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ABSTRACT

QIANG LIU. Intelligent network management for heterogeneous services in mobile
edge computing. (Under the direction of DR. TAO HAN)

The proliferation of connected devices creates various use cases and heterogeneous

services, e.g., augmented/virtual reality (AR/VR), vehicle-to-everything (V2X), and

mobile artificial intelligence. These services and use cases have diverse networking and

performance requirements such as throughput, delay, and reliability, which challenge

the "one-fit-all" service architecture in current networks. Mobile edge computing

(MEC) allows the deployment of computation infrastructures in close proximity to

mobile users and is a key technology to effectively serve these services in terms of

cost-efficiency, flexibility, and scalability.

In this research, an intelligent network management framework in mobile edge

computing is explored. The primary challenges lie in the unique characteristics of

heterogeneous services and complicated correlations between network management on

multiple technical domains and high-dimension performance requirements of mobile

users in complex mobile networks. This research addresses these challenges with two

different management approaches, i.e., context-aware service adaptation to network

dynamics as service providers and network orchestration intelligence for heterogeneous

services as infrastructure providers.

From the perspective of service providers, multiple mobile systems are designed to

allow service adaptation under complex network dynamics, e.g., channel variation and

traffic workload, which dynamically and adaptively adjust resource allocations and

system configurations by exploiting the unique characteristics of individual services.

Specifically, two mobile AR/VR systems are proposed in distributed edge computing

networks to strike the balance between the quality and round-trip latency (RTT)

performance of AR/VR services.
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From the perspective of infrastructure providers, multiple network systems are pro-

posed to enable orchestration intelligence with no need for accurate performance mod-

elings of services, which automatically learn to orchestrate multiple domain network

resources for supporting various services by exploiting advanced machine learning

techniques. First, two resource orchestration systems are proposed, which learn to

allocate cross-domain network resources to heterogeneous services by leveraging Gaus-

sian process (GP) regression techniques. Then, a network slicing system is designed

to enable intelligent orchestration to network slices under high-dimension complex

end-to-end networks by leveraging deep reinforcement learning (DRL) techniques.

The proposed network management framework in this research unveils the promis-

ing directions in effectively and efficiently supporting heterogeneous services, and

provides important insights for network management design in the next-generation

mobile network.
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CHAPTER 1: INTRODUCTION

1.1 Background on Mobile Edge Computing

The increasing popularity of various connected devices, e.g., smartphones, tablets,

laptops, and the Internet of things (IoT), lead to a dramatic explosion of mobile

data traffic. By 2022, Ericsson forecasts that more than 1.5 billion IoT devices will

be connected with cellular mobile networks [1]. The mobile data traffic is expected

to reach 77.5 EB per month by 2022, as forecasted by Cisco’s Visual Networking

Index (VNI) [2]. Supporting the enormous connectivity and rapidly increasing mobile

traffic is an extremely heavy burden for current mobile networks such as 4G Long-

Term Evolution (LTE). For example, the number of connected devices in a single

cell needed by massive IoT and Machine-to-Machine (M2M) communication could

over tens of thousands, which substantially surpluses the original design objective in

the typical LTE network [3]. The next-generation mobile network, i.e., 5G, targets

to handle the escalating challenges by deploying more cellular base stations with

higher wireless bandwidth and more advanced technologies such as massive multiple-

input and multiple-output (MIMO) and millimeter-wave [4]. The ever-expanding

complex network typologies, e.g., radio access network (RAN), transport network

(TN) and core network (CN), along with the heterogeneous network infrastructures,

e.g., evolved NodeBs (eNBs) and next-generation NodeBs (gNBs), complicate the

network management for the next-generation mobile network.

The proliferation of devices create heterogeneous services and various use cases,

e.g., augmented/virtual reality (AR/VR), vehicle-to-everything (V2X), and mobile

artificial intelligence, which challenges the "one-fit-all" service architecture in current

networks [5]. Unlike the conventional services, these services have highly diverse
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networking and performance requirements such as bandwidth, delay, and reliability,

and involve multiple technical domains in its lifetime, e.g., radio transmission in RAN,

packet transportation in TN, and server computation in edge/cloud. As a result, it is

quite a challenge for the mobile network to effectively accommodate these services in

terms of scalability, flexibility, availability, and cost-efficiency [6]. For example, mobile

AR/VR service requires low-latency and high-bandwidth link to upload the sensed

environmental information of mobile users to computation servers, e.g., point clouds

and RGB frames, and retrieve the corresponding digital augments and overlays [7],

e.g., 3D animation contents. The vehicle communication service needs extremely

high-reliable and ultra-low latency radio transmission link to exchange the critical

vehicle and road perceptional information, e.g., pedestrian detection and accident

reporting.

Mobile edge computing (MEC) is a promising technology to efficiently accommo-

date these heterogeneous services, which distributes the computation infrastructures,

e.g., computing server and storage, to the network edge for supporting massive con-

nections and achieving highly responsive services [8]. The cloud computing offers

centralized computing, storage and networking resources in large-scale data centers

to realize scalable cloud services for remote mobile users. However, it encounters

several noticeable disadvantages, such as long delay, less responsiveness, and heavy

backbone traffic, due to the long distance between the service providers and users, and

the aggregated backbone traffic from all distributed users [9]. As a result, cloud com-

puting is inappropriate to host delay-sensitive or real-time services, e.g., mobile AR

and V2X, because the round-trip time from mobile users to cloud servers could easily

reach hundreds of milliseconds. Instead, MEC overcomes these drawbacks of cloud

computing by deploying massive edge nodes with computing, storage and networking

capabilities to the network edge, e.g., core network or access networks. According to

the European Telecommunications Standards Institute (ETSI), MEC [10] is defined
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as “Mobile edge computing provides an IT service environment and cloud computing

capabilities at the edge of the mobile network, within the radio access network (RAN)

and in close proximity to mobile subscribers.” Thus, the service providers can instan-

tiate their applications on the distributed edge nodes in close proximity to mobile

users to achieve low-latency resource access and high-responsive services. For in-

stance, computing-constrained and battery-limited devices, e.g., disaster surveillance

sensors, health monitoring implant, and AR glasses, can save the energy consumption

and thus prolong the lifetime by offloading the compute-intensive tasks to edge nodes.

The service provider can deploy intelligent transportation system (ITS) applications

with local datasets to support ultra-low latency mobility services such as cooperative

adaptive cruise control (CACC) and automated car parking system (APS).

Since a massive number of edge nodes are geographically deployed at the network

edge, both the network traffic of radio access points (RAPs) and the workload of edge

nodes exhibit extremely dynamic spatiotemporal patterns under the unpredictable be-

haviors of mobile users [11]. Meanwhile, the radio transmission, data transportation,

and task computation of heterogeneous services are closely coupled in MEC, which

complicates the network management for large-scale mobile networks. Therefore, an

intelligent network management framework is needed in mobile edge computing to

support these heterogeneous services in terms of efficiency, effectiveness, flexibility,

and scalability.

1.2 Problem Statement

1.2.1 Dynamic Adaptive Mobile Augmented Reality

Augmented reality (AR) is able to embed virtual information seamlessly into our

physical environment and provide new kinds of experiences where the world is im-

proved by virtual content blending with the real [12]. The key component of AR is

a fast and precise detection and understanding of the physical environment so that

virtual contents can synchronize with the real world. In AR, the data from the sen-
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Edge ServerMobile AR Client Wireless Access Point

Data Offloading

Virtual Content

Environment 

Understanding
Low Latency 

Link

Figure 1.1: Dynamic Mobile AR with Edge Computing.

sors, e.g., images, is processed by computer vision algorithms to detect objects in

the physical environment. However, the computation complexity of computer vision

algorithms, e.g., SSD [13], YOLO [14], and Faster R-CNN [15], are usually too high

to run on mobile devices. Although there are some low-complexity object detection

frameworks and algorithms such as Google MobileNet [16], Tiny YOLO [14] and

DeepMon [17] that can perform object detection on mobile devices, the performance

of these algorithms in terms of the mean average precision (mAP)1 and latency are

significantly worse than that of the state-of-the-art computer vision algorithms. In

addition, because of the hardware limitation, a mobile device cannot perform ad-

vanced computer vision analysis, e.g., human action detection [19], which limits the

virtual information that can be generated from the physical world.

As illustrated in Fig. 1.1, with MEC, mobile AR clients offload image data to an

edge server via wireless access point while the edge server performs environmental

understanding, i.e., object detection, and sends the corresponding virtual content

back to MAR clients. Since the edge server is placed in close proximity to users, the

communication link between the wireless access point and edge server usually has a

very low latency in order to provide highly responsive services. However, wireless

links between MAR clients and the wireless access point can be highly dynamic,

e.g., varying radio channel quality, and thus introduce a long latency during the

data offloading and virtual content delivery. Besides, edge server is usually with

finite computation capability and thus could be easily overloaded by highly variant
1The mean average precision (mAP) is a metric to evaluate the detection accuracy of a visual

object detection algorithm [18].
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(a) Cloud-based MAR System (b) Edge-based MAR System

Cloud Server

Cloud 
Orchestrator 

MAR Device

MAR Device

2

1

Edge Node Edge Node

Figure 1.2: The cloud-based vs. edge-based MAR system.

MAR traffic. Therefore, handling the dynamic wireless links and limited computation

resources to guarantee the consistent user experience for MAR users is crucial in an

edge-assisted MAR system.

1.2.2 Mobile Augmented Reality in Distributed Edge Computing Networks

Mobile augmented reality (MAR) augments a real-world environment by computer-

generated sensory information such as text, sound, and graphics. With advanced

MAR technologies, the information about a person’s surrounding physical environ-

ment can be brought out of the digital world and overlaid with the person’s perceived

real world. Since MAR performs in the semantic context of the real-world, the fast

and accurate object analytics is the key component for integrating digital information

with environment elements in MAR applications [20].

As illustrated in Fig. 1.2, by offloading the compute-intensive object analysis to

powerful edge/cloud servers [21–24], the computational latency and energy consump-

tion of mobile devices can be significantly decreased by exploiting high-end CPU/GPU

in edge/cloud servers. Existing works mainly focus on offloading-based MAR sys-

tems with a single edge server, which can be easily overloaded by massive MAR

services [11]. Multiple distributed edge servers are essential for providing seamless

and consistent services for MAR users. Besides, the non-uniform spatiotemporal user

distribution [25] can lead to imbalanced workloads among distributed edge servers,

which impairs the performance of MAR in terms of the service latency. Therefore,



6

Mobile Network Operator

 O
T

T
 S

e
rv

ic
es

Mobile 

Broadband

Interactive 

Service

Massive IoT

Service 

Requests

S
li

ce
 

C
o

n
tr

o
ll

e
r

S
li

ce
 

C
o

n
tr

o
ll

e
r

S
li

ce
 

C
o

n
tr

o
ll

e
r

S
li

ce
 

C
o

n
tr

o
ll

e
r

S
li

ce
 

C
o

n
tr

o
ll

e
r

S
li

ce
 

C
o

n
tr

o
ll

e
r

Slice 

Control

Cellular Edge Computing Nodes

Service Provider

Resource Virtualization & Orchestration

Slice 3

vNode

Slice 2

vNode

Slice 1

vNode

Figure 1.3: The network slicing in mobile edge computing network.

a well-designed network orchestrator, which can dynamically dispatch MAR related

computing workloads to distributed edge servers, is needed in an edge-assisted MAR

system.

1.2.3 Multiple Domain Virtualization and Orchestration

To efficiently support heterogeneous use cases, network slicing enables the creation

of multiple virtual networks on top of a shared physical infrastructure [26, 27], e.g.,

RAN, TN, and CN. These virtual networks, which are denoted as network slices,

are dynamically designed and instantiated to serve the specific needs of vertical in-

dustries [28], e.g., MAR and V2X. A network slice usually requires resources from

multiple technical domains such as radio access networks and computing servers.

Fig. 1.3 shows an example of the network slicing in cellular edge computing networks

with a mobile network operator and multiple service providers. The mobile network

operator is responsible for managing the physical infrastructures to ensure the co-

existence of network slices. The service providers with various over-the-top (OTT)

services place service requests to create a network slice for each service and then

manage the network slices.

To efficiently utilize the network and computing resources, the network operator

needs to virtualize the physical infrastructure to virtual resources and orchestrate
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multiple virtual resources to network slices. On one hand, the diverse requirements,

e.g., throughput, delay and reliability, of different network slices have to be met, where

these requirements are closely coupled in multiple technical domains. On the other

hand, the performance and functional isolation among the network slices [26–28] need

to be maintained. Here, the performance isolation ensures that the performance of a

network slice will not affect or be affected by other network slices that share the same

physical network infrastructure. The functional isolation enables each service provider

to customize and control its network slice operations independently [29]. Thus, an

intelligent resource virtualization and orchestration system is needed to handle the

complicated multi-domain correlations of performance requirements of network slices.

1.2.4 Distributed Cross-Domain Resource Orchestration

Network slicing enables mobile network operators to create multiple virtual net-

works (slices) on top of a common physical network infrastructure, where each slice

can be customized to meet a wide variety of network requirements on performance

and functionality. As shown in Fig. 1.4, the service providers or vertical industries

make the service requests to create network slices and manage the network slices

once they are created. The mobile network operator manages the physical network

infrastructure and is responsible to create network slices to support diverse require-

ments from its customers. Since a network slice in cellular edge computing consists
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Figure 1.5: An illustration of end-to-end network slicing.

of multiple radio access points (RAPs) and edge servers, the resources allocated to a

network slice should be properly distributed among base stations and edge servers to

ensure the performance of a network slice and support seamless mobility.

As a critical technology of 5G, network slicing attracts many research efforts from

both academia and industry. However, most of the existing works present concep-

tual network slicing frameworks [26–28, 30, 31], which focus on the virtualization of

individual domains and did not investigate how to orchestrate resources from cross-

domains such as communication and computing resources. Besides, network slices

can be instantiated in large geographic areas to provide seamless coverage for slice

users, where the network-wide performances of slices have to be maintained in large-

scale mobile networks. Therefore, a distributed cross-domain resource orchestration

solution in network slicing is desired to manage network resources to meet the per-

formance requirement of slices.

1.2.5 End-to-End Network Slicing with Decentralized DRL

Leveraging software-defined networking (SDN) and network functions virtualiza-

tion (NFV), end-to-end network slicing allows individual customization of slices to

meet various end-to-end performance requirements of different network services and

use cases. Dynamic network slicing, which can dynamically change the resource allo-

cation for slices according to their actual needs, improves the multiplexing efficiency

of physical network infrastructures [32].
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Dynamic network slicing, as illustrated in Fig. 1.5, faces two research challenges.

On one hand, it is almost impossible to obtain the exact correlation between the

resources and performance of network slices. A network slice usually requires end-to-

end resources from multiple technical domains such as radio access network, transport

network, and edge/cloud, which leads to very complex tradeoffs among these resources

and slice performances. For example, a short delay in the radio access network might

be compensated by accelerated computation in the edge/cloud servers. Besides, the

resource orchestration in an end-to-end network slicing system exhibits Markovian

on serving slice users where a resource orchestration decision affects not only the

current but also further network state, e.g., service queues. As a result, conventional

model-based approaches [33,34] cannot effectively handle the high-dim dynamic net-

work slicing problem. We resort to model-free deep reinforcement learning (DRL),

which leverages advanced artificial neural networks to deal with high-dim network

systems [35].

On the other hand, the spatial diversity of mobile traffic requests the resources of

network slices to be properly distributed among base stations and edge/cloud servers

in different geographic locations. To meet the network-wide performance of slices,

a centralized DRL-based resource orchestration might be deployed, which manages

all the network components such as RAPs, TN, and CN. However, it is inefficient to

adapt to dynamic network topology and architecture since the input dimension of a

neural network based policy is usually fixed.

Thus, a decentralized DRL approach for end-to-end network slicing is desired to

automatically learn to orchestrate resources for heterogeneous slices under dynamic

mobile networks.

1.3 Overview of the Proposed Research

This research, as shown in Fig. 1.6, proposes an intelligent network management

framework in mobile edge computing to support heterogeneous services. It deals
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Figure 1.6: Overview of the proposed research.

with these challenges and difficulties with two different management approaches, i.e.,

context-aware service adaptation to network dynamics and network orchestration

intelligence for heterogeneous services from the perspective of service providers and

infrastructure providers, respectively.

From the perspective of service providers, multiple mobile systems are designed to

allow service adaptation under complex network dynamics, e.g., channel variation and

traffic workload, which dynamically and adaptively adjust resource allocations and

system configurations by exploiting the unique characteristics of individual services.

Specifically, two mobile AR/VR systems are proposed in distributed edge computing

networks to strike the balance between the quality and round-trip latency (RTT)

performance of AR/VR services.

From the perspective of infrastructure providers, multiple network systems are pro-

posed to enable orchestration intelligence without accurate performance modelings of

services, which automatically learn to orchestrate multiple domain network resources

for supporting various services by exploiting advanced machine learning techniques.
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First, two resource orchestration systems are proposed, which learn to allocate cross-

domain network resources to heterogeneous services by leveraging Gaussian process

(GP) regression techniques. Then, a network slicing system is designed to enable

intelligent orchestration to network slices under high-dimension complex end-to-end

networks by leveraging deep reinforcement learning (DRL) techniques.

1.4 Proposal Organization

The remainder of the proposal is organized as follows. In Chapter 2, we briefly

review the related work. In Chapter 3, a dynamic adaptive mobile augmented reality

system is proposed. In Chapter 4, an edge orchestrator system for MAR is proposed.

In Chapter 5, a multiple domain resource orchestration and virtualization system

for network slicing is described. In Chapter 6, a distributed cross-domain resource

orchestration system for network slicing is designed. In Chapter 7, an automatic

resource management system for end-to-end slicing is designed. Following that, the

publications and future work are listed in Chapter 8.



CHAPTER 2: RELATED WORK

This chapter discusses the related work of network management in mobile edge

computing network.

2.1 Existing Research on Dynamic Adaptive MAR

Since mobile devices are constrained by their computation resources and battery

power supplies, most of the existing mobile augmented reality systems are developed

by exploiting either cloud or edge servers [21,24,36,37]. To improve the accuracy and

latency of object recognition, Jain et. al. [20] designed an AR system which utilizes

a location-free geometric representation of environments to prune down the visual

search space. Chen et. al. [22] designed Glimpse which is a continuous real-time

object recognition system. In this system, the authors developed an active cache

mechanism to improve recognition accuracy and proposed a trigger frame selection

method to hide the transmission latency caused by wireless networks. Lee et. al. [38]

designed a speculative execution system named Outatime to hide the network latency

in mobile cloud gaming. The main idea of Outatime is to render speculative frames

of future outcomes and deliver the results to the mobile client one round-trip-time

ahead of the next input. Cuervo et. al. [39] proposed a collaborative rendering system

called Kahawai that reduces the requirement of network bandwidth from the server

to the mobile cloud gaming client, which uses mobile GPU to render either reduced

detail or a subset of frames. Jain et. al. [23] proposed a low bandwidth offloading

scheme for MAR. This scheme reduces the network latency by only transmitting the

distinctive features of images to the server. However, none of the existing works

discusses the dynamic adaptation on the AR configurations and edge computation
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resource allocations.

2.2 Existing Research on MAR in Distributed MEC

The main objectives in designing offloading-based MAR systems are improving the

object recognition accuracy and reducing the service latency [20,22,23,40]. Zhang et.

al. developed a video analytics system VideoStorm that handles thousands of video

analytics queries to tradeoff the variety in quality and latency goals [41]. Yi et. al. [42]

designed a video analytics system on top of edge computing platform. This system

enables the computation offloading from mobile users to edge nodes and exploits the

collaboration among edge nodes to reduce the latency of video analytics. On design-

ing offloading-based MAR systems, these works mainly focus on single edge server

with sufficient computation capability No solution is provided to properly dispatch

computing workloads among heterogeneous edge servers for MAR services.

Jia et al. propose a task redirection algorithm to balance workloads among edge

cloudlets and show that the load balancing scheme can significantly reduce the service

response time of edge cloudlets [43]. Tong et al. propose a hierarchical architecture

for edge clouds and design a heuristic workload dispatch algorithm to minimize the

average program execution delay by adaptively placing workloads among different

tires of servers [11]. Tan et al. propose an online job dispatching and scheduling al-

gorithm to minimize total weighted service response time in edge clouds. [44]. These

existing edge cloud load balancing solutions only focus on reducing the service latency

of users. However, the analytics accuracy is as important as the service latency for

MAR. Therefore, mitigating the tradeoff between the service latency and analytics ac-

curacy is indispensable in designing workload dispatching algorithms for edge-assisted

MAR systems.
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2.3 Existing Research on Multiple Domain Virtualization and Orchestration

As a key technology in 5G, the cellular network virtualization has attracted many

research efforts [45–47]. Kokku et. al. [48] proposed a network virtualization substrate

(NVS) which virtualizes uplink and downlink radio resources into slices in WiMAX

networks. They also designed CellSlice which slices the radio resources at the gate-

way level without modifying the MAC scheduler in base stations [45]. Foukas et.

al. [46] developed FlexRAN which decouples the control and data plane of eNodeB in

LTE and provides a programmable control plane for managing radio access networks.

The authors also engineered the Orion system that realizes on-the-fly radio access

network slicing while maintaining the functional and performance isolation among

network slices [29]. Salvat et al. [33] developed an end-to-end resource orchestration

system, formulated an orchestration problem to maximize the revenue in network slic-

ing, and proposed an optimal Benders decomposition method and a heuristic method.

However, the fundamental assumption of these works is that the resource demands

of slices and their performance modelings are known as closed-form mathematical

expressions to the network operator, which might not be obtained under the com-

plicated and high-dim performance requirements of network slices in complex mobile

networks.

2.4 Existing Research on Distributed Cross-Domain Resource Orchestration

Network slicing has attracted extensive research attention from industry and academia [46,

49,50]. Foukas et. al. designed FlexRAN [46] to decouple the control and user plane

of LTE, which provides a customized API and programmable control plane for the

radio access network management. Han et. al. [51] proposed a utility-based admission

control mechanism based on multi-queuing systems to improve the resource efficiency

for accommodating heterogeneous slices in network slicing. Ghodsi et. al. [52] pro-

posed a dominant resource fairness (DRF) algorithm which allocates multi-domain
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resources to ensure the max-min fairness among the tenants. Halabian et al. [49]

showed that non-collaborative slices in the system compromise the fairness perfor-

mance when maximizing the overall system performance and proposed a distributed

solution. Chowdhury et. al. [53] proposed a high utilization with guarantees (HUG)

algorithm that is an extension of DRF for handling elastic resource demands. Liu

et. al. [54] designed a multi-domain resource allocation algorithm which maximizes

the utility of the system in mobile cloud computing using a Markov decision pro-

cess. However, none of these works addresses the distributed cross-domain resource

orchestration for network slicing in large-scale mobile networks.

2.5 Existing Research on End-to-End Network Slicing with Decentralized DRL

The resource management problem with machine learning techniques in network

slicing targets to maximize system performance. Caballero et al. [55] constructed a

network slicing game in which tenants are selfish to maximize its own performance.

