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ABSTRACT

SMITA KORALAHALLI CHANNABASAPPA. Performance Analysis and Control
of Latency under Memory Pressure in the Linux Kernel for Edge Computing.

(Under the direction of DR. ARUN RAVINDRAN)

The Edge computing paradigm seeks to bring Cloud-like compute capabilities close

to the Edge of the network, next to where the data is generated, so as to minimize

the data communication latency. Edge applications such as autonomous driving,

surveillance for accident and crime detection, and robotics are latency sensitive. To

ensure low end-to-end latency, the impact on latency of all layers of the computing

stack needs to be considered. In this thesis, we investigate the impact of multiple

applications sharing the memory on the compute latency. We present a comprehen-

sive experimental evaluation of the impact of different types of co-located memory

applications on the latency sensitive application. We choose YOLOv3, a deep learn-

ing based object recognition system as an example of a latency sensitive application.

We synthesize microbenchmarks that capture the various characteristics of memory

intensive background applications. We show that at a high memory utilization due to

the co-located microbenchmark, YOLOv3 suffers a latency degradation of 20x com-

pared to low memory utilization situations. To mitigate the impact on latency due

to memory intensive applications, we propose and evaluate latency control strategies

based on the recently available Pressure Stall Information feature in the Linux kernel.

We show that using latd our proposed user space latency controller, the latency con-

straints of YOLOv3 are not significantly violated despite the high memory pressure

exerted by background memory intensive microbenchmarks. The thesis thus makes

it possible to practically deploy latency sensitive applications along with memory

intensive background applications on the same physical machine at the Edge while

efficiently utilizing the memory.
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CHAPTER 1: INTRODUCTION

Edge computing paradigm aims to minimize latency and also have cloud-like com-

pute capabilities close to the edge of the network. [1]. Most of the edge applica-

tions such as autonomous driving, surveillance for accident and crime detection, and

robotics are latency sensitive. To ensure low end-to-end latency, the impact on la-

tency of all layers of the computing stack needs to be considered. In this thesis, we

investigate the impact of multiple applications sharing the memory on the compute

latency. Cloud like approaches of isolating latency sensitive applications in separate

virtual machines (or even physical machines) are not applicable at the Edge due to

limited hardware available at the Edge owing to space, power, and cost constraints.

A rich body of work in real-time computing exists on scheduling and synchroniza-

tion algorithms that investigates how compute resources can be shared effectively

between latency sensitive, and background applications [2]. However, memory is a

shared resource, virtualized and managed by the operating system, and is not di-

rectly controlled by applications. Modern operating systems such as Linux kernel

uses main memory as a cache for disk based files using the page cache mechanism [3].

Additionally, memory is used as a store for non-disk based storage allocations such as

those involving automatic variables (stack), and user memory allocation (heap). The

policies employed by the Linux kernel are targeted at maximum system throughput,

rather than maintaining the latency constraints of individual applications. Unfortu-

nately, as demonstrated in this thesis, when latency critical Edge applications (for

example real-time object detection), share the system with memory intensive, but

non-latency critical application (for example database for storing images), under con-

ditions of high memory utilization, the latency sensitive applications can experience
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large tail latencies.

1.1 Summary of approach

In this thesis, we present a comprehensive experimental evaluation of the impact

of different types of co-located memory applications on the latency sensitive appli-

cation. We choose YOLOv3, a deep learning based object recognition system as an

example of a latency sensitive application. YOLOv3 is used as a stand-alone as well

as a part of many machine vision computing pipelines at the Edge. We synthesize

microbenchmarks that capture the various characteristics of memory intensive back-

ground applications. While these co-located applications are important, they are not

typically latency sensitive. Examples include datastores such as MongoDB, and batch

analytics such as Spark. We show that at a high memory utilization due to the co-

located microbenchmark, YOLOv3 suffers a latency degradation of 20x compared to

low memory utilization situations. To mitigate the impact on latency due to memory

intensive applications, we propose and evaluate latency control strategies based on the

recently available Pressure Stall Information feature in the Linux kernel. We show

that using latd our proposed userspace latency controller, the latency constraints

of YOLOv3 are not significantly violated despite the high memory pressure exerted

by background memory intensive microbenchmarks. Additionally the proposed latd

controller occupies total memory mappings of 22MiB using only 5MiB(RSS) which is

0.03% of the total RAM in the system. The CPU utilization of the proposed controller

is 1.1% indicating that the controller does not cause much overhead to the system.

The thesis thus makes it possible to practically deploy latency sensitive applications

along with memory intensive background applications on the same physical machine

at the Edge while efficiently utilizing the memory.

1.2 Key Contributions

The thesis makes the following contributions
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1. Experimental characterization of YOLOv3 as a latency critical application un-

der different memory intensive background applications.

2. Reduce latency under high memory pressures with the proposed userspace la-

tency controller latd which makes use of Pressure Stall Information and tunable

Linux kernel parameters.

3. Demonstration of the usability of cgroups depending on the behavior of back-

ground application or microbenchmark.

4. Writing tracing tools for extracting system information needed for the research.

1.3 Organization of thesis

The rest of the thesis is organized as follows. Chapter 2 presents a brief background

on the Linux kernel, tools for performance analysis, and prior work related to this

research. Chapter 2.8 describes the experimental evaluation of latency degradation

under high memory pressure. Chapter 4 proposes control strategies to mitigate the

latency violations allowing multiple applications to coexist on the same hardware

at the Edge. Chapter 5 concludes the thesis summarizing our results, and with

suggestions for future research directions.



CHAPTER 2: BACKGROUND

In this chapter we provide a brief background of the different topics used in this

thesis including the page cache, the pressure stall information kernel feature, virtual

memory tuning parameters, kernel tracing tools, and kernel resource management.

2.1 Page Cache

The page cache is a layer between the kernel memory management code and the

disk I/O system. Pages read from a file or block device are generally added to the

Page Cache to avoid further disk I/O. The operating system keeps a page cache in

otherwise unused portions of the main memory (RAM), resulting in quicker access

to the contents of cached pages and overall performance improvements. The kernel

writes the cache pages out to disk as necessary in order to create free memory. Page

caches are motivated by temporal locality, and disk being much slower than memory.

The kernel maintains a number of page lists which collectively comprise the page

cache. The active_list, the inactive_dirty_list and the inactive_clean_list [4] are

used to maintain a least-recently-used sorting of user pages. Usually, all physical

memory not directly allocated to applications is used by the operating system for the

page cache. Anonymous pages (those without a disk file to serve as backing storage

- pages of malloc memory, for example) are assigned an entry in the system swapfile,

and do not get added to the page cache [3] whereas pages mapped from files begin

life in the page cache.

2.2 PSI-Pressure Stall Information

PSI [5] [6] is a newly available Linux kernel feature (kernel version >= 4.20) that

aggregates and reports the overall wallclock time in which the tasks in a system
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wait for contended hardware resources. It tracks three major system resources CPU,

memory and I/O over time. The percentage of time the system is stalled on the

CPU, memory, or I/O is exposed via /proc/pressure/ as pressure percentages. The

patch can be added to older kernels too manually which requires recompilation and

rebuilding the kernel by [7] and setting CONFIG_PSI=y in the build configuration.

A kernel with CONFIG_PSI=y will create a /proc/pressure directory with 3 files:

CPU, Memory, and I/O. Memory file contains two lines:

Figure 2.1: PSI Metric Display

The averages give the percentage of wall clocktime in which one or more tasks are

delayed. These are recent averages over 10 sec, 1 min, 5 min windows. The total

statistic gives the absolute stall time in microseconds. The some statistic gives the

time where some (one or more) tasks were delayed due to lack of resource. The full

statistic, indicates time in which no task is using the resource productively due to

resource pressure, that is all non-idle tasks are waiting for resource in one form or

another.

2.3 Virtual Memory kernel parameters

We briefly describe the different control knobs (kernel parameters) that can be used

to tune page cache behavior in Linux. These kernel parameters can be set from user

space using the sysctl [8] system call.

2.3.1 Swappiness

Swappiness is a Linux kernel parameter whose range can be set to values between

0 and 100 inclusive. A low value causes the kernel to prefer to evict pages from the
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page cache. The default value of swappiness of anonymous pages is 60. The priority

value of file backed pages is calculated as 200 − priority_of_anonymous_pages.

Note that lower values indicate higher priority. The default values thus favor the

anonymous pages over the file backed pages. The code in Appendix A shows how to

set this swappiness value using sysctl system call.

2.3.2 Dirty_ratio and Dirty_background_ratio

Dirty_background_ratio gives the percentage of total available memory which when

dirty, the system via flusher threads write dirty data to disk. The default value is 10.

On the other hand dirty_ratio is the percentage of total available memory which

when dirty, the process generating the dirty pages, stops further I/O, and starts

writing out dirty data. A low value causes frequent I/O pauses affecting performance.

