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ABSTRACT

MATT SMITH. Optical vortices and coherence in nano-optics. (Under the direction
of DR. GREGORY J. GBUR)

In this dissertation, we use theory and computation to conduct three projects in

the area of nano-optics. In the �rst project, we study optical coherence conversion

using a plasmonic hole array. This work led to the discovery of the optical coherence

band gap. In the second project, we develop a method of producing sub-wavelength

arrangements of optical vortices. We demonstrate the validity of this method and

propose an experimental realization. In the third project, we apply the techniques of

the second to design superresolution lenses.
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CHAPTER 1: INTRODUCTION TO OPTICAL COHERENCE THEORY

1.1 Introduction

In this chapter, we will present an introduction to optical coherence theory, which

is the focus of the project in Chapters 2 and 3. For the purposes of this dissertation,

we shall not attempt to provide a comprehensive review of the entire subject. In-

stead, we will only cover the concepts needed to understand the associated projects

in Chapters 2 and 3. We refer the interested reader to References [1, chapters 1-4], [2,

chapters 2-4], and [3, chapter 10], from which we take the information in this chapter

unless cited otherwise.

Most physicists are likely familiar with the idea that light can be either �coherent,�

such as a laser, or �incoherent,� such as sunlight. Most also probably know some

characteristics that distinguish coherent light from incoherent. For example, laser

light is highly directional and causes interference patterns in a Young-style double

pinhole experiment, whereas sunlight is not very directional and does not typically

cause interference patterns in a Young experiment. This knowledge doesn't su�ce

to explain what coherence actually is, nor does it describe the richness of coherence

theory or reveal just how central coherence is to the physics of light.

So what is coherence? Summed up in one sentence, �Coherence is essentially a

consequence of correlations between some components of the �uctuating electric �eld

at two (or more) points,� [1, pp. xii]. Light sources found in nature or in a laboratory

are not the well-behaved, monochromatic, mono-directional, perfectly (un)polarized

plane waves we generally use as models to describe light physics. Real life is messier

than that. In particular, physical �elds always have some random �uctuations asso-

ciated with them. Coherence is a measure of how strongly correlated these randomly
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vibrating �elds are between two points in time or space, known as temporal coherence

and spatial coherence, respectively. We shall only be concerned with spatial coher-

ence in this dissertation. At �rst glance, quantifying this correlation might seem like

something with no consequence or practical use. However, it turns out that this sta-

tistical similarity has profound consequences for the physics of light. In fact, it has

been shown that a �eld's directionality [4], polarization [5, 6], and even its far-�eld

spectrum [7] are all in�uenced by the �eld's spatial coherence.

The remainder of this chapter is organized as follows. In Section 1.2 we will review

some mathematical concepts needed to understand the rest of the chapter. Then

in Section 1.3, we will introduce the basic quantities that form the foundation of

coherence theory. Finally, in Section 1.4 we will give some concluding remarks.

1.2 Mathematical Preliminaries

In this section, we will introduce some of the mathematical tools and concepts

necessary for understanding coherence theory. As we said in the Introduction, coher-

ence theory is built around the random vibrations that actual light sources possess.

Therefore the techniques and concepts that we will need come from random process

theory.

1.2.1 Average values of random processes

Suppose we have a real �eld variable x(t) that represents a Cartesian component

of a steady-state1 electric �eld at some arbitrary point in space and at time t. Let us

also suppose that x(t) has random �uctuations. We can measure x(t) in a carefully-

controlled series of similar experiments, with the result of the jth experiment denoted

jx(t). We refer to this set of results as an ensemble of realizations or ensemble of

sample functions of x(t). We denote the entire ensemble using curly brackets as

{x(t)}. So jx(t) is then called the jth realization of the ensemble {x(t)}.
1Steady-state has a speci�c meaning in random process theory that we will address later.
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Now, at optical frequencies (≈ 1× 1015 Hz), we could not actually measure the

time behavior of jx(t), due to the rapidity of light vibrations, but we can measure the

time average. For a typical realization jx(t) of x(t), the time average, denoted using

angle brackets 〈. . .〉t, is de�ned as

〈
jx(t)

〉
t

:= lim
T→∞

1

2T

∫ T

−T

jx(t) dt. (1.1)

We note that the time average may be di�erent for each realization jx(t), so in general

we also have an ensemble of time averages, {〈x(t)〉t}.

Another important kind of average in the theory of random processes is the en-

semble average or expectation value. This is the time-dependent average over all of

the realizations in the ensemble. In general, the number of realizations of a random

optical �eld will be practically in�nite, so by denoting the number of realizations as

N we can express the ensemble average as

〈x(t)〉e := lim
N→∞

1

N

N∑
j=1

jx(t) , (1.2)

which is the discrete form of the ensemble average, denoted by the subscript e on the

angle brackets. The continuous form of the ensemble average is given by

〈x(t)〉e :=

∫
xp1(x, t) dx, (1.3)

where the integration is over the allowed range of values of x(t), and p1(x, t) dx is

the probability that x will have a value in the range (x, x + dx) at time t. We have

used x in the integration instead of x(t) because we are integrating over the values

x(t) is allowed to take, not over the time behavior of a particular realization jx(t).

In coherence theory we are typically concerned with �nding ensemble averages of the

form 〈z∗(t1) z(t2)〉e, where z(t) := x(t)+iy(t), i is the imaginary unit, and the asterisk
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denotes complex conjugation. This ensemble average is given by

〈z∗(t1) z(t2)〉e =

∫∫
z∗1z2p2(z1, z2; t1, t2) d2z1d

2z2. (1.4)

The probability p2(z1, z2; t1, t2) d2z1d
2z2 is the probability that at time t1, z will be

take a value located within an in�nitesimal area d2z1 = dx1dy1 about the point z1

and that at time t2, z will take a value within a similar region d2z2 = dx2dy2 about

the point z2. Figure 1.1 shows the relation of the pair of points z1 and z2 with their

corresponding d2zj and dxj and dyj, where j = (1, 2).

x

y

z1

z2

dx1

dy1

d2z1 dx2

dy2

d2z2

Figure 1.1: Showing the elements d2z1 and d2z2 about the points z1 and z2.

Now, we earlier mentioned steady-state �elds. By that, we mean that the statistical

properties of the �eld do not depend on the origin of time. Such a �eld is said to be

statistically stationary ; examples include sunlight and continuous-wave lasers. So if

z(t) in Eq. (1.4) represents a statistically stationary �eld, then if the origin of time

is shifted by an arbitrary amount τ , the probability p2(z1, z2; t1, t2) d2z1d
2z2 will be

unchanged. That is,

p2(z1, z2; t1 + τ, t2 + τ) d2z1d
2z2 = p2(z1, z2; t1, t2) d2z1d

2z2. (1.5)

So far we have been considering two types of averages: time averages and ensem-
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ble averages. Fortunately, it is often the case that, when the light �uctuations are

statically stationary, the two averages are equivalent. That is,

〈
jx(t)

〉
t

= 〈x(t)〉e . (1.6)

Such �elds are called ergodic. For the remainder of this chapter, we will assume that

the ensembles of �elds we deal with are ergodic. Therefore we will drop the t and e

subscripts from the angle brackets from now on.

1.2.2 Autocorrelation and cros-correlation functions

The two most important values associated with a real random process are its mean,

m(t) := 〈x(t)〉 (1.7)

and its autocorrelation function

R(t1, t2) := 〈x(t1)x(t2)〉 . (1.8)

In this chapter, we will take all of our �elds to have a mean of zero. If we take

the process to be statistically stationary, then the mean will be independent of time

and the autocorrelation function will only depend on the time argument through the

di�erence τ = t2 − t1. We can then replace R(t1, t2) with R(τ),

R(τ) := 〈x(t)x(t+ τ)〉 . (1.9)

We will be mostly concerned with complex random variables z(t), in which case the

autocorrelation function is de�ned as

R(τ) = 〈z∗(t) z(t+ τ)〉 . (1.10)
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For our purposes in this dissertation, we will primarily be concerned with a version

of R(τ) that can be used for situations with two random variables, z1(t) and z2(t),

which we will use later to represent �eld amplitudes at a pair of points. If the two

processes are jointly stationary, meaning their joint probability distribution is invari-

ant with respect to translation of the origin of time, the measure of their correlation

is the cross-correlation function,

R12(τ) := 〈z∗1(t) z2(t+ τ)〉 . (1.11)

It has two important properties:

|R12(τ)| ≤
√
R11(0)R22(0) (1.12a)

R12(−τ) = R∗21(τ) . (1.12b)

The coherence theory we will describe later in this chapter is built around two quan-

tities, the mutual coherence function and the cross-spectral density, which we will

show to be cross-correlation functions.

When the mean of a random process is independent of time and the autocorrelation

function depends only on the time di�erence τ = t2 − t1, the process is said to be

stationary in the wide sense. This is a somewhat less strict version of statistical sta-

tionarity, which required that all the process's probability densities remain invariant

under translation of the origin of time. In this chapter, we will frequently assume

that �elds are stationary at least in the wide sense.

1.3 Some Basic Coherence Quantities

Now we can get into the meat of coherence theory. The scalar coherence theory

we are considering has two core quantities: the mutual coherence function, in the

space-time domain, and the cross-spectral density, in the space-frequency domain. A
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third quantity, and the most signi�cant one for this dissertation, is the spectral degree

of coherence, also in the space-frequency domain. We will develop these now.

1.3.1 Space-time domain

Let us assume that we have a Young-style double pinhole experiment, as shown

in Fig. 1.2. We assume that the light is statistically stationary, at least in the wide

sense, and that it is quasi-monochromatic. Quasi-monochromatic light is light that

has a mean radial frequency ω0 and bandwidth ∆ω narrow enough that

∆ω

ω0

� 1. (1.13)

The light is incident on an opaque screen A with pinholes at points Q1 and Q2.

We will be considering the average intensity of the �eld in the neighborhood of an

arbitrary point P on the observation screen B.

A B

Q1

Q2

P

R1

R2

Light source

Figure 1.2: Setup and notation of a Young-style double pinhole experiment.

Neglecting polarization, we denote the light vibrations by V (r, t), a complex scalar.

The time it will take for the light to travel the distances Rj (j = 1, 2), is

tj =
Rj

c
(1.14)
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where c is the speed of light in vacuum. The �eld at P will be

V (P, t) = K1V (Q1, t− t1) +K2V (Q2, t− t2) , (1.15)

where K1 and K2 are to account for di�raction. Here, for small angles of incidence

and di�raction,

Kj = − i

λ0Rj

dAj, (j = 1, 2), (1.16)

where dAj are the areas of the pinholes and λ0 = 2πc/ω0 is the mean wavelength of

the light. We assume that the pinholes are small enough that the �eld amplitude is

e�ectively constant over each of them.

As noted earlier, optical �elds vibrate at around 1× 1015 Hz, so the time behavior

of the �eld amplitude in Eq. (1.15) cannot be measured. However, we can measure

the average intensity,

I(P ) := 〈I(P, t)〉 = 〈V ∗(P, t)V (P, t)〉 . (1.17)

This quantity is independent of the origin of time due to the assumed statistical

stationarity. From Eq. (1.15), we have

I(P ) = |K1|2 〈V ∗(Q1, t− t1)V (Q1, t− t1)〉+ |K2|2 〈V ∗(Q2, t− t2)V (Q2, t− t2)〉

+ 2R{K∗1K2 〈V ∗(Q1, t− t1)V (Q2, t− t2)〉} ,

(1.18)

where R{} denotes the real part. Using the assumed stationarity, we note that

〈V ∗(Qj, t− tj)V (Qj, t− tj)〉 is the average intensity I(Qj) at pinhole j. We also note

that the constants Kj are purely imaginary. Using all of this, we simplify Eq. (1.18)
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to yield the interference law for stationary optical �elds,

I(P ) = |K1|2 I(Q1) + |K2|2 I(Q2) + 2R{|K1| |K2|Γ(Q1, Q2, t1 − t2)} , (1.19)

where

Γ(Q1, Q2, τ) := 〈V ∗(Q1, t)V (Q2, t+ τ)〉 , (1.20)

with τ = t1 − t2, is the mutual coherence function. This quantity is the cross-

correlation function between the two �elds at the pinholes, as described in Eqs. (1.11)

and (1.12).

The mutual coherence function is a measure of the coherence of the �eld between

the two points Q1 and Q2 in the space-time domain. In fact, a normalized version of

this quantity, called the complex degree of coherence,

γ(Q1, Q2, τ) :=
Γ(Q1, Q2, τ)√

Γ(Q1, Q1, 0)
√

Γ(Q2, Q2, 0)
=

Γ(Q1, Q2, τ)√
I(Q1)

√
I(Q2)

(1.21)

can be shown to determine the sharpness of the fringes in Young's experiment with

quasi-monochromatic light. First, we note from Eq. (1.12a) that

0 ≤ |γ(Q1, Q2, τ)| ≤ 1, (1.22)

where 1 corresponds to complete coherence of the light and 0 corresponds to complete

incoherence. Next, we de�ne the sharpness of the fringes in the neighborhood of the

point P as the visibility,

V(P ) :=
Imax(P )− Imin(P )

Imax(P ) + Imin(P )
, (1.23)

where Imax(P ) and Imin(P ) are the maximum and minimum, respectively, of inten-

sity in the neighborhood of P . With this de�nition, we can rewrite γ(Q1, Q2, τ) as
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|γ(Q1, Q2, τ)| eiα((Q1,Q2,τ)) and use Eqs. (1.19) and (1.21) to show that

V(P ) = |γ(Q1, Q2, τ)| . (1.24)

Equation (1.24) shows the important result that the sharpness of the interference

fringes is controlled by the light's coherence.

One important thing to consider is how Γ(r1, r2, τ) propagates thorugh space, where

we are now using r to denote arbitrary points in space rather than being con�ned

to the screen in Fig. 1.2. Suppose that we have an ensemble {V (r, t)} representing

a complex wave�eld in free space. Each member of the ensemble satis�es the wave

equation,

∇2V (r, t) =
1

c2
∂2

∂t2
V (r, t) . (1.25)

We can then take the complex conjugate of Eq. (1.25), replace r and t by r1 and t1,

respectively, and multiply this new equation by V (r2, t2). This yields

∇2
1V
∗(r1, t1)V (r2, t2) =

1

c2

[
∂2

∂t1
2
V ∗(r1, t1)

]
V (r2, t2) , (1.26)

where ∇2
1 is the Laplacian operator that only acts on the points in r1. We can now

take the ensemble average of both sides of Eq. (1.26) and interchange the orders of

the various operators to yield

∇2
1 〈V ∗(r1, t1)V (r2, t2)〉 =

1

c2
∂2

∂t1
2
〈V ∗(r1, t1)V (r2, t2)〉 . (1.27)

If the �eld is statistically stationary, at least in the wide sense, then

〈V ∗(r1, t1)V (r2, t2)〉 = 〈V ∗(r1, t)V (r2, t+ t2 − t1)〉

= Γ(r1, r2, τ) .

(1.28)
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We note that τ = t2 − t1 and that ∂2

∂t12
= ∂2

∂τ2
. Thus, we can rewrite Eq. (1.27) as

∇2
1Γ(r1, r2, τ) =

1

c2
∂2

∂τ 2
Γ(r1, r2, τ) . (1.29)

By a similar process we can show that

∇2
2Γ(r1, r2, τ) =

1

c2
∂2

∂τ 2
Γ(r1, r2, τ) . (1.30)

Equations (1.29) and (1.30) are a remarkable result. The statistical correlation

between points of a randomly �uctuating quasi-monochromatic wave�eld itself prop-

agates as a wave! Rather famously, when Emil Wolf �rst discovered this result and

presented it to Max Born, Born responded, �Wolf, you have always been such a sen-

sible fellow, but now you have become completely crazy!� [8, pp. 287]. This result

makes one wonder: what other wave-like properties might coherence have?

For this dissertation, we shall be primarily concerned with the space-frequency

domain, so although there is much more that could be said about Γ(Q1, Q2, τ) and

γ(Q1, Q2, τ), we will move on. The interested reader may consult Refs. [1, chapter 3]

and [2, chapter 4]

1.3.2 Space-frequency domain

The space-frequency domain of coherence theory has parallels to the space-time

domain, as one might expect. One parallel is that it also has two main quantities

used to de�ne coherence. The �rst is the cross-spectral density, which can be found

via Fourier transform of the mutual coherence function, i.e.,

W (r1, r2, ω) =
1

2π

∫ ∞
−∞

Γ(r1, r2, τ) eiωτdτ. (1.31)
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From the cross-spectral density, we can derive the most signi�cant quantity for the

purposes of this dissertation: the spectral degree of coherence,

µ(r1, r2, ω) :=
W (r1, r2, ω)√

S(r1, ω)
√
S(r2, ω)

, (1.32)

where S(rj, ω) is the spectral density, de�ned as

S(rj, ω) := W (rj, rj, ω) . (1.33)

To understand the physical signi�cance of these two quantities, it will help to �rst

consider an alternate representation of the cross-spectral density.

