
DATA-DRIVEN ANALYTICS FOR EXTRACTING AND INFERRING THREAT 

ACTIONS AND ATTACK PATTERNS FROM THE UNSTRUCTURED TEXT OF 

CYBER THREAT INTELLIGENCE 

 

 

 

by 

 

Ghaith Husari 

 

 

 

 

A dissertation submitted to the faculty of  

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in  

Software and Information Systems 

 

Charlotte 

 

2019 

 
 

 

       Approved by: 

 

 

                                                    ______________________________ 

Dr. Mirsad Hadzikadic 

 

 

______________________________ 

Dr. Wlodek Zadrozny  

 

 

______________________________ 

Dr. Bojan Cukic 

______________________________ 

Dr. Ehab Al-Shaer  

 

 

______________________________ 

Dr. Bei-Tseng Chu 

______________________________ 

Dr. Xi Niu 

 

 

______________________________ 

Dr. Daniel Janies 

______________________________ 

Dr. Samira Shaikh 

______________________________ 

Dr. Waseem Shadid 

 



ii

c©2019
Ghaith Husari

ALL RIGHTS RESERVED



iii

ABSTRACT

GHAITH HUSARI. Data-driven Analytics for Extracting and Inferring Threat
Actions and Attack Patterns from the Unstructured Text of Cyber Threat

Intelligence. (Under the direction of DR. MIRSAD HADZIKADIC)

With the rapid increase of the cyber-attacks, threat information sharing has become

essential to understand and defend against cyber-attack in a timely and cost-effective

manner. Cyber Threat Information (CTI) and threat information reports remain

to be shared via unstructured text which cannot be ingested and analyzed by the

current cyber countermeasures. Without addressing this challenge, CTI and threat

information sharing will become a tedious and time-consuming task and time-to-

defend will continue to increase.

To adapt to the high volume and speed of threat information sharing, our aim in

this dissertation is to develop automated analytics of cyber threat intelligence to ex-

tract threat actions and attack pattern (TTPs) from publicly available CTI sources in

order to respond and defend in a timely manner. This work has three key goals. First,

we plan to develop a novel threat-action ontology that understand the specifications

and context of cyber threat actions. Second, we present a text mining approach that

combines enhanced techniques of Natural Language Processing (NLP) and Informa-

tion retrieval (IR) to extract threat actions from the unstructured text of CTI reports.

Third, our CTI analysis can construct a complete attack pattern (TTP Chain) by

mapping each threat action to the appropriate techniques, and extracts the relations

(e.g., temporal) between these actions and insert these relationships as edges in the

TTP Chain. Fourth, we will provide a module to provide defense advisory for threat

actions. In addition, we provide an approach that maps threat actions that constitute

TTPChains to OS native commands that execute these threat actions on systems.

These commands are essential for cyber threat detection and mitigation for malware

that utilizes built-in OS utilities and native commands, and finally, we generate the



iv

extracted threat techniques and chains in the popular structured language (STIX 2

and CybOX).



v

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Professor Mirsad Hadzikadic, for his support,

and encouragement to finish my doctoral studies. His support, interests, and passion

towards assisting and guiding students make him an exemplary leader and mentor.

Also, I would like to express my deepest gratitude to my dissertation committee

members: Professor Bojan Cukic, Professor Wlodek Zadrozny, and Professor Daniel

Janies for serving on my dissertation committee and for their valuable comments and

suggestions. I would like to thank Professor Ehab Al-Shaer, Professor Bill Chu, and

Professor Xi Niu for their guidance and support for my research. I would also to

thank Professor Weichao Wang and Professor Noseong Park for their guidance and

suggestions for my teaching and research approaches and pedagogy. I would like to

thank my department chair Professor Mary Lou Maher for her patience, guidance,

and support for the community of SIS, students, and faculty. I would like to thank

Professor Fatma Mili for her guidance and support of the CCI community and for

being exemplary Dean of CCI. I would like to thank the faculty and the staff of

the Department of Software and Information Systems in the University of North

Carolina at Charlotte, and my fellow graduate students for their academic and support

throughout my doctoral studies.

Last, but not least, my sincere and profound gratitude goes to my parents and my

wife Farah Ghzawi for their great encouragement, and understanding during the past

five years.



vi

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ABBREVIATIONS 1

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 2

1.2. Background 7

1.2.1. NLP and IR techniques 7

1.2.2. MITRE ATT&CK and TTP 8

1.2.3. Classification of CTI 9

1.3. Related Work 11

1.4. Work Objectives 12

1.5. Research Challenges and Technical Approach Overview 15

1.6. Organization 17

CHAPTER 2: Automatic and Accurate Extraction of Threat Actions from
Unstructured Text of CTI Sources

19

2.1. Motivation 19

2.2. Problem Statement and Contributions 20

2.3. Background 21

2.3.1. Ontology Definition 21

2.3.2. Ontology Population 21

2.4. Constructing the Threat Action Ontology 22



vii

2.5. Threat Action Extraction and Ontology Population 24

2.5.1. Extracting typed dependencies for TTPs 24

2.5.2. Automated Populating of TTP Ontology with
Instances

26

2.5.3. TTP Entities Extraction from CTI Reports and
Analysis

29

2.6. Evaluation 42

2.6.1. Typed dependency and extraction completeness 43

2.6.2. Subject Identification and Tracking Accuracy 44

2.6.3. Accuracy of Motivation Extraction 44

2.6.4. Evaluating Threat Action Mapping to Ontology 45

CHAPTER 3: Extraction and Analysis of Attack Patterns 48

3.1. Motivation 48

3.2. Problem Statement and Contributions 49

3.3. Attack Technique Discovery 49

3.3.1. Evolving the Ontology 50

3.4. TTP Chaining 51

3.4.1. Generating Alternative TTPChains 54

3.5. Evaluation 59

3.5.1. Evaluating our technique discovery approach. 59

3.5.2. Evaluating our TTPChaining approach. 60

CHAPTER 4: Applications of TTPDrill 63

4.1. Motivation 63



viii

4.2. Problem Statement and Contributions 64

4.2.1. Cyber Defense Planning and Advisory 64

4.2.2. Automated Structured CTI Generation 66

4.2.3. TTPChain Native Commands Generation 71

CHAPTER 5: SUMMARY AND FUTURE WORK 78

5.1. Threat Action Extraction 78

5.2. Threat Action Chaining and New Action Discovery 79

5.3. Mapping Threat Action to OS Commands and Defense Actions 79

5.4. Future work 80

REFERENCES 81



ix

LIST OF FIGURES

FIGURE 1.1: Cumulative number of Symantec articles per year. 5

FIGURE 1.2: Example of Unstructured Symantec report of “Dimnie"
threat.

5

FIGURE 1.3: Example of a structured CTI report in CyBox. 6

FIGURE 1.4: Example of observed data handling by regexes. 7

FIGURE 1.5: Cyber Threat Intelligence Type Taxonomy. 11

FIGURE 2.1: The ontology population process. 25

FIGURE 2.2: Extracting typed dependency ruleset from labeled data. 26

FIGURE 2.3: Instance of the Threat Action Ontology 28

FIGURE 2.4: Typed dependency output of the sentence “Trojan Dimnie
sends information to remote locations".

33

FIGURE 2.5: Typed dependencies that are used to recognize malware
mentions as malicious subjects (actors).

38

FIGURE 2.6: An illustration of the distance between words embeddings
using GloVe.

41

FIGURE 2.7: Workflow of candidate action mapping to the ontology. 42

FIGURE 2.8: Convergence of extracted dependencies. 43

FIGURE 2.9: Typed dependency output of the sentence “APT34 deleted
the files to evade detection."

44

FIGURE 2.10: The Impact of the cut off threshold Sth on the accuracy
measures.

45

FIGURE 3.1: Typed dependency for temporal relation extraction between
events.

53

FIGURE 3.2: TTPChain of Catchamas. 55



x

FIGURE 3.3: An example of processing partial TTP chains by generating
alternative chains.

56

FIGURE 3.4: TTPChain of Ransomware Pclock. 58

FIGURE 3.5: TTPChain of Infostealer Avisa. 59

FIGURE 3.6: TTPChain of Backdoor Lamer. 60

FIGURE 3.7: TTPChain of Trojan Arsivir. 61

FIGURE 4.1: Example of a STIX attack pattern generated by TTPDrill. 69

FIGURE 4.2: Example of a CybOX object generated by TTPDrill. 70

FIGURE 4.3: Example of a STIX malware generated by TTPDrill. 70

FIGURE 4.4: "Del" Command in Microsoft Documents. 72

FIGURE 4.5: Workflow of native OS command mapping to the ontology. 73

FIGURE 4.6: Mapping Malware threat actions to OS commands and
utilities.

75

FIGURE 4.7: OilRig TTPChain executed by using legitimate native OS
commands, and utilities

77



xi

LIST OF TABLES

TABLE 2.1: Threat Action Ontology Classes 23

TABLE 2.2: An Excerpt of known threat actions in the ontology 24

TABLE 2.3: Examples of Typed dependency paths extracted between
TTP entities from annotated sentences of the training set

27

TABLE 2.4: Excerpt of Regular Expressions used in this work 32

TABLE 2.5: Excerpt of Stanford typed dependencies used to identify
threat actions TTP entities

34

TABLE 2.6: An example of candidate threat actions extraction 35

TABLE 2.7: Top 5 terms paradigmatically related to the term “chrome" 40

TABLE 2.8: The closest 5 words to standardized cyber objects based on
their paradigmatic relationship

41

TABLE 2.9: Running time for different article sizes 47

TABLE 3.1: Examples of mapping novel technical threat actions to the
TTP ontology based on their tactical actions (motivation)

51

TABLE 3.2: Temporal relations in TimeML annotation 52

TABLE 3.3: An example of temporal relations extraction among threat
actions

56

TABLE 3.4: Example 2 of temporal relations extraction among threat
actions

57

TABLE 3.5: Excerpt of newly discovered threat actions by our tool 62

TABLE 4.1: Five most common threat actions in the past 5 years 66

TABLE 4.2: Advised defense actions for the most common threat actions
in the past 5 years

67

TABLE 4.3: Excerpt of OS commands mapped to Threat Actions 74

TABLE 1: Examples of Extracted Threat Actions 85



xii

TABLE 2: Examples of Discovered Threat Actions 88

TABLE 3: Defense actions advised for the threat actions 91

TABLE 4: Command Mapping to Threat Actions 93

TABLE 5: Command Mapping to Threat Actions 94

TABLE 6: Command Mapping to Threat Actions 95



CHAPTER 1: INTRODUCTION

Cyber attacks have been rapidly increasing in both volume and sophistication [1].

This results in an information explosion of cyber threat intelligence (CTI) reports,

much of which written in unstructured text, describing attack tactics, technique and

procedures (TTP) for the sake of understanding and hunting malicious actors. It is

very time- and labor-consuming to manually gather relevant information from this

large body of CTI reports and analyze them in a timely manner. These challenges can

diminish the practical utility of threat information sharing, and significantly increase

both attack uncertainty and time-to-defend. On the other hand, actionable CTI such

as blacklists [2] [3]) that provides observables and indicators of compromise (IoC)[4]

such as IP addresses and URLs lacks the contextual information necessary to char-

acterize the attack behavior, which is important for attack detection and mitigation.

Given the speed at which threat information are shared and the large quantities of

CTI reports, the aim of applications of text-driven analytics research area is to develop

automated analytics of cyber threat intelligence report to extract useful information

about new and existing cyber threats for the purposes of a timely and cost-effective

implementation of cyber defense.

CTI provides evidence-based reports about existing or emerging threats, including

their actions, context, mechanisms, indicators, implications, and actionable advice,

so that proactive mitigation decisions can be made [5]. Although rich in content,

CTI is typically shared in the form of unstructured natural language text. The

explosive growth of such text-based reports makes it extremely labor-intensive to

analyze. Converting such CTI text to some condensed structural information that

is machine readable is challenging. Structured threat information sharing sources



2

such as PhishTank [3] only provide a list of observables such as IP addresses. Such

observables do not usually have the threat behavioral context that characterizes these

observables, missing meaningful information for planning defense.

In this dissertation, we directly address various challenges that limit the effective-

ness and usability of cyber threat intelligence using a framework to “engineer" an

unstructured report into a structured list of threat actions, as the key information of

the report for the purpose of further analysis by machine and timely defensive strat-

egy. Specifically, our approach uses an integration of Natural Language Processing

and Information Retrieval to extract the malicious actions from the shared threat

reports. Extracting threat actions from the natural language CTI reports is chal-

lenging for several reasons. First, the state-of-the-art language parsing tools, such

as Stanford typed dependency parser [6], are not good at parsing complex sentence

structures with a series of indicators of compromise (e.g. file names, paths, websites

URIs), which are commonly seen in CTI reports, as shown in the example sentence in

Figure 1.4. Second, the state-of-the-art tools are trained on general English corpora,

and cannot understand well the words or phrases with cybersecurity connotation,

such as “upload",“inject", “hop", etc. Last, CTI threat reports often describe at-

tack behavior at a very specific action level, such as “record keystrokes", “has run

a keylogger", which cannot be literally matched with the standard language “input

capture" used by existing cybersecurity frameworks, such as Tactics, Techniques, and

Procedures (TTP) in the MITRE ATT&CK framework [7]. Also, we touch base on

coordinated defense as will be shown and discussed in the following chapters.

1.1 Motivation

With the rapid growth of cyber attacks, cyber threat intelligence (CTI) sharing be-

comes essential for providing threat notice in advance and enabling timely response

to cyber attacks. CTI reports are mostly written in unstructured text of English

language and shared through web postings (e.g., Symantec [8]). STIX/TAXII was



3

proposed as a standard format for creating and sharing structured CTI reports. How-

ever, in practice only Indicators of Compromise are shared in this standard format.

The information of treat actions and threat context such as what the action is, where,

why and how the action is performed in the system, and threat patterns that identify

the relation between threat actions within the attack is very critical for determining

the appropriate defense actions, but they are mainly shared in unstructured text for-

mat and not available for timely considerations. Currently, CTI reports are produced

by many analysts everyday from different organizations in different countries, the

same threat action may be written in different ways, such as “steal credential" and

“collect account information". The specificity levels may also be different, such as

“modify registry" and “privilege escalation". Having a standardized representation of

malware threat behaviors could serve as common ground that bring greater awareness

of what actions may have been observed during a malicious intrusion. They also en-

able a comprehensive evaluation of defensive technologies. The standardization both

expands the knowledge of defenders and assists in prioritizing defense by detailing

the post-compromise behaviors in increasing levels of detail.

To address these challenges, we propose in this project to develop an analytic

framework for mining and understanding the unstructured text of CTI sources. The

framework enables the following novel capabilities: (1) proposing an ontology called

TTPOntology that incorporates concepts and relations of killchain phases, tactics,

and techniques (TTP) stated by MITRE ATT&CK [7], (2) extracting the micro-

level threat actions and their contexts to comprehensively represent the fine-grain

attack behaviors that specifically describe the threat “verb" (action) applied on an

“object" (target) for this “purpose" (why), (3) mapping each low-level threat action

to the corresponding high-level concepts in TTPOntolgy, and (4) constructing the

attack patterns by extracting the temporal relations between the threat actions of a

specific attack. The proposed framework can analyze CTI sources and put them in



4

the context of TTPOntology to provide better understanding of the implications of

the threat actions actions.

Cyber Threat Intelligence (CTI):

Cyber threat intelligence is vital for organizations and security community to defend

against the rapidly-evolving cyber threats. Public threat reports such as Malware-

don’t-need-Coffee [9], Symantec, Kaspersky, McAfee, ThreatExchange [10], and dib-

net [11], are valuable sources for threat intelligence sharing. However, they are only

available in unstructured text format. There have been many efforts to provide stan-

dardized machine-readable format to facilitate cyber threat information sharing such

as STIX [12] [13], YARA [14] and OpenIOC[15].

CTI reports is collected information that contain details about recent cyber threats.

There are numerous public sources for threat information such as security blogs, twit-

ter feeds, or online forums. Examples of these sources include, but not limited to,

Malware Don’t need coffee, Symantec reports, FireEye reports, and Mcafee reports.

Figures 1.2 show two examples of a threat reports from Symantec security center [8].

Consider Symantec threat reports shown in Figures 1.2 [8]. Figure 1.2 shows a de-

scription of Dimnie, an advanced threat that takes screen shots, logs keystrokes, and

exfiltrates collected information to a remote location. Knowing the threat actions

associated with a black listed IP address, whether it is associated with Dimnie pro-

vides valuable context to prioritize valuable security resources and plan appropriate

responses.

Figure 1.2 shows a description of an advanced threat, called Dimnie, that performs

many malicious actions such as, taking screen shots, logging keystrokes, and exfiltrat-

ing the collected information to remote locations. A example of Structured CTI is

shown in Figure 4.2.

Indicators of Compromise (IoCs) Special terms, such as non-textual terms,

used in threat reports confuse NLP tools. For instance, they have difficulty parsing



5

Figure 1.1: Cumulative number of Symantec articles per year.