The authors proved that this game with such strategic behavior converges to a Nash

equilibrium for elastic traffic. To exploit the statistical multiplexing gain of slices,

Sciancalepore et al. [56] designed STORNS that optimizes the admission control of

slices with considering per slice SLA requirement by leveraging stochastic geometry

theory. Mao et al. [57] designed DeepRM with the deep Q-network technique to

optimize the admission control and resource orchestration of users. They obtained a

considerable reduction in the average slowdown of user tasks as compared to heuristic

solutions. Xu et al. [58] utilized the state-of-the-art deep deterministic policy gra-

dient (DDPG) technique to solve the traffic engineering (TE) networking problem,

i.e., allocating the bandwidth of network links, and obtained significant end-to-end

latency reduction and performance improvement under the unknown performance

function. Bega et al. [59] proposed DeepCog with deep learning techniques to fore-

cast the network capacity within an individual slice and achieve the balance between

resource over-provisioning and service request violations. Yang et al. [60] proposed
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an adaptive reinforcement learning-based approach for a microservice workflow sys-

tem that enables model-free resource allocation and improves the response time of

microservices. However, these works advocate the centralization of resource manage-

ment by using a central DRL agent, which cannot adapt to the dynamic typologies

and architectures in wireless edge computing networks.



CHAPTER 3: DARE: DYNAMIC ADAPTIVE MOBILE AUGMENTED

REALITY WITH EDGE COMPUTING

In this chapter, we design the DARE (dynamic adaptive AR over the edge) protocol

that enables the edge-based MAR system to dynamically change AR configurations

and computation resource allocations according to wireless channel conditions and

available computation resources on the edge server. In the adaptation, the DARE

protocol trades off the quality of augmentation (QoA) against the service latency.

The intuitive basis of DARE is that performing precise AR (high QoA) requires mas-

sive data offloading and intensive computing while allowing selective approximation

(medium QoA) can provide disproportionate gains in efficiency.

3.1 DARE Overview

Fig. 3.1 shows the overview of the DARE protocol. In the first step, MAR clients

send their service requests and measurements of wireless channel conditions and ser-

vice latency to an edge server. In the second step, upon receiving the requests and

measurements, the optimization engine on the edge server determines the video frame

sizes of MAR clients, selects computation models, which are object detection algo-

rithms such as YOLO and SSD [13,14], to serve different MAR clients, and optimizes

the computation resource allocation by mapping the computation requests of indi-

vidual MAR clients to GPUs. The video frame sizes determined by the edge server is

sent back to corresponding MAR clients as AR configuration messages. In the third

step, MAR clients resize their video frame sizes according to the AR configuration

messages. Meanwhile, MAR clients also adapt their video frame rate based on the

service latency. After the frame resizing and frame rate adaptation, video frames are
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Figure 3.1: The overview of the DARE protocol.

sent to the edge server for processing. In the fourth step, the edge server sends back

the virtual content that augments reality.

With the DARE protocol, the MAR clients can adapt their frame rates and video

frame sizes. The edge server can change its computation models and resource allo-

cations for different clients. Therefore, on designing the DARE protocol, we need to

optimize four parameters in the edge-based MAR system: frame rate, video frame

size, computation model selection, and computation resource allocation. Since the

video frame sizes are closely related to the computation model and resource alloca-

tion, we design an optimization engine on the edge server to jointly optimize the video

frame size, computation model selection, and computation resource allocation. The

optimal video frame sizes are fed back to the corresponding MAR clients through the

AR configuration message. The MAR clients are responsible for optimizing their own

video frame rate.

The technical challenges for designing the DARE protocol are as follows: 1) there

are no analytical models for characterizing the impact of the image data size and com-

putation model on QoA and the service latency for a multiuser MAR system. 2) Since

the edge server is shared by multiple MAR clients, individual clients’ AR configura-

tions are coupled with the computation resource allocation on the edge server. Such

coupling makes it computationally hard to optimally allocate computation resources

and adapt clients’ AR configurations.
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To address these challenges, we perform experiments to study the tradeoffs be-

tween QoA and the service latency in a MAR system. Based on the experiment

results, we model QoA and the service latency as functions of the video frame size

and computation model. We then formulate the AR reconfiguration and computation

resource allocation in the edge-based MAR system as an optimization problem that

aims to maximize the average QoA while satisfying all clients’ latency requirements.

We solve the problem using the cyclic block coordinate gradient projection method

and implement this solution on the edge server. On the client side, we design and

implement a frame rate adaptation mechanism that adapts the number of AR video

frames sent to the edge server per second according to workloads on the edge server.

This mechanism helps the client to maximize the amount of virtual content obtained

from the edge server. We implement the DARE protocol and evaluate its performance

through experiments.

3.2 Tradeoffs in Edge-based MAR System

In this section, we perform experiments to characterize the impact of video frame

sizes and computation models, i.e., object detection algorithms, on QoA and the

service latency for a multiuser MAR system. These experiment results not only

provide the basis for modeling the adaptive MAR system but also make the case for

it. Note that we focus on the MAR application in which the MAR client captures

the environment information via cameras and sends the information to a server for

object detection. The concept of dynamic adaptive AR can be generalized to other

types of AR applications such as surface detection and rendering.

3.2.1 Video Frame Size v.s. QoA v.s. Latency

In this experiment, we implement YOLO 544x544 [14], which is the YOLO algo-

rithm tuned at the 544x544 image resolution, as the object detection algorithm on a

workstation with an NVIDIA Quadro M4000 GPU for the computation acceleration.
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Figure 3.2: The QoA and latency vs. compression factor.
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A MAR client is emulated in a laptop which connects to the workstation via a wireless

router. We use VOC 2007 test dataset [18] for the study. To evaluate the impact of

video frame sizes on QoA and the service latency, we preprocess the images in the

dataset with five compression factors. For instance, when the compression factor is

0.2, an image with 500x500 pixels is resized to an image with 100x100 pixels.

Fig. 3.2 shows the impact of image data sizes on QoA and the service latency. As

expected, a large video frame size leads to a high mAP but a long transmission latency.

The gain on mAP becomes smaller as the increase of image data sizes. However, the

transmission latency increases much faster with a larger video frame size. When the

compression factor decreases from 1.0 to 0.6, the transmission latency decrease about

61% while mAP only drops about 8%. This result supports adaptive AR in trading

mAP for the latency reduction.
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Transmitting high-fidelity image data, i.e., a large video frame size, introduces a

long latency and large jitters under dynamic wireless channel conditions. Fig. 3.3

shows the service latency and jitter of a MAR client with two different video frame

sizes under varying wireless channel conditions. As wireless channel condition changes,

there are many large spikes in the service latency measurement when transmitting

images with 500x500 resolution. These spikes indicate large jitters in the MAR ser-

vice. The latency jitter is alleviated when the image data size is reduced to 250x250

pixels. Besides, with a small image data size, the service latency of 97.8% images

is less than 0.3 s. With a large image size, only about 75.6% images experience less

than 0.3 s service latency.

3.2.2 Computation Model v.s. QoA v.s. Latency

In this experiment, we implement four object detection algorithms based on the

YOLO framework [14] and two object detection algorithms based on the SSD frame-

work [13] on the edge server. We use the VOC 2007 test dataset [18] to evaluate mAP

of the object detection and the corresponding computation latency. Fig. 3.4 shows the

mAP and the computation latency of these algorithms in a single user MAR system.

The computation model that provides a high mAP usually incurs a long computation

latency. The gain of mAP and the increase of the computation latency are dispro-

portional. For example, as compared with YOLO 544x544, SSD 512x512 gains about

2.7% mAP but increases about 60% service latency. This result advocates adapting

the computation model for reducing the service latency.

Since the number of MAR clients are dynamic, we measure the computation la-

tency of different computation models when serving multiple users. Fig. 3.5 shows

that the computation latency increases with the number of users because the GPU

computation resources are shared among the users. However, a low-complexity model,

i.e., YOLO 416x416, maintains a slower computation latency increase than a high-

complexity model, i.e, YOLO 544x544. These observations provide us two insights



22

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Q
o
A

C
o
m

p
u
ta

ti
o
n
 l
at

en
cy

 (
s)

0.10

0.08

0.06

0.04

0.02

0.00

( a ) ( b )

Figure 3.4: The QoA and latency v.s. the computation models.

C
o
m

p
u
ta

ti
o
n

 la
te

n
c
y
 (

s)

1 2 3 4 5 6 7
Number of user

(b)

1 2 3 4 5 6 7
Number of user

(a)

0.1

0.2

0.3

0.4

0.5
YOLO 544x544 YOLO 416x416

0.1

0.2

0.3

0.4

0.5

Figure 3.5: Computation model v.s. latency v.s. number of user.

on designing the DARE protocol. The first one is that optimizing the computation

resource sharing among users may improve the performance of MAR. The second one

is that adapting to a low-complexity computation model can effectively reduce the

computation latency when there are multiple MAR clients in the system.

3.3 Optimization Engine on Edge Server

In this section, we describe system models for analyzing the adaptive MAR system,

formulate the MAR reconfiguration and computation resource allocation on the edge

server as an optimization problem, and propose an adaptive MAR algorithm to solve

the problem. On modeling the system, we consider multiple MAR clients and one
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edge server. The MAR clients are connected to the edge server via a wireless access

point.

3.3.1 System Model

Quality of Augmentation (QoA): Denote the dk, lk, Qk, and K as the image

compression factor, mAP of the computation model, QoA of the kth MAR client,

and the set of MAR clients, respectively. Here, we use the mAP value to represent

a computation model. That is, given a mAP, we find the computation model that

produces the mAP. Since QoA of a MAR client closely relates to the video frame size

and the computation model, Qk can be expressed as Qk = Q(dk, lk) where Q(x, y)

is a function of x and y. Hence, the average QoA of MAR clients in the system is

modeled as

Q =
1

|K|
∑
k∈K

Qk. (3.1)

Although the computation models have the frame resolution embedded, e.g., YOLO

544x544, we consider the computation model, i.e., mAP, and frame resolution, i.e.,

image compression factor, as two separate parameters for two reasons. First, given

a computation model, the compression factor affects QoA of MAR services as shown

in Fig. 3.2. Second, the number of computation models that can be supported in a

practical system is limited by the computation resources. Therefore, the correspond-

ing mAPs are discrete. However, the compression factor is continuous and selected

by MAR clients according to the system performance.

Service Latency: We model the service latency as the static latency and dy-

namic latency. The static latency does not change when we adapt the configurations

of MAR. For example, the latency of the communication link establishment and image

preprocessing are considered as the static latency in a MAR system. The dynamic

latency depends on the image data size and computation model of a MAR system. In

our system, we consider the transmission latency in transmitting image data and com-
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putation latency in performing the object detection as the dynamic latency. Hence,

the service latency of the kth MAR client is expressed as

Tk = T tk + T pk + T c (3.2)

where T tk is the transmission latency, T pk is the computation latency, and T c is the

static latency in the system. In a practical system, the transmission latency consists

of the wireless transmission latency between mobile clients and wireless access points

and the wired transmission latency between wireless access points to edge servers.

Since the wireless transmission latency is expected to be much longer and more dy-

namic than the wired transmission latency, we focus on the impact of the wireless

transmission latency on the QoA of MAR services. Denote rk as the wireless data rate

of the kth MAR client. Let S(dk), which is a non-decreasing function with respect to

dk, be the image data size of the kth client. Then, T tk = S(dk)/rk.

The computation latency depends on the computational complexity of the compu-

tation model and available computation resources on the edge server [61]. Let ck be

the computational complexity of the kth client’s computation model. We define fk as

the computation resources allocated to the kth client by the edge server. Then, the

computation latency experienced by the kth client can be modeled as T pk = P(lk)/fk.

Here, P(lk), which is a function of lk, represents the computational complexity of the

client’s request.

3.3.2 Problem Formulation

On designing the optimization engine, we aim to maximize the average QoA while

satisfying the latency requirements of the MAR clients in the system. The variables
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are dk, lk, and fk,∀k ∈ K. The optimization problem can be formulated as

P0 : max
{dk,lk,fk,∀k∈K}

Q = 1
|K|
∑
k∈K

Qk

s.t.

C1 : Tk ≤ Tmaxk ,∀k ∈ K;

C2 :
∑

k∈K fk ≤ Fmax;

C3 : dmin ≤ dk ≤ dmax,∀k ∈ K;

C4 : lk ∈ {lmin, ..., lmax},∀k ∈ K;

(3.3)

where Tmaxk is the maximum tolerable latency of the kth client, and Fmax is the total

computation resources on the edge server. As the emergence of the network slicing

technology, it is reasonable to assume that a network slice is created for supporting

a particular service, e.g., the MAR service [27]. Hence, we consider the edge server

is dedicated to the MAR service and assume that the total computation resource for

the MAR service is known as Fmax. The constraints C1 guarantee that the service

latency of users are not larger than their maximum tolerable latency; the constraint C2

means that the allocated computation resources do not exceed the total computation

resources on the edge server; the constraints C3 and C4 are the constraints of the

image compression factor and mAP of the computation model.

Note that lk is a discrete variable. The values of lk depend on the available com-

putation models in the system. In other words, each computation model corresponds

to a value of lk. Therefore, deciding lk equals to selecting the computation model.

Hence, lk acts as an integer variable that selects the computation models in the op-

timization. As shown in the experiment results in Sec. 3.2, QoA of a MAR client is

a nonlinear function of the image data size. Thus, the above optimization problem

is a mixed-integer non-linear programming problem (MINLP) which is difficult to

solve [62].
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3.3.3 Optimization Algorithm

We develop an adaptive MAR optimization algorithm to efficiently solve the above

problem P0. According to the solution, we determine the AR video frame compres-

sion factor and select computation models for individual clients.

To solve problem P0, we relax the discrete variable lk into continuous variable l̂k.

The problem is relaxed as

P1 : max
{dk,l̂k,fk,∀k∈K}

Q

s.t. C1, C2, C3

Ĉ4 : lmin ≤ l̂k ≤ lmax,∀k ∈ K.

(3.4)

According to the observations in Sec. 3.2, the objective function Q is non-decreasing

with respect to dk and lk. Therefore, we adopt the cyclic block coordinate gradient

projection (CBGP) method to solve problem P1 [63]. According to the method, we

solve problem P1 by fixing two of three variables and deriving the remaining one.

We iterate the process until the value of each variable converges.

Denote ∇y (x) as the partial derivative of function y corresponding to variable

x. Define PΩ (x) = arg min
y∈Ω
‖x− y‖2 as the Euclidean projection of x on Ω. The

procedures of the solution can be summarized as follow:

• Given l̂k and fk, we update dk according to

d
(j+1)
k = PΩd

(
d

(j)
k + αk∇Qk

(
d

(j)
k

))
,∀k ∈ K; (3.5)

where αk > 0 is a constant step size and Ωd is the bounded domain constrained

by C3.

• Given dk and fk, we update l̂k according to

l̂
(j+1)
k = PΩ

l̂

(
l̂
(j)
k + βk∇Qk

(
l̂
(j)
k

))
,∀k ∈ K; (3.6)
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where βk > 0 is a constant step size and Ωl̂ is the bounded domain constrained

by Ĉ4.

• Given l̂k and dk, the problem is simplified to

max
{fk,∀k∈K}

Q

s.t. C1 : Tk ≤ Tmaxk , ∀k ∈ K;

C2 :
∑

k∈K fk ≤ Fmax;

(3.7)

where constraints C3 and Ĉ4 are irrelevant to this problem.

We utilize the Lagrangian dual decomposition method to solve the above problem.

The Lagrangian function is

L(fk, λ, µ) = Q+ µ
(∑

k∈K fk − Fmax
)

+
∑
k∈K

λk

(
S(dk)
rk

+ P(lk)
fk

+ T c − Tmax
k

) (3.8)

where λ and µ are the Lagrange multipliers corresponding to constraints C1 and C2,

respectively. Then, the Lagrangian dual problem is expressed as

min
{λ,µ}

g (λ, µ) = max
{fk,∀k∈K}

L(fk, λ, µ)

s.t. λ ≥ 0, µ ≥ 0.

(3.9)

Here, g(λ, µ) is convex with respect to fk. Based on the Karush-Kuhn-Tucker (KKT)

condition [64], the optimal computation resource allocation for the kth client can be

expressed as

f ∗k =

√
λk
µ
P(lk). (3.10)

Next, we use the sub-gradient method [64] to solve the dual problem. Based on the
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sub-gradient method, the dual variables in the (j + 1)th iteration are updated as

λ
(j+1)
k =

[
λ

(j)
k − δ

λ
k ×∇g(λ

(j)
k )
]+

,∀k ∈ K (3.11)

µ
(j+1)
k =

[
µ(j) − δµ ×∇g(µ(j))

]+
,∀k ∈ K (3.12)

where δλk > 0 and δµ > 0 are the step sizes, and [x]+ = max{0, x}.

With these mathematical analysis, we develop an adaptive MAR optimization al-

gorithm that dynamically determines the AR image compression factor, selects the

computation models, and allocates computation resources on the edge server. The

pseudo code of the algorithm is presented in Algorithm 1. The algorithm is initial-

ized with the simplest computation model and evenly shared computation resources

among MAR clients. We then iteratively obtain dk, l̂k, and fk until the algorithm

converges. Since l̂k is a relaxed mAP of the computation model, it may not match

the mAP of any installed computation models in a real system. In this case, we select

the computation model whose mAP, l∗k, is most close to the relaxed mAP (line 9 in

the pseudo code of the algorithm). The adaptive MAR algorithm is developed based

on the CBGP method, and hence follows the convergence results in [63], we claim

that the algorithm converges to a local optimal solution.

3.3.4 GPU Computation Resource Allocation

Although the adaptive MAR optimization algorithm obtains the computation re-

source allocations for individual clients, it is not trivial to enforce the GPU resource

allocation in the system. There are some techniques for virtualizing a physical GPU

into multiple virtual GPUs (vGPU) so that the GPU resources can be shared among

multiple clients [65]. However, the GPU virtualization incurs the computation over-

head and delay. Since the adaptive MAR optimization algorithm runs on a small time

scale, e.g., every second, it is inefficient to dynamic generate vGPUs according to the

optimization results. Therefore, instead of reconfiguring vGPUs, we assign clients’
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Algorithm 1: Adaptive MAR Optimization Algorithm
Input: Tmaxk , Fmax and rk, ∀k ∈ K.
Output: dk, l̂k and fk, ∀k ∈ K.

1 fk ← Fmax/ |K|, ∀k ∈ K;
2 l̂k ← lmin, ∀k ∈ K;
3 while True do
4 d

(j+1)
k = PΩd

(
d

(j)
k + αk∇Qk

(
d

(j)
k

))
,∀k ∈ K;

5 l̂
(j+1)
k = PΩ

l̂

(
l̂
(j)
k + βk∇Qk

(
l̂
(j)
k

))
,∀k ∈ K;

6 fk ← solving P1 with fixed dk and l̂k, ∀k ∈ K;
7 if convergence then
8 break;

9 l∗k = arg min
l∈{lmin,...,lmax}

∣∣∣l − l̂k∣∣∣,∀k ∈ K;
10 return dk, l∗k and fk, ∀k ∈ K.

requests to pre-configured vGPUs according to the optimization results.

Denote gi and I as the total computation resources of the ith vGPU and the set of

vGPUs, respectively. Let fk be the computation resources allocated to the kth client.

We formulate the client-vGPU mapping problem as

min
{ai,k,∀k∈K,i∈I}

∑
i∈I

(gi −
∑
k∈K

ai,kfk)

s.t.

C1 : gi −
∑
k∈K

ai,kfk ≥ 0,∀i ∈ I;

C2 :
∑
i∈I

ai,k = 1,∀k ∈ K;

C3 : ai,k = {0, 1},∀i ∈ I, k ∈ K;

(3.13)

where ai,k is an indicator function. If the kth client is assigned to the ith vGPU,

ai,k = 1; otherwise, ai,k = 0. The client-vGPU mapping problem is equivalent to

a bin packing problem which is NP-complete. We solve this problem with a greedy

approximation algorithm whose pseudo code is shown in Alg. 2. In this algorithm,

we sort fk and gi based on their values from the largest to the smallest, respectively.
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Algorithm 2: Greedy Client-vGPU Mapping
Input: fk and gi, ∀k ∈ K, i ∈ I.
Output: ai,k, ∀k ∈ K, i ∈ I.

1 Sort fk and gi from the largest to the smallest;
2 ai,k ← 0, ∀k ∈ K, i ∈ I;
3 for k = 1 : |K| do
4 for i = 1 : |I| do
5 if fk ≤ gi then
6 ai,k = 1 and gi = gi − fk;
7 break;

8 if
∑
i∈I

ai,k = 0 then

9 Set aj,k = 1 where j = arg max
i∈I

gi;

10 gi = gi − fk;

11 return ai,k.

Then, we sequentially assign a client to the vGPU which has sufficient computation

resources to serve the client. If no vGPU can serve the client, the algorithm assigns

the client to the vGPU with the most residual computation resources.

3.4 Frame Rate Adaptation on Mobile Client

The impact of the AR frame rate on the system performance is implicitly considered

in the optimization problem P0. We assume that the MAR client continuously sends

video frames to the edge server. Therefore, the frame rate is determined by the

service latency, i.e., the frame rate of the kth client ωk = 1/Tk. However, based on

this frame rate, the computation resources allocated to the kth client are not fully

utilized because the server has to wait for the frames from the client. To solve this

problem, we design a frame rate adaptation mechanism on the MAR client to perform

the traffic flow control in the system. This mechanism enables the MAR client to fully

utilize the allocated computing resources on the edge server and helps them to increase

the amount of virtual content obtained from the server without impairing the service

latency.

As shown in Fig. 3.6, the frame rate adaptation determines how many AR video



31

Receive

Display

Receiving

Displaying

Frame Rate

Adaptation

Sending

Figure 3.6: Frame rate adaptation and transceiving pipeline.

frames are sent to the edge server per second. With a higher video frame rate, the

MAR client can send more frames to the edge server and thus obtain more virtual

content. However, if the video frame rate is too high, sending and processing these

frames may lead to the traffic congestion in wireless transmissions and the computa-

tion congestion on edge server. On the other hand, if the video frame rate is too low,

the server waits for the frames from MAR clients which results in a under-utilization

of computing resources. Therefore, the frame rate adaptation mechanism determines

the AR frame rate based on the estimation of the computation workloads on the edge

server. Since the computation workloads are varying, the AR frame rate also changes

over time. In the system, we adapt the AR frame rate based on the computation

latency. Hence, the frame rate of the kth client is calculated as

ωk =
1

γkT
p
k

(3.14)

where T pk is the computation latency of the kth client, and γk is a control factor

determined by the network conditions and computation workloads. A transceiving

pipeline is designed to ensure that the sampled AR video frames are sent to the server

continuously without waiting for the server’s response.
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3.5 Performance Evaluation

In this section, we provide an extensive evaluation of the DARE protocol under

varying wireless channel conditions and computation workloads.

3.5.1 Protocol Implementation

Edge Server: A database is implemented to store clients’ information such as the

minimum compression factors, wireless data rates and the latency requirements. This

database will be updated based on the information received from the clients. The sys-

tem periodically optimizes its performance and determines the AR configurations and

computation resource allocations. Besides the periodical optimization, three events

can trigger the optimization. They are 1) a newly connected client, 2) an optimiza-

tion request from a client, and 3) a disconnected client. We establish long-standing

sockets between clients and the edge server to exchange the control information such

as the optimization request, network status report, and AR configurations.

Based on the client-vGPU mapping, clients are assigned to a vGPU using different

socket ports. The computation resources on a vGPU are shared among the clients

associated with the vGPU. We use multithreading to serve multiple clients simulta-

neously in the system. When a client connects to the system, a thread is created to

serve the client. Using this thread, the edge server receives the client’s video frames

and pushes them into the computation queue. The tasks in the computation queue

are scheduled according to the adaptive MAR optimization algorithm.

