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ABSTRACT

SHREY MOHAN. Real-time edge analytic using lstm-tracking . (Under the
direction of DR. HAMED TABKHI)

Tracking objects or specifically pedestrians implies that we correctly detect and re-

identify(re-id) them throughout the video stream. To accomplish this we need to

run these algorithms on every frame of the video which is difficult in real-time as

these networks are compute intensive. To make the system near real-time we use

smaller detection and re-id networks, namely OpenPose at a lower network resolution

and MobileNet-v2 for feature extraction and matching respectively. This end-to-end

pedestrian detection and re-id pipeline run efficiently on embedded platforms, with

a trade-off in accuracy. The reason for this decrease in accuracy mainly comes from

the detection algorithm which is not running in its full potential due to memory and

power constraints of the edge device. Also, in scenarios like occlusions specifically

dynamic occlusion where pedestrians cross each other, the re-id network fails again

due to the missed detection. To deal with these limitations we explored algorithms

which can understand movement patterns of different pedestrians and predict their

future positions. By knowing their future positions we do not solely rely on the

detection network and can replace any miss-detection with the future prediction for

that pedestrian. Similarly when a pedestrian is partially or fully occluded by another

pedestrian and cannot be detected in the scene, we again use these future predictions

for that pedestrian. In this way we envision to deal with scenarios like miss-detection

incurred by the detection algorithm and occlusions which is very frequent in real

world cases.

Long Short Term Memory (LSTM) neural networks have been proven to achieve

state of the art performance for pattern recognition problems. They inherently have

a memory cell which keeps track of all the relevant data they have seen and learn to
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recognize the hidden patterns in it. We leveraged these pattern learning capabilities

of LSTM in this research and trained it to predict future positions of the pedestrians

in the scene. The LSTM is trained at a coarse-grain granularity of 5 frames per second

using sequences shot at 60 frames per second. We then quantify its performance and

analyze that predicting 5 future frames is optimum for our system. This trained

LSTM is then integrated with the existing end-to-end system and its performance

is evaluated against the system without the LSTM by validating results obtained on

the DukeMTMC dataset. In this way we analyze its impact and present a qualitative

study of why it does not improve the systemâs accuracy for some cameras in the

dataset. We then fine-tune our trained LSTM model for each camera individually

to observe the increase in the accuracy for every camera. This provides a proof of

concept that we require an algorithm that remains specific to each camera and learn

movement patterns for each specific perspective. We conclude the study by comparing

our complete end-to-end system’s performance with the state of the art.
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CHAPTER 1: INTRODUCTION

With the ever-increasing number of surveillance networks in urban areas, there

has been a revolution in the computer vision community to develop algorithms for

such systems which are not only accurate but real-time [2]. The primary reason for

surveillance is to provide safety for civilians against criminal activities. In such cases it

is important to eliminate any cloud computation which brings latency into the system

and push maximum computation to the edge devices for immediate response [3, 4, 5].

Hence, there is a growing need for end-to-end Multi-Target Multi-Camera Tracking

(MTMCT) algorithms which are not only accurate but also real-time. The pipeline

of these MTMCT algorithms consists of a detection framework which detects people

in the current scene, followed by a re-identification (re-id) algorithm which make

sure that the detections have been correctly re-identified in the consecutive frames of

the video stream, after which comes a tracking engine which is responsible to track

these detected pedestrians by understanding their respective trajectories. Fig. 1.1

illustrates how a camera network detects and re-id pedestrians across cameras.

The tracking mechanism becomes an important part of the system as it helps with

understanding the movement patterns of different people not only within the camera

scope but also across multiple cameras. Moreover, as we understand movement be-

havior of these pedestrians we can predict their future trajectories and leverage them

to deal with scenarios like occlusions and miss-detection which may occur during the

detection phase.
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P 1P 1 Person 1 moves to 
Camera 2

Person 1 Identified 
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P 1
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Camera 2
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Edge Server

Handles ReID 
Across Nodes

Figure 1.1: Detection and re-id across 2 cameras

1.1 Problem Statement

Executing this above mentioned end-to-end pipeline on the edge device with hard-

ware and power constraints is a challenge but it is important as we need real-time

awareness. Also, sending personal information to the cloud can compromise with the

privacy of the people which is highly undesirable. Many algorithms track the objects

by executing their re-id networks on the detections by running these algorithms on

every frame of the video feed which can be accurate but introduce latency in the sys-

tem. Most of the recently proposed trackers which have been evaluated on the MOT

benchmark [6] achieve a minimal Frames Per Second (FPS) as their throughput. The

primary reason for such a low throughput is large Convolution Neural Network (CNN)

based detection and re-id networks which are highly compute intensive. As a result,

we explored less compute intensive MTMCT networks which can run efficiently on the
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edge devices yielding a decent accuracy as well as throughput as a complete end-to-end

system. We came up with a solution similar to the current state of the art MTMCT

framework, deepcc [7]. We use OpenPose [8] as our pedestrian detection network, a

triplet loss network for carrying out the re-id process on the obtained detections. To

make the system real-time and feasible on the edge device, we run OpenPose at a

much lower network resolution. The triplet loss network uses MobileNet-v2 [9] as its

feature extractor instead of ResNet-50 [10]. This end-to-end system when run on the

NVIDIA AGX XAVIER [11] device yields a throughput of a little greater than 5 FPS.

Although the throughput is good, this system lacks detection and re-id accuracy. An

efficient tracker which can understand the movement behaviors of different people in

the scene and can predict their future trajectories would be able to compensate some

inaccuracies introduced in this real-time system.