“Trojan Dimnie is discovered March 28, 2017"  

“creates file"  

“creates registry entry"  

“query DNS server"  

“takes screenshots"  

“log keystrokes"  

“send stolen information to location"  

Figure 1.2: Example of Unstructured Symantec report of “Dimnie" threat.



6

<cybox:Observable id="example:Observable-e24a-42b5-bb29-7bd56fa9655f"> 

        <cybox:Description>This is a file observation.</cybox:Description> 

        <cybox:Object id="example:Object-1d3e6-4138-891b-291576dc5d41"> 

            <cybox:Properties xsi:type="FileObj:FileObjectType"> 

                <FileObj:File_Name>badlib1.dll</FileObj:File_Name> 

                <FileObj:File_Path>\Programs\Startup\</FileObj:File_Path> 

                <FileObj:File_Extension>.dll</FileObj:File_Extension> 

            </cybox:Properties> 

        </cybox:Object> 

    </cybox:Observable> 

</cybox:Observables> 

Figure 1.3: Example of a structured CTI report in CyBox.

the following sentence: “Malware connects to 192.168.1.1" correctly due to the use

of periods in the IP address. An automated framework captures these terms using a

set of regular expressions (regex), built for common objects in our ontology such as

IP address, port number, domain, etc. Once a regex matches a string, it replaces it

with a generic name in preparation for further processing. For example, the string

“fil_1.exe" in the sentence “create fil_1.exe" will be captured by a regex and replaced

with the words "executable file", so the whole sentence will become “create executable

file". Note that these strings (e.g. fil_1.exe) are not discarded. We keep track of

each replaced string for later use. For example, these values will be included in the

generated STIX threat reports as specific indicators, see Figure 1.4.

Cyber attacks have been rapidly increasing in both volume and sophistication[1].

This results in an information explosion of cyber threat intelligence (CTI) reports,

much of which written in unstructured text, describing attack tactics, technique and

procedures (TTP) for the sake of understanding and hunting malicious actors. It is

very time- and labor-consuming to manually gather relevant information from this

large body of CTI reports and analyze them in a timely manner. These challenges

can diminish the practical utility of threat information sharing, and significantly

increase both attack uncertainty and time-to-defend. On the other hand, actionable



7

• The Trojan connects to  46.165.246.234 

• The worm uploads data to gmail.com/upload.php 
 

• It creates the following  file f1.exe 
 

• The infection exploits CVE-2017-0001 

 

IP address 

website, domain 

executable file 

software vulnerability 

observed data 

corresponding word 

regex matching 

Figure 1.4: Example of observed data handling by regexes.

CTI such as blacklists (e.g., CleanMX [2] and URL PhishTank [3]) that provides

observables and indicators of compromise (IoC)[4] such as IP addresses and URLs

lacks the contextual information necessary to characterize the attack behavior, which

is important for attack detection and mitigation.

1.2 Background

1.2.1 NLP and IR techniques

Machine processing of natural languages is a challenging task as unstructured texts

contain ambiguities that only make sense with thorough understanding of the topic

of discussion. A common NLP strategy, used in domains such as biomedical research

[16][17], is to match sentences against ontologies, that have been created for the

domain of interest.

Named Entity Recognition (NER)[18] identifying semantic elements is an NLP

technique that labels sequences of words that are names of things in a given text. NER

and Relation Extraction (RE), a technique that extracts relations between named

entities [19], have both been extensively studied in the NLP domain.

IR is defined as the problem of selecting textual documents from a corpus (database)

in response to a query. There are many measures in the literature, such as TF-IDF



8

[20], that computes similarity between texts.

Measuring the similarity between texts depends mainly on similar terms between

them. However, using traditional similarity-measuring algorithms to measure the

similarity between threat reports and known attack patterns and techniques will

perform poorly. This is due to the fact that malicious actions can be described in only

a few words (e.g., log keystrokes) in comparison to the entire text in the threat reports

as shown in Figure 1.2. Moreover, existing frameworks that describe known attack

patterns and techniques (CAPEC, ATT&CK) provide details not only about the

threat actions, but also, the intent, pre-condition(s), and recommendations of how to

mitigate and detect these attacks, which makes the threat action portion of text even

smaller and therefore, lowering the similarity score. Low similarity scores will result

in a very low recall and precision. To overcome these limitations, novel approaches

that uses combination of NLP and IR techniques need to be developed to achieve

higher levels of accuracy. Another challenge of applying standard IR algorithms for

measuring similarity between texts is the use of synonyms, for example “remove" and

“delete".

1.2.2 MITRE ATT&CK and TTP

MITRE’s ATT&CK [7] provide excellent summary information describing mali-

cious activities that cyber threats may use to exploit their victims. Moreover, it has

comprehensive list of known cyber attack tactics and techniques that are used by the

adversary to achieve their objectives.

Tactics, techniques and procedures (TTPs) detail how the threat agents orches-

trate and carry out their attacks, specifically, the patterns of activities or methods

associated with a specific adversary.



9

1.2.3 Classification of CTI

1.2.3.1 Structured CTI

STIX: STIX is a XML-based language that is used to characterize and commu-

nicate of standardized cyber threat information. It facilitates this communication in

a structured fashion to support more effective cyber threat information sharing and

cyber defense automation [13].

OpenIoC: OpenIOC is an XML-schema created by Mandiant to report technical

characteristics and artifacts that identify a known threat, its methodology, or other

evidence of a compromise. The schema of OpenIOC consists of two parts: header

and definition. The header contains summary of the attack under description tag

and the source information under authored_by tag to provide information about the

author of the reports, date of discovery, etc. The definition part contains a set of

indicator items (i.e, IOCs) and a context that gives a main category for each IOC

(e.g., process, file, IP).

Yara: YARA is an open source tool that can be used to create descriptions of

malware families based on textual or binary patterns. Each description consists of a

set of strings that report the IOC values and descriptions about the IoCs.

1.2.3.2 Unstructured CTI

Strategy oriented reports: This type of CTI reports is focused on reporting

the political and economical gain / impact for cyber threats or cyber-attack groups

for carrying our their campaigns. This type of reports is not focused on reporting

the technical or tactical behavior of cyber-attacks. One example of these reports is

snippet from the Fancy Bear report by Cyberwire, that reports, “The Daily Beast

reports that Fancy Bear is snuffling around Senator Claire McCaskill (Democrat of

Missouri) and some of her staffers.". Such information does not report information

that detail how a cyber attack carry out malicious activities.



10

Tactical-technical oriented Reports: This type of CTI reports is focused on

reporting the low-level, fine-grain malicious activities carried out by cyber-attacks.

This information includes, but not limited to, IOCs (e.g., IP address, file hash), at-

tack activities (e.g., wipe disks, encrypt user data, etc.). Such reports are focused on

detailing the malicious activity in a way to make it easier for cybersecurity teams to

detect, prevent, or mitigate cyber attacks. There are many highly reputable cyber-

security organizations that provide CTI sharing services to share reports of this type

such as McAfee, Symantec, Fireeye blogs.

Procedural-oriented Reports: This type of CTI reports provide details about

Advanced Persistent Threats (APTs) about the malicious behavior and IOCs, in ad-

dition, to tools and services leveraged by the attack to execute malicious actions.

These reports often include analytical information that is gathered and conformed

by various cybersecurity and hunting groups, therefore, they tend to be the largest

reports in CTI community (e.g., 40 pages). This wealth of information about such

attacks, while very valuable, is not readily available as it takes longer to gather and

verify the information about such attacks (e.g., [21, 22]).

Software Weaknesses Reports: This type of reports are focused on explaining

software flaws or bugs that can be exploited by cyber-attacks to perform a malicious

activity or achieve an adversarial goal (e.g., crash application). While this type

of reports provides important information about flawed software products and the

negative impact that may occur if these flawed are enforced, possible intentionally

by attackers. However, it does not provide details about threat behaviors or tactical

intents (e.g., collect credentials).



11

SANS NewsBites

Types of CTI Sources

Strategy Oriented 
Reports

Symantec

Tactical-technical 
oriented Reports

Fireeye Threat 
Intelligence

Procedural-oriented 
Reports

Common Vulnerability 
Enumeration

Software Weaknesses 
Reports

Common Weakness 
Enumeration

Cisco Talos

KASPERSKY lab

McAfee

Fireeye blog

CyberWire

Figure 1.5: Cyber Threat Intelligence Type Taxonomy.

1.3 Related Work

Cyber threat intelligence is vital for organizations and security community to

defend against the rapidly-evolving cyber threats. Public threat reports such as

Malware-don’t-need-Coffee [9], Symantec, Kaspersky, McAfee, ThreatExchange [10],

and dibnet [11], are valuable sources for threat intelligence sharing. However, they

are only available in unstructured text format. There have been many efforts to

provide standardized machine-readable format to facilitate cyber threat information

sharing such as STIX [12] [13], YARA [14] and OpenIOC[15]. Our approach, TTP-

Drill, bridges the gap between unstructured threat information and structured threat

tactics, techniques and procedures.

Compared to other fields, such as medical informatics, NLP has only been used

recently for cybersecurity research. Zhu et al. [23], proposed the FeatureSmith, a

system that extracts Android malware behaviors (SVOs) from scientific papers us-

ing typed dependency and part-of-speech. To filter irrelevant behaviors, the system

selects behaviors in the paper that contain the word Android. Liao et al. presented



12

iACE, a technique for extracting IoCs (i.e., IPs, MD5 hashes of malicious files) from

unstructured text. The technique uses a fixed set of terms (e.g., attachment, down-

load) and use regular expressions to identify artifacts (e.g., MD5-like string) in the

text [24]. iACE filters sentences using NLP techniques. It extracts artifacts only.

The work in [25] utilized NLP to extract the key terms of natural language privacy

policies for analyzing web security. The works in [26] [27] analyzed Android applica-

tion descriptions Using NLP to infer the permissions that they require. SaboÂke et,

al. [28] built a classifier that utilizes a set of features (e.g., specific words) to detect

trending cyber attacks in tweets with the term “CVE". Husari et al. [29] proposed a

framework that uses basic NLP and information theory to extract threat actions from

unstructured text of CTI using the mutual information between verbs and objects in

the cyber domain.

In contrast, our work focuses on extracting malicious threat actions (SVOs) and

attribute them to known attack patterns and techniques based on a threat-action

ontology. This mapping, performed by our enhanced BM25 method, provides context

information to assess the risk of a malware, e.g. whether it is stealing information or

delivering ads. To the best of our knowledge there is no other effort that provides the

same level of accuracy and analysis . TTPDrill can be easily extended to generates a

threat actions in any machine-readable threat sharing format, such as STIX, with rich

context information from the threat-action ontology (intent, kill chain phase, etc.).

1.4 Work Objectives

The main goal in this dissertation is to extract actionable knowledge about threat

attacks and TTPs from unstructured CTI sources.Our framework is a two-phase

process; First, it takes an ontology schema (with seed instances), a set of annotated

CTI reports to populate the ontology. In the second phase, our framework ingests

CTI reports, from which it extracts threat actions and maps them to the known

attack techniques (incorporated by the ontology) using a novel integration of NLP



13

and IR techniques. Finally, the framework generates a TTP Chain that describes

a CTI report (cyber-attack), in which nodes represent attack techniques and edges

represent the relation between these actions. We intend to do this by extracting the

temporal relation between threat actions based on the linguistic clues in the provided

text. To ensure accurate attack patterns extractions and TTP Chain generation, our

objective in this dissertation is to address the following major problems:

• Building a comprehensive Threat Action Ontology. We developed a threat-

action ontology that incorporates novel concepts for describing attack patterns

and techniques of cyber threats. Our proposed ontology provides contextually

rich threat action specification that include the verb, object type and value,

action preconditions (such as system configuration), and the action goal. In ad-

dition, our ontology captures the relationships between micro-level and macro-

level concepts of cyber threats. The micro-level and macro-level concepts rep-

resent, respectively, the threat action and the corresponding kill-chain context

in term of tactics and techniques. For instance, “delete log file" is an instance of

a micro-level concept (threat action) that the adversary executes to achieve a

macro-level concept such as “defense evasion" (tactic). Thus, the ontology cap-

tures the relationships between components of threat actions, the action tactical

goal, and action strategic goal in the kill chain.

• Threat Action Extraction from Unstructured CTI. The second contribution of

this work is extracting threat actions from threat reports written in unstruc-

tured text, such as Symantec reports [8], and then mapping them to attack pat-

terns and techniques (TTPs) incorporated in the threat-action ontology learned

from MITRE repositories. This was achieved through novel integration of con-

cepts from Natural Language Processing or NLP (specifically, Part-Of-Speech

tagging [30]), and Information Retrieval IR (specifically, TF-IDF method with

BM25 weighting [31]) to identify and characterize malicious actions from a given



14

CTI text. In NLP part, we carefully constructed a set of NLP rules based on

our threat-action ontology, to identify words in the text that constitute a threat

actions. Our NLP analysis can identify special terms such as “file1.exe" and

maps them to words of meaningful semantic, “executable file" that can be un-

derstood by existing NLP tools [6]. In addition, we have incorporated WordNet

[32], Thesaurus [33], and Watson Synonym [34].

• Threat Action Mapping and TTP Chain Construction. We learn consistent

sequences of threat actions that constitute a TTP, then we use killchain-order

(i.e., based on their mapping to killchain phases) and text-based temporal rela-

tion extraction to determine the dependency between actions executed by the

same threat. Then, our objective is to generate a TTP Chain, where nodes

correspond to threat actions and the directed edges correspond to the temporal

relation between them.

• Cyber Defense Advisory for trending threat actions or attach techniques. This

is the forth objective of this dissertation and it goes along the three previous

objectives as follows. First, we manually extract defense actions and counter

measures for attack techniques. Second, we use our approach to extract attack

techniques executed by cyber threats and provide post-hoc analytics about most

frequent (trending) attack techniques. Third, using the the provided analytics

and defense action list, we provide advisory about most important defense ac-

tions and countermeasures to be implemented. Also, to plant the seed for

better and more accurate cyber attack detection and mitigation, we develop a

state-of-the-art approach that maps TTP chains (sequences of threat actions)

to OS native commands and utilities that can be executed by cyber attacks to

operationalize their attacks.



15

1.5 Research Challenges and Technical Approach Overview

We present in this section a high level description for the technical approaches we

followed to pursue our work objectives that are mentioned earlier. We explain the

complete technical details in the later chapters.

• Ontology Construction and Population. For this purpose, we take a top-down

approach for creating a threat action ontology. We start by creating classes for

the most general concepts (e.g., adversary tactic) and move on to more special-

ized concepts (e.g., threat action), Figure 2.3 shows the high-level (“KillChain

Phase") and the low-level (“action") concepts in our ontology. Table 2.1 lists

types of classes in our threat ontology. We describe some key classes below.

This ontology will capture the necessary details for threat actions needed to

describe TTPs of cyber attacks.

• Threat Action Extraction. We present a systematic approach to extract threat

actions from unstructured text in two steps. The first step is to identify can-

didate threat actions that appear in threat reports. The second step is to map

these candidate actions to threat actions in ontology based on a text-similarity

score. To identify threat actions, we utilize Stanford Typed Dependency Parser

to work out and label the grammatical relationships between words (e.g., sub-

ject, verb, object, etc.). This allows to extract the interesting parts of threat

descriptions that are likely to contain threat actions based on a set of rules

(e.g., extract all verbs and objects where the subject is “Malware"). The second

step is to map the candidate threat actions (extracted by the first step) to the

known attack techniques in the ontology. For this purpose, we use an informa-

tion retrieval-based approach (e.g., TF-IDF with BM25), where a threat actions

can be represented as a query and the known threat techniques represent the

documents in the corpus. When the known attack techniques are queried using



16

a threat action, one or more attack techniques with a high text-similarity score

will be retrieved. The set of retrieved techniques enrich the threat action with

crucial information (e.g., goals) about the threat.

• Construction of TTP Chain. We present an approach that constructs a TTP

Chain where nodes represent a threat’s actions and edges represent the types

of relations (e.g., depends between these actions). The previous steps focus on

extract accurate threat actions (nodes), in this step we focus on extracting the

relations (edges) between these actions. To do this, we extract the temporal

relations between threat actions. For this purpose, we utilize existing frame-

works (e.g., TimeML framework) to extract temporal relations to this research

domain. The output of this step is a chain that represent a threat, where nodes

correspond to threat actions and edges correspond to the temporal relations

between these actions. Such chains will help understand and mitigate threat

actions.

Research Challenges: In order to achieve our research objectives, there are

various research challenges that we need to address. The major challenges are as

follows:

• The lack of a Threat Action Ontology and automated population techniques.

Creating an ontology for adversaries and malware is a difficult task as the threat

landscape is fluid. Furthermore, there is no structured or machine-readable

representation available for creating and populating threat action ontology.

• Analyzing non-malicious or non-textual Data. A key challenge for automated

processing and analysis of threat reports is that the threat reports sharing

sources (e.g., forums, blog, etc.) often include reports or articles that are ac-

tually advertisement for security tools, or articles that only provide a platform



17

information. And such articles must be identified and filtered out. In addi-

tion, threat reports contain a lot of non-textual data such as IP addresses, or

registry values that must be captured and analyzed due to their importance.