By keeping the dirty_background_ratio to a low value, and dirty_ratio to a high

value, flusher threads can be invoked frequently without pausing the process. The

dirty pages can be monitored through /proc/vmstat or using biotop BCC tool (ex-

plained in Section 2.4).

2.3.3 Dirty_expire_centiseconds

Dirty_expire _centisecs is the time based service which writes back all modified

data once every specific time interval which is defaulted in the Linux kernel to 30

seconds. Tuning this to wake up frequently incurs greater overhead when there are

few dirty pages, due to context switching overhead.

2.3.4 Overcommit_memory

It contains a flag that enables memory overcommitment. When this flag is 0, the

kernel attempts to estimate the amount of free memory left when userspace requests

more memory. At value 1, the kernel pretends there is always enough memory until

it actually runs out. At value 2, the kernel uses a never overcommit policy that

attempts to prevent any overcommit of memory. We set it at value 0 for enabling
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default over-commitment for complete memory utilization in the system.

2.4 BPF Compiler Collection

BCC (BPF Compiler Collection) is a powerful set of tools for kernel tracing. It

utilizes extended Berkeley Packet Filters (eBPF) introduced in Linux 3.15. Most

of the components used by BCC requires Linux 4.1 or above. eBPF can be used

to run user defined sandboxed programs in the kernel safely and efficiently without

the need for kernel modules. eBPF has been used to implement a number of kernel

performance monitoring tools under the BCC toolkit. The thesis uses the following

BCC tools downloaded from the repository [9]

• cachetop shows Linux page cache hit/miss statistics including read and write

hit % per processes.

• cachestat shows hits and misses in the page cache.

• biotop summarizes block device I/O per process.

2.5 cgroups

A cgroup is a logical grouping of processes that can be used for resource manage-

ment in the kernel. Once a cgroup has been created, processes can be migrated in

and out of the cgroup via a pseudo-filesystem API. Resource usage within cgroup is

managed by attaching controllers to a cgroup. The CPU controller mechanism allows

a system manager to control the percentage of CPU time given to a cgroup. The

memory controller mechanism can be used to limit the amount of memory that a

process uses. This work requires cgroup version 2.

2.6 Signals

A signal is a very short message that may be sent to a process or a group of

processes to make a process aware that a specific event has occurred. The thesis uses

the following signals -
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• SIGSTOP suspends the execution of the current process until resumed. This

signal cannot be ignored by the process.

• SIGCONT resumes the execution of the paused process by SIGSTOP.

• SIGTERM causes program termination. This signal can be blocked, handled

and ignored. It terminates the process gracefully by cleaning its process tables

in memory.

2.7 OOM Killer

Out of Memory killing is a process which is employed by the Linux kernel when

its typically low on memory and the corresponding killer is called by kernel to free

some memory. It is often encountered on servers which have a number of memory

intensive processes running and processes request for more memory than is physically

available. Linux kernel basically reviews all running processes, assigns them a badness

score called /oom_score [10] and kills one or more of them in the decreasing order of

their badness score in order to free up system memory and keep the system running.

The file in /proc/PID/oom_score displays the current score that the kernel gives to

the mentioned PID process for the purpose of selecting a process by the OOM-killer.

A higher score means that the process is more likely to be selected by the OOM-

killer. The oom-killer can be disabled in target application by adjusting the score

in /proc/PID/oom_adj. The valid values are in the range -16 to +15, the special

value -17 disables OOM-killing altogether for the process. A positive score increases

the likelihood of this process being killed by the OOM-killer whereas a negative score

decreases the likelihood.

2.8 Related Work

Managing the available resources and satisfying the memory demands for various

applications running in the system has always been a topic of research in the systems
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level. But they are more oriented towards maximizing system throughput as a whole

rather than maintaining latency constraints of each applications.

Oomd [11] developed by Facebook takes corrective action in userspace before an

oom-killer occurs in kernel space. By default, this involves killing offending processes.

It leverages PSI [5] and cgroupv2 [12] to monitor a system holistically and offers

flexibility where each workload can have custom protection rules.

Earlyoom [13] an OOM preventer with minimum dependencies checks the amount

of available memory and free swap 10 times a second and by default if both are below

10% it will terminate the largest process with the highest oom_score. The percentage

value is configurable via command line arguments. It will send the SIGTERM signal

to the process that uses the most memory in the opinion of the kernel by looking into

the /proc/(pidof processes)/oom_score [10].

Nohang [14] does the similar action of terminating the process with more useful

information in terms of system data and printing statistics as compared to Early-

oom [13]. It claims to correctly prevent out of memory (OOM) and keep system

responsiveness in low memory conditions by terminating the application.

All approaches try to overcome oom livelocks and freeze by minimizing the time

spent by the kernel in freeing pages which is a slow and painful process because

the kernel can spend an unbounded amount of time swapping in and out pages and

evicting the page cache. Though system responsiveness and increased throughput

can be achieved, the latency suffered by individual applications under pressure is not

paid significant attention. Hence this thesis presents a comprehensive evaluation on

the inference latency of the latency sensitive application under pressure and tries to

minimize the latency and also achieve high memory utilization.



CHAPTER 3: EXPERIMENTAL CHARACTERIZATION OF LATENCY UNDER
MEMORY PRESSURE

In this chapter we present our experimental study of the impact of memory pressure

on latency. As outlined in Chapter 1, the need to achieve low latency is one of

the key motivations behind Edge computing. To gain a better understanding of

memory pressure on application latency, we quantitatively characterize the impact

of a typical latency sensitive Edge application using microbenchmarks that simulate

memory pressure. The application we choose is YOLOv3 [15][16], a Deep Learning

based real-time object detector.

Our experimental setup consists of an a Dell laptop Intel Core i7 CPU and Nvidia

GEFORCE GTX 1060 GPU with 16GB memory, running Ubuntu 16.04 LTS with

Linux kernel version 4.20. Given the power and space constraints at the Edge, the

specifications above are close to a typical server available at the Edge.

3.1 Characterizing YOLOv3

Our first objective is to characterize the latency and memory requirements of

YOLOv3 on a lightly loaded system. YOLOv3 uses the GPU for running the Deep

learning network. PyTorch and other dependencies required by YOLOv3 are installed

on the machine. Pre-trained weights are downloaded from the YOLOv3 repository,

and stored in the file system[17]. The workload consists of a series of 1000 frames

that YOLOv3 reads from the file system. The frames are 100 KB to 200 KB in size

with 600*600 pixels, and consists of natural scenes, people, and animals. The output

is the classes of the objects detected in the frame, and the latency incurred in each

detection event.

We first characterize the image inference latency of YOLOv3 application running
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across 1000 frames on a lightly loaded machine. Figure 3.1 plots the latency Cumu-

lative Distribution Function (CDF). The latency ranges from 0.03 - 0.045 seconds,

with the 95th percentile at 0.04 seconds.

LATENCY CDF

95 percentile : 0.048165 s
98 percentile : 0.049985 s
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Latency (s)
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Figure 3.1: Latency CDF for YOLOv3 on a lightly loaded machine

We then determine the memory resident set size (RSS) of YOLOv3, both to un-

derstand the Deep Learning model requirements, as well as the the memory of the

image data. We observe that prior to processing the frames, the memory RSS

is 0.98 GB. The measurement is done by examining the individual process under

proc/(pidof(yolov3))/statm. The measurement script is included in Appendix B.

We then plot the memory RSS as YOLOv3 infers objects on images. As shown in

Figure 3.2, the total memory RSS(including anonymous and file backed) increases

linearly with the number of images processed to a maximum of 2.1 GB. We also de-

termine the page cache size using vmstat (script included in Appendix D, and note

that the page cache size increases from 1.5 GB to 2.7 GB. The average page cache

miss rate is 9%. The 9% miss rate accounts for presence of anonymous pages in

YOLOv3. The total anonymous and file backed pages in an application running can

be determined dynamically by the script included in Appendix F. The above mea-
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surements show that YOLOv3 makes extensive use of the page cache. Interestingly,

the page cache remains in use despite the images being only processed once.
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Figure 3.2: Memory Consumption of YOLOv3 (Resident Set Size) over number of
Images

3.2 Memory pressure microbenchmarks

Our goal is to determine the impact on YOLOv3 inference latency under memory

pressure. Memory usage could result either from use of anonymous pages (through

malloc), or from file backed pages. For example, the in-memory database Mem-

cached [18][19] allocates memory chunks, while persistent databases such as MySQL

[20][21] allocate file backed pages. To simulate these two behaviors, we devise two

microbenchmarks

1. Anonymous page memory consumer workload (code included in Appendix C)

2. File backed page memory consumer workload (code included in Appendix G).

3.2.1 Anonymous page memory consumer microbenchmark

The microbenchmark and YOLOv3 are run simultaneously on the system. The mi-

crobenchmark allows the tuning of anonymous pages consumed. We experiment with
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different page consumption levels, and note that at 99% of total memory consumed

(by both applications), the YOLOv3 inference latency increases substantially. Figure

3.3 shows the time series plot of the inference latency exhibited by YOLOv3.
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Figure 3.3: Time series plot of the inference latency suffered by YOLOv3 under the
effect of Anonymous Page Memory Consumer Microbenchmark
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Figure 3.4: Latency CDF for YOLOv3 under memory pressure simulated by Anony-
mous page memory consumer microbenchmark
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In Figure 3.4, the CDF plot of the latency is shown. At the 95th percentile, the la-

tency is 0.6 seconds, which represents a 20x increase in latency compared to YOLOv3

running in isolation.