1.2 Proposed Solution and Contributions

In this research, we present a coarse-grain LSTM-based tracker for our system to

realize real-time edge video analytic. We utilize the pattern learning capabilities of

LSTM to predict future trajectories of objects in the video scene at a granularity of

5 FPS. We envision to increase our existing system’s accuracy by using these predic-

tions in the instances of miss-detection and occlusions. We achieve this by training

our LSTM module on single object sequences shot at 60 FPS, exhibiting different

movement patterns, offline and then evaluating its performance when integrated into

the system. Instead of using any large scale feature maps as the LSTM input like

most of the other approaches we only use the key-point coordinates of the pedestri-

ans obtained from the detection phase. This removes any background noise and only

provides the key-features to the LSTM so that it can be trained smoothly. We make

the following contributions in this study:

1 . Coarse-grain LSTM tracking framework with prediction over the next 5 frames

for high frame rate videos (e.g. 60 FPS) - Details provided in section 4.2.
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2 . Integration of proposed LSTM framework into our end-to-end pedestrian tracking

pipeline to enhance pedestrian re-identification accuracy - Details provided in

section 4.3.

3 . Leveraging transfer learning to specialize and fine-tune the pre-trained LSTM

per each camera with the aim to enhance the re-identification accuracy with

respect to each camera - Details provided in section 4.4.

4 . Detail performance analysis on re-identification by considering the impacts of

static and dynamic occlusion - Details provided in section 5.5

5 . Identifying the optimum point in trade-off between (prediction steps and accu-

racy) in the proposed coarse-grain LSTM tracker - Details provided in section

5.4.1

6 . Overall, achieving pedestrian re-id accuracy within less than 3% of current state

of the art [7], with 6 X power reduction - Details provided in section 5.7



CHAPTER 2: BACKGROUND

This chapter will go in detail for every part of the MTMCT pipeline described in

chapter 1, pedestrian detection, re-id and tracking.

2.1 Pedestrian Detection and Pose Estimation

The first step in the task of tracking pedestrians is detecting them in the video

stream. The video stream is broken down into discrete frames and each frame becomes

an input to the detection algorithm. The task of detection algorithm is to localize

different objects in that particular frame and classify these localized sections. Most of

the detection frameworks localize by drawing a Bounding Box (BB) around the object

of interest. Fig. 2.1 shows 2 people being detected in a frame of a video stream.

All the detection algorithms use CNNs at their core for extracting the most promi-

nent features in the input frame. They learn to identify basic shapes, edges and

similar characteristics in the frames as they are trained and likewise become accu-

rate in classifying and localizing objects present in it and ultimately in the video.

Based on the similar concept there has been a growing interest in developing pose

estimation algorithms which try to localize different key-points of a human body for

the pedestrians present in the frame. Fig. 2.2 shows the output of a pose estimation

network on an input image.

In section 3.1, we will review some of the recent work in object detection and human

pose estimation, and justify our use of OpenPose framework as our detection network.

2.2 Pedestrian Re-Identification and Tracking

The core of every MTMCT framework is an accurate re-id network which make

sure that every detected pedestrian retain its acquired ID all throughout the video
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Figure 2.1: Object detection in a single frame

Figure 2.2: Pose estimation

stream. In this way we track them not only in the present camera view but across

multiple cameras as well. Correctly re-identifying objects has been a long pursued

research in the computer vision community. In Fig. 2.1 we can see that the 2 objects

have been assigned IDs object0 and object1. Section 3.2 will go into the detail of

the previous work done for efficient re-id and explain the reason of using triplet-loss

network in our system which is described in section 2.3.

Tracking objects or specifically pedestrians implies that we correctly detect and
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re-id them throughout the video stream. To accomplish this we need to run these

algorithms on every frame of the video which is difficult in real-time as these networks

are compute intensive. To make the system near real-time we use smaller detection

and re-id networks, developed for embedded platforms, compromising on accuracy.

To deal with this deficit in accuracy we explored algorithms which can understand

movement patterns of different pedestrians and predict their future positions. By

knowing their future positions we can deal with scenarios like miss-detections incurred

by the detection algorithm and occlusions which is very frequent in real world cases.

LSTM [12], which is an improved form of Recurrent Neural Network (RNN), have

been proven to achieve state of the art performance for pattern recognition problems

[13, 14, 15]. They inherently have a memory cell which keeps track of all the relevant

data they have seen and learn to recognize the hidden patterns in it. We leveraged

these pattern learning capabilities of LSTM in this research and trained it to predict

future positions of the pedestrians in the scene at a coarser granularity. A detailed

explanation will be presented in section 4.2.

2.3 Triplet loss network

Fig. 2.3 shows the basic structure of a triplet-loss network as it trains 3 instances

of a feature extractor to produce the most discriminating feature representations of a

person. To effectively train the network we give it 3 different region crops (bounding

box region) of people. One acts as an anchor or the ground truth crop, one is the

positive sample or the same person as the anchor and one is a negative sample. We

use the following loss function after the respective feature maps are extracted:

Loss =
n∑

i=1

[
α + fa

i − fp
i
2 − fa

i − fn
i
2
]
+
, (2.1)

where α is margin, fa, fp, and fn are embedded appearance features of the anchor,

positive, and negative samples for the class i, respectively. As the model is trained
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and the loss is minimized all the samples from class i are forced to be inside the radius

α in the higher dimensional space. The size of this new dimensional space is 1280,

which is the size of the feature map extracted using the feature extractor.

FEATURE EXTRACTOR

FEATURE EXTRACTOR

FEATURE EXTRACTOR

Triplet Loss
Positive

Anchor

Negative

Figure 2.3: Triplet-loss network

After training we use a single instance of this feature extractor, which in our case

is MobileNet-V2 [9]. The reason for using this network is that it was developed for

embedded platforms. In this architecture, a regular convolution operation is bro-

ken down into depth-wise and point-wise convolution which drastically reduces the

number of parameters for the network. Furthermore, adding linear bottleneck layers

increases its performance. At run-time, we re-id people by calculating the euclidean

distance between the features extracted in the current frame and the previous frame

features. Feature maps extracted for the same person will have the minimum eu-

clidean distance between them.

