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ABSTRACT

ARUNKUMAR BAGAVATHI. Distributed Actionable Pattern Mining. (Under the
direction of DR. ANGELINA A. TZACHEVA and DR. ZBIGNIEW W. RAS)

In recent years, the internet has become faster, computer storage has become larger,

data collected by organizations as well as web and social media has grown tremen-

dously. Data Mining tools require adaptations to cope with analyzing massive amounts

of data. Ecosystems like Hadoop, MapReduce, Spark, and other cloud platforms have

emerged to store, manage, and process large data in reasonable time. Recent work

has adapted certain machine learning tools to run on these systems. However, many

rule extraction data mining tools still lack adaptation or software packages for pro-

cessing on cloud platforms, which presents a challenging problem. Actionable Pattern

Mining is a type of rule extraction data mining approach for discovering actionable

knowledge, that the user can utilize to their advantage. Traditional classi�cation rules

predict a class label of a data object. In contrast, Action Rules produce actionable

knowledge or suggestions on how an object can change from one class value to an-

other more desirable one. In this work, we discuss association and classi�cation rule

mining algorithms with distributed environments. We focus on Actionable Pattern

Discovery and propose several approaches to adapt this method for processing in a

distributed environment, and extract actionable patterns from big data using dis-

tributed computing frameworks. We experiment with several datasets, including Car

Manufacturing, Mammographic Mass, Charlotte Business Wise data, Net Promoter

Score business data, and Hospital Readmission data. Results show that rule mining

algorithms can successfully adapt to cloud computing environment, in order to scale

and handle big data. We show that such an adaptation improves the execution time

e�ciency of rule mining algorithms.
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CHAPTER 1: INTRODUCTION

Knowledge Discovery is a series of steps to be pursued on the given data. It in-

volves cleaning and transforming the given large data to an appropriate format, apply

data mining algorithms to extract knowledge from the data and �nally evaluate and

interpret results[1]. Data mining consists of multiple concepts, to obtain knowledge

from the data, such as rule extraction, classi�cation, regression and clustering. These

techniques produce tremendous amount of results or patterns, regardless of whether

they are of user's interest, or not. The primary obstacle for much of the data mining

and machine learning algorithms is the lack of actionability [2].

1.1 Actionable Knowledge

Actionable Pattern Mining is a rule based knowledge discovery system that discov-

ers actionable patterns from the data. Most of the data mining or machine learning

techniques learn a model from the data and next make a prediction for the new

data. However, they do not provide any actionable insights on the given data. The

statement which says: 'Knowledge is Power' may not be true, the statement: 'Used

Knowledge is Power' is more appropriate [3].

For example, a car manufacturing company can predict its pro�t using some data

mining or machine learning algorithm. However, results of this algorithm, do not pro-

vide any insight on how the company can improve its pro�ts. In contrast, Actionable

Pattern mining may suggest Actions the company can undertake in order to increase

its pro�t, or to accomplish its goals. Of course, there is a cost they have to spend to

achieve recommended action [4].
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1.2 Interestingness Measures

A shortcoming of data mining is that the large quantity of discovered patterns

due to the massive availability of data. These patterns have to be analyzed by some

post-processing approaches in order to minimize their number. In this work we only

focus on actionable patterns that have a form of IF-THEN rules. One of the main

motivations in post-processing analysis is to simplify discovered patterns in order

to improve knowledge comprehensibility to the users. Also, because the quantity

of patterns discovered by a data mining algorithm is large, we want a subset of

these rules, which are interesting, because the existing knowledge discovery algorithms

discover accurate information rather than interesting ones. There are two aspects

of interestingness that have been studied in data mining literature, objective and

subjective measures

Objective measures are data-driven and domain-independent. Generally,

these measures evaluate the resulting rules based on quality as well as the similarity

between them, rather than considering what the user believe about domain.

Subjective measures by contrast, are user-driven and domain-dependent.

For example, the user may be involved to specify rule template, indicating which at-

tribute(s) must occur in the rule to be interesting from his/her point of view [5].

1.3 Big Data

The towering production of data in recent years captured by organizations, which

makes heavy use of social media, multimedia and Internet of Things (IoT), has led

to the current era of big data. These organizations are collecting large amounts of

data from their daily routines and their data size grows exponentially every year.

Data is pouring at a massive rate setting the problem of analyzing the big data as
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Figure 1.1: Varieties of problems in handling Big Data. These problems are catego-
rized into Volume, Variety, Velocity and Veracity

a modern trend [6]. As given in Figure 1.1, the topic of big data covers Volume,

Variety, Velocity and Value [7].

When the incoming data is at great velocity and when the data reaches a massive

size, traditional data mining and machine learning methods are no longer capable to

process the data and proves di�cult to obtain results in a reasonable time. This prob-

lem applies to Association Rule Mining, Classi�cation Rule Mining, and of course,

Actionable Pattern Mining [8]. Thus, it requires high computational power to un-

cover hidden values from such a large data. One idea to deal with the big data is

that to distribute the data to multiple machines and do data processing on each of

them. This require us to setup a cluster of computers, con�gure each computer with

required softwares, manage communication between computers in the cluster and pro-

vide security for such clusters.
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1.4 Cloud Computing

Cloud Computing is an ubiquitous, on-demand and easy-to-use model that provide

access to a pool of computing resources such as servers, storage, softwares, security

and services [9]. Cloud computing comprise of di�erent types of services, which users

can make use for their requirements [10]. Figure 1.2 give several types of services

provided by service providers. These services include Software-as-a-Service(SaaS) -

providing softwares for use, Platform-as-a-Service(PaaS) - providing requied plat-

forms like IDEs to develop programs and web severs to host web applications and

Infrastructure-as-a-Service(IaaS) - providing a con�gurable computing resource(s)

like virtual machines. Many applications are currently being deployed in cloud and

may continue to increase due to lack of availability of computing resources such as

good computer con�guration and data storage for the big data that would be con-

sumed by the developed applications [11]. Few cloud service providers like Amazon

Web Service (AWS ) [12], Microsoft Azure [13], Google Cloud [14] and IBM Cloud

[15] started providing all required services for data scientists to tackle the problem of

big data.