We also examine the memory RSS of YOLOv3 as shown in Figure 3.5, and note

that it decreased from 1.72 GB to 1.62 GB. The page cache size also showed a corre-

sponding decrease under pressure from 2.3 GB to 1.94 GB. The average page cache

miss rate is 38.64% which is thrice more than YOLOv3 running in isolation. The

above results indicate that the consumption of pages by the microbenchmark, de-

creases the page cache size, increasing the page cache miss rate, and resulting the

increased latency experienced by YOLOv3. Interestingly, the latency does not show

appreciable increase before the 99% memory consumption level indicating that cer-

tain critical pages needed for the application (for example, model weights) were being

evicted from page cache beyond a certain memory pressure level.

Figure 3.5: Effects on Resident Set Size of YOLOv3 under the influence of Anonymous
Page Memory Consumer Microbenchmark
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3.2.2 File backed page memory consumer microbenchmark

The mmap API with either MAP_PRIVATE flag is used by the microbenchmark

to create file backed pages. The workload and YOLOv3 are run simultaneously on the

system. Unlike the anonymous page benchmark, the inference latency depends on the

page access pattern. If the pages allocated by the microbenchmark are only accessed

once, there is no impact on the YOLOv3 latency despite high memory usage. This is

supported by page cache miss rate experienced by YOLOv3 which at 9.69% is almost

similar to the the miss rate on a lightly loaded machine. The page replacement

mechanism preferentially chooses the inactive pages from the microbenchmark as

compared to YOLOv3 pages. This is confirmed by measurements of the RSS size of

the microbenchmark which decreases from 12.8 GB to 12.2 GB.

0
0.0
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0.6
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0.8

1.0

C
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F

2 4 6 8 10 12

Latency (s)

LATENCY CDF

95 percentile : 0.321173 s
98 percentile : 0.383724 s

Figure 3.6: Latency CDF for YOLOv3 under memory pressure simulated by File
backed page memory consumer microbenchmark

On the other hand, if the pages allocated by the microbenchmark is accessed fre-

quently, at 98.9% of memory utilization, YOLOv3 experiences a substantial increase

in latency of 0.32 seconds at the 95th percentile which represents a 10x increase in

latency compared to YOLOv3 running in isolation. In Figure 3.6, the CDF plot of
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the latency is shown. Figure 3.7 shows the time series plot of the inference latency

exhibited by YOLOv3.
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Figure 3.7: Time series plot of the inference latency suffered by YOLOv3 under the
effect of File backed Page Memory Consumer Microbenchmark

Figure 3.8: Miss rates in page_cache under the influence of file backed page memory
consumer microbenchmark accessed once and accessed continuously

This observation corresponds to a substantial increase in miss rate experienced by
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YOLOv3 which increased to 34.92% as compared to the lightly loaded case. Fig-

ure 3.8 shows the miss rates suffered by YOLOv3 under the influence of file backed

pages accessed once and accessed continuously. Also, we observe that the page cache

size decreases and the corresponding RSS for both YOLOv3 and microbenchmark,

indicating the pages are now being evicted from both the applications.

3.3 Discussion

From the above experiments we note that the impact on latency on YOLOv3 de-

pends not only on the amount of memory consumed, but also on the type of pages

backing the memory, and the access patterns. Anonymous pages have higher prefer-

ence to be retained in the memory despite the presence of a swap space, and hence

impacts YOLOv3 adversely. On the other hand, with file backed pages, the impact

depends on the access patterns. If the pages are accessed infrequently, then the pages

are evicted from the page cache for use by YOLOv3. However, if the pages are ac-

cessed frequently, the latency of YOLOv3 is affected, since the page cache is now

being used by both applications.



CHAPTER 4: DESIGN OF LATENCY CONTROLLER

We have shown in Chapter 2.8, the adverse impact of high memory pressure on

latency of an object-detection application (YOLOv3). In this chapter, we present the

design of a user space latency controller (latd), that ensures that the high latency

events are avoided in the presence of memory intensive background applications. We

use the newly available feature in the kernel (available from kernel version >= 4.20)

known as Pressure Stall Information (PSI)[5][7] (see Section 2) that reports the overall

wall clock time in which the tasks in a system (or cgroup) wait for contended hardware

resources. While PSI has been used to tackle Out-Of-Memory (OOM) problems [6]

[11], in this thesis we use PSI to monitor memory pressure and take corrective action

before it impacts latency. We study the two causes of memory pressure, that is

consumption of anonymous pages, and those of file backed pages separately.

4.1 Latd Controller Design for Anonymous Page Memory Dominant

Microbenchmark

Algorithm 1 and Figure 4.1 shows the architecture of the Latd controller. See

Appendix A for the complete code. The design of the latd controller is as follows-

• This controller is run as root to assign higher priority over other processes.

Root process is given 3% higher priority while running which helps CPU and

the scheduler to prioritize latd process over others under pressure and take

immediate actions.

• Swappiness and overcommit_memory kernel parameters are set to 90 and 0

respectively since YOLOv3 is mostly file backed. The swappiness value of 90

gave the best latency inference. Overcommit value of 0 instructs the kernel to
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overcommit memory by default.

Algorithm 1 Architecture of Latd
1: Initialize latd as root
2: Set sysctl -w vm.swappiness = 90
3: Set sysctl -w vm.overcommit_memory = 0
4: Start yolov3 and disable oom-killer as echo ’-17’ > /proc/(pidof yolov3)/oom_adj
5: while δt==0.1s do
6: Scan oom-scores of all processes and extract process with highest oom-score
7: if some PSI increase then
8: sysctl -w vm.dirty_background_ratio = 2
9: sysctl -w vm.dirty_ratio = 100

10: if full PSI increase then
11: Stop process with highest oom-score
12: end if
13: end if
14: if some PSI stable && dirty_ratio && background_ratio not default then
15: if full PSI is stable and process is stopped then
16: Restart the stopped process
17: end if
18: sysctl -w vm.dirty_background_ratio = 10
19: sysctl -w vm.dirty_ratio = 20
20: end if
21: if available memory is 0.1% of total then
22: Terminate highest oom-scored process
23: break
24: end if
25: end while

• Disables OOM killing for YOLOv3 by writing the value of -17 to /proc/(pidof

yolov3)/oom_adj.

• Resource pressure in the system is determined by tracking absolute stall time

of some and full PSI statistics, sampling ten times per second.

• If there is an increase in some PSI statistics indicating memory pressure, dirty

_background_ratio is changed to 2, and dirty_ratio to 100, to awaken kernel

flusher threads more frequently to write back dirtied pages to disk.

• If there is an increase in full PSI statistic indicating lack of memory, stop the
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process with highest OOM score (scan the list of all PID in proc directory and

extract OOM score from each process and determine highest OOM score).

Start Latd as a
root

Run YOLOv3 and disable
oom-killing by assigning

low oom_adj value

Set sysctl parameters
swappiness to 90 and

overcommit_memory to 0

Is the system
under

pressure?

Is it a raise in
some PSI?

Is it a raise in
full PSI? Change sysctl parameters

dirty_background to 2 and
dirty_ratio to 100

Change sysctl parameters
dirty_background to 2 and

dirty_ratio to 100

Stop the process with
highest oom_score

Yes

Yes

No

Yes

Yes

Is the some PSI
stable?

Is the full PSI
stable?

Yes
Yes

Restore dirty_background
and dirty_ratio to default

Restart the process
stopped

No

Yes Is the available
memory 0.1% of
total memory?

Terminate the highest
oom-scored process

Yes

No

No

Figure 4.1: Flowchart of the working of Latd to reduce memory pressure
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• Restart the process if full PSI statistic is stable and restore the default dirty

_background_ratio, dirty_ratio if some PSI is stable.

• Continue doing this iteratively until available memory is 0.1% in the system.

If available memory hits 0.1% of total then terminate the process with highest

oom_score using SIGTERM (see Section 2.6).