MAR Client: The QoA monitor on the MAR client is implemented to monitor the

wireless channel conditions and the service latency. The QoA monitor will trigger the

optimization request to the edge server if the wireless channel condition changes or the

service latency exceeds Tmax. An optimization request contains the information about

the wireless data rate, Tmax, and dmin. We evaluate the wireless channel condition

and service latency every second to avoid generating excessive optimization requests
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Table 3.1: GPU details

NVIDIA Quadro M4000 NVIDIA Quadro P2000
CUDA cores 1664 1024
Memory size 8 GB 5 GB
Boost Clock 800 MHz 1470MHz

Power 120 W 75 W
Peak FP32 Performance 2.66 TFLOPS 3.0 TFLOPS

Table 3.2: RSSI vs. Data Rate

RSSI (dBm) -30 -40 -50 -60 -70
Data Rate (Mbits/s) 25 20 15 10 5

based on the service latency of an individual frame.

The wireless channel conditions of clients are important for optimizing the edge-

based MAR system. To effectively estimate wireless data rates, we use the Linux

wireless-tool iwconfig to fetch received signal strength indicator (RSSI) from the driver

of the wireless network adapter. Then, we map the RSSI to the wireless data rate.

3.5.2 Evaluation Setup

We deploy the edge server on a workstation with an Intel Xeon E5-2630v4 2.2GHz

CPU, Nvidia Quadro M4000 and P2000 GPUs, and 16GB RAM. The features of the

GPUs installed in our edge server are detailed in Table 3.1. The MAR clients are

deployed on laptops. We emulate the AR video using VOC 2007 test dataset [18]

that contains 4952 images. Since we do not have video dataset for evaluating the

mAP of different visual object detection algorithms, we construct a video with 4952

images in VOC 2007 test dataset to evaluate the proposed protocol. The images in the

dataset are resized to 500x500 pixels. We use the resized images to generate AR video

streams. The clients are connected to the edge server via a LinkSys WRT1900AC

wireless router. In the experiments, the static latency Tc of the edge-based MAR

system is 0.04 s. Based on measurements, we derive the mapping between RSSIs and

wireless data rates as shown in Table 3.2.



34

Table 3.3: The mAP of computation models

Computation Models 288x 352x 416x 480x 544x
mAP 69.0 73.7 76.8 77.8 78.6

Table 3.4: Fitting Curves

Functions Fitting Curve RMSE
Q(dk, lk) (−0.13d2

k + 0.3dk + 0.62) lk 7.77× 10−4

S(dk) 0.06dk 9.1× 10−3

P(lk) 60.77l2k − 86.1lk + 30.71 8.79× 10−3

On the edge server, we deployed five computation models based on the YOLO

framework. These models are YOLO 288x288, YOLO 352x352, YOLO 416x416,

YOLO 480x480, and YOLO 544x544. Here, YOLO 288x288 means that the YOLO

object detection algorithm tuned at the image resolution of 288x288. The mAPs of

these models are listed in Table 3.3 where we use 288x to represent YOLO 288x288.

On the MAR client, the range of the image compression factors are from 0.4 to 1.0.

On implementing the optimization mechanism, the functions of Q(dk, lk), S(dk),

P(lk) are derived based on the measurement data by using the curve fitting toolbox

(cftool 3.5.4 ) in Matlab. These functions are listed in Table 3.4.

We compare the performance of the DARE protocol with two baseline protocols:

• Max QoA: this system uses the high-fidelity video data and high-complexity

computation model to maximize mAP of the object detection for MAR clients.

• Min Latency: this system uses the low-resolution video frames and low-complexity

computation model to minimize the service latency experienced by MAR clients.

3.5.3 Evaluation Results

Wireless channel conditions: To evaluate the performance of the DARE proto-

col under dynamic wireless channel conditions, we maintain a static workload on the

edge server and carry the MAR client randomly walking in the laboratory. During

the random walk, the MAR client experiences different wireless channel conditions.

Fig. 3.7 compares the performance of the DARE protocol with two baseline protocols.
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Figure 3.8: The adaptation to wireless channel conditions.

As shown in the figure, the Max QoA protocol has the longest service latency but

provide the highest QoA. The Min Latency protocol minimizes the service latency at

the cost of a significantly decreased QoA. For most of the frames, the DARE protocol
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maintains the MAR client’s minimum latency requirement which is 0.3 s in the exper-

iment. At the same time, the DARE protocol maximizes the QoA of the MAR client

considering various wireless channel conditions. The QoA achieved by the DARE

protocol is only slightly smaller than that achieved by the Max QoA protocol.

Fig. 3.8 shows that the DARE protocol tracks the wireless channel conditions and

adapts the video frame size and computation model accordingly. Fig. 3.8 (a) shows

the wireless received signal strength indication (RSSI) and the corresponding service

latency of the MAR client in the duration of 4952 AR video frames. When RSSI drops,

there are a few latency spikes in the system. This is because the DARE protocol

performs the optimization every second. If RSSI changes between two consecutive

optimizations, the DARE protocol does not respond to the changes immediately. The

optimization interval can be configured in the system. A small optimization interval

improves the performance of the system in tracking wireless channel variations but

also increases the optimization workloads on the server.

As shown in the Fig. 3.8 (b), the video frame size is adapted more frequently than

the computation model. This observation indicates that the DARE protocol prefers

to adapting the video frame size first when RSSI changes. For most of the frames, the

DARE protocol uses the high-complexity computation model to ensure a high QoA

and only degrades the computation when the wireless channel condition is very poor.

Server workloads: Fig. 3.9 shows the performance of the DARE protocol with

a different number of MAR clients. In this experiment, the clients are stable so that

their wireless channel conditions are almost static. When there are more clients in

the system, the computation latency increases because all the clients share the lim-

ited computation resources on the server. For both the Max QoA and Min Latency

protocols, their service latency almost linearly increases with the number of clients.

The DARE protocol maintains a low service latency that satisfies the latency require-

ments (0.3 s) of MAR clients. The cost of maintaining the low latency is dropping
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QoA of the object detection of MAR clients. However, the DARE protocol is able

to mitigate the tradeoff between QoA and the service latency through optimizations.

For example, when the number of users is 3, the DARE protocol trades about 0.06

QoA for about 31% latency reductions as compared with the Max QoA protocol.

Service latency requirements: In this experiment, we vary Tmax to evaluate the

performance of the DARE protocol under different latency requirements. Fig. 3.10

shows that for most of the time, the DARE protocol can satisfy the latency require-

ments of the mobile client. Under a stringent latency requirement, e.g., 0.1 s, the

DARE protocol serves the client with a low QoA at about 0.68.

Number of computation models: The available computation modes on the

server impact the performance of the adaptation. To study such an impact, we eval-

uate the performance of the DARE protocol under three settings of the computation
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models. In the first setting, we install one computation model, YOLO 416x416, on the

server. In the second setting, we install three computation models: YOLO 352x352,

416x416 and 480x480. In the third setting, we install five computation models: YOLO

288x288, 352x352, 416x416, 480x480 and 544x544.

The experiment results are shown in Fig. 3.11. When there is only one computation

model on the edge server, the DARE protocol can only adjust the client’s video

frame size. Since the service latency is smaller than the latency requirement which

is Tmax = 0.2 in the experiment, the DARE protocol adopts the largest video frame

size to maximize QoA. As a result, under this scenario, the DARE protocol has a

similar performance as the Max QoA protocol. The Min Latency protocol adopts the

minimum image data size to minimize the server latency. Hence, its service latency

is smaller, but its QoA is also lower than the DARE protocol and the Max QoA

protocol.

When there are three computation models in the system, the service latency of the

Max QoA protocol is still less than the latency requirement of the client (0.2 s). Hence,

the DARE protocol adopts the maximum video frame size and the high-complexity

computation model to maximize its QoA. When there are five computation models

in the system, the service latency of the Max QoA protocol is larger than the latency

requirement of the client (0.2 s). Under this scenario, the DARE protocol maximizes

QoA with the constraint of the client’s latency requirement. Therefore, the service

latency of the DARE protocol nearly equals to 0.2 s, and the QoA is slightly less than

that of the Max QoA protocol. For the Min Latency protocol, it always selects the

low-complexity computation model with the smallest video frame size. Therefore,

the service latency as well as QoA of the Min Latency protocol decreases when a

computation model with a lower complexity is available in the system.

Video frame rate and pipelining: With the DARE protocol, the MAR client

dynamically changes the AR frame rate according to workloads on the edge server.



39

Q
o

A

0.4

0.5

0.6

0.7

0.8

1 3 5
Number of model

Max QoA

Min Latency
DARE

1 3 5

0.10

0.15

0.20

0.25

Number of model

S
e
rv

ic
e 

la
te

n
cy

 (
s)

0.05

Max QoA

Min Latency
DARE

( a ) ( b )

Figure 3.11: The protocol performance with different number of computation models.

A
v
er

ag
e 

fr
am

e 
ra

te

0 5000
0

20

40

60

80

100

4000300020001000

G
P

U
 u

ti
li

za
ti

o
n

(%
)

Frames

Baseline DARE

0 50004000300020001000

F
ra

m
e 

R
at

e

Frames

0

4

8

12

16

20
Baseline DARE

( a ) ( b )

Figure 3.12: The performance of adaptive frame rate mechanism.

Fig. 3.12 shows the impact of the video frame rate on the server workload. In the

experiment, the service latency is about 0.3s. Without the dynamic video frame rate

mechanism (baseline), the AR video frames are sent after receiving the virtual content

from the server. Therefore, the client can only send about 3 AR video frames to the

server per second which is determined by the service latency. With the adaptive frame

rate mechanism, the MAR client can send about 16 AR video frames per second on

average to the server. In Fig. 3.12(b), with the adaptive frame rate mechanism on

the MAR client, the GPU utilization on the server is almost 100%. This indicates

this mechanism is able to exploit the allocated computation resources on the server

to maximize the frame rate of the MAR client.



CHAPTER 4: AN EDGE NETWORK ORCHESTRATOR FOR MOBILE

AUGMENTED REALITY

In this chapter, we design and implement an edge network orchestrator that en-

ables fast and accurate object analytics in an edge-based MAR system. We model

the network latency, computational latency, and analytics accuracy in an edge-based

MAR system according to the performance measurements obtained from our MAR

testbed. Then, we formulate a multi-objective optimization problem that aims to

mitigate the tradeoff between the network latency, computation latency, and ana-

lytics accuracy by optimizing the edge server assignment and video frame resolution

selection for MAR users. We develop a fast and accurate object analytics (FACT)

algorithm which solves the multi-object optimization problem based on convex opti-

mization theory. We evaluate the FACT algorithm through both network simulations

and experiments with our edge-based MAR system implementation.

4.1 Analytical Model of Edge-based MAR System

In this section, we describe the system model for analyzing the edge-based MAR

system. The system model includes network latency, computational latency, and

analytics accuracy models. The computational latency and analytics accuracy models

are derived based on the performance measurements obtained from our MAR testbed.

We consider a mobile edge network withK MAR users andN heterogeneous servers

including both the cloud and edge servers. Denote K and N as the set of MAR users

and servers, respectively. The MAR users communicate with servers via wireless

access points such as cellular base stations and WiFi hotspots. The object analytics

is performed on either edge servers or cloud server. The average service latency of



41

the kth MAR user can be defined as

Lk = Lwk + Ltk + Lpk, (4.1)

where Lwk is the wireless latency incurred by sending a video frame from the kth

user to its associated wireless access point; Ltk is the core network latency caused by

transferring the frame from the wireless access point to the server assigned to the

user; and Lpk is the computational latency of the object analytics on the server.

4.1.1 Network Latency Model

The network latency is composed of the wireless and core network latency. The

wireless latency is determined by the user’s video frame resolutions and wireless data

rates. Since the data size of analytics results is usually small, we do not model the

latency caused by transmitting the analytics results [61]. We assume that the AR

video of the kth user is preprocessed into video frames with the resolution of sk × sk

pixels. Here, we use s2
k (the number of pixels) to represent the video frame resolution

of the kth MAR user. Denote σ as the number of bits required to represent the

information carried by one pixel. Denote S = {s2
k |k ∈ K} as the set of users’ frame

resolutions. The data size of a video frame is calculated as σs2
k bits. Let Rk be the

average wireless data rate of the kth user. The wireless latency experienced by the

kth user is modeled as

Lwk =
σs2

k

Rk

. (4.2)

Note that we consider the simplified wireless latency model (Eq. 4.2) because we focus

on the system level performance rather than wireless link level performance.

Since the core network usually has very high transmission capacity, its latency is

mainly determined by the aggregated traffic loads in the network and the geo-distance

between the wireless access points and the servers. The impact of the video frame size

of a single user on the link latency of the core network is negligible. Therefore, we do
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not consider such an impact in our core network latency model. Denote ak,n ∈ {0, 1}

as the server assignment indicator which indicates the kth user is served by the nth

server if ak,n = 1. Denote A = {ak,n |k ∈ K, n ∈ N } as the set of users’ server

assignments. Here, we set ak,n as a binary variable to restrict that a user can be

served by only one server at a time. Let lk,n be the core network latency between

the kth user’s associated wireless access point and the nth server, the core network

latency of the kth user can be expressed as

Ltk =
∑
n∈N

ak,nlk,n. (4.3)

4.1.2 Computational Latency Model

The computational latency is closely related to the computational complexity of

a user’s task and available computational resources on servers [61]. Let ck and fn

be the computational complexity of analyzing the kth user’s video frame and the

available computational resources on the nth server. We assume that the available

computational resources on a server are evenly shared by the users associated with

the server. Then, fn/
∑

m∈K am,n is the computational resources allocated to one user

on the nth server. Therefore, the computational latency experienced by the kth user

can be modeled as

Lpk =
∑
n∈N

ak,n
ck
fn

∑
m∈K

am,n. (4.4)

In order to characterize the computational latency, we have to figure out the re-

lationship between the computational complexity ck and the video frame resolution

sk × sk. To do so, we implement two object recognition algorithms, YOLO [66] and

SSD [67], on our workstation with Nvidia Quadro M4000 GPU. The original YOLO

algorithm resizes incoming video frames to a predefined resolution, e.g., 448 x 448,

before performing the object analytics. In order to measure the impact of the video
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Figure 4.1: The latency and accuracy vs. the frame resolution.

frame resolution on the object analytics performance, we enable the YOLO algorithm

to resize incoming video frames to different resolutions and perform the object an-

alytics based on resized video frames. The computational latency measured in the

experiments reflects the computational complexity of the object recognition under

different video frame resolutions.

Fig. 4.1 (a) shows that the computational latency increases when the video frame

resolution becomes higher. The speed of the latency increase becomes faster at a

higher video frame resolution. Such a relationship between the computational com-

plexity and the video frame resolution can be characterized by a convex function.

For example, the measurement data can be fitted by a convex function f(s2
k) =

7 × 10−10sk
3 + 0.083 with the root mean square error (RMSE) of 0.01. Based on

these observations, we model the computational complexity ck = ψ(s2
k) where ψ(s2

k)

is convex with respect to the video frame resolution s2
k.

4.1.3 Analytics Accuracy Model

The analytics accuracy highly depends on the resolutions of the AR video frame.

The higher video frame resolution usually results in a better mean average precision

of an object recognition function [68]. Therefore, we model the analytics accuracy

as a function of the video frame resolution. We define the analytics accuracy as the
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ratio between the number of correctly recognized objects and that of total objects in

a video frame. We build the analytics accuracy model based on the aforementioned

performance measurement. On calculating the accuracy, we assume that the YOLO

algorithm can detect all objects in a video frame when the video frame resolution is

600× 600 pixels.

Fig. 4.1 (b) shows the analytics accuracy of the YOLO and SSD algorithm under

different video frame resolutions. There are two observations. The first one that

a higher video frame resolution enables a better analytics accuracy. The second

observation is that the performance gain narrows down at a high video resolution.

Based on these observations, we can use a concave function to define the relationship

between the analytics accuracy and the video frame resolution. For example, the

concave function f(s2
k) = 1−1.578e−6.5×10−3sk can fit the measurement data with less

than 0.03 RMSE. Therefore, we model the analytics accuracy Ak = ξ(s2
k) where ξ(s2

k)

is a concave function with respect to video frame resolution s2
k.

4.1.4 Problem Formulation

Based on the analytical model, the total service latency of the MAR users is

L =
∑
n∈N

∑
k∈K

[
σs2

k

Rk

+ ak,n

(
lk,n +

ψ(s2
k)

fn

∑
m∈K

am,n

)]
, (4.5)

and the summation of the analytics accuracy of the MAR users is

A =
∑
k∈K

ξ(s2
k). (4.6)

On designing the edge network orchestrator, we aim to minimize the overall service

latency and maximize the total analytics accuracy of the MAR users. Therefore,

designing the orchestrator is a multi-objective optimization problem [69]. There is a

tradeoff between the service latency and analytics accuracy. In order to characterize
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the tradeoff, we introduce a positive weight parameter β which reflects the preference

between the service latency and analytics accuracy in optimizing the MAR system.

We adopt the weighted sum method [70] to express the multi-object optimization

problem as

P1 : min
{A,S}

F = L− βA

s.t. C1 : ξ(s2
k) ≥ δk,∀k ∈ K,

C2 :
∑

n∈N ak,n = 1,∀k ∈ K,

C3 : ak,n ∈ {0, 1},∀k ∈ K,∀n ∈ N

(4.7)

where δk is the minimum analytics accuracy requirement of the kth user; the con-

straints C2 and C3 ensure that an individual user is assigned to one and only one

server. The weight parameter β controls the latency-accuracy tradeoff. For example,

a larger β indicates that the MAR system prefers a higher accuracy. As a result, the

optimal solution of Problem P1 trades the average service latency for enhancing the

analytics accuracy.

4.2 The FACT Algorithm

Problem P1 is a mixed-integer nonlinear programming problem (MINLP) which

is difficult to solve [62]. We develop the FACT algorithm to solve the problem based

on the block coordinate descent method [71].

To solve Problem P1, we relax binary variables ak,n to continuous variables ãk,n.

Denote Ã = {ãk,n |k ∈ K, n ∈ N }. The relaxed problem is

P2 : min F = L− βA

s.t. C1, C2, 0 ≤ ãk,n ≤ 1.
(4.8)

Lemma 1. The Problem P2 is strictly convex with respect to the relaxed server

assignments Ã.
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Proof: For any feasible ãm,n, ãi,j, ∀m, i ∈ K,∀n, j ∈ N ,

∂2F

∂ãi,j∂ãm,n
=


2ψ(s2i )

fj
, i = m and j = n,

0, i 6= m or j 6= n,
(4.9)

The Hessian matrix H =
(

∂2F
∂ãi,j∂ãm,n

)
KN×KN

is symmetric and positive definite. The

constraints C2 and C3 are linear. The constraints C1 are irrelevant to Ã. Therefore,

P2 is strictly convex with respect to Ã [64].

Lemma 2. The Problem P2 is strictly convex with respect to frame resolution S.

Proof: For any feasible variable s2
i , s

2
j , ∀i, j ∈ K, we have

∂2F

∂s2
i∂s

2
j

=


∂2ψ

∂s2i ∂s
2
j

∑
n∈N

ãi,n
fn

∑
m∈K

ãm,n − β ∂2ξ
∂s2i ∂s

2
j
, i = j,

0, i 6= j,

(4.10)

Since ψ(s2
k) is convex function, ∂2ψ

∂s2i ∂s
2
j
is non-negative. Since ξ(s2

k) is concave function,
∂2ξ

∂s2i ∂s
2
j
is non-positive. Hence, the Hessian matrix H =

(
∂2F
∂s2i ∂s

2
j

)
K×K

is symmetric and

positive definite. Constraints C1 are convex, and Constraints C2 and C3 do not apply

to S. Therefore, Problem P2 is strictly convex with respect to S [64].

Lemmas 1 and 2 lay the foundation for solving Problem P2 with the block coor-

dinate descent method [71]. Based on this method, we develop a fast and accurate

object analytics (FACT) algorithm which solves Problem P2 by sequentially fixing

one variable, i.e., Ã or S, and updating the other one. The pseudo code of the FACT

algorithm is presented in Algorithm 3. At the beginning of the algorithm, the weight

β and video frame resolution S are initialized. With the fixed video frame resolution,

we solve Problem P2 to obtain the optimal server assignment Ã. Then, based on the

optimized Ã, we optimize the video frame resolution. After each iteration, the value

of the objective function F is calculated. The FACT algorithm iteratively optimizes

Ã and S until the objective function F is converged. In the algorithm, we introduce
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Algorithm 3: The FACT Algorithm
Input: The weight β, the convergence condition τ , the initial set of frame

resolutions S0.
Output: The set of server assignments A, the set of frame resolutions S.

1 S ← S0, i← 0;
2 while True do
3 Ã ← solve Problem P2 with fixed S;
4 S ← solve Problem P2 with fixed Ã;
5 Fi ← L− βA;
6 if |(Fi − Fi−1)/Fi| ≤ τ then
7 break;

8 i← i+ 1;

9 for k ∈ K do
10 for n ∈ N do
11 if n = arg max

j∈N
ãk,j then

12 ak,n ← 1;
13 else
14 ak,n ← 0;

15 S ← solve Problem P2 with A;
16 return A,S

an arbitrary small positive number τ to evaluate the convergence of the objective

function as shown in line 6 of the pseudo code. After solving Problem P2, ãk,n are

converted to ak,n according to

ak,n =


1, n = arg max

j∈N
ãk,j,

0, otherwise.
(4.11)

Theorem 1. The FACT algorithm converges to the optimal solution.

Proof: The convergence of the FACT algorithm to optimal solution can be proved

by showing that Problem P2 is strictly convex with respect to each block of variables,

e.g., Ã and S [71]. The convexity of Problem P2 is proved by lemma 1 and 2. Hence,

the optimality and convergence of the FACT algorithm is guaranteed.

Lemma 3. The FACT algorithm has a sub-linear convergence rate.
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Proof: The block coordinate descent method ensures a sub-linear convergence

rate [72]. The FACT algorithm is designed based on the block coordinate descent

method. Thus, it has a sub-linear convergence rate.

4.3 Simulation Results

In this section, we evaluate the FACT algorithm through large-scale simulations.

We simulate an edge network with 50 wireless access points and 20 servers. The

distribution of the wireless access points and the user traffic are derived based on

network traffic traces collected from an operating mobile network consisting of 10000

base stations and 50000 mobile users. The edge servers are randomly deployed in

the network. The network latency between wireless access points and edge servers

are generated according to the normal distribution with the mean value of 50ms.

The network latency between the wireless access points and the cloud server are also

generated based on the normal distribution but with a mean value of 150ms. The

wireless data rates of users are uniformly distributed between 1 to 10 Mbps. Based on

the measurements from our experiments, we adopt ck = ψ(s2
k) = 7× 10−10sk

3 + 0.083

TFLOPS as the computational complexity of analyzing a sk × sk video frame. In

the simulation, the computing capacities of the cloud and edge servers are set to 10

and 2 TFLOPS, respectively. We model as Ak = ξ(s2
k) = 1− 1.578e−6.5×10−3sk as the

analytics accuracy function on both cloud and edge servers. The default value of β

is 20, and the minimum video frame resolution is 40000 pixels (200× 200).

In the simulation, we compare the FACT algorithm with the three categories of

algorithms summarized in Table 4.1.

• Baseline: the baseline algorithm has a fixed video frame resolution and ran-

domly assigns servers to MAR users.

• Server assignment optimized: this category of algorithms optimize the server

assignments, but the video frame resolution is predefined. We implement max-

imum accuracy (maxA) and minimum latency (minL) algorithms which adopt
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Table 4.1: Algorithm Comparison

frame resolution server selection
fixed optimized random greedy optimized

FACT x x
Baseline x x
MaxA x x
MinL x x
LoadS x x
RandS x x
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Figure 4.3: The system performance vs. β.

the largest and smallest frame resolutions, respectively.