1.5 Big Data Analysis in Cloud : Distributed Computing

Cloud Computing and Big Data work co-jointly in recent years. Due to the in-

creasing availability of commercial Cloud platforms, one can easily do distributed

computing for performing data analysis on the big data in a distributed fashion.

Cloud computing architecture can serve useful for the problem of big data storage

and analysis [16]. Very large datasets can be sliced into small chunks and stored in

multiple computers in the cluster. Other bene�ts of using cloud computing infras-

tructure is that the results can transfer between di�erent locations e�ciently within

the cluster and since the data processing algorithms works only on a small portion
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Figure 1.2: Basic services in Cloud Computing for application developers, data sci-
entists and researchers

of the data, we get better performance on the processing algorithms. For processing

this big chunk into multiple locations various cloud computing frameworks have to

coordinate with each other, swhich increases the complexity of big data processing

[17]. Many distributed big data processing models such as MapReduce [18] and Spark

[19] are some of the good examples that use cloud computing technologies e�ciently

for analyzing massive data stored in the cluster.

1.6 Research Focus : Actionable Pattern Mining using Cloud Environment

Actionable Patterns prove to be helpful in multiple applications like improving

customer satisfaction in the business sector [20], reducing patient readmission in hos-

pitals in medical sector [21], in determining actionable patterns in hoarseness disease

[22] and in music recommendations [23]. Even though, it is being used in multiple

scenarios, the primary snag of these applications is that they use traditional way of

extracting action rules in a standalone computer.

Consequently, number of research work has started to focus on distributed methods

for machine learning algorithms. However, limited work exists on adapting Associa-
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tion Rule Mining, and Classi�cation Rule mining to a distributed environment. And

very few papers exist on adapting Actionable Pattern mining to a distributed environ-

ment [8]. There are no commercial, or open-source packages available for Actionable

Pattern mining in a distributed environment. In this work, we propose several meth-

ods to adapt extracting Actionable patterns in a form of Action Rules using cloud

based distributed processing frameworks. We build a software package, which we plan

to make available to popular open-source tools, such as Hadoop, and Apache Spark

Machine Learning library (MLLib). In addition we explore the concept of Cost of

Action Rules, in order to perform the recommendation actions. We propose a new

method of extracting Action rules of lowest cost in a distributed environment.

The rest of the paper is organized as follows: in Chapter 2, we provide back-

ground knowledge on rule-based algorithms to extract knowledge from the data and

distributed computing frameworks ; Chapter 3 describe existing algorithms to ex-

tract actionable patterns; Chapter 4 give an overview of the state-of-the-art methods

for distributed rule mining and detail our proposed methods to extract actionable

patterns in distributed frameworks; Chapter 5 describe our proposed methods for

extracting cost e�cient actionable knowledge; Chapter 6 describe the experiment

and results using datasets in 4 di�erent domains; in Chapter 7 we conclude; and

�nally in Chapter 8 we discuss challenges, and provide directions for future.



CHAPTER 2: BACKGROUND

In this section, we provide background information about basic concepts such as:

rule-based data mining techniques, association rules, decision rules and Action Rules,

as well as the environment to extract Action Rules. We describe the properties to

evaluate Action Rules including Support, Con�dence, Utility, and Cost and Feasi-

bility. We provide an overview of existing distributed distributed data processing

frameworks, and their scalability for very large datasets, as well as and their bene�ts

for Machine Learning.

2.1 Rule-based Learning

In this research, we primarily focus on rule-based data mining. Rule-based learning

or data mining identi�es rules to store and manipulate knowledge from the data.

Rule-based learning di�ers from other machine learning algorithms, which identify a

common model that can be utilized in the future to make predictions. Rules takes

the format as given in Equation 2.1, where the antecedent(left side of the rule) is a

conjunction of conditions and the consequent (right side of the rule) is a resulting

pattern for the conditions in antecedent.

condition(s)→ result(s) (2.1)

2.2 Information Systems

Information systems roots from the concept of rough sets [24]. Information system

is a set of objects and attributes as given in Equation 2.2. This equation represents

that an information system Si can take a set of objects U and an in�nite set of at-
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tributes A, where each attribute in A can contain a �nite set of values Va.

Si = (U,A); a : U → Va,∀a ∈ A (2.2)

2.3 Association Rules

Association Rules are widely used to derive correlations, associations and frequent

patterns from data objects of a given data [25]. They �nd applications in multiple

domains such as risk management, shopping, etc. One of such most popular appli-

cations of association rules is the Market Basket Analysis. It examines patterns of

customer shopping in a grocery store. For example, association rules can recommend

to a grocery store manage that, if a customer purchase milk, bread and diaper to-

gether, they purchase beer also. Thus the manager can put some o�ers or deals on

beer products. On the other hand, this helps in sequential relationships also. For

example, association rules can determine if a customer purchase a television and a

gaming console during this year's black friday sales, it is more likely they purchase

a home theater next year. Apriori algorithm [26] is the well known algorithm to

extract association rules. The algorithm starts with 1-item and loops until k-items

combinations.

