
CONTINUUM ROBOT MANIPULATION

by

Jinglin Li

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2015

Approved by:

Dr. Jing Xiao

Dr. Srinivas Akella

Dr. Min C. Shin

Dr. Jianping Fan

Dr. James M. Conrad

ii

c©2015
Jinglin Li

ALL RIGHTS RESERVED

iii

ABSTRACT

JINGLIN LI. Continuum robot manipulation. (Under the direction of DR. JING XIAO)

Unlike conventional robotic manipulators, continuum manipulators are inspired by inver-

tebrate structures found in nature, such as octopus arms and elephant trunks. The shape of

a continuum manipulator can continuously deform via changing the controllable degrees of

freedom, such as bending, extending/contracting, and torsional turning of the arm sections.

The manipulator is also passively compliant due to their infinite number of passive degrees

of freedom. Hence, continuum manipulators are very flexible and particularly suitable for

performing tasks in cluttered environments. Although different mechanical designs have

been proposed and validated by teleoperations. There is a great need to study autonomous

manipulation of a continuum manipulator.

This dissertation addresses research issues in autonomous manipulation using contin-

uum manipulators and introduces novel algorithms, including those for collision detection,

whole arm continuum grasping, task constrained manipulation, and continuum manipula-

tion in cluttered, unknown environments. Implementation and testing results are presented

to validate the effectiveness of introduced approaches.

iv

ACKNOWLEDGMENTS

I am greatly indebted to my advisor, Prof. Jing Xiao, for her years of patient guid-

ance, advice, constant support, and encouragement. She has given me invaluable insights

and suggestions. Some of the results in this dissertation would not be possible without

her guidance and feedback. Her genuine caring benefits not only my Ph.D. research and

professional progress but also my overall growth.

I would also like to express my thanks to all members of my dissertation committee,

Prof. Srinivas Akella, Prof.Min C. Shin, Prof. Jianping Fan and Prof. James M. Conrad.

Their time, support, and help are highly appreciated.

I gratefully acknowledge my colleague, Zhou Teng, in the Robotics Lab of UNCC for

providing 3D point cloud data for experiments; and collaborators Dr. Apoorva Kapadia and

Dr. Ian Walker of Clemeson Universtiy for their help with the OctArm in real experiments.

It has been a pleasure to work with these awesome people.

Finally, I want to express my gratitude to my family and friends here and in China,

especially my parents, Dehua Li and Hongmin Guo; my uncle and aunt, Shaozhong Deng

and Qunhui Guo; and my wife, Wenqian Jin, for their love and support.

v

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xv

CHAPTER 1: INTRODUCTION 1

1.1. Collision-free Motion Planning 2

1.1.1. Motion Planning Algorithms 3

1.1.2. Collision Detection 9

1.2. Robotic Manipulation 10

1.2.1. Manipulator Kinematics 11

1.2.2. Task Constrained Manipulation 13

1.2.3. Robotic Grasping 14

1.3. Related Work on Continuum Manipulators 15

CHAPTER 2: RESEARCH OVERVIEW 18

CHAPTER 3: MANIPULATOR AND OBJECT MODEL 20

3.1. Manipulator Model 20

3.2. Object Model 23

3.3. Contact Determination Between Objects and the Manipulator 24

CHAPTER 4: REAL-TIME COLLISION DETECTION INVOLVING A
CONTINUUM MANIPULATOR

25

4.1. Overview 25

4.2. Bounding Planes of Manipulator Sections 26

4.3. Manipulator Cross Sections 26

vi

4.4. CD-CoM Algorithm 27

4.4.1. Cross Section Collision Check (CS-Collision Check) 30

4.4.2. Non-cross Section Collision Check (NCS-Collision
Check)

32

4.5. Comparative Study and Test Results 39

4.5.1. Comparative Analysis of Worst-case Time Complexity 42

4.5.2. Test Results and Discussion 43

4.6. Remarks 47

CHAPTER 5: DETERMINING GRASPING CONFIGURATIONS FOR A 3-
SECTION CONTINUUM MANIPULATOR

50

5.1. Overview 50

5.2. Object Grasping Models for a 3-section Continuum Manipulator 50

5.3. Finding Configurations For Grasping Model 1 53

5.3.1. Inter-Section Constraints 54

5.3.2. Finding Solutions 58

5.4. Finding Configurations for Grasping Model 2 60

5.5. Implementation and Discussion 62

5.6. Test Examples 65

5.7. Remarks 68

CHAPTER 6: PROGRESSIVE GRASPING FOR A N-SECTION CONTIN-
UUM MANIPULATOR

70

6.1. Overview 70

6.2. Grasp Generation in an Open Environment 70

6.2.1. Algorithm of Generating a Grasp in an Open Environment 72

vii

6.2.2. Motion of Each Arm Section in an Open Environment 72

6.3. Grasp Generation in a Cluttered Environment 76

6.3.1. Algorithm of Generating a Grasp in a Cluttered
Environment

76

6.3.2. Generation of a Knot Configuration in a Cluttered
Environment

77

6.3.3. Repair of an Infeasible Knot Configuration in a Cluttered
Environment

81

6.4. Simulation Tests and Real Robot Experiments 84

6.4.1. Simulations of Progressive Grasping in an Open
Environment

84

6.4.2. Simulations of Progressive Grasping in a Cluttered
Environment

85

6.4.3. Real Robot Experiments for Progressive Grasping 92

6.5. Remarks 95

CHAPTER 7: TASK CONSTRAINED CONTINUUM MANIPULATION IN
CLUTTERED ENVIRONMENTS

97

7.1. Overview 97

7.2. Task Constrained Manipulation Constraining Arm Tip Position 97

7.2.1. Constrained Arm Shape 98

7.2.2. Planning for Task-constrained Manipulation 99

7.2.3. Task of Inspection 104

7.2.4. Implementation and Results 106

7.3. Manipulation With Arm Tip Position and/or Orientation Constrained 109

7.3.1. Planning for Constrained Continuum Manipulation 110

viii

7.3.2. Task of Inspection 121

7.3.3. Implementation and Experiments 122

7.4. Remarks 127

CHAPTER 8: CONTINUUM MANIPULATION IN CLUTTERED, OC-
CLUDED ENVIRONMENTS

128

8.1. Overview 128

8.2. Target Object and Task Environment Model 129

8.2.1. Belts for Grasping on Target Object and Gaps 129

8.2.2. Task Environment Model. 131

8.3. Single Gap Constraints 135

8.4. Serial Gap Constraints 136

8.5. Existence and Generation of Solution 138

8.5.1. Strategy for Checking Gap Constraints and Existence of
Arm Solution

138

8.5.2. Generation of a Feasible Arm Configuration 139

8.6. Implementation and Examples 140

8.7. Remarks 146

CHAPTER 9: CONCLUSIONS 147

REFERENCES 151

APPENDIX A: PROOFS OF ALGORITHMS IN CHAPTER 4 159

APPENDIX B: DERIVATIONS FOR EQUATIONS IN CHAPTER 8 163

ix

LIST OF FIGURES

FIGURE 1: Illustration of a manipulation task in a narrow tunnel environment,
which is better performed by a continuum manipulator.

2

FIGURE 2: Examples of a mobile robot and a manipulator. 4

FIGURE 3: Finding a path in a 2D visibility graph connecting an initial con-
figuration qinit to a goal configuration qgoal [45].

5

FIGURE 4: Finding a path in a 2D voronoi graph connecting an initial config-
uration qinit to a goal configuration qgoal [45].

5

FIGURE 5: A 2D configuration space decomposed as cells of free space [45]. 6

FIGURE 6: An example potential field built in a 2D configuration space [45]. 6

FIGURE 7: An illustration of a randomized roadmap built in a 2D configura-
tion space [37].

7

FIGURE 8: An illustration of randomly expanded trees, the green curve indi-
cates a path found [47].

8

FIGURE 9: An example of a four-joint serial-chain manipulator. 11

FIGURE 10: Current prototypes of a continuum manipulator. 16

FIGURE 11: An arm section seci, its central axis segi on the circle ciri and
the plane Pi.

20

FIGURE 12: OctArm manipulator frames. Note that section 1 can bend along
either (a) +z1 axis (with different orientations) or (b) −z1 axis (with dif-
ferent orientations), but not both directions of z1.

21

FIGURE 13: Section i’s frame. 21

FIGURE 14: A hierarchy of bounding volumes for a bunny mesh. 23

FIGURE 15: A cross section polygon polyi of the object intersected by section
plane Pi.

23

FIGURE 16: Two bounding planes for section i. 26

x

FIGURE 17: The cross section csi of section i and its polar coordinate system. 27

FIGURE 18: Some examples for cases considered in the cross section collision
check.

33

FIGURE 19: dmin(ciri, Q), indicated by the green dashed line and computed
by Procedure 1.

35

FIGURE 20: Two cases of dmin(pi/i−1, f), indicated by the green dashed line
and computed by Procedure 2.

36

FIGURE 21: Coordinate system established in Procedure 3 36

FIGURE 22: Two cases for computing the distance l. 37

FIGURE 23: Three OctArm mesh models. 39

FIGURE 24: Arm configurations tested for collision with a teapot and a bunny. 40

FIGURE 25: The box-and-whiskers plot of collision detection time between
the OctArm and the teapot for 100 arm configurations.

45

FIGURE 26: The box-and-whiskers plot of collision detection time for the
1,120 configurations of a four-section continuum manipulator in search-
ing a feasible path for grasping the teapot.

46

FIGURE 27: A few snapshots of a path of 160 configurations for grasping the
teapot by a four-section continuum manipulator.

46

FIGURE 28: Comparison of different approximations of a non-uniform curva-
ture section.

48

FIGURE 29: Two examples of Grasping Model 1. 51

FIGURE 30: Grasping Model 2 where section 2 (red) and section 3 (green) are
on the same circle.

51

FIGURE 31: Two tangent lines, l12 and l23, that pass p1 and p2 respectively. 55

FIGURE 32: The tangent lines l12 and l23 and section 2’s circle are on the same
plane; α1 and α2 are complementary.

56

FIGURE 33: The section i circle’s local coordinate system. 57

xi

FIGURE 34: A grasping configuration in collision with the object. 63

FIGURE 35: Grasping configurations vs. κ1 and φ1. For (κ1, φ1) = (ai, ψi),
i = 1, 2, the corresponding configurations are Cj(ai, ψi) in neighbor-
hood B(Cj), j = 1, 2, 3, which corresponds to neighborhood D(ai, ψi).
B(C1) and B(C2) both correspond to D(a1, ψ1).

65

FIGURE 36: Grasping Model 1: a section 3’s circle bounding an object. 67

FIGURE 37: Representative solutions for the object circle in row 1 of Table 7. 67

FIGURE 38: Representative solutions for the object circle in row 2 of Table 7. 68

FIGURE 39: The unique solution for the object circle of Grasping Model 2 in
row 3 of Table 7.

69

FIGURE 40: The vertices of polyi are ordered as {v0, v1, ..., vm} in the shrink-
ing direction of seci starting from v0.

75

FIGURE 41: The initial configuration of the manipulator besides the target
object (teapot).

77

FIGURE 42: The unreached visible vertices of polyi as an ordered list
{v1, v2, ..., vf} in the wrapping direction of seci, where the nearest and
farthest reachable vertices are indicated.

80

FIGURE 43: Illustration of four collision cases between an arm section and
the object or the obstacles.

82

FIGURE 44: A path of configurations leading to a stable grasp by a three-
section manipulator.

85

FIGURE 45: A path of configurations leading to a stable grasp by a four-
section manipulator.

86

FIGURE 46: Two example configurations generated by strategies (1) and (2)
respectively, where the configuration generated by strategy (2) is closer
to the target object.

89

FIGURE 47: Snapshots of knot configurations leading to a force-closure grasp
by a four-section continuum manipulator while avoiding obstacles.

89

FIGURE 48: Three different cluttered environments for testing, with the target
object surrounded by other objects as obstacles in each case

91

xii

FIGURE 49: Snapshots of knot configurations of a 4-section arm grasping a
bunny in Environment (1) shown in Fig. 48(a)

91

FIGURE 50: Snapshots of knot configurations of a 4-section arm grasping a
teapot in Environment (2) shown in Fig. 48(b)

91

FIGURE 51: Snapshots of knot configurations of a 4-section arm grasping a
bunny in Environment (3) shown in Fig. 48(c)

91

FIGURE 52: Two environments for real experiments. 92

FIGURE 53: Experimental set up with a table top OctArm, overseen by an
overhead Microsoft Kinect.

93

FIGURE 54: An image captured by the overhead sensor (left) and detected
object and obstacles (right). Note that the color stickers on the table are
used to calibrate the camera and to facilitate pose estimation of the object
and obstacles.

93

FIGURE 55: The manipulator tries to grasp the target box in an open
environment.

94

FIGURE 56: The method in [55] can not make the manipulator avoid the
obstacles.

95

FIGURE 57: The method introduced in this paper successfully generates a
feasible path of the continuum manipulator leading to a stable grasping
configuration while avoiding obstacles in a cluttered environment in real
time.

95

FIGURE 58: A cluttered pipe environment (courtesy of EPRI). 98

FIGURE 59: A super-section Ssec1,3 consisting of sec1 (black), sec2 (red) and
sec3 (green) with their central axes on the x0-z0 plane

99

FIGURE 60: A cylindrical object and the task curves for inspection 105

FIGURE 61: A target object (the middle oblique object) and obstacles in a
cluttered environment

107

FIGURE 62: Snapshots of a forward scan of task curve G1 and a subsequent
backward scan of task curve G2, with the results shown as the red curves

108

xiii

FIGURE 63: Examples of obtaining a collision-free section configuration
(green), which satisfies the same tip constraints as the collided config-
uration (red) obtained from the initial guess of the section base location.

115

FIGURE 64: Determining frame variables on Pi for Constraint cases (1) and
(3).

118

FIGURE 65: Determining frame variables on Pi for Constraint cases (2) and
(4).

119

FIGURE 66: Computing si and κi on section plane Pi. 120

FIGURE 67: Environments for the three simulations. 123

FIGURE 68: The real experiment: using the OctArm to perform vertical raster
scans of one surface of a red box.

124

FIGURE 69: Snapshots of Simulation 1, where the tip of the arm is kept tan-
gent to the surface of the object and the scans are carried out horizontally.

124

FIGURE 70: Snapshots of Simulation 2, where the tip of the arm and the tip
of sec1 is kept orthogonal and tangent to the surface of the object respec-
tively; scans are carried out horizontally.

125

FIGURE 71: Snapshots of Simulation 3, where the tip of the arm is kept 45o

facing the object surface and the scans are carried out vertically.
125

FIGURE 72: Examples of different target objects, where blue regions indicate
belts for grasping.

130

FIGURE 73: Example of a gap. 132

FIGURE 74: Circular arc and its parameters. 133

FIGURE 75: Different arcs passing a gapj . 133

FIGURE 76: An arc and the binary search of the maximum height that does
not cause arc to collide with obstacle points.

135

FIGURE 77: arc1 and arc2 are connected by a common tangent vector a1,2. 136

FIGURE 78: aj−1,j and how it relates arcj−1 parameters to arcj parameters. 137

xiv

FIGURE 79: A lower bound for hj resulted from the upper bound for hj−1
because of tangent continuity and the single gap constraint on arcj−1.

137

FIGURE 80: Top view of environments with three different arrangements of
obstacles surrounding the milk container (a target object).

141

FIGURE 81: A pre-determined wrapping belt on each target object. 142

FIGURE 82: Snapshots of Example one in Environment (1), where only the
visible surface patches of obstacles to the tip camera are shown.

143

FIGURE 83: No grasping solution for Example one in Environments (2) and
(3) because the arm cannot pass gap3.

144

FIGURE 84: Snapshots of Example two in Environment (1), where only the
visible surface patches of obstacles to the tip camera are shown.

144

FIGURE 85: No grasping solution for Example two in Environments (2) and
(3).

145

FIGURE 86: Examples of cases (1) and (2) above. 161

FIGURE 87: |pq| is the shortest distance from ciri toQ, and the orange dashed
line segment indicates the distance from any other point pj on ciri to Q.

161

FIGURE 88: A trihedral angle formed by three planes Aj−1, Aj , and the one
containing uj−1, uj and vj .

164

xv

LIST OF TABLES

TABLE 1: Space/time required for different OctArm models at a given arm
configuration

39

TABLE 2: Collision detection time between the OctArm and a teapot mesh
(with 1,024 triangles)

44

TABLE 3: Collision detection time between the OctArm and a bunny mesh
(with 3,851 triangles)

44

TABLE 4: Collision detection time between the OctArm and the teapot over
100 arm configurations

45

TABLE 5: Collision detection time over the 1,120 configurations 47

TABLE 6: Percentage and time cost of calling Algorithm 4 and Algorithm 5
for collision check per configuration over the 1,120 configurations

47

TABLE 7: Example Object Circles 66

TABLE 8: Grasping Configurations in Figures 37– 39 66

TABLE 9: Time cost (ms) for finding the paths leading to the force-closure
grasps in Fig. 44 and Fig. 45 respectively

87

TABLE 10: Comparison of simulation results from using the three alternative
strategies in Algorithm 10

87

TABLE 11: Performance of grasping tasks in different environments in Fig.
48

92

TABLE 12: Estimated object/obstacles positions in Fig. 54 93

TABLE 13: Time cost of Algorithm 7 for the grasping task of Fig. 52 (a) 94

TABLE 14: Time cost of Algorithm 9 for the grasping task of Fig. 52 (b) 94

TABLE 15: Time cost of the scans illustrated in Fig. 62 109

TABLE 16: Object positions (x, y, z) and the closest distance from the object
surface to each obstacle for each simulation, see Fig. 67 for example
illustrations

123

xvi

TABLE 17: Constraint case of each arm section 123

TABLE 18: Time cost of each scan (with 200 configurations) for Simulation
1, see Fig. 69

126

TABLE 19: Time cost of each scan (with 200 configurations) for Simulation
2, see Fig. 70

126

TABLE 20: Time cost of Simulation 3 with 60 vertical scans and 30 configu-
rations for each scan, see Fig. 71

126

TABLE 21: Time costs of two vertical scans (each with 10 configurations) of
the real experiment, see Fig. 68

126

TABLE 22: Time cost for checking each gap, the number of arcs checked, and
the number of (feasible) arcs in S for each gap in Example one

145

TABLE 23: Time cost for checking each gap, the number of arcs checked, and
the number of (feasible) arcs in S for each gap in Example two

145

TABLE 24: All cases considered in Algorithm 4 159

CHAPTER 1: INTRODUCTION

Robotic manipulation has been extensively studied for conventional articulated manipu-

lators, initially due to the need of robotic applications in performing repetitive and labor-

intensive tasks, for example, welding and painting in manufacturing environments. There

is a greater demand for robotic applications in environments hazardous for humans, such

as nuclear power plants, undersea and underground environments, and search and rescue

scenes after natural disasters, such as earthquakes.

However, robotic manipulation in such hazardous environments is challenging because:

1) those environments are usually unknown or only partially known, and thus manipulation

often needs to rely on sensory information, which involves uncertainty and noise; 2) those

environments are usually cluttered and unstructured with objects (obstacles) of unknown

types in arbitrary placements/poses. An articulated manipulator may not be flexible enough

to perform certain tasks in such an environment, see Fig. 1 (a), (b) for an example.

Inspired by invertebrate structures found in nature, such as elephant trunks and octopus

arms, continuum manipulators have been designed to provide more flexibility for manip-

ulation. Those manipulators do not have rigid links, but consist of deformable segments,

which give them (theoretically) infinite degrees of freedom to be compliant and robust to

uncertainty while meeting the flexibility requirements of maneuvering in a cluttered space.

– See Fig. 1 (c).

Although many prototypes of continuum manipulators have been designed and teleop-

2

(a) A manipulation task requires
an arm to bend around the corner
to reach the gray circular region.

(b) An articulated manipulator
gets stuck at the corner of the
tunnel.

(c) A continuum manipulator
passes the tunnel and reaches the
target region by bending its last
section.

Figure 1: Illustration of a manipulation task in a narrow tunnel environment, which is better
performed by a continuum manipulator.

erations have been experimented, autonomous manipulation for continuum manipulators,

which is the main focus of the proposed dissertation research, has been rarely studied.

In the rest of this chapter, some background on robotic manipulation will be first intro-

duced, including collision-free motion planning, manipulator kinematics, task constrained

manipulation, and robotic grasping. Next some related work on manipulation using a con-

tinuum manipulator will be surveyed.

1.1 Collision-free Motion Planning

One of the fundamental requirements for robotic tasks is to generate collision-free mo-

tion for robots. Given the geometry of a robot and the environment (workspace), a con-

figuration of a robot is defined as a complete specification of the location of every point

on the robot geometry. The configuration space (also called C-space) contains all possible

configurations of that robot, and a configuration of a robot is represented by a point in its

3

configuration space.

For example, a wheeled mobile robot, see Fig. 2 (a), which can translate on a 2D floor

and change its orientation, has three degrees of freedom and therefore a three dimensional

C-space. For a serial-chain manipulator, the position and orientation of its arm links are

fully controlled by its joint motors, therefore the joint values can be used to represent its

configuration. The dimensionality of the manipulator’s configuration space depends on the

number of joints that can be independently positioned. For example, a PUMA manipulator

with six joints, see Fig. 2 (b), has a six-dimensional C-space.

Planning a collision-free path for a robot refers to finding a collision-free curve in the

configuration space from an initial configuration to a goal configuration. To plan motion

that is executable by a robot, certain physical constraints of the robot need to be satisfied,

which limit the velocities and accelerations along the path. Therefore, we also need to

plan a trajectory as the time profile of a path, by specifying the velocities and accelerations

along the path. Once a trajectory is generated, it can be executed by the robot control

system to perform the actual motion.

1.1.1 Motion Planning Algorithms

There are many different motion planning algorithms, which can be generally classified

[45] as either deterministic or non-deterministic algorithms.

A deterministic motion planning algorithm always generates the same path, given the

same input robot initial configuration and the environment, whereas a non-deterministic

algorithm introduces some randomness, such that the output is not completely depending

on the input. Deterministic planning algorithms include roadmap, cell decomposition and

4

(a) A 2 wheeled mobile robot with
3 degrees of freedom from Maker-
Shed

(b) A PUMA manipulator consisting of 6 rota-
tional joints

Figure 2: Examples of a mobile robot and a manipulator.

potential field methods. In general, all these methods share the same idea of building

some structures deterministically that characterizes a robot’s configuration space as the free

space, defined as the set of configurations where the robot does not collide with obstacles,

and the C-space obstacles, defined as the set of configurations where the robot collides

with obstacles. Next, a collision-free path is found in the free space.

Roadmap methods try to build a roadmap that connects collision-free configurations in

the C-space, so that planning a collision-free path becomes searching a path in the roadmap.

Different roadmaps can be built depending on the the nature of the problems, common types

are visibility graphs [20] and voronoi graphs [6]. – See Fig. 3 and Fig. 4 for illustrations.

Once a roadmap is built, one can apply different graph search methods, e.g. A [31], Dijk-

stra’s algorithm [23], Depth First Search (DFS) or Breadth First Search(BFS) methods, to

find a desired path connecting an initial configuration to a goal configuration.

A cell decomposition method [18] decomposes the free space of the configuration space

5

Figure 3: Finding a path in a 2D visibility graph connecting an initial configuration qinit to
a goal configuration qgoal [45].

Figure 4: Finding a path in a 2D voronoi graph connecting an initial configuration qinit to
a goal configuration qgoal [45].

into cells, see Fig 5. Then by connecting the free space cells, one can also build a graph

connecting adjacent cells, and a collision-free path can be generated by searching the graph.

Potential field approach [38] is proposed to build an artificial potential field in the C-

space that combines attraction to the goal, and repulsion from obstacles, see Fig 6. Then

robot can simply follow a gradient descent motion to the goal and move away from the

obstacles. However, this method can suffer from local minimal, where the robot may get

stuck, and cannot reach its goal configuration. Strategies such as backtracking or random

walk, can be utilized to help a robot get out of a local minimum.

Deterministic motion planning algorithms are usually used to deal with robots with low

6

Figure 5: A 2D configuration space decomposed as cells of free space [45].

(a) A 2D configuration
space with an initial con-
figuration qinit and a goal
configuration qgoal

(b) A path is found by fol-
lowing a gradient descent
motion from qinit to qgoal

(c) An illustration of the
corresponding artificial po-
tential field

Figure 6: An example potential field built in a 2D configuration space [45].

degrees of freedom, e.g, a mobile robot with 3 degrees of freedom. However, for a high

degrees of freedom robot, for example, a 6 degrees of freedom manipulator (Fig. 2 (b)),

deterministically building a structure characterizing the C-space is very difficult, since it

involves explicitly determining the C-obstacles in such a high dimensional C-space is too

computationally expensive to be feasible.

Therefore, instead of explicitly computing the free space and the C-obstacle regions in

a configuration space, a non-deterministic motion planning algorithm, usually generates a

7

collision-free configuration by random sampling and collision test between the robot and

obstacles in the workspace. Then it uses a local planner to build collision-free connections

between the newly generated configurations to those previously found. Most sampling

based algorithms are variations of two categories: Probabilistic Road Map (PRM) [37] and

Rapidly exploring Random Tree (RRT)[47].

By random sampling in the C-space, PRM generates a randomized roadmap to charac-

terize free space of the C-space, see Fig. 7. Once a roadmap is generated, then a path can

be queried by searching a path connecting the initial configuration and the goal configu-

ration. Variants of PRM are proposed to improve its performance by introducing efficient

sampling techniques [4, 103] and dynamic path query schemes [13, 67, 81]. PRM assumes

a known, static environment, however, for a dynamic environment involving moving obsta-

cles, it is not efficient, since it needs to rebuild the roadmap from scratch each time when

the positions or orientations of obstacles change.

Figure 7: An illustration of a randomized roadmap built in a 2D configuration space [37].

Instead of building a roadmap, RRT expands trees gradually in C-space from both the

goal configuration and the initial configuration and tries to connect both trees, see Fig. 8.

Once a connection between two configuration trees is found, a path from the initial config-

8

uration to the goal configuration is obtained. Unlike PRM that has separated two phases,

i.e., buiding a roadmap and then querying a path, RRT finds a path and expands the ran-

domized tree structures at the same time, and it uses a state transition function defining the

robot physical constraints under which a new configuration can be sampled, hence RRT not

only generates a collision-free path, but also an executable trajectory for a robot. A PRM

algorithm, on the other hand, may require connecting tens of thousands of configurations

to find an executable solution.

Figure 8: An illustration of randomly expanded trees, the green curve indicates a path found
[47].

To deal with a dynamic environment with unforeseen obstacle motion, an algorithm,

called Real-time Adaptive Motion Planning (RAMP), is proposed [96]. This algorithm

is based on evolutionary computation. By mimicking the genetic modifications, i.e, ex-

change, mutation, cross-over, it can perform global optimization of robot motion, where a

whole path or trajectory can be optimized according to a customized fitness function. Also

it preserves a diverse range of paths/trajectories all the time in a “population”, to allow in-

stant, and if necessary, drastic adjustment of robot motion to adapt to newly sensed changes

9

in a dynamic, unforeseen environment.

1.1.2 Collision Detection

Sampling-based motion planners require checking if a sampled robot configuration is in

free space or not, which means checking if the robot, placed at the considered configura-

tion, will intersect (i.e., collide with) some obstacle in the physical (Cartesian) space, or

not. Algorithms checking such intersections between the robot and obstacles are called col-

lision detection algorithms. Efficient collision detection algorithms are essential to motion

planning in high-dimensional configuration space. In order to characterize a large range of

shapes and sizes of the objects and robots in an unified way, polygonal meshes are often

used to model objects and robots in the environments. By doing that, checking the collision

between an object and a robot becomes the problem of checking the intersection between

polygonal meshes. A hierarchy of polygonal meshes bounding boxes/volumes are usually

used to speed up the intersection checking between two meshes [94, 19, 29].

