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ABSTRACT

QITONG LI. Inverse source problems for elliptic and parabolic equations. (Under
the direction of DR. LOC NGUYEN)

In this dissertation, we solve two inverse problems. The first one is the inverse

source problem for the Helmholtz equation that governs the wave propagating in

anisotropic media. The second one is to recover the initial condition for parabolic

equations from the lateral Cauchy data.

Regarding to the first problem, we propose a numerical method to compute a source

function from the external measurement of the wave field generated by that source.

We derive an equation which is independent of the unknown source. However, this

equation is not a standard partial differential equation. A method to solve it is not yet

available. By truncating the Fourier series of the wave field with respect to a special

basis, we can approximate that equation by a system of elliptic partial differential

equations. The solution to this “approximate” system directly yields the desired source

function. We solve that system of elliptic equations by the quasi-reversibility method.

The convergence of this method is proved in this dissertation via a new Carleman

estimate.

Regarding to the second problem, we find the initial condition for parabolic equa-

tions from the Cauchy lateral data of their solutions. We employ a technique similar

to the one mentioned in the previous paragraph. We split our method into two stages.

In the first stage, we establish an additional equation for the solution to the parabolic

equation. Solving this equation is challenging. The theory to solve it is not yet

available. Hence, in the second stage, we approximate this equation by an elliptic

system. This system is solved by the quasi-reversibility method. The convergence

of the quasi-reversibility method as the measurement noise goes to zero is proved.

We present the implementation of our algorithm in details and verify our method by
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showing some numerical examples.

The convergence of the quasi-reversibility method in both problems are proved

using Carlerman estimates. These estimates are discussed in this dissertation.
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CHAPTER 1: INTRODUCTION

This dissertation aims to solve two inverse problems. The first one is to reconstruct

a source term from the bondary measurement of the wave field, governed by the

Helmholtz equation. The second one is to recover the initial condition for parabolic

equations from the lateral Cauchy data. These two inverse problems have great

real world applications in electroencephalography, biomedical imaging, brain imag-

ine, photoacoustic tomography, seismic imaging, determine the spatially distributed

temperature, and identify the pollution on the surface of rivers or lakes, and etc. [1–5]

In the first problem, we propose a numerical method to solve an inverse source

problem for the Helmholtz equation in the multi-frequency regime. This is the prob-

lem of determining the unknown source from external measurement of the wave field.

Some similar inverse source problems for Helmholtz-like PDEs were studied both

analytically and numerically in [1, 6]. In particular, in works [6, 7] uniqueness and

stability results were proven for a special case and it was also shown that the sta-

bility estimate improves when the frequency grows. The uniqueness of this inverse

source problem was proven in [8] for non constant coefficients. To the best of our

knowledge, past numerical methods for these problems are based on various methods

of the minimization of mismatched least squares functionals. Good quality numerical

solutions are obtained in [2, 8, 9] for high frequencies. However, convergence rates of

minimizers to the exact solution when the noise in the data tends to zero were not

studied in those papers. On the other hand, we refer here to the work [10], in which a

non-iterative method, based on a fresh idea, was proposed to solve the inverse source

problem for a homogenous medium. Uniqueness and stability results were proven

in [10] and good quality numerical results were presented. In this dissertation we
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solve the inverse source problem for inhomogeneous media. We introduce a new nu-

merical method based on the Quasi-Reversibility Method (QRM). The Lipschitz-like

convergence rate of the solution due to QRM to the exact solution, as long as the

noise in the data tends to zero, is proved.

The second inverse problem is a problem of recovering the initial condition of the

parabolic equation from the lateral Cauchy data. This problem has many real-world

applications ; for e.g., determine the spatially distributed temperature inside a solid

from the boundary measurement of the heat and heat flux in the time domain [11];

identify the pollution on the surface of the rivers or lakes [12]; effectively monitor the

heat conductive processes in steel industries, glass and polymer forming and nuclear

power station [13]. Due to its realistic applications, this problem has been studied

intensively. The uniqueness of such similar problems is well-known, see [14]. Also, it

can be reduced from the logarithmic stability results in [11,13]. The natural approach

to solve this problem is the optimal control method; that means, minimize a mismatch

functional. The proof of the convergence of the optimal control method to the true

solution to these inverse problems is challenging and is omitted. In this dissertation,

we introduce an approximate model, as a coupled linear system of elliptic partial

differential equations. Solution to this model is the vector of Fourier coefficients of

the solutions to the parabolic equation mentioned above. This approximate model

is solved by the quasi-reversibility method. We will prove the convergence for the

quasi-reversibility method as the measurement noise tends to 0. The convergent rate

is Lipschitz. We present the implementation of our algorithm in details and verify our

method by showing some numerical examples. More details can be found in section

1.2.
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1.1 The problem of reconstructing the source terms

Below x = (x1, ..., xn−1, z) ∈ Rn, n ≥ 2. Let Ω be the cube (−R,R)n ⊂ Rn for

some R ≥ 1, and

Γ+ = {x ∈ ∂Ω : z = R}. (1.1.1)

For i, j = 1, ..., n, let functions aij ∈ C1(Rn), bj ∈ C(Rn), c ∈ C(Rn) be such that:

1. For all x ∈ Rn

aij(x) = aji(x) 1 ≤ i, j ≤ n. (1.1.2)

2. There exist two constants µ1 and µ2 such that 0 < µ1 ≤ µ2 and

µ1|ξ|2 ≤
n∑

i,j=1

aij (x) ξiξj ≤ µ2|ξ|2 for all x ∈ Rn, ξ ∈ Rn. (1.1.3)

3. For all x ∈ Rn \ Ω

aij(x) =

 1 if i = j,

0 if i 6= j.
(1.1.4)

4. For all x ∈ Rn \ Ω,

bj(x) = c(x) = 0. (1.1.5)

We introduce the uniformly elliptic operator

Lu =
n∑

i,j=1

aij(x)uxixj +
n∑
i=1

bi(x)uxi + c(x)u for u ∈ H2(Rn). (1.1.6)

The principal part of this operator is

L0u =
n∑

i,j=1

aij(x)uxixj . (1.1.7)

Let k > 0 be the wave number and u = u(x, k) be the complex valued wave field
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of wave number k, generated by the source function which has the form of separable

variables g(k)f(x), where functions g ∈ C1[0,∞) and f ∈ C1 (Rn). The wave field

u(x, k) ∈ C2(Rn), k > 0, satisfies the equation

Lu+ k2n2(x)u(x, k) = g(k)f(x), x ∈ Rn (1.1.8)

and the Sommerfeld radiation condition

∂|x|u(x, k)− iku(x, k) = o(|x|(1−n)/2), |x| → ∞. (1.1.9)

Here, the function n ∈ C1(Rn) is the spatially distributed refractive index. We assume

that

n (x) = 1 for x ∈ Rn \ Ω. (1.1.10)

Condition (1.1.10) means that the refractive index of the background (air or vacuum)

is scaled to be 1. See [15] for the well-posedness of problem (1.1.8)–(1.1.9) in the

case L = ∆. The well-posedness for the general operator L is an assumption in this

dissertation. Given numbers k and k such that 0 < k < k < ∞ and assuming that

the function

g : [k, k]→ R

is known, we are interested in the following problem.

Problem 1 (Inverse source problem with Cauchy data). Reconstruct the functions

f(x), x ∈ Ω, given the following data

F (x, k) = u(x, k) x ∈ ∂Ω, k ∈ (k, k) (1.1.11)

and

G(x, k) = ∂νu(x, k) x ∈ Γ+, k ∈ (k, k) (1.1.12)
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where u is the solution of (1.1.8),(1.1.9).

Problem 1 is somewhat over-determined due to the additional data G(x, k) mea-

sured on Γ+ × [k, k]. We need this data for the convergence theorem. However, we

notice in our numerical experiments that our method works well without that ad-

ditional data. More precisely, in addition to Problem 1, we also solve the following

non-overdetermined problem.

Problem 2 (Inverse source problem with Dirichlet data). Reconstruct the functions

f(x), x ∈ Ω, given the following data

F (x, k) = u(x, k) x ∈ ∂Ω, k ∈ (k, k) (1.1.13)

where u is the solution of (1.1.8),(1.1.9).

The Dirichlet boundary data (1.1.13) implicitly contain the Neumann boundary

data for the function u on the entire boundary ∂Ω. Indeed, for each k ∈ (k, k) one

can uniquely solve equation (1.1.8) with the radiation condition (1.1.9) and boundary

condition (1.1.13) in the unbounded domain Rn \ Ω. The resulting solution provides

the Neumann boundary condition ∂νu(x, k) for x ∈ ∂Ω, k ∈ (k, k), where ν is the

unit outward normal vector at ∂Ω.

We propose a new numerical method which enables us to establish convergence

rate of minimizers of a certain functional of the Quasi-Reversibility Method (QRM)

to the exact solution, as long as the noise in the data tends to zero. Our method is

based on several ingredients:

1. Elimination of the unknown source function f (x) from the original PDE via

the differentiation with respect to k of the function u(x, k)/g (k) .

2. The use of a newly published orthonormal basis in L2
(
k, k
)
, see [16], to obtain

an overdetermined boundary value problem for a system of coupled elliptic
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PDEs of the second order.

3. The use of the QRM to find an approximate solution of that boundary value

problem.

4. The formulation and the proof of a new Carleman estimate for the operator L0

in (1.1.7).

5. In the case of Problem 1, the use of this Carleman estimate for establishing the

convergence rate of the minimizers of the QRM to the exact solution, as long

as the noise in the data tends to zero.

Recently a similar idea was applied to develop a new numerical method for the X-

ray computed tomography with a special case of incomplete data [17] as well as to the

development of a globally convergent numerical method for a 1D coefficient inverse

problem [18]. The above items 1, 4 and 5 have roots in the Bukhgeim-Klibanov

method, which was originally introduced in [19]. Even though there exists now a

significant number of publications on this method, we refer here only to a few of

them [20–23] since this thesis is not about that method. The original goal of [19] was

to prove uniqueness theorems for coefficient inverse problems. Nowadays, however,

ideas of this method are applied for constructions of numerical methods for coefficient

inverse problems and other ill-posed problems, see, e.g. [16,18,24,25].

Given N > 1, we approximate the wave field by its N th partial sum of the Fourier

series with respect to a special orthonormal basis. Consider the Fourier coefficients of

the wave field as new unknowns. We can derive from the partial differential equation

mentioned in the previous paragraph a system for such Fourier coefficients. Our

numerical reconstruction is now based on a numerical solver for this system. Since

this “cut-off" step is not rigorous, the obtained system is just an “approximate", rather

than exact, model. However, we still employ this technique since it is quite efficient

in solving many linear and nonlinear inverse problems [17,18,24–28].
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Note that the system for Problem 1 is over-determined since the boundary data

involves both Dirichlet and Neumann information of the wave field. The over-

determined boundary value problem for the system of PDEs for Problem 1 by the

quasi-reversibility method. This method is well-known to be a perfect tool to solve

overdetermined boundary value problems for PDEs. The quasi-reversibility method

was first introduced by Lattès and Lions [29] for numerical solutions of ill-posed prob-

lems for PDEs. It has been studied intensively since then, see e.g., [23, 30–36].

A survey on this method can be found in [37]. The solutions of the systems above

due to the quasi-reversibility method are called the regularized solutions. The conver-

gence of the regularized solutions to the true ones as the noise tends to 0 was proved

in [24] using Carleman estimates for the case when L = ∆ for spherical domains.

In this thesis, we extend the Carleman estimate for the case M is not necessarily

identical to Id and then use it to prove the convergence of the quasi-reversibility

method. In contrast, the well-posedness for Problem 2 is only studied numerically in

this dissertation.

We will prove a Carleman estimate in Section 2.2.1. We introduce the algorithms

and the quasi-reversibility method to solve Problems 1 and 2 in Section 3.1. In Section

3.3, we discuss about the convergence of the regularized solutions. Then, in Section

3.4, we describe the implementation leading to the numerical results and show several

numerical examples.

1.2 The problem to the parabolic equation

Let d ≥ 2 be the spatial dimension and Ω be a open and bounded domain in Rd.

Assume that ∂Ω is smooth. Let

A = (aij)
d
i,j=1 ∈ C2(Rd,Rd×d) (1.2.1)

satisfy the following conditions



8

1. A is symmetric; i.e, AT (x) = A(x) for all x ∈ Rd;

2. A is uniformly elliptic; i.e., there exists a positive number µ such that

A(x)ξ · ξ ≥ µ|ξ|2 for all x, ξ = (ξ1, . . . , ξd) ∈ Rd. (1.2.2)

Let b = (b1, b2, . . . , bd) ∈ C1(Rd,Rd) and c ∈ C1(Rd,R). Employ the operator L

(1.1.6) defined in the previous section, we have

Lv =
n∑

i,j=1

aij(x)vxixj +
n∑
i=1

bi(x)vxi + c(x)v for v ∈ C2(Rd). (1.2.3)

Consider the initial value problem

 ut(x, t) = Lu(x, t) x ∈ Rd, t > 0

u(x, 0) = f(x) x ∈ Rd
(1.2.4)

where f ∈ L2(Rd) represents an initial source with support compactly contained in

Ω. We refer the reader to the books [38,39]. The second main aim of this dissertation

is to solve the following problem.