• Frame resolution optimized: these algorithms optimize the frame resolution,

but the server assignments are not optimized. We implement two methods:

random server selection (RandS) and least workload server selection (LoadS).
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Figure 4.4: The system performance vs. frame resolution.

4.3.1 The impact of β

The value of β impacts the tradeoff between the service latency and analytics

accuracy in the edge based MAR system. As shown in Fig. 4.2, by varying the value

of β, we derive the Pareto boundary which characterizes the latency-accuracy tradeoff

obtained by the FACT algorithm.

Fig. 4.3 shows the impact of β on the service latency and analytics accuracy of

different algorithms. When β increases, the MAR system emphasizes the performance

of the analytics accuracy. As a result, the FACT algorithm trades the service latency

for the analytics accuracy. Since the maxA, minL, and baseline algorithms do not

optimize the video frame resolution, the variation of β does not change the latency-

accuracy tradeoff. Hence, the performances of these algorithms do not show many

changes versus β. The latency fluctuation of the baseline algorithm is because of

the random server assignments. This simulation result also shows that, as compared

to the baseline algorithm, the FACT algorithm is able to reduce about 26% service

latency while maintaining the similar analytics accuracy (β = 20), and enhance about

8% analytics accuracy when ensuring a similar service latency (β = 90).

4.3.2 The impact of AR video frame resolution

The AR video frame resolution impacts not only the transmission and computa-

tional latency but also the analytics accuracy. In order to evaluate such impacts, we
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Figure 4.6: The system performance vs. core network latency.

vary the minimum video frame resolutions in the simulation. The maximum video

frame resolution is fixed at 600 × 600 pixels. The optimized video frame resolution

is between the minimum and maximum video frame resolutions. The video frame

resolution of the baseline algorithm is defined as the mean value of the minimum and

maximum video frame resolutions. As shown in Fig. 4.4 (a), the service latency of the

minL and baseline algorithm increases versus the minimum video frame resolution.

When the minimum video frame resolution is less than 350 × 350 pixels, the FACT

algorithm maintains the system performance (both the service latency and analytics

accuracy) because of the frame resolution optimization. When the minimum video

frame resolution is larger than 500 × 500 pixels, the FACT algorithm has the same

service latency as the minL algorithm because the optimal frame resolution equals

the minimum frame resolution. Fig. 4.4 (b) shows that the FACT algorithm obtains a
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lower latency at the cost of analytics accuracy. However, the latency-accuracy trade-

off is mitigated. For example, as compared with the baseline algorithm, the FACT

algorithm reduces about 40% latency at the cost of around 3% accuracy when the

minimum video frame resolution is 400× 400 pixels.

4.3.3 The impact of the number of users

Fig. 4.5 evaluates the impact of the number of users on the performance of the

edge-based MAR system. When the number of users increases, the edge servers

experience more workloads. Thus, the computational latency increases. As compared

with the other algorithms, the FACT algorithm achieves the smallest latency. Since

the FACT, LoadS and RandS algorithms optimize the video frame resolution, the

performance differences between the FACT algorithm and the other two algorithms

show the improvement gained from the optimal server assignment. Both RandS

and baseline algorithms adopt the random server selection. Hence, the performance

differences between these algorithms reflect the advantages of the frame resolution

optimization.

As compared with the baseline algorithm, the FACT algorithm gains up to 38% ser-

vice latency reduction with less than 10% loss of analytics accuracy when the number

of users is 100. When the number of users increases, the servers are overloaded. In

order to maintain a low service latency, the FACT algorithm aggressively reduces the

video frame resolution, which is the reason for the 10% loss in the analytics accuracy.

As compared with LoadS and RandS algorithms, the FACT algorithm improves both

the latency and accuracy performance.

4.3.4 The impact of the average network latency

Fig. 4.6 shows the impact of the average network latency on the performance of

the edge-based MAR system. Here, the average network latency reflects the average

transmission delay between the wireless access points and servers. As shown in the
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figure, the service latency of the MAR system increases versus the average network

latency. However, the FACT algorithm is able to minimize the service latency at

the cost of a slight decrease of the analytics accuracy. The latency gap between the

FACT, LoadS and RandS algorithms reflects the gain obtained through optimizing

the server assignment. The latency gap between the baseline and RandS algorithms

is due to the video frame resolution optimization.

4.4 The System Implementation and Experiments

In this section, we implement the edge-based MAR system including the edge net-

work orchestrator, MAR clients and MAR servers, and develop the corresponding

MAR communication protocol. We conduct experiments based on the implementa-

tion to validate the performance of the edge network orchestrator and MAR commu-

nication protocol.

4.4.1 The edge-base MAR system implementation

Fig. 4.7 overviews the edge-based MAR system which consists of three major com-

ponents: the edge network orchestrator, MAR client and MAR server.

The edge network orchestrator: the orchestrator is responsible for optimizing

the server assignment and video frame resolution for MAR users. The core of the

orchestrator is the FACT algorithm which performs the optimization. In order to

realize the FACT algorithm, three auxiliary modules are implemented. The first one

is the request handler which puts the incoming service requests into a FIFO queue and

dispatches the server assignments and video frame resolutions derived from the FACT

algorithm to the corresponding MAR users. The second module is the scheduler which

manages the service queue and invokes the FACT algorithm based on the queue length

and predefined optimization interval. In the implementation, the FACT algorithm

is invoked if the queue length equals to 10 or a 100ms timer is expired after the

last optimization. The optimization trigger, e.g., the queue length and timer, is
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Figure 4.7: The overview of edge-based MAR system.

adjustable in the implementation. The third module is the system status monitor

which monitors and collects the system information including users’ wireless data

rates, network latency between users and servers, and workloads on servers. This

information is inputted to the FACT algorithm for optimizing the server assignment

and video frame resolution. The orchestrator is deployed at the network edge and

can be accessed by MAR users with very short latency. We also implement the

baseline, maxA, minL, LoadS, and RandS algorithms in the network orchestrator for

the performance comparison.

The MAR Client: The MAR client captures the real-world video, sends frames to

a server and overlays the received information with its corresponding objects. There

are four functional modules implemented in the MAR client. The first one is the

network status monitoring module which measures wireless data rates and the network

latency between the user and servers. This model also triggers a service request to

the orchestrator for the performance optimization when the user’s service quality

is lower than a threshold. The second one is the user interface that captures the

real-world environments and displays the analytics results received from the server.

The third one is the service request module which sends the service request to the

orchestrator. The service request message contains the information of the user’s

wireless data rate and network latency toward edge and cloud servers. It also parses
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the control information about the frame resolution and server assignment received

from the orchestrator. The fourth module is the data communication module which

streams the AR video frames to an assigned server, and receives the analytics results

from the server. This module is also responsible for resizing the video frames according

to the frame resolution selected by the orchestrator. Since the current implementation

of our MAR server only supports six video frame resolutions, we select one of the

supported resolutions to approximate the video frame resolution determined by the

orchestrator.

The MAR Server: The MAR server is developed to process the video frames

and send the analytics results back to MAR users. The server is designed to serve

multiple users simultaneously through multi-threading. There are four major modules

implemented on the server. The first one is the service handler module which performs

the authentication and establishes a socket connection with MAR users. This module

is also responsible for dispatching the analytics results to corresponding MAR users.

The second one is the object analytics module, which decompresses the frames and

performs the object analytics for MAR users. The object analytics module is designed

based on the YOLO framework with the GPU acceleration [66]. In order to allow

the object analytics module to analyze video frames with different resolutions, we

loaded six models with different input resolutions. Therefore, the implemented object

analytics module supports six video frame resolutions. If the resolution of incoming

video frames does not match any of these video frame resolutions, the object analytics

module resizes the input video frames into one of the supported resolutions and then

analyzes the resized video frames.

The third one is the results processing module which prepares the information re-

lated to the recognized objects. The fourth module is the workload monitor which

monitors workloads on the server and updates the workload information to the or-

chestrator periodically.
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4.4.2 The edge-based MAR communication protocol

As illustrated in Fig. 4.8, the proposed communication protocol enables the MAR

service in five steps.

1. The MAR user sends a service request to the orchestrator. The service re-

quest message also includes the user’s wireless data rates and network latency

measurements. After the service is initialized, the service request message is

used to periodically update the user’s wireless data rates and network latency

measurements to the orchestrator.

2. Upon receiving the service request, the orchestrator decides the server assign-

ment and frame resolution, and sends them back to the user.

3. The user establishes a connection to the assigned server, and informs the server

of its configuration information.

4. After the connection is established, the user sends its AR video frames to the

server for the object analytics.

5. The MAR server detects and recognizes objects in the video frames, and sends

the results back to the user.
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Figure 4.9: The edge-base MAR testbed.
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4.4.3 Performance evaluation

An edge-based MAR testbed as shown in Fig. 4.9 is developed to evaluate the

performance of the proposed edge network orchestrator. The MAR clients are imple-

mented in Raspberry Pis and LXC containers connected to the emulated network via

wireless routers. The edge network is emulated by Mininet [73]. Using Mininet, we

can configure the core network latency and evaluate its impact on the system perfor-

mance. Three edge MAR servers are implemented using three NVIDIA Jetson TX

development kits, and one cloud MAR server is implemented on a Dell workstation
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Figure 4.11: The system performance measurements with different network latency.
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Figure 4.12: The system performance measurements with different RSSIs.

with Nvidia Quadro M4000 GPU.

Fig. 4.10 shows the latency and accuracy versus the number of users. Although the

latency increase with the growth of the number of users, the FACT algorithm achieves

significant latency reduction as compared to the other algorithms. For example, when

the number of users is 8, the FACT algorithm reduces 27% latency with only 1%

accuracy loss as compared to the baseline algorithm.

Fig. 4.11 shows the service latency and analytics accuracy versus the core network
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Figure 4.13: The performance measurements vs. β.

latency. The service latency increases with the growth of the core network latency.

However, the FACT algorithm outperforms the other algorithms. For instance, it

achieves about 25% latency reduction at the cost of less than 1% accuracy loss when

the average core network latency is 100 ms.

Fig. 4.12 evaluates the impact of wireless channel conditions on the service latency

and analytics accuracy. We use the Keysight J7211A attenuation control unit to vary

the channel fading between the wireless access point and a MAR user. In this way,

we evaluate the system performance under different wireless channel conditions. A

larger channel fading increases the signal attenuation and leads to a lower wireless

data rate. As a result, the service latency increases. Owing to the video frame

resolution optimization, the FACT algorithm is able to achieve low service latency

while maintaining a high analytics accuracy.

Fig 4.13 shows the tradeoff between the latency and accuracy with different β. A

larger β indicates the system prefers a higher analytics accuracy. When β is small,

e.g., β = 20, the FACT algorithm trades the analytics accuracy for the service latency.

Therefore, it achieves more than 40% service latency reduction at the cost of about

10% analytics accuracy loss as compared with the maxA algorithm. When β is large,

e.g., β = 60, the FACT algorithm prioritizes the analytics accuracy improvement. As

a result, it achieves an almost perfect analytics accuracy. At the same time, the FACT
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algorithm achieves lower latency than the maxA, LoadS, and RandS algorithms.



CHAPTER 5: VIRTUALEDGE: MULTI-DOMAIN RESOURCE

ORCHESTRATION AND VIRTUALIZATION

In this chapter, we propose the VirtualEdge system to address the challenges of the

multi-domain resource orchestration and virtualization. The VirtualEdge system dy-

namically creates a virtual node (vNode) on top of a physical cellular edge computing

node to serve the traffic and workloads of a network slice. To mitigate the conflict

between the isolation and radio resource efficiency, we introduce the concept of vir-

tual resources and design a two-step multi-domain resource orchestration framework.

To tackle the problems of multi-domain resource correlation and unknown utility

functions of vNodes, we develop a novel learning-assisted multi-domain resource or-

chestration algorithm. The idea is to construct a probabilistic model as the black-box

function that represents the relationship between the vNode performance and multi-

domain resource allocations, improve the accuracy of the model with observed data,

and estimate the gradient of the black-box function for optimizing the multi-domain

resource orchestration.

5.1 VirtualEdge Overview

The objective of VirtualEdge is to efficiently manage multiple resources in the

cellular edge computing node to maximize the performance of individual vNodes.

Meanwhile, VirtualEdge provides functional and performance isolation among vN-

odes. Toward this end, VirtualEdge realizes dynamic multi-domain resource slicing

in a cellular edge computing node in two steps. First, a multi-domain resource or-

chestration orchestrator is designed to allocate virtual resources to vNodes. Second, a

multi-domain resource hypervisor is developed to map the virtual resources to phys-
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ical resources.

Fig. 5.1 outlines the VirtualEdge system. To create network slices, service providers

send slice requests describing their resource requirements to the mobile network op-

erator who performs an admission control based on the resource availability. The

VirtualEdge System creates vNodes in the physical cellular edge computing node for

admitted slice requests. Given the resource requirements, the multi-domain resource

orchestrator allocates virtual resources to individual vNodes to maximize their util-

ities. Since the relationship between the performance of a vNode and the resource

allocation is unknown, the utility function of each vNode is a black-box function to

the resource orchestrator. Hence, we design a novel learning-assisted multi-domain

resource orchestration algorithm to solve the problem. In particular, we use a proba-

bilistic model to represent the black-box function and exploit the model to learn the

properties of the function [74]. Based on the learned properties of the utility func-

tions, the resource orchestration problem is solved by using the proximal gradient

method.

The service provider allocates virtual resources to its users based on a customized

resource management algorithm that maximizes the utility of the vNode. After this

step, in each vNode, the users’ traffic and workloads are mapped to virtual resources.

The multi-domain resource hypervisor takes these mappings as inputs to map virtual

resources to physical resources. In the virtual-to-physical resource mapping, since

the user information, e.g., wireless channel conditions, is available, the multi-domain

resource hypervisor leverages this information to exploit the multi-user diversity and

thus improve the efficiency of slicing radio resources. After the virtual-to-physical

resource mapping, vNodes update and feed their utilities back to the resource or-

chestrator for the next round of the virtual resource allocation. The multi-domain

resource orchestration algorithm converges after a few iterations, and then the per-

formance of vNodes will be stable. We detail the design of the multi-domain resource
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Figure 5.1: The overview of VirtualEdge.

orchestrator and hypervisor in Sections 5.2 and 5.3, respectively.

5.2 Multi-Domain Resource Orchestration

In this section, we present the multi-domain resource orchestration algorithm that

dynamically allocates virtual resources to vNodes

5.2.1 Resource Orchestration Problem Formulation

We consider a cellular edge computing node which is composed of a base station

and an edge server. Multiple vNodes are created in the cellular edge computing node

to serve users’ traffic and workloads of corresponding network slices. To provide

service to their users, vNodes need resources from multiple technical domains. Here,

we consider three resources from two technical domains. The resources are the uplink

radio resource (UR), downlink radio resource (DR), and computing resource (CR).
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Denote mi, ni, and ci as UR, DR, and CR allocated to the ith vNode, respectively.

The utility function of the ith vNode can be expressed as fi(mi, ni, ci). Let I be the

set of vNodes, and denote M tot, N tot, and Ctot as the total uplink, downlink, and

computing resources, respectively. The multi-domain resource orchestration problem

can be formulated as
max

{mi,ni,ci,∀i∈I}

∑
i∈I

αifi(mi, ni, ci)

s.t.

C1 :
∑
i∈I

mi ≤M tot,

C2 :
∑
i∈I

ni ≤ N tot,

C3 :
∑
i∈I

ci ≤ Ctot,

(5.1)

where constraints C1, C2, and C3 restrict that the resources allocated to vNodes

should not exceed the total resources. αi ≥ 0 is a weight for prioritizing the ith

vNode in the resource allocation.

5.2.2 The Multi-Domain Resource Orchestration Algorithm

It is difficult to solve the above optimization problem because the utility function

of each network slice is unknown. That is, the objective function of the problem is a

black-box function which is intractable when the orchestrator allocates the resource to

vNodes. However, we observe that it is not necessary to obtain the precise expression

of utility function for the resource allocation. The gradients of utility functions are

sufficient for updating the resource allocation iteratively with gradient-based meth-

ods. Toward this end, we construct a probabilistic model with Gaussian Process to

characterize the utility functions and learn its properties with observed data. The

accuracy of the model can be improved gradually with the increasing amount of ob-

served data. Based on the model, we define the predictive gradients of utility function

which are calculated based on the prediction of utilities. Then, with the predictive

gradients, we design the multi-domain resource orchestration algorithm based on the
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proximal gradient descent method that maximizes the utility of vNodes.

Denote xi = [mi, ni, ci]
T and fi(xi) as the allocated resources and utility of the ith

vNode. With the VirtualEdge system (Fig. 5.1), given xi, the resource orchestrator

can observe yi = fi(xi)+εi that is corrupted with Gaussian noise ε ∼ N (0, δ2
noise) [75].

Denote x1:t
i and y1:t

i as the set of resource allocations and corresponding observations

in the t iterations, respectively. As the observations D1:t
i = {x1:t

i , y
1:t
i } accumulate,

the posterior distribution of the black-box function can be obtained by combining the

prior distribution P (fi(xi)) and the likelihood function P (D1:t
i |fi(xi)):

P (fi(xi)|D1:t
i ) ∝ P (D1:t

i |fi(xi))P (fi(xi)). (5.2)

The posterior updates the beliefs about the black-box function.

A Gaussian process [75] is completely specified by its mean function µ and covari-

ance function k,

fi(xi) ∼ GP(µ(xi), k(xi,x
′
i)) (5.3)

where

k(xi,xj) = exp(−1

2
||xi − xj||2). (5.4)

Given a potential resource allocation x∗i , we can derive the predictive posterior

distribution

P (fi(x
∗
i )|D1:t

i ,x
∗
i ) ∼ N (µt(x∗i ), σ

2
i (x
∗
i )) (5.5)

where

µt(x∗i ) = kT [K + δ2
noiseI]−1y1:t

i (5.6)

and

σ2
i (x
∗
i ) = k(x∗i ,x

∗
i )− kT [K + δ2

noiseI]−1k (5.7)
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are the sufficient statistics of predictive posterior distribution P (fi(x
∗
i )|D1:t

i ,x
∗
i ). Here,

k = [k(x∗i ,x
1
i ), k(x∗i ,x

2
i ), · · · , k(x∗i ,x

t
i)], (5.8)

and

K =


k(x1

i ,x
1
i ) · · · k(x1

i ,x
t
i)

... . . . ...

k(xti,x
1
i ) · · · k(xti,x

t
i)

 . (5.9)

Based on the predictive posterior distribution, we define the predictive gradient of

the black-box function at xti as

∇fi(xti) := [∇fi(mt
i),∇fi(nti),∇fi(cti)]T

:=


1

∆m
(µt([mt

i + ∆m,nti, c
t
i])− yti)

1
∆n

(µt([mt
i, n

t
i + ∆n, cti])− yti)

1
∆c

(µt([mt
i, n

t
i, c

t
i + ∆c])− yti)

 (5.10)

where ∆m, ∆n, and ∆c are small positive constants.

Since a vNode usually has better service performance when allocated more re-

sources, it is reasonable to assume that the utility functions of vNodes are non-

decreasing versus the allocated resources. Therefore, the predictive gradients are

non-negative and provide guidance on the resource allocation. For example, when

∇fi(mt
i) is larger than ∇fi(nti) and ∇fi(cti), it indicates that uplink radio resources

is the performance bottleneck in the ith vNode. Meanwhile, if ∇fi(mt
i) is larger than

∇fi(mt
j), ∀j ∈ I, it means that allocating more uplink radio resource to the ith vNode

can improve the overall utility of the vNodes created in the cellular edge computing

node.

With the predictive gradients, we solve the multi-domain resource orchestration

problem using the proximal gradient descent method [64]. At the beginning, resources
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are evenly allocated to vNodes. Then, the resource orchestrator observes the utilities

of vNodes. Based on the observed utilities of the ith vNode for t iterations, the

resource orchestrator updates the resource allocations to the ith vNode as follows:

xt+1
i = xti + αiλ · ∇fi(xti) (5.11)

where λ = [λm, λn, λc]T is the vector of positive step sizes for searching the optimal

solution, and · is the dot product operator.

Since the total radio and computing resources are constrained, we have to ensure

that the allocated resources do not exceed the total resources in the cellular comput-

ing node. Therefore, we project the resource allocations into a bounded domain that

satisfies the total resource constraints in the physical cellular edge computing node.

Define PΩ (x) = arg min
y∈Ω
‖x− y‖2 as the Euclidean projection of x on Ω. Denote

mt+1 = {mt+1
i |∀i ∈ I}, nt+1 = {nt+1

i |∀i ∈ I} and ct+1 = {ct+1
i |∀i ∈ I}. Then, the

resource allocations are projected to corresponding domains as mt+1 = PΩm(mt+1),

nt+1 = PΩn(nt+1), and ct+1 = PΩc(c
t+1), respectively. Here, Ωm,Ωn and Ωc are the

bounded domains of uplink, downlink and computing resources, respectively. The

bounded domains are defined to ensure that the resource allocations satisfy the con-

straints C1, C2, and C3 in the multi-domain resource orchestration problem.

The pseudo-code of the multi-domain resource orchestration algorithm is summa-

rized in Algorithm 4. When the amount of observed data is insufficient, the prediction

about the posterior distribution is not accurate, and the predictive gradients are close

to zero. To solve this problem, we use random gradients for calculating future re-

source allocations at the beginning of the algorithm until sufficient data are observed.

The algorithm stops when the resource allocations converge.

Proposition 1. ∇f̄i(xi),∀i ∈ I are the controllably accurate gradient approximations

of ∇fi(xi),∀i ∈ I if fi(xi),∀i ∈ I are Lipschitz continuous.
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Algorithm 4: Multi-Domain Resource Orchestration
Input: M tot, N tot, Ctot, and η.
Output: mi, ni, ci, ∀i ∈ I.

1 Initialize mi, ni, ci, ∀i ∈ I, and set t← 1;
2 while True do
3 / ∗ ∗query the utility of vNodes ∗ ∗/;
4 fi (mi, ni, ci) ,∀i ∈ I;
5 / ∗ ∗update posterior distribution for vNodes ∗ ∗/;
6 µt(xti)← Eq. 5.6, σ2

i (x
t
i)← Eq. 5.7,∀i ∈ I;

7 / ∗ ∗compute predictive gradients ∗ ∗/;
8 ∇fi(xti)← Eq. 5.10,∀i ∈ I;
9 / ∗ ∗update allocation based on gradients ∗ ∗/;

10 xt+1
i ← Eq. 5.11;

11 / ∗ ∗project resource allocation ∗ ∗/;
12 mt+1 ← PΩm(mt+1), nt+1 ← PΩn(nt+1), ct+1 ← PΩc(c

t+1);
13 / ∗ ∗determine algorithm convergence ∗ ∗/;
14 if ||xt+1

i − xti|| ≤ η,∀i ∈ I then
15 break;

16 t← t+ 1;

17 return mi, ni, ci, ∀i ∈ I

Proof: Denote fi(xi) and f̄i(xi) as the utility and predicted utility of the ith slice

at xi, respectively. The predictive gradients are defined as ∇f̄i(xi) = (f̄i(xi + τ) −

fi(xi))/τ = (µ(xi + τ)− fi(xi))/τ, ∀i ∈ I (Eq. 5.10). Then,

|∇f̄i(xi)−∇fi(xi)| =
1

τ
|(µ(xi + τ)− fi(xi + τ))| (5.12)

=
1

τ
(|kT [K + δ2

noiseI]−1y1:t
i − fi(xi + τ)|),

where yi = fi(xi) + ε. Since the utility functions fi(xi),∀i ∈ I are Lipschitz con-

tinuous [64], there exists a positive real constant κ such that, for all real x1
i and

x2
i ,

|fi(x1
i )− fi(x2

i )| ≤ κ|x1
i − x2

i |,∀i ∈ I. (5.13)

Hence, we obtain

|∇f̄i(xi)−∇fi(xi)| ≤ ∆, (5.14)
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where ∆ is a constant. Accoridng to Definition 10.1 in [76], the ∇f̄i(xi),∀i ∈ I are

the controllably accurate gradient approximations of ∇fi(xi),∀i ∈ I.