Relating the non-textual data to the threat description is crucial to gain better

understanding of cyber attacks.

• The lack of techniques for extracting and mapping Threat Actions. NLP ap-

plications in cybersecurity is still in its infancy (shallow and inaccurate). Ex-

tracting threat actions with high accuracy requires to develop novel techniques

that integrate NLP and IR approaches to achieve high precision and recall in

extracting threat actions for this domain of research.

• The lack of techniques to extract relations between threat actions. Threat ac-

tions are not independent events. Some threat actions depend on other actions,

while some can be used interchangeably as alternative ways to achieve the same

goal (or sub-goal). It is a difficult task to extract and determine the relationship

between actions and doing so requires to develop or tailor existing approaches

that aim to extract relations between events and apply to this field of research.

1.6 Organization

The rest of the dissertation is organized as follows. Chapter 2 presents our ap-

proach for extracting the cyber threat actions from the unstructured text of cyber

threat intelligence. We present a novel threat action ontology that associate low-level

(micro) threat actions to high-level threat behaviors. We also present an extraction

module to recognize cyber objects, actions, and threat mentions and extract high-

quality threat actions by integrating Natural Language Processing and Information

Retrieval techniques. In Chapter 3, we present our solution for discovering new attack

patterns and techniques that are not yet added to the popular cyber threat attack

patterns framework nor the threat action ontology. Furthermore, we present a mod-



18

ule that generates TTPChains (threat action sequences) by recognizing the temporal

relationships between threat actions. Chapter 4 presents our automated cyber de-

fense advisory based on threat action analytics provided by the extraction module

of threat actions. Also, we present a novel approach that utilizes our NLP and IR

techniques to convert the TTPChains (threat action sequences) to operating system

commands that execute these actions. This is a very important mapping as it paves

the road for automated detection and mitigation of cyber attacks that utilize oper-

ating system native command and built-in utilities (i.e., live-off-the-land malware).

Finally, we generate structured cyber threat intelligence using the popular structured

threat information sharing languages STIX 2 and CybOX. In Chapter 5, we present

the summary of this dissertation, highlighting the contributions and accuracy results,

and we wrap up this dissertation with interesting directions for future work.



CHAPTER 2: Automatic and Accurate Extraction of Threat Actions from

Unstructured Text of CTI Sources

When discussing cyber threat intelligence sharing is often described as the most

critical ingredient for the cybersecurity mission. Sharing incidents and malicious

techniques and goals is a powerful strategy for threat intelligence and provides the

corner-stone for cyber defense detection and mitigation. The vast majority of cyber

threat reports sources are still shared via posts, blogs, and articles that describe

threats’ activities and malicious intents and targets. As sharing is still crucial for the

mission of cybersecurity, but the need for structured sharing of these reports using

popular languages that enable automated analysis and response is becoming more

and more important.

2.1 Motivation

Given the speed and the rapid growth of the cyber attacks, sharing of threat infor-

mation and malicious actions becomes vital to detect and respond to cyber attacks

in a timely and cost-effective manner. However, analyzing complex and unstructured

text of CTI reports is a time- and labor-consuming process. Without addressing this

problem, CTI sharing will remain to be impractical, and the time to respond to threat

information will continue to increase.

Our aim in this chapter is to develop automated and context-aware analytics of cyber

threat intelligence to accurately extract attack patterns and actions from publicly

available CTI sources in order to timely implement cyber defense actions. To auto-

matically extract threat actions from public sources, first the content of these sources

needs to be scraped and sanitized to get rid of noise such as HTML tags. In its



20

current design, our tool expects each report to be about one specific malware. The

name of the malware can be trivially identified (e.g. part of the title). We make this

decision because a very large body of cyber threat intelligence reports are structured

this way. We then identify and filter out irrelevant content (i.e., advertisements) that

do not contain threat actions. Our tool then extracts candidate threat actions and

maps them to known actions in the threat-action ontology. In this section we explain

these steps in detail.

2.2 Problem Statement and Contributions

This chapter addresses the problem of automated threat action extraction from

the unstructured text of threat reports. It presents three key contributions in this

area. First, we developed a threat-action ontology that incorporates novel concepts

for describing attack patterns and techniques of cyber threats. Our proposed ontology

provides contextually rich threat action specification that includes the verb, object

type and value, action preconditions (such as system configuration), and the action

goal. In addition, our ontology captures the relationships between micro-level and

macro-level concepts of cyber threats. The micro-level and macro-level concepts rep-

resent, respectively, the threat action and the corresponding kill-chain context in term

of tactics and techniques. For instance, “delete log file" is an instance of a micro-level

concept (threat action) that the adversary executes to achieve a macro-level concept

such as “defense evasion" (tactic). Thus, the ontology captures the relationships be-

tween components of threat actions, the action tactical goal, and action strategic

goal in the kill chain. We learn and construct this threat-action ontology semi-

automatically based on MITRE’s CAPEC and ATT&CK threat repository, which

catalogs a rich set of pre- and post-exploit malicious actions. Then, we build the

ontology by following a top-down approach for creating the classes of the ontology.

The second contribution of this work is extracting threat actions from threat re-

ports written in unstructured text, such as Symantec reports [8], and then mapping



21

them to attack patterns and techniques (TTPs) incorporated in the threat-action

ontology learned from MITRE repositories. This was achieved through novel inte-

gration of concepts from Natural Language Processing or NLP (specifically, Part-

Of-Speech tagging [30]), and Information Retrieval IR (specifically, TF-IDF method

with BM25 weighting [31]) to identify and characterize malicious actions from a given

CTI text. In NLP part, we carefully constructed a set of NLP rules based on our

threat-action ontology, to identify words in the text that constitute a threat actions.

Our NLP analysis can identify special terms such as “file1.exe" and maps them to

words of meaningful semantic, “executable file" that can be understood by existing

NLP tools [6].

The third contribution of this work is to map threat actions to the appropriate

techniques, tactics and kill chain phases to construct full TTP represented in STIX

Attack Pattern [13], widely used in cyber threat information community.

We develop our proposed techniques in a tool, called TTPDrill, that can be used

analyze any unstructured threat intelligence reports and extract threat actions and

TTPs in a threat sharing format, such as STIX 2.

2.3 Background

2.3.1 Ontology Definition

An ontology is a formal description of a certain domain [35]. It consists of concepts

(known as classes) found in the domain of interest. Classes may form an is-a hierarchy.

Each class may have attributes (or properties) and instances. Although there have

been previous efforts to create cyber-security-related ontologies, e.g. [36] [37], none

of them capture the necessary details for threat actions needed to describe TTPs.

2.3.2 Ontology Population

Ontology population can be defined as the process of inserting concept and relation

instances into an existing ontology. For instance, a Threat Action is a concept in the



22

TTPOntology that consists of two concepts, namely, Threat Verb and Threat Object.

An example of a threat action instance is “modify", and for a threat object instance is

"registry". The relation between these two concepts is “performed-on". The process

of ontology population does not change the structure of the ontology. Meaning, the

concept hierarchy and relations between them are not modified. This process will

identify new instances of existing concepts in the ontology. In Figure 2.2, we show

the typical methodology for ontology population.

One of the main objective for Cyber Threat Intelligence is to communicate and

share information about cyber attacks and defense actions about them. This infor-

mation are unstructured. To understand cyber attacks, we need an ontology that

incorporates concepts about attack tactics, techniques and procedures. Such ontol-

ogy does not only help humans gain a better understanding of cyber attacks, but

also, it is vital for automating TTP extraction from threat textual descriptions.

2.4 Constructing the Threat Action Ontology

Creating an ontology for adversaries and malware is a difficult task as the threat

landscape is fluid. Our approach is to create and maintain the threat ontology using

MITRE’S ATT&CK and CAPEC efforts. First, ATT&CK and CAPEC has com-

prehensive list of known cyber attack tactics and techniques. Second, MITRE is

committed to update these descriptions over time. Both ATT&CK and CAPEC are

written in English. There is no structured machine representation available.

We take a top-down approach for creating our ontology. We start by creating

classes for the most general concepts (e.g., adversary tactic) and move on to more

specialized concepts (e.g., threat action), Figure 2.3 shows the high-level (“KillChain

Phase") and the low-level (“action") concepts in our ontology. Table 2.1 lists types

of classes in our threat ontology. We describe some key classes below [38].

Threat Action is a central class in our ontology. Each instance of this class is

a specific threat action (i.e. verb). For example, “modify" is a threat action in the



23

Table 2.1: Threat Action Ontology Classes

Class Name Class Description

Kill Chain Phase Basic kill chain information like phase name (e.g., “Con-
trol"), phase temporal order (e.g., “5")

Tactic General description of how to achieve a phase (e.g.,
“Privilege Escalation")

Technique More specialized description of how to achieve a certain
tactic (e.g., “DLL Injection")

Threat Action Describes the verb to perform a malicious activity like
overwrite, upload, terminate

Object Describes the action’s target like “file" in “delete file",
“process" in “terminate process", etc.

Pre-condition Action perquisites, which are required prior to carrying
out the action like having root privileges

Intent Describes the goal (or subgoal) of the action like “run-
ning malicious code", “information theft", etc.

sentence “modify registry to load malicious DLL". Table 2.2 shows an excerpt of

these actions. Each instance of threat action has a number of attributes which are

filled with instances of other classes in the ontology. Example threat action attributes

include Kill Chain Phase and Intent. Kill Chain is a compound attribute including

type, name, and temporal order. type is a String indicating the type of kill chain

used. Although we consider the Lockheed Martin (LM) Kill Chain Model in this

work [1], the type field allows future extensions for other types of kill chain models.

The Name has a String value that specifies the name of the kill chain phase (e.g.,

exploitation, control, etc.). Temporal order is an Integer value that contains the

temporal order of the kill chain phase.

Class Tactic describes the general strategy of a threat action (e.g., privilege esca-

lation, exfiltration, etc.). ATT&CK provides 11 categories (tactics) for all identified



24

Table 2.2: An Excerpt of known threat actions in the ontology

Action Object Intent Tactic Technique

send TCP probe OS type Collect Fingerprinting
discovery Information [39]

log keystrokes obtain Collection, Input Capture
credentials Credential [7]

Access

send data steal Exfiltration Exfiltration
information over Alternative

Protocol [7]

attack techniques. After careful analysis of these categories, we extract their tactical

actions semi-automatically and liked them to threat actions in the ontology accord-

ingly.

Class Technique specifies attack techniques under a certain tactic. For instance,

privilege escalation is a tactic that can be accomplished by the technique Path Inter-

ception.

2.5 Threat Action Extraction and Ontology Population

Populating ontologies can be done in a manual manner or (better yet) automati-

cally. The manual approach, where a human reads the concept and generate instances

of that concept to populate the ontology schema. This approach is a tedious and slow

process that is also prone to human error. On the other hand, the automatic approach

is fast and much more efficient if it achieves a reasonable accuracy. For this reason,

we construct a module to populate the threat action ontology automatically by using

Natural Language Processing and MITRE Feed of threat reports.

2.5.1 Extracting typed dependencies for TTPs

Stanford Dependency Parser, a state-of-the-art tool that predicts the grammatical

relationships between words and and provide a type for each relationship (typed de-



25

Annotated 
Corpus 
(STIX 2)

Initial Ontology Schema

Concept / relation 
Instance Extractor

Candidate 
concept/
relation 

instances

Populated Ontology

Population process

Figure 2.1: The ontology population process.

pendency).

To extract TTP entities (e.g., subjects, verbs, objects, etc), Stanford Dependency

Parser must be provided with a list of typed dependencies (grammatical relations),

based on which it extracts words. Designing this list of dependencies manually is

time-consuming and prone to human error. Thus, we build a module to automatically

extract accurate and complete typed dependencies from labeled CTI reports.

Training Set. First, we prepared a training set by labeling 300 threat reports with

the TTP entities (e.g., action, object, intent, etc.). To simplify the annotation process,

we utilized Google Highlight Annotation Tool and developed a custom application to

import the annotations from the annotation tool.

Then, we utilize Stanford Dependency Parser to construct the typed dependencies

for each annotated sentence in our training set. Then, we collect the typed depen-

dencies between the annotated words (TTP entities). These dependencies represent

the grammatical relations between the TTP entities. This process is illustrated in

Figure 2.2. We use these dependencies later on to extract the TTP entities from



26

new threat reports. Table 2.3 shows an excerpt of typed dependencies between TTP

entities (subject, object, etc) from our labeled set of threat sentences.

Generate Typed 
Dependency Graph

Extract Paths between  
Actions to TTP components

Action

Object

Motive

TTP Components Extracted Typed Dependency (T) 

Subject - Action nsubj <dep>  - nsubj<gov>

Action - Object dobj <gov> - dobj <dep>

Action - Motive nmod: for <gov> - nmod: for <dep>

….

ID Sentence

S1 APT3 creates a new service for persistence

S2 APT37 has used spearphishing attachments to deliver malware.

S3 BRONZE BUTLER has used a tool to capture screenshots.

S4 EMISSARY injects its DLL file into Internet Explorer process.

…

dobj
nmod: for

creates

service

for

persistenceAPT3

dobj

caseamod

new

nsubj

Subject

Labeled CTI 
reports

1 2

3

Figure 2.2: Extracting typed dependency ruleset from labeled data.

For example, the grammatical relation between the word “injects" and the words

“code" and “browsers" in the sentence “The Malware injects code into browsers is

“dobj" (i.e., direct object) and “pobj" (i.e., object of the preposition “into"). Using

the same typed dependencies on a new sentence “Pony injects itself into iexplorer.exe"

to extract the threat action “inject" and the two objects“itself" and “iexplorer.exe"

using the similar grammatical structure of the new sentence to a sentence in the

training set. Figure 2.2 shows an example of this process.

The last step has generated 340 unique typed dependency paths between TTP

entities. These dependencies will be used to extract the TTP entities from new

unlabeled threat reports.

2.5.2 Automated Populating of TTP Ontology with Instances

The cornerstone of ontology populating process is the ability to extract instances

of concepts and relations from a corpus accurately. To add any instance to the threat

action ontology, we need to acquire its TTP entities (verb, object, intent, etc.). Also,



27

Table 2.3: Examples of Typed dependency paths extracted between TTP entities
from annotated sentences of the training set

Labeled Sentences Labeled TTP Dependency
Examples Components Relation(s)

Jajop obfuscates files. Jajop/subject nsubj
obfuscates/action

Jajop obfuscates files. obfuscates/action dobj
files/object

Keystrokes are recorded by Keystrokes/object nsubjpass
CHOPSTICK. recorded/action

Keystrokes are recorded by recorded/action nmod:agent
CHOPSTICK. CHOPSTICK/subject

The Trojan collected and collected/action conj:and −→
exfiltrated sensitive data. data/object dobj

.. and execute them using using/action dobj
CreateProcessW. CreateProcessW/object

.. passwords were stored and hidden/action conj:and −→
hidden by the malware. passwords/object nsubjpass

.. passwords were stored and hidden/action conj:and −→
hidden by the malware. malware/subject nmod:agent

we need its higher-level concept behaviors (tactics, and kill chain). Using the 340

typed dependencies generated in the last step, we extract the TTP entities from

a given sentence using the grammatical relations between words provided by Stan-

ford Dependency Parser. As for the higher-level concepts (techniques, tactics, and

killchain), we use MITRE Feed of CTI reports mapped to techniques, tactics, and

killchain.

MITRE Feed provides CTI reports that have paragraphs or sentences mapped by

security professionals to Techniques, Tactics, and Kill Chain. We use the typed de-



28

Threat Action: 
Modify 

Purpose/Goal:  
running malicious DLL 

Object: Registry 
Precondition: Permission 

to access registry 

Tactic: Defense Evasion, 
Privilege Escalation 

KillChain Phase: 
Control 

Technique: DLL Injection 

belongs-to 

belongs-to 

belongs-to 

performed-on 

requires 

for-intent 

Figure 2.3: Instance of the Threat Action Ontology

pendencies generated by the last step to extract the TTP entities (verb, object, intent,

etc.) from MITRE Feed and add these TTP entities as instances to the Threat Action

Ontology under the Techniques, Tactics, and Kill Chain concepts that are mapped

by MITRE professionals. At the end of this process, every attack pattern is mapped

to TTP entities (extracted by last step’s dependencies) that represent the low-level

threat action of higher-level behaviors and tactics.

By the end of this step, our threat action ontology incorporated 1211 threat actions

that are mapped to 223 attack patterns or techniques that are categorized under 11

tactics. Figure 2.3 shows an instantiated entry of the threat action ontology. A

technique could be executed by several threat actions, for example, the technique

Disabling Security Tools can be in the following threat actions: (1) killing a security

process, or by (2) disabling the firewall. Table 2.2 shows an excerpt of the of threat

action ontology instances, where each row represents a threat action.



29

To evaluate our ontology, we perform completeness check by selecting 100 random

Symantec threat reports and manually extracted a total of 1802 threat actions. The

ontology contained 1670 of these actions (92%), while 132 actions were not in the

ontology. However, we do not discard these actions that are not in the ontology, as

they will be used later to evolve the ontology (and the state-of-the-art attack pattern

frameworks) with new attack techniques and tactics.