95 percentile : 0.076785
98 percentile : 0.087778

C
D

F

0.2

0.0

0.4

0.6

0.8

1.0

Latency (s)

0.750.500.250.00 1.501.251.00 1.75 2.00

LATENCY CDF – Optimized with LATD

Figure 4.2: CDF Plot of Inference Latency of YOLOv3 with Latd

Figure 4.2 shows the CDF plot of YOLOv3 latency at 99% memory usage. We

note that the 95th percentile latency decreased from 0.6 second to 0.07 seconds. This

represents a 10x improvement compared to non-control case. Also, it represents

only a 2x degradation in latency compared to the lightly loaded case. With only 2x

degradation in latency we are able to achieve a higher memory utilization.

4.2 cgroups for File backed Page Memory Dominant Microbenchmark

As we saw in Chapter 2.8 YOLOv3 makes extensive use of the page cache. For

co-located workload that puts pressure on the page cache, the sysctl based VM pa-

rameters are of limited use, since we do not have control over per-process use of the
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page cache in the Linux kernel. As a result flushing pages to the disk due to mem-

ory pressure, will impact the latency sensitive YOLOv3 applications as well. We,

therefore, use the Linux cgroups capability described in Chapter 2, to isolate the two

processes. cgroups allows us to specify memory resource limit per process. If the

process exceeds the memory limit, it is killed by the kernel. Note that the page cache

is still shared between the two processes. As a result, even if one of the processes has

spare memory capacity, the kernel will kill the other process that exceeds its memory

limit, since from the kernel’s view the system is not under memory pressure. This is

determined as some PSI statistic doesn’t evidence any increase when the microbench-

mark is close to its memory limit. Appendix H includes the code for creation and

management of cgroups.

Algorithm 2 cgroup management for latency reduction
1: Create two cgroups for yolov3 and microbenchmark
2: Set swappiness to 90 for YOLOv3 assigned cgroup
3: Set memory.limit_in_bytes to microbenchmark assigned cgroup
4: Start both applications
5: Assign the applications to cgroups using their PID
6: while δt==0.1s do
7: if some PSI of the system increases then
8: Stop the highest oom-scored process
9: end if

10: if some PSI of the system is stable then
11: Restart the highest oom-scored process
12: end if
13: if available memory is 0.1% of total then
14: Terminate highest oom-scored process
15: break
16: end if
17: end while

Motivated by these observations, and then need to maintain the latency of YOLOv3,

our strategy is to place memory limits only for the non-latency sensitive application.

YOLOv3 is thus able to utilize the full memory available (minus the memory re-

served for the co-located application), and the page cache management system will
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flush pages appropriately as the memory pressure rises. Also, we set the swappiness

parameter to 90 for YOLOv3 to ensure that pages are not swapped out frequently

from the page cache. Algorithm 2 shows our implementation.

Algorithm 3 Possible direction of cgroup management for latency reduction
1: Create two cgroups for yolov3 and microbenchmark
2: Set swappiness to 90 for YOLOv3 assigned cgroup
3: Set memory.limit_in_bytes to microbenchmark assigned cgroup
4: Start both applications
5: Assign the applications to cgroups using their PID
6: while δt==0.1s do
7: if some PSI of file backed microbenchmark cgroup increases then
8: Spin up another cgroup with higher memory limits
9: Assign the process affected by rise in some PSI to new cgroup

10: Destroy unused cgroup by cgdelete memory:mmap to free memory
11: end if
12: if some PSI of the system increases then
13: Stop the highest oom-scored process
14: end if
15: if some PSI of the system is stable then
16: Restart the highest oom-scored process
17: end if
18: if available memory is 0.1% of total then
19: Terminate highest oom-scored process
20: break
21: end if
22: end while

The drawback of our approach is that the need to accurately predict the memory

requirements of the non-latency sensitive and latency sensitive applications. Even if

free memory is available, exceeding the resource limits will cause the kernel to kill

the cgroup. The solution to this is in being able to monitor the memory pressure per

cgroup. If the pressure exceeds in a particular cgroup with enough system memory

available, the latd controller could spin up a new cgroup with increased memory.

Fortunately, this capability has been made available as a patch of May 10, 2019 by

Facebook[22]. Unfortunately, we did not have enough time to explore this option.

With this capability the latd daemon would be able to make fine grained adjustments
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to the cgroup capability. Algorithm 3 depicts the possible direction of implementation.

Figure 4.3: CDF Plot of Inference Latency of YOLOv3 with cgroups

In Figure 4.3, the CDF plot of the latency is shown. The 95th percentile latency is

0.04 seconds which is same as the lightly loaded system seen in Chapter 2.8. We are

thus able to achieve high memory utilization with minimal impact on the latency of

the application.



CHAPTER 5: CONCLUSIONS AND FUTURE WORK

In this thesis, we have shown the adverse impact memory intensive background

applications can have on the latency of real-time object detection applications such

as YOLOv3. In an Edge computing system, where resources are limited, co-locating

applications on the same physical machine while simultaneously hosting latency sen-

sitive, and background applications becomes a necessity. We show that the recently

available Pressure Stall Information in the Linux kernel can be used to monitor mem-

ory pressure. A userspace controller can utilize the memory pressure information to

take corrective action. We observe that the corrective actions taken, depends on the

type of memory consumed by the background application - anonymous or file backed.

Using tunable Linux kernel parameters available via the sysctl parameters, as well as

the cgroups kernel feature, we are able to effectively limit the impact on the inference

latency of YOLOv3, despite high memory pressure. The thesis thus makes it possi-

ble to practically deploy latency sensitive applications along with memory intensive

background applications on the same physical machine at the Edge while efficiently

utilizing the memory. Additionally, the proposed techniques are applicable to Cloud

computing systems, to consolidate workloads on fewer machines, saving costs and

energy.

Future research directions include a more comprehensive evaluation of our proposed

latency controller with realistic background benchmarks. Also, the newly available

enhancement to cgroup called cgroupv2, allows per cgroup monitoring of resource

pressure, allowing containers to be resized dynamically based on memory availability.
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APPENDIX A: Latd Daemon

#!/bin /bash

# ensure running as root

i f [ "$ ( id −u) " != "0" ] ; then

exec sudo "$0" "$@"

f i

#Defau l t s changed a f t e r eva lua t ing performance and the bes t f i t

bash −c ’ sudo s y s c t l −w vm. overcommit_memory=0’

bash −c ’ sudo s y s c t l −w vm. swappiness =90’

#PSI s t a t i s t i c s and memory a v a i l a b i l i t y s t a t i s t i c s

gnome−t e rmina l −−tab −−command="bash −c ’ cd /home/edge_computing/

Documents/THESIS_SMITA/ t h e s i s ; chmod +x memstat . sh ; . / memstat . sh

$SHELL’" −−tab −−command="bash −c ’ cd /home/edge_computing/Documents

/THESIS_SMITA/ t h e s i s ; chmod +x ps i . sh ; . / p s i . sh $SHELL’"

#pytorch app l i c a t i o n

gnome−t e rmina l −−tab −−command="bash −c ’ cd /home/edge_computing/

Documents/THESIS_SMITA/PyTorch−YOLOv3; python3 detec t1 . py ; $SHELL’"

s l e e p 5

#Ind i v i dua l Memory s t a s t i c s f o r pytorch app l i c a t i o n

gnome−t e rmina l −−tab −−command="bash −c ’ cd /home/edge_computing/

Documents/THESIS_SMITA/ t h e s i s ; chmod +x memory . sh ; . /memory . sh

$SHELL’"

#Extract PID o f YOLOV3

PID1="$ ( p ido f python3 ) "

#Disab le oom−k i l l f o r YOLOv3

sudo bash −c " echo ’−17 ’ | t e e /proc /$PID1/oom_adj"
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#Run microbenchmark memory hog

gnome−t e rmina l −−tab −−command="bash −c ’ cd /home/edge_computing/

Documents/THESIS_SMITA/ t h e s i s ; . / oomki l l ; $SHELL’"

PID2="$ ( p ido f oomki l l ) "

#Ind i v i dua l Memory s t a t i s t i c s f o r microbenchmark memory hog

gnome−t e rmina l −−tab −−command="bash −c ’ cd /home/edge_computing/

Documents/THESIS_SMITA/ t h e s i s ; chmod +x memory1 . sh ; . /memory1 . sh

$SHELL’"

#PSI metr ic as a c on t r o l

some=‘ cat /proc / pr e s su r e /memory | cut −d ’ ’ −f 5 | sed −n 1p | cut −d= −f2 ‘

#Memory s t a l l in us ( accumulated some )

f u l l =‘ cat /proc / pr e s su r e /memory | cut −d ’ ’ −f 5 | sed −n 2p | cut −d= −f2