Problem 3. Let T > 0. Given the lateral Cauchy boundary data

F (x, t) = u(x, t) and G(x, t) = ∂νu(x, t) (1.2.5)

for x ∈ ∂Ω, t ∈ [0, T ], determine the function f(x), x ∈ Ω.

Problem 3 is the problem of recovering the initial condition of the parabolic equa-

tion from the lateral Cauchy data. In this dissertation, we employ the technique de-

veloped by our own research group. The main point of this technique is to derive an

approximate model for the Fourier coefficients of the solution to the governing partial

differential equation. This technique was first introduced in [16]. This approximate
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model is a system of elliptic equations. It, together with Cauchy boundary data, is

solved by the quasi-reversibility method. This approach was used to solve an inverse

source problem for Helmholtz equation [40] and to inverse the Radon transform with

incomplete data [17]. Especially, Klibanov, Li and Zhang [41] used the convexification

method, a stronger version of this technique, to compute numerical solutions to the

nonlinear problem of electrical impedance tomography with restricted Dirichlet-to-

Neumann map data. It is remarkable mentioning that the numerical solutions in [41]

due to the convexification method are impressive.

As mentioned in the previous paragraph, we employ the quasi-reversibility method

to solve an approximate model for Fourier coefficients of the solution to (1.2.4). This

method was first introduced by Lattès and Lions [29]. It is used to computed nu-

merical solutions to ill-posed problems for partial differential equations. Due to its

strength, since then, the quasi-reversibility method attracts the great attention of

the scientific community see e.g., [23, 30–35, 42–44]. We refer the reader to [37] for a

survey on this method. The solution of the approximate model in the previous para-

graph due to the quasi-reversibility method is called regularized solution in the theory

of ill-posed problems [45]. A question arises immediately about the convergence of

the quasi-reversibility method: whether or not the regularized solutions obtained by

the quasi-reversibility method converges to the true solution of our system of partial

differential equations as the noise tends to 0. The affirmative answer to this question

is obtained using a general Carleman estimate. Moreover, we employ a Carleman esti-

mate (in section 2.2.2) to prove that the convergence rate is Lipschitz. It is important

mentioning that in the celebrate paper [19], Bukhgeim and Klibanov discovered the

use of Carleman estimate in studying inverse problems for all three main types of

partial differential equations.



CHAPTER 2: Preliminaries

2.1 An orthonormal basis in L2(a, b)

For each n > 1, define φn(k) = (k − k0)n−1 exp(k − k0), k ∈ (a, b), where k0 =

(a + b)/2. The sequence {φn}∞n=1 is complete in L2(a, b). Using the Gram-Schmidt

orthonormalization for the sequence {φn}∞n=1, we construct an orthonormal basis of

L2(a, b), named as {Ψn}∞n=1. For each n, the function Ψn(k) takes the form

Ψn(k) = Pn−1(k − k0) exp(k − k0)

where Pn−1 is a polynomial of the (n− 1)th order.

Fix a positive integer N . We approximate the function u = u(x, k), x ∈ Ω,

k ∈ (k, k) by its N th partial sum of its Fourier series

u(x, k) =
N∑
n=1

un(x)Ψn(k) (2.1.1)

where

un(x) =

∫ b

a

u(x, k)Ψn(k)dk.

In the truncation context (2.1.1), the partial derivative with respect to k of u(x, k) is

approximated by

∂ku(x, k) =
N∑
n=1

un(x)Ψ′n(k) (2.1.2)

for all x ∈ Ω and k ∈ (a, b). To reconstruct the wave field u(x, k), we compute un(x),

1 ≤ n ≤ N , via (2.1.1), (2.1.2) and the knowledge of Ψn and Ψ′n. We therefore require

that the function Ψ′n cannot be identically 0. The “sin and cosine" basis of the usual
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Fourier transform does not meet this requirement while it is not hard to verify that

the basis {Ψn}∞n=1 does.

It is important to mention that the basis {Ψn}∞n=1 was first introduced in [16].

Then, it is successfully used to solve nonlinear coefficient inverse problems [18, 24]

and the inverse X-ray tomographic problem with incomplete data [17].

The following result plays an important role in our analysis.

Proposition 2.1.1 (Theorem 2.1 [16]). For m, r ≥ 1, we have

dmr =

∫ k

k

Ψm(k)Ψ′r(k)dk =

 1 if r = m,

0 if r < m.
(2.1.3)

Consequently, let N > 1 be an integer. Then the N ×N matrix

DN = (dmr)
N
m,r=1 (2.1.4)

has determinant 1 and is invertible.

2.2 Carleman estimates

2.2.1 A Carleman estimate for general elliptic operators

The main aim of this section is to prove the following estimate 2.2.1.

For brevity, we assume that the function u in Theorem 2.2.1 is a real valued one.

Indeed, this theorem holds true for complex valued function u. This fact follows

directly from the theorem itself. Hence, in this section, we define the space

H2
0,# (Ω) =

{
w ∈ H2 (Ω) : w |∂Ω= 0, ∂νw |Γ+= 0

}
in (3.2.7) as the set of all real valued functions satisfying the same constraints. Recall

the operator the uniformly elliptic operator L0 in (1.1.7).
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Theorem 2.2.1 (Carleman estimate). Let the number b > R. Let the coefficients

aij (x) of the uniformly elliptic operator L0 defined in (1.1.7) satisfy conditions (1.1.2),

(1.1.3) and also aij ∈ C1(Ω). Suppose that

ain (x) = 0, for x ∈ ∂Ω \ {z = ±R} , i 6= n. (2.2.1)

Then there exist numbers

p0 = p0

(
µ1, µ2, b, n, R,max

ij
‖aij‖C1(Ω)

)
> 1

and

λ0 = λ0

(
µ1, µ2, b, n, R,max

ij
‖aij‖C1(Ω)

)
≥ 1,

both of which depend only on listed parameters, such that the following Carleman

estimate holds:

∫
Ω

(L0u)2 exp [2λ (z + b)p] dx≥C2λ

∫
Ω

[
(∇u)2 + λ2u2

]
exp [2λ (z + b)p] dx, (2.2.2)

for all λ ≥ λ0, p ≥ p0 and u ∈ H2
0,# (Ω). Here, the constant

C2 = C2

(
µ1, µ2, b, p, n, R,max

ij
‖aij‖C1(Ω)

)
> 0

depends only on listed parameters.

Proof. Below in this proof u ∈ C2
(
Ω
)
∩ H2

0,# (Ω) . The case u ∈ H2
0,# (Ω) can be

obtained via the density argument. In this proof C2 > 0 denotes different positive

numbers depending only on above listed parameters. On the other hand, everywhere

below C3 = C3

(
µ1, µ2, b, R,maxij ‖aij‖C1(Ω)

)
> 0 also denotes different positive

constants depending only on listed parameters but independent on p, unlike C2. Also,

in this proof O (1/λ) denotes different functions belonging to C1
(
Ω
)
and satisfying
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the estimate

‖O (1/λ)‖C1(Ω) ≤
C2

λ
for all λ, p ≥ 1. (2.2.3)

Below n−D vector functions Uk are such that

∫
∂Ω

Ur · νdσ ≥ 0 r ∈ {1, ..., 14} , (2.2.4)

where Ur · ν means the scalar product of vectors Ur and ν in Rn : recall that ν is the

outward looking unit normal vector on ∂Ω. In fact it follows from the proof that, the

integrals in (2.2.4) equal zero for r = 1, 2. But they are non-negative starting from

r = 3.

Introduce the new function v (x) = u (x) exp [λ (z + b)p] . Then

u (x) = v (x) exp [−λ (z + b)p] .

Using straightforward calculations, we obtain

uxixj = vxixj exp [−λ (z + b)p] for i, j = 1, . . . , n− 1,

uxiz =
(
vxiz − λp (z + b)p−1 vxi

)
exp [−λ (z + b)p] , for i, j = 1, . . . , n− 1,

and

uzz =
(
vzz − 2λp (z + b)p−1 vz + λ2p2 (z + b)2p−2 (1 +O (1/λ)) v

)
exp [−λ (z + b)p] .
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Hence, (1.1.7) implies that

(L0u) exp [λ (z + b)p]

=

[(
n−1∑
i,j=1

aijvxixj +
n−1∑
i=1

ainvxiz + annvzz

)
+
(
λ2p2 (z + b)2p−2 annv

)]

− 2λp (z + b)p−1 annvz − λp (z + b)p−1
n−1∑
i=1

ainvxi . (2.2.5)

Denote terms in the right hand side of (2.2.5) as y1, y2, y3, y4. More precisely,

y1 =
n−1∑
i,j=1

aijvxixj +
n−1∑
i=1

ainvxiz + annvzz, (2.2.6)

y2 = λ2p2 (z + b)2p−2 annv, (2.2.7)

y3 = −2λp (z + b)p−1 annvz, (2.2.8)

y4 = −λp (z + b)p−1
n−1∑
i=1

ainvxi . (2.2.9)

It follows from (2.2.5) that

(L0u)2 exp [2λ (z + b)p] (z + b)2−p = (y1 + y2 + y3 + y4)2 (z + b)2−p

= ((y1 + y2) + (y3 + y4))2 (z + b)2−p .

Thus,

(L0u)2 exp [2λ (z + b)p] (z + b)2−p

≥ 2y3 (y1 + y2) (z + b)2−p + 2y4 (y1 + y2) (z + b)2−p . (2.2.10)

We now estimate from the below each term in the right hand side of inequality (2.2.10)

separately. We do this in several steps.

Step 1. Estimate from the below of the quantity 2y1y3 (z + b)2−p . By (2.2.6) and
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(2.2.7), we have

2y1y3 (z + b)2−p

= −4λp (z + b) annvz

(
1

2

n−1∑
i,j=1

(
aijvxixj + aijvxjxi

)
+

n−1∑
i=1

ainvxiz + annvzz

)
. (2.2.11)

By the standard rules of the differentiation,

−2λp(z + b)annvz
(
aijvxixj + aijvxjxi

)
= −2λp

[
(z + b) annaij (vzvxi)xj − (z + b) annaijvzxjvxi − (z + b) (annaij)xj vzvxi

]
− 2λp

[
(z + b) annaij

(
vzvxj

)
xi
− (z + b) annaijvzxivxj − (z + b) (annaij)xi vzvxj

]
=
[
2λp (z + b) annaijvxivxj

]
z
− 2λp ((z + b) annaij)z vxivxj

+ (−2λp (z + b) annaijvzvxi)xj + 4λp (z + b) (annaij)xj vzvxi

+
(
−2λp (z + b) annaijvzvxj

)
xi

+ 4λp (z + b) (annaij)xi vzvxj .

Hence,

−2λp (z + b) annvz
(
aijvxixj + aijvxjxi

)
≥ −C3λp (∇v)2 + divU1, (2.2.12)

see (2.2.4) for U1.

Next, we estimate the term

−
n−1∑
i=1

4λp (z + b) annainvzvxiz

=
n−1∑
i=1

(
−2λp (z + b) annainv

2
z

)
xi

+
n−1∑
i=1

λp (z + b) (annain)xi v
2
z .

Hence,

−
n−1∑
i=1

4λp (z + b) annainvzvxiz ≥ −C3λpv
2
z + divU2. (2.2.13)
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Now, U2 · ν = 0 for x ∈ ∂Ω for two reasons: first, this is because vz (x) = 0 for

xi = ±R and, second, due to condition (2.2.1). Hence, due to the first reason, we do

not actually use here yet condition (2.2.1).

Next, we estimate the term −4λp (z + b) a2
nnvzvzz in (2.2.11),

−4λp (z + b) a2
nnvzvzz =

(
−2λp (z + b) a2

nnv
2
z

)
z

+ 2λp
(
(z + b) a2

nn

)
z
v2
z . (2.2.14)

Combining this with (2.2.11)-(2.2.14), we conclude that

2y1y3 (z + b)2−p ≥ −C3λp (∇v)2 + divU3, (2.2.15)

see (2.2.4) for U3. Next,

−C3λpv
2
z = −C3λp

(
u2
z + 2λp (z + b)p−1 uzu+ λ2p2 (z + b)2p−2 u2

)
exp [2λ (z + b)p]

= −C3λpu
2
z exp [2λ (z + b)p]− C3λ

3p3 (z + b)2p−2 u2 exp [2λ (z + b)p]

+
(
−C3λ

2p2 (z + b)p−1 u2 exp [2λ (z + b)p]
)
z

(2.2.16)

+ 2C3λ
3p3 (z + b)2p−2 (1 +O (1/λ))u2 exp [2λ (z + b)p]

≥ −C3λpu
2
z exp [2λ (z + b)p] + divU4,

see (2.2.4) for U4. It follows from (2.2.12)-(2.2.16) that

2y1y3 (z + b)2−p ≥ −C3λp (∇u)2 exp [2λ (z + b)p] + divU5, (2.2.17)

see (2.2.4) for U5.