2.4 Key-Track

The coarse-grain LSTM presented in this work is based upon our previous work,

key-track [1]. Fig. 2.4 shows the end-to-end architecture of key-track. Key-track is

also a LSTM based tracker which was able to achieve good accuracy in predicting

the next frame positions of pedestrians on the DukeMTMC dataset. It is a fine-

grain tracker and worked for sequences at 60 FPS taking 18 key-points as its input
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Key-point information per object

54 
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+

Figure 2.4: Key-track architecture [1].

provided by OpenPose. Since our existing system works at 5 FPS, we could not use

key-track, instead we developed a coarse-grain key-track which works at 5FPS and

predicts future positions way ahead in time. Another difference is that we used 25

body key-points for the coarse grain LSTM instead of 18 as in key-track. The reason

being 25 key-points will provide the LSTM with more information to learn from.

2.5 Dataset Curation

The coarse-grain LSTM is trained on single pedestrian sequences but can infer on

multiple pedestrians at run-time. For generating these single-pedestrian sequences

and training our LSTM, we used the DukeMTMC dataset [16]. This dataset has 8

non-overlapping different camera views with a total of around 2834 people annotated.

Total video footage is more than an hour and it is shot at 60 FPS with a resolution

of 1080p inside the Duke University campus. We chose this dataset as it emulated

the real world scenario of a surveillance setting.

For curating single pedestrian sequences we used the same concept used in [1] for

data curation. We ran OpenPose with its body-25 model on each video of the dataset,

obtaining key-points for every person in each frame of the dataset. We then mapped

these key-points to the ground truths by randomly selecting an ID from the ground-

truth file, iterating over every frame for that person, and checking if the key-point

values lie in the ground-truth bounding box region. Using this technique we created

a dataset containing only single pedestrian by isolating it from a multi-pedestrian

dataset. Our coarse-grain LSTM was trained using these curated sequences(explained
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in section 4.2).



CHAPTER 3: Related Work

In this chapter, we overview related research on pedestrian detection, re-identification,

and tracking.

3.1 Pedestrian Detection

There have been many recent advancements for developing state of the art object

detection algorithms. Single Short Detection (SSD) [17] is one such highly accurate

network which only processes the image once in its pipeline. Similarly You Only Look

Once (YOLOv3) [18] localizes around 2000 objects found in the COCO dataset [19]

while staying computationally efficient. Faster R-CNN [20] works on the concept of

region proposals, dividing a frame into different regions in order to classify them and

finally localize. All these frameworks detect general objects whereas our specific focus

is to track pedestrians so we reviewed some of the recent pose-estimation networks.

DeepPose [21] by google uses cascaded Deep Neural Network (DNN) to regress poses

to human body joints. The DeepCut [22] framework treats pose-estimation as an

integer linear problem by simultaneously partitioning and labelling different body

parts. A more recent network, OpenPose [8] uses part affinity fields between different

body joints to estimate its pose. We decided to use OpenPose as it is accurate,

invariant to the number of people in the scene and is able to achieve higher throughput

(FPS) when compared to other recent works. Another advantage is that it can be

customized to run at different network resolutions which can be utilized to explore

different accuracy and throughput needs.
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3.2 Pedestrian Re-identification

Classical computer vision approaches like those in [21] which are based on covari-

ance descriptors augments various feature representations of an image like RGB, HSV,

Local Binary Patterns, etc over a Mean Riemennian Martix(introduced by Bak et al.

[23]) from multi-shot images to find similarities between different images have been

done. Similar approaches were adopted in [24] for real-time embedded computation

but the authors do not provide with any accuracy evaluation. In [25], Icaro et al.

generates unique signature for each object which comprises interest points and color

features for the object and calculate similarity between different signatures using

Sum of Quadratic Differences(SQD). Similar classical approaches are demonstrated

by [26] and [27], which uses Biologically Inspired features(BIF) and k-shortest path

algorithm. Classical techniques are promising however with the boom in deep learning

algorithms and plethora of computational power all thanks to top of the line GPUs,

they are even surpassing human level recognition for re-id.

Modern deep learning techniques like Alignedreid[28], extract features from ROI

using CNNs as base networks and then divide the feature map into local and global

features intuitively dividing the ROI into horizontal sections and matching each sec-

tion with the other images. Loss function used is triplet loss in this work and the

authors claim to surpass human level performance for person re-id. Xiaoke et al. in

[29], use videos instead of separate frames to learn the inter-video and intra-video

distances between people in them effectively creating triplet pairs. Tong et al. [30]

proposed an Online Instance Matching(OIM) loss paradigm which uses a Look Up

Table(LUT) for labelled objects and a cicular queue for unlabelled objects and learns

to re-id people on the go. Yantao et al. in [31] formulates the problem of person

re-id into a graph neural network problem, with each node denoting a pair of images

whose similarity and dissimilarities are learned through a message passing technique

between the nodes. Siamese network is used to compute similarity metric between
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pairs. Authors in [32] introduce spatiotemporal attention models to learn key spa-

tial features of objects throughout the video. On similar lines the work in [33] also

learns the spatial and temporal behavior of objects by translating the feature map of

the ROI into adaptive body-action unit with each unit highlighting a prominent body

part of a person. Ju et al.[34] use bidirectional Long short Term Memory(LSTM) neu-

ral network to learn the spatial and temporal behavior of people throughout video.

They use two copies of the same network to learn generic and specific features of

people and shortcut connections for smooth learning. Minxian et al. in [35] employ

an unsupervised approach for person re-id. They generate labelled data with sparse

space-time tracklet sampling by observing the spatial and temporal arrangement of

people in a video scene and train the network to discriminate between single-camera

tracklets whereas associate cross-camera tracklets.