There are also algorithms focusing on collision detection among moving objects. [79]

formulates the trajectories of a robot and obstacles and conducts collision checking among

them at each time instant analytically. However, it is computational expensive if a trajec-

tory is nonlinear. [78] checks the total traveled distance between two objects and if their

minimum distance before moving is greater than the total traveled distance, then there is

no collision. Some approaches [17, 27] approximate the sweeping volume of the robot,

and another approach [7] grows the robot’s volume along a path; the generated sweeping

or grown volume is tested for collision against obstacles to achieve continuous collision

checking. Continuous collision checking in unknown environments is addressed in [97].

10

For deformable object models, bounding volume hierarchies (BVHs) of simple bounding

volumes, such as spheres or Axis Aligned Bounding Boxes (AABBs), are typically used;

unlike rigid body models, deformable models need update (or even rebuild) its BVHs at

each time step. Refitting algorithms[44, 46, 109, 94] for BVHs are introduced, and culling

algorithms for BVHs are also presented in [98] and [83] using tight bounds of surface

normals. With those algorithms, BVHs of objects can be refitted and queried efficiently.

More recently, some researchers have studied collision detection between objects rep-

resented as point clouds [39, 69]. Point clouds can be directly obtained from 3D object

sensing, e.g., via stereo vision, laser range finders, and Microsoft Kinect. A hierarchy

of spheres are introduced to approximate object surfaces [39], which also have bounding

boxes to speed up collision detection. Collision detection is considered as a classification

problem [69], where points of each object forme a class, and the collision probability of

two objects are determined by the separability of two point classes.

1.2 Robotic Manipulation

A robotic manipulation task often requires the manipulator to plan and execute motions

to meet a certain task goal under the constraints of the physical environment. During a

manipulation task, the manipulator establishes contacts with the environment. Through the

contact points the robots can apply forces and moments to objects. A robot manipulator

usually uses its end-effector, where a tool is attached on, to contact with the environment.

Then the tasks require the end-effector to satisfy certain task constraints, such as follow-

ing a specified path/trajectory in work space, maintaining a fixed position and orientation,

applying a certain force or moment to the objects, etc.

11

1.2.1 Manipulator Kinematics

For a serial-chain manipulator, the position and orientation of each arm link is repre-

sented by a coordinate frame, i.e., a homogeneous transformation matrix, attached at each

link with respect to the same reference frame, usually the robot base. The frame attached

at the manipulator’s end-effector is also called the tool frame, where a task tool is usually

attached on. A homogeneous transformation matrix 0Ti is often used to represent the posi-

tion and orientation of ith link frame with respect to robot base, and jTi is used to represent

relative position and orientation of ith link with respect to the jth link.

Forward kinematics for a serial-chain manipulator (See Fig. 9 for an example) is to find

the end-effector position and orientation relative to the base coordinate system of the ma-

nipulator given the joint configurations of the arm and the geometric parameters of arm

links. The transformation can be obtained by simply concatenating transformations be-

tween frames attached at adjacent links of the chain.

Figure 9: An example of a four-joint serial-chain manipulator.

Inverse kinematics, on the other hand, is to find the joint configurations given the position

and orientation of the end-effector and the geometric parameters of the arm links.

12

From the kinematic analysis, a kinematic transformation between joint space and end-

effector work space can be represented as:

x = f(q), (1)

where x is the position and orientation of the end-effector, q is an arm joint configuration

and f represents the transformation function bewtween the joint configurations and the

end-effector positions and orientations.

To study the impending motion of an end-effector at a specific point in time, instan-

taneous kinematic analysis follows directly from the kinematic analysis by differentiation

with respect to time,

v = J(q)q̇, (2)

where v is a 6 × 1 vector representing the spatial velocity (linear and angular) of the end-

effector, q̇ is a vector composed of all arm joint rates, and J(q) is a Jacobian matrix, called

a manipulator Jacobian, parameterized by the joint configuration q.

Each column of J(q) is associated with one joint rate q̇i in q̇, indicating the contribution

of q̇i to the spatial velocity of the end-effector at that moment. The inverse of J(q) can be

used to compute the joint rates given the end-effector’s linear and angular velocities, which

called inverse instantaneous kinematics. For a manipulator with n-DOFs, if n > 6, J(q)

will not have an inverse and the manipulator is redundant. In that case, pseudo-inverse of

J(q) can be used to compute joint rates,

q̇ = J+(q)v, (3)

13

The pseudo-inverse J+(q) can be written as:

J+(q) = VΣ+UT (4)

where matrices V, Σ and UT can be obtained through singular-value decomposition (SVD)

of J(q) [65],

J(q) = UΣVT (5)

and Σ+ is the transpose of Σ with all the non-zero values on its diagonal reciprocated.

1.2.2 Task Constrained Manipulation

Existing techniques for task-constrained manipulation include control schemes based on

instantaneous inverse kinematics and sampling-based methods. Methods based on instanta-

neous inverse kinematics [107, 14, 80, 60] use (pseudo) inverse of the arm Jacobian to sat-

isfy the task constraint. To satisfy additional constraints, such as environment constraints,

they compute the related joint motion by gradient descent methods, for example, using a

gradient descent method to compute the joint motion that increase the arm-to-obstacle dis-

tance to avoid obstacles. Then they project the computed joint motion onto the null space

of the arm Jacobian to ensure the primary task constraint is not violated. Such methods

can compute solutions efficiently but require prioritizing the constraints during a task, by

which one has to compromise one constraint to satisfy the other. However in certain cir-

cumstances, it is difficult to decide which constraints is more important than the other, e.g.,

satisfying task constraints vs avoiding obstacles.

Instead of prioritizing different constraints, sampling-based methods [108, 82, 10] are

proposed to generate arm configurations on the task constrained manifold in the config-

14

uration space and then check if the generated configurations also satisfy the environment

constraints. Several techniques have been proposed: randomized gradient decent [106] is a

rejection-based sampling method and thus can be computationally expensive; tangent space

sampling and first-order projection techniques [82, 10] also utilize the pseudo-inverse of the

arm Jacobian to efficiently generate samples on (or close to) the constrained manifold.

1.2.3 Robotic Grasping

Grasping using a robot hand/gripper has been extensively studied for decades. Various

kinds of robot hands have been designed for grasping tasks, such as anthropomorphic hands

Utah-MIT hand [33], DLR hand[15] and Robonaut hand[5] and non-anthropomorphic

hands Barrett hand [2] and Salisbury hand [71].

The most fundamental requirements in grasping are the abilities to hold an object in

equilibrium and control the position and orientation of the grasped object relative to the

palm of the hand. The closure [11] properties are often used to evaluate a certain grasp,

where a stable grasp may require a force/form closure [26, 68, 89, 42] to be able to resist

the disturbance of external forces/torques in any direction.

To plan a grasping task using a robot hand, people encountered an even larger configu-

ration space comparing to a manipulator, since planning a grasp of a robot hand requires

planning a configuration consisting of a wrist pose (6 degrees of freedom) and finger poses,

which are often more than 6 degrees of freedom for fingers of dexterous hands. “Pre-

grasps” are usually generated so that a stable grasp can be achieved by simply closing

the gripper/fingers. [64] can generate pre-grasps by approximating complex target object

shape with simple shape primitives, e.g, spheres, cylinders, cones and boxes. Learning is

15

often used to obtain pre-grasps (e.g., [72, 76, 8, 22, 12]), and some pre-grasps are inspired

by caging schemes [75]. Methods for grasping deformable objects has been proposed in

[34], and grasping unknown or partially known objects has been studied in [40, 77, 70] by

utilizing vision sensor to fit object geometric and textural features.

1.3 Related Work on Continuum Manipulators

Comparing to a conventional articulated manipulator, a continuum manipulator does not

consist of rigid links but consists of deformable structures, so that it is compliant when in

contact with the environment, which makes the manipulator adaptive to complicated envi-

ronments where compliant motion is required. However, the compliance of a continuum

manipulator results in a problem of controlling a robot of (theoretically infinite) high de-

grees of freedom with discrete set of variables. [30] studied how an octopus controls its arm

movement in order to identify a general control principle of a continuum robot. Almost all

continuum robots feature constant-curvature sections when intact.

Studies on different prototypes of continuum manipulators have been conducted [32,

74, 90, 101, 100]. Building a continuum manipulator requires designing proper actuators

to generate motions of a continuum manipulator, that are compliant but also capable of

producing high speeds and large forces. Different designs of actuators can be used to cat-

egorize different continuum manipulators: highly articulated, hyper-redundant snake arms

[1, 21], continuous pneumatic driven or tendon driven arms [99, 36, 16, 105] inspired by the

biomechanical systems, and small-scale continuum manipulators with concentric tube de-

signs [102, 24, 88]. Examples of those manipulators are shown in Fig. 10. Teleoperations

of those prototypes have been experimented to validate their arm models and designs.

16

(a) OC Robotics snake arm [1] (b) Highly articulated snake arm by De-
gani and Choset [21]

(c) A concentric tube robot of 3 tubes de-
signed by Webster et al. [102]

(d) The design of a concentric tube robot
of 5 tubes by Dupont et al. [24]

(e) OctArm developed by Jones
and Walker [99]

(f) A tendon-driven continuum arm
by Xu and Simaan [105]

(g) A tendon/wire-driven contin-
uum manipulator by Camarillo et al.
[16]

Figure 10: Current prototypes of a continuum manipulator.

Existing motion planning algorithms for a continuum manipulator are mainly introduced

for small-scale, surgical-use continuum manipulators [102, 24, 88]. A sampling based mo-

tion planning algorithm for a concentric tube manipulator is proposed [91, 86, 87] to guide

the robot’s tip to a target point in the environment; [73] proposed a method of detecting a

surgical continuum manipulator by using 3D ultrasound images during a medical surgery;

[92] proposed an approach to locate and register the configuration and the end-effector

17

frame of a surgical continuum manipulator with respect to object frame by using contact

sensor data and environmental stiffness data; [41] studied different structures of arm seg-

ments and found that an arm segment that is able to change its length has the best tip dex-

terity in surgical applications. However, all those algorithms mainly focus on the arm tip

manipulation of a continuum manipulator in a surgical application, the whole arm manipu-

lation of a continuum manipulator, as a key feature of a continuum manipulator comparing

to an articulated manipulator, is not well-studied.

Only recently, 2D whole arm manipulation for a continuum manipulator are proposed

[104, 62]. However, autonomous whole arm manipulation of a general n-section continuum

manipulator in a 3D, especially a cluttered environment, has been rarely studied, and this

is the main focus of this dissertation.

In the following chapters, the overall objectives of this dissertation will be introduced,

and then novel approaches for autonomous continuum manipulation in a 3D, cluttered en-

vironment will be presented.

CHAPTER 2: RESEARCH OVERVIEW

As introduced in Chapter 1, a continuum manipulator is more flexible and compliant than

a conventional articulated manipulator and thus can be more useful in performing tasks in

less structured and cluttered environments. However, autonomous manipulation using con-

tinuum manipulators is not well-studied, especially for manipulation tasks in cluttered,

occluded environments. In addition, most autonomous manipulation methods for conven-

tional manipulators can’t be directly applied to continuum manipulation tasks, because of

the different structures of continuum manipulators, especially the concave and deformable

shapes of the arm segments.

This dissertation is focused on autonomous manipulation algorithms for continuum ma-

nipulators to perform different manipulation tasks in cluttered environments. The following

approaches will be introduced in particular:

• An efficient, real-time collision detection method involving multi-segment contin-

uum manipulators and 3D polygonal mesh objects [57].

• Whole arm grasping approaches of a target 3D object for a continuum manipulator

in both an open environment [52, 55] and a cluttered environment [53, 51].

• Generalized task constrained continuum manipulation approaches which consider

tasks constraining the arm tip position and/or orientation in cluttered environments

[56, 58].

19

• An approach for continuum manipulation in cluttered and unknown environments,

where the information of the environment is obtained through progressive sensing

[50].

Note that all approaches introduced in this dissertation only use geometric models of the

manipulator and objects. In the following chapters, the manipulator model of a continuum

manipulator and the object models in the environment will be introduced, and then the

above approaches for autonomous continuum manipulation will be presented.

CHAPTER 3: MANIPULATOR AND OBJECT MODEL

3.1 Manipulator Model

The kinematic model of a continuum manipulator used in this dissertation is as proposed

in [99]. For an n-section continuum manipulator, the i-th section is denoted as seci, in

terms of its central circular axis segi with two end points: a base point pi−1 and a tip point

pi, and the radius of the (curved) cylinder wi. If segi has a non-zero curvature, we call

the circle of segi the section i’s circle, denoted by ciri, with radius ri, and the plane that

contains segi the section plane, denoted by Pi, as shown in Fig. 11.

Figure 11: An arm section seci, its central axis segi on the circle ciri and the plane Pi.

The base frame of the robot is set at p0 with z0 axis tangent to section 1’s circle. The

section i’s frame is formed at pi−1 with the zi axis tangent to the section circle at pi−1. The

base of section i is the tip of section i-1. Two adjacent sections i-1 and i are connected

tangentially at the connection point pi−1, i.e., the two sections share the same tangent at

pi−1.

Figure 12 illustrates the three sections of the OctArm and their respective frames. Be-

21

cause of the mechanical structure, section i of the OctArm can bend either along the +zi

axis or the −zi axis but not both.

Figure 12: OctArm manipulator frames. Note that section 1 can bend along either (a) +z1
axis (with different orientations) or (b) −z1 axis (with different orientations), but not both
directions of z1.

Figure 13: Section i’s frame.

As shown in Fig. 13, the circle center of seci, ci, always lies on the xi axis, with ∓1/κi

being the x coordinate in the i-th frame, where κi is the curvature. Note also that ci lies on

the positive xi axis if κi < 0 and on the negative xi axis if κi > 0. When κi = 0, section i

is a straight-line segment starting from the origin pi−1 and along the zi axis.

22

Although each section can bend passively anywhere, it has a finite number of degrees of

freedom that can be directly changed by the OctArm actuators [99], which are variables:

curvature κi, length si, and orientation angle φi from the plane of section i-1 to that of

section i about zi axis, i.e., the angle from yi−1 axis to yi axis about zi axis.

Through out this dissertation, the following notations will be used to describe arm sec-

tions, section frames, and section configuration variables:

n: the number of arm sections of a continuum manipulator.

seci: the arm section i, 1 ≤ i ≤ n.

ciri: the section circle of seci, where the central axis of seci lies.

ci: the center of ciri.

pi: the tip point of seci, which is also the base point ofseci+1 and the origin of

seci+1’s base frame.

Ti: the homogeneous transformation matrix of the base frame of seci with respect

to a fixed world coordinate system; Ti also represents the tip frame location

of seci−1 (for i > 1).

Ri : the rotation matrix in Ti consisting of xi, yi and zi of seci’s base frame.

pi−1: the position vector in Ti for the base point pi−1 of seci.

κi: the curvature of seci.

φi: the rotation angle from yi axis to yi+1 axis.

wi: width of arm section seci.

C : an n-section continuum arm configuration represented as

C = {(s1, κ1, φ1),, (sn, κn, φn)}.

Pi: the section plane that contains ciri, with plane normal parallel to yi+1.

23

3.2 Object Model

An object is modeled as a polygonal mesh [93]. As a common approach to speed up

the proximity check, the object meshes are organized by a Bounding Volume Hierarchy

(BVH) (see Fig. 14), such as an Axis-Aligned Bounding Box (AABB) tree [94] or an

Oriented Bounding Box (OBB) tree [29].

Figure 14: A hierarchy of bounding volumes for a bunny mesh.

(a) Section plane Pi intersects a bunny mesh object (b) A cross section polygon polyi intersected by sec-
tion plane Pi

Figure 15: A cross section polygon polyi of the object intersected by section plane Pi.

24

The cross section of the object mesh by an arm section’s plane is denoted as poly since

it is a polygon consisting of a set of vertices {v0, v1, ...vm}, see Fig. 15 for illustration. If

the cross section consists of more than one connected component, poly denotes the convex

hull of the cross section.

3.3 Contact Determination Between Objects and the Manipulator

In order to know how close the manipulator arm is to a target object while trying to

grasp it and whether a contact occurs. Starting from a configuration away from the object,

once the manipulator is moved closer to the object such that the minimum distance between

them is less than a small distance dcontact > 0, we call a contact has occurred between the

pair of closest points on the arm and the object respectively. This threshold dcontact actually

reflects the fact that the continuum manipulator is compliant and can deform slightly under

contact: we can imagine shrinking the radius of each arm section by dcontact, such that

when the minimum distance between the shrunk arm and the object is less than dcontact, the

arm is in fact contacting the object with some compliance.

The collision detection algorithm proposed in Chapter 4 will help us compute the min-

imum distance between the object and manipulator, and thus compute a list of contacts

between the arm sections and the target objects.

CHAPTER 4: REAL-TIME COLLISION DETECTION INVOLVING A CONTINUUM
MANIPULATOR

4.1 Overview

Collision detection between the robot and objects in the environment is essential in robot

motion planning. Conventional collision detection algorithms often use a hierarchy of sim-

ple bounding volumes for the objects to speed up computation. At the lowest level of the

hierarchy, collision checking is conducted between either convex parts or polygons (for

generic objects approximated by polygonal meshes). Such an algorithm works well for

collision detection using a conventional articulated manipulator, which consists of rigid

links, and whose structures do not change or deform. However, the arm section of contin-

uum manipulators are not rigid and may deform continuously, so that conventional collision

detection algorithms using hieratical mesh models are not suitable for a continuum manip-

ulator.

Approximating a continuum robot at a certain configuration requires a very fine polyg-

onal mesh to be reasonably accurate, which decreases the efficiency for collision checking

if a large number of polygons are in the mesh. Moreover, each time a continuum robot

changes its configuration, because its whole shape deforms, the fine mesh has to be up-

dated, which is time consuming due to mapping from the high dimensional configuration

space to the Cartesian space. On the other hand, storing different meshes of different con-

figurations beforehand for the purpose of path/trajectory planning can take too much space

26

to be feasible.

Therefore we have proposed an efficient and novel algorithm [57] for Collision Detec-

tion between a Continuum Manipulator (CD-CoM) and environmental objects based on

analytical intersection checking. The CD-CoM algorithm applies to the exact parametric

model of any continuum manipulator featuring multiple sections, where each section has an

uniform curvature. It also applies to any section of non-uniform curvature approximated by

different uniform-curvature segments or toroidal primitives. As such, the algorithm saves

significant time and space in collision checking of a path for a continuum manipulator.

4.2 Bounding Planes of Manipulator Sections

The section i, i = 1, 2, ..., of a continuum manipulator is bounded by two planes Hi−1

and Hi, as shown in Fig. 16. Hi is the plane containing pi with normal zi+1 and shared by

section i and section i+ 1.

Figure 16: Two bounding planes for section i.

4.3 Manipulator Cross Sections

For each section i of the manipulator with a non-zero curvature, let plane Pi contain the

section i’s circle, i.e. ciri, then the cross section of section i by Pi, denoted by csi, is a

fan-shaped planar region with a width 2wi, bounded by two rays Li,1 and Li,2. As shown

27

in Fig. 17, using a polar coordinate system (ρ, θ) with circle center ci as the pole and xi as

the polar axis, the region csi can be described easily by bounds on ρ and θ as:

ri − wi ≤ ρ ≤ ri + wi (6)

θmini ≤ θ ≤ θmaxi (7)

where, if κi > 0, then θmin = 0 and θmax = siκi; else, θmin = π + siκi, θmax = π.

Figure 17: The cross section csi of section i and its polar coordinate system.

4.4 CD-CoM Algorithm

The CD-CoM algorithm (Algorithm 1) recursively traverses a hierarchy T of bounding

boxes of an object mesh and checks if there is any collision between T and the exact model

of a continuum manipulator featuring multiple sections of uniform curvatures at a given

configuration. Its subroutine CD-Face (Algorithm 2) checks for collision between a section

of the manipulator and a polygon f from the object, which can be a face of a bounding box

or directly from the polygonal mesh of the object.

The configuration of the arm determines segi with end points pi−1 and pi. If κi=0,

section i is a straight cylinder with a width of 2wi and a length of si, and the function

28

Algorithm 1: CD-CoM(C, T)
/* This algorithm checks for collisions between a continuum manipulator and an object
in polygonal mesh */
Input arm configuration C = (κ1, φ1, s1, ...κn, φn, sn), a tree of bounding boxes T for
an object mesh
Collision← False
/* Check if seci intersects the bounding box of T */
for each face f of the root bounding box of T do

if ∃seci, (0<i≤n), such that CD-Face(seci, f) = True then
Collision← True
break

end if
end for
if Collision = False then

/* the arm is either completely inside the bounding box or outside the bounding
box of T */
if any point of the arm is inside the bounding box of T then

return Collision← True
else

return Collision← False
end if

end if
/* Perform the same collision check with T ’s sub-trees*/
Collision← False
if T.LeftChild 6= NULL then

Collision← CD-CoM(C, T.LeftChild)
end if
if Collision = True then

return Collision
end if
if T.RightChild 6= NULL then

Collision← CD-CoM(C, T.RightChild)
end if
/* Perform primitive collision check if T is a leaf node */
if T has no child then

for each face f of the mesh polygons within the leaf bounding box do
if ∃seci, such that CD-Face(seci, f) = True then

return Collision← True
end if

end for
end if
return Collision.

29

Algorithm 2: CD-Face(seci, f)
/* This algorithm checks for collisions between a toroidal arm section and a polygon */
Input seci’s configuration (κi, φi, si)

T , central axis segi, section width wi, and a face f
from an object
Collision← False
if κi = 0 then

Collision← SS-CollisionCheck(seci, f)
else

if Pi intersects f at line segment li then
Collision← CS-CollisionCheck(csi, li)

end if
if Collision = False then

Collision← NCS-CollisionCheck(seci, f)
end if

end if
return Collision.

Algorithm 3: SS-CollisionCheck(seci, f)
/* This algorithm checks for collisions between a cylinder arm section and a polygon */
Compute the distance between straight-line segment segi and the plane Q that the
object face f is on, denote the distance as d(segi, Q) and closest points p, q on segi and
Q respectively
if d(segi, Q) ≤ wi then

if q is not on f then
compute the minimum distance between each edge ek of f and segi [25],
denoted as dmin(segi, ek) with closest points p and q on segi and ek
respectively
if dmin(segi, ek) > wi then

return Collision← False
end if

end if
if p is not on pi−1 or pi then

return Collision← True
else

/* f is closest to an end point of segi */
if f intersects Hi or Hi−1 at lint and the distance d(lint, pi) ≤ wi then

return Collision← True
end if

end if
end if
return Collision← False.

30

StraightSection-CollisionCheck (SS-CollisionCheck), presented in Algorithm 3, is called

for collision checking between a cylinder (section i) and the planar face (f). This algo-

rithm computes the minimum distance dmin(segi, f) between segi (which becomes a line

segment) and f . If dmin(segi, f) > wi, it returns no collision; otherwise, depending on

whether f is between the bounding planes Hi−1 and Hi of segi or not and whether or not

f intersects either end of section i on Hi−1 or Hi, the algorithm can return collision or no

collision. For example, if f is outside of the bounding planeHi−1, i.e., not on the same side

with segi, then even if dmin(segi, f) < wi, there is still no collision between f and segi.

If κi 6=0, segi is a circular curve, defining a plane Pi, and the cross section csi of section i

by Pi is characterized by inequalities (6) and (7). To be efficient, Algorithm 2 first considers

the 2D collision cases where the face f intersects Pi by calling Algorithm 4 for cross

section collision check. If no collision is found between f and the cross section csi, it next

checks the 3D collision cases where collisions may happen between f and the section i

other than csi by calling Algorithm 5 for non-cross section collision check. Our test results

show that it is substantially more efficient to first call Algorithm 4 and call Algorithm 5

only when it is necessary.

4.4.1 Cross Section Collision Check (CS-Collision Check)

For a manipulator section i with non-zero curvature, i.e., κi 6=0, if a face f from an

object intersects the plane Pi at a line segment li with vertices v1 and v2 1, Algorithm 4

checks if li intersects the fan-shaped cross section csi of manipulator section i. Denote the

polar coordinates of v1 and v2 as (ρ1, θ1) and (ρ2, θ2) respectively. Algorithm 4 classifies

1In the special case that the intersection is a point, v1 = v2.

31

Algorithm 4: CS-CollisionCheck(csi, li)
/* This algorithm checks for collisions between a fan-shaped planar region csi and a
line segment li with vertices v1 and v2, whose polar coordinates are (ρ1, θ1) and (ρ2, θ2)
respectively. */
Case 1: if ρ1 and ρ2 are both below the lower bound for ρ, i.e., max(ρ1, ρ2) < ri − wi
then

return Collision← False

Case 2: if either (ρ1, θ1) or (ρ2, θ2) satisfies both (6) and (7) then
return Collision← True

Case 3: if ρ1 and ρ2 are both above the upper bound for ρ, i.e., min(ρ1, ρ2) > ri + wi
and θ1, θ2 both satisfy (or both do not satisfy) (7) then
compute the distance between circle center ci and li and obtain point q = (ρq, θq) on li

if the distance is shorter than ri + wi and θq satisfies (7)
return Collision←True

else
return Collision← False

Case 4: if both θ1 and θ2 satisfy (7) then
return Collision← True

/ * the remaining collision cases have intersections between rays Li,1 (or Li,2) and li * /
Case 5: if line segment li intersects rays Li,k (k = 1, 2) of csi at pkint (see Fig. 17) then
if one vertex of li satisfies (7) and is above the upper bound for ρ. then

if ρkint ≤ ri + wi then
return Collision← True (see Fig. 18(e))

end if
end if
if one vertex of li satisfies (7) and is below the lower bound for ρ. then

if ρkint ≥ ri − wi then
return Collision← True (see Fig. 18(f))

end if
end if
if neither vertices of li satisfies (7) then

if one of ρkint satisfies ρkint ≥ ri − wi then
return Collision← True (see Fig. 18(g))

end if
end if
return Collision← False.

32

all collision scenarios into five cases based on whether v1 and v2 satisfy the bounds of

inequalities (6) and (7) and then check sequentially from Case 1 to Case 5 to detect all

possible kinds of intersections (i.e., collisions). Fig. 18 shows examples for these cases.

Appendix further shows that Algorithm 4 covers all cases of possible collisions and is

complete.

4.4.2 Non-cross Section Collision Check (NCS-Collision Check)

If a face f of the object does not intersect Pi or does not intersect the cross section csi,

we need to further check if f intersects section i by Algorithm 5.

In Algorithm 5, we first check if the distance between ciri and Q, the supporting plane

of face f , is greater than the width of section i by calling Procedure 1. If so, Q has no

intersection with the section i, a truncated torus, and no further collision checking is nec-

essary. Otherwise, further collision checking is done by calling subsequently Procedure

2, for computing the distance between the end points of segi to f , and if necessary, also

Procedure 3, for computing the distance between segi to an edge of f . Procedures 1, 2 and

3 are described below:

Procedure 1: Compute the minimum distance dmin(ciri, Q) between circle ciri and plane

Q as well as the pair of closest points p on ciri and q on Q.

If Q intersects ciri, then dmin(ciri, Q) = 0, and return all pairs of intersection points p

and q on ciri and Q respectively.

For the case Q does not intersect ciri, if Q is parallel to plane P that ciri is on, then the

distance from any point p on ciri to Q is the shortest distance from ciri to Q. Project point

p to Q to obtain point q. Otherwise, compute dmin(ciri, Q) as follows – see Fig. 19 for

33

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 5

(g) Case 5

Figure 18: Some examples for cases considered in the cross section collision check.

illustration:

• Project ci to Q and denote the point on Q as q′.