Step 2. Estimate from the below the quantity 2y2y3 (z + b)2−p . By (2.2.7) and
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(2.2.8)

2y2y3 (z + b)2−p = −4λ3p3 (z + b)2p−1 a2
nnvzv

=
(
−2λ3p3 (z + b)2p−1 a2

nnv
2
)
z

+ 2λ3p3 (2p− 1) (z + b)2p−2 a2
nnv

2

+ 2λ3p3 (z + b)2p−1 (a2
nn

)
z
v2

≥ 2λ3p3 (2p− 1) (z + b)2p−2 µ2
1

(
1 +

(z + b) (a2
nn)z

(2p− 1)µ2
1

)
v2

+
(
−2λ3p3 (z + b)2p−1 a2

nnv
2
)
z

≥ C3λ
3p4 (z + b)2p−2 u2 exp [2λ (z + b)p] + divU6, (2.2.18)

see (2.2.4) for U6. There exists a sufficiently large number p0,

p0 = p0

(
µ1, µ2, b, n, R,max

ij
‖aij‖C1(Ω)

)
> 1

such that

1 +
(z + b) (a2

nn)z
(2p− 1)µ2

1

≥ 1

2
, for all p ≥ p0. (2.2.19)

Hence, (2.2.17)-(2.2.19) imply that for p ≥ p0

2 (y1 + y2) y3 (z + b)2−p ≥ −C3λp (∇u)2 exp [2λ (z + b)p]

+ C3λ
3p4 (z + b)2p−2 u2 exp [2λ (z + b)p] + divU7, (2.2.20)

see (2.2.4) for U7.

Step 3. Estimate 2y1y4 (z + b)2−p , see (2.2.10); i.e., estimate

(
−2λp (z + b)

n−1∑
k=1

aknvxk

)(
n−1∑
i,j=1

aijvxixj +
n−1∑
i=1

ainvxiz + annvzz

)
. (2.2.21)
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First,

−λp (z + b) aknvxk
(
aijvxixj + ajivxjxi

)
= −λp (z + b) aknaij

(
vxkvxixj + vxkvxjxi

)
=
(
−λp (z + b) aknaijvxkvxj

)
xi

+ λp (z + b) aknaijvxkxivxj

+ λp (z + b) (aknaij)xi vxkvxj + (−λp (z + b) aknaijvxkvxi)xj

+ λp (z + b) aknaijvxkxjvxi + λp (z + b) (aknaij)xj vxkvxi.

(2.2.22)

Next,

λp (z + b) aknaijvxkxivxj + λp (z + b) aknaijvxkxjvxi

=
(
λp (z + b) aknaijvxivxj

)
xk
− λp (z + b) (aknaij)xk vxivxj . (2.2.23)

Hence, it follows from (2.2.22) and (2.2.23) that

(
−2λp (z + b)

n−1∑
k=1

aknvxk

)(
n−1∑
i,j=1

aijvxixj

)
≥ −C3λp (∇v)2 + divU8. (2.2.24)

Considering in (2.2.22) and (2.2.23) explicit forms of coordinates of the vector function

U8 and using (2.2.1), we conclude that U7 satisfies condition (2.2.4).

We now estimate the term

(
−2λp (z + b)

n−1∑
k=1

aknvxk

)(
n−1∑
i=1

ainvxiz

)
. (2.2.25)

We have

(
−2λp (z + b)

n−1∑
k=1

aknvxk

)(
n−1∑
i=1

ainvxiz

)
= −λp (z + b)

n−1∑
i,k=1

aknain (vxkvxiz + vxivxkz) .
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We have:

− λp (z + b) aknain (vxkvxiz + vxivxkz)

= (−λp (z + b) aknainvxivxk)z + λp ((z + b) aknain)z vxivxk .

Hence, the term (2.2.25) can be estimated from the below as

(
−2λp (z + b)

n−1∑
k=1

aknvxk

)(
n−1∑
i=1

ainvxiz

)
≥ −C3λp (∇v)2 + divU9, (2.2.26)

where U9 satisfies (2.2.4).

We now estimate (
−2λp (z + b)

n−1∑
k=1

aknvxk

)
annvzz. (2.2.27)

We have

−2λp (z + b) aknannvxkvzz = (−2λp (z + b) aknannvxkvz)z + 2λp (z + b) aknannvxkzvz

+ 2λp ((z + b) aknann)z vxkvz

=
(
λp (z + b) aknannv

2
z

)
xk
− λp ((z + b) aknann)xk v

2
z

+ 2λp ((z + b) aknann)z vxkvz + (−2λp (z + b) aknannvxkvz)z .

Hence, the expression in (2.2.27) can be estimated as

(
−2λp (z + b)

n−1∑
k=1

aknvxk

)
annvzz ≥ −C3λp (∇v)2 + divU10, (2.2.28)

where (2.2.4) is valid for U10. Summing up (2.2.24), (2.2.26) and (2.2.28), we obtain

2y1y4 (z + b)2−p ≥ −C3λp (∇v)2 + divU11, (2.2.29)

where U11 satisfies (2.2.4).
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Step 4. Estimate 2y2y4 (z + b)2−p ,

2y2y4 (z + b)2−p = −2λ3p3 (z + b)2p−1
n−1∑
i=1

ainannvxiv

=

(
λ3p3 (z + b)2p−1

n−1∑
i=1

ainannv
2

)
xi

+ λ3p3 (z + b)2p−1

(
n−1∑
i=1

(ainann)xi

)
v2.

Comparing this with (2.2.10), (2.2.16), (2.2.19), (2.2.20) and (2.2.29), we obtain

(L0u)2 exp [2λ (z + b)p] (z + b)2−p ≥ −C3λp (∇u)2 exp [2λ (z + b)p]

+ C3λ
3p4 (z + b)2p−2 u2 exp [2λ (z + b)p] + divU12,∀p ≥ p0, (2.2.30)

where U12 satisfies (2.2.4).

In addition to the term divU12, the right hand side of (2.2.30) has one negative and

one positive term. But,except of divergence terms (div), one must have only positive

terms in the right hand side of any Carleman estimate. Therefore, we perform now

Step 5.
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Step 5. Estimate from the below − (L0u)u exp [2λ (z + b)p] . We have

− (L0u)u exp [2λ (z + b)p] = −
n−1∑
i,j=1

aijuxixju exp [2λ (z + b)p]

−
n−1∑
i=1

ainuxizu exp [2λ (z + b)p]− annuzzu exp [2λ (z + b)p]

=
n−1∑
i,j=1

(
−aijuxju exp [2λ (z + b)p]

)
xi

+
n−1∑
i,j=1

aijuxiuxj exp [2λ (z + b)p]

+
n−1∑
i,j=1

(aij)xi uxju exp [2λ (z + b)p] +
n−1∑
i=1

(−ainuzu exp [2λ (z + b)p])xi

+
n−1∑
i=1

(ain)xi uzu exp [2λ (z + b)p] +
n−1∑
i=1

ainuzuxi exp [2λ (z + b)p]

+ (−annuzu exp [2λ (z + b)p])z + annu
2
z exp [2λ (z + b)p]

+ 2λp (z + b)p−1 annuzu exp [2λ (z + b)p] + (ann)z uzu exp [2λ (z + b)p] . (2.2.31)

Next,

2λp (z + b)p−1 annuzu exp [2λ (z + b)p] =
(
λp (z + b)p−1 annu

2 exp [2λ (z + b)p]
)
z

− 2λ2p2 (z + b)2p−2 annu
2 (1 +O (1/λ)) exp [2λ (z + b)p] . (2.2.32)

Combining (2.2.31) with (2.2.32) and taking into account (1.1.3) as well as inequalities

like uxiu ≥ −u2
xi
/ (2λ)− λu2/2, we obtain for λ ≥ λ0

− (L0u)u exp [2λ (z + b)p] ≥ µ1

2
(∇u)2 exp [2λ (z + b)p]

− 3λ2p2 (z + b)2p−2 annu
2 exp [2λ (z + b)p] + divU13, (2.2.33)

see (2.2.4) for U13.

Step 6. This is the final step. Multiply estimate (2.2.33) by 4C3λp/µ1 and sum
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up with (2.2.30). We obtain

− 4C3λpµ
−1
1 (L0u)u exp [2λ (z + b)p] + (L0u)2 exp [2λ (z + b)p] (z + b)2−p

≥ C3λp (∇u)2 exp [2λ (z + b)p]

+ C3λ
3p4 (z + b)2p−2

(
1− 12ann

pµ1

)
u2 exp [2λ (z + b)p] + divU14, (2.2.34)

see (2.2.4) for U14. We can choose p0 so large that, in addition to (2.2.19),

1− 12ann (x)

pµ1

≥ 1

2
,∀p ≥ p0. (2.2.35)

We estimate the left hand side of (2.2.34) from the above as

− 4C3λpµ
−1
1 (L0u)u exp [2λ (z + b)p] + (L0u)2 exp [2λ (z + b)p] (z + b)2−p

≤ C2 (L0u)2 exp [2λ (z + b)p] + C2λ
2u2 exp [2λ (z + b)p] .

Combining this with the right hand side of (2.2.34), integrating the obtained pointwise

inequality over the domain Ω and taking into account (2.2.4), (2.2.35) and Gauss’

formula, we obtain the target estimate (2.2.2).

Corollary 2.2.1. Assume that conditions of Theorem 2.2.1 are satisfied. Since we

should have in Theorem 2.2.1 b > R, we choose in (2.2.2) b = 3R. Let p0 > 1

and λ0 > 1 be the numbers of Theorem 2.2.1. Consider the N−D complex valued

vector functions W (x) ∈ H2
0,# (Ω) . Then there exists a sufficiently large number λ1,

depending only on µ1, µ2, n, R, maxij, ‖aij‖C1(Ω), maxj ‖bj‖C(Ω), ‖c‖C(Ω) , ‖n‖C(Ω)

k, k, N such that the following Carleman estimate holds

∫
Ω

∣∣L (W (x)) +D−1
N SNn

2(x)W (x)
∣∣2 exp [2λ (z + 3R)p0 ] dx

≥C3λ

∫
Ω

(
|∇W |2 + λ2 |W |2

)
exp [2λ (z + 3R)p0 ] dx (2.2.36)
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for all λ ≥ λ1 and W in H2
0,# (Ω) .

This Corollary follows immediately from Theorem 2.2.1 as well as from the well

known fact (see, e.g. lemma 2.1 in [23]) that the Carleman estimate depends only on

the principal part of a PDE operator while the lower order terms of this operator can

be absorbed in this estimate.

2.2.2 A Carleman estimate on parabolic operators

Let the matrix A be as in (1.2.1). The main aim of this section is to prove a Car-

leman estimate in a general domain Ω. Similar versions of Carleman estimate can be

found in [41, Theorem 3.1] and [46, Lemma 5] when Ω is an annulus and [40, The-

orem 4.1] and when Ω is a cube. In this dissertation, we will use the following esti-

mate to derive the convergence of the quasi-reversibility method. It can be deduced

from [14, Lemma 3, Chapter 4, §1].

Without lost of generality, we can assume that

Ω ⊂

{
x = (x1, x2, . . . , xd) : 0 < x1 +X−2

d∑
i=2

x2
i < 1

}
(2.2.37)

for some 0 < X < 1. Define the function

ψ(x) = x1 +
1

2X2

d∑
i=1

x2
i + α, 0 < α < 1/2. (2.2.38)

Using Lemma 3 in [30, Chapter 4, §1] for the function u ∈ C2(Ω) that is independent

of the time variable, we can find a constant σ0 and a constant σ1 (depending only

on α and the entries aij, 1 ≤ i, j ≤ d, of the matrix A) such that for all λ ≥ σ0 and

p > σ1

λp

X2
e2λψ−p(x)|∇u|2 + λ3p4ψ−2p−2e2λψ−p(x)|u|2 ≤ −Cλp

X2
e2λψ−p(x)uDiv(A∇u)

+ Cψp+2e2λψ−p(x)|Div(A∇u)|2 + DivU (2.2.39)
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for all x ∈ Ω where the vector U satisfies

|U | ≤ Ce2λψ−p(x)

(
λp

X
|∇u|2 +

λ3p3

X3
ψ−2p−2u2

)
. (2.2.40)

Applying (2.2.39) and (2.2.40), we have the lemma.

Lemma 2.2.1 (Carleman estimate). Let u ∈ C2(Ω) satisfying

u|∂Ω = A∇u · ν = 0 on ∂Ω (2.2.41)

where ν the outward unit normal vector of ∂Ω. Then, there exist a positive number

σ0 and σ1, depending only on α and A, such that

λp

X2

∫
Ω

e2λψ−p(x)|∇u|2dx + λ3p4

∫
Ω

ψ−2p−2e2λψ−p(x)|u|2dx

≤ C

∫
Ω

ψp+2e2λψ−p(x)|Div(A∇u)|2dx (2.2.42)

for λ > σ0 and p > σ1.

Proof. We claim that

∇u(x) = 0 for all x ∈ ∂Ω. (2.2.43)

In fact, assume that ∇u(x) 6= 0 at some points x ∈ ∂Ω. Since u(x) = 0 on ∂Ω, see

(2.2.41), ∇u(x) · τ(x) = 0 where τ(x) is any tangent vector to ∂Ω at the point x.