Almost all the aforementioned work is novel and many of them achieve state of

the art performance, however they all use very complicated and deep networks which

would hinder their performance in real-time scenarios. Instead we chose a light-weight

feature extractor for our system for doing re-id, which was trained using a triplet-loss

network(explained in section 2.3).

3.3 Pedestrian Tracking

Works like [36] used kalman filters to understand movement behavior of objects.

Kalman filters might prove to be useful but they do not account for any previous

movement patterns seen in the objects. Authors in [37] used RNNs for object tracking

and they show good results. Work like [38] also proved how RNNs can understand

patterns in the movement of objects for tracking them. Recent research like [39] and

[40] used LSTM coupled with a detection framework for tracking objects. Authors in

[40] used YOLOv1 as their detection algorithm and LSTM to predict future positions

for single object sequences. They re-use the feature vector extracted by their detection

framework as the input to their LSTM. Although they get good results, the size of



14

the feature vector os 4096, which makes their LSTM model too big. Milan et al. in

[6] used an online tracking method with LSTM to track multiple objects in the scene.

The authors record real-time performance but at the expense of accuracy.

All the mentioned work that has been done using LSTM for tracking uses some

kind of feature vector as its input. While it may help the LSTM to understand the

visual context of the object, it also contains background noise as the feature has been

extracted for the region inside the bounding box. In this work, instead of using a

feature vector as the input for the LSTM, we used the body key-points that is given

by the OpenPose framework as part of its detection phase. In this way, we make sure

to provide only prominent information about the object to the LSTM. As a result the

input size reduces to 75, giving us a light-weight model which can easily be ported to

any embedded platform.



CHAPTER 4: SYSTEM DESIGN

In this chapter we will go into the details of how our current system works. First

in section 4.1 we will explain our existing end-to-end system with the detection and

the re-id algorithm and how it tracks pedestrians for each camera as the edge node.

Then in section 4.2 we will go into the detail of our coarse-grain LSTM tracker and

how it was trained in order to predict future positions of the pedestrians in the scene.

Section 4.3 will discuss the methodology of integrating this trained LSTM model into

the existing system and how we utilized it to deal with miss-detection and occlusions.

In section 4.4 we will explain how we used our trained coarse-grain LSTM for transfer

learning by fine-tuning it on each camera separately.

4.1 System Overview and Limitations

Fig. 4.1 shows the overview of our system without the LSTM tracker. In this

system we rely on the detection and the re-id algorithms to correctly track different

pedestrians in the video stream. We fetch a frame from the video and send it to the

OpenPose network to get key-points for the people in it. We then draw the bounding

box for each person taking the minimum and the maximum key-point value, after

which comes the re-id phase. We then carry out a spatial filtering by checking the

Intersection over Union(IoU) for the current bounding boxes with the previously saved

bounding boxes of the objects already re-identified. This provides a sanity check as

an object is supposed to be near its previous position in consecutive frames. If the

IoU is greater than zero, we send these candidates for feature extraction.

We crop the bounding box regions for these spatially filtered pedestrians and batch

them to extract their feature maps. We use MobileNet-V2 as explained in section 2.3



16

to obtain feature maps of size 1280. We now calculate the euclidean distance between

these new feature maps and the previous object’s feature maps to get a similarity

metric. Similar people will have the lowest euclidean distance between their feature

maps. In this way we get the best matches for the previous people in the scene. The

matched pedestrians are then given the same ID as their previous counterparts and

saved in the local database.
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Figure 4.1: Overview of the system

The local database is where we save all the bounding box coordinates, feature

maps and IDs for all the pedestrians that have been detected as well as re-identified.

Although this approach works well, it suffers from some limitations in real-world

scenarios.

Real world cases have instances of frequent occlusion. These can be static, dynamic,
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short-term or long-term. Also, as OpenPose is running at a lower network resolution,

it sometimes suffer from miss-detection for some pedestrians. This impacts the re-

id accuracy of the system as in such cases the object disappears from its previous

vicinity, as a result the spatial filtering fails. To overcome these limitations, we came

up with the idea of using a coarse-grain LSTM to predict future positions of every

pedestrian, so that these instances of miss-detection and occlusion can be dealt with.

In the next section we go into the detail of our LSTM tracker and how it is trained.

4.2 The Proposed Coarse-Grain LSTM tracker

Training the LSTM to track multiple objects is a challenge in itself. Each object

needs to be re-identified before we feed any input to the LSTM. The reason being we

need some previous history for every object as the input. This previous history can

also be called the time-step for the LSTM, as it learns from the previous patterns of

every object. We could re-id these objects or pedestrians by mapping them to the

ground truths but that assumes we have perfect re-id paradigm which is not the case

in our real system.

We then came up with the solution of training it on single pedestrian sequences

but doing inference on multiple pedestrians by batching them together in the system.

In this way we re-use the same model parameters for every pedestrian. The method

we used to curate these single pedestrian sequences is discussed in section 2.5.

t=0 t=11 t=23 t=35 t=47 t=59 t=71 t=83

Input

Figure 4.2: Granularity of data for our coarse-grain LSTM tracker

These single pedestrian sequences that we curated are shot at a frame rate of 60

FPS but our existing system works at 5 FPS. This is the reason we had to choose a
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coarser frame rate of 5 FPS for the input as well as predictions of this LSTM module.

Fig. 4.2 shows an intuitive visualization of this transformation by taking an example

of a single sequence. We start from t=0, and go till t=83 for the first training window

in the sequence. We use a time-step of 3 for the coarse grain LSTM as it proved to

be the best in [1]. So the first 3 frames in the coarse grain sequence at t=0,t=11 and

t=23 become the input to the coarse-grain LSTM. The next 5 frames in this window

are then predicted by the LSTM. In section 5.4.1 we explain the reason of choosing

only 5 future frames for this coarse-grain LSTM. In this way, this window slides by 1

unit as the training goes on. The next window will start from t=1 and go till t=84

and so on.