34

Algorithm 5: NCS-Collision check(seci, f)
/* This algorithm checks for collisions between a toroidal arm section seci and a
polygon f when f does not intersect the section plane Pi */
Compute the minimum distance between ciri and the plane Q of face f from the object,
i.e., dmin(ciri, Q), and corresponding points p, q on ciri and Q respectively by
Procedure 1
if dmin(ciri, Q) > wi then

return Collision← False
end if
if q is on f and p is not on segi then

compute the shortest distance from pi−1 and pi to f , denoted as dmin(pi/i−1, f),
and update the pair of closest points p and q, by Procedure 2
if dmin(pi/i−1, f) > wi then

return Collision← False
end if

end if
if q is not on f then

compute the shortest distance between segi and the edges of f by Procedure 3,
denoted as dmin(segi, ek), and update the pair of closest points p and q
if dmin(segi, ek) > wi then

return Collision← False
end if

end if
if p is not on pi−1 or pi then

return Collision← True
else

/* f is closest to an end point of segi */
if f intersects Hi or Hi−1 at lint and the distance d(lint, pi) ≤ wi then

return Collision← True
end if

end if
return Collision← False.

• Project q′ to Pi and denote the point on Pi as p′.

• Connect p′ and ci (which are both on Pi) and obtain a line segment that intersects ciri

at point p.

• Project p to Q, denote the projected point as q, and return the distance between p and

q.

35

Figure 19: dmin(ciri, Q), indicated by the green dashed line and computed by Procedure 1.

A proof for the correctness of Procedure 1 is presented in Appendix.

Procedure 2: Compute the minimum distance dmin(pi/i−1, f) from points pi and pi−1 to

face f , and obtain the pair of closest points.

• Project each point to Q and denote the closer projection (to the original point) as q′

and the corresponding distance dmin(pi/i−1, Q).

• If q′ is on f then return dmin(pi/i−1, Q) as dmin(pi/i−1, f), see Fig. 20(a).

• Else, find the minimum distance between each point to every edge ek of f and return

the shortest distance as dmin(pi/i−1, f), see Fig. 20(b).

Procedure 3: Compute the minimum distance dmin(segi, ek) between segi and an edge ek,

and obtain the pair of closest points.

1) Compute the minimum distance between ek and ciri and obtain the corresponding

closest points q on ek and p on ciri as follows.

We first establish a coordinate system: x is along the projection of ek on Pi, z is along

the normal of Pi towards ek starting from one vertex of the projection, and y is orthogonal

to x on Pi such that xyz form a right-handed system, see Fig. 21.

36

(a) If q′ is on f , then
dmin(pi/i−1, f) equals to
the minimum distance from
pi/i−1 to q′.

(b) If q′ is not on f , then
dmin(pi/i−1, f) equals to the
minimum distance from pi/i−1
to the edges ek of f .

Figure 20: Two cases of dmin(pi/i−1, f), indicated by the green dashed line and computed
by Procedure 2.

Figure 21: Coordinate system established in Procedure 3

Let the center of ciri be (xc, yc, 0) and the radius of ciri be ri. The line of ek is on the

xz plane and satisfies the equation

z = ax+ b. (8)

Any point s on ek has coordinates (x, 0, z), and its projection s′ on Pi has coordinates

(x, 0, 0). The closest point to s′ on ciri is the intersection point p between the line segment

from s′ to the center of ciri and ciri, and the corresponding distance l (from s′ to p) satisfies:

37

l =


ri −

√
(x− xc)2 + y2c if s′ is inside or on ciri,√

(x− xc)2 + y2c − ri if s′ is out of ciri.

(9)

See Fig. 22. Note that p is also the closest point on ciri to s.

(a) The projection s′ on Pi is out of ciri.

(b) The projection s′ on Pi is inside ciri.

Figure 22: Two cases for computing the distance l.

The distance ds from the point s on ek to its closest point p on ciri satisfies: ds =

√
z2 + l2, which, with (8) and (9), results in:

ds =

√
(ax+ b)2 + (

√
(x− xc)2 + y2c − ri)2 (10)

Let vk,1 and vk,2 be the vertices of ek with coordinates (x1, 0, z1) and (x2, 0, z2) respectively.

Let d1 and d2 correspond to vk,1 and vk,2 respectively, satisfying equation (10).

In order to find the point s = q that has the minimum distance ds = dq to ciri, we take

the derivative of d2s with respect to x

dd2s
dx

= 2a(ax+ b) +
2(x− xc)(

√
(x− xc)2 + y2c − ri)√

(x− xc)2 + y2c
(11)

38

and equate it to zero:

2a(ax+ b) +
2(x− xc)(

√
(x− xc)2 + y2c − ri)√

(x− xc)2 + y2c
= 0 (12)

The above equation (12) can be expressed as the following quartic equation of x, which

have analytical solutions [3]:

t4x
4 + t3x

3 + t2x
2 + t1x+ t0 = 0 (13)

where

t4 = a4 + 2a2 + 1,

t3 = 2(a2 + 1)(ab− xc)− 2xc(a
2 + 1)2,

t2 = (a2 + 1)2(x2c + y2c)− 4xc(a
2 + 1)(ab− xc)− r2i

+(ab− xc)2,

t1 = 2r2i xc − 2xc(ab− xc)2 + 2(a2 + 1)(ab− xc)(x2c + y2c),

t0 = (ab− xc)2(x2c + y2c)− r2i x2c .

If there exist roots of (13) that correspond to points within ek, and if the corresponding

smallest ds is smaller than min(d1, d2), then obtain the corresponding point q on ek and the

corresponding closest point on ciri as p. Otherwise, obtain the vertex of ek corresponding

to min(d1, d2) as q and the corresponding closest point on ciri as p.

2) If p is on segi, return the distance between p and q as dmin(segi, ek); otherwise, return

the shortest distance from the two endpoints (pi and pi+1) of segi to ek as dmin(segi, ek).

We introduce Procedure 1 and Procedure 3 because there is no ready algorithm for ana-

lytically computing the distance from a polygon or edge to a finite curve (segi) in 3D space.

Our Procedure 1 and Procedure 3 introduced here are efficient and accurate.

39

As for Procedure 2, a related algorithm was proposed in [35] for computing the 3D

distance from a point to a triangle, which uses the barycentric coordinates of a triangle to

check whether the projection of a point is within the triangle. In our algorithm, however,

the face f is not limited to be triangular but can be any convex polygon (e.g., it can be a

face of a bounding box).

Appendix further shows that Algorithm 5 is complete.

(a) 2,000 triangles per sec-
tion (Mesh 1)

(b) 4,000 triangles per sec-
tion

(c) 8,000 triangles per sec-
tion (Mesh 2)

Figure 23: Three OctArm mesh models.

Table 1: Space/time required for different OctArm models at a given arm configuration

Arm Model Exact (CD-CoM) Mesh 1 Mesh 2
Description 9 config. parameters: 2,000 8, 000

κi, si, φi, triangle/section triangle/section
i = 1, 2, 3

Space 36 byte/section 18K byte/section 72K byte/section
Compute vertices tc None 4.5 ms/section 18 ms/section
BVH rebuilding trb None 9 ms/section 48 ms/section
BVH refitting trf None 2 ms/section 12 ms/section

Updating mesh points for No need Yes Yes
a new configuration?

4.5 Comparative Study and Test Results

We have implemented the CD-CoM algorithm in C++ and applied it to collision detec-

tion between the three-section OctArm manipulator and polygonal mesh models of arbi-

40

(a) Config. 1 (no collision) (b) Config. 2 (collision at sec-
tion 3)

(c) Config. 3 (collision at sec-
tion 2)

(d) Config. 4 (no collision) (e) Config. 5 (collision at sec-
tion 3)

(f) Config. 6 (collision at sec-
tion 2)

Figure 24: Arm configurations tested for collision with a teapot and a bunny.

trary objects. With single precision float point variables in our implementation, ranging

from 3.4e−38 to 3.4e+38 with 7 significant figures, we can maintain the numerical stability.

We have also compared the collision detection results using our CD-CoM algorithm with

those using a mesh-based collision detection algorithm OPCODE [85], which is similar to

SOLID [94, 95] or RAPID [29]. Since OPCODE uses an AABB tree on top of an object

mesh to speed up collision checking, we also apply CD-CoM to the AABB tree of the same

object mesh for comparison. Since our CD-CoM takes a tree of bounding boxes (in this case

an AABB tree) as an input, but the OPCODE builds an AABB tree for each input object

mesh, for fair comparison, we subtract the tree building time for each object from the total

collision checking time that OPCODE uses. Moreover, each time the configuration of the

continuum manipulator changes, the mesh of the manipulator changes too, and therefore,

the AABB tree for the manipulator mesh will have to be changed. To adjust the AABB tree

41

of the manipulator, we use the refitting method implemented in OPCODE as well. We run

both the CD-CoM algorithm and the OPCODE on the same PC with a 2.4GHz core.

Fig. 23 displays three mesh models for the OctArm, from coarse to reasonably fine. As

shown, Mesh 2 with 8,000 triangles per arm section is required to provide a necessarily

smooth approximation. Of course, a finer mesh model will be even better for accuracy but

more expensive.

Table 1 compares the space and time required by the exact arm model of the OctArm

and those of the two mesh models (a coarse one and a fine one) of the OctArm for any

given configuration. The space cost is computed based on the number of vertices of the

corresponding mesh model. Three time costs are presented for dealing with a mesh model

of the manipulator: (a) the time tc needed for computing the positions of mesh vertices for

any given arm configuration; (b) the time trf required for refitting the bounding volumes

given updated positions of mesh vertices and bounding volume topology; (c) the time trb

needed for rebuilding the hierarchy of bounding volumes given mesh vertices.

Although refitting the BVH takes substantially less time (70% − 80%) than rebuilding

the BVH, both of them cannot avoid the cost of updating the positions of mesh vertices

for different arm configurations. Note that updating mesh vertices for the manipulator here

is more costly that for some deformable object models, e.g., model for a waving/vibrating

skirt, where positions of mesh vertices after deformation can be either computed quickly,

e.g., by linear interpolation, or given in input files for each time frame (before and after

deformation). Whereas, updating mesh vertices for the manipulator requires mapping from

the high-dimensional configuration space of the continuum manipulator to the Cartesian

space.

42

In general, if R is the time required for updating a single mesh model of a continuum

manipulator, then to represent and store a single path of k configurations of the manipulator

in a mesh model requires kR time, which could be too expensive to be feasible even for

off-line motion planning. This is because motion planning usually requires examining and

maintaining a vast number of configurations to search for a good path. In contrast, our

CD-CoM algorithm uses the exact arm model of a continuum manipulator directly to avoid

the high time and space cost of updating mesh models for different configurations and thus

facilitates motion planning for a continuum manipulator.

4.5.1 Comparative Analysis of Worst-case Time Complexity

To analyse the time complexity of our algorithms, we first denote the following:

n: the number of arm sections of the continuum manipulator.

M : the number of bounding volumes of a polygonal mesh of an object.

mo: the maximum number of features (i.e., faces, edges, and vertices) of the object

mesh at the lowest level of the bounding volume hierarchy.

k : number of arm configurations to check for a path.

N : the total number of bounding volumes is using mesh model for the manipulator.

ma: the maximum number of features (i.e., faces, edges, and vertices) of the mesh

approximating the arm at the lowest level of the bounding volume hierarchy.

Then the worst-case time complexity of the CD-CoM Algorithm is O[(M + mo)n] for

checking one arm configuration [49], and the worst-case time complexity is O[k(M +

mo)n].

However, in order to use a conventional mesh-to-mesh collision detection algorithm,

such as the OPCODE, the continuum manipulator will have to be approximated by a mesh.

43

Then the worst-case time complexity of a mesh-to-mesh collision detection algorithm is

O(MN + moma). Since N >> n (as it requires more than one bounding volume for

each arm section), and ma >> n, MN + moma >> (M + mo)n. Thus, the CD-CoM

Algorithm has a far lower order of worst-case time complexity than OPCODE, and we can

further show that O(MN +moma) >> O[(M +mo)n].

For checking collision of a path of k arm configurations, the worst-case time complexity

of CD-CoM is O[k(M + mo)n]; whereas, the worst-case time complexity of OPCODE is

O[k(MN + moma) + Nk], with the additional term Nk reflecting the time complexity of

refitting the bounding volume hierarchy of the manipulator for each change of configura-

tion. Thus, k(MN+moma)+Nk >> k(M+mo)n, and moreover, O[k(MN+moma)+

Nk] >> O[k(M +mo)n].

4.5.2 Test Results and Discussion

Table 2 and Table 3 present the results of collision detection between the OctArm and

two different object meshes, a teapot mesh model with 1, 024 triangles and a bunny mesh

model with 3, 851 triangles, at different OctArm configurations, as shown in Fig. 24. We

choose the teapot and bunny because they are sophisticated, non-convex objects with many

polygons in the mesh; they are as complex as many objects in practical applications. The

CD-CoM algorithm takes less time than OPCODE to detect collisions, while OPCODE

also takes time to re-compute the positions of mesh vertices (tc) and to refit BVHs of mesh

models (trf) for different arm configurations: for Mesh 1 of the manipulator, our algorithms

takes at most 60% of the time (config. 6) that OPCODE uses for collision checking, and

for the finer Mesh 2 of the manipulator, it takes at most 18% of the time (config. 6) that

44

OPCODE uses.

Table 2: Collision detection time between the OctArm and a teapot mesh (with 1,024
triangles)

Arm Model Algorithm Config. 1 Config. 2 Config. 3
Exact CD-CoM < 1 ms 4 ms 6 ms

Mesh 1 OPCODE 7 ms 9 ms 12 ms
Mesh 2 OPCODE 36 ms 41 ms 43 ms

Table 3: Collision detection time between the OctArm and a bunny mesh (with 3,851
triangles)

Arm Model Algorithm Config. 4 Config. 5 Config. 6
Exact CD-CoM < 1 ms 6 ms 10 ms

Mesh 1 OPCODE 7 ms 11 ms 16 ms
Mesh 2 OPCODE 37 ms 47 ms 53 ms

Fig. 25 compares the collision detection time for each collision check for 100 randomly

sampled OctArm configurations (according to an uniform distribution) against the teapot

using CD-CoM vs. OPCODE, and Table 4 compares the average and median time per

collision check. The results clearly show that the CD-CoM algorithm is more efficient than

OPCODE applied to even the coarse mesh model of the continuum manipulator (with only

37% on average of the time that OPCODE uses). The average time (3.2 ms) is also much

shorter than the time (18 ms) reported in [44], which conducts collision detection based on

spheres and updates BVHs dynamically, for meshes with comparable numbers of triangles.

We have also tested the performance of CD-CoM vs. OPCODE employed by a motion

planner for grasping in a cluttered space by a continuum manipulator[54]. The planner

searches a path of configurations for an n-section continuum manipulator to gradually wrap

around a target object with its tip following the contour of the object without colliding

with nearby obstacles. Fig. 27 shows snapshots of such a path, which consists of 160

45

Figure 25: The box-and-whiskers plot of collision detection time between the OctArm and
the teapot for 100 arm configurations.

configurations for a four-section continuum manipulator to grasp the teapot in a confined

environment. To plan the path, the planner checked 1,120 configurations.

Table 4: Collision detection time between the OctArm and the teapot over 100 arm config-
urations

Arm Model Algorithm Average time Median time
Exact CD-CoM 3.2 ms 2.5 ms

Mesh 1 OPCODE 8.5 ms 8.38 ms
Mesh 2 OPCODE 40.8 ms 40.74 ms

Fig. 26 compares the collision detection time by CD-CoM vs. OPCODE for each col-

lision check of the 1,120 configurations of the four-section continuum manipulator in the

search of the feasible path for grasping the teapot. Table 5 compares the average and me-

dian time per collision check and the total time of collision check needed for the 1,120

configurations. The CD-CoM algorithm is clearly more efficient.

The efficiency of the CD-CoM algorithm is also demonstrated in the application of in-

spection with the OctArm [56].

Table 6 shows the average number of times Algorithm 4 and Algorithm 5 were called by

46

Figure 26: The box-and-whiskers plot of collision detection time for the 1,120 configura-
tions of a four-section continuum manipulator in searching a feasible path for grasping the
teapot.

(a) Initial Config. (b) Intermediate Config. 1

(c) Intermediate Config. 2 (d) Grasping Config

Figure 27: A few snapshots of a path of 160 configurations for grasping the teapot by a
four-section continuum manipulator.

CD-CoM per configuration check over the 1,120 configurations as well as the average time

for running each algorithm once. Recall that if calling Algorithm 4 can detect a collision,

there is no need to call Algorithm 5, and if the face of an object does not intersect the section

plane of the considered arm section, then Algorithm 4 will not be called. Clearly, Algorithm

47

4 is 10 times more efficient than Algorithm 5 on average, and the use of Algorithm 4 is

significant in reducing the overall computation cost.

Table 5: Collision detection time over the 1,120 configurations

Arm Model Algorithm Average time Median time Total time
Exact CD-CoM 3.5 ms 3.27 ms 3.92 s

Mesh 1 OPCODE 10.3 ms 9.98 ms 11.53 s
Mesh 2 OPCODE 50.8 ms 50.84 ms 56.89 s

Table 6: Percentage and time cost of calling Algorithm 4 and Algorithm 5 for collision
check per configuration over the 1,120 configurations

Algorithm Algorithm 4 only Algorithm 5 only both
Avg. % called 44.98% 22.3% 32.72%
Avg. time/call 0.001 ms 0.01 ms 0.011 ms

Note that the total planning time for the path for grasping is 4.61s by using CD-CoM (of

which 3.92s is used for collision checking, as shown in Table 5), and the average planning

time per configuration is 4.11ms, which is comparable to the real-time planning time re-

ported in [96] for a mobile manipulator with an articulated arm of six degrees of freedom

(which used OPCODE for collision detection) and satisfies the requirement for real-time

response [43] in the order of milliseconds. Therefore, CD-CoM is suitable for real-time

motion planning for a continuum manipulator.

4.6 Remarks

In this chapter, we introduced an efficient algorithm for collision detection between a

continuum manipulator and environmental objects. Such a continuum manipulator can be

continuously deformed into different concave shapes by changing each section’s config-

uration parameters (i.e., s, κ, φ). Unlike conventional collision detection algorithms that

require mesh models, our CD-CoM algorithm uses toroidal, parametric models of a contin-

48

uum manipulator instead of mesh models, and therefore, it does not need to update mesh

models for different arm configurations, which requires re-computing all the positions of

the vertices in a mesh and refitting the bounding volumes of the mesh. As such, our algo-

rithm saves significant time and space. It is more efficient comparing to collision detection

using even a coarse mesh model of the manipulator.

(a) A section with non-uniform curva-
ture

(b) Approximated with 2 uniform-
curvature segments

(c) Approximated with 25 cylindrical
segments

(d) Approximated with 296 cylindri-
cal segments

Figure 28: Comparison of different approximations of a non-uniform curvature section.

The CD-CoM algorithm is applicable to (1) exact models of continuum manipulators fea-

turing n uniform-curvature sections (n = 1, 2, 3, ...) or (2) continuum manipulators with

sections of non-uniform curvatures such that each non-uniform curvature section can be

approximated by uniform-curvature segments. Indeed, using uniform-curvature segments,

which are usually non-convex, is far more efficient than using straight cylindrical segments

or finer convex primitives to approximate a non-uniform curvature section. Fig. 28 shows

an example, where using only two uniform-curvature segments provides better approxi-

49

mation result and more efficient than using cylindrical segments. Note that we alternate

blue and red colors to indicate segments used in approximation. The CD-CoM algorithm is

clearly more feasible for collision detection involving non-uniform curvature sections than

existing algorithms using convex primitives.

The CD-CoM algorithm is particularly suitable for continuum manipulator path plan-

ning that considers a large number of manipulator configurations in real time. CD-CoM

also provides information of the minimum distance between each section of the continuum

manipulator and objects when there is no collision, which could be further exploited to

achieve desirable contact states for continuum manipulation and to take advantage of time

and space coherence of a moving continuum manipulator and moving objects.

CHAPTER 5: DETERMINING GRASPING CONFIGURATIONS FOR A 3-SECTION
CONTINUUM MANIPULATOR

5.1 Overview

Unlike a conventional articulated manipulator, where only the gripper manipulates ob-

jects, a continuum manipulator, such as a multi-section trunk/tentacle robot, is promising

for deft manipulation of a wide range of objects of different shapes and sizes. Given an

object, a continuum manipulator tries to grasp it by wrapping around and squeezing it. A

main open problem is how to determine if the object can be grasped and if so, the whole-arm

wrapping around configurations of the robot to grasp it, which we call grasping configura-

tions.

In this chapter, we propose a general and complete analysis of grasping configurations

of a spatial continuum manipulator consisting of 3 sections for an given 3-D object and

then formulate constraints for existence of solutions and describe how to find grasping

configurations.

5.2 Object Grasping Models for a 3-section Continuum Manipulator

For a given 3D object, we define two grasping models for a continuum manipulator

consisting of 3 sections:

• Grasping Model 1: section 3 of the robot wraps around the object, and other sec-

tions of the robot may wrap around the object but not along section 3’s circle. See

Figure 29.

51

• Grasping Model 2: both section 2 and section 3 of the robot wrap around the object

along the same circle2. See Figure 30.

(a) Only section 3 wraps around the
object.

(b) Section 2 also wraps around the
object along a different circle.

Figure 29: Two examples of Grasping Model 1.

Figure 30: Grasping Model 2 where section 2 (red) and section 3 (green) are on the same
circle.

To realize either grasping model, we need to first obtain bounding circles of the object,

and then choose feasible bounding circles such that either the section 3 of the robot or the

combined sections 2 and 3 of the robot can wrap around the object, i.e., make sure that the
2Similarly, the case of all sections of the robot wrapping around the object along the same circle can be

considered. We omit the case because it is trivial and not very practical.

52

value ranges of the section curvature and length of the robot allow either grasping model

to happen. Once a suitable object bounding circle for either grasping model is obtained,

we can further determine (in subsequent sections of the paper) suitable configurations of

the entire robot that realize the corresponding grasping model, which we call, grasping

configurations.

Different bounding circles of an object can be obtained from different cross sections of

the object. A bounding circle ciro can be obtained automatically with the following steps:

• Select a plane through the center of mass of the object3.

• Intersect the plane with the object to create a cross-section, which can be expressed

as a polygon.

• Find the minimum bounding circle ciro of the cross section polygon [61].

Next, we need to check if the bounding circle ciro is of suitable size for the robot to

grasp. Let ro be the radius of ciro. If one of the following conditions is satisfied, ciro has a

suitable size:

s3,min ≤ aπro ≤ s3,max (14)

or

s3,min + s2,min ≤ aπro ≤ s3,max + s2,max (15)

where a ∈ (0, 2] is a coefficient determining how much the object bounding circle has to

be wrapped. Its value depends on the shape, size, and material characteristics of the target

object, as well as on the task of manipulation. For example, the task of pulling an object

3Or of the preferred grasping part, such as a handle, depending on the object.

53

could require a smaller a than that of picking up the object. If (14) is satisfied, ciro is

suitable for the Grasping Model 1; otherwise, if (15) is satisfied, ciro is suitable for the

Grasping Model 2.

Considering that the actual robot has a width w, for Grasping Model 1, we grow the ciro

by w/2 − δ to obtain section 3’s circle that (the central axis of) section 3 needs to curve

along, and for Grasping Model 2, the same grown circle will be for both the (central axes

of) section 3 and section 2 to curve along. Note that δ is a small value to ensure tight wrap,

taking advantage of the inherent compliance and small deformation of the OctArm. For

convenience, we call such a grown circle ciro the object circle.

Note that a configuration of an OctArm is in terms of only controllable variables of its

sections. However, the OctArm can bend anywhere passively (i.e., with infinite passive

degrees of freedom). The smooth and compliant nature of such a continuum structure

allows it to gently interact with the object by adapting its shape to the object it wraps.

Therefore, for either grasping model, once a corresponding configuration of the OctArm is

found (to be described in the following sections of the paper), the inherent compliance of

the arm will allow a tight wrap with as much continuum contact as possible (hence as much

friction as possible) to make the grasp robust [63].

We describe how to find grasping configurations for each grasping model below.

5.3 Finding Configurations For Grasping Model 1

For Grasping Model 1, the object circle is the desired section 3’s circle for grasping.

Now, given this section 3’s circle, i.e., its center position c3, radius r3 (or curvature |κ3|),

and the circle plane normal, which can be expressed as y3 – the unit vector of the y axis

54

of the section 3’s frame, we need to solve for values of the other OctArm configuration

variables: κ1 (or r1), φ1, s1, κ2 (or r2), φ2, and s2.

There are two situations of configurations for Grasping Model 1, where the section 3’s

circle is given and not shared by section 2:

• general situation: section 1 and section 2 do not share the same circle;

• special situation: section 1 and section 2 share the same circle.

We focus on finding grasping configurations of the general situation in this section. We

will first specify constraints relating sections of the OctArm for the Grasping Model 1 and

then use those constraints to solve for the unknowns to obtain grasping configurations.

The special situation can be handled in a way similar to that for determining grasping

configurations for Grasping Model 2.

5.3.1 Inter-Section Constraints

For Grasping Model 1, in the general situation where no two sections of the OctArm

share the same circle, the section circles have to satisfy the following:

• the section 1’s circle is tangent to the section 2’s circle at point p1, which is also the

end point of section 1, and

• the section 2’s circle is tangent to the section 3’s circle at point p2, which is also the

end point of section 2.

p1 and p2 are both on section 2’s circle. Let l12 and l23 be the tangent lines going through p1

and p2 respectively, as shown in Figure 31. They must satisfy the following two constraints:

55

• Constraint 1: the tangent lines l12 and l23 must be coplanar.

• Constraint 2: the tangent lines l12 and l23 must be on the same circle.

Figure 31: Two tangent lines, l12 and l23, that pass p1 and p2 respectively.

Define two vectors along l12 and l23 respectively as the following:

l12 = y1 × (p1 − c1) (16)

and

l23 = y3 × (p2 − c3) (17)

where y1 and y3 are the unit vectors of the y axes of section 1 and section 3 respectively,

which also represent plane normals of the two sections respectively; c1 and c3 are the

position vectors of the centers of section 1’s and section 3’s circles respectively; p1 and

p2 are the position vectors of p1 and p2 respectively, in the robot’s base frame. y1 can be

further expressed in terms of φ1 as:

y1 = R(z1, φ1)y0 (18)

56

where R(z1, φ1) is the rotation matrix of the rotation about the z1 axis with angle φ1 and y0

is the (fixed) y axis of the base frame of the robot.

c1 can be expressed in terms of φ1 and κ1 as:

c1 = R(z1, φ1)[−
1

κ1
, 0, 0]T (19)

Now, for the case that l12 and l23 are not parallel, Constraint 1 can be expressed as:

(p2 − p1) · (l12 × l23) = 0 (20)

Let α1 be the angle between p2 − p1 and l12 and α2 be the angle between p2 − p1 and

l23, as shown in Figure 32, such that4

sin(α1) =
‖l12 × (p2 − p1)‖
‖l12‖‖p2 − p1‖

(21)

and

sin(α2) =
‖l23 × (p2 − p1)‖
‖l23‖‖p2 − p1‖

(22)

Figure 32: The tangent lines l12 and l23 and section 2’s circle are on the same plane; α1 and
α2 are complementary.

4by the definition of cross product.