Thus, ∇u(x) is perpendicular to ∂Ω at x. In other words, ∇u(x) = θν(x) for some

nonzero scalar θ. We have 0 = A(x)∇u(x) · ν(x) = θA(x)ν(x) · ν(x), which is a

contradiction to (1.2.2).
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Integrating both sides of (2.2.39), we have

λp

X2

∫
Ω

e2λψ−p(x)|∇u|2dx + λ3p4

∫
Ω

ψ−2p−2e2λψ−p(x)|u|2dx

≤ −Cλp
X2

∫
Ω

e2λψ−p(x)uDiv(A∇u)dx + C

∫
Ω

ψp+2e2λψ−p(x)|Div(A∇u)|2dx. (2.2.44)

Here, the term
∫

Ω

DivUdx is dropped because it vanishes due the the divergence

theorem, (2.2.41) and (2.2.43) Using the inequality |ab| ≤ λpa2 + 1
2λp
b2

− Cλp

X2

∫
Ω

e2λψ−p(x)uDiv(A∇u)dx

≤ Cλ2p2

X2

∫
Ω

e2λψ−p(x)u2dx +
C

X2

∫
Ω

e2λψ−p(x)|Div(A∇u)|2dx. (2.2.45)

Combining (2.2.44) and (2.2.45), we obtain

λp

X2

∫
Ω

e2λψ−p(x)|∇u|2dx + λ3p4

∫
Ω

ψ−2p−2e2λψ−p(x)|u|2dx

≤ C

∫
Ω

ψp+2e2λψ−p(x)|Div(A∇u)|2dx.

The proof is complete.



CHAPTER 3: THE INVERSE SOURCE PROBLEM FOR THE HELMHOLTZ

EQUATION

3.1 The numerical method to solve Problems 1 and 2

Assume that in (1.1.8) g(k) 6= 0, ∀k ∈ [k, k]. Introduce the function v(x, k),

v(x, k) =
u(x, k)

g(k)
, x ∈ Ω, k ∈ [k, k]. (3.1.1)

Let L be the elliptic operator defined in (1.1.6). By (1.1.8)

L (v(x, k)) + k2n2 (x) v(x, k) = f(x), x ∈ Ω, k ∈ [k, k]. (3.1.2)

To eliminate the unknown right hand side f(x) from equation (3.1.2), we differentiate

it with respect to k and obtain

L (∂kv(x, k)) + k2n2(x)∂kv(x, k) + 2kn2(x)v(x, k) = 0, x ∈ Ω, k ∈ [k, k]. (3.1.3)

It follows from (1.1.11), (1.1.12) and (3.1.1) that in the case of Problem 1 the function

v satisfies the following boundary conditions

v(x, k) =
F (x, k)

g(k)
, x ∈ ∂Ω, k ∈ [k, k], (3.1.4)

∂zv(x, k) =
G(x, k)

g(k)
, x ∈ Γ+, k ∈ [k, k]. (3.1.5)

In Problem 2 only condition (3.1.4) holds.

Fix an integer N ≥ 1. Recalling the orthonormal basis {Ψr}∞r=1 of L2(k, k) in
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Section 2.1, we approximate

v(x, k) =
N∑
m=1

vm(x)Ψm(k) x ∈ Ω, k ∈ [k, k], (3.1.6)

∂kv(x, k) =
N∑
m=1

vm(x)Ψ′m(k) x ∈ Ω, k ∈ [k, k], (3.1.7)

where

vm(x) =

∫ k

k

v(x, k)Ψm(k)dk x ∈ Ω,m = 1, 2, . . . , N. (3.1.8)

Remark 3.1.1. Similarly with [16–18,24], we assume here that the truncated Fourier

series (3.1.6) satisfies equation (3.1.2) and that truncated Fourier series (3.1.6) and

(3.1.7), taken together, satisfy equation (3.1.3). This is our approximate mathe-

matical model. Since we work with a numerical method, we accept this approxima-

tion scheme. Our main goal below is to find numerically Fourier coefficients vm(x),

m = 1, 2, . . . , N, of v(x, k), see (3.1.8). If those Fourier coefficients are approxi-

mated, the target unknown function f(x) can be approximated as the right hand side

of (3.1.2).

Remark 3.1.2. The number N is chosen numerically. Proving convergence of our

method as N → ∞ is very challenging and such proofs are very rare in the field of

ill-posed problems. Indeed, the intrinsic reason of this is the ill-posedness of those

problems. Therefore, we omit the proof of convergence of our method as N → ∞.

Nevertheless, a rich numerical experience of a number of previous publications, see,

e.g. [16–18,24–28] indicates that this truncation technique still leads to good numerical

results.

We now compare numerically the true function v(x, k) with its approximation

(3.1.6). and observe that their difference is small, see Figure 3.1 for the illustration.
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(a) The real parts of the true and test
functions

(b) The imaginary parts of the true and
test functions

Figure 3.1: The comparison of the true function v(·, k = 1.5) =
∑∞

m=1 um(x)Ψm(k)
and the test function

∑10
m=1 vm(·)Ψn(k) in Test 5, see Section 2.2.1. In this test, we

consider the case n = 2 and Ω = (−2, 2)2. On Ω, we arrange a uniform grid of
121 × 121 points in Ω. Those points are numbered from 1 to 1212. In (a) and (b),
we respectively show the real and imaginary parts of the two functions at 300 points
numbered from 7170 to 7470. It is evident that reconstructing the first 10 terms of
the Fourier coefficients of v(x, k) is sufficient to solve our inverse source problems.

Plugging (3.1.6) and (3.1.7) in equation (3.1.3), we obtain

N∑
r=1

(Lvr (x)) Ψ′r(k) +
N∑
r=1

(
n2(x)vr (x)

) (
k2Ψ′r(k) + 2kΨr(k)

)
= 0, x ∈ Ω. (3.1.9)

For each m = 1, ..., N , we multiply both sides of (3.1.9) by the function Ψm(k) and

then integrate the resulting equation with respect to k ∈
(
k, k
)
. We obtain

N∑
r=1

(Lvr (x))

∫ k

k

Ψ′r(k)Ψm(k)dk

+
N∑
r=1

(
n2(x)vr (x)

) ∫ k

k

(
k2Ψ′r(k) + 2kΨr(k)

)
Ψm(k)dk = 0 (3.1.10)

for all x ∈ Ω, m = 1, 2, . . . , N. Denote

V (x) = (v1(x), v2(x), · · · , vN(x))T x ∈ Ω, (3.1.11)
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SN = (smr)
N
m,r=1 , with smr =

∫ k

k

(
k2Ψ′r(k) + 2kΨr(k)

)
Ψm(k)dk. (3.1.12)

Then, (2.1.4), (3.1.10)-(3.1.12) imply

DNL (V (x)) + SNn
2(x)V (x) = 0, x ∈ Ω, (3.1.13)

Denote

F̃ (x) =

(∫ k

k

F (x, k)

g(k)
Ψ1(k)dk, . . . ,

∫ k

k

F (x, k)

g(k)
ΨN(k)dk

)T

, x ∈ ∂Ω, (3.1.14)

G̃(x) =

(∫ k

k

G(x, k)

g(k)
Ψ1(k)dk, . . . ,

∫ k

k

G(x, k)

g(k)
ΨN(k)dk

)T

, x ∈ Γ+. (3.1.15)

It follows from (3.1.4) and (3.1.5) that in the case of 1 the vector function V (x)

satisfies the following two boundary conditions:

V (x) = F̃ (x), x ∈ ∂Ω, (3.1.16)

and

∂νV (x) = G̃(x), x ∈ Γ+. (3.1.17)

And in the case of 2 only boundary condition (3.1.16) takes place.

These arguments lead to Algorithms 1 and 2 to solve Problems 1 and 2 respectively.

Algorithm 1 The procedure to solve Problem 1
1: Choose a number N . Construct the functions Ψm, 1 ≤ m ≤ N, in Section 2.1

and compute the matrix DN as in Proposition 2.1.1.
2: Calculate the boundary data F̃ and G̃ for the vector valued function V via

(3.1.14) and (3.1.15) respectively.
3: Find an approximate solution of the system (3.1.13), (3.1.16) and (3.1.17) via

the quasi-reversibility method.
4: Having V = (v1, v2, . . . , vN)T in hand, calculate vcomp(x, k) via (3.1.8).
5: Compute the reconstructed function f by (3.1.2).
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Algorithm 2 The procedure to solve Problem 2
1: Choose a number N . Construct the functions Ψm, 1 ≤ m ≤ N, in Section 2.1

and compute the matrix DN as in Proposition 2.1.1.
2: Calculate the boundary data F̃ for the vector valued function V via (3.1.14).
3: Solve the elliptic Dirichlet boundary value problem (3.1.13), (3.1.16).
4: Having V = (v1, v2, . . . , vN)T in hand, calculate vcomp(x, k) via (3.1.8).
5: Compute the reconstructed function f by (3.1.2).

In the next section, we briefly discuss the QRM used in Step 3 of Algorithm 1. We

mention that the QRM is an efficient approach to solve partial differential equations

with over-determined boundary data.

3.2 The quasi-reversibility method

In this section, we present the QRM for the numerical solution of Problem 1. By

saying below that a vector valued function belongs to a Hilbert space, we mean that

each of its components belongs to this space. The norm of this vector valued function

in that Hilbert space is naturally defined as the square root of the sum of squares of

norms of components. Recall that by Proposition 2.1.1 the matrix DN is invertible.

Therefore, by (3.1.13), (3.1.16) and (3.1.17) we need to find an approximate solution

of the following over-determined boundary value problem with respect to the vector

function V (x)

L (V (x)) +D−1
N SNn

2(x)V (x) = 0, x ∈ Ω, (3.2.1)

V (x) = F̃ (x), x ∈ ∂Ω, (3.2.2)

∂νV (x) = G̃(x), x ∈ Γ+. (3.2.3)

To do this, we consider the following minimization problem:

Problem 4 (Minimization Problem). Let ε ∈ (0, 1)
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be the regularization parameter. Minimize the functional Jε(V ),

Jε(V ) =

∫
Ω

∣∣L (V (x)) +D−1
N SNn

2(x)V (x)
∣∣2 dx+ε‖V ‖2

H2(Ω), (3.2.4)

on the set of N−D vector valued functions V ∈ H2 (Ω) satisfying boundary conditions

(3.2.2) and (3.2.3).

We assume that the set of vector functions indicated in the formulation of this

problem is non empty; i.e., we assume that there exists anN−D vector valued function

Φ such that the set

{
Φ ∈ H2 (Ω) ,Φ |∂Ω= F̃ (x), ∂νΦ |Γ+= G̃(x)

}
. (3.2.5)

Theorem 3.2.1. Assume that there exists an N−D vector valued function Φ satis-

fying (3.2.5). Then for each ε > 0, there exists a unique minimizer Vmin,ε ∈ H2(Ω) of

the functional Jε in (3.2.4) that satisfies boundary conditions (3.2.2) and (3.2.3).

Proof. The proof of Theorem 3.2.1 is based on the variational principle and Riesz

theorem. Let (·, ·) and [·, ·] denote scalar products in Hilbert spaces L2 (Ω) and

H2 (Ω) respectively of N−D vector valued functions. For any vector valued function

V ∈ H2 (Ω) satisfying boundary conditions (3.2.2) and (3.2.3), set

W (x) = V (x)− Φ(x), x ∈ Ω. (3.2.6)

By (3.2.5) W ∈ H2
0,# (Ω) , where

H2
0,# (Ω) =

{
w ∈ H2 (Ω) : w |∂Ω= 0, ∂νw |Γ+= 0

}
. (3.2.7)

Clearly H2
0,# (Ω) is a closed subspace of the space H2 (Ω) . Let Vmin,ε be any minimizer
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of the functional (3.2.4), if it exists. Denote

Wmin,ε = Vmin,ε − Φ. (3.2.8)

By the variational principle the following identity holds

(
L (Wmin,ε (x)) +D−1

N SNn
2(x)Wmin,ε(x), L (P (x)) +D−1

N SNn
2(x)P (x)

)
+ ε [Wmin,ε, P ] =

(
L (Φ (x)) +D−1

N SNn
2(x)Φ(x), L (P (x)) +D−1

N SNn
2(x)P (x)

)
+ ε [Φ, P ] , (3.2.9)

for all P ∈ H2
0,#(Ω). The left hand side of the identity (3.2.9) generates a new scalar

product {·, ·} in the space H2
0,# (Ω) . The corresponding norm {·} is equivalent to the

standard norm ‖·‖H2(Ω) . Hence, (3.2.9) is equivalent to

{Wmin,ε, P} =
(
L (Φ (x)) +D−1

N SNn
2(x)Φ(x), L (P (x)) +D−1

N SNn
2(x)P (x)

)
+ ε [Φ, P ] (3.2.10)

for all P ∈ H2
0,# (Ω) . On the other hand, the right hand side of (3.2.10) can be

estimated as

∣∣(L (Φ (x)) +D−1
N SNn

2(x)Φ(x), L (P (x)) +D−1
N SNn

2(x)P (x)
)

+ ε [Φ, P ]
∣∣

≤ C1 {Φ} {P} ,

where the number C1 = C1

(
L,D−1

N SN ,n
2, ε
)
> 0 depends only on listed parameters.