2.4 Decision Tables

Decision Tables mark a special case of the Information Systems [27]. In case

of decision tables, the attribute space in the Information Systems A can be either

conditional attributes or a decision attribute (d) and the condition attributes in turn

can be categorized into either stable (Ast) or �exible attributes (Afl). Thus, decision

table in terms of an information system can take a representation given in Equation

2.3
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S = (U,Ast, Afl, d) (2.3)

From Equation 2.2 and Equation 2.3, we can depict that the information system

Si can be converted into a decision table S by having all list objects U as such and

splitting the attributes A as A = (Ast∪Afl∪d), where Ast is a set of stable attributes,

Afl is a set of �exible attribute and d is a decision attribute. The special case of the

decision attribute d is that it should be of �exible attribute type but does not belong

in the set of �exible attributes Afl. Flexible attributes can change their values into

another value of the same attribute whereas stable attributes remain constant once

assigned. Some examples of stable attributes in the real world scenario are Date of

Birth and Zipcode

Table 2.1: Sample Decision Table

X A B C D
x1 a1 b1 c1 d1
x2 a3 b1 c1 d1
x3 a2 b2 c1 d2
x4 a2 b2 c2 d2
x5 a2 b1 c1 d1
x6 a2 b2 c1 d2
x7 a2 b1 c2 d2
x8 a1 b2 c2 d1

Table 2.1 gives a sample decision table. From Table 2.1, if we consider attribute

B as a stable attribute, and attribute D as a decision attribute, this table can match

with Equation 2.3 as given in Equation 2.4

S = ({x1, x2, x3, x4, x5, x6, x7, x8}, {B}, {A,C}, D) (2.4)

2.5 Decision Rules

A decision rule from the given decision table like the one given in Table 2.1 can

take a representation of Equation 2.1. The antecedent of a rule can be a singleton
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condition or assumption or it can be a conjunction of conditions like c1∩ c2∩ . . .∩ cn,

and the descendant is a singleton result based on a decision attribute D. A decision

rule classifying a group of conditions to a decision di means that data objects which

satisfy (match) the rule's antecedent, go into the di category.

In terms of prediction or classi�cation problem, decision rules from the training

data are useful in classifying data objects to one of the decision attribute values di.

New data objects come with a same attributes as given with the training data. Thus

decision rules help in a classi�cation problem to classify new objects to one of the

decision values based on their conditions(descendant) over the data attributes.

2.6 Action Rules

We focus on a special type of rule based technique named as 'Action Rules' [27].

Action Rules recommend possible transitions of data from one state to another, which

the user can use to their advantage. In other words, Action Rules helps to reclassify

the results of a classi�cation algorithm from one category to another, recommending

patterns to improve performance of an object or establishing better work to the

user. Some of the applications for Action Rules are: improving customer satisfaction

in business [20] and reducing hospital readmission in the medical �eld [21]. For

Action Rules extraction algorithms, the attributes in the data can be split into Stable

Attributes and Flexible Attributes along with the Decision attribute which is the �nal

decision that the user need to achieve. Stable attributes in any Action Rule AR remain

constant or cannot form action in AR. While �exible attributes can change their value

from ai to aj. Action Rules can take the representation as given in Equation 2.5, where

Ψ represents a conjunction of stable features, (α → β) represents a conjunction of

changes in values of �exible features and (θ → φ) represents desired decision action.

[(Ψ) ∧ (α→ β)] −→ (θ → φ) (2.5)
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Action Rules of the form given in Equation 2.5 give recommendations to users that

they can achieve the desired action (θ → φ), given on the consequent part of the

rule, if they perform a series of actions [(Ψ) ∧ (α → β)], given on antecedent part of

the rule. Action Rules are validated using Support, Con�dence, Utility and Coverage

measures.

Action Rules are desirable actionable patterns discovered from large amounts of

data. They are preferable when a user would like to take action based on the discov-

ered knowledge. As given in Equation 2.5, Action Rules have antecedent, which are

series of actions, and consequent, which is a decision action. The antecedent and

consequent parts can give a hint to the user that he needs to perform certain actions

on a set of attributes of their data to get a desired result. More than a decade there

has been a lot of research on diverse methods on generating action rules.

Consider a decision table as given in Equation 2.3. Action term or Atomic Action

Term can be given by the expression of (m,m1 → m2), where m ∈ (Afl ∪ Ast) and

m1,m2 are the values of the attribute m. m1 = m2 if m ∈ ASt. In that case, we can

simplify the expression as (m,m1) or (m = m1). Whereas, m1 6= m2 if m ∈ AFl

Action Rules can take a form of t1 ∩ t2 ∩ .... ∩ tn, where ti is an atomic action

term or action term and the Action Rule is a conjunction of action terms to achieve

the desired action based on the given decision attribute d. Example Action Rule for

the Decision table given in Table 2.1 is given in Equation 2.6 below. The below

equation represents that the user can obtain the relevant action (D, d1 → d2), if they

do actions (A, a1 → a2) and (B, b1).

(A, a1 → a2) ∧ (B, b1) −→ (D, d1 → d2) (2.6)
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2.7 Objective Measures of Action Rules

Action Rules are considered valuable to a user, if they �nd the rules as interesting.

In all our approaches we use the following objective measures of extracted actionable

knowledge: support, con�dence, utility, and coverage[28]. The higher these values,

the more interesting the rules are to the end user. More measures of objective interest-

ingness include R-interestingness, intensity of implication, discrimination, simplicity,

certainty, statistical signi�cance, accuracy, J-measure, certainty, RI, strength and dis-

joint size, imbalance of the class distribution, attribute cost, misclassi�cation cost,

and asymmetry of classi�cation rules.