57

Then, to satisfy Constraint 2, α1 and α2 must be either equal or complementary (see

Figure 32), depending on the directions of l12 and l23, that is, the following equation must

be satisfied:

sin(α1) = sin(α2) (23)

For the case that l12 and l23 are parallel, then Constraint 1 is satisfied since

l12 × l23 = 0 (24)

and Constraint 2 can be expressed as:

(p2 − p1) · l12 = 0. (25)

Since p1 and p2 are on section 1’s circle and section 3’s circle respectively, each can be

expressed in terms of a scalar angle as derived below. Define a local coordinate system for

section i’s circle, as illustrated in Figure 33, such that its origin is at the circle center ci,

and two unit vectors ui and vi form the orthogonal axes on the circle plane. ui and vi are

functions of yi; Denote ri = 1
|κi| as the radius of the circle for section i.

Figure 33: The section i circle’s local coordinate system.

58

Thus, since p1 is on the section 1’s circle, its position vector (in the robot base frame)

must satisfy:

p1 = c1 + r1cos(γ1)u1 + r1sin(γ1)v1 (26)

where γ1 is the angle from the vector u1 to p1 − c1.

Similarly, since p2 is on the section 3’s circle, its position vector must satisfy:

p2 = c3 + r3cos(γ3)u3 + r3sin(γ3)v3 (27)

where γ3 is the angle from the vector u3 to p2 − c3.

5.3.2 Finding Solutions

From the above, the inter-section constraint equations for the case where the two tangent

lines l12 and l23 are not parallel are (20) and (23). The constraint equations for the case

where l12 and l23 are parallel are equations (24) and (25).

With equations (16) to (23), we can re-write the inter-section constraint equations in

terms of four variables: κ1, φ1, θ1, and θ3. With two equations and four variables in either

case, we can solve for two variables with the other two variables assuming any values

within their value ranges. If we assign values to κ1 and φ1, i.e., specify the section 1’s

circle, we can solve for θ1 and θ3. Once θ1 and θ3 are solved, we can further solve for

section 2’s circle and then the corresponding grasping configuration.

We describe the process in turn below.

5.3.2.1 Solving For θ1 and θ3

Now we describe how to solve for θ1 and θ3 for a given pair of κ1 and φ1 values within

their respective ranges. Since the constraint equations (in either the non-parallel or the

59

parallel case) written in terms of θ1 and θ3 are high-order, non-linear trigonometric equa-

tions of those two variables, we can only obtain numerical solutions (by Newton’s method),

which require good initial guesses.

In order to be efficient, we narrow down the range of search for initial guesses to be

those that satisfy the length ranges of the continuum manipulator. We first discretize both

θ1 and θ3, ranging from 0 to 2π, into small intervals. For each pair of θ1 and θ3 values, we

then use equations (26) and (27) to compute the corresponding p1 and p2.

If p1 and p2 do not satisfy the following length constraints,

s2,max ≥ ||p2 − p1|| (28)

and

s1,max ≥ ||p1|| (29)

we discard the corresponding θ1 and θ3.

From those pairs of θ1 and θ3 that satisfy inequalities (28) and (29), we search for pairs

that approximately satisfy the constraint equations as initial guesses of θ1 and θ3.

With the initial guesses, for the case where l12 and l23 are not parallel and the case where

l12 and l23 are parallel, the corresponding inter-section constraints in terms of θ1 and θ3 are

then solved numerically.

5.3.2.2 Determining Grasping Configurations

Once θ1 and θ3 are solved, the corresponding p1 and p2 can be solved from equa-

tions (26) and (27), and l12 and l23 can be obtained from equations (16) and (17) respec-

tively. Next we need to solve for the plane, center, and radius of section 2’s circle.

60

In the case where two tangent lines l12 and l23 are parallel, the center c2 of section 2’s

circle is on the same line as p1 and p2, and thus, its position satisfies:

c2 =
(p1 + p2)

2
(30)

In the case where l12 and l23 are not parallel, l12 and l23 determines the plane of the

section 2. Line l1 through p1, perpendicular to l12, and on the plane of section 2 can

be determined, and similarly line l2 through p2, perpendicular to l23, and on the plane of

section 2 can be determined as shown in Figure 32. Then the intersection point of l1 and

l2 is the center c2 of section 2’s circle.

In both cases, The radius of section 2’s circle is:

r2 = ‖p1 − c2‖ (31)

From section 1’s circle (for the specified values of κ1 and φ1) and section 2’s circle,

as well as p1 and p2, which are end-points of section 1 and section 2 respectively, the

unknown configuration parameters of section 1 and section 2: s1, κ2, s2, and φ2 can be

found easily [66]. They are valid if their values are within their respective ranges. The

length s3 of section 3 can be set to its maximum value to maximize wrapping along the

section 3’s circle (which is given). Now a grasping configuration of the entire OctArm is

found for Grasping Model 1.

5.4 Finding Configurations for Grasping Model 2

For Grasping Model 2, the given object circle is shared by both section 2 and section

3, i.e., the section 3’s circle and section 2’s circle are the same, with the following known

parameters: the circle center position c3 = c2, the radius r3 = r2, the unit normal vector of

61

the circle plane y2, and φ3 = 0 or π. We only need to find the configuration parameters of

section 1 that satisfy the Grasping Model 2.

Section 1’s circle and section 2’s circle must be tangent at point p1, sharing the same

tangent line l12 through p1. Now, axis z1 is also tangent to the section 1’s circle and is the

same as the z0 axis of the robot base frame, with unit vector z1. Thus, l12 must satisfy the

following two constraints:

• Constraint A: l12 and axis z1 must be coplanar.

• Constraint B: l12 and z1 must be on the same circle.

Define a vector along l12 as:

l12 = y2 × (p1 − c2) (32)

For the case of non-parallel l12 and z1, Constraint A can be expressed as:

p1 · (l12 × z1) = 0 (33)

The expression of Constraint B can be obtained similarly as:

‖l12 × p1‖
‖l12‖

=
‖z1 × p1‖
‖z1‖

(34)

For the case of parallel l12 and z1, the above two constraints become

(l12 × z1) = 0 (35)

and

p1 · z1 = 0 (36)

62

Since p1 is on section 2’s circle, it satisfies:

p1 = c2 + r2cos(γ2)u2 + r2sin(γ2)v2 (37)

where u2 and v2 are functions of the given y2. By substituting equation (32) for l12 and then

equation (37) for p1 in the constraint equations above, we can re-write the two constraint

equations in each case in terms of a single variable γ2. Solving the equations numerically

yields at most two solutions of γ2 (in either the non-parallel or parallel case).

Next p1 and l12 can be solved via equations (37) and (32), from which and z1, the section

1’s circle and configuration variables φ1, κ1, and s1 can be solved numerically. There are

at most two grasping configurations to realize a given Grasping Model 2.

Note that with analysis and derivation similar to the above, we can find at most two

grasping configurations of the special situation where section 1 and section 2 share the

same circle for a given Grasping Model 1.

5.5 Implementation and Discussion

Algorithm 6 implements the method introduced above for finding grasping configura-

tions. For Grasping Model 1, since there are fewer constraint equations than the variables

in the general situation, solutions of grasping configurations depend on values of κ1 and

φ1, which are input to the algorithm.

Algorithm 6 also include checking for penetrations of the robot into the target object for

a found grasping configuration. Specifically, it checks if section 2 or section 1 of the robot

penetrates into the object. See Figure 34 for an example. If so, the grasping configuration

is not valid and should be discarded. However, if section 2 or section 1 almost touch the

63

object, the grasping configuration is even preferred because it means a tighter wrap, as

shown in Figure 29(b), recalling that the object circle is made deliberately smaller (by δ) to

allow tight wrap with compliance. The collision-checking method is [57].

Figure 34: A grasping configuration in collision with the object.

Given a Grasping Model 1, for one given pair of values κ1=a and φ1=ψ, if there are

corresponding grasping configurations found by Algorithm 1, then because κ1 and φ1 can

change values continuously, for each found grasping configuration C(a, ψ), there exists a

small continuous neighborhood B(C) of configurations corresponding to a small continu-

ous neighborhood:

D(a, ψ) = {κ1, φ1|δκ1 > |κ1 − a|, δφ1 > |φ1 − ψ|}

where δκ1 and δφ1 are small positive values. All configurations in B(C) have very similar

shapes to the found configuration C(a, ψ). However, for κ1 and φ1 values outside D(a, ψ),

their corresponding grasping configurations can be disconnected from B(C) and belong to

another continuous neighborhood of configurations, as illustrated in Figure 35. Note that

for the same pair of κ1 and φ1 values, there can be multiple solutions of grasping config-

urations, and each belongs to a different continuous neighborhood. This is also illustrated

64

Algorithm 6: Finding grasping configurations
input object circle with known c3, y3, and r3
if Grasping Model 1 then

input κ1 and φ1

choose suitable initial guesses θ1guess, θ3guess;
solve for θ1 and θ3;

else
if Grasping Model 2 then

c2 = c3, y2 = y3, and r2 = r3;
choose suitable initial guesses θ2guess;
solve for θ2;

end if
end if
compute the corresponding grasping configurations (κ1, φ1, s1, κ2, φ2, s2, κ3, φ3, s3);
for each grasping configuration do

if the configuration passes penetration check then
record this grasping configuration;

end if
end for
return all recorded grasping configurations.

in Figure 35, where there exists points in D(a1, ψ1), each of which corresponds to two

grasping configurations in B(C1) and B(C2) respectively.

There are a finite number of such neighborhoods of grasping configurations for a Grasp-

ing Model 1.

By discretizing the value ranges of κ1 and φ1 with a proper resolution, we can solve for

grasping configurations representing all the neighborhoods for the case of Grasping Model

1. Based on the value ranges of κ1 and φ1 (for the OctArm – see Fig. 10 (e)), we find it

reasonable to set the discretization interval to be 3% of each range. For each given Grasping

Model 1, by running Algorithm 1 for each pair of κ1 and φ1 from the discretization, at least

one representative configuration in each neighborhood of grasping configurations can be

found. Note that for a given object circle, the actual value ranges of κ1 and φ1 that can

65

Figure 35: Grasping configurations vs. κ1 and φ1. For (κ1, φ1) = (ai, ψi), i = 1, 2, the
corresponding configurations are Cj(ai, ψi) in neighborhood B(Cj), j = 1, 2, 3, which
corresponds to neighborhood D(ai, ψi). B(C1) and B(C2) both correspond to D(a1, ψ1).

possibly lead to grasping configurations can be smaller than the respective maximum value

ranges for those parameters. For the example Grasping Model 1 object circles, the average

time to run Algorithm 1 for finding grasping configurations corresponding to one pair of

κ1 and φ1 is 0.05s. The total time to find representative grasping configurations of all

neighborhoods of configurations is 4s to 7s per example. This shows that our method is

suitable for on-line determination of grasping configurations for the OctArm for a given

object.

5.6 Test Examples

We present three examples here. We first describe types of grasping configurations and

then provide representative grasping configurations found for those examples.

We can classify the OctArm grasping configurations based on the orientations φ2 (i.e.,

the angle between planes of section 1 and section 2) and φ3 into the following four types:

(1) φ2 is negative and φ3 is positive.

66

(2) φ2 is positive and φ3 is negative.

(3) φ2 and φ3 are both positive.

(4) φ2 and φ3 are both negative.

Table 7 shows the descriptions of three object circles, two of them are of Grasping Model

1, in terms of circles for section 3 (see Figure 36), and the other one is of Grasping Model

2, in terms of a circle that both section 3 and section 2 share.

Table 7: Example Object Circles

Grasping Circle Center Radius Normal
Model

1 [45.0cm, 37.5cm, 60cm]T 22.5cm [−0.55cm, 0cm, 0.83cm]T

1 [45.0cm, 37.5cm, 60cm]T 22.5cm [−0.84cm, 0.24cm, 0.48cm]T

2 [6.0cm, 34.5cm, 24.75cm]T 30.83cm [−0.76cm, 0.013cm, 0.64cm]T

Table 8: Grasping Configurations in Figures 37– 39

Grasping Fig.&Sol. Grasping Configuration
Model 1 (κi(1/cm), si(cm), φi(rad)), i = 1, 2, 3

Type (1) Fig. 37 Sol. 1 (0.0228, 34.0, 0.4; 0.0324, 41.6,−1.85; 0.0443, 53.5, 0.23)
Type (1) Fig. 37 Sol. 2 (0.0228, 37.1, 0.6, 0.0284, 38.2,−2.01, 0.0441, 53.5, 0.20)
Type (2) Fig. 37 Sol. 3 (0.0228, 37.1, 0.6, 0.0143, 41.2, 1.57, 0.0442, 53.5,−0.37)
Type (2) Fig. 37 Sol. 4 (0.0213, 39.1, 0.4, 0.0056, 43.7, 2.16, 0.0443, 53.5,−0.82)
Type (3) Fig. 38 Sol. 1 (0.0228, 39.9, 0.4, 0.0085, 41.7, 0.23, 0.0444, 53.5, 0.77)
Type (4) Fig. 38 Sol. 2 (0.0228, 33.2, 0.2, 0.0373, 43.1,−2.00, 0.0444, 53.5,−0.18)
Grasping Fig. 39 (0.0228, 34.1, 0.4, 0.0324, 41.6,−1.85, 0.0324, 53.5, 0.0)
Model 2

For the object circle specified in row 1 of Table 7, four valid solutions are obtained by

Algorithm 6 as illustrated in Figure 37, where solutions 1 and 2 belong to the type (1), and

solutions 3 and 4 belong to the type (2), and corresponding configurations are shown in

Table 8.

67

Figure 36: Grasping Model 1: a section 3’s circle bounding an object.

(a) sol.1 belongs to type (1) (b) sol.2 belongs to type (1)

(c) sol.3 belongs to type (2) (d) sol.4 belongs to type (2)

Figure 37: Representative solutions for the object circle in row 1 of Table 7.

Note that solutions 1 and 2 belong to the same neighborhood where φ1 changes contin-

uously from 0.4 to 0.6 when κ1 = 0.0228. Note also that solutions 2 and 3 are of different

types but share the same pair of κ1 and φ1 values. This is one example to show that there

68

can be multiple solutions for the same κ1 and φ1, which belong to separate (continuous)

neighborhoods (see Figure 35 for an illustration). For this particular case, there are at most

three neighborhoods of grasping configurations.

For the object circle specified in row 2 of Table 7, two solutions found by Algorithm 6

are illustrated in Figure 38, where solution 1 belongs to type (3) and solution 2 belongs

to type (4). Therefore, in this case, there are only two separate neighborhoods of grasping

configurations. Corresponding configurations are also shown in Table 8.

For the object circle of Grasping Model 2 in row 3 of Table 7, there is a unique solu-

tion, and the solution is shown in Figure 39, where the grasping configuration is shown in

Table 8.

(a) sol.1 belongs to type (3) (b) sol.2 belongs to type (4)

Figure 38: Representative solutions for the object circle in row 2 of Table 7.

5.7 Remarks

This chapter presents a general analysis and method to determine grasping configura-

tions for a given 3D object by a spatial continuum manipulator consisting of three constant-

curvature sections and with a fixed base. The curvature, length, and the angle of each sec-

tion of the manipulator are continuous variables that can be changed. Thus, a configuration

69

Figure 39: The unique solution for the object circle of Grasping Model 2 in row 3 of
Table 7.

of the three-section manipulator is a 9-dimensional vector of those variables. Our approach

first defines grasping models for a given object to facilitate grasping by the continuum

manipulator. It then uses inter-section constraints in analytical equations to characterize

and numerically solve for all possible grasping configurations. For a given object grasping

model, the approach is implemented to determine valid grasping configurations.

CHAPTER 6: PROGRESSIVE GRASPING FOR A N-SECTION CONTINUUM
MANIPULATOR

6.1 Overview

In this chapter, two real-time grasping approaches [55, 53] will be introduced to guide

a general n-section continuum manipulator progressively forms a force-closure grasping

configuration for a 3D target object in an open environment and a cluttered environment re-

spectively. The grasping method introduced in Chapter 5 can computed all possible grasp-

ing configurations for a 3-section continuum manipulator. However, for a general n-section

continuum manipulator, where n ≥ 3, the computational cost of solving inter-section con-

straints increases significantly as n increases. Also for a cluttered environment, where the

information of objects or the obstacles in the environment may not be fully observable, an

on-line, real-time strategy of grasping is necessary.

In the rest of this chapter, two progressive grasping algorithms for a continuum manipu-

lator will be introduced for open and cluttered environments respectively, both simulations

and real robot experiments will be presented to validate the effectiveness and efficiency of

the proposed algorithms.

6.2 Grasp Generation in an Open Environment

This section will introduce the progressive grasping approach for an open environment.

Basically, the algorithm is to create a tight and force-closure grasp of a target object by an

n-section continuum manipulator from an initial configuration of the manipulator arm C0,

71

where one arm section seck (k ≤ n) contacts the object at point pc, and sections seck to secn

share the same (rather large) section circle cir (see Fig. 44(a) for an example) bounding the

object. seck will be the starting arm section to wrap around the target object5. cir can be

chosen easily.

Now, for the rest of the arm sections that do not wrap around the object bounding circle,

seck−1 to sec1, we can compute their configurations by inverse kinematics [66] one by

one, considering that the position of the tip point pk−1 of seck−1 is the same as the based

point of seck, and that the section circle cirk is tangent to cirk−1 at pk−1, and so on. There

are many solutions for the arm sections seck−1 to sec1, especially if the arm has a mobile

base. Depending on the environment surrounding the target object, one can search for an

optimal or near-optimal solution based on certain optimization criteria, such as avoiding

obstacles and shortest section lengths, etc. For the three-section OctArm manipulator, we

can compute all possible arm configurations with respect to a given object bounding circle

[52], which, in this case, can be the loose circle cir.

From the arm sections around cir, seck to secn, our strategy is to make each section

from seck to secn tightly wrap around the object mesh without overlap, one by one. The

resulting configurations of these arm sections will form a spiral shape wrapping around

the object to give a spatial grasp. From the set of contact points and normals between the

arm and the object, we can check if the grasp is a force-closure grasp [26]. If it is not a

force-closure grasp, our algorithm will increase the angle value |φ| for each section from

seck+1 to secn, with the effect of elongating the helix-shaped arm sections wrapping the

object to find a force-closure grasp.

5The selection of seck is determined depending on the (rough) size of the object.

72

6.2.1 Algorithm of Generating a Grasp in an Open Environment

Algorithm 7 outlines our strategy to generate a tight grasp. The arm will wrap the object

section by section from seck to secn tightly by calling Algorithm 8. If the resulting config-

uration of the arm forms a force-closure grasp of the object, a tight grasping configuration

is achieved and output. Otherwise, the algorithm will change the angle between seci+1 and

seci, for k ≤ i ≤ n, and repeat the section by section wrapping process until either a force-

closure grasp is formed or no force-closure grasp can be found after a maximum number of

grasping configurations are generated and checked from the given initial configuration C0.

Note that if n is small, i.e., the arm has only a few sections, such as the OctArm, the

search for a force-closure grasp starting from C0 can be rather systematic and exhaustive

by discretizing the value of φi within its range and considering each discrete value. If n is

large, randomized or heuristic techniques can be used to search for a force-closure grasp

opportunistically, and thus an upper limit max on the number of configurations considered

is useful. If no force-closure grasp can be found from a specific C0, then a different initial

configuration should be considered, and so on, but searching the best C0 depends the target

object posture and its surrounding environment, which is not the focus of this paper.

6.2.2 Motion of Each Arm Section in an Open Environment

Algorithm 8 decides how to curl each arm section seci, k ≤ i ≤ n, tightly to form a

tight grasp of the object, given the configuration of the arm where seci contacts the object

only at vi0. Note that for seck, vk0 = pc is the only contact point between seck and the object

before it is curved around the object by this algorithm. Let polyi be the cross-section of the

object by plane Pi of seci. Now vi0 is a vertex of polyi.

73

Algorithm 7: Generate a grasp in an open environment
input : Arm model in the initial configuration C0 around object bounding circle

cir, where seck contacts the object at pc, and the object model
output: A list of contact points and normals, the corresponding grasping

configuration C, and a path from C0 to C
1 begin
2 Ccurrent = C0;
3 path = {C0};
4 conlistk ← pc with contact normal;
5 count = 0;
6 while count < max do
7 for i = k to n do
8 call Algorithm 10 to make seci wrap the object, obtain the new arm

configuration Ci and list of contact points and normals conlisti;
9 if ”unable to wrap” then

10 return ”no solution”
11 end
12 conlisti+1 ← the last contact point and normal in conlisti;
13 path = path ∪ {Ci};
14 Ccurrent = Ci;
15 end
16 contactlist = ∪nkconlisti;
17 if ForceClosure(contactlist) == true then
18 return contactlist and path;
19 end
20 Ccurrent = C0;
21 path = {C0};
22 conlistk ← pc with contact normal;
23 for i = k + 1 to n do
24 increase |φi| by δφ within its bound to elongate the arm sections

wrapping the object;
25 end
26 count = count+ 1;
27 end
28 return ”found no force-closure grasp”;
29 end

Algorithm 8 chooses each vertex v sequentially from the next vertex v1 in the direction

of shrinking seci (see Fig. 40) and tries to make seci’s tip reach the furthest vertex in that

direction without penetration. In the process, the lengths of the adjacent sections to seci

74

Algorithm 8: Curl each section in an open environment
input : Arm model and configuration Ccurrent, conlisti having a single contact

point v0 between seci and object, and object model
output: A list of contact points and normals (cList) between seci and object

mesh, and the corresponding arm configuration C
1 C = Ccurrent;
2 {v0, v1, ..., vm} ← vertices of polyi in the shrinking direction of seci, as shown in

Fig. 40;
3 for v = v1 to vm do
4 if seci can reach v at a configuration Cr (computed by inverse kinematics

[66]) then
5 check penetration between the arm and the object at Cr;
6 if penetration then
7 If expand returns an updated, penetration-free configuration C, then

break;
8 else
9 call shrink to update C;

10 break;
11 end
12 end
13 end
14 if seci does not collide with itself or another arm section then
15 cList← contact points and normals at configuration C ;
16 return C and cList;
17 else
18 increase |φi| by a small δφ;
19 if φi is out of bound then
20 return ”unable to wrap”
21 end
22 go to step 1;
23 end

can be adjusted by calling expand and shrink procedures. If no arm section overlaps as

the result, the corresponding arm configuration is returned; otherwise, the angle value |φi|

between seci and seci−1 is increased by a δφ to change the section plane Pi of seci, and the

process of curling seci is repeated with the new section plane.

Procedures expand and shrink are called by Algorithm 8 to either increase or decrease the

lengths of adjacent sections of seci for avoiding penetrations between seci and the object

75

Figure 40: The vertices of polyi are ordered as {v0, v1, ..., vm} in the shrinking direction of
seci starting from v0.

and for further tightening the grasp respectively. Let v be the furthest vertex considered for

the tip of seci to reach.

The procedures work as follows:

expand: if seci and seci−1 share the same section plane, then

• repeat: increase the length of seci−1 by a small amount and make seci reach v until

no penetration or seci−1 reaches its maximum length;

• if no penetration return the arm configuration C; otherwise return ”failed”.

shrink: if seci and seci−1 share the same section plane, then

• repeat: shrink the length of seci−1 and make seci reach v until a penetration or

seci−1 reaches its minimum length;

• if penetration, backtrack the shrinked length of seci−1 until a non-penetrated con-

figuration is found and return this configuration; otherwise return current arm con-

figuration;

76

else, return current arm configuration.

6.3 Grasp Generation in a Cluttered Environment

Next, an algorithm will be introduced to tackle the problem of continuum grasping con-

strained by a tight space in a cluttered environment. This algorithm enables a multi-section

continuum manipulator to probe an object with its tip while gradually form a force-closure

grasp by making the arm closely following along the contour of the probed object.

The process can start by having the manipulator in a contracted straight-line pose, as

if a stick, and fit into the space along one side of the target object. Next, the tip of the

manipulator is made to move a small step along the contour of the object, which is enabled

by extending and curling every arm section, starting from the tip section. This process is

repeated until the tip of the arm travelled around the object and carried the arm to form a

force-closure grasp of the object, which can be a spiral grasp. During the whole process,

the arm extends along the contour of the object to fit into the tight space surrounding the

object and avoid colliding into other obstacles. The arm movement can be adaptive based

on how far ahead along the object surface the tip can aim at.

Initially, the manipulator is put in a contracted straight-line configuration C0, as if a

stick, and fit into the (narrow) space along one side of the target object (see Fig. 41). The

manipulator is put close to the nearby obstacle to maximize the clearance from the target

object for maneuverability.

6.3.1 Algorithm of Generating a Grasp in a Cluttered Environment

The algorithm is outlined in Algorithm 9. It moves every section of the arm in small

steps repeatedly to follow the contour of the target object while avoiding penetration into

77

Figure 41: The initial configuration of the manipulator besides the target object (teapot).

the object or collision with surrounding obstacles, led by the tip of the arm. We call such

steps feasible moves. The Algorithm 9 calls Algorithm 10 to generate a move for each arm

section and the corresponding feasible arm configuration Cnew, which is considered a knot

configuration on the path towards a feasible grasping configuration.

The maximum steps each section can move can be estimated by the maximum extendable

length of a section divided by the amount of extension per small step. Note that sometimes a

feasible move may not be possible for seci so that Algorithm 10 returns “wrapping paused”.

However, after a feasible move for another section secj is generated, a feasible move for

seci may again be possible. Moreover, different sections can have different value limits on

its changeable variables. Hence, a section may not be moved exactly the max steps.

After all arm sections have reached their limits in curling and extending, if a force-

closure grasp [26] is achieved, Algorithm 9 returns the entire path of knot configurations

that leads to the force-closure grasp. Otherwise, it reports that no force-closure grasp is

found. If the target object is too large or too small, a force-closure grasp may not be

possible; whether the given object has a proper size to be grasped can be checked [52, 51].

6.3.2 Generation of a Knot Configuration in a Cluttered Environment

Algorithm 10 curls and extends arm section seci in a small step towards a targeted vertex

78

Algorithm 9: Generate a grasp in a cluttered environment
input : arm model in the initial configuration C0

output: corresponding grasping configuration C, a contact list contactlist and a
path from C0 to C

1 begin
2 Ccurrent ← C0;
3 path← {C0};
4 count← 0;
5 while count < max do
6 for section i← 1 to n do
7 call Algorithm 10 to move seci with a small step and obtain a new arm

configuration Cnew and the list of contact points and normals conlisti;
8 path← path ∪ {Cnew};
9 contactlist← ∪n1conlisti;

10 Ccurrent ← Cnew;
11 end
12 if all sections have returned “wrapping paused” then
13 if ForceClosure(contactlist) = true then
14 return path and contactlist;
15 end
16 return “no force-closure grasp is found”;
17 end
18 count← count+ 1;
19 end
20 return “no force-closure grasp is found”;
21 end

on the cross section polygon polyi of the object to generate a new, feasible knot configura-

tion. It returns the corresponding feasible configuration and the list of contacts (i.e., list of

pairs of contacting points between seci and the target object). Let v1 be the closest vertex

that seci’s tip point pi has not reached in the wrapping direction on the obejct’s cross sec-

tion polyi of seci, and vf be the farthest visible vertex that has not been reached. Algorithm

10 chooses a target vertex v between v1 and vf (see Fig. 42) and tries to move seci’s tip

towards v without penetrating into the object or colliding with nearby obstacles.