2.5.3 TTP Entities Extraction from CTI Reports and Analysis

To automatically extract TTP entities (e.g., threat actions, subjects, motivations,

etc.) from public sources, first the content of these sources needs to be scraped and

sanitized to get rid of noise such as HTML tags. In its current design, our approach

expects each report to be about one specific malware. The name of the malware

can be trivially identified (e.g. part of the title). We make this decision because a

very large body of cyber threat intelligence reports are structured this way. We then

identify and filter out irrelevant content (i.e., advertisements) that do not contain

threat actions. Our tool then extracts candidate threat actions and maps them to

known actions in the threat-action ontology. In this section we explain these steps in

detail.

2.5.3.1 Scraping and Pre-processing threat reports

Scraper: The article archive scraper collects reports from Symantec Security Cen-

ter [8]. First, the scraper explores all links on each page of the website and downloads

their contents. Some of the scraped articles (web pages) may contain information ir-

relevant to CTI such as advertisements, help, about, and contact-us. To overcome

this challenge, we build a support vector machine (SVM) document classifier to filter

out articles with such content. However, before we do that, we must sanitize the

scraped texts.

Text sanitization: Articles scraped in the last step require preprocessing to re-



30

move presentation elements such as HTML tags, images, and flashes. We remove such

elements by comparing all pages’ DOM trees to locate the nodes that correspond to

these elements. These nodes can be identified because for a given source, they have

same content on the page’s DOM tree (e.g., the website logo picture will be the same

for all articles). Once these nodes are identified, they are dropped.

Article classification: We refer to each web page as an article. After each article

has been sanitized, it may not be relevant to CTI. To filter out such articles, we built

an SVM classifier using the following features:

• Number of words : Based on our observation, articles that contain TTPs are

almost always longer (in number of words) because they communicate detailed

descriptions about threats, their actions, and targets. Other articles, such as

ads or news on security tools are considerably shorter.

• SecurityAction-word density : we extract all verbs from various highly-reputable

publicly-available information security standards, namely, ATT&CK, CAPEC,

CWE, and CVE using part-of-speech (POS) NLP technique. To label verbs in

these texts, we use Stanford Dependency Parser [6]. Then, we calculate the

SecurityAction-word density by computing the percentage of times these verbs

appear in an article compared to the total number of words in it. The intu-

ition behind this is that articles which describe cybersecurity threats will have

a higher SecurityAction-word density than other non-TTP containing articles

(e.g., advertisement).

• SecurityTarget-word density : TTP-containing articles describe threats, there-

fore, they contain more security nouns (e.g., registry, vulnerability) than their

counterparts of non-TTP containing articles. Similar to the previous feature,

we extract all noun phrases from the same information security standards and

use them to calculate SecurityTarget-word density, by computing the percent-



31

age of times the noun-phrase (extracted) appear in an article compared to the

total number of words in it.

We train the classification model using 30 relevant (threat-action-containing) articles

and 60 advertisement articles. We evaluated the model using 10-fold cross validation

[40], and it achieved a recall of 99% and precision of 99%. To validate the classifi-

cation results, we used this model to classify 17,000 articles scraped from Symentec

security center [8] into either relevant or irrelevant categories and manually checked

100 randomly classified articles. Recall and precision of the classification were 99%

and 98% respectively.

Identifying and Handling Indicators of Compromise (Observables) : IoCs

are essentially special terms used in threat reports. They constitute an vital part of

cyber threats and if not identified they often confuse NLP tools. For instance, they

have difficulty parsing the following sentence: “Malware connects to 192.168.1.1"

correctly due to the use of periods in the IP address. We built a set of regular

expressions (regex) for common objects in our ontology such as IP address, port

number, domain, etc. Once a regex matches a string, it replaces it with a generic

name in preparation for further processing. For example, the string “fil_1.exe" in the

sentence “create fil_1.exe" will be captured by a regex and replaced with the words

"executable file", so the whole sentence will become “create executable file". Table

2.4 shows a snippet of our regex table. Note that these strings (e.g. fil_1.exe) are

not discarded. We keep track of each replaced string for later use. For example, these

values will be included in the generated STIX threat reports as specific indicators.

2.5.3.2 Candidate Threat Action Extraction

We extracts threat actions from the collected articles in two steps. The first step

is to identify candidate threat actions that appear in threat reports. The second step

is to map these candidate actions to threat actions in ontology using Information



32

Table 2.4: Excerpt of Regular Expressions used in this work

Threat target Regular Expression

IPv4 address (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]))

website domain ([Hh][Tt][Tt][Pp][Ss]?://)?([Ww]{2, 3})?(\.[a-zA-Z0-9_-
]+)+([a-zA-Z0-9_-]+)$

DLL file [ˆ|∼"{}:/\*&%#?()<>+]+(\.[Dd][Ll]{2})$

executable file [ˆ|∼"{}:/\*&%#?()<>+]+(\.[Ee][Xx][Ee])$

software vulnerability ˆ([Cc][Vv][Ee])([-][0-9]{4}){2}

Retrieval techniques. In this section, we will detail the first step.

A threat action consists of a grammatical structure of Subject, Verb, Object, and

Intent (SVOI), where the subject is the name of a malware, the verb is the action,

the object is the target of the action, and intent is the motivation of the action (if

mentioned). Our tool utilizes Stanford typed dependency parser [6] to identify and

extract such structures. These extracted SVOIs are the candidate threat actions.

Table 2.5 shows an excerpt of Stanford typed dependencies used by our tool to

identify and extract candidate actions. These dependencies were extracted earlier as

explained in section 2.5.1. Figure 2.4 shows an example of typed dependency output

for the sentence “Trojan Dimnie sends information to remote locations". The nodes

in the figure correspond to words or phrases, and the directed edges correspond to

the type of the relationship between a source node and a destination node. The

source node is called the governor, and the destination node is called the dependent

[6]. For instance, the relation between the words “Trojan" and “sends" is labeled

as “nsubj" (i.e., a noun phrase which is the syntactic subject of a clause). The

governor of this relation is the verb “sends", and the dependent of this relation is

“Trojan". So by using only the first typed dependency in Table 2.5 (governor <verb>,

dependent<subj>),the words “Trojan sends" are extracted from the text, as they

have “nsubj" relation, a governor, and a dependent. Table 3.4 shows an excerpt of



33

sends 

trojan locations Information  

Dimnie to remote 

amod 

dobj 

compound 

Figure 2.4: Typed dependency output of the sentence “Trojan Dimnie sends informa-
tion to remote locations".

candidate threat actions extracted using the typed dependencies shown (excerpt) in

Table 2.5.

2.5.3.3 Threat Action Filtering

The Subject, Verb, Object, Intent (SVOIs) extracted by the last step are not

necessary malicious actions. For example, the statement “Windows firewall allows

users to block applications", contains SVOI entities, however it is not a malicious

action. To filter out such fallacious (benign) actions, we use two conditions that

indicate a malicious action: (1) the subject of the action must be a malicious entity

(e.g., Malware, RAT, etc.), and (2) the object of the threat action must be a cyber

object (e.g., file, browser, keystroke, etc.). The second condition will guarantee actions

like “Malware keeps changing strategies" will be filtered out as it does not provide any

additional context or actionable knowledge. In this part, we explain how to identify

and track a malicious subject, and how we identify a cyber object mentioned in CTI

reports.

Malicious Subject Identification and Tracking The goals of this step are (1)

identifying malicious actors in a given CTI report, and (2) tracking these actors and



34

Table 2.5: Excerpt of Stanford typed dependencies used to identify threat actions
TTP entities

typed dependency Threat Action

nsubj governor <verb>, dependent.<subj>

dobj governor<verb>, dependent.<obj>

nsubjpass governor<verb>, dependent.<obj>

advcl governor<verb>, dependent.<verb2>

dobj governor<verb2>, dependent.<obj2>

nmod:agent governor<verb>, dependent.<subj>

nmod:from governor<verb>_from, dependent.<obj>

nmod:to governor<verb>_to, dependent.<obj>

nmod:with governor<verb>_with, dependent.<obj>

nmod:via governor<verb>_via, dependent.<obj>

nmod:over governor<verb>_over, dependent.<obj>

nmod:for governor<verb>_for, dependent.<obj>

nmod:through governor<verb>_through, dependent.<obj>

nmod:into governor<verb>_into, dependent.<obj>

nmod:using governor<verb>_using, dependent.<obj>

nmod:by governor<verb>_using, dependent.<obj>



35

Table 2.6: An example of candidate threat actions extraction

th
re
at

de
sc
ri
pt
io
n The Trojan Dimnie is used to

steal information from the com-
puter. ... When the Trojan
is executed, it creates the follow-
ing file: filename1.dll...The Trojan
creates the following registry en-
tries...The Trojan may then perform
the following actions: obtain system
information, take screenshots, log
keystrokes. The Trojan may send
the stolen information to the follow-
ing location:gmail.com/upload.php

ca
nd

id
at
e
ac
ti
on

s

use Trojan Dimnie
Trojan Dimnie steal information
Trojan Dimnie steal from computer
execute Trojan
creates file: filename1.dll
Trojan creates registry en-
try:HKEY_LOCAL_MACHINE..
Trojan perform actions
obtain system information
take screenshots
log keystrokes
Trojan send stolen information
Trojan send to
location:gmail.com/upload.php

their actions in the text. Recognizing malicious actors, groups and threats can provide

a vital aid in extracting malicious activities that are performed on cyber objects, given

the fact that bad guys will do bad things.

We collected a list of malware types, such as, InfoStealer, Backdoor, Ransomware

and others from [8]. This list provides a comprehensive list of malicious threat names.

The names on this list will be used to recognize malicious subjects by using this list

and the subject tracking technique which we’ll explain later. Furthermore, subject

tracking is a technique that utilizes NLP to understand mentions of new malware



36

names, when they are associated with the known malware types in threat reports

(e.g., “Dimnie is an infoStealer"). By doing this, we will be able to Recognize new

malware names in the text and enrich the seed the list of malicious subjects collected

from Symantec to include actual malware names and mentions in threat reports. ac-

tions).

Based on our analysis of threat reports collected from Symantec, we learned that

malicious activities are attributed to malicious subjects (e.g., Malware sends the

collected data to C2 servers). So the first step to recognize malicious activities, is to

recognize the mentions of malicious subjects in the given text.

Determining whether the subject of a given threat action is a malicious subject or

not is not a straightforward process. Malicious subjects are often referred to in various

and complex ways in CTI reports. These ways can be classified into the following

groups:

• the subject is a type of cyber threats (e.g., malware, trojan, backdoor, etc).

• the subject is a malware’s name (e.g., Pony, Sofasi, Derusbi), which in most

cases is a new name that can be English or non-English word(s).

• the subject is a pronoun. For example “The trojan encrypts the files using XOR.

Then, it sends them to the c2 server".

Collecting malware types. We collect the malware types from both Symentec

[8]. In total, we collect 45 malware types. We utilize these types when mining CTI

reports to identify sentences that contain a malware name that is associated to one of

these types. Which is then used to identify malicious threat actions that are executed

by the malware.



37

Malware names. Recognizing malware names (e.g., Sofasi, pony, T1000) from

text is a difficult task. These names can be English, Symbols, numbers, or a mixture of

these. Depending on existing lists of malware names is not efficient for timely analysis

of CTI reports as these lists are not updated automatically and the same malware

might have other names (aliases) used by different CTI sources (e.g., APT28 and

Sofasi refer to the same APT).

To solve this challenge, we discovered that CTI reports always connect a new

malware name with a malware type name, for instance, “Stolepen is a Trojan that

performs malicious activities..". The association between the string of a new name

of a malware and a name for a malware type can be grouped into two ways based on

the grammatical relation between the two:

• Compound relation. A malware name has a compound typed dependency rela-

tionship with a malware type e.g., “Wixido Ransom encrypts files and demand

payment". In this sentence, the words “Wixido" and “Ransom" has a compound

typed dependency relationship.

• Subject (nsubj) relation. A malware name has a nsubj typed dependency re-

lationship with a malware type e.g., “Stolepen is a Trojan that..". In this

sentence, the words “Stolepen" and “Trojan" have a nsubj typed dependency

relationship.

Thus, we utilize the typed dependencies compound and nsubj and the malware type

names to recognize the new malware names as malicious subjects which indicates that

the actions that they perform are also malicious.

Malware pronouns. To capture the malicious subject when it is referred to by

a pronoun (e.g., “Then, it collects user passwords from Firefox"), we utilize Stanford

Coreference Resolution tool, which finds all expressions (e.g., pronouns) that refer

to an entity (e.g., Malware) in the text. If the entity that a pronoun refers to is a



38

nmod:of

• In May 2017, WannaCry ransomware took advantage of a vulnerability in SMBv1

compound nsubj dobj nmod:in

Malware type

Malware mention

nmod:since

• Gazer is a backdoor used since at least 2016. Gazer uses RSA encryption for C2.

nsubj acl nsubj
compound

nmod:for

dobj

• When the Trojan is executed, it enumerates all the fixed drives.

coref nsubj

amod

dobj

Figure 2.5: Typed dependencies that are used to recognize malware mentions as
malicious subjects (actors).

malicious entity, or a new name that was recognized as malicious, then the actions

performed by that pronoun are extracted. Figure 2.5 shows examples of how new

malware names are recognized as malicious actors in order to track actions executed

by them.

Using these steps, our tool successfully identified the malicious subjects in threat

reports with an accuracy of 98% recall, and precision of 99%. It is worth mentioning

that we have set the subject tracking analysis to do two iterations in recognizing

malicious subject. This is due to the fact that threat reports might mention that

a malware name X is actually a malware (e.g., X is a malware ..) at the end of

report. Thus, the tool learns late that X is a malicious subject, and therefore, it has

to re-iterate over the actions that were mentioned earlier than that point in the threat

report to extract the ones that have X as subject.

Identifying Cyber Objects (Assets): To identify the cyber object (target) of a

malicious actions, First, we need to discover the typed dependencies that are used by

the CTI sharing community to describe cyber objects. Thus, we will use a set of CTI

reports with annotated cyber objects. For this step, we will use CybOX standard,

which provides a list of cyber objects such as certificate, registry, file ,etc. We then



39

use machine learning techniques (like word embedding) to extend the provided list of

cyber objects. By doing that, we will be able to identify mentions of cyber objects

that can be added to the TTPOntology.

Collecting initial Set of Cyber Objects Cyber objects are a strong indicator

that a threat action is actually a technical one rather than strategic (i.e., low-level

rather than high-level). To recognize cyber objects in a candidate, we start by col-

lecting a base set of known cyber object from the popular CTI standards such as

CybOX and OpenIOC.

OpenIOC. CybOX and OpenIOC are extensible XML schemes created by Man-

diant and MITRE, respectively, to communicate technical activities carried out by

cyber-attacks. OpenIOC CTI report constitutes of two main parts: 1- a header and,

(2) a definition. The header part provides an executive summary about the at-

tack. The definition part contains indicator items. These items are comprised of an

IOC and its context. The context provides the main IOCs categories (e.g., IP) and

subcategories (e.g., DNS entry) through the iocterms. In total, OpenIOC provides

about 600 subcategories of cyber objects, such as hook, process, email, and others.

CybOX is a structured standard for communicating information about cyber ob-

servables. It provides 88 main cyber objects (e.g., API) and 440 sub-components (e.g.,

API function Name) Techterms is website that provides 1300 Computer technical

terms (e.g., ACL, Handle, SSH). We collect these terms to be used in cyber objects

identification from text.

First, we collect known cyber objects from the popular structured standards such

as CybOX ,OpenIOC and techterms website. To that end, we build a tool that ingests

the XML files from each standard and extracts the cyber objects.

After collecting all cyber objects from these sources and removing the overlaps

between them, we collected 1447 cyber objects. These objects are standardized objects



40

rather than actual objects. In other words, these standards mention an object such

as “browser" rather than the actual client such as Firefox and Opera. Unlike CTI

reports that tend to mention the actual cyber object (e.g., Malware injects itself into

Firefox ).

Expanding Collected Set of Cyber Objects using Word Embedding

To solve this problem, we utilize Stanford tool GloVe for word embedding to extract

the paradigmatic relationships between similar words. To do that, first we collect

40,000 threat and technical reports from Wikipedia. Then, we utilize Stanford tool

GloVe [41] to generate the vectors of cyber words using the collected documents. To

measure the paradigmatic relationship score between any two given words, we calcu-

late the cosine similarity between them based on GloVe vectors of these words. We

use a cut-off threshold to determine whether two words have a high enough paradig-

matic relationship. Based on experimentation, we determine the cosine similarity

threshold empirically and set it to be 0.5. Table 2.7 shows the top five terms to the

word "Chrome" based on their paradigmatic relationship score.

Table 2.7: Top 5 terms paradigmatically related to the term “chrome"

Rank Term

1 safari

2 firefox

3 browser

4 iexplorer.exe

5 opera

When a threat action satisfies both conditions, namely, (1) the subject of that

threat action is a malicious entity, and (2) the object of that action is a cyber object.