Hence, the right hand side of (3.2.10) can be considered as a bounded linear functional

lΦ (P ) : H2
0 (Ω) → C. By Riesz theorem there exists unique vector function Q ∈
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H2
0,# (Ω) such that

{Wmin,ε, P} = {Q,P} , for all P ∈ H2
0,# (Ω) ,

directly yielding the identity (3.2.10). As a consequence, Wmin,ε exists and; indeed,

Wmin,ε = Q. Finally, by (3.2.8) Vmin,ε = Wmin,ε + Φ.

The minimizer Vmin,ε of Jε, subject to the constraints (3.2.2) and (3.2.3) is called

the regularized solution of the problem (3.2.1), (3.2.2) and (3.2.3). In the theory

of Ill-Posed Problems, it is important to prove convergence of regularized solutions

to the true one as the noise in the data tends to zero [45]. In the next section, we

establish a Carleman estimate for general elliptic operators. This estimate is essential

for the proof of that convergence result in our problem, see Section 2.2.1.

3.3 Convergence Analysis

While Theorem 3.2.1 ensures the existence and uniqueness of the solution of the

Minimization Problem (Problem 4), it does not claim convergence of minimizers, i.e.

regularized solutions, to the exact solution as noise in the data tends to zero. At the

same time such a convergence result is obviously important. However, this theorem is

much harder to prove than Theorem 3.2.1. Indeed, while only the variational principle

and Riesz theorem are used in the proof of Theorem 3.2.1, a different apparatus

is required in the convergence analysis. This apparatus is based on the Carleman

estimate of Theorem 2.2.1. Then we establish the convergence rate of minimizers.

Following one of the main principles of the regularization theory [45], we assume

now that vector functions F̃ (x) and G̃(x) in (3.2.2) and (3.2.3) are given with a noise.

More precisely, let Φ (x) ∈ H2 (Ω) be the function defined in (3.2.5). We assume that

this is given with a noise of the level δ ∈ (0, 1) , i.e.

‖Φ∗ − Φ‖H2(Ω) ≤ δ, (3.3.1)
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where the vector function Φ∗ ∈ H2 (Ω) corresponds to the noiseless data. In the case

of noiseless data, we assume the existence of the solution V ∗ ∈ H2 (Ω) of the following

analog of the problem (3.2.1)-(3.2.3):

L (V ∗ (x)) +D−1
N SNn

2(x)V ∗(x) = 0, x ∈ Ω, (3.3.2)

V ∗ (x) = F̃ ∗(x), x ∈ ∂Ω, (3.3.3)

∂νV
∗ (x) = G̃∗(x), x ∈ Γ+. (3.3.4)

Similarly to (3.2.5), we assume the existence of the vector valued function function

Φ∗ such that

Φ∗ ∈ H2 (Ω) ,Φ∗ (x) |∂Ω= F̃ ∗(x), ∂νΦ
∗ (x) |Γ+= G̃∗(x). (3.3.5)

Similarly to (3.2.6), let

W ∗ = V ∗ − Φ∗. (3.3.6)

Then (3.2.7), (3.3.5) and (3.3.6) imply that W ∗ ∈ H2
0 (Ω) . Also, using (3.3.2)-(3.3.5),

we obtain

L (W ∗ (x)) +D−1
N SNn

2(x) (W ∗ (x))

= −L (Φ∗ (x))−D−1
N SNn

2(x) (Φ∗ (x)) , x ∈ Ω. (3.3.7)

Theorem 3.3.1 (The convergence rate). Assume that conditions of Theorem 3.2.1

as well as conditions (3.3.1)-(3.3.6) hold. Let λ1 be the number of Corollary 2.2.1.

Define the number η as

η = 2 (4R)p0 . (3.3.8)
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Assume that the number δ0 ∈ (0, 1) is so small that ln δ
−1/η
0 > λ1. Let δ ∈ (0, δ0) . Set

ε = ε (δ) = δ2. Let Vmin,ε(δ) ∈ H2 (Ω) be the unique minimizer of the functional (3.2.4)

which is found in Theorem 3.2.1. Then the following convergence rate of regularized

solutions holds

∥∥Vmin,ε(δ) − V ∗
∥∥
H1(Ω)

≤ C4

(
1 + ‖W ∗‖H2(Ω)

)√
δ, (3.3.9)

where the C4 > 0 depends on µ1, µ2, n, R, maxij, ‖aij‖C1(Ω), maxj ‖bj‖C(Ω), ‖c‖C(Ω) ,

‖n‖C(Ω) k, k, N .

Proof. We use in this proof the Carleman estimate of Corollary 2.2.1. Similarly

with (3.2.8) let Vmin,ε(δ) − Φ = Wmin,ε(δ) ∈ H2
0,# (Ω). We now rewrite (3.2.9) as

(
L
(
Wmin,ε(δ) (x)

)
+D−1

N SNn
2(x)Wmin,ε(δ)(x), L (P (x)) +D−1

N SNn
2(x)P (x)

)
+ε (δ)

[
Wmin,ε(δ), P

]
=
(
L (Φ (x)) +D−1

N SNn
2(x)Φ(x), L (P (x)) +D−1

N SNn
2(x)P (x)

)
+ ε (δ) [Φ, P ] , (3.3.10)

for all P ∈ H2
0,#(Ω). Also, we rewrite (3.3.7) in an equivalent form,

(
L (W ∗ (x)) +D−1

N SNn
2(x)W ∗(x), L (P (x)) +D−1

N SNn
2(x)P (x)

)
+ ε (δ) [W ∗, P ]

=
(
L (Φ∗ (x)) +D−1

N SNn
2(x)Φ∗(x), L (P (x)) +D−1

N SNn
2(x)P (x)

)
+ ε (δ) [W ∗, P ] , (3.3.11)

for all P ∈ H2
0,#(Ω). Denote

W̃ = Wmin,ε(δ) −W ∗ ∈ H2
0,# (Ω) , Φ̃ = Φ− Φ∗.
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Subtracting (3.3.11) from (3.3.10), we obtain

((
L
(
W̃ (x)

)
+D−1

N SNn
2(x)W̃ (x), L (P (x)) +D−1

N SNn
2(x)P (x)

)
+ ε (δ)

[
W̃ , P

])
=
(
L
(

Φ̃ (x)
)

+D−1
N SNn

2(x)Φ̃(x), L (P (x)) +D−1
N SNn

2(x)P (x)
)

+ ε (δ) [W ∗, P ] ,

for all P ∈ H2
0,#(Ω). Setting here P = W̃ and using Cauchy-Schwarz inequality and

(3.3.1), we obtain

∫
Ω

∣∣∣L(W̃ (x)
)

+D−1
N SNn

2(x)W̃ (x)
∣∣∣2 dx ≤ C4δ

2
(

1 + ‖W ∗‖2
H2(Ω)

)
. (3.3.12)

We now want to apply Corollary 2.2.1. We have

∫
Ω

∣∣∣L(W̃ (x)
)

+D−1
N SNn

2(x)W̃ (x)
∣∣∣2 dx

=

∫
Ω

∣∣∣L(W̃ (x)
)

+D−1
N SNn

2(x)W̃ (x)
∣∣∣2 exp (2λ (z + 3R)p0) exp (−2λ (z + 3R)p0) dx

≥ exp (−2λ (4R)p0)

∫
Ω

∣∣∣L(W̃ (x)
)

+D−1
N SNn

2(x)W̃ (x)
∣∣∣2 exp (2λ (z + 3R)p0) dx.

Substituting this into (3.3.12), we obtain

∫
Ω

∣∣∣L(W̃ (x)
)

+D−1
N SNn

2(x)W̃ (x)
∣∣∣2 exp (2λ (z + 3R)p0) dx

≤C4δ
2
(

1 + ‖W ∗‖2
H2(Ω)

)
exp (2λ (4R)p0) . (3.3.13)

By Corollary 2.2.1 the left hand side of inequality (3.3.13) can be estimated for any
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λ ≥ λ1 as

∫
Ω

∣∣L(W̃ (x)
)

+D−1
N SNn

2(x)W̃ (x)
∣∣2 exp (2λ (z + 3R)p0) dx

≥C3λ

∫
Ω

(∣∣∣∇W̃ ∣∣∣2 + λ2
∣∣∣W̃ ∣∣∣2) exp [2λ (z + 3R)p0 ] dx

≥ C4 exp [2λ (2R)p0 ] ‖W‖2
H1(Ω) .

Comparing this with (3.3.13), we obtain

‖W̃‖2
H1(Ω) ≤ C4δ

2
(

1 + ‖W ∗‖2
H2(Ω)

)
exp (2λ (4R)p0) . (3.3.14)

Set ε = δ2. Next, choose λ = λ (δ) such that exp (2λ (4R)p0) = 1/δ. Hence,

λ = λ (δ) = ln δ−1/η, (3.3.15)

where the number η is defined in (3.3.8). This choice is possible since δ ∈ (0, δ0) and

ln δ
−1/η
0 > λ1, implying that λ (δ) > λ1. Thus, (3.3.14) and (3.3.15) imply that

‖W̃‖H1(Ω) ≤ C4

(
1 + ‖W ∗‖H2(Ω)

)√
δ. (3.3.16)

Next, using triangle inequality, (3.3.16) and (3.3.1), we obtain

C4

(
1 + ‖W ∗‖H2(Ω)

)√
δ ≥ ‖W̃‖H1(Ω) =

∥∥(Vmin,ε(δ) − V ∗
)
− (Φ− Φ∗)

∥∥
H1(Ω)

≥
∥∥Vmin,ε(δ) − V ∗

∥∥
H1(Ω)

− ‖Φ− Φ∗‖H1(Ω) ≥
∥∥Vmin,ε(δ) − V ∗

∥∥
H1(Ω)

− δ.

Hence,

∥∥Vmin,ε(δ) − V ∗
∥∥
H1(Ω)

≤ δ + C4

(
1 + ‖W ∗‖H2(Ω)

)√
δ ≤ C4

(
1 + ‖W ∗‖H2(Ω)

)√
δ.

(3.3.17)
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Numbers C4 in middle and right inequalities (3.3.17) are different and depend only

on µ1, µ2, n, R, maxij, ‖aij‖C1(Ω), maxj ‖bj‖C(Ω), ‖c‖C(Ω) , ‖n‖C(Ω) k, k, N . The

target estimate (3.3.9) of this theorem follows from (3.3.17) immediately. �

3.4 Numerical illustrations

In this section, we test our method in the 2-D case. The domain Ω is set to be the

square

Ω = (−R,R)2

where R = 2. Let Mx = 120 and hx = 2R/Mx. We arrange a uniform grid of

(Mx + 1)× (Mx + 1) points {xij}Mx+1
i,j=1 ⊂ Ω where

xij = (−R + (i− 1)hx,−R + (j − 1)hx). (3.4.1)

In this section, we set k = 1.5 and k = 4.5. The interval [k, k] is uniformly divided

into Mk = 150 sub-intervals whose end points are given by

k1 = k < k2 < k3 < · · · < kMk+1 = k (3.4.2)

where ki = k1 + (i− 1)hk and hk = (k − k)/Mk.

In all numerical tests of this section we computationally simulate the data for the

inverse problem via solving equation (1.1.8) in the square Ω and with the boundary

condition at ∂Ω generated by (1.1.9), i.e.

∂νu (x, k)− iku (x, k) = 0 for x ∈ ∂Ω.

Hence, we do not specify in this section the operator L and the function n2(x) outside

of Ω. For brevity, we consider only the isotropic case, i.e. L = ∆ for x ∈ Ω. To show

that our method is applicable for the case of non homogeneous media, we choose the
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function n2(x) in all numerical tests below as:

n2(x) = 1 +
0.1 sin(3|x|2)

3|x|2 + 1
for all x ∈ Ω.

We choose N = 10 in (3.1.8) by a trial and error procedure. If, for example N = 5,

then our reconstructed functions f (x) are not satisfactory. Choosing N > 10 does

not help us to enhance the accuracy of computed functions. We also refer here to

Figure 3.1.

Remark 3.4.1 (The choice for the interval of wave numbers). The length of each side

of the square Ω is 2R = 4 units. We choose the longest wavelength λ̃long = 2π/k =

2π/1.5 = 4.19 which is about 4 units. The upper bound of the wave number k = 4.5

is set so that the shortest wavelength λ̃short = 1.39 is in the range that is compatible

to the maximal lmax and minimal lmin sizes of the tested inclusions. More precisely,

we choose λ̃short ∈ (0.7lmax, 1.45lmin) and λ̃long/λ̃short ≈ 3.

3.4.1 The forward problem

To generate the computationally simulated data (1.1.11), (1.1.12), we need to solve

numerically the forward problem (1.1.8), (1.1.9). To avoid solving this problem in

the entire space R2, we solve the following boundary value problem:

 ∆u(x, k) + k2n2(x)u(x, k) = g(k)f(x) x ∈ Ω,

∂nu(x, k)− iku(x, k) = 0 x ∈ ∂Ω,
(3.4.3)

assuming that it has unique solution u(x, k) ∈ C2
(
Ω
)
for all k ∈ [k, k].We solve prob-

lem (3.4.3) by the finite difference method. Having computed the function u(x, k),

we extract the noisy data,

F (x, k) = u(x, k)(1 + δ(−1 + 2rand) + iδ(−1 + 2rand)), x ∈ ∂Ω, (3.4.4)
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G(x, k) = ∂zu(x, k)(1 + δ(−1 + 2rand) + iδ(−1 + 2rand)), x ∈ Γ+, (3.4.5)

see (1.1.11), (1.1.12). Here δ ∈ (0, 1) is the noise level and “rand” is the function

taking uniformly distributed random numbers in [0, 1]. In this dissertation, we test

our method with the noise level δ = 0.05, which means 5% noise.