Under the conditions of Hermiticity, non-negative de�niteness, and square-integrability

over its domain D in free-space, the cross-spectral density can be expressed, for three-

dimensional D, as

W (r1, r2, ω) =
∑
i

∑
j

∑
k

λijk(ω)φ∗ijk(r1, ω)φijk(r2, ω) . (1.34)

If the domain is two (one) dimensional, then the triple sum would be replaced by

a double (single) sum and the triplet of integers ijk would be replaced by a pair

(single integer). For notational simplicity, we express all these possibilities as a single

symbolic sum and integer n,

W (r1, r2, ω) =
∑
n

λn(ω)φ∗n(r1, ω)φn(r2, ω) , (1.35)

it being understood that what Σ and n stand for depends on the dimensionality

of D. Equation (1.35) is known as the coherent-mode representation of the cross-

spectral density. It is so named because each of the modes φn(r, ω) is fully coherent

[1, pp. 69]. The functions φn(rj, ω) and λn(ω) are the eigenfunctions and eigenvalues,
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respectively, of the integral equation

∫
D

W (r1, r2, ω)φn(r1, ω) d3r1 = λn(ω)φn(r2, ω) . (1.36)

The eigenfunctions φn(r1) form an orthonormal set over D, and the eigenvalues λn(ω)

are positive.

Using the coherent-mode representation, we can show that the cross-spectral den-

sity can be expressed as a cross-correlation function of sample functions U(r, ω). We

consider U(r, ω) to be of the form

U(r, ω) =
∑
n

an(ω)φn(r, ω) , (1.37)

where an(ω) are random coe�cients satisfying

〈a∗n(ω) am(ω)〉ω = λn(ω) δnm. (1.38)

Here, the ω on the angle brackets denotes an average over frequency and δnm is the

Kronecker delta. Note that Eq. (1.38) implies that the eigenfunctions are mutually

incoherent; that is, they do not interfere with each other. Using Eq. (1.37), we can

consider the cross-correlation function,

〈U∗(r1, ω)U(r2, ω)〉ω =
∑
n

∑
m

〈a∗n(ω) am(ω)〉ω φ∗n(r1, ω)φm(r2, ω) , (1.39)

where we have interchanged the order of summation and ensemble averaging. Using

Eq. (1.38), Eq. (1.39) reduces to

〈U∗(r1, ω)U(r2, ω)〉ω =
∑
n

λn(ω)φ∗n(r1, ω)φn(r2, ω) , (1.40)

Note that the right-hand side of Eq. (1.37) is the same as the right-hand side of
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Eq. (1.35), which means that

W (r1, r2, ω) = 〈U∗(r1, ω)U(r2, ω)〉ω . (1.41)

Similarly,

S(r, ω) = 〈U∗(r, ω)U(r, ω)〉ω . (1.42)

Equation (1.41) shows that, for all pairs of points in its domain D, the cross spectral

density of a statistically stationary �eld may be expressed as a cross-correlation func-

tion of an ensemble {U(r, ω)} of space-frequency realizations U(r, ω), where cross-

correlation functions were de�ned in Eq. (1.11). This is a somewhat surprising result.

Although W (r1, r2, ω) was originally given as the Fourier transform of Γ(r1, r2, τ),

which is a correlation function, it is not obvious at �rst glance thatW (r1, r2, ω) should

itself be a correlation function. Equation (1.41) allows us to model W (r1, r2, ω) as an

average of random monochromatic �elds in a Young-style experiment, as we will now

show.

We have de�ned U(r, ω) in Eq. (1.37) as a sum of coherent modes φn(ω), but

that doesn't really explain what U(r, ω) is. We will show here that U(r, ω) can be

regarded as the space-dependent part of a monochromatic wave�eld. From Eqs. (1.29)

and (1.30), we know that the mutual coherence function propagates according to the

wave equation. Since W (r1, r2, ω) is the Fourier transform of Γ(r1, r2, τ), it follows

that W (r1, r2, ω) obeys the Helmholtz equation:

∇2
jW (r1, r2, ω) + k2W (r1, r2, ω) = 0 (j = 1, 2). (1.43)

By plugging Eq. (1.35) into Eq. (1.43), multiplying the result by φm(r1, ω), integrating

both sides over r1, and using the orthonormality of the eigenfunctions φn, we can see
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that every coherent mode φn(r1, ω) obeys the Helmholtz equation:

∇2φn(r, ω) + k2φn(r, ω) = 0. (1.44)

Since U(r, ω) is a linear combination of the modes φn(r, ω), it follows that U(r, ω)

also obeys the Helmholtz equation, so

∇2U(r, ω) + k2U(r, ω) = 0. (1.45)

This shows that U(r, ω) can be considered as the space-dependent part of a monochro-

matic wave�eld V (r, t) = U(r, ω) e−iωt. It is important to note that U(r, ω) is not a

Fourier frequency component of the �eld, since stationary random �elds do not have

Fourier spectra. (They don't tend to zero as t tends to in�nity, therefore they have

no Fourier transform.) Rather, U(r, ω) is the space-dependent part of a member of

the statistical ensemble
{
V (r, t) = U(r, ω) e−iωt

}
ofmonochromatic realizations of fre-

quency ω. This distinction is not signi�cant for this dissertation, but it is important

enough to mention. The interested reader can learn more in Ref. [1, pp. 63].

Let us now examine the physical meaning of the spectral degree of coherence by

again considering the Young experiment in Fig. 1.2. We will again assume that

the light is stationary, at least in the wide sense, but now we take the light to be

broadband rather than quasi-monochromatic. We again assume that the pinholes are

small enough that the �eld amplitude is e�ectively constant over each of them and

that the angles of incidence and di�raction are small. Then the �eld on B is given,

to a good approximation, by an ensemble of realizations {U(P, ω)}, where

U(P, ω) = K1U(Q1, ω) eikR1 +K2U(Q2, ω) eikR2 . (1.46)

Here, the constants K1 and K2 are de�ned as before, except instead of a mean wave-
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length λ0 we have a wavelength λ = 2πc/ω, since we are now assuming broadband

light, and k = 2π/λ. Although our light is broadband, recall that the random �eld

U(r, ω) does not have a Fourier spectrum, so λ is not a Fourier component. However,

the �eld does have a �nite power spectrum, and the wavelength λ is a component of

this.

Now let's substitute Eq. (1.46) into the de�nition of S(r, ω), Eq. (1.42), and use

the Hermiticity relation W (Q2, Q1, ω) = W ∗(Q1, Q2, ω). This yields

S(P, ω) = |K1|2 S(Q1, ω) + |K2|2 S(Q2, ω) + 2R
{
K∗1K2W (Q1, Q2, ω) e−iδ

}
, (1.47)

where

δ =
2π

λ
(R1 −R2) . (1.48)

We note that |Kj|2 S(Qj, ω) is the spectral density due only to the hole at Qj so we

can denote

S(j)(P, ω) := |Kj|2 S(Qj, ω) (j = 1, 2). (1.49)

Using this, we can rewrite Eq. (1.47) as

S(P, ω) = S(1)(P, ω) + S(2)(P, ω) + 2
√
S(1)(P, ω)

√
S(2)(P, ω)R

{
µ(Q1, Q2, ω) e−iδ

}
.

(1.50)

If we rewrite µ(Q1, Q2, ω) as

µ(Q1, Q2, ω) = |µ(Q1, Q2, ω)| eiβ(Q1,Q2,ω), (1.51)

and take the common assumption that S(2) ≈ S(1), then Eq. (1.50) becomes

S(P, ω) = 2S(1)(P, ω) {1 + |µ(Q1, Q2, ω)| cos[β(Q1, Q2, ω)− δ]} . (1.52)
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Equation (1.52) is called the spectral interference law, which shows that coherence

can cause changes in the spectrum of (possibly broadband) light via the frequency

dependence of µ(Q1, Q2, ω). These correlation-induced spectral changes are known as

the Wolf e�ect.

Now we can understand the physical meaning of µ(Q1, Q2, ω) by discussing how

Eq. (1.52) can be used to experimentally determine its value. Referring to Eq. (1.52),

we note that the spectral density at ω will have a maximum or minimum when

cos(β(Q1, Q2, ω)− δ) is equal to 1 or −1, respectively. We denote these as

Smax(P, ω) := 2S(1)ω [1 + |µ(Q1, Q2, ω)|] (1.53a)

Smin(P, ω) := 2S(1)ω [1− |µ(Q1, Q2, ω)|] (1.53b)

respectively. We can use these to de�ne the spectral visibility,

V(P, ω) :=
Smax(P, ω)− Smin(P, ω)

Smax(P, ω) + Smin(P, ω)
. (1.54)

Substituting Eq. (1.53) into Eq. (1.54) shows that

V(P, ω) = |µ(Q1, Q2, ω)| . (1.55)

So the absolute value of the spectral degree of coherence determines the visibility of

the fringes. The spectral degree of coherence can be shown using Eq. (1.12a) to have

its absolute value bounded by 0 ≤ |µ(Q1, Q2, ω)| ≤ 1, where 0 means complete inco-

herence (so no spectral fringes) and 1 means complete coherence (so maximal spectral

fringes). Suppose we now place narrow-band �lters on the pinholes with identical

mean frequency ω0 and bandwidth ∆ω, so that we now have quasi-monochromatic

light again. Then the spectral density at ω0 will be approximately the intensity of

the �eld, and the spectral visibility will be approximately the same quantity as the
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regular visibility, de�ned in Eq. (1.23). This also allows us to see the importance

of coherence � it determines how strongly a wave�eld interferes with itself. Notice

also that |µ(Q1, Q2, ω)| can take values between 0 and 1. These values are called

partial coherence. Interference fringes in these cases will be present, but will not be

maximally contrasted. See Fig. 1.3 for an example.

Figure 1.3: Examples of fringes for fully coherent, partially coherent, and fully inco-
herent light, narrow-band �ltered at ω0.

1.4 Conclusion

In this chapter, we have given the foundations of optical spatial coherence theory.

We have shown that it is based around a time-domain cross-correlation function

Γ(r1, r2, τ) and a frequency-domain cross-correlation function W (r1, r2, ω). We have

given the de�nition and explained the physical signi�cance of the spectral degree

of coherence, µ(r1, r2, ω), which will be important for the coherence project given

in Chapters 2 and 3. We have also shown the di�erence between fully coherent,

partially coherent, and fully incoherent light by demonstrating their control over

light interference patterns in a Young-style double pinhole experiment. As mentioned

at the beginning, a �eld's coherence in�uences a number of its properties, so being

able to control that coherence is desirable for a number of applications.



CHAPTER 2: COHERENCE RESONANCES AND BAND GAPS IN

PLASMONIC HOLE ARRAYS

2.1 Introduction

Surface plasmon polaritons, oscillations of electric charge density that propagate

as waves con�ned to the surface of a suitable material, have a number of interesting

applications. Their ability to con�ne light to subwavelength regions enables them

to be used for nano-focusing of light beyond the di�raction limit [9]. Their extreme

sensitivity to local refractive index makes them useful for sensing applications, such

as disease diagnosis [10], blood type identi�cation [11], and solution concentration

sensing [12]. Arrays of sub-wavelength holes in metal plates have used surface plasmon

polaritons to enhance the photon-to-electron e�ciency of semiconductors [13] and as

a form of e-paper [14].

Subwavelength holes in metal plates have also been shown to greatly enhance op-

tical transmittance [15] and to modulate optical spatial coherence [16]. This ability

to modulate coherence led to the proposal of a device [17] to convert the coherence

of a beam from one spectral degree of coherence to another using a subwavelength-

thickness metal plate perforated with an array of subwavelength holes. These holes

can convert some of the incoming light into surface plasmon waves which can then

decouple and combine with light at other holes. This process introduces a correlation

between the light at di�erent holes, which changes the degree of spatial coherence.

This device was proposed because partially coherent light propagates through atmo-

spheric turbulence more favorably than does fully coherent light [18, 19], so such a

device could possibly have point-to-point optical communications applications. How-

ever, the optimum degree of coherence depends on the amount of turbulence, so it
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would be desirable to be able to tune the degree of coherence as needed. A device

such as the one in Ref. [17] should permit that. However, Ref. [17] did not study the

physical details of the multi-hole process, making it hard to design plates to achieve

desired degrees of coherence at desired wavelengths. We will examine some of these

details in Chapter 3. In the course of using the simulation method of Ref. [17] to ex-

amine these physical details, we stumbled on a previously undiscovered phenomenon

� the optical coherence band gap, which can be thought of as a classical analogue of

a quantum phenomenon called superradiance/subradiance. That is the main result

of this chapter.

The remainder of this chapter is organized as follows. We begin with a brief

overview of the model used for this work. Then we go into detail about the opti-

cal coherence band gap. Finally, we present some miscellaneous results related to our

band gap work.

2.2 Description of Model

We use a simple scalar cylindrical wave model to describe the e�ects of plasmonic

scattering from the holes; this model was �rst introduced in Ref. [17]. We use this,

rather than a full electromagnetic simulation method such as Finite-Di�erence Time-

Domain, for a few reasons. First, a simple model usually makes it easier to glean

generalizable physical insights from the results. Second, simple models have much

reduced complexity, which saves on computation time and on code production time.

In this section, we will review the details of the model and discuss our new additions

to it.

We consider a gold plate of subwavelength thickness lying in the z = 0 plane

perforated by an array of holes with subwavelength diameter. From the z < 0 side,

the plate is illuminated by a partially coherent quasi-monochromatic scalar �eld U0(r),

with central wavelength λ0 and spectral degree of coherence µ0(r1, r2). Upon hitting

the plate, some fraction of the �eld will transmit directly through the incident holes,
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and some will scatter o� the holes into surface plasmon waves1. Upon hitting another

hole, the plasmon waves can either rescatter or be emitted as light again. The new

�eld being emitted from each hole will be correlated with the light from the other

holes, which will generally result in a new degree of coherence, µf (r1, r2).

Figure 2.1 summarizes the complete process with a cut-away view of a plate with a

2× 2 array of holes. The light incident on, and scattered from, each hole is depicted

with color-coded arrows. Because of surface plasmons, the light emitted from each

hole is a combination of the light from all other holes.

Plasmon-mediated coupling

z = 0

Output field with spectral
degree of coherence µf

Input field with spectral
degree of coherence µ0

x

y

Figure 2.1: A cut-away sketch of a 2 × 2 plasmonic hole array showing the plasmon
scattering process, viewed from below the z = 0 side of the plate. Note that the input
�eld is the same everywhere in the plane; the arrows in the �gure are color-coded only
to show which hole they are incident on.

Each of the following subsections describe a particular element of the model: the

spatial coherence, the scalar plasmonic wave scattering, and �nally our additions to

the model.

1Note that there are two kinds of surface plasmon waves: Localized surface plasmons, which
are con�ned to a small region such as a nanosphere, and surface plasmon polaritons, which are
propagating waves which can last for �long� distances before dissipating. In this chapter, when we
discuss surface plasmons, we are exclusively referring to surface plasmon polaritons.
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2.2.1 Spatial coherence model

We take our incident �eld to be of Gaussian-Schell form and express its cross-

spectral density as an incoherent superposition of coherent modes. As we are con-

cerned only with the behavior of the �eld right at the plate, we restrict our attention

to the z = 0 plane. A Schell model �eld is de�ned such that the spectral degree

of coherence depends only on the distance |ρm − ρn| between points ρn and ρm [1,

section 5.3.1], where ρ denotes (x, y) coordinates in the z = 0 plane. If the incident

spectral density S0 is constant across the z = 0 plane, then the incident cross spectral

density W0 is

W0(ρn,ρm) = S0µ0(|ρm − ρn|) , (2.1)

where µ0 is the incident spectral degree of coherence. A Gaussian-Schell model

�eld is a Schell model �eld with a Gaussian dependence on the distance, such that

µ0(|ρm − ρm|) is given by

µ0(|ρm − ρm|) = exp

(
− |ρm − ρn|2

2δ2

)
, (2.2)

where δ is the transverse correlation length. We express Eq. (2.1) as an incoherent

superposition of modes by writing Eq. (2.2) in terms of its Fourier transform, µ̃0(k),

µ0(|ρm − ρm|) =

∫∫ ∞
−∞

µ̃0(k) eik·(ρm−ρn)d2k, (2.3)

where

µ̃0(k) =
δ2

2π
exp

(
−1

2
δ2 |k|2

)
. (2.4)
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Combining Eqs. (2.1) to (2.3), we may express cross-spectral density as a superposi-

tion of modes in the form

W0(ρn,ρm) =

∫∫ ∞
−∞

µ̃0(k)φ∗k(ρn)φk(ρm) d2k, (2.5)

where

φk(ρ) :=
√
S0e

ik·ρ (2.6)

are plane waves which shall be the coherent modes for our cross-spectral density.

Since the plane waves are coherent, Eq. (2.5) is a coherent-mode representation of

W0(ρn,ρm), which we de�ned in Eq. (1.35).

Now we consider propagating the �eld through the plate. For any linear coupling

mechanism, the modes will remain mutually incoherent as they traverse the system.

Therefore the cross-spectral density on the dark side of the plate Wf (ρn,ρm) is

Wf (ρn,ρm) =

∫∫ ∞
−∞

µ̃0(k)ψ∗k(ρn)ψk(ρm) d2k, (2.7)

where ψk(ρ) is the kth mode of the �eld on the dark side of the plate. Thus we can

evaluate Wf (ρn,ρm) by propagating individual input modes φk(ρ) through the plate

to obtain the output modes, denoted ψk(ρ). Then, using Eq. (2.7), we can calculate

the output spectral degree of coherence between pairs of points using the de�nition

of µ(r1, r2), Eq. (1.32).