Theorem 2. The multi-domain resource orchestration algorithm converges if fi(xi), ∀i ∈

I are non-decreasing and Lipschitz continuous.

Proof: The resource orchestration algorithm is designed based on proximal gra-

dient method. According to Theorem 10.6 in [76], the convergence of the algorithm

can be proved by showing 1) the predictive gradients ∇f̄i(xi),∀i ∈ I are the con-

trollably accurate gradient approximations of ∇fi(xi),∀i ∈ I; and 2) the step size is

positive in the gradient-based descent method. The first condition has been proved in

Proposition 1. Since the step size in the algorithm is positive, the algorithm satisfies

both conditions required for the convergence. Therefore, the convergence of Alg. 4 is

proved.

5.3 Multi-Domain Resource Hypervisor

The multi-domain resource hypervisor is developed to provide a unified multi-

domain resource abstraction view so that the resource orchestrator and vNodes can

efficiently manage resource allocations for the vNodes and users, respectively. The

hypervisor performs multi-domain resources, i.e., radio and computing, virtualization

which maps virtual resources in multiple domains to the underlying physical resources.

In resource virtualization, the design objective is to ensure the isolation among vNodes

while maximizing utilization of physical resources, e.g., exploiting diversity gains in

wireless communications.

5.3.1 Radio Resource Virtualization

In the system, we let vNodes share the same control plane and focus on virtualizing

resources in the user plane, i.e., PUSCH/PDSCH in LTE. For the control plane, we

add a function in the eNodeB, i.e., radio base station, to associate users to corre-

sponding vNodes; other than that, the control plane operations follow the standard
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LTE protocol implemented in OAI LTE platform [77]. For the user plane, we realize

the virtual-to-physical resource mapping by managing the uplink/downlink resources

(URs/DRs), i.e., physical resource blocks (PRBs), in the MAC layer as shown in

Fig. 5.2. Here, the URs and DRs are referred to as the uplink and downlink band-

width, respectively. During the virtual-to-physical resource mapping, the URs and

DRs are converted to the corresponding number of PRBs.

Each vNode performs its resource scheduling and allocates URs and DRs to its

users. Then, we calculate the number of PRBs, Nk, required by the kth user. Here,

we use RR (radio resource) to represent either URs or DRs. Since the bandwidth of a

PRB in LTE is 180kHz, Nk = bRR/180kHzc where bxc returns the greatest integer

less than or equal to x. After the RRs are allocated to users, the virtual resources

allocated to users of all vNodes are known. Hence, instead of allocating physical

resources to each vNode statically, we are able to map the virtual resources of users

to physical resources dynamically, which allows the exploitation of the diversity gain

in wireless communications.

Due to the dynamics of the wireless channel, mobile users have varying signal-to-

noise-plus-interference ratios (SINRs) on different PRBs. Based on the SINR, the

number of bits carried by the jth PRB for the kth user rj,k can be derived using

the modulation and coding scheme (MCS) in LTE. Denote the set of scheduled users

and PRBs as K and J , respectively. The virtual-to-physical radio resource mapping

problem can be expressed as

max
{xk,j ,k∈K,j∈J}

∑
k∈K

∑
j∈J

xk,jrk,j

s.t.

C1 :
∑

k∈K xk,j = 1,∀j ∈ J ,

C2 :
∑

j∈J xk,j ≥ Nk,∀k ∈ K,

C3 : xk,j ∈ {0, 1},∀k ∈ K, j ∈ J ,

(5.15)
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Figure 5.2: An illustration of radio resource virtualization.

where the integer variable xk,j = 1 indicates that the jth PRB is allocated to the kth

user. The above problem is an integer programming and difficult to solve [64].

We propose a heuristic algorithm to solve the above problem for uplink and down-

link virtual-to-physical resource mapping, respectively. The basic idea is to select the

user with the best channel condition for each PRB. In the case of downlink, for the

jth PRB, we assign it to the user with maximum rk,j from the set of users whose

DRs are not fully mapped to PRBs. If there are surplus PRBs, we assign them to

the user who has the best channel condition on these PRBs. In the uplink, since

the SC-FDMA (single carrier FDMA) is adopted in LTE, the PRBs allocated to a

user must be contiguous in frequency domain [78]. For the jth PRB, we select the

user with the best channel condition from the set of users whose URs are not fully

mapped to PRBs. If the user requires N PRBs, the jth to the (j + N − 1)th PRBs

are allocated to the user to ensure that the frequencies are allocated contiguously.

If there are surplus PRBs, they are allocated to users whose current PRBs and the

surplus PRBs are contiguous.

5.3.2 Computing Resource Virtualization

Since most of the compute-intensive applications rely on GPUs to accelerating the

computation, we consider GPUs as the edge computing processors and develop com-
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void *mykernel_thread_func(void * arg){
    KernelSpawn(PARA);
    MyKernel<<<BLKNUM,THDNUM>>>(parameters);
    cudaEventSynchronize(myevent);
}

void main(){
    float  * d_A;
    cudaMalloc(&d_A, size);
    cudaMemcpy(d_A,h_A,size,cudaMemcpyHostToDevice);
    pthread_create(&my_thread, NULL, 
                                  mykernel_thread_func, &parameters);
    WaitScheduleSpawn();
    cudaMemcpy(d_A,h_A,size,cudaMemcpyDeviceToHost);
    cudaFree(d_A);
}
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Figure 5.3: An illustration of GPU Virtualization.

puting resource virtualization on CUDA GPU computing platform. In the CUDA

programming model, an application can launch multiple kernels that can be concur-

rently executed by CUDA threads [79]. Multiple threads are grouped into a warp

which is the smallest scheduling granularity on CUDA-enable GPU. Since the tech-

nical details of the warp scheduler are not publicly available, it is challenging to

dynamically virtualize GPU resources. To realize the computing resource virtualiza-

tion, we introduce an FIFO queue to buffer the kernel command in the user space

and design a credit-based queue management scheme to manage the dispatch of these

commands. In the user space, the KernelSpawn function is developed to push ker-

nel commands into the FIFO queue. The kernel commands are popped out of the

queue when the KernelSpawn function receives a permission from the queue manager.

The kernel is executed after the corresponding kernel command is popped out of the

queue. This process is illustrated in Fig. 5.3. Since we create a system thread with

the non-blocking property for running the KernelSpawn function, the executions of

kernels remain asynchronous.

In the credit-based queue manager, the credit of a user at time t is updated as

Ct = Ct−1 + St −
∑

j
Tj. (5.16)
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where St is the credits generated every millisecond and Tj is the number of requested

parallel threads of the jth running kernel. Here, St is determined by the virtual

computing resource (CRs) allocated to the user. When the user has sufficient credits,

the queue manager sends a permission message to let the KernelSpawn function pop a

kernel command out of the FIFO queue. Since the credit update needs the execution

status of kernels which are not available in CUDA, we create cudaEvents and use the

cudaEventSynchronize() function to record and track the execution status of kernels,

respectively.

In the CUDA programming model, cudaDeviceSynchronize() builds an explicit bar-

rier to wait the completion of all dispatched kernels. With the credit-based queue

management, the barrier can be falsely cleared by cudaDeviceSynchronize() when the

credit generation rate is slow. For example, assume that a user has enqueued 100

kernel commands. 80 of them are dispatched to the kernel space, and the remaining

20 are queued waiting for credits. If the dispatched kernels are completed before any

new kernel commands are dispatched, cudaDeviceSynchronize() will clear the barrier.

We introduce a new function namedWaitScheduleSpawn to address this problem. The

WaitScheduleSpawn function ensures all previous kernels being dispatched and then

calls the cudaDeviceSynchronize() to wait the completion of kernels. On designing

the credit-based queue manager, we do not modify the source codes of kernels and the

CUDA drivers. Therefore, the proposed computing resource virtualization solution

can be utilized to virtualize GPU resources for any CUDA-based programs.

5.4 Performance Evaluation

We implement the VirtualEdge system and evaluate its performance and various

properties through both experiments and network simulations.
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Figure 5.4: The overview of the system prototype.

5.4.1 System Implementation

The orchestrator maintains a context information table that consists of the vNode

identifier, user identifier, and resource allocations. The vNode identifier indicates

which vNode a user belongs to. We use the international mobile subscriber identity

(IMSI) and the radio network temporary identifier (RNTI) to identify a user in the

system. In order to build the context information table, we extract a user’s IMSI

from the user’s message sent from eNodeB to mobile management entity (MME) via

S1 Application Protocol (S1AP). We obtain the user’s RNTI in the MAC layer once

it is available and match the RNTI with the IMSI. The RNTI-to-IMSI matching is

necessary because our radio resource virtualization is implemented on the MAC layer

where users can only be identified by their RNTIs. To identify a user in computing

resource virtualization, the mobile application is responsible for sending the user’s

IMSI to the edge computing node. In order to determine the virtual-to-physical

resource mapping in the hypervisor, the resources allocated to users are recorded in

the context information table. If the context information of the vNode changes, e.g.,

new vNode creation, the updated context information is pushed to the hypervisor

through a TCP socket.
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5.4.2 System Prototype

We develop a small-scale prototype as shown in Fig. 5.4 to evaluate the perfor-

mance of the VirtualEdge system. The system prototype consists of a cellular edge

computing node composed of an eNodeB and a GPU server and four user equipment

(UEs). On the cellular edge computing node, two vNodes are created, and each vN-

ode has two UEs. The eNodeB is implemented using Ettus USRP B210 [80] based

on the OpenAirInterface (OAI) LTE platform [77], and the core network is built with

OpenAir-CN that is an open-source implementation of the LTE evolved packet core

(EPC) [81]. The UEs are emulated using LTE dongles [82]. The carrier frequencies

of the LTE system are 2.655GHz for downlink and 2.535GHz for uplink. The total

uplink and downlink bandwidth are 5MHz (25 PRBs), respectively. The computing

resource virtualization is implemented using a NVIDIA GeForce GTX 1080 Ti with

CUDA GPU computing platform [79,83].

5.4.3 Compute-intensive Applications

To evaluate the VirtualEdge system, we develop two compute-intensive mobile

applications based on the YOLO object detection algorithm [84]: mobile augmented

reality (MAR) and video analytics and streaming (VAS). The first and second vNodes

support MAR and VAS applications, respectively.

• Mobile Augmented Reality (MAR):A client continuously sends the camera-

captured frames to the server and retrieves the object detection results. The

server performs object detection using the YOLO algorithm, and sends detection

results back to the client. The computation model is YOLO 288x288. Here,

YOLO 288x288 means the YOLO object detection algorithm tuned at the image

resolution of 288x288. MAR represents the applications that have heavy uplink

traffic loads and moderate computing workloads.
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• Video Analytics and Streaming (VAS): A client sends a streaming request

to the server. The server retrieves the real-time camera frames, processes it

with YOLO 544x544, and then sends the frames with detection results back to

the client. The VAS represents applications that have heavy downlink traffic

loads and intensive computing workloads. Here, YOLO 544x544 has higher

computation complexity than YOLO 288x288.

5.4.4 Experimental Evaluation

In the experiments, the vNode latency (vNL) is defined as the sum latency of

all users in a vNode; the instantaneous system latency (iSysL) is defined as the

summation of the weighted vNL of all vNodes at each iteration; the average system

latency (aSysL) is defined as the average iSysL over all iterations. We adopt the

minus vNode latency as the utility of a vNode. Therefore, maximizing the vNode

utility equals to minimizing the vNode latency. We compare the VirtualEdge system

with the following systems:

• Static allocation (Static): Static evenly allocates the multi-domain resources

to every vNode.

• Traditional Bayesian optimization (TBO): TBO treats the overall system

performance as a black-box function of resource allocations in all vNodes, mod-

els the distribution of the black-box function using the Gaussian process, and

uses the expected improvement (EI) as the acquisition function to maximize

the probability of improving over the best current value [85]. The pseudo-code

is summarized in Alg. 5. We implement the TBO and apply it to solve the

multi-domain resource orchestration problem.

Convergence: Fig. 5.5 (a) shows the iSysL versus the number of iteration under

three systems. Both VirtualEdge and TBO converge after about 20 iterations and

achieve about 27% reduction of iSysL as compared to Static. Static maintains an

almost constant iSysL performance since it evenly allocates resources to all vNodes.
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Algorithm 5: Traditional Bayesian Optimization
1 for t = 1, 2, ..., Tmax do
2 Select new point xt by maximizing acquisition function under resource

constraints C1, C2, C3;
3 Query the utility yt =

∑
i∈I fi(x

t);
4 Augment data set D1:t = {D1:t−1; (xt, yt)};
5 Update posterior distribution with Eq. 5.6 and Eq. 5.7;

6 return x
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Figure 5.5: The convergence performance of the VirtualEdge system.

TBO has a larger jitter than the VirtualEdge system for two reasons. First, the

black-box function of TBO has more variables, and thus it requires more data points

to learn the properties of the black-box function. Second, the multi-domain resource

orchestration algorithm in the VirtualEdge system provides a more accurate and

stable estimation of the black-box functions.

Application awareness: Fig. 5.5 (b) illustrates the resource utilization of vNodes

versus the number of iterations in the VirtualEdge system. It shows that the first

vNode utilizes more URs but less DRs than the second vNode. This is because

the MAR application in the first vNode has heavier traffic loads in the uplink while

the VAS application in the second vNode has heavy traffic loads in the downlink.

Since the computing demand of the VAS application is higher than that of the MAR

application, more computing resources are allocated to the second vNode to improve
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Figure 5.6: The comparison between static and dynamic mapping.

the utility. This result implies that the orchestrator is able to allocate multi-domain

resources according to the characteristics of applications in vNodes.

Radio resource virtualization efficiency: To evaluate the efficiency of virtual-

izing radio resource, we compare the uplink and downlink throughput with static and

dynamic mapping of virtual-to-physical radio resources under stationary and random

walk scenarios. Here, the larger throughput reflects the higher radio resource effi-

ciency. The VirtualEdge system develops the dynamic mapping of radio resources for

vNodes. Other existing radio access network virtualization system such as Orion [29]

and NVS [48] uses the static mapping between the virtual and physical radio resources.

As shown in Fig. 5.6, when the users are stationary, the wireless channels are

relatively stable, the frequency diversity that can be exploited is small. As a result,

the throughput with static and dynamic mapping is almost the same. However, in

the random walk scenario, the dynamic mapping, i.e., VirtualEdge, outperforms the

static mapping, e.g., Orion and NVS, in terms of throughput. This is because, with

the dynamic mapping, the Virtual Edge system can exploit the frequency diversity

among users to maximize the throughput. Note that when there are a large number

of users, the gain of dynamic mapping will be more significant.

Functional isolation: The functional isolation ensures that each vNode can cus-

tomize its resource management strategy. Figs. 5.7 (a) and (b) show that V irtualEdge
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provides the functional isolation in the radio and computing resource virtualization,

respectively. Given the total amount of resources including both radio and comput-

ing resources, a vNode can freely allocate these resources to its users. Here, 50%50%

means that the resources are evenly allocated to both users, while 66%33% means that

66% and 33% of the resources are allocated to the first and second users, respectively.

The performance of the users varies according to resource allocations.

Performance isolation: The performance isolation mainly ensures that the per-

formance of different vNodes is independent. Figs. 5.7 (c) and (d) show the per-

formance isolation of V irtualEdge. The performance of vNodes is regulated by the

orchestrator through resource allocations. Under the scenario of 66%33%, the first

vNode has much better performance than the second vNode in terms of both the

network throughput and computing latency. Although the vNodes share the same

physical cellular edge computing node, the second vNode, which has a worse perfor-

mance, does not grab resources from the first vNode.

Prioritization: With the VirtualEdge system, we can change the priority of the

vNodes in the resource orchestration by modifying the weights of the vNode’ utility.

Fig. 5.8 (a) shows that modifying the weight can effectively change the vNL.

Utility observations: In each iteration of the resource orchestration, both TBO

and V irtualEdge have to observe the utility of vNodes by querying the value of

the corresponding black-box functions with current resource allocation. Since the

network system is dynamic, the utility observations may contain some noises. These

noises can be reduced by obtaining the average of multiple observations with the same

resource allocation. Fig. 5.8 (b) shows the impact of the number of observations on

the system performance. We can see that more observations per iteration lead to a

lower aSysL because the observed utility is more reliable after the noise is reduced.

The disadvantage of having multiple observations per iteration is the additional time

spent on querying the utility. Hence, with multiple observations per iteration, both
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V irtualEdge and TBO need a longer time to converge to a relatively stable resource

allocation solution.
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5.4.5 Simulation Evaluation

The objective of the simulation is to evaluate the scalability of the multi-domain

resource orchestration algorithm developed in the V irtualEdge system. In the simu-

lation, there are ten vNodes, and the number of users in vNode is randomly selected

between one to five. The utility of the ith vNode is defined as the minus vNode

latency

Ui = −
∑
k∈K

(
Du
k

fk(mi)
+

Dd
k

gk(ni)
+

Ck
hk(ci)

)
(5.17)

where fk(mi), gk(ni) and hk(mi) are the uplink data rate, downlink data rate, and

virtual computing resources of the kth user, respectively. Du
k , Dd

k and Ck are the

corresponding uplink, downlink and computing resource demands in Mbps, Mbps,

and Credit/ms (credits per millisecond), respectively. We consider three types of

applications whose [Du
k , D

d
k, Ck] are [10, 1, 1], [1, 10, 1] and [1, 1, 10], respectively. We

define the heterogeneity of an application as the ratio of the dominant resource to the

average of the non-dominant resources. The total uplink and downlink resources are

100 Mbps, respectively. The total computing credit is generated at a speed of 100

Credit/ms.

To evaluate the performance of the proposed multi-domain resource orchestration

algorithm, we implement a brute-force multi-domain resource orchestration algorithm

based on the branch-and-bound search (BnBS) [64]. In the simulation, we use BnBS

to represent the brute-force algorithm. Note that the brute-force algorithm is not

practical in a real system due to its very high complexity. However, this algorithm

provides a lower bound of the system latency.

Convergence: In Fig. 5.9 (a), we validate the convergence of the proposed algo-

rithm. For the seek of simplicity, we use VirtualEdge to represent the multi-domain

resource orchestration algorithm developed in the VirtualEdge system in the simu-

lation results. In the simulation, VirtualEdge converges in about 40 iterations and
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Figure 5.9: The simulation evaluation of the resource orchestration algorithm.
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Figure 5.10: The simulation evaluation of the resource orchestration algorithm.

closely approximate the performance of BnBS in terms of iSysL. TBO can not con-

verge because of the difficulty in learning the black-box function with a large number

of variables. Besides, VirtualEdge significantly outperforms TBO, e.g., 20% reduc-

tion of aSysL. Fig. 5.9 (b) shows a snapshot on the multi-domain resource allocation

of all systems. As shown in the figure, VirtualEdge and BnBS have very similar

multi-domain resource allocations.

Scalability: Fig. 5.10 (a) evaluates the performance of VirtualEdge under differ-

ent number of vNodes. Since the total resource is constrained, all systems have a

longer average system latency (aSysL) under a large number of vNodes. However,

the performance of VirtualEdge approximates that of BnBS very well. We also ob-

serve that the performance gap between VirtualEdge and TBO enlarges with the
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increment of the number of vNodes. This is because the black-box function defined

in the TBO has much more variables than that defined in VirtualEdge. For TBO,

the number of variables in the black-box function equal to the number of vNodes

multiplies by the number of resource types. For VirtualEdge, the number of variables

in the black-box function is the number of resource types. With a large number of

vNodes, TBO cannot efficiently solve the black-box optimization problem with the

limited data observations and iterations, and thus results in a worse performance.

Heterogeneity: Fig. 5.10 (b) shows the impact of the application heterogeneity

on the multi-domain resource orchestration. When the heterogeneity is small, there

is not much room for the resource orchestration because an application requests a

similar amount of resources from all the technical domains. Hence, the performance

of the multi-domain orchestration algorithms, i.e., VirtualEdge, TBO, and BnBS, are

similar to that of Static. When the heterogeneity is large, the multi-domain algorithms

can learn the resource demands from vNodes and optimizes the resource allocation

accordingly. Therefore, VirtualEdge achieves a significantly lower aSysL than the

Static when the heterogeneity equals to ten. In the simulation, the demands of non-

dominant resources are set to 1 Mbps and 1 Credit/ms for radio and computing

resources, respectively. For example, if the uplink radio resource of an application

is dominant and the heterogeneity of the application is 5, the demand of the uplink

radio resource will be 5 Mbps. Therefore, in the simulation, when the application

heterogeneity is larger, the vNode requires more resources. This is the reason why

aSysL increases with respect to the heterogeneity of the applications in the simulation.



CHAPTER 6: DIRECT: DISTRIBUTED CROSS-DOMAIN RESOURCE

ORCHESTRATION

In this chapter, we design the DIRECT protocol based on the alternating direction

method of multipliers (ADMM) method and a new learning-assisted optimization

(LAO) approach. To address the cross-domain virtual resource orchestration prob-

lem, we apply ADMM to decompose the problem into two subproblems. The first

subproblem handles the resource orchestrations within an edge node while the second

subproblem coordinates the resource allocation among edge nodes. Since the slice

performance model is not available, we represent the performance of a slice using a

black-box function. Therefore, the first subproblem becomes a black-box optimization

problem. We solve this problem by designing a new learning-assisted optimization

algorithm that constructs a probabilistic model for the black-box function and itera-

tively learn the gradients of the function with the observed data for the optimization.

The second subproblem is a standard quadratic programming problem, and we solve

it based on convex optimization.

6.1 System Model

In cellular edge computing, the performance of a network slice depends on resources

from multiple technical domains. Here, we mainly consider the radio resources and

computing resources from a radio access network and edge servers, respectively. On

modeling the system, we introduce a logic network unit, edge node, which is composed

of a cellular base station and a certain amount of computing resources. Then, cellu-

lar edge computing is composed of a collection of edge nodes. To provide seamless

mobility and continuous services, network slices need resources from all edge nodes.
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Let I, J and K be the set of network slices, edge nodes and resources, respectively.

Denote xi,j,k as the amount of the kth resource allocated to the ith network slice

on the jth edge node, and let X = {xi,j,k|∀i ∈ I, j ∈ J , k ∈ K} be the set of the

resource allocations. Denote xi,j = {xi,j,k|∀k ∈ K} as the set of resources allocated

to the ith network slice on the jth edge node. We define the utility function, i.e.,

performance, of the ith network slice on the jth edge node as fi,j(xi,j). Denote Rtot
j,k

as the total amount of the kth resource on the jth edge node. The service provider

pays the mobile network operator for running the network slice according to service

level agreement. Denote γj,k and Qtot
i as the unit price of the kth resource on the jth

edge node and the total payment of the ith network slice, respectively.

The objective of the mobile network operator is to maximize the sum utility of

network slices on all edge nodes. Therefore, the cross-domain resource orchestration

problem is formulated as

max
{xi,j,k≥0}

∑
i∈I

∑
j∈J

fi,j(xi,j)

s.t.

C1 :
∑

j∈J
∑

k∈K xi,j,kγj,k ≤ Qtot
i ,∀i ∈ I,

C2 :
∑

i∈I xi,j,k ≤ Rtot
j,k,∀j ∈ J , k ∈ K.