‘ #Memory s t a l l in us ( accumulated f u l l )

some1=$ ( echo $some )

f u l l 1=$ ( echo $ f u l l )

process_mem ( )

{

#Extract oom−s co r e o f a l l p r o c e s s e s from /proc

oom= eva l ’ f o r i in /proc /∗/oom_score ; do pid=$ ( echo "${ i }" | cut −d/

−f 3 ) ; echo "$ ( cat "${ i }") , PID=${pid } , exe=$ ( r e ad l i nk −e /proc /$

{pid }/ exe ) " ; done 2> /dev/ nu l l | s o r t −rn −t , −k 1 .11 | head |

sed −n 1p ’ #scans e n t i r e proc d i r e c t o r y and l i s t p roc e s s with

h i ghe s t oom_score and name

#Determine PID o f h i ghe s t oom−scored proce s s

PID= eva l ’ f o r i in /proc /∗/oom_score ; do pid=$ ( echo "${ i }" | cut −d

/ −f 3 ) ; echo "$ ( cat "${ i }") , ${ pid } , exe=$ ( r e ad l i nk −e /proc /${

pid }/ exe ) " ; done 2> /dev/ nu l l | s o r t −rn −t , −k 1 .11 | head |

sed −n 1p | cut −d " ," −f 2 ’ #ex t r a c t s PID o f h i ghe s t
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oom_scored proce s s

some=‘ cat /proc / pr e s su r e /memory | cut −d ’ ’ −f 5 | sed −n 1p | cut −d=

−f2 ‘ #Memory s t a l l in us ( accumulated some )

f u l l =‘ cat /proc / pr e s su r e /memory | cut −d ’ ’ −f 5 | sed −n 2p | cut −d=

−f2 ‘ #Memory s t a l l in us ( accumulated f u l l )

#echo "${some1} ${some}"

#I f change in some PSI change s y s c t l parameters

i f [ "${some1}" − l t "${some } " ] ; then

bash −c ’ sudo s y s c t l −w vm. dirty_background_ratio=2’

bash −c ’ sudo s y s c t l −w vm. d i r ty_ra t i o =100 ’

f i

#I f change in f u l l PSI stop the proce s s

i f [ "${ f u l l 1 }" − l t "${ f u l l }" −a ! "$ ( ps −o s t a t e= −p $PID) " = T −a

"$PID" −ne "$PID1 " ] ; then

#I f p r e s su r e changes , and i t s not a l r eady stopped (T=Stopped proce s s )

; avo ids r e c u r s i v e stop and deadlock

k i l l −SIGSTOP $PID

f i

#Restart the proce s s i f f u l l PSI i s s t ab l e

i f [ "${ f u l l 1 }" −eq "${ f u l l }" −a "$ ( ps −o s t a t e= −p $PID) " = T ] ;

then #I f p r e s su r e becomes constant r e s t a r t the stopped process

, work cont inued

k i l l −SIGCONT $PID

f i

#Restore the d e f au l t s y s c t l s e t t i n g s i f some PSI i s s t ab l e

i f [ "${some1}" − l t "${some } " ] ; then

bash −c ’ sudo s y s c t l −w vm. dirty_background_ratio=10’

bash −c ’ sudo s y s c t l −w vm. d i r ty_ra t i o =20’
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f i

some1=$ ( echo $some )

f u l l 1=$ ( echo $ f u l l )

TotalSwap=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 2 | sed −n 3p ‘ #

Total Swap

UsedSwap=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 3 | sed −n 3p ‘

#Used Swap

Usedswapp=$ ( p r i n t f ’%.02 f ’ $ ( echo "$UsedSwap / $TotalSwap ∗ 100" |

bc − l ) ) #Used Swap

r e s u l t 1=${Usedswapp / .∗}

i f [ " $ r e s u l t 1 " −gt 99 .9 ] ; then

k i l l $PID

f i

}

whi l e :

do

process_mem

s l e ep 0 .1

done
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APPENDIX B: Individual processes memory consumption

#!/bin /bash

PID="$ ( p ido f python3 | cut −d ’ ’ −f 1 ) "

echo "−−−−−−−" | t e e −a /home/edge_computing/Documents/THESIS_SMITA/

t h e s i s / Resu l t s /memory . txt

echo Ind i v i dua l Memory S t a t i s t i c s | t e e −a /home/edge_computing/

Documents/THESIS_SMITA/ t h e s i s / Resu l t s /memory . txt

echo "−−−−−−−" | t e e −a /home/edge_computing/Documents/THESIS_SMITA/

t h e s i s / Resu l t s /memory . txt

x=0

process_mem ( )

{

#we need to check i f 2 f i l e s e x i s t

i f [ [ −f / proc /$PID/ s t a tu s ] ] ;

then

i f [ [ −f / proc /$PID/smaps ] ] ;

then

#count memory usage , Pss , Pr ivate and Shared = ( Pss−Pr ivate )

time1=‘date +"%T.%6N" ‘ #Time in hrs , min , s e c and m i l l i s e c ond s

#PSS = Pr ivate ( Clean+Dirty ) + Shared ( Clean+Dirty ) /Number o f

Proce s s e s

Pss=‘ cat /proc /$PID/smaps | grep −e "^Pss : " | awk ’{ p r i n t $2 } ’ |

paste −sd+ | bc ‘

#RSS = Pr ivate ( Clean+Dirty ) + Shared ( Clean+Dirty )

Rss=‘ cat /proc /$PID/smaps | grep −e "^Rss : " | awk ’{ p r i n t $2 } ’ |

paste −sd+ | bc ‘

Pr ivate=‘ cat /proc /$PID/smaps | grep −e "^Pr ivate " | awk ’{ p r i n t

$2 } ’ | paste −sd+ | bc ‘ #Pr ivate ( Clean+Dirty )

Shared1=‘ cat /proc /$PID/smaps | grep −e "^Shared" | awk ’{ p r i n t $2

} ’ | paste −sd+ | bc ‘ #Shared ( Clean+Dirty )
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Swap=‘ cat /proc /$PID/smaps | grep −e "^Swap" | awk ’{ p r i n t $2 } ’ |

paste −sd+ | bc ‘ #SwapUsed

SwapPss=‘ cat /proc /$PID/smaps | grep −e "^SwapPss" | awk ’{ p r i n t

$2 } ’ | paste −sd+ | bc ‘ #SwapUsed−PSS

i f [ x"$Rss" != "x" −o x" $Pr ivate " != "x" ] ;

then

l e t Shared=${Pss}−${ Pr ivate } #Shared = PSS−Pr ivate

Name=‘ cat /proc /$PID/ s ta tu s | grep −e "^Name: " | cut −d ’ : ’ −

f2 ‘

l e t Sum=${Shared}+${ Pr ivate } #Sum = PSS

x=$ ( ( $x + 1 ) )

echo "${x} , ${ time1 } , ${Name} , ${Pss } , ${Sum} , ${Rss } , ${ Pr ivate

} , ${Shared1 } , ${Shared } , ${Swap} , ${SwapPss}"

f i

f i

f i

}

whi l e :

do

i f [ [ ! −d /proc /$PID ] ] ;

then

break #I f p roce s s terminated

f i

process_mem

s l e ep 0 .1

done | t e e −a /home/edge_computing/Documents/THESIS_SMITA/ t h e s i s / Resu l t s

/memory . txt
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APPENDIX C: Anonymous page memory consumer workload

#inc lude <s td i o . h>

#inc lude <s t d l i b . h>

#inc lude <s t r i n g . h>

#inc lude <uni s td . h>

#de f i n e SIZE 104857600 //1 MB=1024∗1024 bytes //

i n t main ( void )

{

i n t count = 0 ;

s l e e p (20) ;

whi l e (1 )

{

char ∗ p = malloc (SIZE) ;

i f (p==NULL)

{

p r i n t f (" A l l o ca t i on done to a l l %d MB\n" , count ) ;

break ;

}

f o r ( i n t i =0; i<=SIZE ; i++)

p [ i ] = 1 ;

p r i n t f (" A l l o ca t i ng %d MB\n" , ++count ) ;

}

}
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APPENDIX D: Memory Consumption Statistics of the System

#!/bin /bash

# Memory S t a t i s t i c s o f the system when proce s s running

echo "−−−−−−" | t e e −a /home/edge\_computing/Documents/THESIS\_SMITA/

t h e s i s / Resu l t s /memstat . txt

echo Memory S t a t i s t i c s | t e e −a /home/edge\_computing/Documents/THESIS\

_SMITA/ t h e s i s / Resu l t s /memstat . txt

echo "−−−−−−" | t e e −a /home/edge\_computing/Documents/THESIS\_SMITA/

t h e s i s / Resu l t s /memstat . txt

x=0

proce s s \_mem ( )