2.2.2 Scalar model for plasmonic �eld

We �rst consider our incident �eld in the z = 0 plane to be a coherent mode φk(ρ).

Upon striking a hole at location ρn, some fraction α of the mode will transmit directly

through the hole, and some of the mode will couple to the plate surface as a surface

plasmon wave and scatter to other holes. Assuming that the holes are smaller than

the wavelength and that the distance between holes is multiple wavelengths, the holes
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can be modeled as point scatterers. The output mode ψk(ρ) is thus

ψk(ρn) = αφk(ρn) + Ψk(ρn) , (2.8)

where Ψk is the plasmonic �eld from the other holes. The plasmonic �eld is de�ned

as

Ψk(ρn) := β
N∑

m=1,m 6=j

G(ρn,ρm)ψk(ρm) , (2.9)

where N is the number of holes in the system, G(ρn,ρm) is the scalar plasmonic

wave propagating from a hole at position ρm to position ρn, and β is the scattering

strength of each scatterer, which we will de�ne shortly. The scalar plasmonic wave is

de�ned as [20]

G(ρn,ρm) :=
i

4
H

(1)
0 (ksp |ρn − ρm|) , (2.10)

where H
(1)
0 is the zeroth-order Hankel function of the �rst kind, ksp is the surface

plasmon wavenumber,

ksp = k0

√
ε0εm
ε0 + εm

, (2.11)

εm is the dielectric constant of the metal, ε0 is the dielectric constant of free space,

and k0 = 2π/λ0. Equation (2.10) is the Green's function for a point source in 2D

space [21, pp. 679]. Combining Eqs. (2.8) and (2.9), the output mode is

ψk(ρn) = αφk(ρn) + β

N∑
m=1,m 6=n

G(ρn,ρm)ψk(ρm) . (2.12)

Equation (2.12) can be converted to matrix form and solved to obtain the output

modes for all holes. Before describing that, let us �rst give the derivation for the

expression for β.

The derivation of β relies on approximating our cylindrical holes in a metal plate

as spherical cavities in a metal background and using the method of Ref. [22, section.
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5.2]. Consider the electric �eld radiated by a monochromatic electric dipole with

radial frequency ω0. In the far �eld, its spatial dependence is expressed as

Es =
k20

4πεm
(r̂× p)× r̂

exp(ik0r)

r
, (2.13)

where k0 = 2π/λ0 is the wavenumber, εm is the dielectric constant of the background

medium, p is the electric dipole moment, and r̂ is a unit vector in the direction of r,

which is the position vector of the point of observation as measured from the dipole,

with r = |r|. To model the scattering of the sphere, the dipole moment is set to

p = εmαpE0 exp(iω0t) , (2.14)

where E0 is the amplitude of the incident �eld and αp is the polarizability of the

sphere. Taking the sphere to be vacuum, the polarizability is given by [23, section

4.4]

αp := 4πa3
1− εm/ε0
1 + 2εm/ε0

, (2.15)

where a is the radius of the sphere. Plugging the Eq. (2.14) into Eq. (2.13) and

rearranging terms, we have

Es = E0X
exp(ik0r)

r
, (2.16)

where

X :=
ik30
4π
αp (r̂× p̂)× r̂ (2.17)

is the unitless vector scattering amplitude. In the model of Ref. [17], the plasmon

scattering parameter is treated as a scalar analog to the vector X, with |β| ≈ |X|.

Therefore, we set

β ≈ |X| = k30
4π
|αp| , (2.18)
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and our �nal expression for β is

β ≈
(

2πa

λ0

)3 ∣∣∣∣ 1− εm/ε0
1 + 2εm/ε0

∣∣∣∣ . (2.19)

Note that a now stands for the radius of our cylindrical holes, rather than the radius of

a spherical cavity. Note also that the assumption of spherical cavities in the derivation

means we are also assuming that our metal plate is about as thick as the diameter of

our holes.

Given Eq. (2.12), we now have a system of N equations with N unknowns. This is

a Foldy-Lax system of equations [24, 25] which can be solved by converting Eq. (2.12)

to matrix form, as follows. First we express φk

(
ρk

)
and ψk

(
ρk

)
as the column vectors

U (0) := [φk(ρ1) , φk(ρ2) , . . . , φk(ρN)]T , (2.20)

U := [ψk(ρ1) , ψk(ρ2) , . . . , ψk(ρN)]T , (2.21)

where the superscript T denotes matrix transposition. Next, we express G(ρn,ρm)

as an N × N matrix G, whose elements are de�ned by Eq. (2.10), except that the

diagonal elements are set to zero since the plasmon waves from holes do not self-

interact. That is,

G :=



0 G(ρ1,ρ2) . . . G(ρ1,ρN)

G(ρ2,ρ1) 0 . . . G(ρ2,ρN)

...
...

. . .
...

G(ρN ,ρ1) G(ρN ,ρ2) . . . 0


. (2.22)

With these de�nitions, we note that the summation in Eq. (2.12) will be replaced by

the matrix multiplication GU . Therefore, Eq. (2.12) in matrix form is written as

U = αU (0) + βGU . (2.23)
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We can now use Eq. (2.23) to solve for U and thus solve for ψk

(
ρk

)
. We do this by

�rst moving the product βGU to the left-hand side of the equation,

U − βGU = αU (0). (2.24)

Noting that U = IU , where I is the identity matrix, we have

[I − βG]U = αU (0). (2.25)

Finally, by inverting the term in brackets, we have solved for U :

U = α [I − βG]−1U (0). (2.26)

Evaluating Eq. (2.26) gives the output mode ψk(ρ) at each hole.

Now that we have Eq. (2.26), this is a good time to show that the exact value of

α does not matter when calculating the spectral degree of coherence, as long as it is

nonzero. Recall that the de�nition of the spectral degree of coherence is

µ(ρn,ρm) :=
W (ρn,ρm)√

W (ρn,ρn)W (ρm,ρm)
(2.27)

where we have used S(ρ) = W (ρ,ρ). Let us plug Eq. (2.7) into this de�nition:

µ(ρn,ρm) =

∫∫∞
−∞ µ̃0(k)ψ∗k(ρn)ψk(ρm) d2k(∫∫∞

−∞ µ̃0(k)ψ∗k(ρn)ψk(ρn) d2k
)1/2 (∫∫∞

−∞ µ̃0(k)ψ∗k(ρm)ψk(ρm) d2k
)1/2

(2.28)

Now, recall from the de�nition of the vector U in Eq. (2.21) that each element of U ,

denoted Uj, is the corresponding output mode ψk

(
ρj
)
; that is, Uj = ψk

(
ρj
)
. Let us

de�ne a new vector A,

A := [I − βG]−1U (0), (2.29)
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which means

U = αA. (2.30)

Since Uj = ψk

(
ρj
)
and Uj = αAj, where Aj is the j

th element of A, then

ψk

(
ρj
)

= αAj. (2.31)

Plugging Eq. (2.31) into Eq. (2.28), we have

µ(ρn,ρm) =

∫∫∞
−∞ µ̃0(k) (αAn)∗ (αAm) d2k(∫∫∞

−∞ µ̃0(k) (αAn)∗ (αAn) d2k
)1/2 (∫∫∞

−∞ µ̃0(k) (αAm)∗ (αAm) d2k
)1/2 ,
(2.32)

and we can see that all of the α will cancel out. So the speci�c value of α does not

matter, as long as it is nonzero, when calculating the spectral degree of coherence.

In our code we set it to 0.5 as a moderate value, but again, it doesn't matter for

calculation of the spectral degree of coherence. (It would matter for calculating the

absolute throughput, however.)

2.2.3 Our additions to the model

The portions of our model that we have described so far originate in Ref. [17]. In

this work, we have added two components to the model.

Our �rst addition is that we are considering a a range of input wavelengths rather

than just one. The work in Ref. [17] used a �xed wavelength and varied the hole

spacing. This is not easy to do in experiments, as it would require preparing a large

number of hole arrays to use with light of a single wavelength. An experimenter would

more naturally want to prepare a single array and vary the wavelength of their light

source. As such, we require a wavelength-dependent model for the dielectric constant

εm. We use the critical points model described in Refs. [26, 27], which describes the
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metal's dielectric function as

εm(λ0) =ε∞ −
1

λ2p(1/λ
2
0 + i/γpλ0)

+
2∑

n=1

An
λn

[
eiφn

(1/λn − 1/λ0 − i/γn)
+

e−iφn

(1/λn + 1/λ0 + i/γn)

]
,

(2.33)

where λp is the plasma wavelength, λn are the interband transition wavelengths, γp

and γn are damping terms, and An is an amplitude. Values used in Eq. (2.33) for

gold can be found in Table 2.1.

Table 2.1: Values for gold for Eq. (2.33).

Parameter Value [27]

ε∞ 1.54
λp 143 nm
γp 14 500 nm
A1 1.27
φ1 −π/4 rad
λ1 470 nm
γ1 1900 nm
A2 1.1
φ2 −π/4 rad
λ2 325 nm
γ2 1060 nm

This is a good time to discuss how we selected what wavelength range to use for λ0.

Our model relies on several assumptions; one of which is a multi-wavelength spacing

between holes. This means we require at least that d > λsp, where d is the smallest

spacing between holes in the array and λsp is the surface plasmon wavelength,

λsp :=
2π

R{ksp}
, (2.34)

where R{} denotes the real part. Another assumption is that the hole diameter is

subwavelength; so we require that 2a < λ0. In addition to these assumptions, we add
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the constraint that holes not be so far apart that plasmon e�ects are negligibly small.

That is, we require d < Lsp, where Lsp is the plasmon propagation distance, de�ned

as

Lsp :=
1

2I{ksp}
, (2.35)

where I{} denotes the imaginary part. If plasmons travel a distance of Lsp, their

intensity will be reduced to 1/e of the original value, so we do not want d to be greater

than that, or else the plasmonic contribution to the �eld will be very small. With these

three constraints, we chose to set a = 200 nm and to keep d near or exceeding 1000 nm.

Based on all this, we settled on using a wavelength range λ0 = [550 nm, 850 nm], which

is mostly in the visible.

In Fig. 2.2 we compare the critical points model with experimental data [28]; the

agreement is excellent, particularly over the wavelength range we have selected for

our simulations. We also note that for a �at surface to support surface plasmon waves

we require [29, pp. 5]

R{εm} < 0 (2.36a)

|R{εm}| > ε0 (2.36b)

I{εm} < |R{εm}| . (2.36c)

Figure 2.2 shows that these conditions are met over our chosen wavelength range.

Our second addition to the model of Ref. [17] addresses one of the challenges

of analyzing the results of this model. Namely, the spectral degree of coherence

is de�ned in terms of a pair of points, call them ρn and ρm. For N holes, this

results in many possible combinations of pairs, scaling roughly O(N2), and thus

many values of µ(ρn,ρm). Speci�cally, for N holes there are N2 pairs. Now, two of

the properties of the spectral degree of coherence are that µ(ρn,ρm) = µ(ρm,ρn) and

that µ(ρn,ρn) = 1; these reduce the number of pairs we need to consider. The end
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Figure 2.2: Comparing the critical points model of Eq. (2.33) with experimental data
by Johnson and Christy [28]. The dashed lines indicate the wavelength range we use
for most of the calculations in this chapter.

result is that for N holes, the number of pairs that would need to be considered is

∆(N − 1), where ∆(n) is the nth triangular number, ∆(n) =
∑n

j=1 j, which quickly

becomes very large. For example, ∆(9) = 45, ∆(16) = 136, and ∆(25) = 325. This

was a challenge in the work in Ref. [17]; only a few combinations could be plotted,

which made it di�cult to discern overall trends in the coherence. Here, we simplify

the analysis by considering the average coherence over all hole pairs. For the output

coherence, we denote this average as Mf and de�ne it as

Mf :=
1

N

N∑
n=1

1

N − 1

N∑
m=1,m 6=n

|µf (ρn,ρm)| . (2.37)

We de�ne the input average M0 similarly in terms of µ0(ρn,ρm). We note that we

use the absolute value of µf (ρn,ρm) in Eq. (2.37) to avoid low correlations caused

by di�erent µf (ρn,ρm) being out of phase. We also note one limitation of using this

value is that it will, by de�nition, tend to get very low as the array size increases.



32

Some typical results obtained using this method are shown on the right side Fig. 2.3.

On the left is a depiction of the hole geometry used: a square array of holes periodic

in two dimensions with period d. The data in Fig. 2.3 are somewhat chaotic, with

many narrow peaks, but there are noticable trends. For example, one can note that

the coherence is generally higher at the lower and higher wavelengths than it is in the

middle. Particularly interesting are the sudden dips at a few wavelengths, speci�cally

λ0 ≈ 610 nm, 650 nm, and 750 nm. This one plot is certainly simpler to interpret than

would be the coherence between the 79 800 hole pairs one would otherwise have to

analyze individually!

2a

d

d4× 4

Figure 2.3: Left: geometry of a square array of holes, in this case 4× 4, with period
d and radius a. Right: Mf and M0 of a 20× 20 array, with d = 1000 nm, a = 200 nm,
and δ = 1000 nm.

2.3 Optical Coherence Band Gap

Looking back at those prominent dips we mentioned in Fig. 2.3, we notice that they

have similar shape to that of band gaps. Band gaps are a well-known phenomenon in

optics, in which a periodic structure causes certain spectral regions of light to have

a transmittance of zero. A common example is a periodic structure of evenly-spaced

layers of materials with alternating refractive index, known as a Bragg re�ector.
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In this project, published in Ref. [30], we demonstrate a similar band gap phe-

nomenon for optical coherence. This idea gains some prior plausibility if we recall

from Eqs. (1.29) and (1.30) that the mutual coherence function obeys the wave equa-

tion and from Eq. (1.43) that the cross-spectral density obeys the Helmholtz equation.

Since coherence propagates a wave, it is plausible to think that it might exhibit band

gap behavior given a suitable periodic medium of propagation. Now, there is some dif-

�culty in analyzing the results from periodic 2D arrays like the one shown in Fig. 2.3.

Speci�cally, they have a large number of peaks in Mf and they have are large num-

ber of distances between holes. Therefore, for this project, we decided to use linear

arrays of periodically spaced holes, as shown in Fig. 2.4, with holes of radius a spaced

periodically with lattice constant d. This provides us a structure similar to that of a

Bragg re�ector. We constrain our holes to lie along the x axis, and we also take the

polarization of the incident beam to lie along the x axis. So the vectors in our model

now have a y component of zero, meaning that in our equations the vectors ρ and k

can be replaced with scalars x and k, respectively. We note that this structure means

that band gaps will depend on a periodicity transverse to the direction of propaga-

tion, as opposed to intensity band gaps which depend on periodicity parallel to the

direction of propagation. That is, we have periodicity (of holes) along the x direction,

while the incoming light is propagating along the z direction; for intensity band gaps,

the periodicity (of refractive index layers) would also be along the z direction.

x1 x2 x3 . . . xN

2a

d

(N − 1)d

Figure 2.4: Geometry and notation of linear hole arrays.

To verify that what we have observed is indeed a band gap, we test two important
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properties characteristic to band gaps. The �rst is that they require a certain number

of periodic layers in order to appear, and they remain relatively unchanged by adding

more. In Fig. 2.5 we show Mf calculation results for a series of array sizes from 1× 2

to 1× 100. As the array size increases, the broad peak on the left, centered at about

λ0 = 570 nm, signi�cantly narrows and slightly blueshifts. The valley on the right,

centered at about λ0 = 720 nm, �attens and then, at 1× 10, becomes a peak. This

peak broadens and turns into a cluster of peaks while redshifting. Between these

two peaks, beginning with the 1× 10 array, is a mostly �at region centered at about

λ0 = 670 nm where Mf is almost exactly equal to M0. This �at region is what we

are identifying as a coherence band gap. We note that the band gap region takes

a few holes to appear, and after a certain number (10 in this case) it is relatively

unchanged as more holes are added. This behavior matches the band gap behavior

we were examining.

The second important property of band gaps we wanted to verify is that they only

appear in a periodic medium. We test our band gap's dependence on periodicity

by randomly moving the holes within the array. If the �at region is truly a band

gap, destroying the periodicity should destroy the band-gap-like behavior. So, let us

consider the nth hole in the array, originally at location xn. We assign it a randomized

coordinate Xn via

Xn := xn + Znσ, (2.38)

where Zn is a number drawn from the standard normal distribution and σ is a chosen

standard deviation. After obtaining a con�guration of randomized coordinates for all

holes, we checked that all hole pairs satis�ed the condition

|xn − xm| > 2a, (2.39)

to prevent the holes from overlapping. If any pair in the con�guration failed that test,
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Figure 2.5: Averaged output and input coherence for increasingly large hole arrays,
with d = 1000 nm and δ = 1000 nm. There is a �at valley between λ0 ≈ 660 nm and
λ0 ≈ 700 nm; this is the coherence band gap we will be examining. It is noticeable
with as few as 10 holes in the array. Figure and caption from Ref. [30], ©American
Physical Society, used with permission.

that con�guration was discarded and a new one obtained until Eq. (2.39) was satis�ed

for all pairs. In Fig. 2.6, we show results for three di�erent standard deviations, plus

the unrandomized case (σ = 0). The results in Fig. 2.6 are the averaged Mf from

100 con�gurations for each nonzero σ. We can see that even at small σ, the band

gap nature is already destroyed. Increasing σ further makes the coherence more of

a large, broad peak with no �atness. Figures 2.5 and 2.6 together provide strong

evidence that the �at region we are describing is a band gap.