(6.1)

Here, constraints C1 ensure that the cost of the resources allocated to a network slice

do not exceed the network slice’s payment; constraints C2 restrict that the amount of

the kth resource allocated to network slices on the jth edge node should be less than

the total amount of the kth resource on the jth edge node for all j ∈ J and k ∈ K.

For the sake of simplicity, we let γj,k = 1, ∀j ∈ J , k ∈ K and simplify constraints C1

as
∑

j∈J
∑

k∈K xi,j,k ≤ Qtot
i ,∀i ∈ I.



86

6.2 Distributed Resource Orchestration

In this section, we present the distributed resource orchestration algorithm that

solves the problem in Eq.6.1. This problem is difficult to solve because all utility

functions fi,j(xi,j), ∀i ∈ I, j ∈ J are unknown, have various mathematical properties,

and are coupled by the constraints. To solve this problem, we decompose it to two

subproblems using the ADMM method. The first subproblem is to optimize the

resource orchestration within an edge node, where the utility functions of the network

slices are unknown. This falls into the realm of black box optimization. However, the

classic black box optimization methods, e.g., genetic algorithms and pattern search

methods, have very high computation complexity and are not appropriate for solving

the resource orchestration problem. Therefore, we design a new learning-assisted

resource orchestration algorithm to solve the subproblem. The second subproblem is

to coordinate the resource orchestration among network slices and can be efficiently

solved by convex optimization methods.

6.2.1 Problem Decomposition

To decompose the problem, we introduce an auxiliary variable zi,j,k and let Z =

{zi,j,k|∀i ∈ I,∀j ∈ J , ∀k ∈ K}. Then, the problem in Eq.6.1 is equivalent to

max
{xi,j,k,zi,j,k}

∑
i∈I

∑
j∈J

fi,j(xi,j)

s.t.

C1 :
∑

j∈J
∑

k∈K zi,j,k ≤ Qtot
i ,∀i ∈ I,

C2 :
∑

i∈I xi,j,k ≤ Rtot
j,k, ∀j ∈ J , k ∈ K,

C3 : xi,j,k = zi,j,k, ∀i ∈ I, j ∈ J , k ∈ K.

(6.2)

After the transformation, the problem has two set of variables, i.e., X and Z, which

are coupled by constraints C3. Based on the ADMM method, we decompose the

problem in Eq. 6.2 into two subproblems with variables X and Z, respectively. Here,
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constraints C2 apply to the first subproblem whose variables are X , while constraints

C1 apply to the second subproblem whose variables are Z. Hence, we derive the

augmented Lagrangian of the problem as

Lu =
∑
i∈I

∑
j∈J

fi,j (xi,j) (6.3)

−
∑
i∈I

∑
j∈J

∑
k∈K

ρ

2
‖xi,j,k − zi,j,k + ui,j,k‖2

2 ,

where ρ ≥ 0 is a positive constant, and ui,j,k is the scaled dual variable. Here, the

augmented Lagrangian incorporates the coupling constraints C3, and constraints C1

and C2 apply when the corresponding subproblems are solved. According to the

ADMM method, the above problem is solved by alternatively solving the following

subproblems

SP1 : x
(n+1)
i,j,k = arg max

xi,j,k∈C2

Lu(xi,j,k, z(n)
i,j,k, u

(n)
i,j,k), (6.4)

SP2 : z
(n+1)
i,j,k = arg max

zi,j,k∈C1

Lu(x(n+1)
i,j,k , zi,j,k, u

(n)
i,j,k), (6.5)

and updating the dual variables

u
(n+1)
i,j,k = u

(n)
i,j,k + (x

(n+1)
i,j,k − z

(n+1)
i,j,k ). (6.6)

6.2.2 Resource Orchestration on Edge Node

Since the constraints to SP1 (constraints C2) only restrict the resource allocation

within an edge node, SP1 can be solved independently on each edge node. Therefore,
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to solve SP1, each edge node addresses the following problem:

max
{xi,j,k}

∑
i∈I

fi,j(xi,j)

−
∑
i∈I

∑
k∈K

ρ
2
‖xi,j,k − zi,j,k + ui,j,k‖2

2

s.t. C2 :
∑

i∈I xi,j,k ≤ Rtot
j,k, ∀k ∈ K

(6.7)

where zi,j,k is assumed known. Since fi,j(xi,j), which is the utility of the ith net-

work slice on the jth edge node, is an unknown function, we develop a probabilistic

model to represent it and iteratively learn its properties from observed data. Based

on the properties, we design a gradient-based optimization algorithm to solve the

problem [74].

Since the problem is solved within an edge node, for the sake of simplicity, we omit

the subscript j in the math expression when deriving the solution in this section.

Hence, xi = {xi,j,k|∀k ∈ K} and fi(xi) equal to xi,j = {xi,j,k|∀k ∈ K} and fi,j(xi,j),

respectively. Given xi, mobile network operator can observe yi = fi(xi) + ε which

contains Gaussian noises ε ∼ N (0, δ2). Let x1:t
i and y1:t

i as the set of resource al-

locations and the corresponding observation in t iterations. With the observations

D1:t
i = {x1:t

i , y
1:t
i }, the posterior distribution of fi(xi) can be expressed as

P (fi(xi)|D1:t
i ) ∝ P (D1:t

i |fi(xi))P (fi(xi)). (6.8)

We adopt the Gaussian process (GP) to model the prior distribution of fi(xi) [75].

Hence, fi(xi) can be described as fi(xi) ∼ GP(µ(xi), c(xi,x
′
i)) where µ(xi) and

c(xi,xj) = exp(−1
2
||xi − xj||2) are the mean function and covariance function, re-

spectively.

Given a resource allocation x∗i , the posterior distribution at the tth iteration can

be derived as

P (fi(x
∗
i )|D1:t

i ,x
∗
i ) ∼ N (µ(x∗i ), σ

2
i (x
∗
i )), (6.9)
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where

µ(x∗i ) = cT [C + δ2I]−1y1:t
i . (6.10)

σ2
i (x
∗
i ) can be derived as

σ2
i (x
∗
i ) = c(x∗i ,x

∗
i )− cT [C + δ2I]−1c (6.11)

where c = [c(x∗i ,x
1
i ), c(x

∗
i ,x

2
i ), · · · , c(x∗i ,xti)] and

C =


c(x1

i ,x
1
i ) · · · c(x1

i ,x
t
i)

... . . . ...

c(xti,x
1
i ) · · · c(xti,x

t
i)

 . (6.12)

Based on the posterior distribution, we define the predictive gradient of fi(xti) as

∇f̄i(xti) :=
1

τ



µ([xti,1 + τ,xti,2, ...,x
t
i,K ])− yti

µ([xti,1,x
t
i,2 + τ, ...,xti,K ])− yti

...

µ([xti,1,x
t
i,2, ...,x

t
i,K + τ ])− yti


, (6.13)

where xti,k is the amount of the kth resource allocated to the ith network slice at the

tth iteration, and τ is small positive constant.

With the predictive gradient, we solve the resource orchestration problem on the

edge node using the proximal gradient descent method [64]. According to this method,

the resource allocation to the ith slice is updated as follow

xt+1
i = xti + λ · (∇f̄i(xti)− ρ(xti − zti + uti)), (6.14)

where λ = [λ1, λ2,...,λK ]T are appropriate step sizes, and · is the dot product opera-

tor. To prevent the updated resource allocation xt+1
i ,∀i ∈ I from violating resource



90

Algorithm 6: Resource Orchestration: Edge Node
Input: Rtot

j,k, ui,j,k and zi,j,k, ∀i ∈ I, k ∈ K.
Output: xi,∀i ∈ I, ui,j,k,∀i ∈ I, k ∈ K.

1 Initialize xi,Di,∀i ∈ I, and set t← 1;
2 while True do
3 / ∗ ∗query the utility of slices ∗ ∗/;
4 Given xi, query to observe fi(xi),∀i ∈ I ;
5 / ∗ ∗update the observation set ∗ ∗/;
6 D1:t

i = {x1:t
i , y

1:t
i },∀i ∈ I;

7 / ∗ ∗update prediction for slices ∗ ∗/;
8 µ(xti)← Eq. 6.10, σ2

i (x
t
i)← Eq. 6.11,∀i ∈ I;

9 / ∗ ∗compute predictive gradients ∗ ∗/;
10 ∇f̄i(xti)← Eq. 6.13,∀i ∈ I;
11 / ∗ ∗update allocation based on gradients ∗ ∗/;
12 xt+1

i ← Eq. 6.14,∀i ∈ I;
13 / ∗ ∗project allocation with constraints ∗ ∗/;
14 xt+1

k = PΩk

(
xt+1
k

)
,∀k ∈ K;

15 if ||xt+1
i − xti|| ≤ η,∀i ∈ I then

16 break;

17 t← t+ 1;

18 return xi,∀i ∈ I, ui,j,k,∀i ∈ I, k ∈ K.

constraints on the edge node, we project xt+1
i , ∀i ∈ I into a bounded domain that

satisfies the constraint of each type resource, i.e., constraints C2 in the problem. We

define PΩ (x) = arg min
y∈Ω
‖x− y‖2 as the Euclidean projection of x on bounded domain

Ω. Denote xt+1
k = {xt+1

i,k |∀i ∈ I} as the amount of the kth resource allocated to all

network slices on the edge node. Then, xt+1
k is projected as

xt+1
k = PΩk

(
xt+1
k

)
, (6.15)

where Ωk is the bounded domain of the kth resource. The algorithm stops when the

resource allocations satisfy ||xt+1
i −xti|| ≤ η,∀i ∈ I. The pseudo code of the algorithm

on the edge node is shown in Alg. 6.
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Controller: 

Alg. 2

Edge Node: Alg. 1

Edge Node: Alg. 1
i, j, kzi, j, ku

xi, j, k i, j, ku

Figure 6.1: The distributed resource orchestration.

6.2.3 Resource Orchestration on Controller

The controller is responsible to solve SP2. Since X is assumed known, SP2 can

be equivalently transformed to

min
{zi,j,k}

∑
i∈I

∑
j∈J

∑
k∈K

ρ
2
‖xi,j,k − zi,j,k + ui,j,k‖2

2

s.t. C1 :
∑

j∈J
∑

k∈K zi,j,k ≤ Qtot
i ,∀i ∈ I.

(6.16)

This is a standard quadratic programming problem, and we solve it using convex

optimization tools, e.g., CVX [64]. After solving the problem, the controller updates

the dual variables u(n+1)
i,j,k according to Eq. 6.6. The pseudo code of the controller side

algorithm is shown in Alg. 7.

6.2.4 Algorithm Analysis

Fig. 6.1 illustrates the distributed resource orchestration algorithm. In the begin-

ning, each edge node derives an initial resource allocation to the network slices and

sends the resource allocation and the dual variables to the controller. After receiving

the initial resource allocations from all edge nodes, the controller coordinates the re-

source orchestration by updating the auxiliary variables, zi,j,k, and the dual variables.

The updated variables are fed back to edge nodes for the next round of resource allo-

cation. The orchestration process stops when the resource allocations converge. We

prove the convergence in Corollary 1.

Proposition 2. ∇f̄i(xi),∀i ∈ I are the controllably accurate gradient approximations
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Algorithm 7: Resource Orchestration: Controller
Input: Qtot

i , xi,j,k and ui,j,k, ∀i ∈ I, j ∈ J , k ∈ K.
Output: xi,j,k, ui,j,k, zi,j,k, ∀i ∈ I, j ∈ J , k ∈ K.

1 / ∗ ∗ determine algorithm convergence ∗ ∗/;
2 if ||

∑
j∈J

∑
k∈K xi,j,k −Qtot

i || ≤ η,∀i ∈ I then
3 return xi,j,k, ∀i ∈ I, j ∈ J , k ∈ K;
4 else
5 / ∗ ∗ update z in the controller ∗ ∗/;
6 zi,j,k ← arg max

zi,j,k∈C1

Lu(xi,j,k, zi,j,k, ui,j,k);

7 / ∗ ∗ update u in the controller ∗ ∗/;
8 ui,j,k ← ui,j,k + (xi,j,k − zi,j,k);
9 return zi,j,k and ui,j,k, ∀i ∈ I, j ∈ J , k ∈ K.

of ∇fi(xi),∀i ∈ I if fi(xi),∀i ∈ I are Lipschitz continuous.

Proof. Denote fi(xi) and f̄i(xi) as the utility and predicted utility of the ith slice

at xi, respectively. The predictive gradients are defined as ∇f̄i(xi) = (f̄i(xi + τ) −

fi(xi))/τ = (µ(xi + τ)− fi(xi))/τ, ∀i ∈ I (Eq. 6.13). Then,

|∇f̄i(xi)−∇fi(xi)| =
1

τ
|(µ(xi + τ)− fi(xi + τ))| (6.17)

=
1

τ
(|cT [C + δ2I]−1y1:t

i − fi(xi + τ)|),

where yi = fi(xi) + ε. Since the utility functions fi(xi),∀i ∈ I are Lipschitz con-

tinuous [64], there exists a positive real constant κ such that, for all real x1
i and

x2
i ,

|fi(x1
i )− fi(x2

i )| ≤ κ|x1
i − x2

i |,∀i ∈ I. (6.18)

Hence, we obtain

|∇f̄i(xi)−∇fi(xi)| ≤ ∆, (6.19)

where ∆ is a constant. According to Definition 10.1 in [76], the ∇f̄i(xi),∀i ∈ I are

the controllably accurate gradient approximations of ∇fi(xi),∀i ∈ I.

Corollary 1. The distributed resource orchestration algorithm converges to a local
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optimum if fi(xi),∀i ∈ I are non-decreasing and Lipschitz continuous.

Proof. The distributed resource orchestration algorithm consists of the controller-

side and edge-node-side algorithms which iteratively exchanges information. The

controller-side algorithm, i.e., Alg. 7, simply updates the auxiliary and dual variables,

and there is no need to prove its convergence. Hence, to show the convergence of

the distributed resource orchestration algorithm, we prove that the edge-node-side

algorithm, i.e., Alg. 6, converges, and the iterative information exchanges lead to a

converged resource allocation.

Convergence of Alg. 6: This algorithm is designed based on gradient-based opti-

mization. According to Theorem 10.6 in [76], the convergence of the algorithm can

be proved by showing 1) the predictive gradients ∇f̄i(xi), ∀i ∈ I are the controllably

accurate gradient approximations of ∇fi(xi),∀i ∈ I; and 2) the step size is posi-

tive in the gradient-based descent method. The first condition has been proved in

Proposition 2. Since the step size in the algorithm is positive, the algorithm satisfies

both conditions required for the convergence. Therefore, the convergence of Alg. 6 is

proved.

Convergence of iterative information exchanges: The iterative information exchanges

are designed based on the ADMM method. Therefore, we prove the convergence of

the iterative information exchanges based on the convergence proofs of the ADMM

method [86, 87]. First, we prove the intermediate variables, X , Z and U , and aug-

mented Lagrangian Lu are bounded. Second, we prove that there exists positive con-

stants αx and αz such that Lt+1
u −Ltu ≤ αx|xt+1−xt|+αz|zt+1−zt|; Thus, Lu is mono-

tonically non-decreasing and lower bounded. Third, we prove that there exists positive

constants αx, αz and d∗ ∈ ∂L such that |d∗| ≤ αx|xt+1−xt|+αz|zt+1−zt|. Therefore,

when t → ∞, |d∗| → 0. Fourth, we prove that if (X ∗,Z∗,U∗) is the limit point of

generated sequence (X 1:t,Z1:t,U1:t), we obtain Lu(X ∗,Z∗,U∗) = lim
t→∞
Lu(X t,Z t,U t).

Therefore, the iterative information exchanges between edge nodes and the controller
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Figure 6.2: The design of DIRECT protocol.

converge. Due to the space limitation, we omit the detail convergence proof.

Since both Alg. 6 and the iterative information exchanges are convergent, the con-

vergence of the distributed resource orchestration algorithm is proved.

6.3 Protocol Design and Implementation

In this section, we design the DIRECT protocol according to the distributed re-

source orchestration algorithm and implement the protocol in a small-scale testbed

developed based on the LTE and GPU computing platforms [77,83].

6.3.1 Protocol Design

Fig. 6.2 illustrates the design of the DIRECT protocol which mainly consists of

a DIRECT controller and multiple DIRECT agents on edge nodes. To realize the

protocol, we also develop a cross-domain resource hypervisor to manage the resource

virtualization. The DIRECT controller runs the controller-side algorithm, i.e., Alg. 7,

to coordinate the cross-domain resource orchestration among network slices and en-

sure that each network slice is properly served according to its service level agreement.

It coordinates the resource orchestration by controlling the auxiliary variables, Z, and

the dual variables, U , which are fed back to the DIRECT agent. On the edge node,
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Figure 6.3: The radio resource virtualization.

the DIRECT agent runs the node-side algorithm, i.e., Alg. 6, to allocate the multiple

resources to network slices for maximizing the sum utility under resource constraints

of the edge node. We develop a cross-domain resource hypervisor on each edge node

to enable the coexistence of multiple network slices on the same physical infrastruc-

ture, e.g., base station and edge server. Hence, the agent can maintain network slices

operations, such as creation, suspension and deletion. The DIRECT agent manages

the hypervisor for the resource virtualization as well as the slice creation, suspension

and deletion. On the edge node, the resources allocated to network slices are mapped

to physical infrastructure at runtime, and the utility of network slices are reported to

the DIRECT agent.

6.3.2 Protocol Implementation

To realize the DIRECT protocol, we develop a cross-domain resource hypervisor

to dynamically manage the physical resource according to the resource allocation.

Meanwhile, the hypervisor ensures the performance and functional isolations among

network slices during the resource orchestration. In the protocol implementation, we

consider the radio and computing resources in the context of LTE and CUDA GPU

programming, respectively.

6.3.2.1 Radio Resource Hypervisor

In the implementation, the network slices on an edge node share the same control

plane operations following standard LTE protocols. To differentiate users among net-
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Figure 6.4: The computing resource virtualization.

work slices, we implement a user-association function in the control plane to associate

users to their corresponding network slices. The radio resource hypervisor focuses on

managing the uplink/downlink resources (URs/DRs), i.e., physical resource blocks

(PRBs) of PUSCH/PDSCH, in the LTE user plane. We define the resource allocated

to users by network slices as the virtual resource. As shown in Fig. 6.3, the radio re-

source hypervisor maps the virtual radio resources that allocated to users by network

slices to PRBs. During the resource mapping, we maximize the network throughput

by selecting the user with the best channel condition for each PRB. After all virtual

resources are mapped, the surplus PRBs are allocated to the users who have the best

channel condition. Since the single carrier-FDMA (SC-FDMA) is the access method

in LTE uplink, the PRBs allocated to a single user must be contiguous in frequency

domain [78]. Hence, the hypervisor allocates the surplus PRBs to the users whose

current PRBs and the surplus PRBs are contiguous.

6.3.2.2 Computing Resource Hypervisor

In the CUDA programming model, an application can launch multiple kernels

that can be concurrently executed by massive CUDA threads. To realize dynamic

computing resource management, we develop a token-based kernel scheduler to control

the execution of kernels. As illustrated in Fig. 6.4, the kernel scheduler dispatches the

kernels commands according to the computing tokens of network slices. In the user

space, we add a KernelSpawn function to push the kernel commands into a FIFO
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queue. A user’s kernel command is pulled out of the queue and enter the kernel space

if the user has sufficient tokens. Here, the DIRECT agent allocates virtual resources

to a network slice, and the network slice distributes the resources to its users. The

computing resource hypervisor covers a user’s virtual computing resources into tokens.

The KernelSpawn function is running in a system thread with non-blocking property

to ensure the asynchronous executions of kernels.

6.4 Performance Evaluation

In this section, we validate the performance of the DIRECT protocol through

experiments in a small-scale system prototype and network simulations.

6.4.1 System Prototype

We develop a small-scale prototype as shown in Fig. 6.5 to evaluate the performance

of the DIRECT protocol. In the prototype, we consider three resources from two

technical domains: for the radio access network, we consider uplink and downlink

radio resources; for edge computation, we consider the GPU resources for hardware-

accelerated computing. The radio and computing resources are essential for killer

applications in 5G such as mobile cross reality and autonomous driving [31]. The

prototype consists of two edge nodes, and each edge node is composed of an eNodeB

and a GPU. We place two eNodeBs in a different room to emulate a cellular network

with limited co-channel interference. The radio access network is implemented based

on the OpenAirInterface (OAI) LTE platform [77], and the core network is built with

openair-cn [81]. The computing platform is NVIDIA CUDA-enable GPU [83]. We

use a dell alienware desktop (Intel i7 8700 @3.2GHz, 64GB RAM) with two NVIDIA

GEFORCE GTX 1080Ti (3584 CUDA cores, 11G RAM) for deploying the DIRECT

controller, DIRECT agents and mobile core network. We use two desktop computers

with a low-latency kernel (Intel i5 4590@3.3GHz, 16 RAM) to deploy the eNodeBs

and emulate mobile users with Huawei E3372h LTE dongles. Two Ettus USRP B210
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Table 6.1: User Association

Slice 1 Slice 2 Slice 3
Edge Node 1 1 0 1
Edge Node 2 0 1 1
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Figure 6.5: The testbed implementation of DIRECT protocol.

SDR boards are used as the RF front-end of eNodeBs. The uplink and downlink

carrier frequencies are 2.655GHz and 2.535GHz, respectively (LTE Band 7). Both

the uplink and downlink bandwidths are 5MHz (25 PRBs).

In the experiment, we create three network slices to serve four mobile users on the

edge nodes1. The user-slice-edge node association is listed in Table 6.1.

We adopt the negative slice-latency as the utility of a slice, i.e., fi,j(xi,j),∀i ∈ I, j ∈

J . Here, the slice-latency is defined as the sum latency of all users in a slice across

all edge nodes. The edge-latency is defined as the summation of the weighted slice-

latency of all network slices in an edge node. The system-latency is the summation

of the slice-latency of all slices. Hence, maximizing the utility of slices is equivalent

to minimizing the slice-latency of slices. Here, we do not study the user scheduling

algorithm within a network slice and thus assume that a network slice evenly allocates

resources to its users.
1Since the numbers of network slices and users are small in the system prototype, we evaluate

the scalability of the DIRECT protocol in simulations.
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6.4.2 Compute-intensive Applications

In the experiments, we implement two compute-intensive mobile applications based

on the YOLO object detection algorithm to evaluate the performance of the DIRECT

protocol [84]. These applications are mobile augmented reality (MAR) and video

analytics and streaming (VAS). The first and second network slices support the MAR

application, and the third slice supports the VAS application.

Mobile Augmented Reality (MAR): A client continuously sends video frames

with the resolution of 1280x720 to the server and receives the detection results. The

server receives the frames, executes the YOLO 608x608 algorithm, and sends the

detection results back to the client. MAR represents the type of applications that

have heavy uplink traffic loads and intensive computing workloads. Here, YOLO

608x608 means the YOLO algorithm tuned at the image resolution of 608x608.

Video Analytics and Streaming (VAS): A client sends a streaming request

to the server. The server retrieves the real-time camera frames with the resolution

of 1280x720, processes it with the YOLO 416x416 algorithm, and sends the frames

with detection results back to the client. VAS represents the type of applications that

have heavy downlink traffic loads and moderate computing workloads. Here, YOLO

416x416 is less compute-intensive than YOLO 608x608.

6.4.3 Comparison Protocols

We compare DIRECT with following protocols:

• Static: With Static, a network slice evenly distributes its payment, Qtot
i , to

acquire resources from all technical domains on all edge nodes.

• PSwarm: PSwarm is a global optimization solver [88] for bounded and linear

constrained derivative-free problems. In this protocol, PSwarm replaces Alg. 1

in the distributed resource orchestration.