Remark 3.4.2. Recall that while in Problem 1 we use both functions F (x, k) and

G(x, k) in (3.4.4), (3.4.5), in Problem 2 we use only the Dirichlet boundary condition

F (x, k), see (1.1.11)-(1.1.13). However, it follows from boundary condition (3.4.3)

that the Neumann boundary condition is ∂νu(x, k) |∂Ω= ikF (x, k). This explains why

we computationally observe the uniqueness of our numerical solution of Problem 2.

3.4.2 The inverse problem

In this section we describe the numerical implementation of the minimization pro-

cedure for the functional Jε. We use the following form of the functionals Jε:

Jε(V ) =

∫
Ω

|DN∆V + SNn
2 (x)V |2dx + ε‖V ‖2

L2(Ω). (3.4.6)

This functional Jε in (3.4.6) is slightly different from the one in (3.2.4). First, we

do not use here the matrix D−1
N . Indeed, this matrix is convenient to use for the

above theoretical results. However, it is inconvenient to use in computations since

it contains large numbers at N = 10. Second, we replace the term ‖V ‖2
H2(Ω) in

(3.2.4) by the term ‖V ‖2
L2(Ω). This is because the L2(Ω)−norm is easier to work with

computationally than the H2(Ω)−norm. On the other hand, we have not observed

any instabilities probably because the number 121× 121 of grid points we use is not

too large and all norms in finite dimensional spaces are equivalent. The regularization

parameter ε in our computations was found by a trial and error procedure, ε = 10−5.

We write derivatives involved in (3.4.6) via finite differences. Next, we minimize
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the resulting functional with respect to values of the vector valued function

V (x) = (v1(x), v2(x), . . . , vN(x))T

at grid points. The finite difference approximation of the functional Jε(V ) is

Jε(V ) = h2
x

Mx∑
i,j=2

N∑
m=1

∣∣∣ N∑
r=1

{dmr
h2
x

[
vr(xi−1, yj) + vr(xi+1, yj)

+vr(xi, yj−1) + vr(xi, yj+1)− 4vr(xi, yj)
]

+n2(xi, yj)smrvr(xi, yj)
}∣∣∣2 + εh2

x

Mx+1∑
i,j=1

N∑
m=1

|vm(xi, yj)|2,

where dmn and smn are elements of matrices DN and SN in (2.1.3) and (3.1.12)

respectively. Introduce the “line up" version of the set {vn(xi, yj) : 1 ≤ i, j ≤ Mx +

1, 1 ≤ n ≤ N} as the (Mx + 1)2N dimensional vector V with

Vm = vm(xi, yj) 1 ≤ i, j ≤Mx + 1, 1 ≤ m ≤ N, (3.4.7)

where

m = (i− 1)(Mx + 1)N + (j − 1)N +m. (3.4.8)

It is not hard to check that the map

{1, . . . ,Mx + 1} × {1, . . . ,Mx + 1} × {1, . . . , N} → {1, . . . , (Mx + 1)2N}

that sends (i, j,m) to m as in (3.4.8) is onto and one-to-one. The functional Jε(V ) is

rewritten in terms of the line up vector V as

Jε(V) = h2
x|LV|2 + εh2

x|V|2

where L is the (Mx + 1)2N × (Mx + 1)2N matrix defined as follows. For each m =
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(i− 1)(Mx + 1)N + (j − 1)N +m, 2 ≤ i, j ≤Mx, 1 ≤ m ≤ N ,

1. set Lmn = −4dmn

h2x
+ n2(xi, yj)bmn, if n = (i− 1)(Mx + 1)N + (j − 1)N + n, 1 ≤

n ≤ N ;

2. set Lmn = 1
h2x

if n = (i± 1− 1)(Mx + 1)N + (j − 1)N + n or n = (i− 1)(Mx +

1)N + (j ± 1− 1)N + n, 1 ≤ n ≤ N.

It is obvious that the minimizer of Jε satisfies the equation

(L∗L+ εId)V = ~0. (3.4.9)

Here, ~0 is the (Mx + 1)2N dimensional zero vector.

Next, we consider the “line up" version of the first condition in (3.1.16). The

following information is available

Vm = F̃N(xi, yj,m),

where m is as in (3.4.8). Hence, let D be the (Mx + 1)2N × (Mx + 1)2N diagonal

matrix with such mth diagonal entries taking value 1 while the others are 0. This

Dirichlet boundary constraint of the vector V become

DV = F̃ . (3.4.10)

Here, the vector F̃ is the “line up" vector of the data FN in the same manner when

we defined V , see (3.4.8).

We implement the constraint of V in (3.1.17). This constraint allows us to collect

the following information

Vm − Vm′
hx

= G̃N(xi, yj,m) (3.4.11)
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where m is as in (3.4.8) and

m′ = (i− 1)(Mx + 1)N + (j − 2)N +m (3.4.12)

for 1 ≤ i ≤Mx + 1 and j = Mx + 1. We rewrite (3.4.11) as

NV = G̃ (3.4.13)

where G̃ is the “line up" version of G̃N and the matrix N is defined as

1. Nmm = 1/hx and Nmm′ = −1/hx for m and m′ given by (3.4.8) and (3.4.12)

respectively, 1 ≤ i ≤Mx + 1, j = Mx + 1.

2. Other entries of N are 0.

In practice, we compute V by solving



L

D

N


T 
L

D

N

+ εId

V =


L

D

N


T 

~0

F̃

G̃

 (3.4.14)

in the case of Problem 1 and we solve


 L
D


T  L
D

+ εId

V =

 L
D


T  ~0

F̃

 (3.4.15)

for Problem 2. Having the vector V , we can compute the vector VN via (3.4.7). Then,

we follow Steps 4 and 5 of Algorithms 1 and Algorithms 2 to compute the functions

vcomp via (3.1.6) and then f comp by taking the real part of (3.1.2) when k = 1.5.

Remark 3.4.3 (Remark on Problem 2). We use (3.4.15) only for the convenience,

since we do not want to have a significant extra programming effort, given that we
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have the computer code for solving (3.4.14).

3.4.3 Tests

In the cases of Test 1 and Test 2, we apply below our method for Problem 1. And

in the cases of Tests 3-5 we apply our method for Problem 2. Whenever we say below

about the accuracy of values of positive and negative parts of inclusions, we compare

maximal positive values and minimal negative values of computed ones with true

ones. Postprocessing was not applied in all tests presented below.

1. Test 1. Problem 1. Two inclusions with different shapes. The function ftrue is

given by

ftrue =


2.5 if max{0.6|x− 0.75|, |y|} < 1.1,

−2 if (x+ 0.75)2 + y2 < 0.552,

0 otherwise,

and gtrue(k) = ik for k ∈ [k, k]. We test the reconstructions of the locations,

shapes and positive/negative values of the function f for two different inclusions.

One of them is a rectangle and the other one is a disk. In this case, the function

ftrue attains both positive and negative values. The numerical solution for this

case is displayed on Figure 3.2.

It is evident that, for this test, our method for 1 provides good numerical results.

The reconstructed locations, shapes as well as the positive/negative values of

the function f comp are of a good quality.

2. Test 2.Problem 1. Four circular inclusions. We consider the case when the
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(a) The function ftrue (b) The real part of the func-
tion vtrue(·, k = 1.5)

(c) The imaginary part of the
function vtrue(·, k = 1.5)

(d) The real part of the func-
tion vcomp(·, k = 1.5)

(e) The imaginary part of the
function vcomp(·, k = 1.5)

(f) The function fcomp

Figure 3.2: Test 1. The true and reconstructed source functions and the true and
reconstructed functions v(x, k) = u(x, k)/g(k) when k = 1.5. The reconstructed
positive value of the source function is 2.76 (relative error 10.5%). The reconstructed
negative value of the source function is -2.17 (relative error 8.5%).

function ftrue is given by

ftrue =



1, if (x− 0.8)2 + (y − 0.8)2 < 0.552

or (x+ 0.8)2 + (y − 0.8)2 < 0.552,

−1, if (x− 0.8)2 + (y + 0.8)2 < 0.552

or (x+ 0.8)2 + (y + 0.8)2 < 0.552,

0, otherwise,

and gtrue(k) = 1 for all k ∈ [k, k].We test the model with four circular inclusions.

The source function f = 1 in the two “upper" inclusion and f = −1 in the two

“lower" inclusions.

The reconstruction is displayed in Figure 3.3. The source function is recon-
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structed well in the sense of locations, shapes and values.

(a) The function ftrue (b) The real part of the func-
tion vtrue(·, k = 1.5)

(c) The imaginary part of the
function vtrue(·, k = 1.5)

(d) The real part of the func-
tion vcomp(·, k = 1.5)

(e) The imaginary part of the
function vcomp(·, k = 1.5)

(f) The function fcomp

Figure 3.3: Test 2. The true and reconstructed source functions and the true and
reconstructed functions v(x, k) = u(x, k)/g(k) when k = 1.5. The reconstructed
positive value of the source function is 1.11 (relative error 11.1%). The reconstructed
negative value of the source function is -1.11 (relative error 11.1%).

3. Test 3. Problem 2. A void in the square. We consider the case when the

negative part of the true source function f is surrounded by a square and f is

positive in this square. More precisely,

ftrue =


1 if max{|x|, |y|} < 1.2 and x2 + y2 ≥ 0.482,

−1 if x2 + y2 < 0.482,

0 otherwise,

and gtrue(k) = k for all k ∈ [k, k].

The true ftrue and computed f comp source functions are displayed in Figure 3.4.

We can see computed shapes of the “positive" square and the “negative" disk
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(a) The function ftrue (b) The real part of the func-
tion vtrue(·, k = 1.5)

(c) The imaginary part of the
function vtrue(·, k = 1.5)

(d) The real part of the func-
tion vcomp(·, k = 1.5)

(e) The imaginary part of the
function vcomp(·, k = 1.5)

(f) The function fcomp

Figure 3.4: Test 3. The true and reconstructed source functions and the true and
reconstructed functions v(x, k) = u(x, k)/g(k) when k = 1.5. The reconstructed
positive value of the source function is 1.09 (relative error 9.0%). The reconstructed
negative value of the source function is -0.89 (relative error 11.0%).

are quite acceptable. Given that the noise in the data is 5%, errors in values of

the function f comp are also of an acceptable.

4. Test 4. Problem 2. Ring. We consider a model that is similar to that in the

previous test. The main difference is the "outer positive" part of the true source

function is a ring rather than a square. The function ftrue is

ftrue =


1 if 0.522 < x2 + y2 < 1.22,

−2 if x2 + y2 ≤ 0.522,

0 otherwise,

(3.4.16)

and gtrue(k) = k2 for all k ∈ [k, k].

In Figure 3.5, one can see that the source function is computed rather accurately.
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(a) The function ftrue (b) The real part of the func-
tion vtrue(·, k = 1.5)

(c) The imaginary part of the
function vtrue(·, k = 1.5)

(d) The real part of the func-
tion vcomp(·, k = 1.5)

(e) The imaginary part of the
function vcomp(·, k = 1.5)

(f) The function fcomp

Figure 3.5: Test 4. The true and reconstructed source functions and the true and
reconstructed functions v(x, k) = u(x, k)/g(k) when k = 1.5. The reconstructed
positive value of the source function is 1.12 (relative error 12.0%). The reconstructed
negative value of the source function is -1.94 (relative error 3.0%).

The values of both “positive" and “negative" parts of the inclusion are computed

with a good accuracy.

5. Test 5. 2. Continuous surface. We take for (x, y) ∈ Ω

ftrue = 3(1− x)2e−x
2 − (y + 1)2 − 10(x/5− x3 − y5)e−x

2−y2 − 1/3e−(x+1)2−y2 ,

which is the function “peaks" built-in Matlab, restricted on Ω. This function

is interesting since its support is not compactly contained in Ω and its graph

behaves as a surface rather than the “inclusion" from the previous tests. We set

gtrue(k) = sin(k) + 2 for all k ∈ [k, k].

The numerical results for this test are displayed in Figure 3.6. It is evident that
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(a) The function ftrue (b) The real part of the func-
tion vtrue(·, k = 1.5)

(c) The imaginary part of the
function vtrue(·, k = 1.5)

(d) The real part of the func-
tion vcomp(·, k = 1.5)

(e) The imaginary part of the
function vcomp(·, k = 1.5)

(f) The function fcomp

Figure 3.6: Test 5. The true and reconstructed source functions and the true and
reconstructed functions v(x, k) = u(x, k)/g(k) when k = 1.5. The true and recon-
structed maximal positive value of the source function are 8.10 and 7.36 (relative
error 9.1%) respectively. The true and reconstructed minimal negative value of the
source function are -6.55 and -5.48 (relative error 16.0%) respectively.

our method works well for this interesting case.



