distribution de la flore alpine dans le bassin des Dranses et dans
quelques régions voisines." Bull Soc Vaudoise Sci Nat 37: 241-272.

Keras. (2019). "Keras Distributed Wrappers." 2019, from https://keras.io/layers/
wrappers/.

Kingma, D. P. and J. Ba (2014). "Adam: A method for stochastic optimization." arXiv
preprint arXiv:1412.6980.

Knight, K., & Marcu, D. (2002). "Summarization beyond sentence extraction: A
probabilistic approach to sentence compression." Artificial Intelligence 139(1): 91-107.

Kosub, S. (2019). "A note on the triangle inequality for the jaccard distance." Pattern
Recognition Letters 120: 36-38.

Levy, O. and Y. Goldberg (2014). Neural word embedding as implicit matrix
factorization. Advances in neural information processing systems.

Levy, O., Y. Goldberg and I. Dagan (2015). "Improving distributional similarity with
lessons learned from word embeddings." Transactions of the Association for
Computational Linguistics 3: 211-225.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. Text
summarization branches out.

Ludwig, O. (2017). "End-to-end Adversarial Learning for Generative Conversational
Agents." arXiv cs.CL.

Luhn, H. P. (1958). "The automatic creation of literature abstracts." IBM Journal of
research and development 2(2): 159-165.

McCulloch, W. S. and W. Pitts (1943). "A logical calculus of the ideas immanent in
nervous activity." The bulletin of mathematical biophysics 5(4): 115-133.

McGregor, S. (Dec6 2018). "ModelMaker." from https://github.com/masteradamo/
ModelMaker.

McGregor, S., K. Agres, M. Purver and G. A. Wiggins (2015). "From distributional
semantics to conceptual spaces: A novel computational method for concept creation."
Journal of Artificial General Intelligence 6(1): 55-86.

!59

McGregor, S., M. Purver and G. Wiggins (2016). "Words, concepts, and the geometry of
analogy." arXiv preprint arXiv:1608.01403.

Mikolov, T., K. Chen, G. Corrado and J. Dean (2013). "Efficient estimation of word
representations in vector space." arXiv preprint arXiv:1301.3781.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean (2013). Distributed
representations of words and phrases and their compositionality. Advances in neural
information processing systems.

Nallapati, R., B. Zhou, C. Gulcehre and B. Xiang (2016). "Abstractive text
summarization using sequence-to-sequence rnns and beyond." arXiv preprint arXiv:
1602.06023.

Olah, C. (2015). "Understanding LSTM Networks: Recurrent Neural Networks." https://
colah.github.io/posts/2015-08-Understanding-LSTMs/.

Papineni, K., S. Roukos, T. Ward and W.-J. Zhu (2002). BLEU: a method for automatic
evaluation of machine translation. Proceedings of the 40th annual meeting on association
for computational linguistics, Association for Computational Linguistics.

Pennington, J., R. Socher and C. Manning (2014). Glove: Global vectors for word
representation. Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP).

Pollock, J. J. and A. Zamora (1975). "Automatic abstracting research at chemical
abstracts service." Journal of Chemical Information and Computer Sciences 15(4):
226-232.

Radev, D. R. (2000). "Centroid-based summarization of multiple documents: sentence
extraction, utility-based evaluation, and user studies." NAACL-ANLP 2000 Workshop on
Automatic summarization -.

Ramachandran, P., B. Zoph and Q. V. Le (2017). "Searching for activation functions."
arXiv preprint arXiv:1710.05941.

Rosen, G. (2001). "Abstract objects."

See, A. (2017, May 1). "Pointer Generator Github Repository." Retrieved May 12, 2019,
from https://github.com/abisee/pointer-generator.

See, A. (2017 May 1). "Pointer Generator Github Repository." Retrieved May 12, 2019,
from https://github.com/abisee/pointer-generator.