Consider an action rule R of form given in Equation 2.7

R : (Y1 → Y2) −→ (Z1 → Z2) (2.7)

where,

Y is the antecedent or condition part of R

Z is the subsequent or decision part of R

Y1 is a set of all left side action terms in the condition part of R

Y2 is a set of all right side action terms in the condition part of R

Z1 is the decision attribute value on left side

Z2 is the decision attribute value on right side

The support and con�dence of action rule R as represented in Equation 2.7 are

given in Equation 2.8 and Equation 2.9 respectively.

Support(R) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)} (2.8)

Confidence(R) = [
card(Y1 ∩ Z1)

card(Y1)
] · [card(Y2 ∩ Z2)

card(Y2)
] (2.9)
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Tzacheva et.al [29] proposed a new set of formula for calculating Support and

Con�dence of Action Rules of the type given in Equation 2.7. Their idea is to reduce

complexities in searching the data several times for Support and Con�dence of an

Action Rule. The new formula are given below in Equation 2.10 and 2.11.

Support(R) = {card(Y2 ∩ Z2) (2.10)

Confidence(R) = [
card(Y2 ∩ Z2)

card(Y2)
] (2.11)

Tzacheva et. al [29] also introduced a notion of utility for Action Rules. Utility of

Action Rules takes a following form. For most of cases Utility of Action Rules equals

the Old Con�dence of the same Action Rule. The formula for calculating Utility of

action rule R is given in 2.12

Utility(R) = [
card(Y1 ∩ Z1)

card(Y1)
] (2.12)

Coverage of an Action Rule means that how many decision from values, from the

entire decision system S, are being covered by all extracted Action Rules. In other

words, using the extracted Action Rules, Coverage de�nes how many data records in

the decision system can successfully transfers from Z1 to Z2.

2.8 Subjective Measures of Action Rules - Cost and Feasibility of Action Rules

Subjective measures are calculated depending on the subject matter expertise of a

person who examines the patterns such as actionability and unexpectedness. Subjec-

tive measures have been studied in the literature using unexpectedness, and action-

ability [30]. A rule is unexpected if it contradicts the expert belief on a domain and

therefore surprising. A rule is actionable if the user can take any action to his/her
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advantage based on this rule. In this work, we measure subject measure in the form

of cost of the actionable knowledge.

Author Dardzinska introduced the notion cost and feasibility of an Action Rule in

[31]. Assume that S is an information system. Let b ∈ B is �exible attribute and b1, b2

are values of b. ρ(b1, b2) mean any number from the open interval (0, 1)∪{+∞} which

describes the cost to change the value from b1 to b2 by the user of the information

system S.

The value of ρ(b1, b2 ≈ 0) is interpreted that the change of values from b1 to b2 is

quite trivial.

The value of ρ(b1, b2 ≈ 1) is interpreted that the change of values from b1 to b2 is

very di�cult to be achieved.

The value of ρ((b1, b2 ≈ +∞) is interpreted that the change is not feasible.

Also, if ρ(b1, b2) < ρ(b3, b4), then change of values from b1 to b2 is more feasible

than the change from b3 to b4.

The values ρ((bi, bj) are given by the user of information system and they should

be seen as atomic values needed to introduce the notion of the feasibility of an Action

Rule.

Assume now that equation (2.13) is a (r1, r2) Action Rule [32].

r = [(b1, v1 → w1) ∩ (b2, v2 → w2) ∩ ...∩

(bm, vm → wm)](x) = (d, d1 → d2)(x)

(2.13)

By the cost of rule r denoted by ℘c means value in equation (2.14)

cost(r) = c (2.14)

Rule
(
r
)
is feasible

(
cost(r) ≤ ℘c

(
d1, d2

)
if which means that cost(r) has to be a �nite

number and the cost of the conditional part of the rule has to be a �nite number and
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the cost of the conditional part of the rule has to be lower than the cost of the decision

part of the rule.

Consider d is a decision attribute, assume that Ds[(d, d1 → d2)] denotes the set

of all Action Rules in S having the term (d, d1 → d2) on the decision site. Among

all Action Rules in Ds[(d, d1 → d2)] we have to choose a rule with the smallest cost

value. However it can still happen that the rule we chose has the cost value not

acceptable by the user of the information system S. The cost of the Action Rule in

equation (2.15) might be high only because the cost value of one of its sub-terms in

the conditional part of the rule is high.

r = [(b1, v1 → w1) ∗ (b2, v2 → w2) ∗ ...∗

(bm, vm → wm)](xi)→ (d, d1 → d2)(xi)

(2.15)

In the real world, each and every action take some form of cost. For example, an

action of a car (Idle → Running) cost a fraction of fuel and energy to its engine.

Similarly every single actionable recommendation appearing in an action rule costs

something to its end user. The cost can occur in multiple forms including energy,

currency, human e�ort, etc. Thus the cost of each action in action rules can be as-

signed only by a domain expert, who has experience in the recommended actions.

The end user to whom the action rules are recommended consider using the recom-

mendation, only if the recommendations charge a reasonable cost to them. In other

words, cost of action rules measure interestingness of the given recommendations [4].

The extracted actionable patterns to attain the necessary decision action are more

interesting to users if they cost less to them. Cost of an Action Rules is one of the

heuristic strategies for creating new action rules, where data objects in the decision

table S supporting the new Action Rule also supports intial Action Rule but the cost

of reclassifying them is lower or even much lower for the new rule [33].
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2.9 Meta Actions

Meta-Actions are referred to as higher level concepts that model generalization of

Action Rules by authors Touati et al. [34] and Tzacheva et al. [35]. Consider the

medical example from section , in order to move a patient from worst prognoses state

to good prognoses state requires some treatment procedures to be changed or some

medication to be changed. This actionable knowledge is represented by meta-actions.