Then, this threat action is classified as a technical threat action. An illustration of the

word mover’s distance. All non-stop words (bold) of both documents are embedded



41

Table 2.8: The closest 5 words to standardized cyber objects based on their paradig-
matic relationship

browser file binary firewall

netscape zip executable antispyware

firefox data file security

mozilla document data ipsec

explorer pdf code antivirus

ie7 jpeg dll proxy

The

backdoor

injected 

code

into

Browser

The 

malware 
injects
a DLL

into 

Firefox

Browser

Firefox

code

DLL 

GloVe embedding

send

upload
execute

run

Figure 2.6: An illustration of the distance between words embeddings using GloVe.

into a word2vec space. (Best viewed in color.)

2.5.3.4 Threat Action Mapping to Ontology

This section describe how our approach maps each extracted candidate action to

threat action(s) in the ontology. We measure the similarity between the candidate ac-

tions and known threat actions in the ontology by using the TF-IDF method with the

enhanced BM25 weighing function. This function ranks the ontology entries based on

their similarity to a given action extracted from a CTI report. For simplicity, we later

call the score provided by the TF-IDF method with enhanced BM25 weight function,

the IR-matching score. In calculating the similarity score, each ontology entry is rep-



42

Dimnie logs keystrokes Dimnie logs keystrokes 

Candidate actions 

Q = {Dimnie, logs, keystrokes} 

2 Generate bag-of-words  
Query 

Known actions (ontology) 

Technique:  
Input Capture 

Object:  
keystrokes 

Threat Action: 
records 

Purpose/Goal:  
Obtain credentials 

1 Generate bag-of-words Document 

belongs to 

D = {records, keystrokes, obtain, credentials} 

3 Similarity ranking  
 

IR-matching 
(IRM) 

Dimnie logs keystrokes to obtain credentials   
Attack technique/pattern: Input Capture T1056 
Kill chain phase: Maintain 

IRM(D,Q) ≤ threshold (𝑆𝑡ℎ) 

Figure 2.7: Workflow of candidate action mapping to the ontology.

resented as a document of a “bag of words" by concatenating all its classes (action,

target, intent, etc). The similarity score was calculated between this document and

a CTI extracted candidate action (as a query).

Figure 2.7 shows an example of mapping candidate threat action to known attack

techniques and patterns in the the threat action ontology. In the first panel figure, an

ontology entry is represented as a document with a bag of words; in the second panel

figure, a candidate extracted action is viewed as a query (also a bag of words). En-

hanced TF-IDF method with BM25 weighting was adopted to calculate the similarity

between the two bags of words. Synonyms (such as “logs" and “records") were taken

into consideration using WordNet, Thesaurus, and Watson Synonym to improve the

text understanding.

TTPDrill uses a cut-off threshold to eliminate threat actions with low similarity

scores. We will discuss how this cut-off threshold is empirically determined in the

evaluation section. Each candidate threat action is mapped to the threat action in

the ontology with the highest score.

2.6 Evaluation

In this section, we demonstrate how our ontology population technique is applied

to a real-world threat report whose threat actions were manually mapped to attack

techniques by MITRE team (domain experts).



43

E
xt

ra
ct

e
d

 D
e

p
e

n
d

e
n

ci
e

s

Figure 2.8: Convergence of extracted dependencies.

2.6.1 Typed dependency and extraction completeness

Typed dependencies sufficiency check. To verify that our manually labeled

data to learn the typed dependencies from is large enough and sufficient to extract

nearly all TTP entity mentions from sentences, we ran a convergence test to measure

the cumulative amount of learned typed dependencies per added annotated articles.

As shown by Figure 2.8, the amount of the new extracted dependencies converges at

point x (at 230 annotated threat reports), after which, the new learned dependencies

rate is significantly diminished.

TTP extraction completeness check. We ran the learned ruleset of typed

dependencies on 17,000 reports to extract the TTP components. To test the com-

pleteness of these dependencies, we randomly choose 200 threat reports and manually

annotated the TTP components in these reports. Then, we compared our manual

annotation with the automated extraction by the typed dependencies, and this TTP

component extraction module achieved 91% completeness. The 9% missing TTP com-

ponents are because of grammatical mislabeling by Stanford Parser (e.g., “Skype" was

sometimes mislabeled as an adjective rather than a noun).



44

2.6.2 Subject Identification and Tracking Accuracy

To evaluate our subject tracking approach, we manually analyzed 60 threat report

and associated threat actions to their malicious subject based on human understand-

ing. Then, we compared this association against the association of our subject track-

ing module, and the accuracy of our subject tracking module is 92% recall and 90%

precision. This is a very reasonable result considering the inherit NLP limitation in

Coreference Resolution which has an accuracy of 75%.

2.6.3 Accuracy of Motivation Extraction

To evaluate our motivation extraction approach for threat actions, we manually

analyzed 60 threat report and associated threat actions to their motivation (when

mentioned) based on human understanding. Then, we compared this association

against the association of our motivation extraction module, and the accuracy of our

module is 79%. This is a very reasonable result as motivations tend to be explained

in more linguistically complex ways that confuse the NLP module. Figure 2.9 shows

the typed dependency generated for the phrase “APT34 deleted the files to evade

detection.", where “evade detection" is the motivation for the threat action “deleted

files".

deleted

APT34 evadefiles 

to detection

dobj

dobj

the

Figure 2.9: Typed dependency output of the sentence “APT34 deleted the files to
evade detection."



45

𝑆𝑡ℎ  

𝐹1  𝑠𝑐𝑜𝑟𝑒 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

Score Threshold (        ) 

precision

recall

Figure 2.10: The Impact of the cut off threshold Sth on the accuracy measures.

2.6.4 Evaluating Threat Action Mapping to Ontology

In this part, we seek to answer the following questions: (a) how to empirically

determine the most appropriate cut-off threshold for similarity score; (b) how suc-

cessful our tool is at extracting TTPs from the threat reports; and (c) how is the

computation efficiency of our tool.

2.6.4.1 Determining bm25 similarity score thresholds

We want to determine the most appropriate threshold for our approach to map a

given threat action to an ontology entry.

Cut off threshold

For any candidate action x, we compute bm25(x, t) for all threat action t in our

ontology. For any threat action t, if bm25(x, t) > Sth, we consider t is a possible

match for x.

We selected a set of cut off threshold values and calculated their impact on precision,

recall, and F1 score for the 30 cases as depicted in Figure 2.10. Different factors may

be considered in selecting the cut off threshold. A high threshold indicates a cautious

approach: leaning towards accuracy of extracted threats rather than completeness.

This strategy minimizes falsely labeled threat actions at the expense of missed threat



46

actions. As shown the Figure, when Sth is set to 14, the precision reaches 1 (100%

accuracy) and recall drops to less than 0.5 (50% completeness). The other possible

strategy is to lean towards extracting all of the threat actions at the expense of

extracting mislabeled actions (false positives).

As we can see from the Figure, F1 score reaches its maximum value when Sth is set

to 5.1. For the purpose of our evaluation, we pick 5.1 as the cut off threshold by

giving equal weight to both precision and recall. There may be situations where one

may want to set the cut off threshold to favor precision over recall or vice versa. We

discuss these substitutions next.

Figure 2.10 shows that the optimal range for Sth threshold that can keep a good

balance between recall and precision values is between 4.0 and 6.5. In this range, the

precision and recall values are within 75%−90% and 75%−85% ranges, respectively.

Since setting Sth to a value higher than 5.5 increases the precision slowly but decreases

recall sharply, there is no obvious gain for selecting a threshold beyond this range for

general cases.

2.6.4.2 Accuracy of Mapping threat actions to Ontology

We selected 60 Symantec reports to evaluate the effectiveness of our tool. These 60

reports do not overlap with the ones we used to determine the thresholds in the last

step. We first manually analyzed these reports by mapping them to threat actions

in our ontology. We then used our tool to map these reports and compare its results

with our manual mapping. At total of 523 candidate actions were involved in the 60

reports. Our tool agreed with human labeling 481 times, or 92%.

2.6.4.3 Computation Efficiency of our tool

Our tool is efficient, it can process a Symantec threat report in under a second.

Table 2.9 shows average execution time for our tool to process reports of varying

sizes. For example, our tool takes about 800 ms to process a threat report of 211



47

words that contained 54 candidate actions. This report contains the largest number

of threat actions in our data set and therefore, can be seen as worst-case scenario in

terms of required processing time.

Table 2.9: Running time for different article sizes

average time total threat article length
(ms/article) actions (in words)

316 7 128
337 12 137
501 19 184
807 54 211



CHAPTER 3: Extraction and Analysis of Attack Patterns

In addition to the threat actions (TTPs) extraction techniques that we presented

the first chapter, discovering new threat actions, that are not yet added to the pop-

ular threat behavior frameworks (e.g., ATT&CK and CAPEC), becomes essential to

learn and adapt-to-defend against new attack behaviors and actions.

Also, while no solution is completely foolproof, behavior-based detection still leads

technology today to uncover new and unknown threats in near real-time. Advanced

malware detection solutions observe and evaluate in context every action executed

by the malware. They analyze all actions and consider their sequential nature which

when taken together, makes it very clear that a process is malicious and have dam-

aging behavior. For this reason, extracting and analyzing the sequential relations

between threat actions is extremely important for detection and mitigation of mali-

cious processes of cyber attacks.

In this chapter, we present a framework to extract the sequence of threat actions

(we later call TTPChain) using the temporal relations described in threat reports.

Also, we present our approach for discovering new threat actions and their motivations

which will play a key role in evolving our threat action ontology, presented in chapter

2, and evolving the popular threat behavior frameworks to adapt to increasingly novel

threat behaviors.

3.1 Motivation

Existing threat behavior frameworks such as MITRE ATT&CK and CAPEC evolve

in a relatively slow manner as they are enriched with new attack tactics and techniques

in a manual manner by experts which is a tedious and time-consuming process. To



49

cope with the rapidly changing threat landscape introducing increasingly new threat

techniques and tactics, an automated (or semi-automated) approach is needed to

evolve threat behavior frameworks in a timely manner.

Also, to this day, behavior-based Intrusion Detection Systems (IDS) are still the

most effective countermeasure in cybersecurity. These IDS depend on their ability to

detect malicious actions that occur in a sequential manner (like a chain of actions).

Therefore, an automated approach is needed to learn the malicious behaviors and

threat action sequences reported by cyber threat intelligence in order to keep the IDS

up-to-date with the current cyber threats for more effective detection and mitigation.

3.2 Problem Statement and Contributions

This chapter addresses the problem of automatic discovery of the cyber threat

actions (techniques) and intents (tactics) from the unstructured text of cyber threat

intelligence. Given a candidate set of identified threat actions based on the threat

ontology, and an unstructured text of a CTI report, our goal in this chapter is to

develop NLP and IR techniques to achieve the following objectives:

• Discovering new threat actions and their intents in order to evolve our threat

action ontology to new attack actions and techniques and also to enrich the

attack techniques included by the popular sources such as MITRE ATT&Ck [7]

with new threat techniques and tactics

• Constructing a TTP chain (i.e., a sequence of threat actions) for each reported

threat (e.g., malware or APT attack) by extracting the temporal relationships

amongst the threat actions.

3.3 Attack Technique Discovery

Our information retrieval-based approach, discussed in the previous chapter, maps

(classifies) the extracted threat actions from CTI reports to attack techniques that

exist in the threat action ontology. However, as the threat landscape is rapidly



50

evolving, pre-defined ontologies will continue to be outdated and therefore their ac-

curacy will continue to drop. To overcome that challenge, in this section we will

present an approach to automatically discover new candidate techniques that have

not been added to the ontology or the state-of-the-art attack behavior frameworks

(e.g., MITRE ATT&CK) yet, and provide suggestions on how to add them to the

ontology when possible.

Discovered Technique Candidates. We define the discovered (or unknown)

attack technique candidate as a threat action, executed by a malicious subject, on a

cyber object where the threat action does not exist in the ontology. In the previous

chapter, we have shown how we use IR approach (bm25) to determine whether a

threat action belongs to the ontology or not based on a similarity threshold. For the

threat actions that did not map to any instance in the ontology, we treat those as

new attack technique candidates.

3.3.1 Evolving the Ontology

Adding new threat actions to the ontology is not a straightforward process. This is

because the ontology requires the threat actions to be linked to other concepts in the

ontology (e.g., motivation). Based on our analysis of the discovered technique can-

didates, they can be categorized into two types: (1) new threat actions that classify

under existing tactics (e.g., log mouse movements can be classified under Collection

tactic), and (2) actions that might need new tactic concept that are not yet in the

ontology (e.g., display ads).

To add new actions to existing tactics, we utilize their intent (goals) extracted from

the report (if mentioned) using the grammatical relationships (dependencies) between

action and motivation that are collected earlier as explained in Section 2.5.1. Once

the motivation of a new threat action is extracted, we measure its similarity using our

IR approach (bm25) to our ontology of tactical actions (e.g., evade defenses, escalate



51

privilege). If the motivation of a new threat action achieves a bm25 similarity higher

than the pre-determined threshold, the new action will be added to the ontology as

a new technique and will be linked to the most relevant tactic that already exist in

the ontology.

For new actions with no text providing their tactical goals (or motivation), our

tool extracts them and provides them to the user (security professional) to create a

new tactic(s) for them and add the action and its tactic (as a branch) to the ontology

(e.g., Malware simulate mouse clicks). For the 120 new actions that we discovered in

this experiment, we classified them to suggested techniques and tactics to be added

to the ontology and we show the complete list of these actions and their suggested

classification in the Appendix section. We discuss the statistics of newly discovered

techniques and threat actions in the evaluation section of this chapter.

Table 3.1: Examples of mapping novel technical threat actions to the TTP ontology
based on their tactical actions (motivation)

New Extracted Extracted Tactical Ontology Ontology
Action Action Action Tactic

uses WinSCP exfiltrate exfiltrate Exfiltration
data information

deployed yty collect collect Collection
tool information information

load web site display pop-up - -

ads

3.4 TTP Chaining

Threat actions, in CTI reports, are often anchored to linguistic temporal expres-

sions. These expressions can be used to determine the temporal relationship between

threat actions. The output and accuracy of this process is important for ordering

threat actions of a given cyber-attack in one time-line. This time-line is very impor-



52

tant to to understand malware behaviors on the procedural level (i.e., sequence of

ordered malicious commands).

There are 14 types of temporal relations [42]. Our approach is to utilize these

temporal relations for the cyber and technical domain. To the best of our knowledge,

none of the existing works extract the temporal relations and dependencies between

malicious activities from CTI reports.

Table 3.2: Temporal relations in TimeML annotation

a | | a is IBEFORE b
b | | b is IAFTER a

a | | a is BEFORE b
b | | b is AFTER a

a | | a BEGINS with b
b | | b BEGUNBY b

a | | a is DURING b
b | | b is DURING_INV a
a | | a INCLUDES b

b | | b is IS_INCLUDED by a
a | | a ENDS b

b | | b ENDED_BY a
a | | a is SIMULTANEOUS with b
b | |
a | | b a is IDENTITY with b

The temporal expressions denoted by TIMEX3 [42] capture various temporal tags

such as dates, times, duration, and frequencies. The temporal relations or links

represent the temporal relationship between two two events (threat actions). The

following are examples of temporal links discussed in the Literature extracted for

cyber threat actions:

• Before: E.g., The Malware compresses the data prior to uploading it to c2

server. ([compress data] BEFORE [upload to c2 server])

• After: E.g., After collecting host information, CHOPSTICK creates a hidden

file. ([create hidden file] AFTER [collect host information]), see Figure 3.1



53

creates

After

file

information 

collecting

hidden

dobj

nsubj dobj

host

CHOPSTICK storage

temporary

compound

a for amod

Event 1

Event 2

Figure 3.1: Typed dependency for temporal relation extraction between events.

Table 3.2 shows the 14 types of temporal relations in TimeML [42] which are de-

fined based on Allen’s interval algebra [43].

Based on our careful analysis of CTI threat reports, we learned that, there are

three types of linguistic temporal indication for threat actions:

1. Temporal subordinate clauses - Temporal conjunctions: are conjunctions that

join two threat action in the same sentence indicating their relative order and

which threat action happened first (e.g., before, after, etc.).

2. Non-clausal temporal conjunctions: a temporal conjunctions that is a part of

a phrase indicating a non-immediate relative order to previous paragraphs or

sentences. (e.g., finally, then, etc.)

3. Coordinating conjunctions: are conjunctions that join two or more threat ac-

tions of equal temporal state in the same sentence (e.g., and, or, etc.)

Accordingly, we abstract these temporal relations into 2 types, iafter and after.

iafter is a temporal link that temporally connects two threat actions in which the

child happens immediately after the parent. For Example, in the sentence “Once the



54

Ransom encrypts the files, it deletes the encryption keys", deletion happens immedi-

ately after encryption. after is a temporal link that temporally connects two threat

actions in which the child happens after the parent. For example, “The trojan creates

a registry key, opens a back door and connect to C2 server. After that, it sends sen-

sitive data to the remote server". In this sentence, trojan sends data after creating a

registry, but other actions might be executed before sending the data, and therefore,

the relationship between these actions is after.