{

time1=‘date +"%T.%6N" ‘ #Time in hours ,

minutes , seconds and m i l l i s e c ond s

TotalRAM=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 2 | sed −n 2p ‘ #

Total RAM

FreeRAM=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 4 | sed −n 2p ‘ #

Free RAM

Freep=$ ( p r i n t f ’%.02 f ’ $ ( echo "$FreeRAM / $TotalRAM ∗ 100" | bc − l )

) #Free RAM percentage

UsedRAM=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 3 | sed −n 2p ‘ #

Used RAM

Usedp=$ ( p r i n t f ’%.02 f ’ $ ( echo "$UsedRAM / $TotalRAM ∗ 100" | bc − l )

) #Used RAM percentage

AvailableRAM=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 7 | sed −n 2p ‘

#Ava i l ab l e RAM

Avai lab lep=$ ( p r i n t f ’%.02 f ’ $ ( echo "$AvailableRAM / $TotalRAM ∗ 100"

| bc − l ) ) #Ava i l ab l e RAM percentage

SharedRAM=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 5 | sed −n 2p ‘

#Shared RAM

Sharedp=$ ( p r i n t f ’%.02 f ’ $ ( echo "$SharedRAM / $TotalRAM ∗ 100" | bc

− l ) ) #Shared RAM percentage
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BufferRAM=‘vmstat −S K | t r −s ’ ’ | cut −d ’ ’ −f 6 | sed −n 3p ‘

#Buf f e r RAM

Bufferp=$ ( p r i n t f ’%.02 f ’ $ ( echo "$BufferRAM / $TotalRAM ∗ 100" | bc

− l ) ) #Buf f e r RAM percentage

CacheRAM=‘vmstat −S K | t r −s ’ ’ | cut −d ’ ’ −f 7 | sed −n 3p ‘

#Cache RAM

Cachep=$ ( p r i n t f ’%.02 f ’ $ ( echo "$CacheRAM / $TotalRAM ∗ 100" | bc − l

) ) #Cache RAM percentage

TotalSwap=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 2 | sed −n 3p ‘ #

Total Swap

UsedSwap=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 3 | sed −n 3p ‘

#Used Swap

AvailableSwap=‘ f r e e −k | t r −s ’ ’ | cut −d ’ ’ −f 4 | sed −n 3p ‘

#Ava i l aba l e Swap

Usedswapp=$ ( p r i n t f ’%.02 f ’ $ ( echo "$UsedSwap / $TotalSwap ∗ 100" |

bc − l ) ) #Used Swap

x=$ ( ( $x + 1 ) )

echo "${x} , ${ time1 } , ${TotalRAM} , ${FreeRAM} , $Freep , ${UsedRAM} , $Usedp , $

{AvailableRAM} , $Avai lablep , ${SharedRAM} , $Sharedp , ${BufferRAM} ,

$Bufferp , ${CacheRAM} , $Cachep , ${TotalSwap } , ${UsedSwap} , ${

AvailableSwap } , $Usedswapp"

}

whi l e :

do

proce s s \_mem

s l e ep 0 .1

done | t e e −a /home/edge\_computing/Documents/THESIS\_SMITA/ t h e s i s /

Resu l t s /memstat . txt
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APPENDIX E: PSI Statistics

#!/bin /bash

echo "−−−−−" | t e e −a /home/edge_computing/Documents/THESIS_SMITA/ t h e s i s

/ Resu l t s / p s i . txt

echo PSI S t a t i s t i c s | t e e −a /home/edge_computing/Documents/THESIS_SMITA

/ t h e s i s / Resu l t s / p s i . txt

echo "−−−−" | t e e −a /home/edge_computing/Documents/THESIS_SMITA/ t h e s i s /

Resu l t s / p s i . txt

x=0

process_mem ( )

{

time1=‘date +"%T.%6N" ‘ #Time in hr , min , sec , m i l l i s e c

output1=‘ cat /proc / p r e s su r e /memory | cut −d ’ ’ −f 2 | sed −n 1p | cut −

d= −f2 ‘ #Memory( some ) 10 s

output2=‘ cat /proc / p r e s su r e /memory | cut −d ’ ’ −f 2 | sed −n 2p | cut −

d= −f2 ‘ #Memory( f u l l ) 10 s

output3=‘ cat /proc / p r e s su r e /memory | cut −d ’ ’ −f 3 | sed −n 1p | cut −

d= −f2 ‘ #Memory( some ) 1m

output4=‘ cat /proc / p r e s su r e /memory | cut −d ’ ’ −f 3 | sed −n 2p | cut −

d= −f2 ‘ #Memory( f u l l ) 1m

output5=‘ cat /proc / p r e s su r e /memory | cut −d ’ ’ −f 4 | sed −n 1p | cut −

d= −f2 ‘ #Memory( some ) 5m

output6=‘ cat /proc / p r e s su r e /memory | cut −d ’ ’ −f 4 | sed −n 2p | cut −

d= −f2 ‘ #Memory( f u l l ) 5m

output7=‘ cat /proc / p r e s su r e /memory | cut −d ’ ’ −f 5 | sed −n 1p | cut −

d= −f2 ‘ #Memory s t a l l in us ( accumulated some )

output8=‘ cat /proc / p r e s su r e /memory | cut −d ’ ’ −f 5 | sed −n 2p | cut −

d= −f2 ‘ #Memory s t a l l in us ( accumulated f u l l )

output9=‘ cat /proc / p r e s su r e /cpu | cut −d ’ ’ −f 2 | sed −n 1p | cut −d=

−f2 ‘ #CPU( some ) 10 s

output10=‘ cat /proc / pr e s su r e /cpu | cut −d ’ ’ −f 3 | sed −n 1p | cut −d=

−f2 ‘ #CPU( some ) 1m
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output11=‘ cat /proc / pr e s su r e /cpu | cut −d ’ ’ −f 4 | sed −n 1p | cut −d=

−f2 ‘ #CPU( some ) 5m

output12=‘ cat /proc / pr e s su r e /cpu | cut −d ’ ’ −f 5 | sed −n 1p | cut −d=

−f2 ‘ #CPU s t a l l in us ( accumulated some )

output13=‘ cat /proc / pr e s su r e / i o | cut −d ’ ’ −f 2 | sed −n 1p | cut −d=

−f2 ‘ #I /0( some ) 10 s

output14=‘ cat /proc / pr e s su r e / i o | cut −d ’ ’ −f 2 | sed −n 2p | cut −d=

−f2 ‘ #I /O( f u l l ) 10 s

output15=‘ cat /proc / pr e s su r e / i o | cut −d ’ ’ −f 3 | sed −n 1p | cut −d=

−f2 ‘ #I /O( some ) 1m

output16=‘ cat /proc / pr e s su r e / i o | cut −d ’ ’ −f 3 | sed −n 2p | cut −d=

−f2 ‘ #I /O( f u l l ) 1m

output17=‘ cat /proc / pr e s su r e / i o | cut −d ’ ’ −f 4 | sed −n 1p | cut −d= −

f2 ‘ #I /O( some ) 5m

output18=‘ cat /proc / pr e s su r e / i o | cut −d ’ ’ −f 4 | sed −n 2p | cut −d=

−f2 ‘ #I /O( f u l l ) 5m

output19=‘ cat /proc / pr e s su r e / i o | cut −d ’ ’ −f 5 | sed −n 1p | cut −d=

−f2 ‘ #I /O s t a l l in us ( accumulated some )

output20=‘ cat /proc / pr e s su r e / i o | cut −d ’ ’ −f 5 | sed −n 2p | cut −d=

−f2 ‘ #I /O s t a l l in us ( accumulated f u l l )

x=$ ( ( $x + 1 ) )

echo "${x} , ${ time1 } , ${output1 } , ${output2 } , ${output3 } , ${output4 } , ${

output5 } , ${output6 } , ${output7 } , ${output8 } , ${output9 } , ${output10 } ,

${output11 } , ${output12 } , ${output13 } , ${output14 } , ${output15 } , ${

output16 } , ${output17 } , ${output18 } , ${output19 } , ${output20 }"

}

whi l e :

do

process_mem

s l e ep 0 .1

done | t e e −a /home/edge_computing/Documents/THESIS_SMITA/ t h e s i s / Resu l t s

/ p s i . txt
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APPENDIX F: Determination of Total Anonymous and File Backed Pages in a

Process

#!/bin /bash

# Page type o f the proce s s when proce s s running

echo "−−−−" | t e e −a /home/edge_computing/Documents/THESIS_SMITA/ t h e s i s /

Resu l t s /pagetype . txt

echo Page S t a t i s t i c s | t e e −a /home/edge_computing/Documents/

THESIS_SMITA/ t h e s i s / Resu l t s /pagetype . txt

echo "−−−−" | t e e −a /home/edge_computing/Documents/THESIS_SMITA/ t h e s i s /