We now turn to investigating the origin of the band gap structure. We �rst simplify

our discussion by only considering a 1× 2 array, as shown in Fig. 2.7. Light incident

on the hole at x1 will create a SPP propagating to x2, denoted G1. Upon hitting the
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Figure 2.6: Coherence of randomized 1× 20 hole arrays, with d = 1000 nm and
δ = 1000 nm. For each value of σ (except zero), 100 randomizations were done, and
their averaged coherence Mf calculated. These Mf were then averaged together to
produce this �gure. Figure and caption from Ref. [30], ©American Physical Society,
used with permission.

hole at x2, part of G1 will re�ect back to x1; we denote this wave G1r. Additionally,

there will be a SPP wave propagating from x2 to x1, denoted G2. There would also

be a re�ected G2r mode, and since the pair of holes acts similarly to a Fabry-Perot

cavity, there can be a large number of other re�ections, but these three are su�cient

to consider for our explanation. Now, at x1 the G2 mode will have acquired a phase

of kspd. Thus, when

R{ksp} d = ν2π (2.40)

and ν2 is an even (odd) integer, G2 will constructively (destructively) interfere with

G1, which has a phase of 0 at x1. We call these �ν2 modes.� Similarly, G1r will have

acquired a phase of ksp2d at x1, and when

R{ksp} 2d = ν1rπ, (2.41)

where ν1r is an even (odd) integer, G1r will have constructive (destructive) interference

with G1 at x1. We call these �ν1r modes.� Combining Eqs. (2.40) and (2.41), we can
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see that these two conditions will coincide when

ν1r = 2ν2. (2.42)

This means that ν2 modes will only ever coincide with constructively interfering ν1r

modes. Now, in a larger array, every hole will have the same relationship characterized

by Eqs. (2.40) to (2.42) with its neighboring holes, all at the same wavelength. This

means that the entire array will have identical ν2 modes and identical ν1r modes.

x1 x2

G1

G2

G1r

d

Figure 2.7: Notation of plasmon modes used to derive the band gap condition.

To show this behavior, in Fig. 2.8 we show Mf of a 1× 50 array as a function

of R{ksp} d. In order to show many cycles, we neglect the wavelength-dependent

behavior of β and εm, setting them to constant values of β = 5 and εm ≈ −10.6488 +

i1.3734. These values were used in Ref. [17] for a wavelength of λ0 ≈ 600 nm. We can

see that there are band gaps around ν2 = 3 and ν2 = 5, while there are large peaks

near ν2 = 4 and ν2 = 6. This is consistent with with our model in Eqs. (2.40) to (2.42).

At even ν2, both G2 and G1r are in phase with G1, which increases coherence. In the

region between odd ν2 and odd ν1r, G2 and G1r will mostly destructively interfere with

G1. This minimizes the overall plasmonic contribution to the �eld at the holes, which

reduces the output coherence to near that of the input coherence. This destructive
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interference is the cause of the coherence band gaps we have observed. We note that

in our testing, we have not always observed band gaps appear near odd ν2, but they

have appeared only near odd ν2.

Figure 2.8: Mf for a 1× 50 array, with d = 1200 nm and δ = 1500 nm. Here, the
dielectric constant and scattering parameter were set to constant values of εm ≈
−10.6488 + i1.3734 and β = 5, independent of wavelength. Red lines are wavelengths
of destructive interference, blue of constructive interference, and purple is where the
two coincide. Figure and caption from Ref. [30], ©American Physical Society, used
with permission.

We note that there is an alternative interpretation of the band gap results in this

chapter. Namely, surface plasmons scattering from holes can be seen as a classical

form of quantum superradiance and subradiance, �rst examined by Dicke [31]. These

phenomena have to do with how a collection of atoms (or ions or quantum dots,

etc.) interact with incident light and with the �eld due to stimulated emission from

neighboring atoms. Speci�cally, superradiance is when the atoms radiate coherently

due to constructive interaction with the neighboring atoms; subradiance is when

the radiation is suppressed by destructive interference with the neighboring atoms.

The analogy between this quantum phenomenon and our plasmon multiple-scattering

system is readily apparent. The holes take the place of atoms, and generated SPPs

take the place of stimulated emission. This analogous relationship was �rst noted by

Ropers et al. [32]. This interpretation can be con�rmed by considering the coherence
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of the arrays in Fig. 2.5. The peak at around λ0 = 560 nm is a superradiant peak,

since at that wavelength d is about twice the plasmon wavelength (λsp ≈ 519 nm),

which corresponds to constructive interference. The valley that turns into a peak at

about λ0 = 710 nm is a subradiant peak because then d is about 3/2 the plasmon

wavelength (λsp ≈ 689 nm), which corresponds to destructive interference.

2.4 Other Results

2.4.1 Fano shape

Looking at these Mf curves, particularly in Figs. 2.5 and 2.8, we can observe that

some of them have what appears to be a Fano resonance shape. To test this, we

decided to try to �t a Fano-style curve against some of the resonances in Mf . These

�ts are shown in Fig. 2.9. Each of the resonances corresponds to a value of ν2, so

there is a �t for each value of ν2 shown. Each �t, denoted yν2 , is of the form of the

Fano resonance equation [33],

yν2 =

(
Fν2γν2 + λ0 − λ(ν2)0

)2
(
λ0 − λ(ν2)0

)2
+ γ2ν2

, (2.43)

where λ
(ν2)
0 is the wavelength at which the resonance occurs, γν2 is the width, and

Fν2 is the Fano parameter, which describes the degree of asymmetry. Each yν2 was

then normalized to the value of its corresponding peak. Table 2.2 shows the values

used in Eq. (2.43) to produce the �ts in Fig. 2.9, which were determined by trial and

error. Figure 2.9 shows �ts for resonances with ν2 from 3 to 7 for a 1× 20 array with

δ = 1000 nm. We can see that the Fano lines can make a good �t for these coherence

resonances, which gives evidence that there might be some underlying Fano-style

mechanism.

There are a couple of problems with this idea. First, while the Fano curve �ts

individual peaks well, the sum of all the �ts does not. Call the sum in Fig. 2.9(a)
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Table 2.2: Values of parameters used in Eq. (2.43) to produce Fig. 2.9.

Fν2 γν2 (nm) λ
(ν2)
0 (nm)

ν2 = 7 2.5 2.0 621.0
ν2 = 6 2.5 2.0 709.5
ν2 = 5 3.5 3.5 840.5
ν2 = 4 2.5 8.0 642.0
ν2 = 3 8.5 4.5 829.0

Figure 2.9: Mf , M0, and Fano �ts yν2 for a 1× 20 array, with a = 200 nm and
δ = 1000 nm.

Y = y5 + y6 + y7. In our testing, Y would �t well on the ν2 = 6 and ν2 = 7 peaks,

but not the ν2 = 5 peak. This is because Mf is linearly decreasing ν2 = 6 to ν2 = 5,

where Y is �at. This prevented Y from overlapping Mf on that peak. The second

big problem can bee seen in Fig. 2.9(b), which shows Mf for ν2 = 3 and 4, with

d = 1200 nm. The Fano �t is not as good as in Fig. 2.9(a). The ν2 = 3 Mf is mostly

symmetrical, so while y3 �ts the peak, it's not very insightful to put a Fano �t on

it. (This same issue applies to the ν2 = 5 peak in Fig. 2.9(a), so this may just be

a high-wavelength e�ect.) The real problem is at ν2 = 4. This resonance has many

narrow peaks on a broad superstructure and is severely rounded to the left of the

dip. This is evidence against the Fano idea. However, the model works so well for the

higher ν2 resonances that we think this would be worth some more investigation in



41

the future. In fact, it almost seems like the Fano model works better as ν2 increases.

2.4.2 Aid for future designs

In this subsection, we give some miscellaneous results that may be useful for future

design of these coherence conversion systems with linear hole arrays.

In Fig. 2.10 we show the location of ν2 modes as a function of λ0 and d. In addition,

we also indicate two regions where our model breaks down. In the green region, d

is less than λsp, so our assumption of multiple wavelengths between holes is invalid

in that region. In the red region, d is greater than Lsp, the plasmon propagation

distance, so plasmonic e�ects become greatly diminished.

Figure 2.10: Location of ν2 modes as a function of λ0 and d. Our model breaks down
in the shaded regions for the reasons speci�ed in the text boxes.

In Fig. 2.11, we show the averaged coherence of a 1× 20 array, showing how Mf

changes as a function of d and a, along with λ0. The ν2 modes are also indicated.

Figure 2.11(a) shows Mf as a function of d and λ0. We can see that there is a high

coherence �band� next to the ν2 modes. In Fig. 2.11(b), we show Mf as a function

of a and λ0. The behavior here is intriguing. The coherence is near zero for small

a. At value of a over about 170 nm, there are are �islands� of high coherence. These

islands follow curves that seem to asymptotically approach the ν2 = 3 line in opposite
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directions. Examining the cause of this behavior, and what role a plays analogous to

more well-known examples of band theory, could be an interesting new project.

Figure 2.11: Averaged coherence of a 1× 20 array, with δ = 1000 nm. (a) Mf as
a function of d and λ0, with a = 200 nm. (b) Mf as a function of a and λ0, with
d = 1000 nm.

2.5 Conclusion

In this chapter, we have theoretically demonstrated the existance of an optical co-

herence band gap using simulations of a gold plate with a linear array of subwavelength

holes. We described the model that we used and gave examples and explanations to

support our conclusions. We also discussed the possibility of a Fano-style mecha-

nism contributing to the coherence resonance shape and provided plots to aid future

designers using or simulating this device.



CHAPTER 3: COHERENCE CONVERSION AND TRANSMITTANCE WITH

SQUARE ARRAYS

3.1 Introduction

In the previous chapter, we used simulations of linear arrays of holes in a gold sheet

to show the existence of an optical coherence band gap. However, a real coherence

conversion deviece would more likely use a 2D square arrays of holes like the one that

was shown in Fig. 2.3. In this chapter, we will study these sorts of arrays using the

same simulation method as in Chapter 2. This work had two aims. The �rst was

to characterize the behavior of the array in response to changing parameters of the

array, speci�cally, the number of holes, the hole spacing (or lattice constant) d, and

the hole radius a. The second was to examine whether high intensity transmittance

correlates with high coherence. This second aim is important because our system not

only needs to change the degree of coherence, but also to have enough throughput to

be measurable at the detector.

3.2 Response of Coherence and Transmittance to Changing Parameters

3.2.1 Simulation details

In all our simulations, we consider the coherence and transmittance of gold plates

with square hole arrays, as shown in Fig. 3.1, over a wavelength range from λ0 =

550 nm to λ0 = 850 nm. In the previous chapter, we introduced an averaged coherence

Mf in order to analyze the coherence results. However, in this work we are interested

in comparing the transmittance through individual holes to the spectral degree of

coherence between holes, so we will generally not use the averaged coherence in this

chapter. We restrict our attention to three hole pairs: two holes in the center (holes
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A and B in Fig. 3.1), two of the outermost corners (C and D), and two holes in the

lower left corner (E and F ). We take it that the behavior of these hole pairs will give

a sense of the behavior of the entire array. We examine the e�ect of changing three

array properties: the lattice constant d (see Fig. 3.1), the hole radius a, and the array

size. When increasing array size, we only use con�gurations with an even number of

holes on each side in order to have two holes in the center of the array. For all of

these simulations, the transverse correlation length is δ = 1000 nm.

d

d

2a

A

B

C

DE

F

Center Holes
Outer Corners
Lower Left

Figure 3.1: An example 8 × 8 square hole array, with the three hole pairs we're
considering indicated as shown in the legend. The individual holes are also lettered.

In this work, we are interested in seeing how the coherence of a pair of holes coincide

with the transmittance at those holes. This is because the coherence conversion device

would need to both produce the desired spectral degree of coherence and also have

enough intensity to be measurable at the detector. The transmittance T (ρn) at the

nth hole is de�ned as

T (ρn) :=
Sf (ρn)

S0

, (3.1)

where S0 is the input spectral density and Sf (ρn) is the output spectral density,

Sf (ρn) =

∫∫ ∞
−∞

µ̃0(k)ψ∗k(ρn)ψk(ρn) d2k. (3.2)
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Recall that we de�ned S0 to be a constant across the plane of the array. Without

loss of generality, we assign S0 = 1. Recall also that the spectral density of a �eld, as

a function of wavelength, is the �eld's power spectrum, so the de�nition of transmit-

tance in Eq. (3.1) is the ratio of the output and input intensities. It is to be noted

that the de�nition of T (ρn) depends on α, the fraction of light directly transmitted

through the holes, via the output intensity in Eq. (3.2). Furthermore, α will in gen-

eral depend on the wavelength of the incoming light, as transmittance will depend on

the ratio a/λ0. However, we do not think that the speci�c value of α at any speci�c

wavelength will have much e�ect on whether there is a peak at that wavelength, as

it would be a slow function of λ0, whereas transmittance is a fast function of λ0, as

we will soon see. We therefore choose to scale out the e�ects of α by de�ning

Ts(ρn) :=
T (ρn)

α2
. (3.3)

This is the transmittance we shall use for the remainder of the paper.

It is worth mentioning that, due to the symmetry of our system, both holes in the

center hole pair (holes A and B in Fig. 3.1) will always have identical transmittance.

Similarly, the outer corner holes (C and D) will always have identical transmittance.

The lower left holes (E and F ), however, will not. But, hole E will have the same

transmittance as holes C and D (the outer corners). Because of this, we will ex-

clude the transmittance of hole E from consideration, and whenever we discuss the

transmittance of the lower left pair, we mean only the transmittance of hole F .

3.2.2 Changing array size

A realistic hole array for a coherence conversion would likely have at least dozens

of holes in it. Thus, we chose to examine the response of increasingly large numbers

of holes in the array in order to get a sense of the limiting behavior. We would expect

the behavior of the system to converge at large arrays since, as the number of holes in
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the array increases,the e�ects of the boundary will be insigni�cant compared to the

center. We examined hole arrays from 2× 2 (4 holes) to 20× 20 (400 holes). We give

sample results for changing array size in Fig. 3.2, which shows the input and output

spectral degrees of coherence and the transmittance for all three hole pairs for array

sizes 6× 6 (36 holes), 8× 8 (64 holes), 12× 12 (144 holes), and 16× 16 (256 holes).

Here d = 1000 nm and a = 200 nm.

Figure 3.2: E�ect of increasing array size on coherence and transmittance. Here,
a = 200 nm and d = 1000 nm. The left column, subplots (a-d), shows the coherence
and transmittance for the center holes. The center column, subplots (e-h), shows the
coherence and transmittance for the outer corner holes. The right column, subplots
(i-l), shows the coherence and transmittance for the lower left holes. Note that all
transmittances are plotted on a logarithmic scale.

Before examining the e�ect of array size, it is worth comparing the general output

coherence behavior of the hole pairs relative to each other, as these trends will hold

for all results that follow. The outer corners pair's |µf (ρn,ρm)| oscillates more rapidly
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than the other two pairs, generally having far more peaks and zeros than they do.

The lower left pair oscillates the least strongly, rarely ever getting near zero. Instead,

it tends to have narrow sub-peaks superimposed on a few broad, shallow peaks. The

central hole pair's behavior is between that of the other two pairs.

Now let's consider what happens as array size increases by examining Fig. 3.2 in

detail. First, it should be noted that, for all pairs, as the array size increases, the

coherence and transmittance peaks generally increase in number and have decreasing

width. Next, the center hole pair, Fig. 3.2(a-d), has a rather prominent coherence

peak at about λ0 = 770 nm and low array sizes. As the array size increases, this

feature gradually splits into two, until the array size is 16 × 16, at which point it

is now two distinct peaks with a notable gap in between where |µf (ρn,ρm)| is not

much greater than |µ0(ρn,ρm)|. Next, the outer corners pair, Fig. 3.2(e-h). Unlike

the center hole pair, this pair does not have any particular prominent peak that is

consistent for di�erent array sizes until the array size exceeds 8 × 8, at which point

there is a small but notable peak at about λ0 = 740 nm. As the array size increases,

this peak remains but has several taller sub-peaks come out of it, with nearby peaks

remaining low. Finally, the lower left pair, Fig. 3.2(i-l), mostly follows the same

pattern as the center hole pair. There is a broad peak with a center roughly between

λ0 = 750 nm and λ0 = 770 nm. As the array size increases, this peak has sub-peaks

grow up out of it, with more sub-peaks forming as the array size increases. When the

array size gets over 12×12, these sub-peaks separate into two clusters with a peakless

gap in between. In addition, several other peaks sprout sub-peaks and either split or

merge as the array size increases.