LSTM LSTM LSTM

t=1 t=2t=0

Final Predictions

Frame 1 Frame 2 Frame 3

Keypoint 
inputs

Sequence Length

Fully 
connected

Output = 4 X number of future steps

Keypoint 
Output

X1 Y1 W1 H1 X5 Y5 W5 H5

Figure 4.3: LSTM tracker

Fig. 4.3 shows the detailed structure of our LSTM tracking module. We use a

time-step of 3 for the LSTM layer after which comes a fully connected layer with the

output nodes equal to the future step times 4 (centroid coordinates, width, height)

bounding box coordinates. The input of the LSTM is the key-point coordinates(25)
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and the confidence value for each coordinate for each pedestrian. This makes the

input size as 75 which is much smaller than any feature vector size given by any

recent feature extractor.

Since our system runs at 5 FPS and our dataset from which we curated single

pedestrian sequences was shot at 60 FPS, we pick every 12th frame from the sequence.

We append the key-point inputs from 3 consecutive frames for that person and make

it the input to the LSTM. The last LSTM cell output is grabbed and fed into the

fully connected layer which encodes this input into the next five bounding boxes

to be in the sequence at the same granularity as the input. Mean-squared error is

used as the loss function between these predictions and the ground-truth values with

adam optimizer to minimize this loss using back-propagation. The whole sequence

is traversed in this sliding window fashion till the last step prediction i.e. the 5th

step reaches the end of that sequence. We then move on to the next one and go

through every sequence one by one. This constitutes 1 of the 150 epoches for which

this coarse-grain LSTM is trained. The learning rate for training was initialized at

10−6.

In this way our coarse-grain LSTM was trained to track pedestrians using just single

pedestrian sequences from DukeMTMC. In the following section we will explain how

this tracker was integrated into the existing end-to-end system.

4.3 End-to-End System integration

Fig. 4.4 shows our system with the LSTM module integrated with it. As explained

in section 4.1 after getting the matches using spatial filtering and calculating euclidean

distance between feature maps, we utilize LSTM predictions. As we get the matches,

we check for any miss-detection for any existing match from previous frame. If there

is a miss-detection, we check if we have LSTM predictions for that pedestrian in the

local table. If yes, we use its next LSTM predictions as its detection and update

the position of that missing pedestrian in the local table with its prediction. In this
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way we check if that pedestrian re-appears using spatial filtering in every frame. If it

re-appears, it would be in the vicinity of its prediction, which makes it a candidate for

feature extraction and euclidean distance calculation. It is likely to have the smallest

euclidean distance with its previously saved feature map before it disappeared. Fig.

4.5 explains this concept in more vivid detail in case of an occluded pedestrian. As

a pedestrian gets occluded, we miss its detection from OpenPose. We then grab its

LSTM predictions by iterating over them for each miss-detected frame, regarding it

as an estimated position for the occluded pedestrian. As the occluded pedestrian

re-appears it matches with its estimated position via spatial filtering and euclidean

distance calculation retaining its previous ID after occlusion.
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Figure 4.4: System with the LSTM tracker

After we assign IDs to all matched pedestrians and LSTM predictions for missing

matches, we check for the kp_history which is the key-point history for each match.
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Since we use a time-step of 3 for our LSTM tracker, if a match contains 3 previous

key-points it becomes a candidate to get its future predictions from the LSTM. So,

we batch the previous 3 key-points for all these candidate matches and send it to

the LSTM as the input, getting their future predictions. These predictions are then

saved into the local database, so that they can be used in cases of miss-detection and

occlusion for these matches in the coming frames.

Impending occlusion
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Future frames by 
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i= 1 to 5:
Estimated 
box=predictions(i)

Get estimated box for Object 1
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completely
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Figure 4.5: Using LSTM prediction with occlusion

Using this paradigm, we deal with scenarios like occlusion and miss-detections from

OpenPose leveraging future LSTM predictions. We end up having more true positives
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for ID assignments, which increases the system’s accuracy(discussed in section 5.5).

In the next section, we will see how we can enhance this trained coarse-grain LSTM

using transfer learning to further increase the system’s accuracy.

4.4 Enhanced Coarse-Grain LSTM with Transfer Learning

After observing the impact of the coarse-grain LSTM in the system, we see gain

in the accuracy in all but 2 cameras. There was a slight decline in the accuracy of 2

cameras. After a qualitative analysis (section 5.5.1) for these cameras we hypothesize

that we require specialized algorithms for every camera to individually learn the

movement of pedestrians for that specific perspective. To provide a proof of concept

for this hypothesis we fine-tune our trained coarse-grain LSTM using transfer learning

for each camera separately. Fig. 4.6 shows the schematic for enhancing our coarse-

Cam8
seq

Coarse-grain
LSTM

Cam1
seq

Cam2
seq

Cam1
LSTM

Cam2
LSTM

Cam8
LSTM

Transfer

Learning

  Fine-tuning
Specialized LSTMs

Figure 4.6: Using coarse-grain LSTM for transfer learning.

grain LSTM module using transfer learning for each camera. We take our coarse-grain

LSTM model and fine-tune it for every camera using 45 sequences each. After this
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process we get 8 different LSTM models specialized for each of these 8 cameras.

We used the same mean-squared error like we used for the coarse-grain LSTM for

calculating the loss while fine-tuning. Adam optimizer was used to minimize this loss

with a learning rate of 10−7 for 80 epochs.

Each of the specialized LSTM models obtained after fine-tuning were used for their

respective cameras in our end-to-end system. We show these results in section 5.6.



CHAPTER 5: SYSTEM EVALUATION

This section will go through the evaluation of our system, explaining the dataset

we used, evaluation metrics, our setup for this evaluation followed by quantitative

and qualitative analysis of the results.