A more formal de�nition of meta-action given by authors Touati et al. in [34] is as

"Meta-actions associated with an information system S are de�ned as higher level

concepts used to model certain generalization of Action Rules. Meta-actions, when

executed, trigger changes in values of some �exible attributes in S."

Authors Tzacheva and Ras [35] present a strategy for generating association Ac-

tion rules and action paths by introducing the use of Meta-actions and in�uence

matrix [36]. According to Tzacheva and Ras [35] some higher-level actions called

Meta-actions are required to trigger the change of �exible attributes in order to move

undesirable objects into a desirable group. For example, consider an example given

by Dardzinska [31]. "The rehabilitation data with classi�cation attributes of : Do

exercises e�ectively, Stimulate patient during exercises, Provide su�cient feedback

about condition of patients. Examples of meta-actions for this data include : Change

the kind of exercises, Change the orthotic insoles. The authors use In�uence matrix

to identify relationship between meta-actions and classi�cation attributes. Similarly,

Tzacheva and Ras [35] use In�uence matrix to identify which candidate association

Action Rule and action paths are valid with respect to meta-actions and hidden cor-

relation between classi�cation attributes and decision attributes. Action paths are a

sequence of action terms.
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2.10 Rough Sets

Rough sets [37] derive knowledge from data represented in Information System(IS)

which takes a form of (U,A), where U is a non-empty �nite set of objects and A is

a non-empty �nite set of attributes such that a : U → Va, fora ∈ A, where Va is the

value set of a. Rough sets are based on intuition that di�erent set of attribute from

the Information System yield di�erent concept granulations. Concepts represent a set

of entities in the information system IS that maintains indiscernable relation. With

any B ⊆ A fro the information system(IS) there is an equivalence relation given in

Equation 2.16, where INDIS(B) is called B-indiscernibility relation.

INDIS(B) = (x, y) ∈ U2|∀a ∈ B, a(x) = a(y) (2.16)

A part of U represent a family of all equivalence classes denoted by [x]B. LetX ⊆ U

be a set that we want to represent using attribute subset B ⊆ A in the Information

System. However, X cannot be represented as it may include and exclude objects that

are indiscernible based on B. however, we can approximate X with only information

in B by constructing the B-upper approximation and B-lower approximation of X

denoted by B1X and B1X respectively, where B1X and B1X satisfy conditions given

in Equation 2.17 and Equation 2.18 respectively.

B1X = x|[x]B ⊆ X (2.17)

B1X = x|[x]B ∩X 6= ∅ (2.18)

The boundary region of X, given in Equation 2.19 consists of objects that we

cannot classify them into X. A set is a Rough Set if the boundary region is non-

empty otherwise the set is considered as a Crisp Set
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BNB(X) = B1X −B1X (2.19)

2.11 Reducts

One of the important functionalities of rough sets is feature selection by preserving

the characteristics of original feature set and deleting redundant information from

them [38]. The key idea is to keep only attributes that preserve indiscernibility re-

lation and set approximations. By following this idea, it results in several subset of

attributes and the minimal from those subsets are called reducts.

We believe data Granules such as Rough Sets and Reducts can be used for intelli-

gent division of data, into chunks, which are then provided to each individual worker

node on the Cloud Cluster for processing. Next, the Actionable patterns are discov-

ered on each chunk. We plan to analyze the resulting patterns and their properties,

and how closely they approximate the original dataset properties if it were not divided

before processing.

2.12 Granular Computing and Information Granules

Granular Computing (GrC) is a domain that makes use of information granules

for solving complex human-centric problems [39]. The idea of granular computing is

widely used in multiple areas like data processing, machine learning, rough set theory,

decision trees and arti�cial intelligence. With the key idea of information granules,

Granular Computing can also be used in knowledge representation and data mining.

Information granules are a collection of granules, where each granule is a set of data

objects are stacked together based on their similarity, functionality or indistinguisha-

bility [40]. Thus a granule can be seen as a subset of a larger problem, that can be

used e�ectively to solve a complex task. Information granulation is the process of

breaking a complex object into smaller pieces called information granules. Informa-
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tion granulation, thus can solve more complex problems by considering meaningful

levels of granularity of the problem [41].

In this work, we plan to divide the data using Granules, before feeding it to individ-

ual cluster worker nodes for processing. Granular Computing is a method to abstract

the information and represent them as small chunks of knowledge called information

granules [42]. Granular computing is a big umbrella to represent several theories,

methodologies, tools and techniques to use information granules for problem solving.

Granular computing covers popular data mining concepts such as discretization: re-

ducing the resolution of attributes in a data [43], clustering or aggregation : grouping

attributes together to reduce the size of the attribute space [44] and rough sets [37].

2.13 Hadoop MapReduce

MapReduce [18] is a computational model that has a potential to distribute the

given data and process them at a same time in fault tolerant and scalable approach.

The authors claim that the goal of MapReduce is to make users to think about

how to do put their algorithm into MapReduce framework. MapReduce also take

care of other complex functionalities such as data distribution, parallelization, load

balancing and fault-tolerance during node failures. Hadoop MapReduce works on

Hadoop Distributed File System(HDFS) [45], a distributed �le system used to store

the data and access it quickly. Hadoop also prevents data loss by having three copies

of each data across the cluster.