For all hole pairs, the 18×18 and 20×20 array coherence and transmittance results

(not shown) do not di�er signi�cantly from those of the 16×16 array, indicating that

adding additional holes will likely not cause results qualitatively much di�erent from

those presented here, although the precise location, height, and number of peaks does
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change.

Finally, it can be seen that the maxima of transmittance and coherence often coin-

cide exactly, and that the transmittance spectrum usually follows the general trend

of the coherence spectrum. Altogether, Fig. 3.2 suggests that it would be di�cult

to make a coherence conversion device work by reducing coherence. This is because

wavelengths where |µf (ρn,ρm)| < |µ0(ρn,ρm)| tend to have lower transmittance.

3.2.3 Changing lattice constant

For tuning coherence spectra to a desired wavelength, the lattice constant d is likely

to be one of the most important properties to control, since it can tune the holes to lie

where surface plasmons constructively or destructively interfere, whichever is desired.

We show results for changing lattice constant d in Figs. 3.3 and 3.4 for a 6 × 6 hole

array with 200 nm hole radius.

Figure 3.3 shows the output spectral degree of coherence and the scaled transmit-

tance for all three hole pairs for values of d from 850 nm to 2000 nm. We see that

coherence peaks tend to form �bands� of high coherence or low coherence which follow

a linear relationship between d and λ0. The bands do not all have the same slope;

those in the upper left corner have a steeper slope than those in the lower right corner.

All of the peaks redshift, which is what would be expected, since larger hole separa-

tion would resonate with longer plasmon wavelengths, which have an almost, but not

quite, linear dependence on λ0. Additionally, it can be seen that the transmittance

behavior often matches that of |µf (ρn,ρm)|, as expected.

Figure 3.4 shows the input and output spectral degrees of coherence of the center

hole pair for three di�erent values of d. This is to see the relationship between

transmittance and coherence more clearly. As we have seen from Figs. 3.2 and 3.3,

the transmittance generally follows the same trend as the output coherence, and

wavelengths where |µf (ρn,ρm)| < |µ0(ρn,ρm)| tends to have lower transmittance.
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Figure 3.3: Coherence and transmittance of a 6 × 6 con�guration, varying d, with
a = 200 nm. (a) Center holes coherence. (b) Center holes transmittance. (c) Outer
corners coherence. (d) Outer corners transmittance. (e) Lower left corner coherence.
(f) Lower left corner transmittance. Note that the transmittances are on a logarithmic
scale.

3.2.4 Changing hole radius

The hole radius directly a�ects the scattering strength β of the holes, as shown in

Eq. (2.19). We would thus expect that increasing a would cause the output coherence

to increasingly di�er from the input coherence. Figure 3.5 shows the e�ect of changing

hole radius on coherence and transmittance for all three hole pairs for values of a

ranging from 100 nm to 250 nm. It can be seen that increasing the hole radius increases

the oscillatory nature of the coherence. That is, for small a, |µf (ρn,ρm)| has a value

that is almost constant, with small gradual oscillations. Additionally, |µf (ρn,ρm)|
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Figure 3.4: Center hole output and input coherence and scaled transmittance for a
6× 6 hole array showing the e�ect of changing lattice constant d. Here, a = 200 nm.
(a) d = 950 nm. (b) d = 1000 nm. (c) d = 1050 nm.

does not di�er signi�cantly from |µ0(ρn,ρm)|, which is about 0.33 for the center hole

and lower corner pairs and is about 5× 10−24 for the outer corner pair. As a increases,

|µf (ρn,ρm)| di�ers more from |µ0(ρn,ρm)| and oscillates more strongly and rapidly.

And again, transmittance maxima tend to coincide with coherence maxima.

It is worth noting that in Fig. 3.5 there many coherence peaks which are at the

same location for all three hole pairs. Perhaps most prominently, there is a string

of narrow peaks beginning at a = 150 nm, λ0 = 698 nm and continuing up and to

the right which is present for all three hole pairs. This is a good indication that

the coherence conversion e�ects at these locations are a�ecting the global state of

coherence in roughly the same way, rather than just a�ecting isolated hole pairs.
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Figure 3.5: Coherence and transmittance of an 6 × 6 con�guration, varying a, with
d = 1000 nm. (a) Center holes coherence. (b) Center holes transmittance. (c) Outer
corners coherence. (d) Outer corners transmittance. (e) Lower left corner coherence.
(f) Lower left corner transmittance. Note that the transmittances are on a logarithmic
scale.

3.2.5 Relationship between coherence and transmittance

It would be good to look at the relationship between transmittance and coherence

more quantitatively than we have up until now. We do this by seeing how frequently

the maxima of |µf (ρn,ρm)| coincide with the maxima of Ts(ρn), to within±1 nm (e.g.,

what occurs in Fig. 3.2(a) at λ0 ≈ 770 nm). We use 1 nm because the wavelength

resolution we are using is 0.5 nm, and with discretization there is some ambiguity in

where a maximum truly is. It also allows us to count maxima that may be very close,

but not perfectly aligned.
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Figure 3.6 shows the fraction of coinciding maxima as a function of increasing

array size. The total number of maxima of |µf (ρn,ρm)| over the wavelength range

we're considering is denoted Nµ. Similarly, the number of transmittance maxima

is denoted NT . The number of these maxima that coincide within ±1 nm over the

wavelength range is denoted N . It can be seen that N/Nµ and N/NT generally

increase with increasing array size. This suggests that arrays with very many holes,

as may be used for a real coherence conversion device, will have high correlation

between transmittance maxima and coherence maxima.

Figure 3.6: Comparing the location of coherence and transmittance maxima that coin-
cide within ±1 nm. Note that for higher array sizes, a single coherence/transmittance
maximum may be within ±1 nm of multiple transmittance/coherence maxima, so the
percentage may exceed 100%.

As there is no signi�cant di�erence in behavior between N/Nµ and N/NT , to reduce

the number of plots we will only consider N/NT from here on out.

Figure 3.7 shows N/NT for changing lattice constant d, with one sub�gure for each

hole pair. For the center holes, N/NT is fairly uniform: it is mostly between 50%

and 80%, occassionally hitting 100%. For the outer corners, N/NT begins near 20%

and increases steadily to around 80% at d ≈ 1850 nm before declining again. For the

lower left pair, N/NT varies almost sinusoidally between about 40% and 100%. The

insets show histograms of the data from their respective plots. For the central hole

pair, N/NT is centered on about 50%, with a spread mostly from 40% to 90%. The
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outer corner pair has a similar distribution as the center hole pair. The lower left

pair's distribution is centered at roughly 70%. Taken together, these results suggest

what we already guessed intuitively from the �gures: that the maxima of |µf (ρn,ρm)|

and Ts(ρn) coincide more often than not. That said, d does not seem to have a strong

e�ect on this, as N/NT does not signi�cantly increase or decrease as d increases for

all three pairs.

Figure 3.7: Counting coinciding peaks while changing d on a 6 × 6 array, with a =
200 nm. (a) N/NT as function of d for the center hole pair. (b) Outer corners pair.
(c) Lower left pair. The insets show a histogram of the data in their respective plots.

Figure 3.8 shows the N/NT for changing hole radius a for the three hole pairs. They

all follow a similar trend. Recall from Fig. 3.5 that, for low a, there are not many

maxima of coherence or transmittance, so all the percentages are around 1/2, 1/3, 1/4,

and 1/5. This means that, for low a, typically only one or zero maxima coincide. After

about a = 150 nm, N/NT gradually increases, maxing out between 70% and 100%.
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The insets shows histograms of the data. Aside from the large number at 0%, the

distributions are widely spread. From all this, can see that a does seem to have some

e�ect on the coincidence of coherence and transmittance maxima. Speci�cally, for a

less than about 150 nm, the few maxima present do not coincide much.

Figure 3.8: ounting coinciding peaks while changing a on a 6 × 6 array, with d =
1000 nm. (a) N/NT as function of d for the center hole pair. (b) Outer corners pair.
(c) Lower left pair. The insets show a histogram of the data in their respective plots.

3.3 Averaged Coherence

As an aid to anyone who might continue work on this project, show the averaged

coherence of a square array as a function of λ0, d, and a in Fig. 3.9. The ν2 modes

are indicated as they were in Fig. 2.11. We can see in Fig. 3.9(a) that we seem to still

have band-gap-like behavior near the ν2 modes. In Fig. 3.9(b), we see that, above the

ν2 = 3 line, we have a line of isolated coherence peaks approaching the line, similar to
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that of Fig. 2.11(b). However, unlike Fig. 2.11(b), there is not another line of peaks

asymptotically approaching the line from below.

Figure 3.9: Averaged coherence Mf of a 6 × 6 array, with δ = 1000 nm. (a) Mf as
a function of λ0 and d, with a = 200 nm. (b) Mf as a function of λ0 and a, with
d = 1000 nm.

3.4 Conclusions

In this chapter, we have examined the coherence and transmittance response of

square hole arrays to changing array size, hole spacing, and hole radius. We have also

shown that coherence maxima tend to coincide with transmittance maxima, though

not always.



CHAPTER 4: CONSTRUCTION OF ARBITRARY VORTEX AND

SUPEROSCILLATORY FIELDS

4.1 Introduction

In this project, we have developed a method to mathematically construct super-

oscillatory �elds (�elds which are �faster than Fourier� [34]) in the transverse plane

of a beam which also involves arbitrary placement of optical vortices (zero-intensity

lines about which the phase rotates). This research was published in Ref. [35]. In

this chapter, we will �rst describe some of the basic physics of superoscillations and

of optical vortices. Then we will describe our mathematical method for creating �elds

containing vortices that can also be superoscillatory. After that, we will give some

demonstrations of our method and then discuss some error-checking we did to make

sure our method is sound. We end with a few concluding thoughts.

4.2 Superoscillations

For a long time, it was thought due to Fourier analysis that no band limited signal

f(x) could oscillate faster than its highest frequency component. For example, if the

function is band limited such that its Fourier transform f̃(kx) is zero outside the in-

terval [−kL, kL], then we would expect f(x) to have no oscillations of higher frequency

than kL. It has since been shown that this is not always the case. As �rst popularized

by Berry [34], a band limited signal can be made to oscillate arbitrarily fast in the

presence of closely-spaced zeros. These functions are what we call superoscillatory.

We give an example of a superoscillatory function in Fig. 4.1. Figure 4.1(a) shows

the reciprocal-space function g̃(k), which is band limited at k = ±kL. With these

band limits, standard Fourier theory would predict that the real-space function g(x)
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would not have much oscillation within a period λmin = 2π/kL. In Fig. 4.1(b), we

show the normalized absolute value of g(x), the inverse Fourier transform of g̃(k) with

kL = 1. With this value of kL, we would typically not expect to have a full period of

oscillations within a range less than 2π. One of the easiest ways of identifying a period

of oscillations is to count zeros: when the function crosses zero three times, that is

a period. So in Fig. 4.1(b), we would typically not expect to see three zeros within

the period 2π, and for the most part we do not. However, looking at the inset, we

can see that the function has three zeros within a period from -1 to 1, corresponding

to a period of 2. This is obviously less than 2π, so these oscillations are faster than

would be expected. These oscillations are called superoscillations, and the region of

a function where they occur (here, from about -1 to 1) is called a superoscillatory

region of the function. One important feature of superoscillatory function that we

can see here is large sidelobes. Superoscillatory functions always have sidelobes next

to the superoscillatory region that are much larger than the superoscillations are �

usually by several orders of magnitude [34]. We can see here that the sidelobes are

roughly two orders of magnitude greater than the superoscillations. When it comes

to applications, these sidelobes are usually the greatest challenge to overcome. In

Fig. 4.1(c), we show the normalized magnitude of g(x) again, along with a sinusoid

of frequency kL. Here, we have used a logarithmic scale. Logarithmic scales are often

used when plotting superoscillatory functions for two reasons. First, it helps make the

superoscillatory region visible by not letting the sidelobes dominate the plot. Second,

it makes the zeros easier to see; the very narrow downward dips in Fig. 4.1(c) are

zeros of the functions1. We can easily see that g(x) has the three zeros spaced more

closely together than does the sinusoid, again con�rming the superoscillatory nature

of g(x). In the rest of this chapter, we will usually use logarithmic scales to examine

1Technically, zero on a logarithmic scale would be negative in�nity. However, that is not typically
visible in logarithmic plots, either due to discretization or to aesthetic choice (as was done here, since
vertical lines going all the way to the bottom of the plot can clutter the �gure and be distracting).
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Figure 4.1: Example of a superoscillatory function. (a) Real and imaginary parts
of a reciprocal-space function g̃(k), band limited by ±kL. (b) Normalized absolute
value of the Fourier transform g(x) of g̃(k), with kL = 1. The inset shows oscillations
exceeding the maximum frequency of the signal. (c) Normalized absolute value of
g(x) along with a sinusoid of frequency kL, the maximum frequency of g̃(k). Here,
kL = 1. Note the logarithmic scale to help show the location of zeros.

the magnitude in superoscillatory regions.

Superoscillations have been investigated in a number of �elds; here we will give a

few examples. In quantum mechanics, it has been shown that a quantum particle with

bounded momentum (a band limit) can have its momentum increase after passing a

superoscillatory part of its wavefunction through a neutral slit [36]. It was also shown

that superoscillations in quantum wavefunctions can persist for a longer time than

might be expected [37]. In signal processing, superoscillations are part of why it is
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di�cult to de�ne a time-varying bandwidth: their existence means that the oscillation

frequency about some point in time is not a reliable indicator of the signal's bandwidth

[38]. That same paper showed that �while a frequency limit does not pose a limit to

how quickly a function can vary, a frequency limit does pose a limit to how much

a function's Nyquist rate samples can be peaked� [38]. In addition, it has been

shown that, to achieve a certain number N of superoscillations, the energy required

increases polynomially with 1/kL and exponentially with N [39]. In optics, it has been

shown that, in the speckle pattern of random waves with disc-shaped band limits, 1/5

of the area of the speckle pattern is superoscillatory, so superoscillations are more

common that may have been intuitively thought [40]. One important application of

superoscillations in optics is superresolution � beating the di�raction limit in light

focusing through a lens, which is important for nano-optics applications. We discuss

such an application in Chapter 5.

4.3 Optical Vortices

Optical vortices are phase structures that occur in monochromatic light �elds as

lines in 3D space where the intensity of the light is zero [41, pp. 223]. If we consider

the transverse plane of a beam, the �eld is typically modeled by use of complex

numbers, where the �eld U(x, y) is of the form

U(x, y) = Ur(x, y) + iUi(x, y) = Um(x, y) eiθ(x,y), (4.1)

where Ur(x, y) is the real part of U(x, y), Ui(x, y) is the imaginary part, Um(x, y)

is the amplitude (note that the beam's intensity is the square of its amplitude, in

appropriate units), and θ(x, y) is the phase. It follows that θ = tan−1(Ui/Ur); if the

amplitude Um is zero at some point in the plane, then at that point the phase will

be θ = tan−1(0/0), which is unde�ned, or singular. About these points, the beam's

phase will circulate, undergoing some integer multiple of 2π cycles about the zero
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point [41, pp. 228]. These singularities in phase are what create the vortex behavior

we will be examining in this section. Because of this, the study of optical vortices is

often called singular optics [41].

4.3.1 Basics of optical vortices

Many of the basic properties of optical vortices can be seen by looking at the

phase of Laguerre-Gauss beams. In the waist plane (z=0), Laguerre-Gauss beams are

de�ned, without normalization, in polar coordinates as [21, pp. 649]

ELG(ρ, φ) := E0
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where w0 is the beam width in the waist plane, E0 is a constant,and L
|l|
p (2ρ2/w2
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the associated Laguerre polynomials. Althought they are often expressed in polar

coordinates, for our purposes it will be more useful to express the Laguerre-Gauss

beam in Cartesian coordinates:
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where the plus/minus sign on y corresponds to the sign of l in Eq. (4.2). In Fig. 4.2,

we plot the normalized amplitude (top row) and the phase (bottom row) of a few of

these beams.

From Fig. 4.2, we can see several properties of optical vortices. The simplest optical

vortex, an l = 1, p = 0 mode, is shown in Fig. 4.2(a) and (b). We can see that the

amplitude has a bright ring with a dark hole in the center where the intensity is

zero. Looking at the phase, we can see that the phase undergoes a full 2π rotation,

from −π to π, in a counter-clockwise direction centered on the origin. That point

at the origin, which the phase rotates about and where the amplitude is zero, is the

phase singularity; this singularity and the surrounding phase structure together are
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Figure 4.2: Examples of Laguerre-Gauss beams.

the optical vortex. The counter-clockwise direction is denoted left-handed. It is so

named because if your left thumb is on the vortex, pointing into the page, your �ngers

will curl in the direction of rotation, from −π to π. Optical vortices can be either

left-handed or right-handed, depending on whether we take the sign on x ± iy in

Eq. (4.3) to be positive or negative, respectively. In the next column, �gures (c) and

(d), we see the amplitude and phase of a l = 4, p = 1 beam. Incrementing p from 0

to 1 has added a new ring about the center where the intensity is zero. Additionally,

increasing l to 4 has caused the dark region in the center to widen. Looking now at

the phase, we can notice a few di�erences from the l = 1, p = 0 phase. First the

phase now undergoes four full rotations about the vortex. The number of rotations

the phase completes about a vortex is called the vortex's topological charge or its

order [42, pp. 17]. So this is a 4th order vortex, whereas the the vortex in (b) was a

1st order vortex. The order of a vortex will always be an integer because the �eld is

assumed to be analytic [41, pp. 228], a term from the calculus of complex variables

which indicates that the �eld has no discontinuities. At the zero-intensity ring, we

can see that the phase abruptly changes by π. In the third column, (e) and (f), we
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show the amplitude and phase of an l = −4, p = 1 beam, which is right-handed.