5.1 Dataset

As explained in section 2.5 we use DukeMTMC for our system’s evaluation. It is

a MTMCT dataset which was shot at the Duke University campus using 8 cameras

with non-overlapping views.

Figure 5.1: Different camera angles in DukeMTMC

Fig. 5.1 shows all 8 camera views that the DukeMTMC dataset offers. It has

around 1800 instances of occlusion making it a challenging dataset. This dataset

poses many real world problems making it a good validation test for the system built

for pedestrian surveillance.

5.2 Evaluation metrics

To evaluate the performance of our LSTM module, we use region overlap or the

Average Overlap Score (AOS). AOS is calculated using the Intersection over Union

(IoU) method. It is defined as the ratio of the intersection area between the ground
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truth bounding box and the predicted bounding box of the pedestrian to the union

between the ground truth and the predicted box. The IoU for every frame is calculated

for which the prediction is made and then averaged to get the AOS score.

Figure 5.2: Intersection over Union (IoU)

For evaluating the system, we use the same evaluation metrics proposed in [16] for

measuring re-id accuracy. Identification Precision (IDP), Identification Recall (IDR)

and Identification F1 score (IDF1) are the 3 metrics we used to validate our results

for re-id. To explain these metric, we first define true positives, false positives and

false negatives and what they mean. We say a re-id is a true positive if it was re-

identified correctly and the same ID is present in the ground truth. It is a false

positive if we re-id the pedestrian but its not present in the ground truth. A false

negative is when we miss a target. We then define True Positives (TP), False Positives

(FP) and False Negatives (FN) as the sum of true positive, false positive and false

negative for all frames. The IDP and IDR are calculated as IDP=TP/(TP+FP) and

IDR=TP/(TP+FN). IDF1 is simply the harmonic mean of IDP and IDR giving a
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measure of accuracy.

5.3 Experimental setup

The LSTM module was implemented and trained using PyTorch 1.0.1. For training

we used the NVIDIA Tesla v100 GPU. The LSTM was trained on total 120 single

object sequences (15 from each camera) curated from the DukeMTMC dataset and

tested on 24 sequences (3 from each camera). To validate the accuracy of the full

system with the LSTM module, the complete system functionality was ported to

MATLAB and made into a simulation testbed to evaluate results. For these experi-

ments, we used videos of all 8 cameras from the DukeMTMC dataset and validated

our results on the trainval_mini frame set from the dataset. We computed detec-

tion misses following the truth-to-matching method with 0.3 IoU threshold with the

ground truth. This MATLAB testbed was run on a x86 machine.

5.4 Coarse-Grain LSTM Tracker
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Figure 5.3: Average IoU for each camera on the testing sequences for first future
frame.

Fig. 5.3 shows the AOS achieved by the LSTM between the first future prediction

and the corresponding ground truth values for all 8 cameras on the test set. We
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Figure 5.4: Average IoU for each camera on the testing sequences for third future
frame.
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Figure 5.5: Average IoU for each camera on the testing sequences for fifth future
frame.

observe the AOS around 0.5 for all cameras except for camera 4 which almost touches

0.6. Fig. 5.4 shows the AOS for the same cameras on the same test set but for the

third future prediction. We see a drop in the AOS by almost 0.1. We then observe

the AOS for the fifth future prediction on the same test set in fig. 5.5 to see further

decrease in the AOS. In the next section we shall discuss this trend.
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5.4.1 Qualitative analysis

Fig. 5.6 shows the average AOS for all 8 cameras for the first, third and fifth future

prediction step. We observe a linear decrease in the AOS as we go further into the

future for predicting positions of different pedestrians. For step5 we get a little more

than 0.3 AOS, which exactly matches our truth-to-matching IoU threshold of 0.3.

If we go any further in predicting the future positions, we will go lower than this

threshold which will affect the accuracy of the system. This is the reason we chose

to predict only 5 frames ahead in the future.

5.5 End-to-End System

Fig. 5.7 shows the comparison of the F1 scores obtained with the system with no

LSTM and with LSTM on the DukeMTMC dataset on all 8 cameras and the average

change in F1. Although, it increases overall average by about 2 percent, it slightly

decreases the F1 score for camera 2 and 7. In order to find out this discrepancy, we

dive deeper into the change in the IDP and IDR for these cameras and try to correlate

this analysis by visualizing these camera perspectives. In the next section, we will

analyze this behavior and try to understand why the LSTM tracking does not impact
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Figure 5.7: IDF1 Results for Single Camera

the performance in these cameras.

5.5.1 Qualitative analysis

Fig. 5.8 shows 3 consecutive frames from camera 3 from the DukeMTMC dataset.

Green boxes are the ground truths, red boxes shows the detections and the blue

boxes ate the LSTM predictions. If we observe the pedestrian highlighted by the

green arrow, we see that in the first frame it has all ground truth, detection and

LSTM prediction boxes. However as it approaches the door in the second frame, the

ground truth box disappears but we still have the detection and the predictions. In

the third frame as the object disappears, we still get the predictions from the previous

frame as the system recognizes this scenario as a miss-detection. The system works

with the prediction as a detection as it should be doing. This results in increased

false positives which decreases the overall re-id accuracy of the system. Similarly in

Fig. 5.9, which is a frame from camera 7, false positives would be incurred for any

pedestrian that exits from the door in the middle of the scene.

In order to quantify this analysis, we compare the change in the IDP for the system

with no LSTM and the one with LSTM. Fig. 5.10 shows this comparison. As we can

see, there is a decrease in the overall re-id precision for camera 3 and camera 7. Since,
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IDP is the ratio of true positive with respect to the sum of true positive and false

positive, this analysis shows that false positives increase for these cameras with LSTM

predictions.