MapReduce works with two functions: Map and Reduce. Both functions take input

and produces output as <Key, Value>pairs. Inputs and outputs of these functions

are stored in HDFS for quicker access. The whole process is monitored by a Master

node. Master node �nds an appropriate number of available nodes at present and

assign them as slave nodes to work as Mappers. Hadoop [46] preserves data locality

by assuring that distance between data node and slave node is minimum. Now the
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Figure 2.1: Simple steps in MapReduce execution

slave nodes getting their own tasks, MapReduce starts its Map phase on them. Since

the map function is made on a small split of a large data, their results are generally

considered as intermediate outputs. Each map function writes their output <Key,

Value>pairs back into HDFS. The master node again �nds an available slave node(s)

to perform reduce function and mark them as Reducers. Reduce function collects all

values for a single key, perform computations on the collection and writes the output

as <Key, Value>pair again to the HDFS. Figure 2.1 shows an overview of a basic

MapReduce execution. This output can be used again by another MapReduce phase

or can be used by another application to perform other computations.

2.14 Apache Spark

Apache Spark [19] is a framework that is similar to MapReduce [18] to process large

quantity of data e�ciently in a parallel fashion and in a short span of time. The dis-

advantage of MapReduce framework is frequent system's disk access for writing and

reading the data between Map and Reduce phases. However, Spark introduces a dis-

tributed memory abstraction strategy named Resilient Distributed Datasets(RDD).

The RDDs works by splitting the data into multiple nodes, do in-memory computa-

tions on whose nodes and store the results in memory itself if there are any available
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Figure 2.2: Execution of Spark with In-Memory computation and Resilient Dis-
tributed Datasets

space in RAM. These results can be accessed for future processes and analyses, which

in-turn create another RDD. Once the RAM goes out-of-memory, Spark uses some

strategies to push the results that are unused for a long time to the disk. Thus, Spark

cuts-o� large number of disk accesses for storing intermediate outputs like in Hadoop

MapReduce. Spark works in a Master-Slave approach. The Driver node(Master)

allocate tasks to the Worker nodes(Slaves). Spark preserves data-locality (i.e) locat-

ing worker nodes nearer to the current node which contains a part of the data. A

task that the worker perform can be either a Transformation or an Action. Dur-

ing Transformation stage, computations are made on the data split and results are

stored in-memory of the worker node. Results of all worker nodes together form an-

other RDD. While the Action stage on an RDD collect results from all workers and

send it to the driver node or save the results to a storage system. Figure 2.2 shows

an overview of the execution of Spark.

Spark helps machine learning algorithms which relies on multiple iterations on the
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Figure 2.3: Example on how Spark maintains Lineage Graphs when processing Big
Data

given data with the help of RDD's in-memory computation. Spark handles node

failures by having a lineage graph of RDDs. The lineage graph is a Directed Acyclic

Graph(DAG) where each node represents a transformation stage. Figure 2.3 shows

a sample lineage graph of combining RDDs from two inputs. When a failure occurs

at a certain stage, Spark uses the last available working point(RDD) from the lineage

graph and restart all computations from that working point rather than repeating the

entire process from the beginning or saving the intermediate results and replicating

them across multiple nodes. This strategy of data management, fault tolerance and

in-memory processing makes Spark to do computations faster than MapReduce.
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Figure 2.4: Comparison of execution time of MapReduce and Spark for Logistic
Regression and K-Means Clustering

2.15 Spark Machine Learning Library - MLlib

Apache Spark [19] has Spark MLlib [47] to create machine learning models in

the distributed environment. MLlib is the distributed machine-learning library that

provides simple and rich ecosystem for running many machine-learning algorithms

including decision trees and forests, linear SVM, Naïve Bayes, linear regression, lo-

gistic regression, k-means clustering, Principle Component Analysis, and stochastic

gradient descent. Spark, due to its in-memory computations feature, makes iterative

algorithms to execute faster. Since many machine learning algorithms make series

of iterations over a data, Spark is most suitable for many machine learning algo-

rithms.Figure 2.4 compares Hadoop MapReduce and Spark when running Logistic

Regression and K-Means clustering algorithms in di�erent number of machines for a

100GB of data [19].

Spark also provide many packages like Spark SQL, Spark Streaming and GraphX

[48]. Spark SQL can query any tables from databases like Hive, Cassandra, etc. On

the other hand, it can also create tables in the databases from the raw data. Spark
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Figure 2.5: GraphX framework with its functionalities such as PageR-
ank,LDA,Triangle COunting,Pregel,etc.

Streaming can manage a data stream from Kafka or Twitter Stream. Spark collects

the streaming data for small amount of time and create RDDs from the collected

data that can be processed further using Spark SQL or MLlib. GraphX is the pri-

mary ground for graph processing and graph analytics.

2.16 Spark Large Graph Processing - GraphX

Spark, with its e�ciency in Resilient Distributed Datasets (RDDs) help wide vari-

ety of applications such as Machine Learning with MLlib library [47], Graph Analy-

sis with GraphX library [48]. GraphX is an embedded graph processing framework

built on top of Apache Spark. In general, graphs can be represented as G=(V,E),

where V is the set of vertices in G and E, which takes the general representation as

eij = Edge(i, j), is the set of edges connecting 2 vertices (i,j) in G. GraphX treats the

complete graphs as an RDD. It maintains the graph RDD in the type of [VD, ED],

where VD and ED are other RDDs representing vertex properties and edge properties

respectively. Figure 2.5 provides the simple GraphX framework and functions it pro-

vide to support various graph operations. GraphX performs graph-speci�c operations

as a series of distributed map(), join() and reduce() functions of RDDs. Besides these

functions, GraphX comprise of Google's Pregel API [49]. GraphX uses Pregel API

to perform iterative tasks like PageRank, Graph search algorithms like Depth First
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Search (DFS) and Breadth First Search (BFS) and �nding shortest routes in graphs

like Dijkstra's algorithm. In iterative graph algorithms, vertices of the graph have to

pass some messages to their neighbors. Since the graph is maintained as a single RDD

in GraphX, the message passing is complicated compared to other graph libraries.