How to choose a target vertex v among v1, .., vf is an interesting issue. We experimented

79

Algorithm 10: Motion of each arm section in a cluttered environment
input : arm model and configuration Ccurrent and object models
output: a list of contact points and normals (cList) between seci and object mesh,

and the corresponding feasible arm configuration Cnew
1 let V = {v1, ..., vf} be the ordered list of unreached visible vertices of polyi, as

shown in Fig. 42;
2 if V = ∅ then
3 return “wrapping paused”;
4 end
5 search a vertex v in V based on strategies (1), (2) or (3), so that seci’s tip can

reach v in a feasible arm configuration Cr;
6 if no vertex in V is reachable then
7 return “wrapping paused”;
8 end
9 compute a new configuration Cnew after making one step linearly towards Cr from
Ccurrent and check if Cnew is feasible;

10 call Algorithm 11 to repair an infeasible Cnew;
11 if “repair fails” then
12 return “wrapping paused”;
13 end
14 cList← the list of contact points and normals at configuration Cnew (see section

II.C);
15 return Cnew and cList.

with three strategies:

• strategy (1): searching and choosing the farthest reachable vertex along the wrapping

direction;

• strategy (2): searching and choosing the nearest reachable vertex along the wrapping

direction;

• strategy (3): randomly searching and choosing a reachable vertex between the nearest

and the farthest vertices.

Fig. 42 shows an example of both nearest and farthest reachable vertices for seci.

We determine whether a vertex v on polyi is reachable by first computing the arm con-

80

figuration Cr where seci’s tip is at v (via inverse kinematics [66]) and then checking if Cr

is feasible, i.e., no collision with obstacles and no penetration with the object; if so, v is

reachable by seci; otherwise, v is not reachable. If no vertex is reachable by seci, then

Algorithm 10 returns “wrapping paused” for seci.

Figure 42: The unreached visible vertices of polyi as an ordered list {v1, v2, ..., vf} in the
wrapping direction of seci, where the nearest and farthest reachable vertices are indicated.

All these strategies lead to a force-closure grasping configuration for the manipulator.

However, strategy (1) generates fewer knot configurations but a longer path for the ma-

nipulator and requires less (total) planning time and fewer collision checks. Strategy (2)

generates more knot configurations and requires longer (total) planning time (with more

collision checks), but the path is shorter and closer to the target object contour. The perfor-

mance of strategy (3) is between that of strategy (1) and strategy (2), as expected.

Once the target vertex v for the arm tip is determined, a new knot configuration Cnew is

obtained by making a small straight-line move in the configuration space from the current

arm configuration Ccurrent to Cr.

81

6.3.3 Repair of an Infeasible Knot Configuration in a Cluttered Environment

If the new knot configuration Cnew generated is not feasible, then Algorithm 11 is called

to repair the configuration to obtain a feasible one. Depends on whether colliding with

the object or the surrounding obstacles, the corresponding arm sections will take different

repair actions.

Algorithm 11: RepairConfiguration
input : infeasible configuration C, the set of infeasible arm sections S, and

models of colliding objects
output: a feasible arm configuration Cnew or “repair fails”

1 repeat
2 seci ← section of smallest index in S;
3 count← 0;
4 while seci is infeasible do
5 if count > max tries then
6 return “repair fails”;
7 end
8 if colliding with an obstacle then
9 update C by curling and shrinking seci and seci−1 with wiδc and

Ωi−1δc respectively
10 end
11 if colliding with the target object then
12 update C by flattening and extending seci and seci−1 with Ωiδc and

Ωi−1δc respectively
13 end
14 if seci collides with itself or another arm section then
15 increase |φi| by a small δφ;
16 end
17 if C is out of the physical limits of the arm then
18 return “repair fails”;
19 end
20 count← count+ 1;
21 end
22 update S by deleting seci and adding new infeasible arm sections (if any) at

configuration C;
23 until S = ∅;
24 Cnew ← C;
25 return Cnew.

82

As shown in Fig. 43 (a) and (b), if an arm section seci collides with the surrounding

obstacles, our algorithm shrinks and curls the arm section to avoid collisions; curling is to

increase the curvature of seci and shrinking is to decrease the section length of seci. On the

other hand, if an arm section seci collides with the target object, our algorithm can flatten

and extend the arm section to avoid collisions as shown in Fig. 43 (c) and (d).

(a) seci (green) collides with
obstacle at seci’s tip pi

(b) seci (green) collides with
obstacle between pi−1 and pi

(c) seci (green) penetrates with
object at seci’s tip pi

(d) seci (green) penetrates ob-
ject between pi−1 and pi

Figure 43: Illustration of four collision cases between an arm section and the object or the
obstacles.

Depending on where a collision happens at seci, our algorithm also considers seci−1. As

shown in 43 (a) and (c), if a collision happens close to the seci’s tip, adjusting seci alone

would be sufficient to repair the collision. However, if the collision occurs close to seci’s

83

base, repairing should also involve adjusting the neighboring arm section seci−1, by either

curling, flattening, shrinking or extending.

We assign two normalized weights Ωi and Ωi−1 for the amounts of adjustments of seci

and seci−1 respectively:

Ωi = li/si, Ωi−1 = 1.0− Ωi,

where li is length from the section base pi−1 to the first point on seci’s central curve that is

either in collision or closest to where collision occurs, and si is the current section length

of seci from its base to tip. The longer li is, the closer the collision is to the section tip, and

vise versa.

Denote δc as the amount of configuration adjustment of each section at each step, then

if seci is collided, the weighted configuration adjustments of seci and seci−1 for each step

are Ωiδc and Ωi−1δc respectively.

If seci collides with itself or another arm section, a loop is formed by the arm section(s).

Our algorithm increases the orientation angle φi of seci to break the loop and form a spiral

wrap around the object.

Note that Algorithm 11 repairs from the infeasible section of the smallest index, i.e.,

the infeasible section closest to the base of the manipulator. Let seci be such a section.

After seci is repaired, the other infeasible sections after seci (closer to secn) may also be

repaired. If not, or if a section newly becomes infeasible due to the repair of seci, Algorithm

11 continues to repair infeasible sections from the section of the smallest index, and so on.

On the other hand, if seci cannot be repaired after several tries or has reached its limits, the

algorithm returns “repairfails”, since repairing another infeasible section after seci will

84

not change the pose of seci and thus will not make seci feasible.

For an n-section continuum manipulator, the complexity (in the worse case) of repairing

an arm configuration in Algorithm 11 is O(nmax), where max represents the maximum

number of attempts allowed for repairing one section. However, our experimental results

show that the average number of tries for each arm section is less than 4 to find a feasible

configuration and the average time of finding it is less than 30 ms for all strategies, see

Table 10. This shows that the heuristics used in Algorithm 11 are very effective. Note

that if a feasible solution exists, our algorithm can usually find it by gradually following

the object contour. Note also that a feasible solution exists for progressive wrapping if the

object size is proper and there is sufficient space around it.

6.4 Simulation Tests and Real Robot Experiments

All the algorithms in both open and cluttered environment are implemented on a 2.40GHz

Intel(R) Xeon(R) CPU with 4.00 GB RAM and tested in several grasping examples with a

continuum manipulator. Both simulation tests and real robot experiments are conducted.

6.4.1 Simulations of Progressive Grasping in an Open Environment

Algorithm 7 was tested with different grasping examples in an open environment with

three-section and four-section continuum manipulators. Fig. 44 shows a path of three-

section arm configurations leading to a force-closure grasp found by our method. Fig.

45 shows a path of four-section arm configurations leading to a force-closure spiral grasp

found by our method.

Note that from the configuration C3 in Fig. 45(c), directly curling sec4 will result a

collision between sec4 and sec2; therefore, Algorithm 8 increased the angle φ4 between

85

sec4 and sec3 and then curled sec4 to create the stable, spiral grasp shown in Fig. 45(d).

(a) Initial configuration C0 when sec2
made the first contact

(b) Configuration C2 when sec2 fin-
ished wrapping

(c) Configuration after adjusting
sec2’s length to make sec3 wrap
tighter

(d) Configuration C3 when all sec-
tions finished wrapping

Figure 44: A path of configurations leading to a stable grasp by a three-section manipulator.

Table 18 shows the time costs of finding the paths leading to the force-closure grasps

of Fig. 44 and Fig. 45 respectively. In each case, configurations Ci, i > 0, are the arm

configurations after seci of the arm is finished curling/wrapping around the object, and

these configurations are in the path returned by Algorithm 7. As shown in the table, the

time for finding a path to form a force-closure grasp is 1–2 seconds, which is fast enough

for real-time arm operations.

6.4.2 Simulations of Progressive Grasping in a Cluttered Environment

Algorithm 9 was also implemented and tested on a four-section continuum manipulator.

We first tested and compared the three alternative strategies for choosing target vertices

86

(a) Initial configuration C0 when sec2 made
the first contact

(b) Configuration C2 when sec2 finished
wrapping

(c) Configuration C3 when sec3 finished
wrapping

(d) Configuration C4 when all sections fin-
ished wrapping

Figure 45: A path of configurations leading to a stable grasp by a four-section manipulator.

used in Algorithm 10, and then we also tested our algorithms in different environments

with different target objects and obstacles.

6.4.2.1 Comparing three alternative strategies

We tested the three alternative strategies for choosing target vertices in Algorithm 10 for

a task of grasping a teapot in a tight space, as shown in Fig. 41, and compared the results,

as shown in Table 10. The following parameters of performance were considered:

• # knot configurations : number of feasible knot configurations generated for a path;

• Planning time per knot: average time required for generating one knot configuration

in a path;

87

Table 9: Time cost (ms) for finding the paths leading to the force-closure grasps in Fig. 44
and Fig. 45 respectively

computing time config. C0 config. C2 config. C3 config. C4 force closure check
Fig. 44: 50 430 390 — 233
Fig. 45: 42 320 540 610 306

• Total planning time: the total time needed for generating all knot configurations in a

path;

• Avg. # collision detection: the average number of collision checks performed in

generating a feasible knot configuration;

• Avg. # tries per section: the average number of attempts made for repairing an

infeasible arm section;

• Total path length: the sum of distances (in work space) between adjacent knot con-

figurations in a path.

Table 10: Comparison of simulation results from using the three alternative strategies in
Algorithm 10

Strategies # knot Plan. time Total plan. Avg.# col. Avg. # tries Path
config. / knot (ms) time (s) checks / section length (cm)

Strategy (1) 43 24.31 1.04 13 3.2 302.41
Strategy (2) 195 10.58 2.06 5 1.4 269.62
Strategy (3) 141 13.61 1.91 7 1.6 278.49

How to compute the distance between two configurations is an important issue in ob-

taining the length of a path. We have found that using the straight-line distance between

two configurations in the configuration space of the manipulator is not a good metric. This

is because a shorter straight-line distance in the configuration space does not correspond

to closer distance between volumes of arm points corresponding to the two poses in the

88

physical (i.e., Cartesian) space. Thus, for two arm configurations Cj and Cj+1 on a path,

we compute the distance between them using the following metric:

d(Cj, Cj+1) = Σn
i=1|p

j+1
i − pji |

where pi is the tip point of section i for an n-section continuum manipulator.

Now the length of a path with N knot configurations can be computed as:

l(path) = ΣN
j=1d(Cj, Cj+1)

The above measure for path length provides a more intuitive characterization consistent

with the arm pose changes in the Cartesian space.

As shown in Table 10, strategy (1) generates the longest path, while strategy (2) generates

the shortest one. The reason is that strategy (2) generates paths that are closer to the contour

of the object, see Fig. 46. The length of the path generated by strategy (3) is between

those of strategies (1) and (2). Also note that strategy (1) generates the fewest number

of knot configurations for a path and requires the least amount of total time to generate a

path. However, it takes the most amount of time for generating one knot configuration on

average. This is because strategy (1) takes more time to search for the furthest reachable

vertex of the object by the tip of the arm and the corresponding feasible configuration,

which also involves more collision checks.

Fig. 47 shows a path generated by our algorithm using strategy (3), leading the arm to

a stable, force-closure grasp while avoiding collision with the ”U” shaped structure and

penetration into the object.

89

(a) Configuration by strategy (1) (b) Configuration by strategy (2)

Figure 46: Two example configurations generated by strategies (1) and (2) respectively,
where the configuration generated by strategy (2) is closer to the target object.

(a) Initial config. C0 (b) Knot config. where sec4 is
close to the upper obstacle

(c) Knot config. where sec4 and
sec3 avoid collisions with the up-
per obstacle

(d) Knot config. where sec4 con-
tacts the teapot

(e) Knot config. where sec4 com-
pliantly wraps around the teapot

(f) Final force-closure grasping
config. where sec4 is twisted to
avoid collision with sec1

Figure 47: Snapshots of knot configurations leading to a force-closure grasp by a four-
section continuum manipulator while avoiding obstacles.

90

6.4.2.2 Grasping in Different Environment Settings

We also tested our algorithms for grasping tasks in different cluttered environments,

as shown in Fig. 48, to demonstrate the effectiveness of our algorithms. Note that the

environments in Fig. 48(a) and Fig. 48(c) show different arrangements of the target object

(bunny) for grasping and different arrangements of the obstacles (two teapots). We use

those different arrangements to show that our algorithms work robustly in dealing with

different shapes/ways of grasping the target object and different ways of arm interaction

with obstacles.

Snapshots of the three different grasping tasks of Fig. 48 are shown in Fig. 49, 50 and

51, respectively. The corresponding performance parameter values for each task are shown

in Table 11. Note that to avoid any bias on the strategy for choosing target vertices in

Algorithm 10, we used strategy (3), which randomly chooses target vertices, for all those

different grasping tasks. Also, for different environments, we used different arm initial

configurations to begin the grasp.

Note that the final grasping configurations are different in different environment settings,

since the grasping configuration of a target object depends on the path leading to it, which

is affected by the initial configuration of the arm, the strategy of choosing target vertices,

physical limits of the arm (i.e., length, curvature, orientation), geometry of the target object

surface, and also surrounding obstacles.

As our algorithm assumes known polygonal meshes of the target object and surrounding

obstacles, it can compute each grasping path off-line. However, the simulation results show

that our algorithm can compute an entire grasping path in just a few seconds, and thus, it

91

can also be applied online.

(a) Environment (1): the bunny
is the target object for grasping

(b) Environment (2): the lower-
left teapot is the target object for
grasping

(c) Environment (3): the bunny
is the target object for grasping

Figure 48: Three different cluttered environments for testing, with the target object sur-
rounded by other objects as obstacles in each case

(a) Initial config. (b) A knot config. (c) A knot config. (d) Grasping config.

Figure 49: Snapshots of knot configurations of a 4-section arm grasping a bunny in Envi-
ronment (1) shown in Fig. 48(a)

(a) Initial config. (b) A knot config. (c) A knot config. (d) Grasping config.

Figure 50: Snapshots of knot configurations of a 4-section arm grasping a teapot in Envi-
ronment (2) shown in Fig. 48(b)

(a) Initial config. (b) A knot config. (c) A knot config. (d) Grasping config.

Figure 51: Snapshots of knot configurations of a 4-section arm grasping a bunny in Envi-
ronment (3) shown in Fig. 48(c)

92

Table 11: Performance of grasping tasks in different environments in Fig. 48

Env. # knot Plan. time Total plan. Avg.# Avg. # tries Path
config. per config time col. checks per section length

Env. (1) 109 27.42(ms) 2.98(s) 19 4.70 284.41(cm)
Env. (2) 118 28.34(ms) 2.99(s) 21 5.28 263.11(cm)
Env. (3) 96 26.12(ms) 2.49(s) 18 4.75 273.12(cm)

6.4.3 Real Robot Experiments for Progressive Grasping

We have also tested our algorithms using the 3-section continuum manipulator OctArm.

We have conducted experiments of grasping in both an open environment and a cluttered

environment. Fig. 52 (a) shows a yellow target box for grasping in an open space, and Fig.

52 (b) shows the environment with two obstacles placed around the target object.

(a) An environment without any obstacle; the
manipulator tries to grasp the yellow target
box.

(b) A more cluttered environment with two ob-
stacles added: a black coffee mug and a red
brick.

Figure 52: Two environments for real experiments.

The object and obstacles are detected by an overhead Microsoft Kinect sensor - see Fig.

53 for the sensor setup, and their poses and dimensions are estimated. Fig. 54 shows an

image captured by the Kinect camera and the segmented target object, the robot, and the ob-

stacles. Table 12 presents the estimated center positions and heights of the object/obstacle

on the table top.

For the open environment shown in Fig. 52(a), the Algorithm 7 can make the arm grasp

93

Figure 53: Experimental set up with a table top OctArm, overseen by an overhead Mi-
crosoft Kinect.

(a) An image captured by the over-
head sensor.

(b) An image of segmented ob-
ject, obstacles, and robot.

Figure 54: An image captured by the overhead sensor (left) and detected object and obsta-
cles (right). Note that the color stickers on the table are used to calibrate the camera and to
facilitate pose estimation of the object and obstacles.

Table 12: Estimated object/obstacles positions in Fig. 54

Object/Obstacles Est. center position (x, y) (cm) Height (cm)
Target box (37.5, 35.4) 23.3

Brick (20.9, 96.7) 19.2
Coffee mug (90.2, 60.5) 18.1

the object successfully, see Fig. 55 for some snapshots and Table 13 for the time cost. But

it causes the manipulator to hit obstacles in the more cluttered environment of Fig. 52 (b)

94

Table 13: Time cost of Algorithm 7 for the grasping task of Fig. 52 (a)

Obj. detect. # config. Total plan. Avg. plan. Avg.# colli. Execut.
time planned time time / config. checks time

0.18(s) 94 1.02(s) 10.8(ms) 5 15(s)

Table 14: Time cost of Algorithm 9 for the grasping task of Fig. 52 (b)

Obj. detect. # config. Total plan. Avg. plan. Avg.# colli. Execut.
time planned time time / config. checks time

0.18(s) 157 2.1(s) 13.37(ms) 7 25(s)

(see Fig. 56).

Next, Algorithm 9 of this paper is applied to the environment of Fig. 52 (b), with strat-

egy (3) used (whose performance is between strategy (1) and strategy (2)); the manipulator

grasps the object successfully while avoiding the surrounding obstacles by adjusting the

length and curvature of every arm section and then reaches a force closure grasping config-

uration. Fig. 57 shows a sequence of snapshots, and Table 14 shows the time cost for this

experiment. Note that the average planning time for finding a feasible arm configuration is

only about 13 ms.

(a) The manipulator made the first contact
with the object.

(b) The manipulator successfully grasped the
target box.

Figure 55: The manipulator tries to grasp the target box in an open environment.

95

(a) The manipulator collides with the brick. (b) The manipulator collides with the coffee
mug.

Figure 56: The method in [55] can not make the manipulator avoid the obstacles.

(a) Initial pose of the manipulator. (b) The manipulator shrinks and curls its
sections gradually to avoid the brick.

(c) The manipulator passes the brick and
continues to grasp the object without hitting
the coffee mug.

(d) The manipulator successfully grasps the
target object.

Figure 57: The method introduced in this paper successfully generates a feasible path of the
continuum manipulator leading to a stable grasping configuration while avoiding obstacles
in a cluttered environment in real time.

6.5 Remarks

This chapter introduced two progressive grasping approaches for a general n-section

continuum manipulator to achieve force-closure grasps of a target object in both open and

cluttered environments. The motion of each arm section is achieved by changing the cur-

96

vature, length, and orientation angle of each arm section around the object. The result is a

helix shaped arm configuration around the target object tightly. Both algorithms have time

complexities linear to the number of arm sections, and the effectiveness and efficiency of

them are validated in both simulations and real experiments. They can also be extended to

enable grasping an object not fully visible initially by gradually extending the manipulator

to explore the surface of the object, if the manipulator is equipped with sensors at its tip.

CHAPTER 7: TASK CONSTRAINED CONTINUUM MANIPULATION IN
CLUTTERED ENVIRONMENTS

7.1 Overview

A continuum manipulator has flexible arm segments which are suitable for carrying out

tasks in cluttered environments. For example, it can bend and curl its arm to reach the

target behind an obstacle without collision, Fig. 58 shows one example of a cluttered

pipe environment: certain pipes behind can be reached by a continuum manipulator for

inspection but are difficult to reach by an articulated manipulator. Thus, it would be useful

for a continuum manipulator to be able to carry a certain device at its tip and perform task-

related motion, which usually requires the tip of the manipulator to follow a certain path or

a trajectory in the work space.

In this chapter, we will first introduce the method [56, 59] for task constrained manipula-

tion in a cluttered environment that only constrain the arm tip’s position, and then introduce

a more generalized task constrained manipulation approach [58] that also considers the arm

tip’s orientation.

7.2 Task Constrained Manipulation Constraining Arm Tip Position

In this section task constraints in the Cartesian space are defined in terms of restrictions

on the position of the tip of a continuum manipulator required by a task. Specifically, we

focus on the case that the tip of the manipulator has to follow a curve in the Cartesian space,

i.e., the task constraint is defined by a task curve. A task curve could be viewed as either

98

Figure 58: A cluttered pipe environment (courtesy of EPRI).

describing the goal of a task or ending at the goal configuration of a task. Here we assume

the task curve is either given (for simple tasks) or obtained through motion planning of the

tip point [10, 37].

A main challenge of the task constrained manipulation using a continuum manipulator

is the high redundancy of the continuum manipulator. Even though the configuration space

of a continuum arm is constrained by the task curve that the tip of the arm has to follow, it

is still huge because of the high dimensionality, e.g., 9-D for the OctArm, which consists of

three arm sections. Direct search of such a space, even by random sampling, would be very

inefficient. Therefore, our strategy is to constrain the arm shape to search from a subspace

and gradually relax the subspace as needed to find feasible arm configurations.

7.2.1 Constrained Arm Shape

We denote a super-section Ssec1,i formed by sections from sec1 to seci when the central

axes of these connected sections share the same curvature and on the same plane (i.e.,

φj = 0, 1 < j ≤ i), and therefore on the same circle, see Fig. 59 for illustration. The super-

section Ssec1,i now behaves like a large, single section with three degrees of freedom:

curvature κ1, rotation angle φ1, and the sum s1,i of section lengths from sec1 to seci. In

99

the rest of the paper, we use arm segment i to denote either the arm section seci or the

super-section Ssec1,i.

Figure 59: A super-section Ssec1,3 consisting of sec1 (black), sec2 (red) and sec3 (green)
with their central axes on the x0-z0 plane

In general, the arm configuration of an n-section continuum manipulator is determined

by the control variables of each section, denoted as C = {(s1, κ1, φ1),, (sn, κn, φn)}.

We further denote the partial arm configuration for sections from seck to seci (1 ≤ k ≤ i)

as Ck,i. Note that Ci,i indicates the configuration of a single section seci; whereas, C1,n

also indicates an (entire) arm configuration.

An arm (or partial arm) configuration is called a feasible configuration if it does not make

the manipulator collide with obstacles and also satisfies the task constraint for the task.

7.2.2 Planning for Task-constrained Manipulation

Given a task curve, which can be described in terms of a discrete sequence of points

G = {g1, g2, ..., gm} in the Cartesian space that the tip of a continuum manipulator must

follow, the problem of planning for task-constrained manipulation is to find a feasible path

of arm configurations for the tip to follow the task curve while the arm avoiding obstacles

100

efficiently. This problem can be divided into two intertwined subproblems: search of arm

shapes in the configuration space of the manipulator and search of base positions for all

arm sections in the Cartesian space, so that a corresponding arm configuration can be com-

puted by [66] given the base positions for arm sections. In the following, we address these

subproblems and present our approach for planning.

7.2.2.1 Search of Arm Shapes

Beginning from the most constrained arm shape, i.e., all arm sections form one super-

section, our strategy searches from a subspace and gradually relax the subspace as needed

to find feasible arm configurations. This core idea is presented in a recursive function

Algorithm 13, which is called by the main algorithm Algorithm 12 for our approach.

Algorithm 12 starts by considering the shape of the arm in the simplest form as one

super-section Ssec1,n, whose tip needs to reach the first point g1 on the task curve, and

calls Algorithm 13 to get a feasible arm configuration. Algorithm 13 first computes the

corresponding configuration of the super-section by inverse kinematics [66]. If no feasible

arm configuration exists (i.e., either no inverse solution for the tip at the target point or the

solution is not free of obstacles), our algorithm relaxes the shape of the arm by breaking it

into a shorter super-section Ssec1,n−1 and the last arm section secn, whose tip must reach

the point g1 on the task curve. This requires deciding the target position q for the base

of secn, i.e., also the tip of Ssec1,n−1, to find a feasible configuration for secn, and the

corresponding partial arm configuration C1,n−1 when the tip of Ssec1,n−1 reaches q.

If there is no feasible configuration for super section Ssec1,n−1, Algorithm 13 further

breaks down Ssec1,n−1 into a shorter super-section Ssec1,n−2 and arm section secn−1, and

101

so on. So in general, the considered arm shape can be in terms of a super section Ssec1,j

and arm sections secj+1, ..., secn, 1 ≤ j < n. In the most relaxed case, where j = 1, the

arm shape consists of no super section and just n arm sections.

For the arm tip to reach the next point gt, t = 2, ...,m, on the task curve, Algorithm 12

calls Algorithm 13 to decide the next arm configuration Ct based on the current feasible

arm configuration Ct−1 where the arm tip is at gt−1. Algorithm 13 first tries to decide the

configuration of the last arm segment, which can be either section secn or super-section

Ssec1,n, to reach the new tip position gt without changing the segment’s base position

via inverse kinematics [66]. If the solution for the segment exists and is feasible, then

the resulting arm configuration Ct is feasible, because the rest of the arm below the last

segment is intact as part of the feasible configuration Ct−1. Otherwise, the base position of

the last segment is changed in order to find a feasible configuration.

Our strategy is very efficient for several reasons. For collision checking between the arm

and the obstacles (which may also include the target object), we use the collision detection

algorithm [57] that treats a super-section just as a regular arm section as a primitive unit for

efficient check. The fewer sections (including a super-section) in an arm, the less time for

collision checking of an arm configuration. Also, the fewer sections, the fewer target points

connecting sections need to be searched. Moreover, a super-section can be considered just

as a regular section for inverse kinematics [66]. Thus, the fewer sections in an arm, the

less time for solving inverse kinematics. Finally, for the arm tip to move from point gt−1 to

point gt on the task curve, the new arm configuration Ct can often re-use the previous arm

configuration Ct−1 for some arm sections without repeatedly solving for inverse kinematics

and checking for collisions.

102

Algorithm 12: GenPath
input : Task curve G = {g1, g2, ..., gm}, arm model and an initial config. C0

output: A path of arm configuration for the tip to follow G or report failure
1 begin
2 path← null;
3 Ccurrent ← C0, flag ← “super-section”;
4 for t = 1 to m do
5 pn ← gt;
6 if NewArmConfig(Ccurrent, pn, n, f lag) returns C1,n then
7 Ccurrent ← C1,n;
8 path← path ∪ {Ccurrent};
9 else

10 return “No path is found”;
11 end
12 end
13 return path;
14 end

7.2.2.2 Search of Base Position for An Arm Segment

As described earlier, if a considered arm shape is in terms of a super-section Ssec1,j and

arm sections secj+1, ..., secn, 1 ≤ j < n, the base positions of sections secj+1, ..., secn

need to be determined given that the tip of secn must reach a target point gt on the task

curve, so that a feasible arm configuration can be computed via inverse kinematics [66]. If

the base of the manipulator is not fixed, then the base position for Ssec1,j also needs to be

determined.

Algorithm 13 generates a new base position qnew for an arm segment according to its

current base position q and its required tip position pi by searching in a neighborhood Q of

q in the Cartesian space. The scope of the neighborhood can be determined by the range

of length of the segment such that from any point in Q, p can be reached. Q can also be

determined based on task-specific information. Depending on the shape and size of Q,

103

Algorithm 13: NewArmConfig(C, pi, i, f lag)

input : Arm configuration C, new tip position pi for segment i, flag to indicate if
segment i is a “super-section”

output: a feasible new partial arm configuration C1,i or “no feasible solution”
1 begin
2 if segment i can reach pi from its current base in a feasible configuration Ci,i

then
3 return the new C1,i from sec1 to seci, where configurations of sections

with indices lower than segment i remain the same as in C;
4 end
5 if flag = “super-section” then
6 break segment i into Ssec1,i−1 and seci;
7 flag ← “section”;
8 return NewArmConfig(C, pi, i, f lag);
9 end

10 if i = 1 with fixed base then
11 return “no feasible solution”;
12 end
13 #tries← 0;
14 while #tries < max do
15 generate qnew as a new base point for seci;
16 if segment i-1 is a super-section then
17 flag ← “super-section”;
18 else
19 flag ← “section”;
20 end
21 if NewArmConfig(C, qnew, i− 1, f lag) returns C1,i−1 then
22 if seci can reach pi from qnew in a feasible configuration Ci,i then
23 return new arm configuration C1,i ← C1,i−1 ∪ Ci,i ;
24 end
25 end
26 #tries = #tries+ 1;
27 end
28 return “no feasible solution”
29 end

either random sampling or systematic sampling of Q can be used to find qnew.