Figure 5.8: Frames from camera 3
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Such kind of instances of static occlusions where a pedestrian exits the scene from

the middle are tough to detect when the LSTM is trained on sequences from all the

cameras. This gives us the intuition that the LSTM is not able to generalize based on

every camera perspective. We require some kind of adaptive algorithm which learns

from each camera’s perspective separately and learns to not predict for such cases of

static occlusion.

Figure 5.9: Frame from camera 7

Cam
3

Cam
740

60

80

100

ID
P

(%
)

No LSTM LSTM

Figure 5.10: IDP for camera 3 and camera 7.
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5.6 Enhanced Coarse-Grain LSTM with Transfer Learning

As explained in section 4.4, we fine tune our coarse-grain LSTM to specialize for

each camera. After obtaining 8 different fine-tuned models for each camera, we eval-

uated our system’s performance using these models.
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Figure 5.11: IDF1 Results for Single Camera

Fig. 5.11 shows the IDF1 results for each camera with no LSTM, with LSTM and

with specialized LSTM (S-LSTM). As we can see there is an increase in the F1 score

for all cameras when compared to a general LSTM. We observe the overall increase in

the average F1 score by around 4 percent. This gives us a proof of concept that we do

need specialized algorithm which understands the scene from each camera perspective

and learns to predict movements of pedestrians for that specific scene setting.

5.7 Multi-Camera and Comparison with state of the art

In this section we will compare our system’s performance with the state of the art

which is DeepCC[7]. To compare the algorithm performance we use our specialized

coarse-grain LSTM modules integrated in our system. We compare per camera F1

score as well as multi-camera performance for evaluating re-id accuracy across all 8

cameras.

Fig. 5.12 shows the comparison of re-id accuracy of our end-to-end system and
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Figure 5.12: IDF1 Results for Multi-Camera Single Camera

DeepCC. As can be seen, we are about less than 3 percent short of the multi-camera

F1 score when compared with the state of the art.

We now compare both of these systems in terms of throughput or FPS and the

power consumed by these systems. For all measurements our end-to-end system is run

in real-time on the NVIDIA AGX XAVIER(xavier) embedded platform. DeepCC is

measured using OpenPose running at maximum accuracy configuration for detection

and for re-id we use ResNet-50 as described in [7].

Table 5.1: FPS and Power Consumption of Real-Time Inference

System Our system DeepCC DeepCC DeepCC
Device Xavier Titan V 2xTitan V V100
FPS 5.7 2.5 4.7 2.7

Power 25.01W 155W 320W 179W
Detailed Xavier Power Consumption

Device GPU DDR SOC Total
Power 19.49W 2.734W 2.781W 25.01W

Table 5.1 shows the FPS and power results obtained for our system when compared

to DeepCC. On the xavier platform we achieve 5.7 FPS while on a NVIDIA titan v

DeepCC achieves 2.5 FPS as its throughput. Our system consumes just 25 watts
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while DeepCC requires 155 watts which is 6 times the power our system uses. We

also present the breakdown of the power consumed by our end-to-end system on the

xavier.



CHAPTER 6: CONCLUSION AND FUTURE WORK

In this research, we measured and analyzed the impact of tracking by using LSTM

in our existing end-to-end system. This coarse-grain LSTM which was trained at

5 FPS and was optimally chosen to predict 5 future frames. On evaluation, it was

able to increase the accuracy of all but 2 cameras. After providing an analysis, we

envisioned separate algorithms for every camera which can learn instances of static

occlusions and movement of pedestrians in isolation for each camera. To present a

proof of concept we used transfer learning to fine-tune our coarse grain LSTM and

observed an increase in accuracy for every camera. We then compared our system

performance with these specialized LSTM modules with the state of the art, DeepCC

and found that we achieved within less than 3 % accuracy for multi-camera while

consuming less than 6 times the power.

This above analysis proves that our system is appropriate for real-time edge ana-

lytic.

Some of the future work we have in mind:

1 . Although specialized LSTMs work well in our existing system, their use is not

optimum. We need to develop some adaptive algorithm which adapts to a

particular camera perspective and learns its scene setting in an online learning

paradigm.

2 . We envision to increase the throughput of our system and make it real-time.

One way would be to restrict the execution of the detection network, which is

a bottleneck, for some frames in between, and use the LSTM predictions for

these intermediate frames.
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3 . Extend the impact of these future trajectory predictions beyond a single camera to

a multi-camera setting by analyzing variation in speed of different pedestrians

and predict their appearance in the next camera as they leave their present

camera view.



37

REFERENCES

[1] P. Kulkarni, S. Mohan, S. Rogers, and H. Tabkhi, “Key-track: A lightweight
scalable lstm-based pedestrian tracker for surveillance systems,” in Lecture Notes
in Computer Science, Springer International Publishing, 2019.

[2] M. Sapienza, E. Guardo, M. Cavallo, G. L. Torre, G. Leombruno, and O. Tomar-
chio, “Solving critical events through mobile edge computing: An approach
for smart cities,” in 2016 IEEE International Conference on Smart Computing
(SMARTCOMP), pp. 1–5, May 2016.

[3] M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,”
IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2016.

[4] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-
edge computing architecture: The role of mec in the internet of things,” IEEE
Consumer Electronics Magazine, vol. 5, pp. 84–91, Oct 2016.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEE Pervasive Computing, vol. 8, pp. 14–23,
Oct 2009.

[6] A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, “Online multi-
target tracking using recurrent neural networks,” in Thirty-First AAAI Confer-
ence on Artificial Intelligence, 2017.

[7] E. Ristani and C. Tomasi, “Features for multi-target multi-camera tracking and
re-identification,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6036–6046, 2018.

[8] Z. Cao, T. Simon, S. Wei, and Y. Sheikh, “Realtime multi-person 2d pose esti-
mation using part affinity fields,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1302–1310, July 2017.

[9] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” in 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pp. 2704–2713, 2018.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, June 2016.