CHAPTER 4: PARABOLIC EQUATION

4.1 The algorithm

4.1.1 An orthonormal basis of L2(0, T ) and the truncated Fourier series

We introduced an orthonormal basis of L2(a, b) in section 2.1. Now we set a = 0

and b = T . Then

u(x, t) =
∞∑
n=1

un(x)Ψn(t) (4.1.1)

where

un(x) =

∫ T

0

u(x, t)Ψn(t)dt, n = 1, 2, . . . . (4.1.2)

Fix a positive integer N . We truncate the Fourier series in (4.1.1). The function

u(x, t) is approximated by

u(x, t) =
N∑
n=1

un(x)Ψn(t) x ∈ Ω, t ∈ [0, T ]. (4.1.3)

In this context, the partial derivative with respect to t of u(x, t) is approximated by

ut(x, t) =
N∑
n=1

un(x)Ψ′n(t) (4.1.4)

for all x ∈ Ω and t ∈ (0, T ).

4.1.2 An approximate model

We introduce in this subsection a coupled system of elliptic partial differential

equations without the presence of the unknown function f(x). Plugging (4.1.3) and
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(4.1.4) into (1.2.4), we have

N∑
n=1

un(x)Ψ′n(t) =
N∑
n=1

Lun(x)Ψn(t). (4.1.5)

for all x ∈ Ω and t ∈ [0, T ]. For each m ∈ {1, . . . , N}, multiply Ψm(t) to both sides

of (4.1.5) and then integrating the obtained equation with respect to t, we obtain

N∑
n=1

(∫ T

0

Ψm(t)Ψ′n(t)dt

)
un(x) =

N∑
n=1

(∫ T

0

Ψm(t)Ψn(t)dt

)
Lun(x) (4.1.6)

for all x in Ω. Denote by

smn =

∫ T

0

Ψm(t)Ψ′n(t)dt (4.1.7)

and note that ∫ T

0

Ψm(t)Ψn(t)dt =

 1 if m = n,

0 if m 6= n.
(4.1.8)

We rewrite (4.1.6) as

N∑
n=1

smnun(x) = Lum(x) x ∈ Ω,m = 1, 2, . . . , N. (4.1.9)

Denote

U(x) = (u1(x), u2(x), . . . , uN(x))T . (4.1.10)

It follows from (4.1.9) that

LU(x) = SU(x) for x ∈ Ω. (4.1.11)

Here, the operator L acting on the vector U(x) is understood in the same manner as

it acts on scalar valued function, see (1.2.3).
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On the other hand, due to (4.1.2) and (1.2.5), the vector U(x) satisfies the boundary

conditions

U(x) = F̃ (x) =

(∫ T

0

F (x, t)Ψ1(t)dt, . . . ,

∫ T

0

F (x, t)ΨN(t)dt

)T
(4.1.12)

∂νU(x) = G̃(x) =

(∫ T

0

G(x, t)Ψ1(t)dt, . . . ,

∫ T

0

G(x, t)ΨN(t)dt

)T
(4.1.13)

for all x ∈ ∂Ω.

Remark 4.1.1. From now on, we consider F̃ and G̃ as our “indirect" boundary data.

This is acceptable since these two functions can be computed directly by the algebraic

formulas (4.1.12) and (4.1.13).

Finding a vector U(x) satisfying equation (4.1.11) and constraints (4.1.12) and

(4.1.13) is the main point in our numerical method to find the function f(x). In fact,

having U(x) = (u1(x), . . . , u2(x), . . . , uN(x)) in hand, we can compute the function

u(x, t) via (4.1.3). The desired function f(x) is given by u(x, t = 0).

Due to the truncation step in (4.1.3), equation (4.1.11) is not exact. We call it

an approximate model. Solving it, together with the “over-determined" boundary

conditions (4.1.12) and (4.1.13), for the Fourier coefficients (un(x))Nn=1 of u(x, t),

x ∈ Ω, t ∈ [0, T ], might not be rigorous. In fact, proving the “accuracy" of (4.1.11)

when N → ∞ is extremely challenging and is out of the scope of this dissertation.

However, we experience in many earlier works that the solution of (4.1.11), (4.1.12)

and (4.1.13) well approximates Fourier coefficients of the function u(x, t), leading to

good solutions of variety kinds of inverse problems, see [17,18,40,41].

Remark 4.1.2 (The choice of N). On Ω = (−2, 2)2, we arrange 81× 81 grid points

{(xi, yj) : 1 ≤ i, j ≤ 81}. In Figure 4.1 displays the functions of u(x, t) and its ap-

proximation
∑N

n=1 un(x)Ψn(t) where u(x, t) is the true solution of the forward problem

and un(x), n = 1, . . . , N , is computed using (4.1.2). This numerical experiment sug-
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(a) N = 10 (b) N = 20 (c) N = 30

Figure 4.1: The function u(x, t = 0) (dash-dot) and its approximation∑N
n=1 un(x)Ψn(t = 0) (solid) at the points numbered from 900 to 1050. These func-

tions are taken from Test 4 in Section 4.3.2. It is evident that the larger N , the better
approximation for the function u is obtained by the N th partial sum of the Fourier
series in (4.1.1).

gests us to take N = 30. It is worth mentioning that when N ≤ 25, the numerical

solutions are not satisfactory, when N = 30, numerical results are quite accurate re-

gardless the high noise levels and when N ≥ 35, the computation is time-consuming.

4.1.3 The quasi-reversibility method

As mentioned, our method to solve Problem 3 is based on a numerical solver for

(4.1.11), (4.1.12) and (4.1.13). We do so by employing the quasi-reversibility method;

that means, we minimize the functional

Jε(U) =

∫
Ω

|LU(x)− SU(x)|2dx + ε‖U‖2
H3(Ω). (4.1.14)

subject to the constraints (4.1.12) and (4.1.13). Here ε is a positive number serving

as a regularization parameter. Impose the condition that the set of admissible data

H = {V ∈ H3(Ω)N : V |∂Ω×[0,T ] = F̃ and ∂V |∂Ω×[0,T ] = G̃} (4.1.15)
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is nonempty, where F̃ and F̃ are our indirect data, see Remark 4.1.1, defined in

(4.1.12) and (4.1.13). The result below guarantees the existence and uniqueness for

the minimizer of Jε, ε > 0.

Proposition 4.1.1. Assume that the set of admissible data H, defined in (4.1.15), is

nonempty. Then, for all ε > 0, the functional Jε admits a unique minimizer satisfying

(4.1.12) and (4.1.13). This minimizer is called the regularized solution to (4.1.11),

(4.1.12) and (4.1.13).

Proof. Proposition 4.1.1 is an analog of [40, Theorem 3.1] whose proof is based on

the Riesz representation theorem. An alternative method to prove this proposition is

from the standard argument in convex analysis, see e.g. [44,47].

The minimizer of Jε in H is called the regularized solution of (4.1.11), (4.1.12) and

(4.1.13) obtained by the quasi-reversibility method.

The analysis above leads to Algorithm 3, which describes our numerical method

to reconstruct the function f(x), x ∈ Ω. In the next section, we establish a new

Carleman estimate. This estimate plays an important role in proving the convergence

of the regularized solution, due to the quasi-reversibility method, to the true solution

of (4.1.11), (4.1.12) and (4.1.13) in Section 4.2 as the measurement noise and ε tend

to 0.

Algorithm 3 The procedure to solve Problem 3
1: Choose a number N . Construct the functions Ψm, 1 ≤ m ≤ N, in Section 2.1

and compute the matrix S whose the mnth entry is given in 4.1.7.
2: Calculate the boundary data F̃ and G̃ for the vector valued function U via

(4.1.12) and (4.1.13) respectively.
3: Solve (4.1.11), (4.1.12)) and (4.1.13) via the quasi-reversibility method for the

vector
U(x) = (u1(x), . . . , uN(x))T x ∈ Ω.

4: Compute u(x, t), (x, t) ∈ Ω× [0, T ] using (4.1.1).
5: Set the desired function f(x) = u(x, 0) for all x ∈ Ω.
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4.2 Convergence Analysis

In this section, we continue to assume (2.2.37). Let F̃ ∗ and G̃∗ be the noiseless

data for (4.1.12) and (4.1.13), see Remark (4.1.1), respectively. The noisy data are

denoted by F̃ δ and G̃δ. Here δ is the noise level. In this section, assume that there

exists E ∈ H3(Ω)N such that

1. for all x ∈ Ω

E(x) = F̃ δ(x)− F̃ ∗(x) and A(x)∇E(x) · ν(x) = G̃δ(x)− G̃∗(x); (4.2.1)

2. and the bound

‖E‖H3(Ω)N < δ as δ → 0+ (4.2.2)

holds true.

The assumption about the existence of E satisfying (4.2.1) and (4.2.2) is equivalent

to the condition

inf{‖Φ‖H3(Ω)N : Φ|∂Ω = F̃ δ − F̃ ∗, ∂νΦ|∂Ω = G̃δ − G̃∗} < δ.

In this section, we establish the following result to study the accuracy of the quasi-

reversibility method.

Theorem 4.2.1. Assume that U∗ is the function that satisfies (3.1.10), (3.1.13) and

(3.1.14) with F̃ and G̃ replaced by F̃ ∗ and G̃∗ respectively. Fix ε > 0. Let U δ be the

minimizer of Jε subject to constraints (3.1.13) and (3.1.14) with F̃ and G̃ replaced by

F̃ δ and G̃δ respectively. Assume further that there is an “error" function E in H3(Ω)N

satisfying (4.2.1) and (4.2.2). Then, we have the estimate

‖U δ − U∗‖2
H3(Ω)N ≤ C

(
δ2 + ε‖U∗‖2

H3(Ω)N

)
(4.2.3)
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where C is a constant that depends only on Ω, ‖A‖C1(Ω) and µ.

Proof. Since U δ is the minimizer of Jε, by the variational principle, we have

〈LU δ − SU δ, LΦ− SΦ〉L2(Ω)N + ε〈U δ,Φ〉H3(Ω)N = 0 (4.2.4)

for all test functions Φ in the space

H3
0 (Ω)N = {φ ∈ H3(Ω)N : φ = A∇φ · ν = 0 on ∂Ω}.

Since LU∗ − SU∗ = 0, we can deduce from (4.2.4) that

〈L(U δ−U∗)−S(U δ−U∗), LΦ−SΦ〉L2(Ω)N + ε〈U δ−U∗,Φ〉H3(Ω)N = −ε〈U∗,Φ〉H3(Ω)N .

Plugging the test function

Φ = U δ − U∗ − E ∈ H3
0 (Ω) (4.2.5)

into the identity above, we have

‖LΦ− SΦ‖2
L2(Ω)N + ε‖Φ‖2

H3(Ω)N = −〈LE − SE , LΦ− SΦ〉2L2(Ω)N

− ε〈E ,Φ〉H3(Ω)N − ε〈U∗,Φ〉H3(Ω)N .

Applying the Cauchy–Schwartz inequality and removing lower order terms, we

obtain

‖LΦ− SΦ‖2
L2(Ω)N + ε‖Φ‖2

H3(Ω)N ≤ C
(
δ2 + ε‖U∗‖2

H3(Ω)N

)
. (4.2.6)

Recall from (1.2.3) that

‖LΦ− SΦ‖2
L2(Ω)N = ‖Div(A(x)∇Φ + b(x) · ∇Φ + (c(x)Id− S)Φ‖2

L2(Ω)N
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Recall the function ψ in (2.2.38). Fix λ > σ0 and p > σ1 as in Lemma 2.2.1. Set

M = max{e2λψ−p(x) : x ∈ Ω} and m = min{e2λψ−p(x) : x ∈ Ω}.

We have

M‖LΦ− SΦ‖2
L2(Ω)N ≥

1

2

∥∥eλψ−p(x)Div(A(x)∇Φ)

+ eλψ
−p(x)(b(x) · ∇Φ + (c(x)Id− S)Φ)

∥∥2

L2(Ω)N
.

Using the inequality (x− y)2 ≥ 1
2
x2 − y2, we have

M‖LΦ− SΦ‖2
L2(Ω)N ≥

1

2
‖eλψ−p(x)Div(A(x)∇Φ)‖2

L2(Ω)N

− ‖eλψ−p(x)(b(x) · ∇Φ + (c(x)Id− S)Φ)‖2
L2(Ω)N .

Thus, by (2.2.42),

M |LΦ− SΦ‖2
L2(Ω)N ≥ Cm‖Φ‖H1(Ω)N (4.2.7)

Combining (4.2.5), (4.2.6) and (4.2.7) gives

‖U δ − U∗ − E‖2
H1(Ω)N ≤ C

(
δ2 + ε‖U∗‖2

H3(Ω)N

)
.

This and the assumption ‖E‖H3(Ω)N ≤ Cδ imply inequality (4.2.3).