Comparing this phase with the phase in (d), we can see that the phase does indeed

rotate in the opposite direction. It is important to note that the amplitudes in (c)

and (e) are exactly the same � changing the handedness of the vortex produced no

change in the intensity pattern of the beam. This can be a problem when trying to

detect optical vortices. Finally, in (g) and (h) we see the amplitude and phase of

an l = 5, p = 2 beam. Incrementing p to 2 has added another zero ring, so we can

conclude that the number of zero rings is equal to p. We will refer to this phase and

amplitude plot later in this chapter.

One feature of optical vortices not shown by the Laguerre-Gauss beams in Fig. 4.2

is that they tend to exist in pairs of opposite handedness [43], and the lines of constant

phase tend to �originate� on one member of the pair and �terminate� on the other. If

there is not an opposite-handed vortex to pair with, we may formally say that there

is one at in�nity [44]. This is suggested by Fig. 4.2, where lines of constant phase

(most noticeably the line where the phase transitions from π to −π) are lines going

to in�nity.

Another feature of optical vortices not seen in Fig. 4.2 is their dislocation type.

This terminology comes from the language of crystal lattices and defects in such

lattices. Adding a new plane of atoms to a crystal lattice dislocates other atoms

in the lattice generally in one of two ways: either as an edge dislocation or a screw

dislocation. As it is not a large component of this chapter's project, we will not

delve much into this topic in this dissertation; the interested reader can learn more

in Refs. [41, sections 3-5] and [42, chapter 3]. Brie�y, a screw dislocation is de�ned

as the line of zero intensity being parallel to the axis of propagation. This causes the

phase to have a helical shape along the direction of propagation, like the threads on a

screw. The vortices at the center of the Laguerre-Gauss beams in Fig. 4.2 are screw

dislocations, as can be seen by their direction and the phase rotation about them. An
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edge dislocation is de�ned as the zero-intensity line being perpendicular to the axis of

propagation. When viewed from along this axis, this dislocation looks line an �edge�

in the phase plot across which the phase abruptly changes by a value of π. The phase

does circulate around an edge dislocation, but the circulation isn't visible because we

are viewing it perpendicularly. A circular edge dislocation would look like the phase

of the zero-intensity rings in Fig. 4.2 (d), (f), and (h). Note that, although we said

that the zero-intensity rings in the p > 0 beams look like edge dislocation, they are

not edge dislocations. This is because the rings in the plot are not actually rings in

the beam. They extend along the length of the beam, so in 3D space they are actually

�cylinders� of zero-intensity2, not lines or rings, so they are not optical vortices at all.

It is also possible for a vortex to be neither parallel nor perpendicular to the axis of

propagation; such vortices are called mixed edge/screw dislocations. Also note that

the zero-intensity lines are usually only locally straight; they can make shapes like

knots, braids, or twisted loops [45], as can be seen in laser speckle [46].

Note that there is not actually a sharp discontinuity in the phase when the phase

crosses from π to −π, as it might seem from the phase plots in Fig. 4.2. The lines

formed when the phase crosses that π/−π transition are an artifact of the color map

used in the plots. A more realistic picture of the phase could be obtained using a color

map that has the same color for both the maximum and the minimum. However, those

color maps tend to make it more di�cult to identify vortex location, handedness, and

order, which are the vortex properties we are most concerned with for this project.

4.3.2 Applications of optical vortices

Optical vortex beams have a number of interesting applications. Here, we will

brie�y give a few, just to give a �avor of what is possible.

One intriguing application of optical vortices is their possible use in micromachines.

2If you want to be technical, Laguerre-Gauss beams expand in either direction from the waist
plane, so the shape is less of a cylinder and more like a tube of paper with a rubber band in the
middle.
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Optical vortices possess orbital angular momentum, and they can impart this momen-

tum to objects, o�ering many applications for rotating devices at the microscale. The

rotation can be imparted by simple absorption [47] or by birefringence [48]. These

rotations have been used to produce gear-like systems [49, 50]. Small particles not in

the central axis of the beam can orbit the center of the beam [51, 52]; rows of such

beams have led to the production of microoptomechanical pumps [53].

Optical vortices have been used to show the existence of the rotational Doppler shift.

As the name implies, this is a version of the well-known translational Doppler shift

that manifests with rotations. Imagine we have a vortex propagating in a straight line,

and we consider a reference frame which is rotating about the same axis as the vortex.

The speed at which the reference frame is rotating relative to the vortex will change

the perceived angular speed of the vortex. Since the vortex rotates with the same

frequency as the wave, this results in a changed perception in the wave's frequency

as well � this is the rotational Doppler shift. This new Doppler shift has been used

for both translating and rotating optically trapped particles [54] and measuring the

rotation of an object [55].

One promising application of optical vortices is for point-to-point free-space optical

communications. Referring back to Laguerre-Gauss beams, each mode is orthogonal

to the others, so in principle some numberM of vortices of di�erent order m could be

used to transmit information simultaneously. In addition, vortices are fairly resistant

to atmospheric turbulence, reducing their distortion on propagation. There are some

challenges to overcome, though. For example, after some amount of propagation,

individual vortices can wander enough to miss the detector, and higher-order vortices

tend to break up into lower-order ones (i.e., a vortex of order m will break into m 1st

order vortices) [56].
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4.3.3 Creation and detection of optical vortices

Here, we describe a few methods for creating optical vortices and detecting them;

this information is by no means exhaustive.

There are several ways of creating beams with optical vortices. One of the simplest,

conceptually, is to create a Laguerre-Gauss beam by passing a Gaussian laser mode

through a spiral phase plate [57]. However, this does not create a pure mode, and

such a phase plate can be di�cult to fabricate, since the height of the plate needs to

be on the order of the wavelength [42, pp. 64-65]. A laser beam can be converted

to a vortex beam using computer-generated holograms [58] or liquid-crystal displays

[59, 60, 61]. One group created optical vortices using surface plasmons excited in

spiral grooves on a thin gold �lm with a central cylindrical aperture. The plasmon

modes would impart orbital angular momentum to the light, thus causing the output

to be a vortex mode [62].

Detecting vortices is a di�cult challenge, since they are inherently a phase struc-

ture, while optical measurements are usually of intensity. Simply detecting zeros of

intensity is not enough, as a pure zero cannot be separated from a very low sig-

nal that happens to be below the experimental uncertainty. Also, as can be seen

from Fig. 4.2(c-f), vortices with opposite handedness can produce identical inten-

sity patterns. One detection method has been to interfere a vortex beam with its

mirror image [63]. Several methods exist based on di�raction, where vortices of dif-

ferent handedness/order will produce di�erent di�raction patterns. This is often done

with a triangular aperture [64, 65], though other shapes have been used [66, 67, 68].

Computer-generated holograms can be used to separate di�erent modes to di�erent

parts of the observation plane: a bright spot in a certain location means a speci�c

type of vortex was present [69, 70, 71]. A similar idea separates vortex types to

di�erent parts of the observation plane by using geometric techniques [72].
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4.4 Mathematical Method for Making Superoscillatory Optical Vortex Fields

One of the challenges of superoscillatory functions has been that they require some-

what complicated mathematics in order to produce them, such as asymptotics [34]

or Tschebysche� polynomials [73]. A relatively simple Fourier method for producing

superoscillations in 1D functions was published by Chremmos and Fikioris [74]. Our

method for constructing arbitrary and superoscillatory optical vortex �elds is initially

based on that method, but extends the work to 2D �elds of complex variables and

allows for the creation of optical vortices of arbitrary location, handedness, and order.

We begin with a two-dimensional, band limited function f̃(kx, ky) in reciprocal

space. The corresponding real-space function f(x, y) is given by the inverse Fourier

transform (IFT)

f(x, y) =
1

(2π)2

∫∫ kL

−kL
f̃(kx, ky) ei(kxx+kyy)dkxdky, (4.4)

where ±kL are the band limits of the function. We now multiply this by the N th-order

polynomial h(z̄),

h(z̄) :=
N∑
n=0

anz̄
n, (4.5)

where z̄ := x+iy and an are real constants. Let us call the result of this multiplication

g(x, y),

g(x, y) := h(z̄) f(x, y) . (4.6)

We note that this new function g(x, y) will have the same band limits as f(x, y). We

can see this by looking at its Fourier transform (FT),

g̃(kx, ky) =
N∑
n=0

anin
[
∂

∂kx
+ i

∂

∂kx

]n
f̃(kx, ky) , (4.7)
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where we have used the property that

F{xnf(x)} = in
∂n

∂knx
f̃(kx, ky) , (4.8)

and similarly for y and ky, where F{} denotes the FT operation. Recall that f̃(kx, ky)

is zero outside of its band limit. Because of this, the constants an and the di�eren-

tiation do not cause g̃(kx, ky) to have a greater bandwidth than f̃(kx, ky). However,

Eq. (4.7) does impose a limitation on f̃(kx, ky). Namely, the �rst N −1 derivatives of

f̃(kx, ky) must be continuous, or else g̃(kx, ky) will have Dirac-delta singularities [74].

Now we can see how this method produces superoscillations and optical vortices.

For g(x, y) to be superoscillatory, it must have oscillations that are more rapid than

its highest band limit. We can create these oscillations by placing zeros in g(x, y)

using the polynomial h(z̄). We can see how to do this by rewriting h(z̄) in terms of

its roots as

h(z̄) =
N∏
n=0

(z̄ − z̄n) , (4.9)

where z̄n is the nth root of h(z̄). We can choose any z̄n we want; at those points

in the plane, h(z̄) will be zero, and so g(x, y) will be zero. If we place these zeros

close enough together, then g(x, y) will be oscillating faster than the band limits

kL would normally permit and thus it would be superoscillatory. (Obviously, if the

zeros are placed far apart from each other, they will not necessarily make the �eld

superoscillatory.) And, since at the zeros g(x, y) has the form (x − xn) + i(y − yn),

like the Laguerre-Gauss beam in Eq. (4.3), g(x, y) will have optical vortices at those

locations as well.

Note that there is no restriction on which points can be zeros: this allows us to place

zeros in any arbitrary arrangement. Furthermore, this method gives arbitrary control

over both the handedness and the order of the vortices. The polynomial in Eq. (4.9)

produces left-handed vortices by default. To produce right-handed vortices, simply
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take the complex conjugate of the term in parentheses. That is, replace (z̄ − z̄n) with

(z̄ − z̄n)∗. To have a vortex of orderm, simply use the desired z̄n as a rootm times. A

word of caution: you cannot simply replace (z̄ − z̄n) in Eq. (4.9) with (z̄ − z̄n)m. That

is because, although the mth-order vortex is a single vortex, it requires m derivatives

to avoid singularities, so with this method it is best to think of an mth-order vortex

as m vortices of order 1 occupying the same point. To produce a mth-order vortex

which is right-handed, apply the conjugation at all m roots. We give the algorithm

for our method in Algorithm 1 below.

Algorithm 1 Superoscillatory optical vortex �eld algorithm

1: Choose N points in the plane where you want zeros.
2: De�ne a coordinate system z̄ := x+ iy and assign these points their coordinates,

where the nth zero has coordinate z̄n.
3: Create the polynomial h(z̄) using Eq. (4.9), applying conjugation where a right-

handed vortex is desired.
4: De�ne a band limited function f̃(kx, ky) in reciprocal space which has at least
N − 1 continuous derivatives.

5: Take the IFT of f̃(kx, ky) to obtain the real-space function f(x, y).
6: Obtain g(x, y) using Eq. (4.6). The �eld g(x, y) will have optical vortices at the

points (xn, yn) and will be superoscillatory if these zeros are close enough together.

This method could be implemented by a spatial light modulator (SLM) and a thin

lens in a 2f con�guration, where f is the focal length of the lens, as shown in Fig. 4.3.

In this con�guration, the image in the rear focal plane is the FT of the object in the

front focal plane [75, pp. 87]. So, the SLM could display the reciprocal space �eld

g̃(kx, ky), which would yield the superoscillatory vortex �eld g(x, y) in the rear focal

plane.

We note that, as we have described it, this method will produce vortices with screw

dislocations. It is also possible to make vortices with mixed edge/screw dislocations.

To do so, simply change the de�nition of the coordinate system z̄ from z̄ := x+ iy to

z̄ := αx + iβy, where α and β are real constants. The relative value of α and β will

determine how much the zero line is tilted along each axis.
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LensSLM with g̃(kx, ky)

|g(x, y)|

ff

Figure 4.3: A spatial light modulator (SLM) and a thin lens in a 2f con�guration.

When we submitted the �rst version of our paper [35], a reviewer pointed out that

our resulting vortex arrangements appeared somewhat similar to those that could

be obtained by a perturbation method [76]. However, our method has four distinct

advantages. First, the perturbation method can only produces vortices along straight

lines or at the vertices of regular polygons, whereas our method allows for completely

arbitrary placement of each vortex. Second, our method allows for arbitrary hand-

edness for every vortex; the perturbation method can only make vortices all with

the same handedness. Third, our method allows for higher-order vortices, while the

perturbation method only yields �rst-order vortices. Finally, our method allows for

the possibility of making mixed edge/screw vortices.

4.5 Demonstrations of Our Method

We will examine three test functions to demonstrate our superoscillatory/optical

vortex �eld creation method. The �rst test function will be primarily aimed at demon-

strating the superoscillatory nature of the resulting �elds. The second test function

will mainly look at our control over the handedness of the resulting optical vortices.

The third will demonstrate our ability to place vortices at arbitrary locations and

with arbitrary order.



70

For our �rst test case, we will begin with the band limited function

f̃circ(kx, ky) := cos

(
π

2kL
k

)5

, (4.10)

where k :=
√
k2x + k2y and f̃circ(kx, ky) is band limited by setting to zero where |k| ≥

kL. This function, denoted f̃circ because of its circular symmetry, is plotted in Fig. 4.4.

Since the cosine term is raised to a power of 5, it can have at most 5 derivatives

without discontinuities (note that while cosn(x) is in�nitely di�erentiable, a band

limited cosn(x), when band limited to its �rst zeros, is only di�erentiable n times).

With this function we will use the polynomial

hcirc(z̄) := z̄5 − 5

4
z̄3 +

1

4
z̄, (4.11)

which has roots along the x axis at z̄ = 0, ±0.5, and ±1. Our �nal �eld is

gcirc(x, y) := hcirc(z̄) fcirc(x, y) , (4.12)

where fcirc(x, y) is the IFT of f̃circ(kx, ky), which we calculated numerically.

Figure 4.4: (a) x-axis slice of f̃circ(kx, ky). (b) Plot of f̃circ(kx, ky).

In Fig. 4.5 we plot the normalized amplitude and the phase of gcirc(x, y). In
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Fig. 4.5(a), we can see that the amplitude has a circular shape similar to that of

the l = 5 Laguerre-Gauss beam in Fig. 4.2(g). In Fig. 4.5(b) (note the logarithmic

scale), we see a close-up of the dark spot at the center of Fig. 4.5(a). The zeros are

where they should be according to Eq. (4.11). Now, with kL = 1, we would typically

not expect to see more than three zeros within a period λmin = 2π, but we have �ve

zeros in a line less than half of that, so the �eld is superoscillatory. Note that the

amplitude of the �eld in the superoscillatory region is �ve or six orders of magnitude

less that of the surrounding bright ring in Fig. 4.5(a), consistent with the behavior

of superoscillations discussed in Section 4.2. In Fig. 4.5(c) we can see that the �eld

has a phase structure similar to that of the l = 5, p = 2 Laguerre-Gauss beam in

Fig. 4.2(h), with �ve full 2π rotations about the center and phase jumps of π at

the zero rings. In Fig. 4.5(d) we see a close-up of the phase in Fig. 4.5(c). We can

compare this with the amplitude in Fig. 4.5(b) to con�rm that our zeros are in fact

optical vortices, which are left-handed and of order 1 as expected. Note also that

since all the vortices are left-handed, their right-handed counterparts are at in�nity;

this is why those lines at the π/− π transition tend toward in�nity.

To further examine the superoscillatory nature of these zeros, in Fig. 4.6 we plot

the x axis of the normalized amplitude of gcirc(x, y) along with a sinusoid of frequency

kL. It can be seen that, over the period λmin, the sinusioid has three zeros, whereas

gcirc(x, y) has �ve. This con�rms the superoscillatory nature of these zeros.

Our second test function will show our control over the handedness of vortices. We

use a new f̃(kx, ky) which has rectangular symmetry,

f̃rect(kx, ky) := cos

(
π

2kL
kx

)6

cos

(
π

2kL
ky

)6

. (4.13)

This function is band limited by setting it nonzero only where kx < kL and ky < kL.