The Pregel API automates this message sending and receiving module and provides a

functionality to do these jobs e�ciently to suit the Spark environment. GraphX also

shows great speedups for iterative graph algorithms such as PageRank compared to

other graph libraries such as GraphLab [50] and Giraph [51]. For iterative graph pro-

cessing, GraphX provides Pregel API [49]. Pregel works in a message passing fashion

between the graph vertices. In GraphX, Pregel has three functions: sendMsg() - to

process and send a message to a vertex's immediate neighbors, mergeMsg() - to merge

all messages from a vertex's immediate neighbors and receiveMsg() - to receive and

process the merged message. Following these steps, each vertex can share and collect

information with their neighbors. With this method, the information can �ow from

one end of the graph to another gradually. For iterative procedure, Pregel iterations

are named as SuperSteps. In each SuperStep, each vertex executes all three above

mentioned functions.

2.17 Graph Search Algorithms

2.17.1 Dijkstra's Shortest Path Algorithm

Consider a weighted graph G = (V,E), where V is a �nite set of vertices and E

is the set of edges connecting vertices in graph G with some weight wi is assigned

to edges ei ∈ E. Dijkstra's Shortest path algorithm helps to �nd a shortest distance

between a source vertex u and a destination vertex v of the given graph G, where

u, v ∈ V . The algorithm starts with the source vertex u and decides on which vertex

(say u + 1) to visit next, in order to reach the destination vertex v in a shortest

distance. The node u chooses a next node to visit based on which vertex is in the

shortest distance from u. This method continues in all vertexes until they reach the
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destination vertex v. The given algorithm process in O(V 2) run time complexity.

However, the complexity can be reduced to O(ElogV ) if the graph G is represented

as an adjacency list using Heap operations [52].

Algorithm 1 Dijkstra's Shortest Path algorithm for a Graph

Require: G = (V,E), source vertex u
for i in range(0,V.count()) do

2: dist[i] =∞
for i in range(0,V.count()) do

4: visitSet[i] = false

dist[i] = 0
6: procedure minDist(dist,visitSet)

min:= ∞
8: for i in range(0,V.count()) do

if dist[i] < min and visitSet[i]=false then
10: min := dist[i]

index := i
12: return index

for i in range(0,V.count()) do
14: u← minDist(dist, visitSet)

visitSet := True
16: for j in range(0,V.count()) do

if visitSet[j] = falseanddist[j] > (dist[i] + distance[i][j]) then
18: dist[j] := dist[i] + distance[i][j]

2.17.2 Breadth First Search algorithm

Consider a weighted graph G = (V,E), where V is a �nite set of vertices and E is

the set of edges connecting vertices in graph G. Algorithm 2 gives an overview of a

simple Breadth First Search algorithm for a graph G. Breadth First Search algorithm

operates in First − In − First − Out(FIFO) fashion. A queue is created for the

graph G to track the graph traversal and an arbitrary vertex u ∈ V is selected to

begin iterations. In each iteration, a vertex s from the queue is popped out and all

their neighbors except visited from the graph G are selected and pushed into the

queue. The process continues until all nodes in the graph G are visited and the queue
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becomes empty. Given a graph G = (V,E), the BFS algorithm runs in O(V + E)

complexity.

Algorithm 2 Breadth First Search algorithm for a Graph

Require: G = (V,E), start vertex u
q := Queue()

2: q.push(u)
for i in range(0,V.count()) do

4: visited[i] = false
while !q.isEmpty() do

6: s := q.pop()
sn ← G.get_neighbors(s)

8: for v in sn do
if !visited[v] then

10: q.push(v)

2.17.3 Depth First Search traversal

Consider a weighted graph G = (V,E), where V is a �nite set of vertices and E

is the set of edges connecting vertices in graph G. Depth First Search algorithm

operates in Last− In−First−Out(LIFO) fashion. A stack is created for the graph

G and an arbitrary vertex u ∈ V is selected to begin the process. Once the vertex is

selected, they are added to the stack. To iterate over the process, a last vertex from

the stack is pulled and their neighbors from the graph G are selected and pushed into

the stack. The process continues until all nodes in the graph G are visited and the

stack goes empty.
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Algorithm 3 Depth First Search algorithm for a Graph

Require: G = (V,E), start vertex u, destination vertex v
Mark all vertexes that belong to same attributes as u or v as visited and set other
vertexes as not visited

2: s := Stack()
s.push(u)

4: s.setVisited
while !s.isEmpty() do

6: c← s.get_last_node()
cn ← c.get_first_unvisited_neighbor()

8: s.add(cn)
if cn = null then

10: s.remove(c)
continue

12: if cn = v then
break

14: elsecn.setV isited



CHAPTER 3: ACTION RULES MINING ALGORITHMS

Huge amount of work has been done previously on topics of Action Rules, Cloud

Computing and Distributed rule mining In this chapter, we give brief history of other

works related to our research on the above mentioned topics.

More than a decade there has been a lot of research on diverse methods on gener-

ating action rules. So far, action rule mining is based on two approaches: rule-based

approach [53] [54] and object-based approach [28] [55] [56].