Corollary 4.2.1. Let f ∗(x) = u∗(x, 0) and f δ(x) = uδ(x, 0) where u∗(x, t) and

uδ(x, t) are computed from U∗(x) and U δ(x) via (4.1.1) and (4.1.10). Then, by the

trace theory

‖f δ − f ∗‖L2(Ω) ≤ C
(
δ +
√
ε‖U∗‖H3(Ω)N

)
.
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Figure 4.2: The true function c(x) used for all numerical examples in this section.

4.3 Numerical illustrations

We numerically test our method when d = 2. The domain Ω is the square (−R,R)2.

In this section, we write x = (x, y). For the coefficients of the governing equation, we

choose, for simplicity, A(x) = Id and b(x) = 0. The function c is set as

c(x, y) = (3(1− x)2e−x
2−(y+1)2 − 10(x/5− x3 − y5)e−x

2−y2 − 1/3e−(x+1)2−y2)/10

which is a scale of the “peaks" function in Matlab. The graph of c is displayed in

Figure 4.2.

Define a grid of points in Ω

G = {(xi, yj) = (−R + (i− 1)dx,−R + (j − 1)dx) : 1 ≤ i, j ≤ Nx + 1}

where Nx = 80 and dx = 2R/Nx. For the time variable, we choose T = 4. Define a

uniform partition of [0, T ] as

0 = t1 < t2 < · · · < tNT +1 = T

with step size dt = T/NT . In our tests, NT = 250. The forward problem is solved

by finite difference method in the implicit scheme. Denote by u∗ the solution of the
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forward problem. The data is given by

F (x, t) = u(x, t)(1 + δ(2rand− 1)) G(x, t) = ∂νu(x, t)(1 + δ(2rand− 1))

for (x, t) ∈ ∂Ω×[0, T ] where rand is the uniformly distributed random function taking

value in [0, 1] and δ is the noise level. The noise level δ is given in each numerical

tests.

4.3.1 The implementation for Algorithm 3

The main part of this section is to compute the minimizer U of Jε subject to the

constraints (3.1.13) and (3.1.14). The “cut-off" number N is set to be 30, see Remark

4.1.2 for this choice of N . The discretized version of U(x) = (u1(x), . . . , uN(x))T ,

x ∈ Ω is (u1(xi, yj), . . . , uN(xi, yj))
Nx+1
i,j=1 . Hence, Jε(U), see (4.1.14), is approximated

by

Jε(U) =

d2
x

Nx∑
i,i=2

N∑
m=1

∣∣∣um(xi+1, yj) + um(xi−1, yj) + um(xi, yj+1) + um(xi, yj−1)− 4um(xi, yj)

d2
x

+ c(xi, yj)um(xi, yj) +
N∑
n=1

smnun(xi, yj)
∣∣∣2 + εd2

x

Nx∑
i,j=2

N∑
m=1

|um(xi, yj)|2

+ε2d2
x

Nx∑
i,j=2

N∑
m=1

∣∣∣um(xi+1, yj)− um(xi, yj)

dx

∣∣∣2+ε2d2
x

Nx∑
i,j=2

N∑
m=1

∣∣∣um(xi, yj+1)− um(xi, yj)

dx

∣∣∣2.
(4.3.1)

Here, we slightly change the H3 norm of the regularity term to the H1 norm. This

makes the computational codes less heavy. The numerical results with this change are

still acceptable. We also modify the regularized parameter of the term ‖∇U‖L2(Ω)N

to be ε2, instead of ε, since we observe that the obtained numerical results are more



60

accurate with this modification. The expression in (4.3.1) is simplified as follows

Jε(U) = d2
x

Nx∑
i,j=2

N∑
m=1

∣∣∣ N∑
n=1

[
δmn

(
−4

d2
x

+ c(xi, yj)

)
− smn

]
un(xi, yj) +

δmn
d2
x

un(xi+1, yj)

+
δmn
d2
x

un(xi−1, yj) +
δmn
d2
x

un(xi, yj+1) +
δmn
d2
x

un(xi, yj−1)
∣∣∣2 + εd2

x

Nx∑
i,j=2

N∑
m=1

|um(xi, yj)|2

+ε2d2
x

Nx∑
i,j=2

N∑
m=1

∣∣∣um(xi+1, yj)− um(xi, yj)

dx

∣∣∣2+ε2d2
x

Nx∑
i,j=2

N∑
m=1

∣∣∣um(xi, yj+1)− um(xi, yj)

dx

∣∣∣2.
(4.3.2)

Here, we use the Kronecker number δmn for the convience of writing the computational

codes. We next identify {un(xi, yj) : 1 ≤ i, j ≤ Nx + 1, 1 ≤ n ≤ N} with the

(Nx + 1)2N dimensional vector U = (ui)
(Nx+1)2N
i=1 according to the rule ui = un(xi, yj)

where the index i is

i = (i− 1)(Nx + 1)N + (j − 1)N + n, 1 ≤ i, j ≤ Nx + 1, 1 ≤ n ≤ N.

Then, with this notation, Jε(U) in (4.3.2) is rewritten as

Jε(U) = d2
x|LU|2 + +εd2

x|U|2 + εd2
x|DxU|2 + εd2

x|DyU|2.

The (Nx + 1)2N × (Nx + 1)2N matrices L, Dx and Dy are as follows.

1. Define the matrix L. For i = (i − 1)(Nx + 1)N + (j − 1)N + m, for some

2 ≤ i, j ≤ Nx, the ijth entry of L is

(a) δmn (−4/d2
x + c(xi, yj))− smn if j = (i− 1)(Nx + 1)N + (j − 1)N + n,

(b) δmn/d2
x if j = (i ± 1 − 1)(Nx + 1)N + (j − 1)N + n or j = (i − 1)(Nx +

1)N + (j ± 1− 1)N + n,

(c) 0 otherwise.
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2. Define the matrix Dx. For i = (i − 1)(Nx + 1)N + (j − 1)N + m, for some

2 ≤ i, j ≤ Nx, the ijth entry of Dx is

(a) 1/dx if j = (i+ 1− 1)(Nx + 1)N + (j − 1)N +m,

(b) −1/dx if j = i,

(c) 0 otherwise.

3. Define the matrix Dx. For i = (i − 1)(Nx + 1)N + (j − 1)N + m, for some

2 ≤ i, j ≤ Nx, the ijth entry of Dx is

(a) 1/dx if j = (i− 1)(Nx + 1)N + (j + 1− 1)N +m,

(b) −1/dx if j = i,

(c) 0 otherwise.

Remark 4.3.1 (The values of the parameters). As mentioned, we take N = 30,

Nx = 80, NT = 250, R = 2. The regularized parameter ε = 10−7. These values of

parameters are used for all tests in Section 4.3.2.

4.3.2 Tests

We perform four (4) numerical examples in this dissertation. These examples

with high levels of noise show the strength of our method. We will also compare

the reconstructed maximum values of the reconstructed functions and the true ones.

Below, ftrue and fcomp are, respectively, the true source function and the reconstructed

one due to Algorithm 3 with the parameters in Section 4.3.1.

1. Test 1. The case of one inclusion. The function ftrue is a smooth function

supported in a disk with radius 1 centered at the origin. More precisely,

ftrue(x) =

 e
− 1

1−|x|2
+1 if |x| < 1,

0 otherwise.
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(a) The function ftrue (b) fcomp, δ = 0% (c) fcomp, δ = 25%

(d) fcomp, δ = 50% (e) fcomp, δ = 75% (f) fcomp, δ = 100%

Figure 4.3: Test 1. The true and computed source functions. Our method still works
well when δ = 100%. It is shown in (e) that the reconstructed value of fcomp with
δ = 75% is quite accurate, even better than in (d), but in contrast, the reconstructed
shape starts to break down.

Figure 4.3 displays the functions ftrue and fcomp. Table 4.1 show the recon-

structed value of the function fcomp and the relative error. The noise levels are

δ = 0%, 25%, 50%, 75% and 100%.

It is evident that our method is robust for Test 1 in the sense that the re-

constructed maximal value of the function f and the reconstructed shape and

position of the inclusion are quite accurate.

2. Test 2. The case of two inclusions. The function ftrue is a smooth function

supported in two disks with radius r = 0.8 centered at x1 = (−1, 0) and x2 =
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Table 4.1: Test 1. Correct and computed maximal values of source functions. errorrel

denotes the relative error of the reconstructed maximal value. postrue is the true
position of the inclusion; i.e., the maximizer of ftrue. poscomp is the computed position
of the inclusion. diserr is the absolute error of the reconstructed positions.

noise level max ftrue max fcomp errorrel postrue poscomp diserr

0% 1 0.99 1.0% (0, 0) (0, 0) 0
25% 1 0.96 4.0% (0, 0) (−0.05, 0) 0.05
50% 1 1.21 21.0% (0, 0) (−0.05, 0.1) 0.11
75% 1 1.01 1.0% (0, 0) (0.2,−0.1) 0.22
100% 1 1.53 53.0% (0, 0) (0.25, 0.1) 0.27

(1, 0) respectively. The function ftrue is given by the formula

f(x) =


e
− r2

r2−|x−x1|2
+1 if |x− x1| < r,

e
− r2

r2−|x−x2|2
+1 if |x− x2| < r,

0 otherwise.

Figure 4.4 displays the functions ftrue and fcomp. Table 4.2 show the recon-

structed value of the function fcomp and the relative error. The noise levels are

δ = 0%, 25%, 50%, 75% and 100%.

The reconstruction in Test 2 is good. In this test, the reconstruct breaks down

when the noise level is 75% although we are able to detect the inclusions with

higher noise levels.

3. Test 3. The case of non-inclusion and nonsmooth function. The function ftrue

is the characteristic function of the letter Y . Figure 4.5 displays the functions

ftrue and fcomp. The noise levels are δ = 10% and 15%.

We can reconstruct the letter Y and the reconstructed maximal of fcomp is good

when δ = 10% but the error is large when the noise level reaches 15%.

4. Test 4. The case of non-inclusion and nonsmooth function. The function ftrue
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(a) The function ftrue (b) fcomp, δ = 0% (c) fcomp, δ = 25%

(d) fcomp, δ = 50% (e) fcomp, δ = 75% (f) fcomp, δ = 100%

Figure 4.4: Test 2. The true and computed source functions. The reconstruction of
the two inclusions are not symmetric probably because the true function c, see Figure
4.2 for its graph, is negative on the left and positive on the right. However, both
inclusions can be seen when the noise level goes up to 100%.

Table 4.2: Test 2. Correct and computed maximal values of the inclusions. maxinc,true

and maxinc,comp are the true and computed, respectively, maximal values of the source
in an inclusion. errorrel denotes the relative error of the reconstructed maximal value.
postrue is the true position of the inclusion; i.e., the maximizer of ftrue. poscomp is the
computed position of the inclusion. diserr is the absolute error of the reconstructed
positions.

noise level inclusion maxinc,true maxinc,comp errorrel postrue poscomp diserr

0% left 1 0.96 4.0% (−1, 0) (−0.85, 0) 0.15
0% right 1 0.98 2.0% (1, 0) (0.85, 0) 0.15
25% left 1 1.11 11% (−1, 0) (−0.85, 0) 0.15
25% right 1 0.96 4% (1, 0) (0.9, 0.1) 0.14
50% left 1 0.61 39% (−1, 0) (−0.9, 0.25) 0.27
50% right 1 1.01 1% (1, 0) (0.85,−0.2) 0.25
75% left 1 0.84 26% (−1, 0) (−1, 0.1) 0.1
75% right 1 1.82 82% (1, 0) (0.8, 0) 0.2
100% left 1 1.1 10% (−1, 0) (−0.9, 0.3) 0.32
100% right 1 1.58 58% (1, 0) (0.05, 0.8) 0.21
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(a) The function ftrue (b) fcomp, δ = 10% (c) fcomp, δ = 15%

Figure 4.5: Test 3. The true and computed source functions. The letter Y can
be detected well in this case. The true maximal value of ftrue is 1. The computed
maximal value of fcomp when δ = 10% is 1.09 (relative error 9%). The computed
maximal value of fcomp when δ = 15% is 1.15 (relative error 15%).

(a) The function ftrue (b) fcomp, δ = 10% (c) fcomp, δ = 15%

Figure 4.6: Test 4. The true and computed source functions. The reconstruction of
λ is acceptable. The true maximal value of ftrue is 1. The computed maximal value
of fcomp when δ = 10% is 1.16 (relative error 16%). The computed maximal value of
fcomp when δ = 15% is 1.11 (relative error 11%).

is the characteristic function of the letter λ. Figure 4.6 displays the functions

ftrue and fcomp. The noise levels are δ = 10% and 15%.

The image of λ in Test 4 is acceptable. The reconstructed maximal value in

Figure 4.6c is better than that in Figure 4.6b but the reconstruction of λ in

Figure 4.6c is not as good as that in Figure 4.6b.



CHAPTER 5: CONCLUDING REMARKS

The main aim of this thesis is to solve two inverse source problems in the frequency

domain. In this work, we derived a system of PDEs whose solutions directly provide

the solution of the inverse source problems under consideration.

The main points of the method is derive approximate models by a truncation of the

Fourier series with respect to a special basis. We solved the approximation models

by the quasi-reversibility method. The convergence of this method when the noise

tends to 0 was proved. More importantly, numerical examples show that our method

is robust when proving accurate reconstructions of the unknown source function from

highly noisy data.
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