[11] M. Ditty, A. Karandikar, and D. Reed, “Nvidia xavier soc,” Aug 2018.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.



38

[13] P. Lin, X. Mo, G. Lin, L. Ling, T. Wei, and W. Luo, “A news-driven recur-
rent neural network for market volatility prediction,” in 2017 4th IAPR Asian
Conference on Pattern Recognition (ACPR), pp. 776–781, Nov 2017.

[14] A. Ray, S. Rajeswar, and S. Chaudhury, “Text recognition using deep blstm net-
works,” in 2015 Eighth International Conference on Advances in Pattern Recog-
nition (ICAPR), pp. 1–6, Jan 2015.

[15] D. H. Oh, Z. Shah, and G. Jang, “Line-break prediction of hanmun text using
recurrent neural networks,” in 2017 International Conference on Information and
Communication Technology Convergence (ICTC), pp. 720–724, Oct 2017.

[16] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance mea-
sures and a data set for multi-target, multi-camera tracking,” in European Con-
ference on Computer Vision workshop on Benchmarking Multi-Target Tracking,
2016.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg,
“SSD: single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[18] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018.

[19] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer
Vision – ECCV 2014 (D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, eds.),
(Cham), pp. 740–755, Springer International Publishing, 2014.

[20] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time
object detection with region proposal networks,” CoRR, vol. abs/1506.01497,
2015.

[21] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural
networks,” in Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR ’14, (Washington, DC, USA), pp. 1653–1660, IEEE
Computer Society, 2014.

[22] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. Gehler,
and B. Schiele, “Deepcut: Joint subset partition and labeling for multi person
pose estimation,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4929–4937, IEEE, June 2016.

[23] S. BÄk, E. Corvee, F. Bremond, and M. Thonnat, “Multiple-shot human re-
identification by mean riemannian covariance grid,” in 2011 8th IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance (AVSS),
pp. 179–184, 2011.

[24] A. R. Mier y TerÃ¡n, L. Lacassagne, A. H. Zahraee, and M. GouiffÃ s, “Real-
time covariance tracking algorithm for embedded systems,” in 2013 Conference
on Design and Architectures for Signal and Image Processing, pp. 104–111, 2013.



39

[25] I. O. de Oliveira and J. L. de Sousa Pio, “Object reidentification in multiple
cameras system,” in 2009 Fourth International Conference on Embedded and
Multimedia Computing, pp. 1–8, 2009.

[26] M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof, “Person re-identification
by descriptive and discriminative classification,” in Image Analysis (A. Heyden
and F. Kahl, eds.), (Berlin, Heidelberg), pp. 91–102, Springer Berlin Heidelberg,
2011.

[27] F. Fleuret, H. Ben Shitrit, and P. Fua, “Re-identification for improved people
tracking,” Person Re-Identification, pp. 309–330, 2014.

[28] X. Zhang, H. Luo, X. Fan, W. Xiang, Y. Sun, Q. Xiao, W. Jiang, C. Zhang,
and J. Sun, “Alignedreid: Surpassing human-level performance in person re-
identification,” arXiv preprint arXiv:1711.08184, 2017.

[29] X. Zhu, X. Jing, X. You, X. Zhang, and T. Zhang, “Video-based person re-
identification by simultaneously learning intra-video and inter-video distance
metrics,” IEEE Transactions on Image Processing, vol. 27, no. 11, pp. 5683–
5695, 2018.

[30] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang, “Joint detection and identifica-
tion feature learning for person search,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3376–3385, 2017.

[31] Y. Shen, H. Li, S. Yi, D. Chen, and X. Wang, “Person re-identification with
deep similarity-guided graph neural network,” in The European Conference on
Computer Vision (ECCV), September 2018.

[32] S. Li, S. Bak, P. Carr, and X. Wang, “Diversity regularized spatiotemporal at-
tention for video-based person re-identification,” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 369–378, 2018.

[33] W. Zhang, B. Ma, K. Liu, and R. Huang, “Video-based pedestrian re-
identification by adaptive spatio-temporal appearance model,” IEEE Transac-
tions on Image Processing, vol. 26, no. 4, pp. 2042–2054, 2017.

[34] J. Dai, P. Zhang, D. Wang, H. Lu, and H. Wang, “Video person re-identification
by temporal residual learning,” IEEE Transactions on Image Processing, vol. 28,
no. 3, pp. 1366–1377, 2019.

[35] M. Li, X. Zhu, and S. Gong, “Unsupervised tracklet person re-identification,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2019.

[36] D. Reid, “An algorithm for tracking multiple targets,” IEEE transactions on
Automatic Control, vol. 24, no. 6, pp. 843–854, 1979.



40

[37] G. L. Masala, B. Golosio, M. Tistarelli, and E. Grosso, “2d recurrent neural net-
works for robust visual tracking of non-rigid bodies,” in Engineering Applications
of Neural Networks - 17th International Conference, EANN 2016, Aberdeen, UK,
September 2-5, 2016, Proceedings, pp. 18–34, 2016.

[38] J. Dequaire, P. Ondruska, D. Rao, D. Z. Wang, and I. Posner, “Deep tracking in
the wild: End-to-end tracking using recurrent neural networks,” I. J. Robotics
Res., vol. 37, no. 4-5, pp. 492–512, 2018.

[39] Q. Chu, W. Ouyang, H. Li, X. Wang, B. Liu, and N. Yu, “Online multi-object
tracking using cnn-based single object tracker with spatial-temporal attention
mechanism,” in IEEE International Conference on Computer Vision, ICCV
2017, Venice, Italy, October 22-29, 2017, pp. 4846–4855, 2017.

[40] G. Ning, Z. Zhang, C. Huang, Z. He, X. Ren, and H. Wang, “Spatially super-
vised recurrent convolutional neural networks for visual object tracking,” CoRR,
vol. abs/1607.05781, 2016.