The found qnew not only ensures that seci’s configuration Ci,i is feasible, but also that a

corresponding partial arm configuration C1,i−1 with its tip at qnew is feasible. This means

that, in the worst case, base positions of sec1 to seci−1 will also be changed by the recursive

104

Algorithm 13, and the number of base positions searched per segment is limited by the

threshold max. Even though the worst-case time complexity for base point search is maxi,

the average time in practice is much, much less because (a) a tip position of a segment

(with 3-DOFs) can usually be reached from many base positions in a sizable continuous

region (or conversely, from a base position, many tip positions can be reached, forming

the ”dexterous workspace” of the arm segment), and (b) either the current q is already

feasible or a feasible qnew can often be obtained by a small change of the current q. The

experimental results in the following section for an example of inspection task confirms the

efficiency of base point search.

7.2.3 Task of Inspection

In this section, we describe how to apply our strategy for task-constrained manipulation

to the task of autonomously inspecting the surface of an object, such as a pipe, for possible

defects in a cluttered environment (e.g., see Fig. 58).

7.2.3.1 Task Description

Assuming that an inspection device (e.g., a camera) is mounted on the tip of a continuum

manipulator. The tip of the manipulator will have to cover the entire surface of an object

following certain specific path, which defines task constraints. Without losing generality,

we consider the tip scan the object surface line by line (or curve by curve if the surface

is not flat), and each line/curve scan defines a task curve. For example, Fig. 60 shows a

cylindrical object andN task curves for inspecting it; each task curve is a circle surrounding

the object, and all task curves are parallel.

In general, we can describe a task curve with respect to the object frame o-xyz. Let z be

105

Figure 60: A cylindrical object and the task curves for inspection

the axis that task curves stack along (see, for example, Fig. 60). Each point on a task curve

can be further described by cylindrical coordinates (d, θ, z). By using such a cylindrical

coordinate system in the Cartesian space, the possible neighborhood Q for searching the

base point of a segment can usually be considered as 2-D (instead of 3-D) with a more or

less fixed d value (i.e., fixed distance to the z axis).

Consider seci. If its current base point q does not result in a feasible configurationCi,i, in

searching a better qnew, the θ and z values of q are adjusted in the direction of approaching

its target tip point; if C1,i−1 is not feasible, the θ and z values of q are adjusted in the

direction of approaching the robot base point.

We define the direction of a scan (to complete a task curve) based on if the continuum

manipulator extends or contracts itself. If the manipulator arm extends itself in a scan, the

scan is called in forward direction and is a forward scan; Otherwise, if the manipulator arm

contracts in a scan, the scan is called in backward direction and a backward scan.

106

7.2.3.2 Inspection algorithm

Algorithm 14 outlines the main algorithm for the inspection task. The manipulator alter-

nates a forward scan with a backward scan to visit all task curves around the object. In this

way, after the manipulator finishes a forward scan, with the arm largely extended, a small

update of its tip along the z axis of the object frame is often sufficient to set it on course for

the next scan in reverse direction (i.e., a backward scan).

In the first scan, our strategy is applied to lead the arm follow its first task curve, and all

base points of arm sections are recorded along the way (for each arm shape consists of one

or more arm sections in addition to the super-section). In a subsequent scan, the recorded

base points of arm sections from the previous scan are re-used with small adjustments, as

the algorithm calls Algorithm 13, taking advantage of the fact that the current task curve is

more or less a simple shift of the previous task curve along the z axis.

Clearly, the time taken for generating a path of arm configurations for a subsequent scan

is usually shorter than that for the first scan.

7.2.4 Implementation and Results

We have implemented all the algorithms on a 2.40GHz Intel(R) Xeon(R) CPU with 4.00

GB RAM and tested them on a three-section continuum manipulator with a fixed base for

the task of inspecting a tilted cylindrical object in a cluttered space as shown in Fig. 61. Ten

scans are defined by 10 task curves {G1, G2, ...G10}, and each task curve is discretized into

500 target points for the tip of the arm to visit. We setmax = 6 for #tries in Algorithm 13.

Our algorithms return a feasible path of arm configurations for every task curve. Snapshots

of one forward and backward scan, as the results of applying our inspection algorithm, are

107

Algorithm 14: Inspection
input : A set of task curves {G1, G2, ...GN} for inspection, the initial arm

configuration
output: The feasible path of arm configurations for inspection or report failure

1 begin
2 Path← null;
3 scan← 1; / / “1” indicates forward scan
4 call Algorithm 12 with task curve G1;
5 if no feasible path of arm configurations is returned then
6 return “No solution”;
7 end
8 record the feasible path path1 and section base positions for every

configuration on path1;
9 Path← Path ∪ path1;

10 for i = 2 to N do
11 scan← 1− scan; / / change scan direction
12 pathi ← pathi−1; / / copy previous path
13 foreach point gt on Gi along scan direction, 1 ≤ t ≤ m do
14 pn ← gt;
15 call Algorithm 13 to update configuration Ct on pathi with the new tip

position pn;
16 if no feasible configuration is returned then
17 return “No solution”;
18 end
19 end
20 record the updated pathi;
21 Path← Path ∪ pathi ;
22 end
23 return Path
24 end

shown in Fig. 62.

Figure 61: A target object (the middle oblique object) and obstacles in a cluttered environ-
ment

108

(a) Forward scan for G1 with the arm
shape of Ssec1,3

(b) Forward scan for G1 with the arm
shape of sec1, sec2 and sec3

(c) Backward scan for G2 with the
arm shape of sec1, sec2 and sec3

(d) Backward scan for G2 with the
arm shape of Ssec1,3

Figure 62: Snapshots of a forward scan of task curve G1 and a subsequent backward scan
of task curve G2, with the results shown as the red curves

In Table 15, we present the related costs of the two scans, with the forward scan as the

first scan and the backward scan obtained by updating the results of the forward scan. As

expected, the backward scan takes much less time than the forward scan (about half of

the time of the forward scan) to find feasible configuration. The table also shows different

time costs to find a feasible arm configuration under different arm shapes. For the most

constrained and simplest shape Ssec1,3, as expected, our algorithm used the least amount of

time on average (2 ms in both forward and backward scans) to find a feasible configuration.

Whereas, it took the most amount of time to find a feasible configuration on average for the

most relaxed shape with three single sections sec1, sec2 and sec3 (and no supersection) (

16.0 ms and 8.0 ms in the forward and backward scans respectively). Note that the average

#tries to search a suitable base position for each arm segment (i.e., a section or a super-

109

section) is quite low. In the case the arm forms a single super-section, no search of base

point is needed (due to the fixed base of the manipulator).

Table 15: Time cost of the scans illustrated in Fig. 62

scan arm shape # config. avg. # collision plan. avg. plan.
tries checks time time

G1 Ssec1,3 173 0 173 0.34 (s) 2.0 (ms)
Ssec1,2, sec3 95 1.55 385 0.77 (s) 8.1 (ms)
sec1, sec2, sec3 232 2.43 1866 3.73 (s) 16.0 (ms)

G2 Ssec1,3 173 0 173 0.34 (s) 2.0 (ms)
Ssec1,2, sec3 95 0.75 194 0.38 (s) 4.1 (ms)
sec1, sec2, sec3 232 1.07 930 1.86 (s) 8.0 (ms)

7.3 Manipulation With Arm Tip Position and/or Orientation Constrained

In this section, a more generalized task constraint are considered, which constrains on

certain components of the position and/or orientation of the tip frame of a continuum ma-

nipulator during the motion of the (mobile) manipulator. One can view the task constraints

as corresponding to a certain task manifoldM in the 6-dimensional (6-D) space (position

and orientation) of the tip frame.

As the manipulator moves, such constraints manifest to a continuous path for the tip

frame, which can be discretized as a sequence of tip frame configurations in terms of

homogeneous transformation matrices of the tip frame with respect to the world frame:

G = {Tt,1,Tt,2,Tt,M}. Depending on specific tasks, G can be either given directly by

a task, such as an inspection task, or the result of path planning [48, 10, 37, 45] of the

tip frame as a point in the manifold M in the 6-D configuration space of the tip frame.

In either case, here we assume that G is known and focus on planning the corresponding

motion of the (mobile) continuum manipulator.

110

While performing a task, the motion of the continuum manipulator is also constrained by

the environment, i.e., the manipulator should be collision-free with respect to the obstacles

in the environment. We call an arm configuration a feasible configuration, if the tip frame

satisfies a configuration in G and the mobile continuum manipulator is also collision-free

with respect to the obstacles in the environment. Obstacles are represented as polygonal

meshes, which can be based on point clouds from sensing or known object models. Colli-

sion detection between a continuum manipulator arm and such obstacles can be efficiently

done by the method introduced in [57].

7.3.1 Planning for Constrained Continuum Manipulation

The goal is to plan motion for an n-section (mobile) continuum manipulator to satisfy

both task constraints and environment constraints. However, finding a feasible configura-

tion satisfying both task and environment constraints for an n-section (mobile) continuum

manipulator requires us to search in a 3n dimensional configuration space. One can sam-

ple directly in such a high dimensional configuration space, and check if a sample satisfy

both task constraints and environment constraints, however such approach is inefficient

for a high dimensional search space; even with more sophisticated sampling techniques

[82, 10], only an approximated solution can be obtained from linear projection functions,

and (further) gradient decent modification is required. Another way, as of the approach in

Chapter 7.2, is searching in the workspace instead of in the arm’s configuration space, and

using workspace heuristics to help find feasible arm configurations, which also relies on

inverse kinematics to build the connection between workspace and the arm’s configuration

space. However, existing inverse kinematic methods for continuum manipulators either do

111

not constrain the arm tip’s orientation [66] or do not address the redundancy of arm solu-

tions [28] to find feasible arm solutions that satisfy both task constraints and environment

constraints.

Our approach builds a mapping from certain key points on the manipulator in the workspace

to the arm’s configuration space analytically, then by (heuristically) searching the key

points under task and environment constraints in the workspace, corresponding arm con-

figurations are computed efficiently that satisfy both task and environment constraints.

Assume that initially the manipulator is at a collision-free configuration such that its

tip position is close to the position of Tt,1 of path G. Our approach is to obtain the next

collision-free configuration of the entire mobile continuum manipulator with its tip frame

at configuration Tt,j , 1 ≤ j ≤ M , taking advantage of spatial coherence with the previous

feasible configuration of the manipulator. Algorithm 15 outlines the approach, which calls

the strategy Algorithm 16 to obtain a feasible manipulator configuration.

Algorithm 15: GeneralizedTaskConstrainedManipulation

input : Manipulator model, a path of tip frames {Tt,1,Tt,2, , ...,Tt,M}, the initial
arm configuration C0 and base frame configuration T1,0

output: A feasible path of arm and base configurations, or report failure
1 path← null;
2 for j ← 1 to M do
3 if GenConfig(Cj−1,T1,j−1, n,Tt,j) returns a feasible arm configuration Cj

and base configuration T1,j with the arm tip frame at Tt,j in G then
4 path← path ∪ {(Cj,T1,j)};
5 else
6 return “no solution”;
7 end
8 end
9 return path;

Algorithm 16 finds a feasible manipulator configuration by computing a feasible config-

112

Algorithm 16: GenConfig(Cj−1,T1,j−1, i,Ti+1,j)

input : Manipulator model, previous manipulator config. Cj−1 and T1,j−1,
current section index i, and seci tip frame configuration Ti+1,j

output: A feasible partial arm configuration Ai from sec1 to seci and base
configuration for step j, or returns Ai is not collision-free; for i = n,
An = Cj .

1 #tries← 0;
2 Partially specify seci’s base (either position or orientation);
3 Compute seci’s base location Ti,j and (si, κi, φi) by constrained inverse

kinematics;
4 if (si, κi, φi) is collision-free and i > 1 then
5 Ai−1 ← GenConfig(Cj−1,T1,j−1, i− 1,Ti,j);
6 end
7 if (si, κi, φi) is not collision-free or Ai−1 (i > 1) is not collision-free then
8 repeat
9 #tries← #tries+ 1;

10 if #tries > max then
11 return “Ai is not collision-free”;
12 end
13 modify seci and its base to update Ti,j and (si, κi, φi);
14 if i > 1 and (si, κi, φi) is collision-free, update Ai−1 with

Ai−1 ← GenConfig(Cj−1,T1,j−1, i− 1,Ti,j);
15 until (si, κi, φi) is collision-free and Ai−1 (i > 1) is collision-free;
16 end
17 if i = 1 then
18 return A1 ← {(s1, κ1, φ1)} and T1,j;
19 else
20 return Ai ← {(si, κi, φi)}∪ Ai−1 and T1,j;
21 end

uration for each arm section in the order from secn to sec1, so that the tip frame location

for each seci is input from the computation for seci+1, with the tip frame location for secn

being a given Tt,j on the path G. It further uses recursion to make sure that the determina-

tion of the base frame location for seci (n ≥ i > 1), which is the tip frame for seci−1, will

not only result in a feasible configuration of seci but also lead to a feasible configuration of

seci−1, and so on, in order to find a feasible configuration of the entire arm.

There are two key procedures in Algorithm 16:

113

1. given the tip frame configuration of seci, partially specifying its base frame, taking

into account environment constraints, and

2. computing the configuration of seci, satisfying both the tip and the base constraints,

by applying task constrained inverse kinematics.

We describe the two procedures in the following subsections.

7.3.1.1 Base Search For an Arm Section

We make an initial guess of its base frame location at step j along path G, Ti,j , in a

neighborhood of its previous location Ti,j−1 and taking into account the obstacles in the

workspace. Here we do not fully specify Ti,j in the initial guess so that the unspecified de-

grees of freedom can be used to find a section configuration (si, κi, φi) of seci that satisfies

the given tip frame location Ti+1,j of seci. Note that a single section has 9 degrees of free-

dom: 6 for its base and 3 for the arm section itself. If a base frame is fully specified along

with a given tip frame6, there may not be a solution for the arm section configuration. Thus,

we only specify (i.e., make a guess of) 3 degrees of freedom: either the new base position

pi−1,j , or the new base orientation in terms of the rotation matrix Ri,j , but not both. We can

subsequently use the specified degrees of freedom of the section base, together with those

from the section tip to determine both the section configuration and the remaining degrees

of freedom of the section base.

To preserve the arm shape from Cj−1 to Cj as much as possible, we make the initial

guesses of section bases from secn to sec1. The tip change of secn from Tt,j−1 to Tt,j de-

termines the range of change for the base of secn, which is the tip of secn−1 and determines

6i.e., with more than 9 total degrees of freedom

114

the range of change for the base of secn−1, and so on.

The initial guess of pi−1,j is chosen randomly in a small neighborhood of pi−1,j−1 as:

pi−1,j = pi−1,j−1 + ∆pi−1, (38)

where ∆pi−1 is a vector of a small magnitude obtained by the tip position change of seci

(i.e., within the neighborhood) from arm shape in Cj−1.

Similarly, the initial guess of Ri,j can be expressed as:

Ri,j = Ri,j−1∆Ri, (39)

where ∆Ri is a 3× 3 rotation matrix obtained by the small orientation change of seci’s tip

frame from the previous orientation at step j − 1.

If the initial guess of seci’s base does not lead to a feasible manipulator configuration, as

shown in Algorithm 16, which means that the arm configuration is not collision-free (as the

configuration satisfies task constraints), our strategy is to modify the configuration of seci

heuristically to obtain a feasible configuration, which also leads to a modified base location

of seci:

• If seci collides with an obstacle at its concave side, see Fig. 63(a), increase the

section circle’s radius ri, i.e., decrease curvature κi, in small steps, while maintaining

the tip constraints, to compute a new base position p′i−1 or a new axis z′i, which can

(hopefully) provide a collision-free configuration.

• If seci collides with an obstacle at its convex side, see Fig. 63(b), decrease in small

steps ri, i.e., increase curvature κi, to obtain a new base location.

115

• If seci collides with obstacles at both its concave and convex sides, shrink si in order

to get rid of collision at one side and adjust κi to get rid of collision at the other side

as described above. However, if seci cannot be made collision-free, the recursive

algorithm (Algorithm 16) will change the tip of seci (i.e., change the base of seci+1),

subsequently change the feasible configuration of seci+1 before running again the

above procedure to find a feasible configuration for seci.

(a) seci has collision at its concave side,
a new section configuration is generated
by increasing ri

(b) seci has collision at its convex side,
a new section configuration is generated
by decreasing ri

Figure 63: Examples of obtaining a collision-free section configuration (green), which
satisfies the same tip constraints as the collided configuration (red) obtained from the initial
guess of the section base location.

7.3.1.2 Constrained Inverse Kinematics For an Arm Section

Computing a section configuration that satisfies constraints on tip and base frames is es-

sentially an inverse kinematics problem. However, existing methods on inverse kinematics

for continuum manipulators either do not constrain the arm tip’s orientation [66] or do not

address the redundancy of arm solutions [28] to find feasible solutions that satisfy both task

constraints and environment constraints.

Next we focus on how to solve for the configuration of a single section seci (i = 1, ..., n)

116

under different tip and base constraints.

To be general, we consider a tip constraint for seci as a fixed tip position pi and one

or two axes of the tip frame, given either the section base position or orientation. We can

categorize different kinds of constraints in the following cases:

• Constraint case (1): constrains pi and one tip frame axis with given section base

position pi−1.

• Constraint case (2): constrains pi and one tip frame axis with given section base

orientation Ri.

• Constraint case (3): constrains pi and two tip frame axes with given section base

position pi−1.

• Constraint case (4): constrains pi and two tip frame axes with given section base

orientation Ri.

For different constraint cases, we now determine the remaining variables of seci’s tip

and base frames, i.e., vectors of either position or frame axes, and then compute the corre-

sponding section configuration.

To determine the remaining frame variables, we first compute the section plane Pi to

obtain the following constraining conditions on the frame variables:

• zi+1, zi, xi+1, and points pi and pi−1 are on the same section plane Pi;

• pi−1 and pi are both on the section circle ciri;

• zi and zi+1 are tangent to ciri at pi−1 and pi respectively.

117

Compute the section plane Pi for different constraint cases

Constraint case (1): if xi+1 or zi+1 is fixed as the tip orientation constraint, then Pi is

decided by pi, pi−1 and any point on the ray starting from pi and in the direction of xi+1

or zi+1; if yi+1 is given as the tip constraint, then Pi passes pi and with normal parallel to

yi+1.

Constraint case (2): if xi+1 or zi+1 is fixed as the tip orientation constraint, then Pi passes

pi and its normal is decided by the cross product between xi+1 (or zi+1) and zi; if yi+1 is

given, then Pi passes pi with its normal parallel to yi+1.

Constraint cases (3) and (4): Pi passes pi with its normal parallel to yi+1.

Compute the frame variables on Pi for different constraint cases

For Constraint cases (1) and (3), as illustrated in Fig. 64:

• Draw the perpendicular bisector l of the line segment connecting pi and pi−1.

• If Constraint case (1), where the section tip frame is not fully constrained, compute

tip frame axes xi+1, yi+1, and zi+1 as follows:

– If only zi+1 is fixed, then section circle ciri’s center ci can be computed as the

intersection between l and the line passing pi and perpendicular to zi+1; xi+1 is

parallel to the line decided by pi and ci, and yi+1 = zi+1 × xi+1.

– If only xi+1 is fixed, then compute ci as the intersection between l and the line

passing pi and along xi+1; zi+1 is along the line passing pi and perpendicular to

xi+1, and yi+1 = zi+1 × xi+1.

118

– If only yi+1 is fixed, then ci can be any point (other than pi) on l7, xi+1 is along

the line passing pi and ci, and zi+1 is on the line passing pi and perpendicular

to xi+1.

• Now with zi+1 and ci determined, zi can be determined tangent to ciri at pi−1. Denote

unit vector ui from pi to ci and unit vector vi from pi−1 to ci, and let vector w =

zi+1 × ui, which is normal to the section plane Pi, then zi = vi ×w.

• xi and yi, if i > 1, will be determined by the above procedure as tip frame axes

for seci−1. x1 and y1 can be any two orthogonal vectors that form a right-handed

coordinate system with z1 at p0, and one can use a fixed x1 and y1 for each step from

j = 1 to j = M for convenience and continuity.

Figure 64: Determining frame variables on Pi for Constraint cases (1) and (3).

For Constraint cases (2) and (4), as illustrated in Fig. 65:

• If Constraint case (2), where the tip frame is not fully constrained, compute xi+1,

yi+1 and zi+1 as follows:

7In this case, there will be infinite number of solutions.

119

– If zi+1 is given, xi+1 is parallel to the line l′ on Pi passing pi and perpendicular

to zi+1, yi+1 = zi+1 × xi+1.

– If xi+1 is given, zi+1 should be on Pi, orthogonal to xi+1 and passing pi, yi+1 =

zi+1 × xi+1.

– If yi+1 is given, xi+1 and zi+1 can be any pair of orthogonal unit vectors on Pi

passing pi.

• Denote l as a line perpendicular to zi on Pi and ci as the intersection between l and

l′.

• pi−1 is on l, satisfying |pi−1ci| = |pici| and zi = vi × w as in Constraint cases (1)

and (3).

Figure 65: Determining frame variables on Pi for Constraint cases (2) and (4).

Computing the section configuration

After the seci’s base frame and tip frame are determined, the corresponding values of

section configuration variables κi, si and φi can be determined as follows,

120

• ci is computed as the intersection between the line along xi+1 and the one on Pi and

perpendicular to zi.

• The radius ri of ciri can be computed as ri = |cipi|. κi = 1/ri, if ci on the negative

side of xi+1, and κi = −1/ri, if ci on the positive side of xi+1, see Fig. 66 for

illustration.

• Denote θi as the angle between the two vectors from ci to the two end points pi and

pi−1 respectively, then si can be computed as si = θiri, see Fig. 66 for illustration.

• φi is computed as the angle from yi to yi+1 about the zi axis.

Figure 66: Computing si and κi on section plane Pi.

7.3.1.3 Multi-section Search Space and Complexity Discussion

For an n-section continuum manipulator with a fully constrained tip (i.e., both position

and orientation are constrained) by a task and a mobile base on a 2 dimensional floor, by

applying the above task constrained inverse kinematics from secn to sec1, one can uniquely

map a set of section bases (pn−1, pn−2, ..., p0) in workspace to an n-section arm configura-

tion. The following characterizes the search spaces for different section bases:

121

• pn−1 ∈ R2, where R2 represents 2 dimensional workspace, since the base pn−1 of

secn should be on the section plane Pn pre-defined by the task constraints.

• pi−1 ∈ R3, 1 < i < n, since pi−1 can be searched in the 3 dimensional neighborhood

of its previous location in the workspace.

• p0 ∈ R2, since the base of the manipulator moves on the 2 dimensional floor.

Algorithm 16 searches the section bases from pn−1 to p0 in a depth-first search fash-

ion with complexity of O(bn), where b is the branching factor (i.e., number of candidates

searched for a single arm section), and n is the number of arm sections. In the worst case,

the time complexity isO(maxn), but because of the workspace heuristic used in the search,

our method significantly reduced the branching factor b. In the simulation examples pre-

sented later, b is close to 1, so that Algorithm 16 has an almost linear time complexity to

the number of arm sections n.

As our algorithm combines heuristic and randomized search8, it can cover all possible

space for search under the task constraints by increasing b to approach probabilistic com-

pleteness.

7.3.2 Task of Inspection

In this section, we apply our approach of task constrained continuum manipulation to

the inspection of a structure in a cluttered environment and present experimental results.

We assume that an inspection device (e.g., a camera or a scanner) is rigidly attached to

the tip of the manipulator and facing the object of inspection in certain fixed angle, which

8Each randomized search is in a small scale determined by heuristics based on the workspace and the
manipulator kinematics.

122

requires that the tip of the manipulator maintain a fixed orientation with respect to the

surface of the object as it moves to inspect the entire object. The inspection consists of

multiple scans to cover the surface of the object, where the path of each scan is described

as a sequence of task frames G = {Tt,1,Tt,2,Tt,M}.

7.3.3 Implementation and Experiments

We have implemented all the algorithms on a PC with 2.40GHz Intel(R) Xeon(R) CPU

and tested them in both simulation and real-world experiments of inspection with a three-

section continuum manipulator, where each section has a width of 4 cm. Specifically, the

following describes three simulations for inspection in cluttered space:

• Simulation 1: the tip of the manipulator is kept tangent to the surface of a cylindrical

object for inspection, with 4 horizontal line scans, and each line scan is discretized

into a path of 200 task frames for the tip of arm to follow. The base of the arm is

mobile with its orientation fixed. Fig. 67 (a) shows the task environment.

• Simulation 2: the tip of the manipulator is kept orthogonal to the surface of a cylin-

drical object for inspection, but the tip of the sec1 is kept tangent to the object face.

This example simulates that, in addition to the scanner at the tip of sec3, another

scanner is attached at the tip of sec1, facing the target object along the y axis of

sec1’s tip. The two scanners are used to scan the object surface simultaneously in a

total of 4 horizontal line scans (with each device covering 2 line scans), and each line

scan is discretized into a path of 200 task frames. The base of the arm is mobile with

its orientation fixed as of Simulation 1, the task environment is similar to Simulation

1 as shown in Fig. 67 (a).

123

• Simulation 3: the tip of the manipulator is kept a 45◦ angle from the surface of the

polygonal object for inspection with 60 vertical raster scans, and each vertical scan

consists of a path of 30 task frames. The base has a fixed position. Fig. 67 (b) shows

the task environment.

Table 16 displays the object positions and the closest distance from the object surface to

each obstacle. Table 17 displays the Constraint cases of each arm section in the three

simulations.

(a) a cylindrical object for inspec-
tion in Simulation 1

(b) a cylindrical object for inspec-
tion in Simulation 2

(c) a polyhedral prism for inspec-
tion in Simulation 3

Figure 67: Environments for the three simulations.

Table 16: Object positions (x, y, z) and the closest distance from the object surface to each
obstacle for each simulation, see Fig. 67 for example illustrations

Simulation Object Position Dist. to Dist. to Dist. to Dist. to
Obst. 1 Obst. 2 Obst. 3 Obst. 4

1 (50, 35, 50) (cm) 13.07 cm 8.5 cm 17.49 cm 8.5 cm
2 (50, 35, 46) (cm) 20.16 cm 20.8 cm 28.8 cm 16.8 cm
3 (70, 60, 46) (cm) 19 cm 10.4 cm 13 cm N/A

Table 17: Constraint case of each arm section

Simulation sec3 sec2 sec1
1 Constr. case (3) Constr. case (1) Constr. case (2)
2 Constr. case (3) Constr. case (1) Constr. case (4)
3 Constr. case (3) Constr. case (1) Constr. case (1)

124

A real experiment involving the OctArm robot is also conducted with a fixed arm base

(suspended on the ceiling) to preform vertical raster scans with the tip position constrained,

as shown in Fig. 68.

Figure 68: The real experiment: using the OctArm to perform vertical raster scans of one
surface of a red box.