• TOMLAB: The TOMLAB with glcSolve is a optimization solver [89] that han-
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dles the global mixed-integer nonlinear programming problems. In this protocol,

TOMLAB replaces Alg. 1 in the distributed resource orchestration.

PSwarm and TOMLAB have very high computation complexity and communication

overhead and are impractical in a real system. Therefore, we compare the performance

of DIRECT with those protocols in network simulations.

6.4.4 Experimental Evaluation

Convergence: Figs. 6.6 (a) and (b) show the system-latency and resource alloca-

tion gap versus the number of iterations. In the experiment, the resource allocation

gap is defined as
∑

i∈I |
∑

j∈J
∑

k∈K xi,j,k −Qtot
i |. When the resource allocation gap

reaches zero, the resource orchestration algorithm converges. The experiment re-

sult shows that DIRECT converges after 5 iterations. DIRECT reduces about 21%

system-latency as compared to the Static protocol which has an almost constant

system-latency because of its static resource allocation. The DIRECT protocol has

a small fluctuation after the convergence because of the dynamic wireless channel

conditions. Fig. 6.6 (c) shows the edge-latency of edge nodes versus the number of

iterations and reflects the convergence of Alg. 6. It shows that Alg. 6 converges after

15 iterations and significantly reduces the edge-latency.

Resource allocation: Fig. 6.7 (a) shows resource allocations of network slices

on different edge nodes. We can observe that all resources of the first and second

slices are allocated to the first and second edge nodes, respectively. This resource

allocation matches the traffic workload in the experiment where the first and second

slices do not have users in the second and first edge node, respectively. Fig. 6.7 (b)

shows the resource utilization in different technical domains of network slices. It can

be seen that the third slice utilizes more downlink radio resources than other types of

resources because the slice supports VAS applications which have heavier downlink

traffic loads These results indicate that DIRECT is able to allocate multi-domain

resources according to the traffic workload among edge nodes and the characteristics
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Figure 6.6: The convergence of the DIRECT protocol.
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of applications served by the slices.

Performance Isolation: Fig. 6.8 (a) shows the slice-latency under different sce-

narios with the DIRECT protocol. In the first scenario, we remove a user from slice

3. The slice-latency of slice 3 is reduced since the DIRECT protocol adapts to the
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traffic workload of slice among edge nodes and allocates all its resources to the single

user. In the second scenario, we remove a user from slice 2. As a result, the utility

of slice 2 is zero since there are no associated users. From the experiment, it can be

observed that the slice-latency of a network slice will not affect or be affected by the

traffic variations of other slices, which means that DIRECT ensures the performance

isolation among network slices.

Query Interval: In the DIRECT protocol, the resource orchestration algorithm

on edge nodes, i.e., Alg. 6, queries the utility of network slices, i.e., fi (xi) ,∀i ∈ I,

for the resource allocation. The frequency of the utility queries impacts the system

latency and the convergence speed of the algorithm. More utility queries lead to a

lower system latency but a slower convergence speed. Fig. 6.8 (b) shows the system-

latency versus different query intervals. A large query interval means a lower query

frequency. It can be seen from the figure that a larger query interval leads to a longer

system-latency. This because a larger query interval may incur inaccurate predictions

of the predictive gradients.

6.4.5 Simulation Evaluation

Here, we aim to evaluate the scalability of the DIRECT protocol through network

simulations. In the simulation, there are 4 edge nodes and 6 network slices with

3 types of resources. The number of users in each network slice and edge node is

random with a range of one to five. The utility function of the ith slice in jth edge

node is defined as

fi,j(xi,j) =
∑

k∈K
Ak · (xi,j,k)β, (6.20)

where xi,j,k is the kth resource of the ith slice in the jth edge node, Ak is the weight for

the kth resource, and β is a parameter controls the property of the utility function.

The utility functions are used by individual slices to calculate their utilities given

resource allocations in the simulation. The resource orchestrator does not know the
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Figure 6.10: The scalability of the DIRECT protocol.

utility functions. When β is positive, the utility of slices fi,j is positively correlated to

the allocated resources xi,j,k, e.g., more resources lead to a larger utility. For example,

the network throughput can be such a utility. The network aims to maximize the

throughput. When β is negative, the utility of slices fi,j is negatively correlated to the

allocated resources xi,j,k, e.g., more resources result in a smaller utility. For example,

the network latency can be such a utility. The network aims to minimize the latency.

In the simulations, the default value of β is -1. The total amount of the kth resource

on the jth edge nodes is constrained by Rtot
j,k = 100,∀j ∈ J , k ∈ K. The weights,

Ak,∀k ∈ K, are generated according to a uniform distribution between one and ten.

Convergence: Fig. 6.9 validates the convergence of DIRECT under different num-

ber of slices and edge nodes. In the simulation, the system latency under a simulation
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Figure 6.11: The impact of utility function.

setting is normalized with respect to the optimal system latency derived by DIRECT

under the same simulation setting. The DIRECT protocol converges in about ten it-

erations with nearly zero gap, for all simulation settings. Meanwhile, the convergence

of the Alg. 6 and service latency in edge nodes are also shown in Fig. 6.9 (c). The

simulation results show that the properties of black-box function can be learned in

several iterations, and the proposed algorithm gradually converges and significantly

reduces the edge-latency of edge nodes.

Scalability: Fig. 6.10 evaluates the performance of the DIRECT protocol under

different number of slices and edge nodes. The performance gap between the DIRECT

and Static protocol enlarges with the increment of number of slices and edge nodes.

This is because the Static protocol cannot adapt to the resource requirements of slice

service that results in a high system-latency. The simulation results also show that

the DIRECT protocol outperforms both the PSwarm and TOMLAB. Although the

performance of the DIRECT is only slightly better than that of the PSwarm, both

PSwarm and TOMLAB have a very high communication overhead and complexity

and cannot be implemented in a practical system.

Utility functions: Fig. 6.11 shows the performance of the DIRECT protocol with

different utility functions. When β = −1, i.e., lower utility is preferred, the DIRECT

protocol reduces the utility of system by 17% as compared to the Static protocol.

When β = 1, i.e., higher utility is preferred, the DIRECT protocol improves 70%
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utility of system as compared to the Static protocol.



CHAPTER 7: EDGESLICE: SLICING NETWORK WITH DECENTRALIZED

DEEP REINFORCEMENT LEARNING

In this chapter, we design a decentralized resource orchestration system named

EdgeSlice for dynamic end-to-end network slicing. EdgeSlice introduces a new de-

centralized deep reinforcement learning (D-DRL) method to efficiently orchestrate

end-to-end resources. D-DRL is composed of a performance coordinator and multiple

orchestration agents. The performance coordinator manages the resource orchestra-

tion policies in all the orchestration agents to ensure the service level agreement

(SLA) of network slices. The orchestration agent learns the resource demands of

network slices and orchestrates the resource allocation accordingly to optimize the

performance of the slices under the constrained networking and computing resources.

We design radio, transport and computing manager to enable dynamic configuration

of end-to-end resources at runtime.

7.1 EdgeSlice Overview

EdgeSlice automates dynamic network slicing in wireless edge computing networks

through decentralized deep reinforcement learning. Fig. 7.1 outlines the design of

the EdgeSlice system. To automate the network slicing process, EdgeSlice leverages

machine learning, i.e., deep reinforcement learning, to learn end-to-end resource de-

mands of network slices and then orchestrates the resource allocations to network

slices accordingly. Owing to the temporal and spatial dynamics of the slice traffic

and the complex tradeoffs between the performance of network slices and the re-

source orchestration, it is inefficient to use a centralized learning agent to orchestrate

resource allocations to network slices. Besides, a centralized learning agent needs to
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Figure 7.1: The EdgeSlice System.

obtain network performance data from all the network nodes, which introduces ex-

cessive communication overhead and delay. Toward this end, EdgeSlice introduces a

new decentralized deep reinforcement learning method for network slicing in wireless

edge computing networks.

We define a resource autonomy (RA) as a set of network infrastructures such as BSs

and edge servers in a geographic area, and thus the network can be partitioned into

multiple RAs. An orchestration agent is designed based on deep reinforcement learn-

ing to manage multi-domain resources in each RA and operates on a short timescale,

e.g., seconds, to enable dynamic network slicing. The orchestration agent (detailed

in Sec. 7.3.2) can track the network state (queue length, traffic), learn the resource

orchestration policy from experience and orchestrate resources to slices autonomously.

A centralized performance coordinator is designed to coordinate the resource or-

chestration in all the RAs and optimizes the performance of the network on a much

larger timescale. Meanwhile, the performance coordinator ensures that all the con-

straints related to the resource orchestration, e.g., SLAs and system capacity, are

satisfied (detailed in Sec. 7.3.1). The performance coordinator only exchanges slight

coordinating information with orchestration agents, which substantially decreases the

communication overheads.

To realize EdgeSlice, resource managers, i.e., middleware, are developed to manage

resources in radio access network, transport network, and edge computing servers at



108

Table 7.1: Notations

entity symbol entity symbol
network slice i resource autonomy (RA) j

network resource k time interval t
slice queue length l time period T
slice performance U resource orchestration x
min. performance Umin total resource Rtot

auxiliary variable z dual variable y

runtime according to the resource orchestration decision made by orchestration agents

(detailed in Sec. 7.4).

7.2 System Model and Problem Statement

To design the EdgeSlice system, we first mathematically model the wireless edge

computing network and formalize the statement of end-to-end resource orchestration

problem.

7.2.1 System Model

We consider an end-to-end wireless edge computing network which is composed of a

radio access network (RAN) with multiple base stations (BSs), edge/cloud computing

servers, and a transport network connecting the RAN and computing servers. As

shown in Fig. 1.5, there are multiple network slices that request end-to-end resources

in every RA, in order to enable seamless service coverage and support their users

mobility. In each RA, network slices have service queues that buffer the arrival traffic

of their slice users. We consider the network is time-slotted, and network operator

can observe the performance1 of network slices and dynamically change its resource

orchestration with a minimum t time interval.

Let I, J and K be the sets of network slices, RAs and network resources, respec-

tively. Denote x
(t)
i,j = [x

(t)
i,j,k|∀k ∈ K] where x(t)

i,j,k is the kth resource allocated to the

ith slice on the jth RA and U
(t)
i,j is the performance of network slice.

1Network slices could have various metrics on evaluating their performances, e.g., latency,
throughput, queue status.
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7.2.2 Problem Statement

The objective of network slicing is to maximize the performance of network slices

in the system, and the objective of the network slicing can be expressed as

max
{x(t)
i,j}

lim
τ→∞

1

τ

τ∑
t=0

∑
i∈I

∑
j∈J

U
(t)
i,j . (7.1)

As τ → ∞, the problem is an infinite time horizon stochastic programming prob-

lem. A general method to solve the problem is to transform it into a problem within

a finite time period T , e.g., a day [33,90]. Hence, the resource orchestration problem

is formulated as
P0 : max

{xi,j≥0}

∑
t∈T

∑
i∈I

∑
j∈J

U
(t)
i,j

s.t. (7.3), (7.4).

(7.2)

In the context of network slicing, the resource orchestration problem subjects to

two practical constraints. The first constraint is that the network-wide performance

of a network slice should meet the SLA made between the slice tenant and network

operator. Denote Umin
i as the minimum performance requirement of the ith slice

according to the SLA. Thus, the performance constraint can be written as

∑
t∈T

∑
j∈J

U
(t)
i,j ≥ Umin

i , ∀i ∈ I. (7.3)

The second constraint is that the resources in each RA are limited. Denote Rtot
j =

[rtotj,k|∀k ∈ K] as the total amount of each resource in the jth RA. Then, the resource

allocated to network slices in the jth RA should be less than Rtot
j , and the constraint

can be expressed as

∑
i∈I

x
(t)
i,j ≤ Rtot

j , ∀j ∈ J , t ∈ T . (7.4)

The difficulties in solving problem P0 are two-fold. First, the problem involves the
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end-to-end resource orchestration to network slices within each RA and the perfor-

mance coordination across all RAs to maintain network-wide performance of network

slices. The coupling between the intra-RA and inter-RAs resource management highly

complicates the problem. Second, due to the varying network dynamics and the diver-

sity of resource demands of network slices, the slice performance becomes a complex

stochastic function. In real systems, it is almost impossible to derive an accurate

mathematical model for such correlation [35]. Moreover, the resource orchestration

in the network slicing system exhibits Markovian on serving slice users where a re-

source orchestration policy affects not only the current but also further network state,

e.g., service queues.

7.3 EdgeSlice Design: Coordinator and Agents

In this section, we present the design of performance coordinator and orchestration

agents in the EdgeSlice system.

7.3.1 Performance Coordinator

Since the performance of a network slice depends on the resource orchestration

in multiple RAs, the central performance coordinator is designed to coordinate the

resource orchestration among RAs and thus optimizes the performance of the net-

work slices. To design the performance coordinator, we transform problem P0 by

introducing auxiliary variables Z = {zi,j, ∀i ∈ I, j ∈ J } where

zi,j =
∑

t∈T
U

(t)
i,j , ∀i ∈ I, j ∈ J . (7.5)

Then, the constraint (7.3) are equivalent to

∑
j∈J

zi,j ≥ Umin
i , ∀i ∈ I. (7.6)
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Hence, problem P0 is equivalently transformed to

P1 : max
{xi,j≥0,zi,j}

∑
t∈T

∑
i∈I

∑
j∈J

U
(t)
i,j

s.t. (7.4), (7.5), (7.6).

(7.7)

Problem P1 has two sets of variables, X and Z which are coupled by constraint (7.5).

Next, we derive augmented Lagrangian of problem P1 as

Ly =
∑
i∈I

∑
j∈J

(∑
t∈T

U
(t)
i,j −

ρ

2
‖
∑
t∈T

U
(t)
i,j − zi,j + yi,j‖2

2

)
, (7.8)

where ρ ≥ 0 is a positive constant, and Y = {yi,j, ∀i ∈ I, j ∈ J } is the scaled dual

variables. Here, the augmented Lagrangian incorporates the constraint (7.5) which

couples variables Z and X .

According to the alternating direction method of multipliers (ADMM) method [91],

problem P1 is solved by iteratively solving the following problems:

xi,j = arg max
xi,j∈(7.4)

Ly(xi,j, zi,j, yi,j), (7.9)

zi,j = arg max
zi,j∈(7.6)

Ly(xi,j, zi,j, yi,j), (7.10)

yi,j = yi,j + (
∑

t∈T
U

(t)
i,j − zi,j), (7.11)

where problem in Eq. 7.9 focuses on the resource orchestration. Problem in Eq. 7.11

and Eq. 7.10 update auxiliary and dual variables, respectively, which require all the

resource orchestrations in the system.

Therefore, we design the performance coordinator to solve the problem in Eq. 7.10

and Eq. 7.11 based on the resource orchestration and slice performance collected

from orchestration agents in the system. Since X and Z are obtained, the problem
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in Eq. 7.10 is equivalent to

P2 : min
{zi,j}

∑
i∈I

∑
j∈J
‖
∑
t∈T

U
(t)
i,j − zi,j + yi,j‖2

2

s.t. (7.6).

(7.12)

This problem is a standard quadratic programming problem which can be solved by

using convex optimization tools, e.g., CVX [64]. By solving the problem, the perfor-

mance coordinator obtains auxiliary variables Z and then updates dual variables Y

according to Eq. 7.11. We define the auxiliary variables Z and the dual variables Y as

the coordinating information between the performance coordinator and orchestration

agents.

7.3.2 Orchestration Agent

The orchestration agents are designed to orchestrate the end-to-end resources for

network slices under the supervision of the performance coordinator, i.e., solving the

problem in Eq. 7.9. Since the constraint of the problem only restricts the resource

orchestration within a RA, it can be solved individually within each RA, i.e. decen-

tralized. Hence, we rewrite the problem in Eq. 7.9 within the jth RA as

P3 : max
{xi,j≥0}

∑
i∈I

∑
t∈T

U
(t)
i,j

−ρ
2

∑
i∈I
‖
∑
t∈T

U
(t)
i,j − zi,j + yi,j‖2

2

s.t. (7.4).

(7.13)

The major challenge of solving the above problem is that the slice performance is

very complex and without a closed-form mathematical model because of the vary-

ing network dynamic and the complicated end-to-end resource demands of network

slices. Moreover, the current resource orchestration impacts both slice users in service

queues and further network state. To address this challenge, we resort to deep re-

inforcement learning (DRL) techniques that enable model-free machine learning [92]
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when designing orchestration agents.

We consider a general reinforcement learning setting where an agent interacts with

an environment in discrete decision epochs. At each decision epoch t, the agent

observes a state st, takes an action at, e.g., resource orchestration, based on its policy

µ(s), and receives a reward r(st, at). Then, the environment transits to the next

state st+1, e.g., queue status changes, based on the action taken by the agent. The

objective is to find the optimal policy µ∗(s) mapping states to actions, that maximizes

the discounted cumulative reward
∑∞

t=0 γ
tr(st, at). Here, γ ∈ [0, 1) is a discounting

factor.

Although DRL techniques have been extensively studied in many areas such as

robotic control [93], traffic control [58], and chess games [94], the existing DRL models

are not appropriate to solve problem P3 for two reasons. First, most of the DRL

models are designed to solve constraint-free problems [58,95]. However, the problem

consists of multiple linear constraints. Second, the existing DRL models are unable to

adjust their policies based on coordinating information from an external control [57].

However, to maintain the network-wide performance of network slices, the agent in

EdgeSlice needs to orchestrate resources according to the coordinating information

derived from the coordinator.

7.3.2.1 Design of Agents

Therefore, we design a new DRL model with customized state space, action space

and reward function. In the DRL model, the constraint (7.4) are re-weighted and

incorporated into its reward function so that the reward is affected by whether the

constraints are satisfied or not. The coordinating information is augmented into state

space to allow external control from the coordinator.

State Space: The state is concatenated by two parts. The first part is [l
(t)
j ,∀i ∈ I]

which represents the current network state, i.e., queue status of network slices. The

second part is [zi,j − yi,j,∀i ∈ I] which is the coordinating information from the
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coordinator. Thus, the state in the jth RA at time interval t can be expressed as

st =
[
l
(t)
j , zi,j − yi,j,∀i ∈ I

]
. (7.14)

Action Space: The action at time interval t is defined as the resource allocations

to network slices in the RA:

at =
[
x

(t)
i,j ,∀i ∈ I

]
. (7.15)

Reward: The reward at time interval t is defined as

r(st, at) =
∑
i∈I

(
U

(t)
i,j −

ρ

2
‖U(t)

i,j −
1

T
(zi,j + yi,j)‖2

2

)
(7.16)

−β
∑

j∈J

[∑
i∈I

x
(t)
i,j −Rtot

j

]+

,

where [x]+ = max (0, x), and β is a positive constant. Here, we approximate the

objective function of problem P3 with identical sub-objective functions in the time

domain.

Moreover, we incorporate the constraints (7.4) into the sub-objective functions

with reward shaping technique [96]. Therefore, there will be a penalty added into the

reward if the constraints are violated.

7.3.2.2 Training of Agents

We follow deep deterministic policy gradient (DDPG), a state-of-the-art reinforce-

ment learning technique that is capable of handling continuous and high-dimensional

action spaces [92], to train our orchestration agents. As shown in Fig. 7.2, DDPG

integrates deep Q-network (DQN) [93] and actor-critic method [97], and maintains

a parameterized actor µ(st|θµ) and a parameterized critic π(st, at|θπ). The critic es-

timates the value function of state-action pairs, and the actor specifies the current

policy by mapping a state to a specific action.
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Figure 7.2: The DDPG architecture.

The critic is implemented using a DQN. We define the value function Qπ(st, at) as

the expected discounted cumulative reward when the agent starts with the state-

action pair (st, at) at decision epoch t and then acts according to the policy π.

Then, the value function can be expressed as Qπ(st, at) = Eπ [Rt], where Rt =∑T
k=t γ

(k−t)r(sk, ak). Based on the Bellman equation [98], the optimal value func-

tion is Q∗(st, at) = r(st, at) + γmax
at+1

Q∗(st+1, at+1).

To obtain the optimal policy, DQN is trained by minimizing the mean-squared

Bellman error (MSBE)

L(θπ) = E
[
(gt −Q(st, at|θπ))2], (7.17)

where θπ are parameters of the critic network, and D is a replay memory. gt is the

target value estimated by a target network, and can be expressed as

gt = r(st, at) + γmaxat+1 Q(st+1, µ(st+1|θµ
′
)|θπ′), (7.18)

where θπ′ are parameters of the target network. The target network has the same

architecture as the critic network, and its parameters θπ′ are slowly updated to track

that of the critic network.

The actor is implemented using another DQN which learns a deterministic policy
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Algorithm 8: The EdgeSlice Resource Orchestration
Input: Umin

i , ∀i ∈ I; Rtot
j ,∀i ∈ I; ρ, β.

Output: X ,Z,Y .
1 Initialize Z and Y ;
2 while True do
3 / ∗ ∗ optimize X in each agent ∗ ∗/;
4 for j ∈ J (decentralized) do
5 x

(t)
i,j , ∀i ∈ I, t ∈ T ← the ith orchestration agent;

6 U
(t)
i,j , ∀i ∈ I, t ∈ T ← the ith slice performance;

7 / ∗ ∗ update Z in the coordinator ∗ ∗/;
8 zi,j ← arg max

zi,j∈(7.6)
Ly(xi,j, zi,j, yi,j);

9 / ∗ ∗ update Y in the coordinator ∗ ∗/;
10 yi,j ← yi,j + (

∑
t∈T U

(t)
i,j − zi,j);

11 / ∗ ∗ if algorithm converges ∗ ∗/;
12 if convergence then
13 return X ,Z,Y ;

µ(st|θµ) to maximize the cumulative reward of the actor, i.e., J = Eµ [Rt]. Since the

action space is continuous, the value function is assumed to be differentiable with

respect to the action. Thus, the actor network can be trained by applying the chain

rule to the expected cumulative reward with respect to the actor parameters θµ:

∇θµJ ≈ E
[
∇θµQ(s, a|θπ)|s=st,a=µ(st|θµ)

]
(7.19)

= E
[
∇aQ(s, a|θπ)|s=st,a=µ(st) · ∇θµµ(s|θµ)|s=st

]
.

7.3.3 The Workflow of EdgeSlice

The workflow of the EdgeSlice system is summarized in Alg. 8. The resource

orchestration starts by initializing the coordinating information, i.e., Z and Y . The

orchestration agent in each RA orchestrates resources to network slices based on its

parameterized policy under the coordinating information for time intervals in T . At

the end of a time period T , the orchestration agent collects the performance of network

slices U. Given X and U, the performance coordinator generates the coordinating
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information (Y and Z), which are fed back to orchestration agents in all RAs. It

continues until the convergence of the resource orchestration.

7.4 EdgeSlice Design: Resource Manager

In this section, we design radio, transport, and computing manager that allocates

the resources orchestrated by agents to network slices at runtime, as shown in Fig. 7.1.

These managers are integrated with OpenAirInterface (OAI), OpenDayLight (ODL),

and CUDA GPU computing platform to enable dynamic configuration of resources

in radio access network, transport network, and edge/cloud computing, respectively.

7.4.1 Radio Manager

The radio manager is designed to work with OpenAirInterface (OAI) to allocate

radio resources to slice users in both uplink (UL) and downlink (DL) radio access

network. In EdgeSlice, the total radio resources (bandwidth) can be used by a network

slice is determined by the orchestration agent. Once a network slice obtains its radio

resources, it allocates these resources to its users. As a result, the allocated radio

resources of all slice users are known by the radio manager. Hence, the radio manager

should schedule users according to their allocated resources at runtime, which is not

supported by vanilla OAI.