We construct a directed graph where each node represents a threat action and each

edge represent the temporal relation between threat action where the source (parent)

takes place before the destination (child). First we construct the graph based on

the recognized relations described above, then we infer other edges for nodes with

relations to nodes that we are temporal aware of (clear time-line), see Figure 3.3.

Figure 3.2 shows an APT chain (or partial chain) for the threat InfoStealer. The

box in the figure, that contains threat actions with no edges between them, repre-

sents a group of threat actions with no temporal relation amongst them. This is due

the fact that there is no linguistic temporal anchors in the report that indicate their

temporal order.

3.4.1 Generating Alternative TTPChains

Our approach, TTPChains, extracts the linguistic temporal anchors in a threat

report in order to determine the temporal order of threat actions. However, most

threat reports provide these anchors for a partial set of threat actions leaving the

other set with few linguistic clues about their temporal order. For this reason, a

subset of threat actions in the chain will have no temporal relations amongst one

another, although the whole group of these actions might have a temporal anchor

with other actions (but not among themselves). We call these threat actions with no

temporal anchors amongst themselves a bag of actions, see Figure 3.2.



55

Catchamas Temporal Order

Create file

Create registry entry

Collect 
Keystrokes

Save information to file

Upload file to C&C server

Collect 
screenshots

Collect 
clipboard data

Collect network 
adapter information

Bag of Actions

Figure 3.2: TTPChain of Catchamas.

As Figure 3.2 shows, a bag of actions consisting of collect keystrokes, collect screen-

shots, collect clipboard data, and collect network adapter information, was created in

the Catchamas Malware TTPChain. This is because the threat report of Catchamas

did not include any linguistic clues to determine the temporal order amongst actions

in this bag, see Table 3.3.

A partially chained TTP brings ambiguity to construct accurate and representative

TTP Chains for the types of malware. To solve this problem, we generate all possible

TTPChains with the different order combinations for such threat actions. Figure 3.3

shows an example of the workflow of the process to disambiguate partial TTPChains

that contain bag-of-actions. By doing this, we will obtain every possible scenario

(action sequence) of the threat actions with few linguistic clues. These scenarios are

very important to have for detection and mitigation purposes. We show in chapter

4 how these scenarios (alternative TTP Chains) can be used in cyber attacks which

can be used by stakeholders for cyber attack mitigation and detection.



56

Arrive through 
Spearphishing email

Create registry entry

Collect 
Keystrokes

Save information to file

Upload file to C&C server

Collect 
screenshots

Bag of Actions Collect 
Keystrokes

Save information to file

Upload file to C&C server

Collect 
screenshots

Collect 
Keystrokes

Collect 
screenshots

Arrive through 
Spearphishing email

Create registry entry

Save information to file

Upload file to C&C server

Collect Keystrokes

Collect screenshots

Arrive through 
Spearphishing email

Create registry entry

Save information to file

Upload file to C&C server

Collect screenshots

Collect Keystrokes

Arrive through 
Spearphishing email

Create registry entry

Directed Acyclic Graph Alternative TTP Chains

Chain (B)Chain (A)Partially Chained TTP

Figure 3.3: An example of processing partial TTP chains by generating alternative
chains.

Table 3.3: An example of temporal relations extraction among threat actions

th
re
at

de
sc
ri
pt
io
n When this Trojan is executed, it

creates the following files ... The
Trojan then creates registry en-
try: HKEY_LOCAL_MACHINE...
Next, the trojan collects keystrokes,
clipboard data, screenshots, network
adapter information... then saves the
stolen information in location.. then
uploads files to C&C server.

th
re
at

ac
ti
on

s
w
it
h
te
m
po

ra
l

or
de

r

create file [Before]

create registry entry [Before]

collect keystroke

collect clipboard data

collect screenshot

collect network adapter information
[Before]

save information in location[Before]

upload files to C&C server

3.4.1.1 Examples of Alternative TTPChains

Ransomware. Ransomware is a malicious software that aims to encrypt sensitive

data denying the owners (users) access to their files until a ransom is paid. Figure



57

Table 3.4: Example 2 of temporal relations extraction among threat actions

th
re
at

de
sc
ri
pt
io
n The actors behind the previous Form-

Book campaign used CVE-2017-0199
... Equation Editor downloaded a file
called "xyz[1].123" and then created
the scvhost.exe process... The malware
comes ... with rootkit functions such as
keylogging, clipboard stealing, screen-
shots and webcam access. Passwords
are stolen from the following applica-
tions, among others ... it creates the
POST request string, as you can see be-
low... Then, it encrypts it with 3DES
before sending it.

th
re
at

ac
ti
on

s
w
it
h
te
m
po

ra
l

or
de
r

exploit vulnerability

download file [Before] create process

keylogging

clipboard stealing

screenshots access

webcam access

steal passwords from applications
create POST request string [Before]
encrypt it with 3DES

encrypt it with 3DES [Before] sending
it.

3.4 shows the TTPChain (sequence of actions) extracted by our tool of the famous

ransom Pclock.

Infostealer. Infostealer (Information Stealer) is a malicious software that is de-

signed to gather and steal information from a system (or victim). The most common

form of this malware steals passwords and login credentials and sends them to the

attacker. Figure 3.5 shows the TTPChain (sequence of actions) extracted by our tool

of the InfoStealer Avisa.

Backdoor. Backdoor (often referred to as "RAT") is a malicious software that



58

Create file

Create registry entry

Use image file

Display ransom message

Connect to 
legit website

Connect to 
remote location

Bag of Actions

Directed Acyclic Graph Alternative TTP Chains

Chain (B)Chain (A)Partially Chained TTP

Create registry subkeys

Encrypt file

Delete shadow copies

Download update

Create file

Create registry entry

Use image file

Display ransom message

Connect to 
legit website

Connect to 
remote location

Create registry subkeys

Encrypt file

Delete shadow copies

Download update

Connect to 
legit website

Connect to 
remote location

Create file

Create registry entry

Use image file

Display ransom message

Create registry subkeys

Encrypt file

Delete shadow copies

Download update

Connect to legit website

Connect to remote 
location

Create file

Create registry entry

Use image file

Display ransom message

Create registry subkeys

Encrypt file

Delete shadow copies

Download update

Connect to legit website

Connect to remote 
location

Ransomware Pclock

Figure 3.4: TTPChain of Ransomware Pclock.

often arrives via spearphishing emails or by visiting infected (compromised) websites.

They provide usually secret remote access to a computer (victim). Attackers usually

use backdoor software to relay commands to the victim or to install more malicious

tools into the victim. Some attackers infect the victim with backdoor and wait several

years to use the unprivileged access to the victim. Figure 3.6 shows the TTPChain

(sequence of actions) extracted by our tool of the backdoor Lamer.

Trojan. Trojan (or Trojan horse) is a malicious software that misleads users of

its true intent. For example, a user maybe deceived to execute an email attachment

that looks like an adobe file when it is a malicious executable that allow attackers to

gain access to the victim machine to carry out malicious activities.Figure 3.7 shows

the TTPChain (sequence of actions) extracted by our tool of the Trojan Arsivir.



59

Create copy of itself

Create file
Open web 
browser

Bag of Actions

Directed Acyclic Graph Alternative TTP Chains

Chain (B)Chain (A)Partially Chained TTP

Create registry entry

Send password to 
attacker

Create file

Open web browser

Infostealer Avisa

Create file
Open web 
browser

Create copy of itself

Create file
Open web 
browser

Create registry entry

Send password to 
attacker

Create copy of itself

Create registry entry

Send password to 
attacker

Open web browser

Create file

Create copy of itself

Create registry entry

Send password to 
attacker

Figure 3.5: TTPChain of Infostealer Avisa.

3.5 Evaluation

In this section, we evaluate our Technique Discovery and TTP chaining approaches.

3.5.1 Evaluating our technique discovery approach.

We ran TTPChain on 17,000 CTI reports from the year 1993 to 2019. our tools

discovered 120 threat actions. To evaluate our threat action discovery approach,

we manually analyzed the threat action discovered automatically by our tool with

the threat actions discovered manually by cybersecurity experts and provided via a

well-known cybersecurity standard, MITRE ATT&CK.

We discovered that 9 threat actions 7% is already in MITRE (and the ontology),

however, did not achieve a similarity score above the threshold. 14 actions ( 11%)

were frivolous threat actions (e.g., it relate to vulnerability). Interestingly, 49 (40%) of

the new threat action can be mapped to existing MITRE techniques (e.g., log mouse

movements can be classified under Collection tactic). The rest of threat actions 48

(40%) can be mapped new tactics that do not exist in MITRE (or our ontology)

yet. Thus, we created 4 new tactics to accommodate these techniques. These four



60

Send email

Create file
Spammed in 

email

Bag of Actions

Directed Acyclic Graph Alternative TTP Chains

Chain (B)Chain (A)Partially Chained TTP

Open backdoor

Create file

Spammed in email

Backdoor Lamer

Create file
Spammed in 

email

Send email

Create file
Spammed in 

email

Open backdoor

Send email

Open backdoor

Spammed in email

Create file

Send email

Open backdoor

Figure 3.6: TTPChain of Backdoor Lamer.

tactics are (1) Denial of Service (crash), (2) Ransom Demand (Blackmail), (3) Annoy

(Display Ad), and (4) Simulate (Actions on behalf of the user). We add these tactics

and their techniques as branches to the ontology and we expect MITRE ATT&CK

to add them to their framework in the future.

3.5.2 Evaluating our TTPChaining approach.

First, we manually extract the threat actions and then we extract the temporal

relations between them based on human understanding. We mainly depended on

linguistic clues to extract the temporal relations between threat actions, and also

when the annotator (human) is sure that one action happened before another even

with no temporal anchors mentioned in the text (e.g., the module logged keystrokes

and exfiltrated them to c2 server). Our set consisted of 60 threat reports, we manually

extracted 138 temporal relations between threat actions. Then, we ran our tool on

these reports and the tool successfully extracted 125 temporal relations between the

same threat actions achieving 90% accuracy.



61

Create file

Create registry entry

Download 
executable

Download 
Chrome 

extensions

Bag of Actions

Directed Acyclic Graph Alternative TTP Chains

Chain (B)Chain (A)Partially Chained TTP

Overwrite file

Modify registry entry

Add URLs to path

Connect to remote 
location

Trojan Arsivir

Create file

Create registry entry

Overwrite file

Modify registry entry

Add URLs to path

Connect to remote 
location

Download 
executable

Download 
Chrome 

extensions

Create file

Create registry entry

Overwrite file

Modify registry entry

Add URLs to path

Connect to remote 
location

Download 
executable

Download 
Chrome 

extensions

Download executable

Download Chrome 
extensions

Create file

Create registry entry

Overwrite file

Modify registry entry

Add URLs to path

Connect to remote 
location

Download executable

Download Chrome 
extensions

Figure 3.7: TTPChain of Trojan Arsivir.



62

Table 3.5: Excerpt of newly discovered threat actions by our tool

Action Object Group

log mouse movement Collection

record instant message Collection

log visited website Collection

run cryptocurrency mining application Execution

increase CPU Usage DoS

reserves memory DoS

Simulate mouse clicks Simulate

display ads Annoy

demand ransom Ransom Demand

spoof IP Address Defense Evasion



CHAPTER 4: Applications of TTPDrill

Despite the fact that TTPDrill’s main focus is to develop innovative techniques for

automated and accurate TTP extraction and inference, our aim in this chapter to

highlight potential applications for TTPDrill that can help advance the state-of-the-

art cyber defense tools used to reposed to Cyber Threat Intelligence. In this chapter,

we show how to take advantage of the threat actions and chains extracted in chapter

2 and 3 to implement countermeasures and defense actions that address the current

threats reported in CTI.

4.1 Motivation

Advanced persistent threats (APT) often start with reconnaissance techniques that

discover information about the victims and their defense tools. Then, it tries to evade

these security tools and escalate their privilege in order to carry out their malicious

activities. Next, they can collect sensitive information (e.g., passwords), encrypt users

files for ransom, or upload stolen data to the attacker’s location. As in the previous

chapters we presented our proposed tools that can extract the malicious actions with

their sequential relationships (Chains), the question of "what can we do to defend

against these attacks?" still remains to be answered. Responding to cyber attacks

can take form in any one or all of the following:

• Effective sharing of extracted cyber threat intelligence from unstructured text

into a structured language (i.e., converting unstructured CTI to structured CTI

using popular CTI languages such as STIX 2).

• Providing advisory about detection and mitigation countermeasures that are

relevant to the most current cyber attacks in an automated manner.



64

• Automated operationalization of threat actions and chains using Windows OS

native commands and utilities that can be used by threats to execute their

threat actions chains.

4.2 Problem Statement and Contributions

This chapter addresses the problem of automated cyber defense advisory and deci-

sion making based on the threat analytics extracted by chapters 2 and 3. Given the

TTP threat action and chains obtained from Chapter 2 and 3, our goal in this chapter

to develop applications to show the value of constructing TTPs from unstructured

text. First, we intend to generate structured threat information in popular languages

(STIX 2 and CybOX) which are machine-readable by various cyber defense and anal-

ysis tools. Second, we use our approach to provide post-hoc analytics about the

trending cyber attack actions and we use a cyber defense action list that we extract

from MITRE ATT&CK to recommend the most appropriate defense actions to mit-

igate the current cyber attacks and to provide help in selecting and investing in the

most appropriate and relevant countermeasures. These tasks will be described in the

subsection below.

4.2.1 Cyber Defense Planning and Advisory

By extracting the attack patterns and actions from unstructured texts of CTI by

our tool, we gain a wealth of attack patterns and TTP information of the on-going

threats and the current (perhaps most relevant) CTI. This wealth of information,

while very crucial to understand the current risks, does not provide any guidance

towards decision making for cyber defense. For this purpose, we map the attack ac-

tions and techniques to defense actions using the defense actions provide by MITRE

ATT&CK standard. Then, as an application of TTPDrill, we extract the most com-

mon attack actions and techniques from CTI reports and utilize the mapped list of

threat actions and defense actions to provide the most common (and perhaps the



65

most critical) defense actions and tools that can mitigate these attacks.

Defense Actions. We have carefully analyzed the detection and mitigation guide-

lines provided by MITRE ATT&CK for the 223 attack techniques and extracted 400

defense actions that are mapped to these techniques. These 400 defense actions can

be categorized onto seven types of actions:

• Block flow. This defense action includes signature based and behavioral based

intrusion detection systems on the network level (NIDS). Such actions recognize

and block malicious traffic coming into and out of the network.

• Monitor flow. This defense action includes signature based and behavioral based

intrusion detection systems on the network level (NIDS). Such actions recognize

malicious traffic coming into and out of the network and alarms the security

team.

• Block process. This defense action includes signature based and behavioral

based intrusion detection systems on the host level (HIDS). Such actions rec-

ognize and terminate (or deny) unnecessary or malicious processes.

• Monitor process. This defense action includes signature based and behavioral

based intrusion detection systems on the host level (HIDS). Such actions rec-

ognize and unnecessary or malicious processes and alarm the security team.

• Train users. This action aims to educate and train users of the system on

how to recognize malicious emails, websites, and links to prevent spearphishing

attachment, websites, and links at an early stage of the killchain.

• Move to DMZ. This action aims to move assets to a less risky network location

(DMZ) to protect the other more valuable assets.



66

• Disable functionality. This actions changes the configuration of the host’s OS

to make the attack infeasible on the system. For example, disabling Remote

Desktop Protocol (RDP) will prevent threat actions that utilize this feature to

take place in the first place.

TTPDrill can be used to analyze threat actions of interest in aggregate levels to

understand the connections between different malicious behavior as well as the threat

landscape in a certain period [29]. For example, Table 4.1 presents the five most

common threat actions conducted by malware in the past five years (2014-2019).

Such time-aware analytics will help prioritize cyber defense course of actions for a

particular time period. For these threat actions, we use our manually mapped list of

defense actions to generate the top five rel event and most important defense actions

that help mitigate and detect the most executed threat actions. Table 6 shows the

top 5 relevant defense actions.

Table 4.1: Five most common threat actions in the past 5 years

Rank Threat Action Frequency

1 Exfiltrate files to C2 2638

2 Modify Registry 1582

3 Process Injection 1106

4 Spearphishing Attachment 523

5 Encrypted Data 368

4.2.2 Automated Structured CTI Generation

Generating machine-readable, structured CTI information is one of the goals for our

proposed tool. By extracting threat actions, context, and Indicators of Compromise

from threat reports, and mapping them to the ATT&CK framework, a MITRE stan-

dard for describing known cyber attack techniques and cyber adversary behavior [7],

we aim to convert this information to a set of popular machine consumable standard

structure formats that will provide a significant contribution and flexibility to the



67

Table 4.2: Advised defense actions for the most common threat actions in the past 5
years

Rank Defense Action Actuator Asset Defense Type

1 Monitor Processes suspicious HIDS Host Detection
network usage

2 Block utility that Application Host Mitigation
modify registry Firewall

3 Monitoring API calls associated HIDS Host Detection
with code injection

4 Train users to Administrator People Mitigation
identify spearphishing emails

5 Block traffic with known NIDS Network Mitigation
obfuscation tools signatures

CTI community. The limitation of the current structured CTI methods generation

is that it is performed manually. Thus, the vast majority of threat reports are very

shallow, in the sense that they are limited to only IoC sharing, rather than attack

patterns, behaviors, and goals. Also, the manual generation of structured reports

is prone to human error. Accordingly, an automated generation of structured CTI

reports will provide a crucial time-saving technique to cope with the rapid increase in

unstructured CTI sharing. Moreover, to provide flexibility in structured CTI sharing,

our prototype will provide a set of popular structured CTI languages such as:

• Structured Threat Information Expression (STIX 2).