7.3.3.1 Results

Our algorithm returns a feasible path of arm configurations for each scan in every simula-

tion/experiment. We set the maximum number of tries max in Algorithm 16 for generating

a feasible configuration as max = 10. Snapshots of different scans in different simulations

are shown in Fig. 69, Fig. 70 and Fig. 71.

(a) Scan G1 in Simulation 1 (b) Scan G2 in Simulation 1

Figure 69: Snapshots of Simulation 1, where the tip of the arm is kept tangent to the surface
of the object and the scans are carried out horizontally.

Tables 18 and 19 present the related costs of the scans in Simulation 1 and Simulation

125

(a) Scan G1 adnG3 in Simulation 2 with
scanners at sec1 and sec3’s tips respectively

(b) Scan G2 and G4 in Simulation 2 with
scanners at sec1’s and sec3’s tips respectively

Figure 70: Snapshots of Simulation 2, where the tip of the arm and the tip of sec1 is
kept orthogonal and tangent to the surface of the object respectively; scans are carried out
horizontally.

(a) Sideview of scan G18 in Simula-
tion 3

(b) Topview of scan G18 in Simula-
tion 3

(c) Sideview of scan G30 in Simula-
tion 3

(d) Topview of scan G30 in Simula-
tion 3

Figure 71: Snapshots of Simulation 3, where the tip of the arm is kept 45o facing the object
surface and the scans are carried out vertically.

2 respectively. Note that the time cost for each scan from G1 to G4 increases gradually,

because the surrounding obstacles create a narrower space at the top, and thus more com-

putation time was required to adjust the section bases for the scans of the upper part of the

126

Table 18: Time cost of each scan (with 200 configurations) for Simulation 1, see Fig. 69

scan total avg. # tries # collision total plan. avg. plan.
tries per config. checks time time/config.

G1 18 0.09 218 1.22 (s) 6.1 (ms)
G2 30 0.15 230 1.42 (s) 7.1 (ms)
G3 86 0.43 286 1.83 (s) 9.0 (ms)
G4 102 0.51 302 2.09 (s) 10.45 (ms)

Table 19: Time cost of each scan (with 200 configurations) for Simulation 2, see Fig. 70

scan total avg. # tries # collision total plan. avg. plan.
tries per config. checks time time/config.

G1 & G3 38 0.19 235 1.39 (s) 6.95 (ms)
G2 & G4 55 0.275 253 1.65 (s) 8.25 (ms)

Table 20: Time cost of Simulation 3 with 60 vertical scans and 30 configurations for each
scan, see Fig. 71

total # total avg. # tries # collision total plan. avg. plan.
config. # tries per config. checks time time/config.
1800 240 0.13 2040 11.24 (s) 6.24 (ms)

Table 21: Time costs of two vertical scans (each with 10 configurations) of the real experi-
ment, see Fig. 68

scans total avg. # tries # collision total plan. execut.
tries per config. checks time time

up 1 0.1 11 66 (ms) 8.50 (s)
down 1 0.1 11 62 (ms) 8.50 (s)

object. Table 20 presents the related cost of 60 scans in Simulation 3. Table 21 presents the

cost of 2 vertical scans in the real experiment.

Also note that the average #tries, which reflects the number of additional searches of

each section base for a feasible section, is quite low (less than 0.6) in Algorithm 16 for

all simulations and the real experiment, which indicates that our strategy of making initial

guesses for the section bases is efficient for computing feasible configurations.

127

7.4 Remarks

This chapter introduced approaches to constrained continuum manipulation in cluttered

environments for an n-section continuum manipulator. Our algorithms plan a path for the

continuum manipulator that satisfies task constraints, which constrain the position (and/or

orientation) of the tip frame of the continuum manipulator during motion, as well as en-

vironment constraints, which require the motion of the manipulator to be collision-free.

Although the worst case complexity of our algorithms is exponential to the number of arm

sections, the average time complexity is still linear to the number of arm sections due to

the workspace heuristic used in the search. We have applied our approaches to the task

of inspection and conducted a number of simulation and real experiments. The results

show that our approaches can generate feasible paths correctly and efficiently in a clut-

tered environment. The fast computation for each feasible manipulator configuration (in

a few milliseconds) along each scan indicates that our approach can be used to conduct

real-time simultaneous planning and execution of task-constrained and collision-free paths

by a continuum manipulator.

CHAPTER 8: CONTINUUM MANIPULATION IN CLUTTERED, OCCLUDED
ENVIRONMENTS

8.1 Overview

For a manipulation task in a largely unknown environment, where a target object is only

partially visible inside a tight structure, on-line planning of manipulation motion is nec-

essary while the unknown structure is sensed at the same time as the manipulator tries to

access the target object. More importantly, it is necessary to detect, as early as possible,

whether the target object can be accessed without damaging the robot or disturbing the

structure (e.g., in a search and rescue scenario after an earthquake), i.e., whether a solu-

tion exists for the continuum manipulator to fetch the target object. However, approaches

proposed in the previous chapters either assume the environment and the target object are

known or fully visible before manipulation or assume the target object is accessible in a

cluttered environment, so that a path for the manipulator to perform a task always exists.

Clearly such assumptions are not realistic in an unknown environment.

This chapter introduces an on-line, deterministic method to determine, as early as possi-

ble, if a solution exists for a multi-section continuum manipulator to access a target object

that is nested in an unknown cluttered space for manipulation, such as grasping, and to find

a solution if one exists for the robot to execute simultaneously as it explores the unknown

environment via sensing. In such an environment, the target object is assumed known, how-

ever, the obstacles surrounding the target object is unknown (but static) to the manipulator.

129

8.2 Target Object and Task Environment Model

We consider a target object nested in an unknown, cluttered but static space. We further

assume that a distance sensor, e.g., a RGB-D sensor, IR distance sensor, or LIDAR sensor,

is attached to the tip of the continuum manipulator, which we call the tip sensor or camera,

so that the manipulator can sense the space between the target object and the surrounding

structure or obstacles as its tip moves. Initially, the manipulator tip is outside the structure

looking into the space between the object and the structure or obstacles. The target object

is assumed known, either represented directly by a polygonal mesh or as the result of

recognition and re-construction from point clouds after pose estimation [84] from which

a polygonal mesh can also be built.

However, the obstacles surrounding the target object are not initially known; they are

observed as growing point clouds by the tip sensor of the manipulator as the manipulator

moves.

8.2.1 Belts for Grasping on Target Object and Gaps

We assume some prior knowledge about surface regions of the object that are suitable

for a continuum manipulator to wrap around. Specifically, the target object can have one or

more closed “belts” on its surface based on human user input. Each “belt” can be viewed

as rolling a rectangle along the surface of the target object such that two opposite edges

of the rectangle meet. Given the target object mesh, each “belt” is pre-constructed by the

following steps:

• Use a plane to cut the object in a certain way (based on human input) to obtain the

boundary polygon poly1 of the cross section.

130

• i← 1.

• Repeat

– move the plane in the direction a normal to polyi some distance δ to produce

another boundary polygon polyi+1,

– i← i+ 1

until (i− 1)δ = wbelt, where wbelt is a pre-determined belt width.

• Obtain the convex hull CH of the point clouds from poly1, ..., polyi.

We call CH a belt for grasping on the target object, which is also a polygonal mesh around

the object. Depending on the shape of the object, there can be one or more belts for grasp-

ing, based on human input. Fig. 72 shows some examples. Each possible grasping solution

of the target object, in terms of the pose of the continuum manipulator, relates to a belt for

grasping on the object, in that the manipulator wraps around the belt at that pose.

(a) A teapot (b) A dolphin model

Figure 72: Examples of different target objects, where blue regions indicate belts for grasp-
ing.

131

Once a belt for grasping is selected, the tip sensor of the manipulator starts observing

the belt, first from the initial configuration of the manipulator outside of the surrounding

structure/obstacles of the target object. Assume that the sensor can see as wide as the width

of the belt. Thus, the reachable region R1 on the belt is bounded by B1 and B2, where B1

is the piece-wise linear curve segment consisting of a set of nearest visible and reachable

vertices, and B2 is the piece-wise linear curve segment consisting of the furthest visible

and reachable vertices, by the tip of the manipulator. By observing the space between R1

and the surrounding visible obstacles via the tip sensor, we aim to decide if the manipulator

can get through, and if so, the continuum manipulator will move through the space along

R1, and the tip sensor will have a new view of the surrounding space of another reachable

region R2 of the belt to decide again if the manipulator can get through that space, and so

on. If the manipulator can pass all observed spaces, it can successfully wrap around the

object; on the other hand, if the manipulator observes a space, knowing that it cannot pass

through, it will withdraw without further entering that space.

In general, let Rj be the jth surface region of the belt that the tip sensor observes, j =

1, 2, ..., we define gapj as the space between Rj and the obstacles in the Voronoi region

of Rj . Fig. 73 shows an example gap. Clearly, a gap can vary a lot in shape and size

depending on the shape and size of Rj and obstacles in the Voronoi region of Rj .

8.2.2 Task Environment Model.

We describe how to characterize the space of a gap as related to whether the continuum

manipulator can get through the gap. If there is a sequence of gaps for the manipulator to

get through, the portions of the manipulator inside gapj must form an arc with a non-zero

132

Figure 73: Example of a gap.

curvature, i.e., cannot be a straight-line segment, because a straight-line segment cannot

bend over a sharp corner smoothly. Note that the arc can be formed by either a portion of

an arm section, an entire arm section, or multiple arm sections of the manipulator.

Such an arc is a function of the following parameters:

arc = f(u, v, θ) (40)

where u is the starting point of the arc on the boundary curve segment Bj of Rj (which is

piece-wise linear) at the beginning of gapj , v is the ending point of arcj on Bj+1 of Rj at

the end of the gap, and θ is the angle between the z axis at u and the edge or one of the

edges on Bj that contains u.

Denote the height vector of arc as h (which is the maximum distance vector from the

cord to the arc). The shape of arc is described by h, the arc angle α, and the length l = |uv|,

as depicted in Fig. 74, which satisfy the following equation (see Appendix):

tan(α) =
4lh

l2 − 4h2
. (41)

133

Figure 74: Circular arc and its parameters.

Figure 75: Different arcs passing a gapj .

We are interested in the maximum value of h without causing a collision of the manip-

ulator following arc with obstacles in gapj . As shown in Fig. 75, depending on different

points u and v and the angle θ, the maximum value of h can be different for not causing

collisions, which characterizes the wideness (or narrowness) of the gap on the plane of arc.

Let Oj denote the set of surface points of obstacles in gapj . We can define the gap width

134

function d(u, v, θ) as:

d(u, v, θ) = max(h|arc ∩Oj = ∅), (42)

Hence, d is the maximum height h for arc to pass gapj without collision.

By systematically changing u, v, and θ, we can compute d(u, v, θ) for all possible arcs

passing gapj . u and v can be changed by discretizing the corresponding edges of Rj . For

each pair of u and v, θ can be changed by rotating the z axis at u about the line segment

uv in small angular increment in both directions, so long as the corresponding arc does not

collide with the reachable region Rj .

Now, for each set of u, v, and θ, we find the maximum height d(u, v, θ) that will not

make arc collide with Oj through a binary search:

• Consider the plane of arc. Find the point in Oj on the plane of arc that is furthest

from Rj , and denote the distance as dfar, and find the point in Oj on the plane of

arc closest to Rj , and denote the distance as dnear. A binary search tree is utilized

to organize the points on the plane of arc [9]. Thus, querying each point in a point

cloud of k points yields an average computational complexity of O(log k).

• Conduct a binary search to find the maximum h in [dnear, dfar] that does not cause

arc colliding with Oj , and save the value as d(u, v, θ). Fig. 76 illustrates the simple

binary search.

The above algorithm uses the collision detection algorithm in [57] to check for collisions

between points and arcs.

135

Figure 76: An arc and the binary search of the maximum height that does not cause arc to
collide with obstacle points.

8.3 Single Gap Constraints

In order for the continuum manipulator to pass through gapj without collision, its sec-

tion(s) should be able to follow at least one arc, with end points u, v, and orientation θ,

whose height h satisfies:

0 ≤ h ≤ d(u, v, θ)− w, (43)

where w is the width of the manipulator arm (which may vary from section to section).

Inequality (43) is called a single gap constraint. If the manipulator arm cannot form any

arc that satisfies the above height constraint in gapj , it cannot pass gapj without collision,

i.e., no solution exists.

For gap1, the manipulator only needs to satisfy the above constraint (43) to pass through

the gap following certain arc1. However, for gapj , 1 < j ≤ N , an arcj that can make the

manipulator pass through gapj also needs to satisfy constraints from gapj−1, as described

in the next section.

136

8.4 Serial Gap Constraints

Once the manipulator passes through gap1, i.e., its tip sensor is at the boundary of gap1

looking into a new gap2, the constraints on the arc parameters in gap2 must be considered.

In order to pass through gap2, not only that the manipulator must be able to follow an arc in

gap2, say arc2, that satisfies the corresponding single gap constraint (43), but arc2 and the

arc arc1 that the manipulator followed in gap1 must share the same tangent vector a1,2 at

their junction between gap1 and gap2 to ensure tangent continuity of the manipulator arm

shape, as shown in Fig. 77. It is not difficult to see that if α1 increases, α2 has to decrease

to satisfy the tangent continuity constraint.

Figure 77: arc1 and arc2 are connected by a common tangent vector a1,2.

In general, for any j > 1, given the common tangent aj−1,j of arcj−1 and arcj in gapj−1

and gapj respectively, we can derive the following additional constraint on αj in terms of

αj−1 and parameters relating gapj−1 and gapj (see Appendix for the derivation):

(nAj−1
· nAj

)sinαj−1sinαj + cosαj−1cosαj = −cosβj−1,j (44)

where nAj−1
and nAj

are the normals of the planes Aj−1 of arcj−1 and Aj of arcj respec-

tively, and βj−1,j is the angle between the chord uj−1uj of arcj−1 and the chord ujvj of

137

arcj , as shown in Fig. 77.

Figure 78: aj−1,j and how it relates arcj−1 parameters to arcj parameters.

The above Equation (44), together with Equation (41), can be further converted to a

constraint relating hj to hj−1. The effect is to narrow the range of values for hj , because

the upper bound for hj−1 (to satisfy its single gap constraint inequality (43)) introduces a

non-zero lower bound darcj,j−1
> 0 for hj , as shown in Fig. 78. Therefore, the following

combined constraint on hj should hold:

darcj,j−1
≤ hj ≤ dj(uj, vj, θj)− w. (45)

Figure 79: A lower bound for hj resulted from the upper bound for hj−1 because of tangent
continuity and the single gap constraint on arcj−1.

138

8.5 Existence and Generation of Solution

The continuum manipulator tries to go through gap1, ..., gapN , one by one, by first

sensing the encountered gap and then checking if the related constraints can be satisfied.

For gap1, if the manipulator arm width w is greater than the maximum h under the single

gap constraint (43), then the manipulator cannot get into the gap – no solution exists, which

is an obvious case. If the manipulator can get through gap1 with its tip reaching the edge of

gap2, then the combined constraint (45) must be satisfied (for j = 2) before the manipulator

can get through gap2, and if it cannot be satisfied, then there is no solution forward, and the

manipulator has to withdraw from gap1. In general, the manipulator can encounter gapj ,

j > 1, only if it can get through gap1, ..., gapj−1. If there is no solution to go through gapj ,

the manipulator has to withdraw from gapj−1 to gap1.

8.5.1 Strategy for Checking Gap Constraints and Existence of Arm Solution

Gaps are observed and checked in turn as they are encountered in real time for feasible

arm configurations. Our strategy, shown in Algorithm 17, ensures that all feasible arcs in

a gapj , j > 1, connect to (stored) feasible arcs from gapj−1 back to gap1 and detects the

cases where the manipulator cannot pass through all the gaps without colliding obstacles.

Let K be the average number of arcs for each gap, and there are a maximum of N gaps

that the arm can encounter. Our strategy trades space for time efficiency. Although its

worst-case space complexity is O(KN), its worst-case time complexity is O(K + (N −

1)K2), and since K is more or less a constant (depending on the resolution of u, v and θ),

this strategy has a worst-case time complexity linear to N .

139

Algorithm 17: CheckingGapConstraints
1 At gap1, for every arc (obtained from varying u, v, and θ) the corresponding gap

width d is obtained and stored;
2 next, those arcs that the manipulator can follow to satisfy the single gap constraint

are stored as feasible ones in set S1;
3 if S1 = ∅ then
4 return “No arm solution exists” and exit.
5 end
6 j ← 1;
7 while a new gap is encountered do
8 j ← j + 1;
9 after the manipulator follows a feasible arc in Sj−1 through gapj−1 and

encounters gapj , for each of the arcs in gapj that is connected to a feasible arc
in gapj−1 with tangential continuity at the connection point, the corresponding
gap width d is obtained and stored;

10 next, those arcs in gapj that the manipulator can follow to satisfy the serial gap
constraint are stored as feasible arcs with their connected feasible arcs in
gapj−1 indicated in set Sj;

11 if Sj = ∅ then
12 return “No arm solution exists” and exit;
13 end
14 end
15 return information of feasible arc sequences from gap1 to gapj .

8.5.2 Generation of a Feasible Arm Configuration

Among the feasible arcs found for gapj , j ≥ 1, the one whose starting position is closest

to the tip of the arm in its current configuration is chosen as arcj for the arm tip to fol-

low, and the resulting new arm configuration [58] is characterized by the following: the

curvature of the manipulator tip section secn is the same as the curvature of arcj , and the

orientation of secn is aligned with arcj , which also means that the z-axis of the tip frame

is always along the tangent of arcj , for each tip position on arcj; next the base position of

secn can be decided on arcj based on the length range of secn and the length of arcj , and

the z-axis of the base frame of secn can be also along the tangent of arcj .

140

After the base position and orientation of secn are determined, since they are the tip

position and orientation of secn−1, if secn cannot cover the entire arcj , the above partial

inverse procedure is applied to find the pose of the next arm section secn−1, and so on, until

arcj is covered by some sections of the arm.

Note that when the manipulator encounters gapj , if j > 1, the manipulator sections are

already in gapj−1 through gap1 along a particular sequence of arcs. In order for the tip

section of the arm to move forward to follow the closest feasible arcj in gapj , if the current

arcj−1 in gapj−1 does not satisfy the serial link constraint with arcj , arcj−1 will be updated

to the closest (feasible) arc in Sj−1 connected to arcj (along with its sequence of arcs from

gapj−2 to gap1, if j > 2), and the arm sections will be updated accordingly to follow the

new sequence of arcs.

8.6 Implementation and Examples

We have implemented and tested in simulation our approach for on-line progressively

determining whether a target object in an unknown cluttered space can be fetched and if

so, generating the motion for a continuum manipulator to fetch the object. The implemen-

tation uses a computer with a 2.40GHz CPU. A three-section continuum manipulator with

a section width w of 2.54cm and an RGB-D camera attached at its tip is used to fetch an

object in a cluttered environment with unknown obstacles.

We conducted experiments with two different target objects in environments shown in

Fig. 80 with three different arrangements of surrounding obstacles on the object’s left, back

and right sides:

• Example one: the target object is a point cloud of a milk container, re-constructed

141

from RGB-D sensing [84].

• Example two: the target object is a polygonal mesh of a bunny, which is of complex

shape.

In Fig. 80, the top views of the environments are shown. We assume that the environment

has a low ceiling (that is not shown in Fig. 80 for the reader’s viewing convenience) so

that the manipulator cannot fetch the target object from above. Also note that, only the

target object and its pose are known to the manipulator; the obstacles are unknown to the

manipulator, which has to rely on its tip sensor to gradually sense the obstacles in each gap.

A pre-determined wrapping belt with a width of 15.1cm on each target object is shown

in Fig. 81.

(a) Environment (1): obstacles
are placed at the left, back and
right sides of the target obejct.

(b) Environment (2): obstacle
on the right side is closer to the
target object.

(c) Environment (3): obstacle at
the back is closer to the target
object.

Figure 80: Top view of environments with three different arrangements of obstacles sur-
rounding the milk container (a target object).

In Environment (1) shown in Fig. 80 (a), all gap constraints are satisfiable for both

examples, as shown in Fig. 82 and Fig, 84 respectively. Note that three gaps are observed

in Example one and four gaps are observed in Example two.

In Environment (2) shown in Fig. 80 (b), obstacles on the right are closer to the target

142

(a) Wrapping belt on the milk container (b) Wrapping belt on the bunny

Figure 81: A pre-determined wrapping belt on each target object.

object than those in Environments (1) and (3). In Example one with the milk container, the

arm is stuck in front of gap3, since gap3 is too narrow so that the single gap constraints

cannot be satisfied, as shown in Fig. 83 (a). In Example two with the bunny, the arm passes

gap3 but is stuck in front of gap4, since gap4 is too narrow to pass, as shown in Fig. 85 (a).

In Environment (3) shown in Fig. 80 (c), obstacles at the back of the target object are

closer to the object than those of Environments (1) and (2). In Example one, the arm passes

gap2 but is stuck in front of gap3, since gaps2 (at the back of the object) is too narrow so

that the serial gap constraints cannot be satisfied, as shown in Fig. 83 (b). In Example two,

the arm passes gap3 but is stuck in front of gap4, since gap3 is too narrow so that the serial

gap constraints between gap3 and gap4 cannot be satisfied, as shown in Fig. 85 (b).

Table 22 and Table 23 show the following data from running our algorithm for Example

one and Example two respectively:

• t, time cost of checking constraints for each gap;

• # arcs, the number of arcs checked for passing each gapj with the resolution of u

and v along the belt edges being 1cm and that of θ being 10o.

143

• |S|, the number of feasible arcs found that satisfy related gap constraints in each gap.

(a) Initial arm configuration. (b) The arm passes gap1 and senses
gap2.

(c) The arm passes gap2 and senses
gap3.

(d) The arm passes gap3 and forms
a grasp to fetch the object.

Figure 82: Snapshots of Example one in Environment (1), where only the visible surface
patches of obstacles to the tip camera are shown.

Clearly it takes longer time for checking constraints for gap2 and gap3 than for gap1 due

to the computation cost for handling more than one gap. However, because of the serial

gap constraints, the more gaps the arm has passed, the fewer feasible arcs are in Sj for a

newly encountered gapj; as a result, the time cost of checking gapj , j > 1, decreases as j

increases. Thus, the algorithm delivers real-time performance in milliseconds in checking

the existence of solution and generating a solution (if one exists) progressively, guided by

sensing in an unknown environment.

Note that gap1 has # arcs significantly smaller than that of gap2 and gap3, because the

144

(a) In Environment (2), the arm is
stuck in front of gap3 since gap3 too
narrow.

(b) In Environment (3), the arm is
stuck in front of gap3 since gap2 is
too narrow.

Figure 83: No grasping solution for Example one in Environments (2) and (3) because the
arm cannot pass gap3.

(a) Initial arm configuration. (b) The arm passes gap1 and
senses gap2.

(c) The arm passes gap2 and
senses gap3.

(d) The arm passes gap3 and
senses gap4.

(e) The arm passes gap4 and forms
a grasp to fetch the object.

Figure 84: Snapshots of Example two in Environment (1), where only the visible surface
patches of obstacles to the tip camera are shown.

arm has a fixed base, the starting points of the arcs in gap1 are determined and fewer.

Whereas, the starting point u of an arc to be checked for gapj , j > 1, can be the ending

145

(a) In Environment (2), the arm is
stuck in front of gap4 since gap4 is
too narrow.

(b) In Environment (3), the arm is
stuck in front of gap4 since gap3 is
too narrow.

Figure 85: No grasping solution for Example two in Environments (2) and (3).

Table 22: Time cost for checking each gap, the number of arcs checked, and the number of
(feasible) arcs in S for each gap in Example one

Milk Environment (1) Environment (2) Environment (3)
container t (ms) # arcs |S| t (ms) # arcs |S| t (ms) # arcs |S|
gap1 0.8 272 225 0.8 272 225 0.8 272 225
gap2 8.6 2925 1800 8.6 2925 1800 8.6 2925 900
gap3 5.6 1920 240 5.6 1920 0 4.6 1565 0

Table 23: Time cost for checking each gap, the number of arcs checked, and the number of
(feasible) arcs in S for each gap in Example two

Bunny Environment (1) Environment (2) Environment (3)
mesh t (ms) # arcs |S| t (ms) # arcs |S| t (ms) # arcs |S|
gap1 0.8 272 225 0.8 272 225 0.8 272 225
gap2 7.7 2640 1080 7.7 2640 1080 7.7 2640 420
gap3 5.6 1942 576 5.6 1942 576 3.9 1354 168
gap4 4.7 1632 96 4.7 1632 0 2.6 920 0

point v of any feasible arc in Sj−1.

Since the obstacles are presented as surface point clouds from real-world RGB-D sens-

ing, and the simulated image from the tip sensor of the manipulator is the point clouds that

the tip sensor can see, we can argue that the computation time costs displayed in Table

22 and 23 are similar to the computation time costs processing RGB-D sensing of a real

tip sensor in the real-world environment of the same setting. Hence, our algorithm can be

146

similarly efficient with real RGB-D sensing.

8.7 Remarks

This chapter addressed the problem of on-line determining if a continuum manipulator

could fetch a partially visible object nested in an unknown cluttered space. We model the

space surrounding a belt for grasping on the target object as a chain of gaps, which are

observed progressively one after another by the tip sensor of the manipulator. By forming

constraints relating the manipulator to the gaps, our method can quickly determine wether

the manipulator can successfully get through a gap as soon as the gap is sensed, so that the

manipulator and the surrounding environment will not get damaged. If a solution exists, our

approach can find it in a few milliseconds so that the robot can execute it while exploring

the rest of the unknown environment via sensing. The algorithm of checking gap con-

straints has a time complexity linear to the number of gaps observed. The efficiency and

effectiveness of this approach has been demonstrated by experiments of fetching an ob-

ject in simulated environments with obstacles represented as point clouds from real-world

RGB-D sensing. Although the target object is assumed known, this approach can be ex-

tended to deal with partially known or unknown target object by also sensing and building

the belt for grasping progressively.

CHAPTER 9: CONCLUSIONS

This dissertation focuses on autonomous manipulation using a multi-section continuum

manipulator in cluttered environments. Novel approaches are introduced to address related

issues effectively and efficiently.

Approaches introduced in this dissertation are general because they are applicable to a

general n-section continuum manipulator, and the arm model used in this dissertation (as

described in Chapter 3) can represent arm shapes of most prototypes of continuum manip-

ulators [101], from small scale continuum manipulators [102, 24, 21, 105] for medical use

to larger scale pneumatic/tendon driven continuum manipulators [99, 36, 16] even though

they may have different mechanical designs. To apply the manipulation algorithms of this

dissertation onto a specific prototype of a continuum manipulator, one just needs to assign

values of the parameters to reflect the physical constraints of the manipulator, i.e., length,

orientation, curvature limits. Some manipulators may have fewer variables than the gen-

eral model represents; in such cases, some variables in the general model can be assigned

constants to reflect those manipulators.

First, an efficient, real-time collision detection algorithm (CD-CoM) between a contin-

uum manipulator and 3D mesh objects is introduced. This collision detection algorithm

uses a parametric model for a continuum manipulator. Comparing to conventional mesh-

to-mesh based collision detection algorithms, it is more efficient and saves a significant

amount of time for building/refitting an arm model when the arm shape changes. It ap-

148

plies to any continuum manipulator whose shape can be modeled as consisting of toroidal

and cylindrical primitives. The CD-CoM algorithm is particularly suitable for continuum

manipulator path planning that considers a large number of manipulator configurations in

real time. The CD-CoM algorithm also provides information of the minimum distance be-

tween each section of the continuum manipulator and objects if there is no collision, which

could be further exploited to achieve desirable contact states for continuum manipulation

and to take advantage of time and space coherence of a moving continuum manipulator

and moving objects. Note that, all the manipulation algorithms proposed in this disserta-

tion use CD-CoM for checking collisions/contacts between a continuum manipulator and

objects/obstacles in the environment.