Resu l t s /pagetype . txt

x=0

PID="$ ( p ido f python3 ) "

process_mem ( )

{

time1=‘date +"%T.%6N" ‘ #Time in hr , min , s ec and m i l l i s e c ond s

pmap −x PID >> f i l e 1 . txt # read mappings o f e n t i r e p roce s s

t a i l −n +3 f i l e 1 . txt >> f i l e 2 . txt #d i s ca rd f i r s t 2 rows

awk ’ $6 ~/[ anon ]/&&$3>0{pr in t > " f i l e 3 " ; next }{ p r in t > "tmp"} ’ f i l e 2 .

txt && mv tmp f i l e 2 . txt

t r −s ’ ’ < f i l e 3 . txt | cut −d ’ ’ −f 3 >> f i l e 4 . txt #ex t r a c t RSS

whi l e read −r num; do ( ( sum += num) ) ; done < f i l e 4 . txt ; #g i v e s t o t a l

anonymous pages at that i n s t an t o f a p roce s s

t a i l −n1 f i l e 1 . txt >> t o t a l . txt
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totalRSS=‘ t r −s ’ ’ < t o t a l . txt | cut −d ’ ’ −f4 ‘ #t o t a l pages o f a

p roce s s

f i l e b a c k ed=$ ( echo "$totalRSS−$sum") #remaining f i l e backed

x=$ ( ( $x + 1 ) )

echo "${x} , ${ time1 } ,$sum , ${ totalRSS } , ${ f i l e b a c k ed }" #updates 10

t imes a second to determine which page dominant i s the proce s s

}

whi l e :

do

process_mem

s l e ep 0 .1

done | t e e −a /home/edge_computing/Documents/THESIS_SMITA/ t h e s i s / Resu l t s

/pagetype . txt
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APPENDIX G: File backed page memory consumer workload

G.1 Accessed once

#inc lude <s t d l i b . h>

#inc lude <s td i o . h>

#inc lude <s td i n t . h>

#inc lude <f c n t l . h>

#inc lude <sys / s t a t . h>

#inc lude <sys /mman. h>

#inc lude <uni s td . h>

in t main ( i n t argc , const char ∗argv [ ] )

{

const char ∗ f i l e p a t h = " f i l e . txt " ;

i n t fd = open ( f i l e p a t h , O_RDONLY, (mode_t) 0600) ;

i f ( fd == −1)

{

pe r ro r (" Error opening f i l e ") ;

e x i t (EXIT_FAILURE) ;

}

s t r u c t s t a t f i l e I n f o = {0} ;

i f ( f s t a t ( fd , &f i l e I n f o ) == −1)

{

pe r ro r (" Error g e t t i n g the f i l e s i z e ") ;

e x i t (EXIT_FAILURE) ;

}

i f ( f i l e I n f o . s t_s i z e == 0)
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{

f p r i n t f ( s tde r r , "Error : F i l e i s empty\n") ;

e x i t (EXIT_FAILURE) ;

}

p r i n t f (" S i z e i s %i \n" , ( intmax_t ) f i l e I n f o . s t_s i z e ) ;

char ∗map = mmap(0 , f i l e I n f o . s t_s ize , PROT_READ, MAP_PRIVATE, fd , 0)

;

i f (map == MAP_FAILED)

{

c l o s e ( fd ) ;

pe r ro r (" Error mmapping the f i l e ") ;

e x i t (EXIT_FAILURE) ;

}

f o r ( o f f_t i = 0 ; i < f i l e I n f o . s t_s i z e ; i++)

{

p r i n t f ("Found charac t e r %c at %j i \n" , map [ i ] , ( intmax_t ) i ) ;

}

c l o s e ( fd ) ;

r e turn 0 ;

}

G.2 Accessed continuously

#inc lude <s td i o . h>

#inc lude <s t d l i b . h>

#inc lude <sys / types . h>

#inc lude <sys / s t a t . h>

#inc lude <uni s td . h>

#inc lude <f c n t l . h>

#inc lude <sys /mman. h>
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#inc lude <s t r i n g . h>

#de f i n e SIZE 104857600 //1 MB=1024∗1024 bytes //

i n t main ( i n t argc , const char ∗argv [ ] )

{

char fName [ 1 6 ] ;

char ∗ t ex t = mal loc (SIZE) ;

f o r ( i n t z=0; z<2; z++)

{

s p r i n t f ( fName,"%d . txt " , z ) ;

i n t count = 0 ;

i f ( t ex t==NULL)

{

p r i n t f (" A l l o ca t i on done to a l l %d MB\n" , count ) ;

break ;

}

f o r ( i n t i =0; i <1024∗1024∗100; i++)

text [ i ] = 1 ;

p r i n t f (" A l l o ca t i ng %d MB\n" , ++count ) ;

i n t fd = open ( fName , O_RDWR | O_CREAT | O_TRUNC, (mode_t) 0600) ;

i f ( fd == −1)

{

pe r ro r (" Error opening f i l e f o r wr i t i ng ") ;

e x i t (EXIT_FAILURE) ;

}

s i ze_t t e x t s i z e = s t r l e n ( t ex t ) + 1 ;

i f ( l s e e k ( fd , t e x t s i z e −1, SEEK_SET) == −1)

{

c l o s e ( fd ) ;

e x i t (EXIT_FAILURE) ;

}
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i f ( wr i t e ( fd , "" , 1) == −1)

{

c l o s e ( fd ) ;

e x i t (EXIT_FAILURE) ;

}

char ∗map = mmap(0 , t e x t s i z e , PROT_READ | PROT_WRITE, MAP_PRIVATE,

fd , 0) ;

i f (map == MAP_FAILED)

{

c l o s e ( fd ) ;

pe r ro r (" Error mmapping the f i l e ") ;

e x i t (EXIT_FAILURE) ;

}

f o r ( s i ze_t i = 0 ; i < t e x t s i z e ; i++)

{

p r i n t f (" Writing charac t e r %c at %zu\n" , t ex t [ i ] , i ) ;

map [ i ] = text [ i ] ;

}

c l o s e ( fd ) ;

}

re turn 0 ;

}
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APPENDIX H: Processes Management through cgroups

# Create cgroups

sudo mkdir / sys / f s / cgroup/memory/ yolov3

sudo mkdir / sys / f s / cgroup/memory/mmap

#Spec i f y l im i t s and c on f i g u r a t i o n s

echo 2621440 | sudo tee / sys / f s / cgroup/memory/mmap/memory . l imit_in_bytes

#a l l o c a t i o n happens in pages ; 10GB ass i gned

echo 90 | sudo tee / sys / f s / cgroup/memory/ yolov3 /memory . swappiness

#Assign p r o c e s s e s to cgroups

echo $ ( p ido f yolov3 ) $ > / sys / f s / cgroup/memory/ yolov3 / cgroup . procs

echo $ ( p ido f mmap) $ > / sys / f s / cgroup/memory/mmap/cgroup . procs

#Ver i fy whether p roce s s i s a s s i gned c o r r e c t l y

ps −o cgroup $ ( p ido f p roce s s ) $

#Delete cgroups once work i s accompl ished

sudo cgde l e t e memory : yolov3

sudo cgde l e t e memory :mmap
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APPENDIX I: Plots

I.1 Swappiness Variation

import numpy as np

import matp lo t l i b . pyplot as p l t

from sc ipy . i n t e r p o l a t e import inte rp1d

from cy c l e r import c y c l e r

import matp lo t l i b

matp lo t l i b . rcParams [ ’ pdf . fonttype ’ ] = 42

matp lo t l i b . rcParams [ ’ ps . fonttype ’ ] = 42

# Read l a t e n c i e s

data1 = np . l oadtx t ( ’ pytorch latency20 . txt ’ )

x1 = np . s o r t ( data1 )

y1 = np . arange (1 , l en ( x1 )+1)/ f l o a t ( l en ( x1 ) )

f 1 = inte rp1d ( x1 , y1 )

p r i n t ("95 p e r c e n t i l e o f 20 swap : %f " % np . p e r c e n t i l e ( x1 , 9 5 ) )

p r i n t ("98 p e r c e n t i l e o f 20 swap : %f " % np . p e r c e n t i l e ( x1 , 9 8 ) )

p r i n t ("median o f 20 swap : %f " % np . p e r c e n t i l e ( x1 , 5 0 ) )

data2 = np . l oadtx t ( ’ pytorch latency40 . txt ’ )

x2 = np . s o r t ( data2 )

y2 = np . arange (1 , l en ( x2 )+1)/ f l o a t ( l en ( x2 ) )

f 2 = inte rp1d ( x2 , y2 )

p r i n t ("95 p e r c e n t i l e o f 40 swap : %f " % np . p e r c e n t i l e ( x2 , 9 5 ) )