See Fig. 4.7 for a visualization. Since the cosine terms in f̃rect(kx, ky) are raised to
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Figure 4.5: Magnitude and phase plots for the circular case, with kL = 1. (a) Nor-
malized magnitude of gcirc(x, y). (b) Magnitude of gcirc(x, y), zoomed in to show the
zeros at the roots of Eq. (4.11) and normalized to (a). Note the logarithmic scale.
(c) Phase of the �eld in (a). (d) Phase of the �eld in (b). Reprinted with permission
from ref [35], OSA.

the power 6, there can be up to six zeros added to the �eld. With this function, the

polynomial we will use is

hrect(z̄) :=
5∏

n=0

Cn
{
z̄ − ieiπ(2n+1)/6

}
, (4.14)

where C is a complex conjugation operator. This polynomial will produce a regular

hexagon of vortices on the unit circle with alternating handedness. Our �nal �eld is

grect(x, y) := hrect(z̄) frect(x, y) , (4.15)

where frect(x, y) is the IFT of f̃rect(kx, ky), which we calculated numerically.

In Fig. 4.8 we plot the normalized amplitude and the phase of grect(x, y). In
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Figure 4.6: x-axis of |gcirc(x, y)|, with kL = 1, plotted with a sinusoid of the minimum
wavelength associated with this bandwidth. The thick black line is the wavelength
of the sinusoid. Note the logarithmic scale. Reprinted with permission from ref [35],
OSA.

Fig. 4.8(a) we can see that the amplitude has a rectangular shape, which we would

expect from the de�nition of f̃rect(kx, ky) in Eq. (4.13). Its center has a dark circle,

similar to the one in Fig. 4.5(a), where the added zeros are. In Fig. 4.8(b) we can see

that the zeros do form a regular hexagon on the unit circle as expected. In Fig. 4.8(c)

we can see that the phase of the �eld in Fig. 4.8(a). In Fig. 4.8(d) we can see that the

vortices alternate handedness as planned. we can also see that, now that each vortex

is paired with an opposite-handed vortex, we no longer have the π/ − π transition

Figure 4.7: (a) x-axis slice of f̃rect(kx, ky) (b) Plot of f̃rect(kx, ky).
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lines stretching to in�nity. Rather, they connect to an opposite-handed vortex.

Figure 4.8: Magnitude and phase plots for the rectangular case, with kL = 1. (a)
Normalized magnitude of grect(x, y). (b) Magnitude of grect(x, y), zoomed in to show
the zeros at the roots of Eq. (4.14) and normalized to (a). Note the logarithmic scale.
(c) Phase of the �eld in (a). (d) Phase of the �eld in (b). Reprinted with permission
from ref [35], OSA.

Our �nal test case is shown in Fig. 4.9, demonstrating our ability to make arbitrary

arrangements of vortices of arbitrary order. Here we have used our method to produce

a �eld with 76 vortices arranged to spell �UNCC.� The vortices alternate handedness

within each letter, and in the second �C� they are all second order, except for the

endpoints. For the reciprocal-space function f̃(kx, ky), we used f̃rect(kx, ky) except

with a power of 120 instead of 6, which provides more than enough derivatives.

The results in Fig. 4.9 prove that our method can be used to produce arbitrary

arrangements of vortices of arbitrary handedness and order.

4.6 Error-Checking Our Method

With the rectangular function, we can do a couple of checks on the accuracy of our

method. First, the IFT of f̃rect(kx, ky) has an analytical form we can compare our
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Figure 4.9: Magnitude and phase plots for a �eld with vortices arranged to spell
�UNCC.� Each of the letters has alternating right-handed/left-handed vortices. The
vortices in the second �C� are second order, with the exception of the end points.
(a) Normalized magnitude of the �eld. To help make the vortices visible, the color
map was capped at a maximum of 1× 10−10. (b) Phase of the �eld. Reprinted with
permission from ref [35], OSA.

numerically-obtained IFT against:

f
(an)
rect (x, y) =

1

(2π)2

6∑
m=0

6∑
j=0

(
6

m

)(
6

j

)
sinc[βm(x)] sinc[βj(y)] , (4.16)

where

βm(x) := (6− 2m)
π

2
+ xkL (4.17a)

βj(y) := (6− 2j)
π

2
+ ykL. (4.17b)

Comparing our numerically computed |grect(x, y)| with
∣∣∣g(an)rect (x, y)

∣∣∣, where g(an)rect (x, y) =

h(z̄) f
(an)
rect (x, y), yielded a root-mean-square di�erence less that 1.1× 10−10 % of the
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mean value of |grect(x, y)|.

One possible issue with our SLM-based system is discretization. That is, while we

have so far made the image-plane g(x, y) using h(z̄) and the IFT of f̃(kx, ky), the

real system would work by having the illuminated SLM display a pixelated g̃(kx, ky),

the FT of g(x, y). It is possible that the discrete pixels of the SLM could cause

the superoscillatory nature of the �eld to be lost. As a way of checking this, we

analytically derived the FT of g(x, y), and then took the numerical IFT of the resulting

g̃(kx, ky). This numerical IFT is taken to be a simple approximation of the e�ect of

having a discrete screen. Since this Fourier transform means computing a lot of

derivatives, per Eq. (4.7), we used a relatively simple setup, with only three zeros.

We used frect(x, y) as a starting point, and multiplied it by a polynomial

h
(test)
rect (z̄) = z̄ (z̄ − 1) (z̄ + 1) (4.18)

which has roots at 0 and ±1. The FT of the resulting g
(test)
rect (x, y) is

g̃
(test)
rect (kx, ky) = 6bc3xc

3
y

{
1

2
ic2xcy

[
1− 88b2 +

(
1 + 92b2

)
cos(2bky)

]
sx + 20ib2c3ys

3
x

− 1

2
c3x
[
1− 22b2 +

(
1 + 18b2

)
cos(2bky)

]
sy − 90b2cxc

2
ys

2
xsy

}
,

(4.19)

where

b :=
π

2kL
(4.20a)

cx := cos(bkx) (4.20b)

cy := cos(bky) (4.20c)

sx := sin(bkx) (4.20d)

sy := sin(bky) . (4.20e)
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We then compared taking the discrete FT of this analytically-derived g̃
(test)
rect (kx, ky)

against the g
(test)
rect (x, y) obtained using our normal method (taking the IFT of f̃rect(kx, ky)

then multiplying by h
(test)
rect (z̄)). Both cases had the superoscillatory zeros, and the

root-mean-square di�erence between their normalized amplitudes was 1.8× 10−8 %

of the mean of
∣∣∣g(test)rect (x, y)

∣∣∣ obtained via our normal method.

4.7 Conclusions

In this chapter, we have used simulations to demonstrate the validity of a technique

for mathematically producing optical vortices at arbitrary locations in the transverse

plane of a beam which can make the �eld be superoscillatory. Additionally, this

technique allows for arbitrary control over each vortex's handedness and order.



CHAPTER 5: SUPEROSCILLATORY LENS

5.1 Introduction

In Chapter 4 we introduced a method for creating arbitrary arrangements of optical

vortices which can also be superoscillatory. In this chapter, we use a modi�cation of

this method to propose a superresolution lens, a lens with a resolution higher than

would be expected by the conventional di�raction limit. A simple example of this

idea was �rst demonstrated by Gbur [77]; here, we examine it in more depth.

5.2 Superresolution and Superoscillatory Lenses

�Resolution� is a somewhat ambiguous concept, as there is no unique way to math-

ematically de�ne the resolution of a lens. That said, resolution is related to the lens's

point spread function (PSF), which is the lens's response to a point source. To borrow

the language of linear system theory, the PSF is the lens's impulse response. The PSF

of a typical circular lens is the Airy disk [78, pp. 469-472], shown in Fig. 5.1(a). The

Airy disk represents the intensity of light in the image plane and is de�ned, in terms

of an arbitrary variable x, as

I(x) := I0

[
2J1(x)

x

]2
, (5.1)

where I0 is the maximum intensity and J1(x) is the Bessel function of the �rst kind

of order one. A pair of incoherent point sources, whose combined image is the sum of

their individual intensities, would produce a pair of overlapping Airy discs like the ones

shown in Fig. 5.1(b-c). Resolution, then, has to do with the distance the two point

sources must be apart in order for their central lobes to be distinguishable: the shorter

this distance, the better the resolution. As we said, this is ambiguous, and somewhat
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arbitrary, as the two lobes can overlap partially while still being distinguishable in

some sense. In any case, the resolution of a lens depends on the width of the central

lobe in its PSF. For example, one common way to de�ne resolution is the Rayleigh

criterion, which says that two point sources are just resolved when the center of one

source's Airy disk coincides with the �rst zero ring of the other source's Airy disk

[78, pp. 472]. In other words, the resolvable distance in the Rayleigh criterion is

the distance from the center of the PSF's central lobe to its �rst zero ring. The two

objects in Fig. 5.1(b) satisfy the Rayleigh criterion and are resolvable � their central

lobes overlap but can be reasonably distinguished. On the other hand, the two objects

in Fig. 5.1(c) are too close together and are not resolvable; the two objects' central

lobes combine into a single lobe in the image. In this chapter, the Rayleigh criterion

is the de�nition of resolution distance that we will use. This de�nition obviously

describes the width of the central lobe and is conceptually linked with our method

from Chapter 4, which also depends on zeros.

In recent years, superoscillation has begun to be used as a method for achieving a

superresolution lens. Here, we will give a few examples. The idea for a superoscillatory

lens (SOL) was �rst introduced by Huang and Zheludev in 2009 [79]. They gave an

example of a 1D lens consisting of an optical mask to modulate the intensity and

phase of light to produce a superoscillatory region in the image plane. The lens was

designed using prolate spheroidal wavefunctions, and was shown to be theoretically

robust against manufacturing errors. Another SOL was designed by Rogers et al. [80]

using a mask made of alternating rings of unity and zero transmittance of varying

width. Using a scanning confocal setup with an incident wavelength of 640 nm, they

demonstrated imaging superior to a conventional lens with a numerical aperture of

1.4. Another kind of SOL was made using a strategy called optical eigenmodes, which

used SLMs to generate superoscillatory spots [81, 82, 83]. Yuan, Rogers, and Zheludev

used an optical mask to make achromatic SOLs [84].
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Figure 5.1: (a) Cross-section of an Airy disk. The ticks on x axis (other than zero)
are the locations of zero rings. (b) A pair of Airy disks, resolvable according to the
Rayleigh criterion. Dashed lines are the disks; the solid line is their combined image.
The dotted lines are guides to the eye. (c) An unresolvable pair of Airy disks. The
line styles have the same meaning as in (b).



81

As might be expected, one of the main challenges with using superoscillations for

imaging is the sidelobes � if a pair of point sources is far enough apart, the central

lobe of one will be overwhelmed by the sidelobe of the other, and vice versa. This

means that, in practice, a SOL can only image a small area at a time, typically using

a scanning confocal setup [80, 83]. So the two goals for designing a superresolution

lens using superoscillations are to have good resolution (narrow central lobe) and to

keep the sidelobes as far from the central lobe as possible. We will show that our

method can address both of those goals.

5.3 Our Superoscillatory Lens Method

A sketch of our SOL setup is shown in Fig. 5.2. We have an ordinary thin lens

contained within an aperture, with a phase mask on the object plane side to modulate

the incoming light. The modulation from the phase mask is what will produce the

superoscillation e�ect in the image plane. In principle, the lens and the mask can be

combined. The image plane is at a distance dI from the lens plane, and the object

plane is at a distance do from the lens plane. The image distance, object distance,

and focal length f of the lens obey the lens law:

1

f
=

1

do
+

1

dI
. (5.2)

For the moment, we will only consider a point object located at the origin of the

object plane, in order to obtain the SOL's point-spread function.

Our point object is illuminated by monochromatic light of wavelength λ0. Light

from the object propagates along the z axis through the lens and into the image plane.

By Fresnel di�raction [21, pp. 351], the �eld in the image plane will be

U(rI , dI) = eik0dI
i

λ0dI

∫∫
A

U0(rL) l(rL) t(rL) e
i
k0
2dI
|rI−rL|2d2rL (5.3)



82

y
z

x

Phase mask

Lens

Aperture

dido

Image plane, riObject plane, ro Lens plane, rl

Figure 5.2: Superoscillatory lens setup with a point object.

where rI is the x and y coordinates in the image plane, k0 = 2π/λ0 is the wavenumber

of the light, A is the area of the lens, and rL is the x and y coordinates in the lens

plane. The function U0(rL) is the �eld from the object in the image plane,

U0(rL) := U0e
i
k0
2do
|ro−rL|2 , (5.4)

where ro is location of the point object in the object plane and U0 is the �eld ampli-

tude. The function l(rL) is the lens function, modeling the e�ect the lens has on the

wave, de�ned as [75, pp. 91]

l(rL) := e−i
k0
2f
|rL|2 . (5.5)

The function t(rL) is the transmission function of the phase mask, which we will

de�ne later. Putting this all together, in the image plane we have

U(rI , dI) = eik0dI
i

λ0dI
U0

∫∫
A

ei
k0
2do
|ro−rL|2t(rL) e−i

k0
2f
|rL|2e

i
k0
2dI
|rI−rL|2d2rL. (5.6)

We will now show that, in the image plane, Eq. (5.6) is an aperture-limited Fourier
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transform operation on t(rL).

Rearranging the exponents and using the vector property |a− b|2 = |a|2 + |b|2 −

2a · b, we obtain

U(rI , dI) = eik0dI
i

λ0dI
U0

∫∫
A

t(rL) e
i
k0
2

(
|ro|2+|rL|2−2ro·rL

do
−|rL|

2

f
+
|rI |2+|rL|2−2rI ·rL

dI

)
d2rL.

(5.7)

Using the lens law, Eq. (5.2), yields

U(rI , dI) = eik0dI
i

λ0dI
U0

∫∫
A

t(rL) e
i
k0
2

(
|ro|2−2ro·rL

do
+
|rI |2−2rI ·rL

dI

)
d2rL. (5.8)

Rearranging terms, we now have

U(rI , dI) = eik0dI
i

λ0dI
U0e

i
k0
2

(
|ro|2
do

+
|rI |2
dI

) ∫∫
A

t(rL) e
−ik0

(
ro
do

+
rI
dI

)
·rLd2rL, (5.9)

We can now see that Eq. (5.9) is a Fourier transform of t(rL). This can be made even

more explicit by de�ning

k := k0

(
ro
do

+
rI
dI

)
, (5.10)

and we have

U(rI , dI) = eik0dI
i

λ0dI
U0e

i
k0
2

(
|ro|2
do

+
|rI |2
dI

) ∫∫
A

t(rL) e−ik·rLd2rL, (5.11)

which �nally means that

U(rI , dI) ∝ F{t(rL)}. (5.12)
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where F{} denotes the Fourier transform operation. We can thus de�ne

UI(rI) := F{t(rL)}

t(rL) = F−1{UI(rI)}.

(5.13a)

(5.13b)

where F−1 denotes the inverse Fourier transform and UI(rI) is equal to U(rI , dI),

except with the constants in front of the integral omitted because they make no

qualitative di�erence to the shape of the intensity in the image plane.

The Fourier relationship in Eq. (5.13) forms the basis of our SOL method. The

transmission function t(rL) is zero outside of the aperture, so it takes the place of the

band limited function f̃(kx, ky) from our vortex method in Chapter 4. The image �eld

UI(rI) thus takes the place of f(x, y), which we will again multiply by a polynomial

h(rI) to produce zero rings at a desired distance from the center of the image plane.

This produces a modi�ed image UI
′(rI),

UI
′(rI) := h(rI)UI(rI) . (5.14)

Finally, we need a modi�ed transmission function t′(rL), which is the operation the

phase mask needs to perform on the light to produce the desired �eld UI
′(rI). We do

this by taking the IFT of UI
′(rI),

t′(rL) := F−1{UI ′(rI)} . (5.15)

There is an important change to the polynomial, however: we want to create zero

rings about the center of the image plane, rather than zero points in the image plane.

That is, we want to set all points at a distance

|rI |2 =
√
x2I + y2I (5.16)
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from the center of the image plane to zero. This means our polynomial is now de�ned

as

h(rI) :=
N∏
n=1

(
|rI |2 − r2n

)
, (5.17)

where rn is the radius of the nth zero ring that we add. Notice that we squared the

terms in parentheses. This has to do with the Fourier transform. Recall that our

polynomial will Fourier transform into derivatives. If we take the FT of |rI |2, we have

F
{
|rI |2

}
= F

{
x2I + y2I

}
=

∂2

∂x2L
+

∂2

∂y2L
, (5.18)

whereas if we took the FT of |rI |, we would formally expect, based on Eq. (4.8),

F{|rI |} = F
{√

x2I + y2I

}
=

√
∂2

∂x2L
+

∂2

∂y2L
. (5.19)

However, this square root of derivative operators has no clear meaning, so we square

the terms in Eq. (5.17). This also changes the required number of derivatives. Recall

from our discussion of Eq. (4.7) that f̃(kx, ky) must have at least N − 1 derivatives in

order to avoid singularities, where N is the number of added zeros. Here, since our

polynomial is made of squared terms, each added zero ring contributes two derivatives,

rather than one. This means that, for N added zero rings, the transmission function

t(rL) must have at least 2N − 1 continuous derivatives.