• Cyber Observable eXpression (CybOX).

Identified threat actions in CTI reports are filtered then linked to an entry in the

threat action ontology, so it is mapped to a known technique (e.g., DLL Injection

technique in ATT&CK or SQL Injection attack pattern in CAPEC), pre-condition

(e.g., “registry write-privilege has been acquired"), tactic (e.g., privilege escalation),



68

and kill chain phase (e.g., exploit). As mentioned earlier, STIX defines a set of Do-

main Objects (SDOs) that correspond to common concepts represented in CTI. Using

these objects and STIX relationships, TTPDrill can automatically create comprehen-

sive and structured cyber threat intelligence. TTPDrill creates a STIX report for

each threat by creating the relevant SDOs and filling the attributes of these SDOs

and the relationships among them. In this part, we explain the attributes of these

objects and relationships.

Attack Pattern is a STIX object that describes and provides detailed information

about how attacks are performed and the patterns that they follow. For example,

“Force Use of Corrupted Files" is an attack pattern where an attack forces an applica-

tion to use a malicious file with the intent to bypass access controls, denial of service,

or buffer overflows. The attack pattern SDO has five properties that TTPDrill fills

as follows: (1) type: this is a required field in STIX 2.1 and if an attack pattern

is identified, this value has to be filled with the string “attack-pattern"; (2) exter-

nal_references: an optional value that contains external source e.g., capec, TTPDrill

fills this field the source_name as “capec" and external_id as “CAPEC-[id]" (e.g.,

CAPEC-263), this format is specified by STIX 2; (3) name: the name of the attack

pattern (e.g., Force Use of Corrupted Files); (4) description: provides more details

about the attack pattern. TTPDrill fills this value with the technique description

from the relevant threat action ontology entry. (5) kill_chain_phases: this property

contains a list of kill chain phases for the attack pattern. This part is filled with

the relevant kill chain phases in the ontology. Figure 4.1 shows an example of attack

pattern SDO created by TTPDrill for the attack technique Input Capture.

Observed data is an object that captures the artifacts of malicious activities such

as IP address, a file, or a registry value. This object contains five properties:

1. type, a required field that must be filled with the string “observable-data"



69

{ 

  "type": "attack-pattern", 
  "id": "attack-pattern--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061", 
  "created": "2017-06-8T08:17:27.000Z", 
  "modified": "2017-06-8T08:17:27.000Z", 
  "name": "Input Capture", 
  "description": "Adversary logs keystrokes to obtain credentials", 
  "kill_chain_phases": "Maintain", 
  "external_references":  
 [     { 

      "source_name": "ATT&CK", 
      "id": "T1056" 
    }   ] 

} 

Figure 4.1: Example of a STIX attack pattern generated by TTPDrill.

2. first_observed, the timestamp when the data was observed for the first time.

TTPDrill fills this field with the current timestamp when it observes the data

for the first time.

3. last_observed, filled with the timestamp when the data was last observed.

4. number_observed, filled with the number of times this data was observed.

5. objects, represents an object (or a list of objects) from a dictionary of cyber

observable objects.

For this purpose, TTPDrill utilizes CybOX language (as recommended by STIX 2)

to create an observable object. CybOX Object Listing defines more than 80 objects

( Version 2.1 defines exactly 88 objects). For example, if a threat action creates a

file (e.g.,badlib1.dll), TTPDrill identifies the file in an article by its regex, then it

creates the CybOX object file and reference it to the observed data object. Figure

4.2 shows an example of CybOX object.

Malware the Malware SDO characterizes a given malware through description

property, which provides detailed information about how and what the malware does.

This SDO has five main properties, they are, (1) type, a String value that must be

filled with the value “malware" as stated by STIX 2 (2) name, which is a String value,



70

<cybox:Observable id="example:Observable-e24a-42b5-bb29-7bd56fa9655f"> 

        <cybox:Description>This is a file observation.</cybox:Description> 

        <cybox:Object id="example:Object-1d3e6-4138-891b-291576dc5d41"> 

            <cybox:Properties xsi:type="FileObj:FileObjectType"> 

                <FileObj:File_Name>badlib1.dll</FileObj:File_Name> 

                <FileObj:File_Path>\Programs\Startup\</FileObj:File_Path> 

                <FileObj:File_Extension>.dll</FileObj:File_Extension> 

            </cybox:Properties> 

        </cybox:Object> 

    </cybox:Observable> 

</cybox:Observables> 

Figure 4.2: Example of a CybOX object generated by TTPDrill.

{ 
  "type": "malware", 
  "id": "malware--0c7b5b88-8ff7-4a4d-aa9d-feb398cd0061", 
  "created": "2017-06-8T08:17:27.000Z", 
  "modified": "2017-06-8T08:17:27.000Z", 
  "name": "Dimnie", 
  "description": "Threat performs DLL injection, system  information discovery,  
                              screen capture, input capture, data exfiltration over…", 
  "labels": ["Trojan"] 
  "kill_chain_phases": ["Control","Execute","Maintain"] 
  } 
 

Figure 4.3: Example of a STIX malware generated by TTPDrill.



71

filled by TTPDrill with the name used to identify the malware (e.g., “Dimnie").

(3) label, which is the type of the malware being described (e.g., “Trojan"). (4)

description, which is filled by TTPDrill with the known attack patterns or tech-

niques that were mapped to the threat actions extracted from the threat report (e.g.,

“DLL injection"). (5) kill_chain_phases, this contains a list of kill chain phases

for which this malware can be used. TTPDrill fills this list with the kill chain phases

of the known attack patterns and techniques from the ontology. Figure 4.3 shows an

example of a STIX malware SDO generated by TTPDrill for the malware “Dimnie".

Vulnerability is an object that describes a bug in the software that is exploited by a

threat. When an article describes a threat that exploits a certain vulnerability, TTP-

Drill extracts the vulnerability from the threat’s article using its corresponding regex

and creates a STIX vulnerability object. This object has four main properties (1)

type, filled with the string value “vulnerability". (2) external_references, filled with

CVE vulnerability identifier (e.g., CVE-2017-0001). (3) name and (4) description are

filled with the corresponding CVE name and description (scraped from CVE MITRE

website). When an article mentioned a software vulnerability that is related to the

attack pattern, TTPDrill, creates a relationship of type targets between an attack

pattern SDO and vulnerability SDO and fills the target field with the vulnerability id

to describe that the attack pattern exploits that vulnerability. For example, attack-

pattern: SQL injection targets vulnerability:CVE-2006-5525.

4.2.3 TTPChain Native Commands Generation

Unlike traditional malware attacks, the new attacks try to avoid installing software

and tools to carry out their malicious activities and tend to use legitimate tools and

native commands built into the operating system of the target. The reason behind this

is to avoid detection tools as these tools trust (white-list) the OS native commands

as most of these commands are an integral part of the operating system and blocking



72

Microsoft Docs Command

Figure 4.4: "Del" Command in Microsoft Documents.

them might cause the system to break.

In this section, we show how we can automatically map the malicious actions of

cyber attacks (that constitute the TTPChains) to native OS commands and utili-

ties using an approach that integrates Natural Language Processing and Information

Retrieval techniques.

Collecting Windows native commands and built-in utilities.

To collect Windows native commands, utilities, and their description, we’ve built a

crawler to scrape all Windows native commands, and built-in utilities and their de-

scription (natural language) from Microsoft documentation [44]. Furthermore, some

of these commands perform more than one action, e.g., "shutdown" may turn off the

system, log off the user, or reboot the system. The action in these commands is also

determined by a flag (switch) that is used with the command. For example, to turn

off the system, the command should be "shutdown /s", where the flag "/s" speci-

fies that the command should turn off the system. Alternatively, "shutdown /r" will

reboot the system. For this reason, our scraper also collects the description of the

flags for each command. Figure 4.4 shows an example of a Microsoft Document of

the command "Del".



73

Description:
Deletes one or more files

Microsoft Docs Commands

Q = {deletes, files}

Generate Query

Known actions (ontology)

Technique: 
File Deletion

Object: 
file

Threat Action:
delete

Purpose/Goal: 
evade detection

1 Generate bag-of-words Document

belongs to

D = {delete, files}

3 Similarity ranking 

IR-matching
(IRM)

Command: del
Threat Action: delete file

Attack technique/pattern: File Deletion T1107
Kill chain phase: Maintain

IRM(D,Q) ≤ threshold (𝑆𝑡ℎ)

Command:
del

2 Extract command actions

Figure 4.5: Workflow of native OS command mapping to the ontology.

Extracting the actions of Windows commands.

To extract the action of the commands (or their flags), we utilize Standard Depen-

dency Parser to work out the grammatical relations between words. Then, we extract

the actions of these commands (e.g., verb and object) using a pre-defined set of typed

dependencies designed carefully for this purpose. For example the command del is

described in Microsoft documentation as ”Deletes one or more files.", and using the

set of typed dependencies, we extract the actions of these commands, and the action

“delete file" is extracted from the previous del command description.

Mapping the command actions to malicious actions in the TTPChain.

We map threat actions to commands by measuring the textual similarity between the

threat actions and command actions using the TF-IDF method with the enhanced

BM25 weighing function (As explained in Chapter 2). This function ranks the proce-

dures based on their similarity to a given threat action. The commands are treated

as a corpus (documents), and a threat action is treated as a query, and the similarity

score is calculated between them.

We use a cut-off BM25 threshold to determine whether a threat action should be

mapped to a command. Based on our experimentation, we determine this threshold

to be 5.1. When a command action achieves a high similarity score (higher than 5.1)



74

Table 4.3: Excerpt of OS commands mapped to Threat Actions

Native Command Threat Action ATT&CK
Command Attribute Technique

whoami - displays username System Owner
/User Discovery

systeminfo - displays OS information System Information
configuration Discovery

del - deletes files File Deletion

erase - deletes files File Deletion

dir - display file list File and Directory
Discovery

diskshadow exec executes file Execution

finger -l displays information System Owner
about a user /User Discovery

ipconfig /all displays TCP/IP System Network
configuration Configuration Discovery

Mode - displays system status System Information
Discovery

net accounts - view logon restrictions Password Policy
Discovery

net group - displays group name Permission Groups
Discovery



75

Certutil –encode 

Start-Process

Stop-Service

Delete file

Enumerate files

Stop service

Encode file

create process

Malware Type Threat Action Built-in commands

Del

Ransomware

Infostealer

Backdoor

Dir

Remove-Item

Figure 4.6: Mapping Malware threat actions to OS commands and utilities.

with a threat action, they are then mapped together, See Figure 4.6.

Generating Command Chains. As one action might be mapped to more than

one command (e.g., delete file can be executed by del or remove-item commands),

to generate a chain of commands that represent a given TTPChain, we must generate

the Cartesian product of the threat actions set in the given TTPChain and command

set that are mapped to the threat actions. By doing this, we acquire every possible

command sequence that executes the given TTPChain. We believe is a very important

output that is essential for cyber mitigation and detection for malware attacks that

utilize OS native commands and utilities to carry out its malicious activities. We

provide these chains of commands as a CSV (comma-separated) file, where each

comma indicates the order of commands that reflect the order of threat actions in

any given TTPChain.

4.2.3.1 Evaluation of Command Mapping to Threat Actions

In total, 504 commands were mapped to threat actions in the TTPChains. MITRE

ATT&CK contains 223 attack techniques, however, 32 techniques are not Windows

techniques (They are either Linux or macOS), also 11 techniques require coding scripts

that cannot be executed by a native command, and 22 techniques are conceptual

techniques (e.g., send spearphishing email, Compromise Supply Chain , etc.), these



76

techniques are carried away by human or customized tools that do not use native

commands. With a remaining total of 158 Attack techniques, we successfully mapped

121 out of 158 (76% coverage).

For the newly discovered attack techniques, we were able to map 51 of them to native

OS commands out of 120 newly discovered techniques (41% coverage). We believe

the main reason for the lower command coverage for non-MITRE attack techniques

is that MITRE have carefully added these attack techniques and that process might

have included a "can be detected" condition, where our approach depends is fully

automated and therefore discover advanced threat actions that cannot be executed

by simple commands such as "mimics Facebook login page", "show fake login page",

and other similar techniques. On the other hand, newly discovered techniques such as

"manipulate clipboard data", mapped to Set-Clipboard command, are important

attack techniques that we believe MITRE will add to their future in the future. The

precision of mapping commands to threat action is 82%. Both the recall and precision

are very reasonable results considering the domain and complexity of this problem,

and to the best of our knowledge, no published work has done this mapping in an

automated manner.

Case Study. To show the coverage of our approach, as a case study, we choose

APT OilRig as it carries out almost all of its threat actions and malicious activities

using Windows native commands and utilities. First, we extracted the threat actions

of OilRig TTPChain shown by the left column in Figure 4.7. Then, we ran the

TTPChain of OilRig with our command mapping module. 384 command sequences

were generated by our module. These sequences are the result of the Cartesian

product of commands that mapped to every action in the TTP Chain as explained

earlier in this section. We manually extracted the commands actually used by OilRig

(reported by multiple sources) and manually generated the command sequence used

by the attack, shown by the right-side column in Figure 4.7. Then, we looked up



77

Threat Actions Procedures
(Commands, utilities and API Calls)

Exploit  CVE-2017-11882
__

Download file $webClient.DownloadFile(URL,'Path')

Decode file Certutil –decode 'Path'

Execute file "cmd.exe" /C wscript /b 'Path'

Delete file "cmd.exe" /C del 'Path '

Create scheduled task schtasks /create

Enumerate accounts "cmd.exe" /C net users

Enumerate processes tasklist

List network connections netstat -an

Query registry reg query 'Registry Path'

Capture screenshots Graphics.CopyFromScreen ()

Exfiltrate data __

POWRUNER
Backdoor

Spearphishing 
Attachment

OilRig TTPChain

Figure 4.7: OilRig TTPChain executed by using legitimate native OS commands,
and utilities

this sequence in the 384 command sequences generated by our tool and found the

sequence among these sequences. The rest of sequences could be a new evolved

OilRig, or another attack, that we might see the in future.



CHAPTER 5: SUMMARY AND FUTURE WORK

In this dissertation, we address key challenges to improve the effectiveness and us-

ability of cyber threat intelligence and information sharing. Our research has four

main objectives: (1) constructing and population of a threat-action ontology for cyber

attacks and behaviors, (2) developing a framework to extract malicious threat actions

from cyber threat intelligence reports, and (3) automated threat action chaining by

extracting the temporal relationships between threat actions, and (4) developing a

framework to map threat actions to native operating system commands that can be

executed to carry out the threat actions in the extracted chains. In this chapter, we

summarize our contributions, and we outline the findings and evaluation results in

each research objective. Also, we propose new directions and extensions for this work.

5.1 Threat Action Extraction

In Chapter 2, we presented two major contributions for automated and accurate

threat action extraction from cyber threat intelligence and threat reports. We pre-

sented a systematic approach to constructing a threat action ontology and an auto-

mated approach to populate the threat action ontology.

Then, we show the completeness and coverage of our threat action ontology in the

evaluation section.

Second, we proposed a framework that can automatically identify and map threat

actions to the ontology. This framework extracts the most relevant information in the

cybersecurity domain from cyber threat intelligence reports. The extracted threat

actions are sufficiently rich to describe the actions of the adversary, objects in cy-



79

berspace, and the immediate goal of these actions. Finally, we applied our approach

to CTI reports to extract malicious subjects, threat actions, and motivations with

reasonable accuracy.

5.2 Threat Action Chaining and New Action Discovery

In Chapter 3, we proposed a framework that can generate a TTP Chain, that

is, a directed acyclic graph where threat actions are represented by nodes, and the

temporal relations between them are represented by edges. By constructing graphs

for threats, we will gain better insights into threat analysis and mitigation. To do

this, we developed temporal relation extraction methods from text to determine the

temporal relations between actions between threat actions with reasonable accuracy.

Finally, we show the accuracy of extracting the temporal relationship between threat

action based on linguistic clues in the threat report.

5.3 Mapping Threat Action to OS Commands and Defense Actions

In Chapter 4, we used post-hoc analytics to extract the most trending and relevant

threat actions and provide structured CTI reports of these threats (STIX 2 and

CybOX), and using a list of defense actions extracted from Attack framework we

provide the appropriate course of actions (defense actions) that should be taken into

considerations by the defense team to address and deter the current attacks or to be

used as indicators of how to invest in countermeasures to mitigate the current cyber

threats.