Second, several whole arm grasping algorithms are proposed for a continuum manip-

ulator grasping 3D objects in both open and cluttered environments. Given a 3D target

object, one of our approaches (introduced in Chapter 5) first defines grasping models for a

given object to facilitate grasping by the continuum manipulator. It then uses inter-section

constraints in analytical equations to characterize and numerically solves for all possible

grasping configurations. For a given object grasping model, the approach is implemented

to determine all possible valid grasping configurations, but with a time complexity ex-

ponential to the number of arm sections. Two progressive grasping approaches are then

introduced (in Chapter 6) to achieve a feasible grasping configuration of the target object in

real time for either an open environment or a cluttered environment. Progressive grasping

algorithms are validated in both simulations and real experiments with a time complexity

linear to the number of arm sections. Note that the progressive grasping algorithms can also

be extended to enable grasping an object not fully visible initially by gradually extending

149

the manipulator to explore the surface of the object, if the manipulator is equipped with

sensors at its tip.

Third, task constrained continuum manipulation methods in cluttered environments are

introduced. The introduced algorithms plan a path for a continuum manipulator satisfy-

ing task constraints, which constrain the position and/or orientation of the tip frame of

the continuum manipulator during motion, as well as environment constraints, which re-

quire the motion of the manipulator to be collision-free. In addition, a general method

of constrained inverse kinematics for a continuum manipulator is also introduced, which

considers different combinations of position and orientation constraints of an arm section’s

tip and base. Example inspection tasks are performed with a number of simulations and

real experiments. The results show that our approaches can generate feasible paths for

the manipulator correctly and efficiently in a cluttered environment, and even though the

worst-case time complexity of our algorithms is exponential to the number of arm sections,

the average time complexity is still linear to the number of arm sections due to the effective

workspace heuristic used in the search. The fast computation for each feasible manipulator

configuration (in a few milliseconds) in a cluttered environment indicates that our approach

can be used to conduct real-time simultaneous planning and execution of task-constrained

and collision-free paths by a continuum manipulator.

Fourth, an approach for continuum manipulation in cluttered and unknown environments

is proposed, where information about the environment is obtained through progressive

sensing. By forming constraints relating the manipulator to the gaps between object and

surrounding obstacles, this method can quickly determine whether the manipulator can suc-

cessfully get through a gap as soon as the gap is sensed, so that the manipulator and the

150

surrounding environment will not get damaged. If a solution exists, the approach can find it

in a few milliseconds so that the robot executes it while exploring the rest of the unknown

environment via sensing. The algorithm of checking gap constraints has a time complexity

linear to the number of gaps observed. The efficiency and effectiveness of this approach

has been demonstrated by experiments of fetching an object in simulated environments

with obstacles represented as point clouds from real-world RGB-D sensing. Although so

far the target object is assumed known, this approach can be extended to deal with par-

tially known or unknown target object by also sensing and building the belt for grasping

progressively.

However, the proposed approaches have some limitations. For example, the physical

properties of a continuum manipulator and objects are not considered, only geometric

models are used. The manipulator is assumed without external force disturbance, such

as payloads, except contact force, and the deformation of arm sections while in contact

with the environment is not modeled. Future research could include studying the physical

properties of a continuum manipulator by considering internal/external forces applied to

the manipulator through force sensing, and also the deformations of the manipulator due to

interaction with objects in the environments, so that more accurate estimations of the arm

shapes and object poses can be obtained. As a continuum manipulator is highly compliant,

it can be suitable to interact with people for different applications, such as collaborating

with human workers to transfer objects or assisting a human patient. Human robot physical

interaction is another interesting future research topic.

151

REFERENCES

[1] OC Robotics, available at: www dot ocrobotics dot com.

[2] Barrett technology inc. available at: www dot barrett dot com.

[3] M. Abramowitz and I. A. Stegun. Solutions of quartic equations. In Hand-book
of Mathematical Functions with Formulas, Graphs and Mathematical Tables, pages
17–18. Dover, 1972.

[4] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo. OBPRM:
An obstacle-based prm for 3d workspaces. In Proc. Int. Workshop on Algorithmic
Foundations of Robotics, pages 155 – 168, 1998.

[5] R. Ambrose, H. Aldridge, R. Askew, R. Burridge, W. Bluethman, M. Diftler,
C. Lovchik, D. Magruder, and F. Rehnmark. ROBONAUT:NASA space humanoid.
IEEE Intelligent Systems Journal, 2000.

[6] F. Aurenhammer. Voronoi diagrams a survey of a fundamental geometric data struc-
ture. ACM Computing Surveys, pages 345 – 405, 1991.

[7] B. Baginski. Efficient dynamic collision detection using expanded geometry models.
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1714–
1719, 1997.

[8] T. Baier-Löwenstein and J. Zhang. Learning to grasp everyday objects using
reinforcement-learning with automatic value cut-off. IEEE Transactions on Robotics
and Automation, pages 669 – 679, 2003.

[9] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18:509, 1975.

[10] D. Berenson, S. Srinivasa, and J. Kuffner. Task space regions: A framework for pose-
constrained manipulation planning. The International Journal of Robotics Research,
2011.

[11] A. Bicchi. On the closure properties of robotic grasping. Int. J. Robot. Res., 14:319
– 334, 1995.

[12] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data driven grasp synthesis - a
survey. IEEE Transactions on Robotics, 30(2):289 – 309, 2014.

[13] R. Bohlin and L. E. Kavraki. Path planning using lazy PRM. Proc. IEEE Interna-
tional Conference on Robotics and Automation, pages 521 – 528, 2000.

[14] O. Brock, O. Khatib, and S. Viji. Task-consistent obstacle avoidance and motion be-
havior for mobile manipulation. In Proc. IEEE International Conference on Robotics
and Automation, volume 1, pages 388–393, 2002.

152

[15] J. Butterfa, M. Grebenstein, H. Liu, and G. Hirzinger. DLR-Hand II: Next generation
of a dextrous robot hand. Proceedings of IEEE International Conference on Robotics
and Automation, 2001.

[16] D. B. Camarillo, C. F. Milne, C. R. Carlson, and M. R. Zinn. Mechanics modeling of
tendon-driven continuum manipulators. IEEE Transactions on Robotics, 24(6):1262
– 1273, 2008.

[17] S. Cameron. Collision detection by four-dimensional intersection testing. IEEE
Transactions on Robotics and Automation, 6:291–302, 1990.

[18] B. Chazelle. Approximation and decomposition of shapes. Advances in Robotics 1:
Algorithmic and Geometric Aspects of Robotics, pages 145 – 185, 1987.

[19] B. Chazelle. Collision detection for animation using sphere-trees. Computer Graph-
ics Forum, 14:105–116, 1995.

[20] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Chapter 15: Visi-
bility graphs. Computational Geometry, Springer-Verlag, pages 307 – 317, 2000.

[21] A. Degani, H. Choset, A. Wolf, and M. A. Zenati. Highly articulated robotic probe
for minimally invasive surgery. Proceedings of the 2006 IEEE International Confer-
ence on Robotics and Automation, pages 4167 – 4172, 2006.

[22] R. Detry, E. Baseski, N. Krüger, M. Popovic, Y. Touati, O. Kroemer, J. Peters, and
J. Piater. Learning object-specific grasp affordance densities. In IEEE Int. Conf. on
Development and Learning, pages 1 – 7, 2009.

[23] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269 – 271, 1959.

[24] P. E. Dupont, J. Lock, B. Itknowitz, and E. Butler. Design and control of concentric
tube robots. IEEE Trans. Robotics, 26:209–225, 2010.

[25] D. Eberly. Distance between two line segments in 3d, 1999. www dot geometrictools
dot com/.

[26] C. Ferrari and J. Canny. Planning optimal grasps. Proc. IEEE International Confer-
ence on Robotics and Automation, pages 2290–2295, 1992.

[27] A. Foisy and V. Hayward. A safe swept volume method for collision detection. The
Sixth Int. Symp. of Robotics Research, pages 61–68, 1993.

[28] I. S. Godage, E. Guglielmino, and D. T. Branson. Novel modal approach for kine-
matics of multisection continuum arms. Proc. IEEE/RSJ Internaltion Conference
Intelligent Robots and Systems, 2011.

[29] S. Gottschalk, M. Lin, and D. Manocha. OBB-tree: A hierarchical structure for rapid
interference detection. Computer Graphics, Proceedings of SIGGRAPH’96, pages
171–180, 1996.

153

[30] Y. Gutfreund, T. Flash, Y. Yarom, G. Fiorito, I. Segev, and B. Hochner. Organization
of octopus arm movements: a model system for studying the control of flexible arms.
J. of Neurosci., 16:7297 – 7307, 1996.

[31] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4:100 – 107, 1968.

[32] S. Hirose. Biologically inspired robots. Oxford University Press, 1993.

[33] S. C. Jacobsen, E. K. Iversen, D. Knutti, R. Johnson, and K. Biggers. Design of
the Utah/M.I.T. dextrous hand. Proceedings of IEEE International Conference on
Robotics and Automation, pages 1520–1532, 1986.

[34] Y. Jia, F. Guo, and H. Lin. Grasping deformable planar objects: Squeeze, stick/slip
analysis, and energy-based optimalities. International Journal of Robotics Research,
33:866–897, 2014.

[35] M. W. Jones. 3d distance from a point to a triangle. Technical Report CSR-5-95,
Department of Computer Science, University of Wales Swansea, 1995.

[36] R. Kang, D. Branson, T. Zheng, E. Guglielmino, and D. Caldwell. Design, modeling
and control of a pneumatically actuated manipulator inspired by biological contin-
uum structures. Bioinspiration&Biomimetics, 2013.

[37] L. E. Kavraki, P. Svestka, J. C.Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans-
actions on Robotics and Automation, 12:566–580, 1996.

[38] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Inter-
national Journal of Robotics Research, 5:90 – 98, 1986.

[39] J. Klein and G. Zachmann. Point cloud collision detection. Computer Graphics
Forum, 23 (3):567 – 576, 2004.

[40] G. Kootstra, M. Popovic, J. Jorgensen, K. Kuklinski, K. Miatliuk, D. Kragic, and
N. Kruger. Enabling grasping of unknown objects through a synergistic use of edge
and surface information. International Journal of Robotics Research, 31:1190 –
1213, 2012.

[41] K.Xu and X.Zheng. Configuration comparison for surgical robotic systems using a
single access port and continuum mechanisms. Proceedings of IEEE International
Conference on Robotics and Automation, pages 3367 – 3374, 2012.

[42] K. Lakshminarayana. Mechanics of form closure. Amer. Soc. Mech. Eng. Tech. Rep.,
1978.

[43] P. Laplante and S. Ovaska. Real-Time Systems Design and Analysis: Tools for the
Practitioner. IEEE Press, Wiley, 4th edition, 2011.

154

[44] T. Larsson and T. Akenine-Möller. A dynamic bounding volume hierarchy for gen-
eralized collision detection. Workshop On Virtual Reality Interaction and Physical
Simulation, 2005.

[45] J. C. Latombe. Robot Motion Planning. Kluwer, 1991.

[46] C. Lauterbach, S. Yoon, and D. Manocha. Rt-deform: Interactive ray tracing of
dynamic scenes using bvhs. In In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, pages 39–45, 2006.

[47] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Tech-
nical report, Iowa State University, 1998.

[48] S. M. Lavalle. Planning Algorithms. Cambridge University Press, 2006.

[49] H. Lewis and C. Papadimitriou. Elements of the theory of computation. Prentice-
Hall, 1981.

[50] J. Li, Z. Teng, and J. Xiao. Can a continuum manipulator fetch an object in an
unknown cluttered space? submitted to IEEE Robotics and Automation Letters,
2015.

[51] J. Li, Z. Teng, J. Xiao, A. Kapadia, A. Bartow, and I. Walker. Autonomous contin-
uum grasping. Proc. IEEE/RSJ Internaltion Conference on Intelligent Robots and
Systems, 2013.

[52] J. Li and J. Xiao. Determining grasping configurations for a spatial continuum ma-
nipulator. Proc. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 4207–4214, 2011.

[53] J. Li and J. Xiao. Progressive, continuum grasping in cluttered space. Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013.

[54] J. Li and J. Xiao. Progressive, continuum grasping in cluttered space. IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 4563–4568, 2013.

[55] J. Li and J. Xiao. Progressive generation of force-closure grasps for an n-section
continuum manipulator. Proc. of IEEE International Conference on Robotics and
Automation, pages 4016–4022, 2013.

[56] J. Li and J. Xiao. Task-constrained continuum manipulation in cluttered space. Proc.
of IEEE International Conference on Robotics and Automation, pages 2183–2188,
2014.

[57] J. Li and J. Xiao. An efficient algorithm for real time collision detection involv-
ing a continuum manipulator with multiple uniform-curvature sections. Robotica,
FirstView Article:1–21, 2014, DOI: 10.1017/S0263574714002458.

155

[58] J. Li and J. Xiao. A general formulation and approach to constrained, continuum ma-
nipulation. Advanced Robotics, Special Issue: Continuum robots and manipulation,
29(13):889–899, 2015, DOI: 10.1080/01691864.2015.1052846.

[59] J. Li, J. Xiao, R. Grizzi, and J. Lindberg. Inspection in cluttered space with a
continuum manipulator. Video submission to International Conference on Applied
Robotics for the Power Industry (CARPI), Foz do Iguassu, Brazil, Oct. 2014.

[60] E. Lutscher and G. Cheng. Constrained manipulation in unstructured environment
utilizing hierarchical task specication for indirect force controlled robots. Proc.
of IEEE International Conference on Robotics and Automation, pages 3471–3476,
2014.

[61] N. Magiddo. Linear-time algorithms for linear programming in R3 and related prob-
lems. SIAM Journal on Comp., 12:759–776, 1983.

[62] A. D. Marchese, R. K. Katzschmann, and D. Rus. Whole arm planning for a soft
and highly compliant 2d robotic manipulator. IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 554 – 560, 2014.

[63] W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. Walker, B. Jones,
M. Pritts, D. Dienno, M. Grissom, and C. Rahn. Field trials and testing of the
octarm continuum manipulator. Proc. IEEE International Conference on Robotics
and Automation, pages 2336–2341, 2006.

[64] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Automatic grasp plan-
ning using shape primitives. Proc. IEEE International Conference on Robotics and
Automation, pages 1824 – 1829, 2003.

[65] E. H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the
American Mathematical Society, 26 (9):394 – 395, 1920.

[66] S. Neppalli, M. A. Csencsits, B. A. Jones, and I. Walker. A geometrical approach to
inverse kinematics for continuum manipulators. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008.

[67] C. L. Nielsen and L. E. Kavraki. A two level fuzzy PRM for manipulation planning.
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000.

[68] T. Omata and K. Nagata. Rigid body analysis of the indeterminate grasp force in
power grasps. IEEE Trans. Robot. Autom., 16:46 – 54, 2000.

[69] J. Pan, S. Chitta, and D. Manocha. Probabilistic collision detection between noisy
point clouds using robust classification. International Symposium on Robotics Re-
search (ISRR), 2011.

[70] C. Papazov, S. Haddadin, S. Parusel, K. Krieger, and D. Burschka. Robotic grasping
of novel objects using vision. International Journal of Robotics Research, 31:538 –
553, 2012.

156

[71] C. Pellerin. The salisbury hand. Industrial Robot: An International Journal, 1991.

[72] R. Pelossof, A. Miller, P. Allen, and T. Jebara. An svm learning approach to robotic
grasping. Proc. IEEE International Conference on Robotics and Automation, pages
3512 – 3518, 2004.

[73] H. Ren and P. E. Dupont. Tubular enhanced geodesic active contours for continuum
robot detection using 3d ultrasound. Proceedings of IEEE International Conference
on Robotics and Automation, 2012.

[74] G. Robinson and J. B. C. Davies. Continuum robots a state of the art. Proceedings
of the 2006 IEEE International Conference on Robotics and Automation, pages 2849
– 2854, 1999.

[75] A. Rodriguez, M. T. Mason, and S. Ferry. From caging to grasping. The Interna-
tional Journal of Robotics Research (IJRR), 31(7):886–900, June 2012.

[76] E. L. Sauser, B. D. Argall, G. Metta, and A. G. Billard. Iterative learning of grasp
adaptation through human corrections. Robotics and Autonomous Systems, 60(1),
2011.

[77] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel objects using
vision. International Journal of Robotics Research, 27:157 – 173, 2008.

[78] F. Schwarzer, M. Saha, and J. Latombe. Adaptive dynamic collision checking for
single and multiple articulated robots in complex environments. IEEE Transactions
on Robotics, 21:338–353, 2005.

[79] A. Schweikard. Polynomial time collision detection for manipulator paths specified
by joint motions. IEEE Transactions on Robotics and Automation, pages 865–870,
1991.

[80] S. Sentis and O. Khatib. Synthesis of whole-body behaviors through hierarchi-
cal control of behavioral primitives. International Journal of Humanoid Robotics,
2:505–518, 2005.

[81] G. Song, S. L. Miller, and N. M. Amato. Customizing PRM roadmaps at query time.
Proc. IEEE International Conference on Robotics and Automation, pages 1500 –
1505, 2001.

[82] M. Stilman. Global manipulation planing in robot joint space with task constraints.
IEEE Transactions on Robotics, 26:576–584, 2010.

[83] M. Tang, S. Curtis, S. Yoon, and D. Manocha. Interactive continuous collision de-
tection between deformable models using connectivity-based culling. In SPM ’08:
Proceedings of the 2008 ACM symposium on Solid and physical modeling, pages
25–36, New York, NY, USA, 2008. ACM.

157

[84] Z. Teng and J. Xiao. Surface-based general 3D object detection and pose estima-
tion. Proc. IEEE International Conference on Robotics and Automation, Hong Kong,
China, pages 5473–5479, 2014.

[85] P. Terdiman. OPCODE: Optimized collision detection. Available: www dot coder-
corner dot com/OPCODE dot htm, 2003.

[86] L. G. Torres and R. Alterovitz. Motion planning for concentric tube robots using
mechanics-based models. IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5153–5159, 2011.

[87] L. G. Torres, C. Baykal, and R. Alterovitz. Interactive-rate motion planning for
concentric tube robots. Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
pages 1915–1921, 2014.

[88] L. G. Torres, R. J. Webster, and R. Alterovitz. Task-oriented design of concentric
tube robots using mechanics-based models. IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4449–4455, 2012.

[89] J. C. Trinkle. The mechanics and planning of enveloping grasps. PH.D. Thesis,
University of Pennsylvania, Philadelphia 1987.

[90] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker. Soft robotics: Biological
inspiration, state of the art, and future research. Applied Bionics and Biomechanics,
5(3):99–117, 2008.

[91] K. Trovato and A. Popovic. Collision-free 6d non-holonomic planning for nested
cannulas. Proc. SPIE Medical Imaging, Volume 7261, 2009.

[92] S. Tully, A. Bajo, G. Kantor, H. Choset, and N. Simaan. Constrained filtering with
contact detection data for the localization and registration of continuum robots in
flexible environments. Proceedings of IEEE International Conference on Robotics
and Automation, pages 3388 – 3394, 2012.

[93] G. Turk and M. Levoy. Zippered polygon meshes from range images. SIGGRAPH,
pages 311–318, 1994.

[94] G. van den Bergen. Efcient collision detection of complex deformable models using
aabb trees. Journal of Graphics Tools, 2(4):1–13, 1998.

[95] G. van den Bergen. A fast and robust gjk implementation for collision detection of
convex objects. Journal of Graphics Tools, 4(2):7–25, 1999.

[96] J. Vannoy and J. Xiao. Real-time adaptive motion planning (ramp) of mobile ma-
nipulators in dynamic environments with unforeseen changes. IEEE Transactions
on Robotics, 24:1199–1212, 2008.

[97] R. Vatcha and J. Xiao. Perceiving guaranteed continuously collision-free robot tra-
jectories in an unknown and unpredictable environment. IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1433–1438, 2009.

158

[98] P. Volino and N. M. Thalmann. Efficient self-collision detection on smoothly dis-
cretized surface animations using geometrical shape regularity. Computer Graphics
Forum (EuroGraphics Proc.), 13:155–166, 1994.

[99] B. Walker and I. Walker. Kinematics for multi-section continuum robots. IEEE
Transactions on Robotics, 22:45–53, 2006.

[100] I. D. Walker. Continuous backbone continuum robot manipulators. ISRN Robotics,
2013.

[101] R. J. Webster and B. A. Jones. Design and kinematic modeling of constant curvature
continuum robots: a review. International Journal of Robotics Research, 2010.

[102] R. J. Webster, J. M. Romano, and N. J. Cowan. Mechanics of precurved-tube con-
tinuum robots. IEEE Trans. Robot., 25(1), 2009.

[103] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic roadmap
planner with sampling on the medial axis of the free space. Proc. IEEE International
Conference on Robotics and Automation, pages 1024 – 1031, 1999.

[104] J. Xiao and R. Vatcha. Real-time adaptive motion planning for a continuum manip-
ulator. Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5919–5926, 2010.

[105] K. Xu and N. Simaan. Actuation compensation for flexible surgical snake-like robots
with redundant remote actuation. Proceedings of the 2006 IEEE International Con-
ference on Robotics and Automation, pages 4148 – 4154, 2006.

[106] J. H. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for link-
ages with closed kinematic chains. IEEE Transactions on Robotics and Automation,
17:951–958, 2001.

[107] Y. Yamamoto and X. Yun. Coordinated obstacle avoidance of a mobile manipulator.
In Proc. IEEE International Conference on Robotics and Automation, volume 3,
pages 2255–2260, 1995.

[108] Z. Yao and K. Gupta. Path planning with general end-effector constraints. Robotics
and Autonomous Systems, pages 316–327, 2007.

[109] G. Zachmann and R. Weller. Kinetic bounding volume hierarchies for deforming
objects. ACM Int’l Conf. on Virtual Reality Continuum and its Applications, 2006.

[110] D. Zwillinger. CRC Standard Mathematical Tables and Formulae, 31st edition.
Chapman and Hall/CRC, 2002.

159

APPENDIX A: PROOFS OF ALGORITHMS IN CHAPTER 4

Completeness of Algorithm 4

In Algorithm 4, all possible cases are enumerated based on the positions of the two

vertices v1 and v2 of li, described in polar coordinates (ρ, θ). Each vertex may either be

within the angular bound (see inequality (7)) or be out of it, indicated by “in” or “out”

respectively. Each vertex may be above the upper bound of the radius of the fan-shaped

csi, within the radius bounds, or below the lower bound of the radius (see inequality (6)),

indicated by “a”, “in” and “b” respectively. Therefore, each vertex can have 2 ∗ 3 = 6

different arrangements and li, which contains two vertices, can have a total of 62 = 36

possible arrangements. The following table shows that all of them have been considered in

Algorithm 4.

Table 24: All cases considered in Algorithm 4

θ1 θ2 ρ1 ρ2 Cases in Alg. 4 # configs
- - b b Case 1 4
in - in - Case 2 6

out in - in Case 2 3
in in a/b in Case 2 2
in in a a Case 3 1

out out a a Case 3 1
in in a b Case 4 1
in in b a Case 4 1
in out a - Case 5(e) 3
in out b a/in Case 5(f) 2

out in a/in b Case 5(f) 2
out in - a Case 5(e) 3
out out a b/in Case 5(g) 2
out out b a/in Case 5(g) 2
out out in - Case 5(g) 3

Sum: 36

Completeness of Algorithm 5

160

Algorithm 5 first computes the minimum distance between ciri and the supporting plane

Q of face f by calling Procedure 1, and also obtains corresponding closest points p, q on

ciri and Q respectively. If the minimum distance dmin(ciri, Q) > wi, Algorithm 5 returns

“Collision ← False”; otherwise (when dmin(ciri, Q) ≤ wi), based on whether q is on f

and whether p is on segi Algorithm 5 partitions all situations into the following 3 cases:

(1) q is on f but p is not on segi:

In this case the minimum distance between segi and f is the shortest distance from the

two endpoints pi or pi−1 to f , as shown in Fig. 86(a), and computed by Procedure 2. If

dmin(pi/i−1, f) ≤ wi and f is within (or intersects) the section bounding volume defined

by Hi and Hi−1, Algorithm 5 returns “Collision ← True”, otherwise returns “Collision

← False”.

(2) q is not on f :

In this case the closest point q on f to segi is on one edge ek of f , as shown in Fig. 86(b),

which is computed by Procedure 3. If dmin(ek, f) ≤ wi and f is within (or intersects)

the section bounding volume defined by Hi and Hi−1, Algorithm 5 returns “Collision←

True”, otherwise returns “Collision← False”.

(3) q is on f and p is on segi:

In this case dmin(ciri, Q) is the minimum distance between segi and f . If f is out of

section bounding volume, the algorithm returns “Collision← False”; otherwise it returns

“Collision← True”.

161

(a) q is on f but p is not on segi (b) q is not on f

Figure 86: Examples of cases (1) and (2) above.

Proof for Correctness of Procedure 1:

If Q and P are not parallel and intersect each other at a line lint, we denote pj as any

point (other than p) on ciri and qj as its projection on Q and prove that the distance from

p to Q (i.e., |pq|) is always shorter than that from pj to Q (i.e., |pjqj|) – See Fig. 87 for an

illustration.

Figure 87: |pq| is the shortest distance from ciri to Q, and the orange dashed line segment
indicates the distance from any other point pj on ciri to Q.

Since ciq′ is perpendicular to Q and q′p′ is perpendicular to P , the triangle 4ciq′p′

defines a plane A perpendicular to both Q and P and also to the line lint and intersects lint

at point q′′. Since p is on cip′ and pq is perpendicular to Q, p and q are also on plane A, and

162

so is the triangle4pqq′′. Now, by connecting pjqj and lint with their common normal, we

get point q′′j on lint, and the triangle4pjqjq′′j also defines a plane perpendicular to lint. Thus,

two right-angled triangles4ciq′p′ and4pjqjq′′j are parallel, and since ∠qq′′p = ∠qjq′′j pj is

the angle between Q and P , 4pjqjq′′j ∼ 4pqq′′. Since |pq′′| is the shortest distance to lint

from ciri, |pq′′| < |pjq′′j |, and therefore |pq| < |pjqj|.

163

APPENDIX B: DERIVATIONS FOR EQUATIONS IN CHAPTER 8

Derivation of Equation (41)

As shown in Fig. 74, we denote q′ as the middle point of line segment uv, c and r as the

center and radius of arc, then we will have ∠ucq′ = α.

In the right angle triangle4q′uc, we have,

tan(α) =
l

2(r − h)
(46)

We also have,

r2 = (
l

2
)2 + (r − h)2

which can be simplified as,

r =
4h2 + l2

8h
(47)

From (47) and (46), we can derive Equation (41).

Also if we denote I as the unit vector pointing from q′ to c, we can further derive:

c = q′ + (r − h)I, (48)

where c and q′ represent the position vector of c and q′ respectively.

Derivation of Equation (44)

: Basically, as shown in Fig. 88, a trihedral angle is formed at uj by three planes Aj−1,

Aj and the one containing uj−1, uj and vj . If we denote the dihedral angle between Aj−1

164

and Aj as γj−1,j , then according to the law of cosines for a trihedral angle [110], we have:

cosγj−1,jsinαj−1sinαj + cosαj−1cosαj = cos(π − βj−1,j) (49)

where cosγj−1,j can be expressed by the unit normals of planes Aj−1 and Aj as:

cosγj−1,j = nAj−1
· nAj

(50)

By substituting (50) into (49), we have Equation (44).

Figure 88: A trihedral angle formed by three planes Aj−1, Aj , and the one containing uj−1,
uj and vj .