The choice of zero ring locations rn is what will make our lens a superresolution

lens. In this chapter, we are de�ning the resolution of a circular lens is the distance

from the central lobe of the image to its �rst zero ring; we denote this distance ∆r.

As long as at least one rn is less than ∆r, the lens will have better resolution than the

di�raction limit. In principle this would allow for arbitrarily high resolution, within

the limits of Fourier optics, but as rn gets smaller, we expect that the sidelobes would

overwhelm the central lobe. Thus, choosing low rn must be balanced by managing
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the distance and relative power of the sidelobes to the central lobe.

The steps of the SOL method are summarized in Algorithm 2.

Algorithm 2 Superoscillatory Lens Algorithm

1: De�ne a transmission function t(rL) in the lens plane, band limited by the aper-
ture.

2: Fourier transform to yield UI(rI) For a circular aperture, UI(rI) will have zero-
rings at distance ∆r from the center.

3: De�ne h(rI) :=
∏N

n=1

(
|rI |2 − r2n

)
, where rn < ∆r for at least one n.

4: De�ne UI
′(rI) := h(rI)UI(rI), which will have sub-di�raction zero-rings wherever

rn < ∆r.
5: Calculate t′(rL) := F−1{UI ′(rI)}, which is the transmission function needed in

the lens plane to yield the desired pattern UI
′(rI) in the image plane.

5.4 Algorithm Demonstrations

In this section we will demonstrate the validity of our SOL method by way of a few

examples. Our �rst task is to choose a lens to improve its resolution. The parameters

of the lens we chose and the rest of the setup are given in Table 5.1. As we are only

aiming to demonstrate the validity of our method, the choice of lens is somewhat

arbitrary at this point. We chose this particular lens because of its small value of ∆r.

The magni�cation was chosen because that power is often used in nanolithography,

which could (eventually) be a possible application for a system like this. The object

and image distances were calculated to yield that magni�cation. The wavelength was

chosen because it is small but still part of the visible portion of the spectrum.

Table 5.1: Parameters of the simulated lens setup.

Lens diameter D 1.27 cm
Lens radius a 0.635 cm
Focal length f 13 mm
Magni�cation m 1/4
Object distance do 65 mm
Image distance dI 16.25 mm
Light wavelength λ0 385 nm

Let us examine the PSF of our lens before we begin improving on it. The trans-
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mission function t(rL) we use for that is

t(rL) =


1 rL ≤ a

0 rL > a,

(5.20)

which is just the transmission function if the phase mask were not there. This can be

seen in Fig. 5.3(a-b). The PSF of this lens is shown in Fig. 5.3(c-d), from which we

can see that, for this unmodi�ed lens, ∆rlens ≈ 600 nm, where ∆rlens is the resolution

(the ∆r) of this lens speci�cally. This is the resolution we will try to improve upon

in this chapter.

Figure 5.3: Transmission function and PSF of unmodi�ed lens. (a) x axis slice of
transmission function t(rL). (b) Color map of t(rL). (c-d) x axis slice and color map,
respectively, of PSF UI(rI).

To help the reader know quickly which plots are in the lens plane and which are in
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the image plane, from now on our �gures will follow the color schemes used in Fig. 5.3.

Lens (image) line plots will contain blue (black) lines, and lens (image) color plots

will use the blue-green-yellow (black-red-yellow) color map.

Now that we have seen the regular lens's �at transmission function and PSF, we

can look at some strategies for making it into a superresolution lens using our method.

5.4.1 Adding zeros to central lobe

Following our algorithm, we will add a zero ring at a distance rn < ∆rlens. But

�rst, we need to de�ne a starting transmission function t(rL). We cannot use the �at

transmission function of the lens, because its hard edges will produce discontinuous

derivatives. We decide to use a function similar to f̃circ(kx, ky) from Eq. (4.10):

t(rL) =


cos10

(
π
2a
rL
)

rL ≤ a

0 o.w..

(5.21)

Since it is raised to the power 10, this transmission function can support up to 5 zero

rings. For this transmission function, ∆r ≈ 3030 nm, determined numerically. We

will now use Fig. 5.4 to walk through our method in its entirety.

In Fig. 5.4(a-b) we plot an x axis slice and a color plot, respectively, of the cosine

transmission function in Eq. (5.21). In Fig. 5.4(c), we plot an x axis slice of the

unmodi�ed PSF, UI(rI), of a point source through this lens (dashed orange line) and

the modi�ed PSF, UI
′(rI), after having added a zero to it. We also plot the PSF

from the unmodi�ed lens, U lens
I (rI), for comparison. For the modi�ed PSF, we have

added a zero ring at rL = 500 nm, which is less than ∆rlens. We can see that there

is a new zero at that location; we can also see a pair of large sidelobes, as expected.

We can also see that the central lobe's intensity is a little under 40% of that of the

sidelobes. Figure 5.4(d) shows the modi�ed PSF (note in the text box that �Norm�

denotes a normalization operator). In Fig. 5.4(e-f) we take the IFT of UI
′(rI) to
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obtain the modi�ed transmission function, t′(rL), that would be needed in the lens

plane in order to produce our modi�ed PSF with superoscillatory zeros. We can see

that it is partially negative. This is okay, as negative t(rL) corresponds to a phase

shift of π. On a technical note, we manually set all points outside rL ≤ a to zero1. In

Fig. 5.4(g), we show the PSF of the modi�ed transmission function in (e-f), denoted

UI
′
2(rI) (black line) and the PSF UI

′(rI) from In Fig. 5.4(c) (orange dashed line). The

purpose of this plot is to see whether the transmission function in (e-f) can actually

produce the desired image from Fig. 5.4(c). The two lines are in excellent agreement.

In Fig. 5.4(h) we show a color plot of UI
′
2(rI); we can see that it matches the PSF

from Fig. 5.4(d).

Altogether, Fig. 5.4 shows that our method can produce a transmission function

which will have greater resolution than that of the starting lens. However, the side-

lobes in this case are both large and quite close to the central lobe. We will turn to

addressing that problem now.

On a side note, we will refrain from using the 2D color plots in the future, as they

do not add much information not contained in the line plots.

5.4.2 Adding zeros to sidelobes

We can attempt to mitigate the sidelobes by placing zeros on them. That is, we

can place a zero near the peak of a sidelobe to split it into smaller, more manageable

sidelobes. We demonstrate this in Fig. 5.5, using the same setup as was used for

Fig. 5.4. In Fig. 5.5(a), we added a zero at rL = 500 nm, just like before. We can

see that the sidelobes are centered at around 1230 nm. In Fig. 5.5(b), we have added

a second zero, at 1370 nm. We can see that the resulting sidelobes are now actually

smaller than the central lobe. We can attempt to reduce these by adding more zeros

1That step technically shouldn't be mathematically necessary, as t′(rL) should have the same
band limits as t(rL), from Eq. (4.7). However, the numerical FFT algorithm can create very small
but non-zero values outside the band limit. We set them to zero just to avoid them having any e�ect
in future steps.
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Figure 5.4: Demonstrating the SOL procedure by adding zeros to central lobe of
the image produced by a band limited cosine transmission function. See text for a
description of each sub�gure.
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at their peaks. We show this in Fig. 5.5(c), where we have added zeros at 900 nm

and 1900 nm. The sidelobes next to the central peak are now greatly reduced. There

are also new sidelobes at about 2400 nm, which are again larger than the central

lobe. However, our central lobe is now about 70% of their intensity, which is an

improvement from Fig. 5.5(a). Furthermore, these large sidelobes are much farther

from the central lobe than they were in Fig. 5.5, which should lead to a larger viewing

area. Let us now walk through our SOL method to obtain the modi�ed transmission

function needed to produce this PSF.

Figure 5.5: A cos10(πrL/2a) SOL, gradually adding zeros. For this transmission
function, we have ∆r ≈ 3030 nm. (a) A zero has been added at rI = 500 nm. (b) A
second zero has been added at rI = 1370 nm to suppress the large sidelobes in (a).
(c) Two more zeros have been added at rI = 900 nm and 1900 nm to suppress the
sidelobes in (b).

In Fig. 5.6 we walk through our SOL method to produce the PSF shown in

Fig. 5.5(c). In Fig. 5.6(a) we show the original transmission function. In Fig. 5.6(b)

we show the unmodi�ed PSF and the modi�ed PSF with added zeros. We also show

the PSF of the original lens. We can see that, not only has the resolution been im-

proved, but the �rst sidelobes of UI
′(rI) are of comparable height to the �rst sidelobes

of U lens
I (rI). In Fig. 5.6(c) we show the transmission function needed to generate the

modi�ed PSF in Fig. 5.6(b). This a plausibly realizable transmission function. We

have again manually set all points of t′(rL) outside rL ≤ a to zero. In Fig. 5.6(d),
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we �nd the PSF of the transmission function in Fig. 5.6(c) and compare it to PSF

in Fig. 5.6(b). We can see that they match, so this transmision function works for

making a SOL with resolution of 500 nm, which is better than the 600 nm resolution

of the original lens.

Figure 5.6: A cos10(πrL/2a) SOL, with four zeros added. (a) Unmodi�ed lens trans-
mission function. (b) PSF with and without added zeros (black and orange lines,
respectively) and PSF of the original lens. (c) Modi�ed transmission function in lens
to yield the PSF in (b). (d) Comparing the PSF of the transmission function in (c)
(black line) against the PSF from (b) (orange dashed line).

As a further demonstration of the improved resolution of this SOL, in Fig. 5.7 we

compare the image formed by two point objects using our SOL against the original

lens. The point objects are positioned such that their images are 500 nm apart, which

means their central peaks coincide with the other's �rst zero ring. We can see in
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Fig. 5.7(a) that the two are resolvable with the SOL, while in Fig. 5.7(b) with the

original lens they barely are, if at all. We also note that, while the image in Fig. 5.7(a)

satis�es the Rayleigh criterion, they are less resolvable than the Airy disks back in

Fig. 5.1(b). For the two Airy disks in Fig. 5.1(b), the minimum between the two

peaks is about 74% of the neighboring maxima; in Fig. 5.7(a) that minimum is about

81% of the neighboring maxima. This suggests that, for smaller-radius zero rings,

caution must be taken in simply using the radius as a de�nition of resolution.

Figure 5.7: Image formed by two point sources using our SOL and the original lens.
Intensities are normalized to the central PSF lobe. (a) Image formed by two point
objects using our SOL from Fig. 5.6, resolvable according to the Rayleigh criterion.
Dashed lines are the individual PSFs; the solid line is their combined image. The
dotted lines are guides to the eye. (b) The same point objects viewed through the
original lens, which are not as resolvable. The line styles have the same meaning as
in (c).
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5.5 Adding zeros to ∆r

So far we have attempted to achive superresolution by adding zeros to the PSF's

central lobe and to resulting sidelobes. There is an alternative strategy that our

method can be used for: adding zeros to ∆r. The lens with chosen transmission

function will naturally have a zero at ∆r; by adding more zeros to ∆r using our

method, we can make this into a higher-order zero. Doing this should narrow the

central lobe, thus improving the resolution 2. One appeal of this method is that it

gives us a �free� zero. That is, the original zero does not produce a derivative after

Fourier transform, so it doesn't count against our 2N − 1 limit.

We demonstrate this in Fig. 5.8. We again use the cosine transmission function

de�ned in Eq. (5.21), shown in Fig. 5.8(a). In Fig. 5.8(b), we add �ve zeros to ∆r,

making that point a sixth-order zero. Figure 5.8(c) and (d) show the modi�ed trans-

mission function t′(rL) and that this function successfully reconstructs the desired

PSF UI
′
2(rI). We can see from Fig. 5.8(b) that the resolution from this method is far

worse than that of the unmodi�ed lens, and only marginally better than the original

PSF from before the zeros were added. However, this need not be considered a failure

of this method. The cosine transmission function we are using produces a very wide

PSF. If a wider transmission function were used, which produced a narrower PSF,

then adding zeros to ∆r would be more likely to be successful.

5.6 Intensity Considerations

Up to this point, we have only been considering our PSF's shape. It is obviously im-

portant to also consider the intensity as we add zeros and how the intensity compares

to the unmodi�ed lens.

In Fig. 5.9 we plot the PSFs with added zeros from Fig. 5.5 on the same vertical

2Strictly following the de�nition of resolution that we have been using in this chapter, the reso-
lution won't have improved because we haven't brought any zeros closer to the center of the image
plane. It should be clear, however, that narrowing the central lobe will make it more resolvable with
a lobe from a second point object, so this is an improvement in resolution.
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Figure 5.8: A cos10(πrL/2a) SOL, with �ve zeros added at ∆r. (a) Unmodi�ed lens
transmission function. (b) PSF with and without added zeros (black and orange lines,
respectively) and the PSF of the original lens. (c) Modi�ed transmission function in
lens to yield the image in (b). (d) Comparing the PSF of the transmission function
in (c) (black line) against the PSF from (b) (orange dashed line).

scale. We have normalized them to the maximum intensity of the unmodi�ed lens's

PSF's central lobe; we denote this intensity I lenscenter. We can see that the SOL intensities

are about two orders of magnitude lower than that of the unmodi�ed lens. This is

to be expected, since the transmission functions needed to produce the SOL will

transmit signi�cantly less light. We can also see that the PSF with two added zeros

has an intensity about twice as great as that of the PSF with one or four added zeros.

This is because the transmission function associated with this PSF allows more total

power through. One might intuitively expect that adding zeros would always decrease
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total intensity, but this result shows that is not always the case.

Figure 5.9: Intensities of the PSFs with added zeros from Fig. 5.5, normalized to
I lenscenter, the maximum intensity of the central lobe of the unmodi�ed lens's PSF.

In Fig. 5.9 we plot the relative intensities of the central lobe and �rst sidelobe

of an SOL (ISOL
center and ISOL

side , respectively) as a function the radius of a single zero

ring. We also plot the ratio of the SOL's central lobe to its sidelobe. We can see

in Fig. 5.10(a) and (b) that the relative intensities increase as the zero ring radius

increaeses, until they both kink at about 935 nm. After this point, the intensity of

the sidelobe decreases and the intensity of the central lobe increases less rapidly. We

are not sure what happens at 935 nm to make this happen. In Fig. 5.10(c), we see

that, as expected, very small ring radii make the central lobe exponentially smaller

than the sidelobe.

5.7 Alternative Lens Transmission Functions

The cosine transmission function de�ned in Eq. (5.21) works for our SOL, but it

has a problem. It has high values only in a small area near the center, and its value

is near zero for a large portion of its area. Additionally, it is a fairly narrow shape,

which means that it will produce a fairly wide PSF. Ideally, we would like a function

that is relatively �at over most of its area and tapers down to zero at the edge, but
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Figure 5.10: SOL lobe intensities as a function of zero ring radius. (a) Ratio of SOL
central lobe max intensity, ISOL

center, to unmodi�ed lens max intensity, I lenscenter. (b) Ratio
of SOL sidelobe max intensity, ISOL

side , to unmodi�ed lens max intensity. (c) Ratio of
SOL central lobe max intensity to sidelobe max intensity. For (a) and (b), note that
I lenscenter is a constant.
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which has su�cient derivatives for us to place new zeros in the image plane. (There

is a trade-o�, though: a narrow PSF will have sidelobes close to the center lobe,

likely reducing the viewing area.) While we haven't found such a function yet, in this

section we discuss some special functions that we tried and discuss their problems.

First we tried Riemann theta functions, speci�cally θ3(x, q) [85],

θ3(x, q) = 1 + 2
∞∑
n=1

qn
2

cos(2nx) . (5.22)

One is plotted in Fig. 5.11 (after having done some rotating, shifting, etc. to get it

into that orientation). It failed to support more than one zero. (By that, we mean

t(xL) had singular derivatives and/or that UI
′(xI) could not be reconstructed from

t′(xl).) That's probably because the function is de�ned as a sum of cosines. As

we know, a cosine function raised to the power n only has n derivatives after band

limiting. Since this function is a sum of cosines, we e�ectively only have n = 1, so it

doesn't work.

Figure 5.11: Band limited Riemann theta function θ3(x, q), with q = 0.9, after rotat-
ing, shifting, etc.
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Next, we tried a Jacobian elliptic function [86],

dn(x, k) =
θ4(0, q)

θ3(0, q)

θ3(ζ, q)

θ4(ζ, q)
(5.23)

where

ζ =
πx

2K(k)
(5.24)

K(k) =
π

2
θ23(0, q) . (5.25)

One is plotted in Fig. 5.12 (after having done some rotating, shifting, etc. to get it

into that orientation). It also failed to support more than one zero. This function is

de�ned in terms of Riemann theta functions, so it likely failed for the same reason.

Figure 5.12: Band limited Jacobian elliptic function dn(x, k), with k = 0.999999,
after rotating, shifting, etc.
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5.8 Conclusions

In this chapter, we have described a way to use our zero-creation method from

Chapter 4 to design a superoscillatory lens. We have shown by simulated examples

that it can produce zeros rings closer to the center of the point spread function

than are those of an unmodi�ed lens, beating the di�raction limit. We discuss a

superresolution strategy involving adding zeros next to the central lobe, which could

possibly work for a di�erent transmission function from the one we used. We also

discussed the ideal criteria of a transmission function and our attempts to �nd such

a function.
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