!60

See, A., P. J. Liu and C. D. Manning (2017). "Get to the point: Summarization with
pointer-generator networks." arXiv preprint arXiv:1704.04368.

Shaoul, C. (2010). "The westbury lab wikipedia corpus." Edmonton, AB: University of
Alberta: 131.

Sperber, D. and D. Wilson (1986). Relevance: Communication and cognition, Harvard
University Press Cambridge, MA.

Svore, K., L. Vanderwende and C. Burges (2007). Enhancing single-document
summarization by combining RankNet and third-party sources. Proceedings of the 2007
joint conference on empirical methods in natural language processing and computational
natural language learning (EMNLP-CoNLL).

Torres-Moreno, J.-M. (2014). Automatic text summarization, John Wiley & Sons.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser and I.
Polosukhin (2017). Attention is all you need. Advances in neural information processing
systems.

Wu, H. C., R. W. P. Luk, K. F. Wong and K. L. Kwok (2008). "Interpreting tf-idf term
weights as making relevance decisions." ACM Transactions on Information Systems
(TOIS) 26(3): 13.

!61

APPENDIX A: RECURRENT MODEL R1.

Recursive model R1 - schema. The Encoder takes as inputs the article bodies and the
summary generate until time t. The Decoder generates the words one at the time.

!62

APPENDIX B: RECURRENT MODEL R2.

Recursive model R2 - schema. The Encoder takes as inputs the embed sequence temporal
dependent from the article bodies (left) and the embedded summary generated until time
t-1. The Decoder generates one word at the time t.

!63

APPENDIX C: RECURRENT MODEL R2+A.

Recursive model R2+A- schema. The comments are passed through a LSTM non-stateful
layer as a linear function. The Decoder processes the context vectors and Encoder hidden
states for the comments jointly

!64

APPENDIX D: RECURRENT MODEL WITH SHARED ATTENTION.

Recursive model with shared attention (R+SA) - schema. The Encoder processed the
information channeled from 3 input sources: article, the summary generated at time t and
the commentary generated at time t. The 2 Decoders processes the information and
generate the two words (one for comments and one for the summary) both output at time
t.

!65

APPENDIX E: RNN WITH SHARED ATTENTION - ATTENTION HIGHLIGHTS

The attention context vectors are highlighted based on their weights. The intense colors
represents a higher weight. This idea comes from (See, Liu et al. 2017) however the
approach and code are original.

!66

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	Introduction
	Goal
	Contributions

	CHAPTER 2: BACKGROUND AND EXPERIMENTAL SETUP
	Corpora:
	Embeddings:
	Recurrent neural networks:
	LSTM
	TensorFlow
	Keras models and custom layers
	Neural models of summarization - state of the art approaches
	Attention
	Models (experimental setup)
	Sequential model (S)
	Recursive model 1 (R1)
	Recursive model 2 (R2)
	Extractive model (E)
	Recursive model 2 with attention (R2+A)
	Recursive model with shared attention (R+SA)
	The pointer-generator reference model with coverage (PG):
	ROUGE
	Jaccard

	CHAPTER 3: RESULTS
	Sequential model (S):
	Recursive model 1 (R1)
	Recursive model 2 (R2)
	Extractive (E)
	Recursive model 2 with attention (R2+A)
	Recursive model 1 with shared attention (R+SA)
	Pointer generator network with coverage (PG)

	CHAPTER 4: CONCEPT SPACES
	Background
	Methods
	Results

	CHAPTER 5: DISCUSSION
	CHAPTER 6: CONCLUSIONS
	REFERENCES
	APPENDIX A: RECURRENT MODEL R1.
	APPENDIX B: RECURRENT MODEL R2.
	APPENDIX C: RECURRENT MODEL R2+A.
	APPENDIX D: RECURRENT MODEL WITH SHARED ATTENTION.
	APPENDIX E: RNN WITH SHARED ATTENTION - ATTENTION HIGHLIGHTS