In addition, we develop an approach that maps threat actions in a given TTPChain

(i.e., a sequence of threat actions) to OS native commands and utilities that can

execute these threat actions. Then, we generate command sequences that execute

(operationalize) these chains of threat actions and make them available in a CSV file

for cybersecurity professionals to use in cyber attack detection and mitigation.



80

5.4 Future work

In the future, we will extend this work by using different NLP parsers such as

Google NLP API [45] and CCG parser [46] to extract threat actions from the threat

reports to analyze and compare the performance and accuracy of these parsers. We

will also extend our dataset of CTI reports to include different threat sources and

different languages. Moreover, we will construct a TTP graph that includes the

TTPs generated by this work for further analysis and prediction of new TTPs.

Also, new techniques should be used to extend our approach viewing a threat action

as a VO representation to other syntactic blocks, because not all threat actions are

described in the format of VO. Examples are “The program runs for a certain period

of time" (verb only). We will propose a computational approach to automatically

parse all kinds of threat action expressions, and extract them as the key information

of a report for further analysis by machine.



81

REFERENCES

[1] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill
chains,” Leading Issues in Information Warfare & Security Research, vol. 1, p. 80,
2011.

[2] CleanMX, “Public access query for url,” 2006.

[3] OpenDNS, “Phishtank,” 2017.

[4] L. Obrst, P. Chase, and R. Markeloff, “Developing an ontology of the cyber
security domain.,” in STIDS, pp. 49–56, 2012.

[5] R. McMillan, “Open threat intelligence.” https://www.gartner.com, 2013.

[6] M.-C. De Marneffe and C. D. Manning, “The stanford typed dependencies repre-
sentation,” in Coling 2008: proceedings of the workshop on cross-framework and
cross-domain parser evaluation, pp. 1–8, Association for Computational Linguis-
tics, 2008.

[7] MITRE, “Adversarial tactics, techniques & common knowledge (att&ck),” 2014.

[8] S. Corp., “Symantec security center,” 1995.

[9] M. don’t need Coffee, 2012.

[10] Facebook, “Threatexchange,” 2017.

[11] Dibnet, “Defense industrial base cybersecurity information sharing program,”
2017.

[12] S. Barnum, “Standardizing cyber threat intelligence information with the struc-
tured threat information expression (stix,” MITRE Corporation, vol. 11, 2012.

[13] MITRE, “Standardizing cyber threat intelligence information with the structured
threat information expression (stix) version 2.1,” 2017.

[14] VirusTotal, “Yara,” 2014.

[15] MANDIANT, “The openioc framework,” 2011.

[16] M. D. Gordon and S. Dumais, “Using latent semantic indexing for literature
based discovery,” 1998.

[17] J. Stegmann and G. Grohmann, “Hypothesis generation guided by co-word clus-
tering,” Scientometrics, vol. 56, no. 1, pp. 111–135, 2003.

[18] D. Nadeau and S. Sekine, “A survey of named entity recognition and classifica-
tion,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007.



82

[19] N. Bach and S. Badaskar, “A review of relation extraction,” Literature review for
Language and Statistics II, 2007.

[20] A. Aizawa, “An information-theoretic perspective of tf–idf measures,” Informa-
tion Processing & Management, vol. 39, no. 1, pp. 45–65, 2003.

[21] A. FireEye, “The mechanics of a long-running cyber espionage operation.”

[22] A. FireEye, “New targeted attack in the middle easts.”

[23] Z. Zhu and T. Dumitras, “Featuresmith: Automatically engineering features for
malware detection by mining the security literature,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
(New York, NY, USA), pp. 767–778, ACM, 2016.

[24] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing the ioc game:
Toward automatic discovery and analysis of open-source cyber threat intelli-
gence,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, (New York, NY, USA), pp. 755–766, ACM,
2016.

[25] S. Zimmeck and S. M. Bellovin, “Privee: An architecture for automatically an-
alyzing web privacy policies,” in 23rd USENIX Security Symposium (USENIX
Security 14), (San Diego, CA), pp. 1–16, USENIX Association, 2014.

[26] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards au-
tomating risk assessment of mobile applications,” in Presented as part of the
22nd USENIX Security Symposium (USENIX Security 13), (Washington, D.C.),
pp. 527–542, USENIX, 2013.

[27] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog: Measur-
ing the description-to-permission fidelity in android applications,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’14, (New York, NY, USA), pp. 1354–1365, ACM, 2014.

[28] C. Sabottke, O. Suciu, and T. Dumitras, “Vulnerability disclosure in the age
of social media: Exploiting twitter for predicting real-world exploits,” in 24th
USENIX Security Symposium (USENIX Security 15), (Washington, D.C.),
pp. 1041–1056, USENIX Association, 2015.

[29] G. Husari, X. Niu, B. Chu, and E. Al-Shaer, “Using entropy and mutual infor-
mation to extract threat actions from cyber threat intelligence,” in 2018 IEEE
International Conference on Intelligence and Security Informatics (ISI), pp. 1–6,
Nov 2018.

[30] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun, “A practical part-of-speech
tagger,” in Proceedings of the third conference on Applied natural language pro-
cessing, pp. 133–140, Association for Computational Linguistics, 1992.



83

[31] S. E. Robertson and S. Walker, “Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval,” in Proceedings of the 17th
annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 232–241, Springer-Verlag New York, Inc., 1994.

[32] G. A. Miller, “Wordnet: a lexical database for english,” Communications of the
ACM, vol. 38, no. 11, pp. 39–41, 1995.

[33] Dictionary.com, “Thesaurus..” http://www.thesaurus.com/, 2016.

[34] Watson, “Watson synonym service,” 2017.

[35] N. F. Noy, D. L. McGuinness, et al., “Ontology development 101: A guide to
creating your first ontology,” 2001.

[36] V. Igure and R. Williams, “Taxonomies of attacks and vulnerabilities in computer
systems,” Commun. Surveys Tuts., vol. 10, pp. 6–19, Jan. 2008.

[37] C. Meyers, S. Powers, and D. Faissol, “Taxonomies of cyber adversaries and
attacks: a survey of incidents and approaches,” Lawrence Livermore National
Laboratory (April 2009), vol. 7, pp. 1–22, 2009.

[38] G. Husari, E. AL-Shaer, A. Mohiuddin, B. Chu, and X. Niu, “Ttpdrill: Au-
tomatic and accurate extraction of threat actions from unstructured text of
cti sources,” in Annual Computer Security Applications Conference (ACSAC),
ACM, 2017.

[39] S. Barnum, “Common attack pattern enumeration and classifica-
tion (capec) schema description,” Cigital Inc, http://capec. mitre.
org/documents/documentation/CAPEC_Schema_Descr iption_v1, vol. 3,
2008.

[40] M. Stone, “Cross-validatory choice and assessment of statistical predictions,”
Journal of the royal statistical society. Series B (Methodological), pp. 111–147,
1974.

[41] C. D. M. Jeffrey Pennington, Richard Socher, “Glove: Global vectors for word
representation,” 2014.

[42] R. Saurí, J. Littman, B. Knippen, R. Gaizauskas, A. Setzer, and J. Pustejovsky,
“Timeml annotation guidelines,” Version, vol. 1, no. 1, p. 31, 2006.

[43] J. F. Allen, “Maintaining knowledge about temporal intervals,” in Readings in
qualitative reasoning about physical systems, pp. 361–372, Elsevier, 1990.

[44] Microsoft, “Microsoft documents. the home for microsoft documentation for end
users, developers, and it professionals. check out our quickstarts, tutorials, api
reference, and code examples,” 1995.



84

[45] Google, “Natural language api, deriving insights from unstructured text using
google machine learning.,” 2017.

[46] M. Steedman, “Combinatory categorial grammar parser,” 2017.



85

Table 1: Examples of Extracted Threat Actions

Action Object Intent Technique Kill Chain
Phase

send TCP probe OS type Fingerprinting Recon
discovery

encode HTTP hide Data Control
message communication Obfuscation

add junk data hide Data Control
to traffic communication Obfuscation

compress data hide Data Execute
communication Compressed

extract credential obtain Credential Maintain
hashes credential Dumping

extract Kerberos obtain Credential Maintain
tickets credential Dumping

add data evade Binary Maintain
to file defenses Padding

enumerate applications gather Application Maintain
system Window

information Discovery

query registry gather Query Maintain
system Registry

information

modify system hide Rootkit Maintain
APIcalls presence

intercept system hide Rootkit Maintain
APIcalls presence

replace cmd.exe with gain Accessibility Control
utilman.exe unauthenticated Features

access

encrypt collected avoid Data Execute
data detection Encrypted

XOR collected avoid Data Execute
data detection Encrypted

modify shortcut Execute Shortcut Execute
path malicious Modification

code



86

Action Object Intent Technique Kill Chain
Phase

send UDP OS type Active OS Recon
datagram discovery Fingerprinting

probe TCP service OS type TCP Timestamp Recon
discovery probe

modify path variable escalate Manipulate Exploit
privilege File Path

craft certificate identity Deceptive Exploit
spoofing Interaction

insert script to escalate XSS Exploit
system logs privilege through

Log Files

inject script to escalate XSS in Exploit
image privilege Image Tags

initiate HTTP discover Cross Site Recon
trace HTTP Tracing
request protocol

configurations

send TCP discover TCP ACK Recon
segment alive hosts Ping

send UDP discover UDP Recon
datagram alive hosts Ping

send SYN packet discover TCP SYN Recon
to ports open ports Scan

send UDP discover UDP Recon
datagrams open ports Scan
to ports

use traceroute discover Traceroute Recon
utility systems Route

topology Enumeration

use “dsquery" discover Account Recon
utility system Footprinting

accounts

use “net discover Group Recon
localgroup" local Permission

utility groups Footprinting

use “netsh" discover Security Maintain
utility" security Software

tools Discovery



87

Action Object Intent Technique Kill Chain
Phase

create registry entry escalate DLL Execute
for DLL file privilege Injection

encrypt C2 hide c2 Custom Control
traffic communication Cryptographic

Protocol

send data steal Exfiltration Execute
information over Alternative

Protocol

log keystrokes obtain Input Maintain
credentials Capture

add entry to execute Registry Maintain
“run keys" code Run Keys
in registry at login

perform multiple timely Scripting Execute
actions execution
in script of actions

gather ARP discover Local Maintain
table network Network

configurations Configuration
Discovery

stop security evade Indicator Maintain
software defense Blocking
process



88

Table 2: Examples of Discovered Threat Actions

Action Object Group

add firewall rules Defense Evasion

change DNS settings Defense Evasion

check BIOS status Discovery

create junk data file Annoy

delete shadow copies Annoy

log mouse movement Collection

record instant message Collection

log visited website Collection

run cryptocurrency mining application Execution

increase CPU Usage Denial of Service

reserves memory Denial of Service

Simulate mouse clicks Simulate

display ads Annoy

demand ransom Ransom Demand

spoof IP Address Defense Evasion

disable editor registry Denial of Service

disable keyboard Denial of Service

disable Windows Task Manager Denial of Service

disable mouse Denial of Service

disable network Denial of Service

disable printer Denial of Service

disable Boot Safe Mode Denial of Service

disable Folder options Denial of Service

disable user account Denial of Service

launch Utility Manager Annoy



89

Action Object Group

display dialog boxes Annoy

display error message Annoy

drop file Execute

drop root directory Execute

erase windows clipboard Defense Evasion

execute Notepad Annoy

extract file Data Staged

hide disktop icons Annoy

hide computer taskbar Annoy

disconnect wireless local area network Denial of Service

launch Calculator Annoy

launch MS Paint Annoy

logout accounts Annoy

manipulate clipboard data Annoy

mute computer volume Annoy

open CD tray Annoy

overwrite files Denial of Service

hibernate computer Annoy

remove drivers Denial of Service

remove restore points Denial of Service

remove firewall rules Defense Evasion

remove startup item Denial of Service

rename files Annoy

rename folders Annoy

scrapes memory Collection



90

Action Object Group
scan process memory Collection

restart computer Annoy

shutdown computer Denial of Service

spoof arp Defense Evasion

spoof DNS Defense Evasion

spoof email Defense Evasion

spoof IP address Defense Evasion

start driver Execute

start Wordpad Annoy

stop driver Denial of Service

overwrite files Defense Evasion

send computer geolocation Collection

set default browser Annoy

set default webpage Annoy

set download speed Defense Evasion

set upload speed Defense Evasion

simulate clicks mouse Simulate

simulate input keyboard Simulate

hijack browser navigation Privilege Escalation

hijack DNS server Privilege Escalation

hijack Network Connections Privilege Escalation

increase cpu usage Denial of Service



91

Table 3: Defense actions advised for the threat actions

Defense Action Actuator Asset Defense Type

Monitor Processes suspicious HIDS Host Detection
network usage

Block utility that Application Host Mitigation
modify registry Firewall

Monitoring API calls associated HIDS Host Detection
with code injection

Train users to Administrator People Mitigation
identify spearphishing emails
Block traffic with known NIDS Network Mitigation

obfuscation tools signatures

Block unsigned AppleScript Gatekeeper Host Mitigation

Monitor command line activity HIDS Host Detection
for token manipulation

Block access to APPCertDLLs Application Host Mitigation
Firewall

Upgrade to Windows 8 Administrator Host Mitigation
or later

Monitor process activity HIDS Host Detection
times

Upgrade Application Administrator Host Mitigation
Deployment Software

Block access to system Application Host Mitigation
utilities Firewall

Monitor shims HIDS Host Detection

Monitor registry changes Administrator Host Detection



92

Defense Action Actuator Asset Defense Type

Monitor file access HIDS Host Detection
patterns

Monitor process network HIDS Host Detection
behavior patterns

Disable command history Administrator Host Mitigation
logging

Disable process executed Application Host Mitigation
by obfuscated file Firewall

Block acess to BITSAdmin Application Host Mitigation
for unknown processes Firewall

Block command-line interpreters Application Host Mitigation
Firewall

Disable removable media OS Host Mitigation

Disable Distributed Component Administrator Host Mitigation
Object Model

Monitor dylib manipulation OS Host Mitigation

Disable automatic DDE Administrator Host Mitigation
OLE execution

Monitor compression HIDS Host Detection
applications

white-list encryption Application Host Mitigation
applications Firewall

Monitor API calls OS Host Detection

Disable auto-run removable OS Host Mitigation
media

Block CMSTP.exe execution Application Host Mitigation
Firewall



93

Table 4: Command Mapping to Threat Actions

Native Command Threat Action ATT&CK
Command Attribute Technique

append - display directory File and Directory
list Discovery

arp /a display arp System Network
cache tables Configuration Discovery

at - schedule program Scheduled Task

del - delete file File Deletion

attrib h sets hidden Hidden Files
file attribute and Directories

bitsadmin /create /upload uploads data Exfiltration Over
C2 Channel

bitsadmin /transfer /Download downloads data Remote File Copy

cacls /g user grant user File Permissions
access rights Modification

certutil -dump dump configuration Data Staged
information

certutil -decodehex decode base64 Deobfuscate/Decode
encoded file Files or Information

certutil -decode decode hexadecimal Deobfuscate/Decode
encoded file Files or Information

cipher /e encrypts files Data Encrypted
or directories

cipher /d decrypts files Deobfuscate/Decode
or directories Files or Information

cmdkey /add adds a user name Valid Accounts
and password

cmstp /su install service profile CMSTP

compact /c compresses directory Data Compressed
or file

copy - copy files Data Staged

date - displays system System Time
date setting Discovery



94

Table 5: Command Mapping to Threat Actions

Native Command Threat Action ATT&CK
Command Attribute Technique

whoami - displays username System Owner
/User Discovery

systeminfo - displays OS information System Information
configuration Discovery

del - deletes files File Deletion

del /f deletes files File Deletion

del /s deletes files File Deletion

del /a deletes files File Deletion

erase - deletes files File Deletion

dir - display file list File and Directory
Discovery

diskshadow exec executes file Execution

echo - dumps file Data Staged

doskey /history displays all commands Bash History
stored in memory

finger -l displays information System Owner
about a user /User Discovery

ipconfig /all displays TCP/IP System Network
configuration Configuration Discovery

klist get get Kerberos tickets Kerberoasting

Mode - displays system status System Information
Discovery

net accounts - view logon restrictions Password Policy
Discovery

net group - displays group name Permission Groups
Discovery



95

Table 6: Command Mapping to Threat Actions

Native Command Threat Action ATT&CK
Command Attribute Technique

net session - displays session’s System Network
information Connections Discovery

net share - displays shared Network Share
resources information Discovery

net view - displays computers Remote System
remote list Discovery

netsh delete delete firewall Disabling Security
configuration Tools

netsh firewall show show firewall Security Software
state state Discovery

Qprocess - displays processes Process Discovery
information

Reg add adds subkey Modify Registry
entry registry

Reg query returns registry Query Registry
subkeys list

Taskkill - ends processes Disabling Security
Tools

Tasklist - displays running Process Discovery
processes


	Ghaith Husari PhD dissertation June 13
	Ghaith Husari-PhD-Title-Page

	Ghaith_PhD_Dissertation_draft__Expanding_