We fulfill such functionality by developing a new user scheduling method in the

MAC layer to manage physical resource blocks (PRBs) in PUSCH/PDSCH. We sched-

ule the slice users consecutively and map their radio resources to PRBs. The users

without any radio resources will not be scheduled. To support the information ex-

change between the orchestration agent and the radio manager at runtime, we develop

the VR-R (virtual resource - radio) and VR (virtual recourse) interfaces in the radio

manager and orchestration agent, respectively. The association between a mobile user

and a network slice is identified by the user’s international mobile subscriber identity

(IMSI). The IMSI information is extracted from the S1AP message sent from the base
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station to mobile management entity (MME). The information extraction does not

need any modification on the mobile user’s side.

7.4.2 Transport Manager

Taking advantaging of the separation of data and control plane in SDN switches, we

allocate the bandwidth of links between RAN and edge/cloud computing servers with

an OpenDayLight [99] controller through OpenFlow (Southbound API) and RESTful

(Northbound API) [100]. The OpenFlow protocol currently supports user bandwidth

modification with meters. However, these meters and their attached flows should be

deleted and reinitialize if the user bandwidth needs to be changed. As a result, when

changing the user bandwidth allocation at runtime, the switch network is broken

during the deletion-creation interval [101].

To enable dynamic modification of bandwidth while keeping the switches network

alive, we create a new configuration that parallels with the current one when a new

user bandwidth allocation is received from the orchestration agent. Only if the new

configuration is available in switches, we release the current configuration to transition

to the new one accordingly so that we can hide the deletion-creation interval. In

addition, the information exchange between the transport manager and orchestration

agent is support through the VR-T (virtual resource - transport) interface and the VR

interface. The association of users and slices in the transport network are identified

by using their source and destination IP addresses.

7.4.3 Computing Manager

The computing manager is designed to dynamically allocate computing resources,

e.g., the number of CUDA threads, in the CUDA-based GPU computing platform.

In the CUDA programming model, an application can launch multiple kernels, where

every kernel can be concurrently executed by massive CUDA threads [79]. The num-

ber of threads required by a kernel is specified in its execution configuration syntax.
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The execution of these kernels in the kernel space follows the order of their callings

in the user space. With the multiple-processes service (MPS), multiple applications

or processes can share the GPU simultaneously. However, the resource scheduling

strategies of user applications are nontransparent and not revealed by NVIDIA. As a

result, the resource usage of user applications can not be effectively controlled.

To address this issue, we develop a kernel-split mechanism to control the GPU com-

puting resources by managing the maximum concurrent number of threads occupied

by every user application. The kernel-split mechanism splits a kernel that requests

a large number of threads into multiple small and consecutive kernels with a specific

number of threads. We heavily modify the kernels of user applications to dynamically

split the kernels according to the user’s virtual resources at runtime. Since the exe-

cution of kernels are in-order and consecutive, the number of threads occupied by a

user application always less than its virtual resources. We develop the VR-C (virtual

resource - computing) interface in the computing manager for exchanging information

with the orchestration agent. The association between a mobile user and the network

slice is identified by the IP address.

7.4.4 System Monitor

The system monitor is designed to collect information of network state, e.g., traffic

load and slice performance, by using a dataset. The database also records the user-

slice association based on the users’ IMSIs and IP addresses. The system monitor

uses the VR interface to communicate with radio, transport and computing manager.

The RC (resource coordination) interface is developed to allow the central perfor-

mance coordinator to communicate with orchestration agents and system monitors

through the RC-L (resource coordination - learning) and RC-M (radio coordination -

monitoring), respectively. The SR (slice request) interface is developed to enable the

slice tenants to request and configure their network slices. For example, slice tenants

can make and modify their service-level agreements (SLAs) with network operator.
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Table 7.2: Details of the Prototype

Component Hardware Software
UEs 4x Samsung smartphones with band selection capability Android 7.0

eNodeBs 2x Intel i5 Computer with low-latency kernel 3.19 OpenAirInterface (OAI) [77]
RF Front-End 2x Ettus USRP B210 N/A
Transport 6x OpenFlow 1.3 Ruckus switches OpenDayLight-Boron [99]

Core Network Intel i7 desktop computer openair-cn [81]
Edge Servers 2x NVIDIA GEFORCE GTX 1080Ti CUDA 9.0 [79]

USRP
B210

SDN 
ControllereNB 2

USRP
B210

Users in eNB 1 Users in eNB 2

Transport
Network

eNB 1

• Orchestrator Agents
• Perf. Coordinator
• Edge Servers (GPU)

Figure 7.3: The overview of prototype.

The SLAs will be enforced during the resource orchestrations.

7.5 System Implementation

7.5.1 Hardware Details

We develop a prototype of the EdgeSlice system as depicted in Fig. 7.3. It is

composed of a RAN with 2 eNodeBs, a transport network with 6 OpenFlow switches,

a core network, and 2 edge servers with CUDA GPUs. The details of hardware

are summarized in Table 7.2. To eliminate the co-channel interference, eNodeBs are

operating at different frequency bands, i.e., LTE Band 7 and Band 38. We configure

the band selection option on smartphones so that the users in eNodeB 1 and 2 can

only search for band 7 and band 38, respectively.

In the prototype, there are 2 RAs, 2 slices and 4 mobile users (1 user per slice

per RA), where a RA is the set of an eNodeB, an edge server and a transport link.
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The orchestration agents and performance coordinator are implemented in the core

network (Alienware R7 desktop) with Python 3.5. The optimization toolbox used

in the performance coordinator is CVXPY 1.0 [102]. The radio manager is deployed

in every eNodeB. The transport manager is deployed on an individual desktop com-

puter. The computing manager is implemented on the edge server for every RA.

Both eNodeBs are with 5MHz (25 PRBs) wireless bandwidth. The total bandwidth

between an eNodeB and its corresponding edge server is 80Mbps. The total amount

of the computing resource for each RA is 51200 CUDA threads.

We implement orchestration agents with Tensorflow 1.10 [103]. We use a 2-layer

fully-connected neural network in both actor and critic networks. Both layers adopt

Leaky Recifier [104] activation functions with 128 neurons. In the output layer, we use

sigmoid [104] as the activation function. On training orchestration agents, we conduct

extensive and empirical tunings on the hyper-parameters. We randomly generate zi,j−

yi,j between 0 and Rtot
j to train the agents under different coordinating information.

The parameter β = 20 to have sufficient weight on enforcing the total orchestrated

resources constraint (7.4). The learning rates of both actor and critic networks are

0.001. The batch size is 512. The total training step is 1E6. The discounted factor

for cumulative reward is γ = 0.99. We add the decaying Gaussian noise on actions

during the training phase for balancing the exploitation and exploration. The noise

starts from N (0, 1) and decays with factor 0.9999 per update step.

7.5.2 Simulated Network Environment

The orchestration agents are trained offline by using a simulated network envi-

ronment as shown in Fig. 7.4. In the environment, we implement a first-in first-out

(FIFO) queue for services in individual network slices, and the performance function

of each slice can be customized. In each time interval, the traffic, i.e., service tasks,

in the network slices is generated according to real network traffic traces [105]. The

service time of each task is determined by the end-to-end resource orchestration.
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Figure 7.4: The simulated network environment.

With the simulated network environment, we generate the training dataset by

traversing all possible orchestration actions using the grid search method for radio,

transport and computing resources, respectively. Due to the large number of orches-

tration actions, we conduct the experiments with resource granularity 10% for all

the resources, which means the dataset only contains discrete orchestration actions.

During the training of agents, it may produce orchestration actions that are not con-

tained in the training dataset. To solve this problem, we build a linear regression

model with scikit-learn [106] tool to approximate the correlations between orchestra-

tion actions and the slice performance. Given a resource orchestration action such as

[12, 38, 22]%, we use adjacent orchestration actions in the dataset, e.g., [10, 30, 20]%

and [10, 40, 20]%, to fit the linear model. Once the linear model is fitted, it makes

the prediction for the service time under the orchestration action. The service time

determines the traffic departure in service queues. At the end of each time interval,

the reward is derived based on the performances of all network slices and the design

of reward function in Eq. 7.16.

7.6 Performance Evaluation

In this section, we evaluate the performance of EdgeSlice with both prototype ex-

periments and network simulations. At each time interval, the ith slice on the jth
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RA reports its performance to orchestration agent according to U
(t)
i,j = −(l

(t)
i,j )

α, ∀i ∈

I, j ∈ J , t ∈ T , where α = 2 and l
(t)
i,j is the queue length. Note that the per-

formance function is defined to evaluate whether EdgeSlice can learn the optimal

resource orchestration policy. In other words, neither the performance coordinator or

orchestration agent know the closed-form expression of the performance function. Be-

sides, various performance functions are evaluated in simulations. The performance

requirements of slices are defined as Umin
i = −50,∀i ∈ I and ρ = 1.0 [107].

7.6.1 Mobile Application

To evaluate the system performance, we develop a mobile application which of-

floads computation tasks to the edge/cloud servers. Here, the computation tasks are

the video analysis based on the YOLO object detection framework [84]. The basic

procedures of these applications are: 1) a user sends a video frame with a specific res-

olution to server and waits to receive the processed results; 2) the server receives the

frame from the user and executes the YOLO algorithm with a specific computation

model to analyze the frame; 3) the server sends the analysis results back to the user.

The mobile application can use different frame resolutions, e.g., 100x100, 300x300

to 500x500, and select computation models, e.g., YOLO 320x320, YOLO 416x416

to YOLO 608x608. Here, the application with a higher frame resolution has heavier

transmission traffic, and the application with a larger computation model requires a

more intensive computation workload.

7.6.2 Comparison Algorithms

In the performance evaluation, we compare the EdgeSlice resource orchestration

with the following algorithms:

Traffic-Aware Resource Orchestration (TARO): TARO is the baseline algo-

rithm in which all the resources are proportionally shared by slices according to the

current queue length. In other words, x(t)
i,j = Rtot

j · l
(t)
i,j/
∑

i∈I l
(t)
i,j ,∀j ∈ J . This sharing
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scheme applies to all the RAs in the system.

EdgeSlice-Non-Traffic (EdgeSlice-NT): EdgeSlice-NT is a simplified version

of EdgeSlice in which the orchestration agent manages resources only based on the

coordination information from the performance coordinator. Therefore, the state

space of the orchestration agent of EdgeSlice-NT is st = [zi,j − yi,j, ∀i ∈ I]. In other

words, EdgeSlice-NT does not use queue length of network slices as the state in the

DRL model. By comparing EdgeSlice and EdgeSlice-NT, we can evaluate the impact

of the state space design, i.e. whether including traffic load or not, on the performance

of network slices.

7.6.3 Experimental Results

Here, we present the experimental results and evaluate the performance of the

EdgeSlice system from different angles. In the experiment, there are 2 slices, 2 RAs

and 3 types of resources. The mobile application in the first slice uses 500x500 frame

resolution and selects YOLO 320x320 as the computation model. This application

represents the type of applications that have heavy transmission traffic load and

moderate computation workload. The mobile application in the second slice uses

100x100 frame resolution and selects YOLO 608x608 as the computation model. This

application represents the type of applications that have light transmission traffic load

and intensive computation workload.

In the experiments, the time interval t is 1 second and the time period T is com-

posed of 10 time intervals. During the time intervals, the task arrival of network slices

follow the Poisson process with average arrival rate2 10.

7.6.3.1 Convergence

In the EdgeSlice system, the performance coordinator coordinates multiple orches-

tration agents via the coordinating information [zi,j − yi,j,∀i ∈ I]. We first evaluate
2The slice traffic is normalized based on the hardware capability of the prototype such as band-

width and GPU on accommodating the mobile applications.
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Figure 7.5: The convergence of algorithms: (a) system performance vs. time interval; (b)
slice performance vs. time interval.

how fast the interaction between the coordinator and orchestration agents can con-

verge. As depicted in Fig. 7.5 (a), both EdgeSlice and EdgeSlice-NT are able to

converge after several time periods. This result also reveals that orchestration agents

can effectively orchestrate resources to slices under different coordinating information.

EdgeSlice obtains 3.69x and 2.74x improvement on the system performance as com-

pared to TARO and EdgeSlice-NT, respectively. The performance gain over TARO

proves that EdgeSlice can effectively learn the optimal resource orchestration policy

based on the current network state and the coordinating information. The perfor-

mance gain over EdgeSlice-NT indicates that observing the traffic load of slices by

orchestration agents can significantly improve the system performance. In addition,

as shown in Fig. 7.5 (b), the EdgeSlice system ensures that both network slices meet

their minimum performance requirements.

Fig. 7.6 shows the normalized usage of multiple resources, i.e., radio, transport and

computing resources, with the EdgeSlice system. In the experiments, slice 1 has a

higher demand of radio and transport resources and a lower demand of computing

resources than slice 2 does. Hence, we observe that EdgeSlice allocates more radio

and transport resources to slice 1 (blue area). Since slice 2 serves compute-intensive

applications, it requires more computing resources. Therefore, in the beginning, slice
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2 is allocated more computing resources. Later, EdgeSlice observes that the perfor-

mance requirement of slice 1 cannot be met although it is allocated almost all the

radio and transport resources. Thus, EdgeSlice starts to allocate more computing re-

sources to slice 1 and then the resource orchestration converges. Moreover, we observe

the resources orchestrations becomes stable after 6 interactions, which corresponds

to the observations in Fig. 7.5 (a).

7.6.3.2 Resource Orchestration

We evaluate the orchestration agent without any central coordination to understand

its resource orchestration policy. Fig. 7.7 (a) depicts the cumulative distribution func-

tion (CDF) of the slice performance under randomly generated slice traffic loads. We

can see that EdgeSlice substantially outperforms both TARO and EdgeSlice-NT in

terms of the slice performance. For example, 80% of the slice performance is larger

than -30 using EdgeSlice while it is only 11% and 55% using TARO and EdgeSlice-

NT, respectively. The performance difference between EdgeSlice and EdgeSlice-NT

is smaller than that shows in Fig. 7.5 (a). The reason is that the performance de-

ficiency of the orchestration agent in EdgeSlice-NT accumulates during the iterative

interactions between the agents and the coordinator.

Fig. 7.7 (b) and Fig. 7.8 show the average resource usage ratio between slice 1 and
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slice 2 obtained by using EdgeSlice under different traffic loads. The average resource

usage of a slice is calculated as ηi =
∑

k∈K xi,j,k/r
tot
j,k. It can be observed that EdgeSlice

allocates resources to slices based on both traffic load and the application’s resource

needs in different domains. For example, when traffic loads of slice 1 and slice 2 are 20

and 5, respectively, the average resource usage ratio is about 5. This example shows

the traffic-awareness of EdgeSlice. Since the orchestration agent in EdgeSlice-NT

does not learn the slice traffic load in the resource orchestration, the resource usage

ratio is a constant as shown in Fig. 7.8 (a). TARO allocates resources purely based on

the slice traffic and is not aware of the actual resource needs from each domain. The
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resource usage ratio with TARO is shown in Fig. 7.8 (b). The comparison between

EdgeSlice and TARO shows that EdgeSlice is aware of the multi-domain resource

needs of an application. These results validate that orchestration agents of EdgeSlice

are able to autonomously orchestrate end-to-end resources under varying slice traffic.

7.6.4 Simulation Results

We set up network simulations to evaluate EdgeSlice in terms of scalability and

working with different training techniques and performance functions. In the simu-

lation, there are 5 slices, 10 RAs, and 3 types of resources. The applications served

by the network slices randomly select the frame resolutions, e.g., 100x100, 300x300,

or 500x500, and computation models, e.g., 320x320, 416x416, 608x608. We use the

network trace from an Italy mobile network over the Province of Trento [105] to gen-

erate the traffic in network slices. The network trace contains 154.8M entries with a

minimum 10 minutes time interval collected in December 2013. Each entry includes

the counts of phone calls, SMS, Internet traffic, and the geographic square area id.

We obtain the average calling traffic in 24 hours under different geographic areas, and

use them for the traffic of network slices. In the simulation, the time interval t is 1

hour and the time period T is composed of 24 time intervals.
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7.6.4.1 Scalability of EdgeSlice

We evaluate the scalability of EdgeSlice by varying the number of slices and RAs.

As shown in Fig. 7.9 (a), both EdgeSlice and EdgeSlice-NT maintain similar perfor-

mance per RA as the number of RAs increases, while the performance per RA of

TARO decreases substantially. This result indicates the EdgeSlice agents learn much

superior resource orchestration policy than TARO in each RA. Besides, EdgeSlice is

capable of scaling to large network sizes without noticeably sacrificing system per-

formance. Fig. 7.9 (b) shows the performance per slice versus different number of

network slices. As the number of slices increases, the system performance decrease

because the resource demand is higher and the average allocated resources of slices

are reduced. Nevertheless, EdgeSlice is still able to obtain a better performance than

the others. These results validate the scalability of the EdgeSlice system.

7.6.4.2 Training Techniques of Agents

We study the impact of various techniques on training the orchestration agents in

the EdgeSlice system. As depicted in Fig. 7.10 (a), the system performance drops

remarkably when the training steps of agent is insufficient such as 1E5. In general,
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a learning-based agent with a large number of training steps has better performance

than that with a small number of training steps. We can see that the performance of

EdgeSlice and EdgeSlice-NT can be worse than that of TARO if the number of training

steps is 1E5 or less. This means that if the agent is not well trained, it could lead

to very poor performance. Moreover, various techniques, e.g., SAC [108], PPO [109],

TRPO [110], and VPG [111], have been proposed to improve the performance of

agents. We evaluate the system performance of EdgeSlice under different training

techniques as shown in Fig. 7.10 (b). The training setting and hyper-parameters are

the same as mentioned in Sec. 7.5. The orchestration agent trained using DDPG

exhibits better performance than that trained by the other techniques. These results

show the importance of the training techniques in developing the EdgeSlice system.

7.6.4.3 Handling different performance functions

We evaluate the performance of EdgeSlice under different performance functions

of network slices. As shown in Fig. 7.11 (a), we vary the value of α in the perfor-

mance function. The large α indicates slice reports worse performance under the same

queue length. The EdgeSlice outperforms the others for all conditions, which implies

EdgeSlice can automatically learn superior resource orchestration policy under vary-
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ing performance functions. Furthermore, we define another performance function as

the negative service time of slice users without considering traffic in slice queue. As

shown in Fig. 7.11 (b), EdgeSlice and EdgeSlice-NT achieve almost the same system

performance. Because we intentionally eliminate the impact of slice traffic on the slice

performance function. As a result, the network state, i.e., queue length, observed by

EdgeSlice is not helpful on learning the correlations. In contrast, the performance

of TARO is much worse. These results indicate that when the performance function

is less dependent on the network state, learning-based EdgeSlice and EdgeSlice-NT

still have much performance gain over TARO. These results verify the capability of

EdgeSlice on handling various performance functions of slices.



CHAPTER 8: CONCLUSION

This research proposed an intelligent network management framework in mobile

edge computing to support heterogeneous services. It deals with the challenges

and difficulties with two different management approaches, i.e., context-aware ser-

vice adaptation to network dynamics from the perspective of service providers and

network orchestration intelligence for heterogeneous services from the perspective of

infrastructure providers.

8.1 Completed Work

First, we proposed the DARE protocol to provide high quality MAR service with

edge computing. The unique feature of the DARE protocol is that it can dynamically

adapt the AR configurations and the computation resource allocations on the edge

server according to the wireless channel conditions and computation workloads. We

studied the tradeoff between the quality of augmentation and service latency in the

edge-based MAR system and built analytical models to characterize such a tradeoff.

We developed optimization mechanisms to guide the AR configuration and server

computation resource allocation. We implemented the DARE protocol and validated

that the protocol ensures the service latency of MAR clients and maximize the quality

of augmentation under varying network conditions and computation workloads.

Second, we proposed an edge network orchestrator to improve the responsiveness

and analytics accuracy of the edge-based MAR system. We built analytical models for

studying the latency-accuracy tradeoff in edge-based MAR systems, and developed

the FACT algorithm to improve the system performance by optimizing the server

assignment and frame resolution selection. The performance of the FACT algorithm



133

was evaluated through network simulations. In addition, we implemented the edge-

based MAR system with the proposed network orchestrator and the corresponding

communication protocol. The performance of the edge network orchestrator and the

edge-based MAR system were validated in our experiments.

Third, we proposed the VirtualEdge system that enables multi-domain resource

orchestration and virtualization in the cellular edge computing node. VirtualEdge

introduces a two-step resource orchestration framework that guarantees functional

and performance isolation among slices with a high radio resource efficiency. In the

system, we developed a multi-domain resource orchestration algorithm, a heuristic

radio resource virtualization algorithm, and a credit-based queue management scheme

for computing resource virtualization. The performance of the VirtualEdge system

and corresponding algorithms were validated in both prototype implementations and

network simulations.

Forth, we proposed the DIRECT protocol that realizes the cross-domain resource

orchestration for cellular edge computing. As a key component of the protocol, a

new distributed resource orchestration algorithm was developed by integrating the

ADMM method and LAO. The proposed algorithm addresses the challenge of un-

known performance model of network slices and efficiently orchestrates multi-domain

resources among network slices across edge nodes. We implemented and validated the

DIRECT protocol in a small-scale system prototype based on the OpenAirInterface

LTE and CUDA GPU computing platforms. We also evaluated the DIRECT protocol

in network simulations.

In the end, we proposed EdgeSlice, a new decentralized resource orchestration sys-

tem, to automate dynamic network slicing in wireless edge computing networks. To

realize EdgeSlice, we developed a novel decentralized deep reinforcement learning

method which consists of a central performance coordinator and multiple orchestra-

tion agents. The orchestration agent learns the optimal resource orchestration policy
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for network slicing under the coordination of the central performance coordinator.

We also designed new radio, transport and computing resource manager that enables

dynamic configuration of end-to-end resources at runtime. We developed a prototype

of EdgeSlice with OpenAirInterface (OAI) in radio access network, OpenDayLight

(ODL) in transport network, and CUDA GPU computing in edge/cloud servers. The

performance of EdgeSlice was validated through both prototype implementation and

network simulations.

8.2 Future Work

My Ph.D. research shed light on both theoretical and practical research possibili-

ties in supporting heterogeneous service and use cases, in network virtualization and

management, and in other related areas towards the next-generation mobile network.

I would like to direct my future efforts to the following research topics.

8.2.1 Network slicing in end-to-end networks

Network slicing allows cost-efficient accommodation for diverse use cases and ser-

vices in the next-generation mobile network. The network slicing is far from consolida-

tion and freezing, where many unresolved problems and issues need to be answered.

For example, most existing network slicing systems only provide the performance

isolation among network slices, and the functional isolation of slices, which allows

slice tenant to control its slice individually, cannot be accomplished yet. Moreover,

these systems only enable a very limited number of configurations for network slices,

e.g., bandwidth allocation and server assignment, which are constrained by existing

network virtualization techniques. A low-cost and fast network virtualization tech-

nique could substantially accelerate the design and deployment of end-to-end network

slicing systems in the next-generation mobile network.
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8.2.2 Machine learning in wireless systems

Machine learning techniques have shown their great potential in managing large-

scale network systems, e.g., data center networks and radio access networks, by

leveraging the advanced neural network architecture. However, directly apply ML

techniques in network management could lead to significant performance degrada-

tion due to the massive training steps of neural network policies and unpredictable

management actions. The stability and robustness of ML techniques must be exten-

sively studied before it can be deployed in the real network systems. For example,

a well-designed safety mechanism, which organically integrates robust model-based

approaches and model-free ML solutions, is preferred to exploit the ML techniques

while maintaining a low-risk of SLA violation of customers.
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