p r i n t ("98 p e r c e n t i l e o f 40 swap : %f " % np . p e r c e n t i l e ( x2 , 9 8 ) )

p r i n t ("median o f 40 swap : %f " % np . p e r c e n t i l e ( x2 , 5 0 ) )

data3 = np . l oadtx t ( ’ pytorch latency60 . txt ’ )

x3 = np . s o r t ( data3 )

y3 = np . arange (1 , l en ( x3 )+1)/ f l o a t ( l en ( x3 ) )

f 3 = inte rp1d ( x3 , y3 )
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pr in t ("95 p e r c e n t i l e o f 60 swap : %f " % np . p e r c e n t i l e ( x3 , 9 5 ) )

p r i n t ("98 p e r c e n t i l e o f 60 swap : %f " % np . p e r c e n t i l e ( x3 , 9 8 ) )

p r i n t ("median o f 40 swap : %f " % np . p e r c e n t i l e ( x3 , 5 0 ) )

data4 = np . l oadtx t ( ’ pytorch latency80 . txt ’ )

x4 = np . s o r t ( data4 )

y4 = np . arange (1 , l en ( x4 )+1)/ f l o a t ( l en ( x4 ) )

f 4 = inte rp1d ( x4 , y4 )

p r i n t ("95 p e r c e n t i l e o f 80 swap : %f " % np . p e r c e n t i l e ( x4 , 9 5 ) )

p r i n t ("98 p e r c e n t i l e o f 80 swap : %f " % np . p e r c e n t i l e ( x4 , 9 8 ) )

p r i n t ("median o f 80 swap : %f " % np . p e r c e n t i l e ( x4 , 5 0 ) )

data5 = np . l oadtx t ( ’ pytorch latency90 . txt ’ )

x5 = np . s o r t ( data5 )

y5 = np . arange (1 , l en ( x5 )+1)/ f l o a t ( l en ( x5 ) )

f 5 = inte rp1d ( x5 , y5 )

p r i n t ("95 p e r c e n t i l e o f 90 swap : %f " % np . p e r c e n t i l e ( x5 , 9 5 ) )

p r i n t ("98 p e r c e n t i l e o f 90 swap : %f " % np . p e r c e n t i l e ( x5 , 9 8 ) )

p r i n t ("median o f 90 swap : %f " % np . p e r c e n t i l e ( x5 , 5 0 ) )

data6 = np . l oadtx t ( ’ pytorch latency100 . txt ’ )

x6 = np . s o r t ( data6 )

y6 = np . arange (1 , l en ( x6 )+1)/ f l o a t ( l en ( x6 ) )

f 6 = inte rp1d ( x6 , y6 )

p r i n t ("95 p e r c e n t i l e o f 100 swap : %f " % np . p e r c e n t i l e ( x6 , 9 5 ) )

p r i n t ("98 p e r c e n t i l e o f 100 swap : %f " % np . p e r c e n t i l e ( x6 , 9 8 ) )

p r i n t ("median o f 100 swap : %f " % np . p e r c e n t i l e ( x6 , 5 0 ) )

f , ax = p l t . subp lo t s (2 , 3)

ax [ 0 , 0 ] . p l o t ( x1 , f 1 ( x1 ) , marker = ’ . ’ , l i n e s t y l e =’− ’)

ax [ 0 , 0 ] . s e t_ t i t l e ( ’ Latency CDF−20% swap ’ )

ax [ 0 , 0 ] . s e t_x labe l ( ’ Latency ( s ) ’ )
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ax [ 0 , 0 ] . s e t_y labe l ( ’CDF’ )

ax [ 0 , 1 ] . p l o t ( x2 , f 2 ( x2 ) , marker = ’ . ’ , l i n e s t y l e =’− ’)

ax [ 0 , 1 ] . s e t_ t i t l e ( ’ Latency CDF−40% swap ’ )

ax [ 0 , 1 ] . s e t_x labe l ( ’ Latency ( s ) ’ )

ax [ 0 , 1 ] . s e t_y labe l ( ’CDF’ )

ax [ 0 , 2 ] . p l o t ( x3 , f 3 ( x3 ) , marker = ’ . ’ , l i n e s t y l e =’− ’)

ax [ 0 , 2 ] . s e t_ t i t l e ( ’ Latency CDF−60% swap ’ )

ax [ 0 , 2 ] . s e t_x labe l ( ’ Latency ( s ) ’ )

ax [ 0 , 2 ] . s e t_y labe l ( ’CDF’ )

ax [ 1 , 0 ] . p l o t ( x4 , f 4 ( x4 ) , marker = ’ . ’ , l i n e s t y l e =’− ’)

ax [ 1 , 0 ] . s e t_ t i t l e ( ’ Latency CDF−80% swap ’ )

ax [ 1 , 0 ] . s e t_x labe l ( ’ Latency ( s ) ’ )

ax [ 1 , 0 ] . s e t_y labe l ( ’CDF’ )

ax [ 1 , 1 ] . p l o t ( x5 , f 5 ( x5 ) , marker = ’ . ’ , l i n e s t y l e =’− ’)

ax [ 1 , 1 ] . s e t_ t i t l e ( ’ Latency CDF−90% swap ’ )

ax [ 1 , 1 ] . s e t_x labe l ( ’ Latency ( s ) ’ )

ax [ 1 , 1 ] . s e t_y labe l ( ’CDF’ )

ax [ 1 , 2 ] . p l o t ( x6 , f 6 ( x6 ) , marker = ’ . ’ , l i n e s t y l e =’− ’)

ax [ 1 , 2 ] . s e t_ t i t l e ( ’ Latency CDF−100% swap ’ )

ax [ 1 , 2 ] . s e t_x labe l ( ’ Latency ( s ) ’ )

ax [ 1 , 2 ] . s e t_y labe l ( ’CDF’ )

p l t . show ( )

I.2 CDF Plot

import numpy as np

import matp lo t l i b

import matp lo t l i b . pyplot as p l t
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from sc ipy . i n t e r p o l a t e import inte rp1d

from cy c l e r import c y c l e r

# Read l a t e n c i e s

data1 = np . l oadtx t ( ’ d i r t y . txt ’ )

x1 = np . s o r t ( data1 )

y1 = np . arange (1 , l en ( x1 )+1)/ f l o a t ( l en ( x1 ) )

f 1 = inte rp1d ( x1 , y1 )

p r i n t ("95 p e r c e n t i l e : %f " % np . p e r c e n t i l e ( x1 , 9 5 ) )

p r i n t ("98 p e r c e n t i l e : %f " % np . p e r c e n t i l e ( x1 , 9 8 ) )

p r i n t ("median : %f " % np . p e r c e n t i l e ( x1 , 5 0 ) )

# Plot CDF of l a t e n c i e s

f , ax = p l t . subp lo t s ( )

cy = cy c l e r ( ’ co lo r ’ , [ ’ blue ’ ] )

ax . s e t \_prop\_cycle ( cy )

ax . p l o t ( x1 , f 1 ( x1 ) , ’−− ’ , marker= ’ . ’ )

p l t . x l ab e l ( ’ Latency ( s ) ’ )

p l t . y l ab e l ( ’CDF’ )

p l t . l egend ( [ ’ Latd ’ ] , l o c =’best ’ )

p l t . t i t l e ( ’ Latency CDF−− Optimized with LATD’ )

p l t . show ( )

I.3 Time Series Plots

import math

import datet ime

import matp lo t l i b

import matp lo t l i b . pyplot as p l t
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import csv

with open ( ’ t l a t . txt ’ , ’ r ’ ) as f \_input :

csv \_input = csv . reader ( f \_input , d e l im i t e r = ’ , ’ , s k i p i n i t i a l s p a c e=

True )

x = [ ]

y = [ ]

f o r c o l s in csv \_input :

x . append ( matp lo t l i b . dates . datestr2num ( c o l s [ 0 ] ) )

y . append ( f l o a t ( c o l s [ 1 ] ) )

# naming the x ax i s

p l t . x l ab e l ( ’ Time( s ) ’ )

# naming the y ax i s

p l t . y l ab e l ( ’ Latency ( s ) ’ )

# g iv ing a t i t l e to my graph

p l t . t i t l e ( ’ Latency vs Time ’ )

# p l o t t i n g the po in t s

p l t . p l o t \_date (x , y , marker = ’ . ’ , l i n e s t y l e =’−−’)

# beau t i f y the x−l a b e l s

#p l t . g c f ( ) . autofmt\_xdate ( )

#p l t . gca ( ) . axes . get \_xaxis ( ) . s e t \ _v i s i b l e ( Fa l se )

#p l t . x t i c k s ( [ ] )

ax = p l t . axes ( )

ax . xax i s . s e t \_major\_formatter ( p l t . Nul lFormatter ( ) )

# func t i on to show the p l o t

p l t . show ( )
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