3.1 Rule-Based Action Rules Extraction Algorithms

Rule-based approach of extracting Action Rules necessitates two steps: (1) �nding

patterns from the dataset in the form of classi�cation rules and (2) generating Action

Rules from classi�cation rules. There are many rule-based approaches to extract

Action Rules from both complete and incomplete information systems. We discuss

few of those works below:

3.1.1 LERS

All rule-based approaches in action rule mining use Learning from Examples using

Rough Sets (LERS) [57] type of algorithm to extract classi�cation rules. Unlike clas-

si�cation models like C4.5, which extracts classi�cation rules from the intermediate

decision trees, LERS is a direct method of extracting classi�cation rules from com-

plete decision tables without any intermediate results. LERS follows a bottom-up

strategy to build up rules. Algorithm 4 shows an overview of LERS algorithm. All

individual attribute values including decision attribute values and their corresponding

objects are collected. Let A be a set of all attributes in a decision table, Va be a set
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of values for a ∈ A and Xv be the objects supporting an attribute value v. Thus, for

the decision table in Table 2.1, A = a, b, c, d, Va = a0, a1, a2, Vb = b0, b2,. . . ., Vd

= d1, d2 and Xa0 = x2, x4, Xa1 = x1, x5,. . . . . . . . . , Xd1 = x1, x3, x5, Xd2 = x2, x4.

Objects supporting condition attributes Xc are marked and said to be certain rules if

and only if Xc ⊆ Xd where Xd is a set of objects supporting the decision attribute d.

Remaining attributes are marked as possible rules. LERS algorithm again combine

these possible rules to form a next set of attribute values of length 2. The algorithm

follows previous procedures to get next set of certain and possible rules. When there

are no possible rules, the LERS algorithm ends and lists certain rules as a list classi-

�cation rules for the decision table. For the decision table provided in Table 2.1, the

classi�cation rules from LERS would be:

a0 → d2 , a1 → d1 , a2 → d1 b2 → d1 , c1 → d2

Algorithm 4 LERS
Require: as and ds, where as and ds are dictionaries to store all distinct attribute

values and their corresponding object ids from the decision table S
1: procedure procedure
2: as ← {values from all attributes} - {decision attribute values}
3: ds ← {decision attribute values}
4: �xedValues ← as
5: while as 6= {} do
6: for < key, value > in as do
7: if value ⊆ one of the values of ds then
8: certainRules← (key, decisionV alue)
9: else
10: possibleRules← (key, value)

11: delete key from as

12: for (k1, v1) in possibleRules do
13: for ( do(k2, v2) in �xedValues)
14: if k2 ⊆ k1 then
15: Continue
16: else
17: k3 ← (k2, k1)
18: v3 ← Set of object from S supporting k3
19: as+ = (k3, v3)
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3.1.2 System DEAR

Authors Tsay, et.al. [53] de�ne an algorithm called Discovering E-Action Rules from

Incomplete Information Systems (DEAR3), the third installment of system DEAR,

which uses tree based approach to extract Action Rules from an incomplete informa-

tion system. Incomplete information system means that the decision table contains

some null values. DEAR 3 proposes a novel method � Classi�cation rules discovery

for an Incomplete Decision system (CID) to extract classi�cation rules from an in-

complete information system. CID �rst �lls all missing values in decision table using

a roulette wheel method. Roulette wheel consists of `m' sections where m is the

number of distinct values for an attribute for which there are missing values. The

area of each section depends on the frequency of each value occurring in the decision

table. For each missing value, the roulette wheel is rotated `m' times and the CID

algorithm choose a value that occurs more than (m/2 ) times on the top of the wheel

for a single missing value. CID follows a method similar to LERS [57] type of algo-

rithm to extract classi�cation rules from the complete decision table. In addition to

�nding certain and possible rules, CID calculates support of each rule. Next iteration

in the algorithm takes only rules with support greater than or equal to the minimum

support. DEAR3 uses two classi�cation rules to extract single action rule.

3.1.3 System ARAS

Ras, et. al [54] gives an approach to produce Action Rules from a single classi-

�cation rule with Action Rule Discovery based on Agglomerative Strategy (ARAS).

This system works on an assumption that the provided information system is com-

plete without any missing or null values. This system uses LERS [57] algorithm to

generate classi�cation rules. Consider the classi�cation rules for the decision table

in Table 3.1 generated by LERS and consider that the user prefers to change the

decision from d1 to d2. From the available classi�cation rules, ARAS �rst generates
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action rule schema. Action rule schema de�nes a pattern for an action rule from

the classi�cation rule. Since �exible attributes form a base for forming actions, the

algorithm avoids classi�cation rules without the �exible attributes for constructing

Action Rules. For the certain rules from Table 2.1, ARAS generates only one action

rule schema ARs as given in Equation 3.1

ARs = (A,→ a0) −→ (D, d1 → d2) (3.1)

For the action rule schema ARs, let Vst be the stable attributes, V� be the �exible

attributes, decisionFrom be the left side of the decision action (d1 for the above action

rule schema) in ARs and let XARs be the objects in the decision table supporting

V st ∪ decisionfrom. Now, the ARAS algorithm takes all missing �exible and stable

attribute values from the decision table and �ll into the action rule schema to form

a set of Action Rules AR. Let XAR be the objects supporting AR. Action rule AR is

not given to the user if XAR 6⊆ XARs. Some of the Action Rules from system ARAS

and DEAR 3 for the decision table Table 2.1 are given in Equation 3.2, Equation

3.3 and Equation 3.4.

(A, a1 → a0) =⇒ (D, d1 → d2) (3.2)

(A, a2 → a0) =⇒ (D, d1 → d2) (3.3)

(A, a1 → a0) ∧ (C, c2) =⇒ (D, d1 → d2) (3.4)

Thus, ARAS system treats each classi�cation rule with target decision value as

a seed and pulls all other classi�cation rules with non-target decision values near

that seed to form a cluster and produce all possible Action Rules from the cluster.
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In this way, the authors claim that the proposed system works much faster than

system DEAR due to reduced number of comparisons between classi�cation rules for

extracting Action Rules.

3.1.4 Object-Based Action Rules Extraction Approaches

Object-based approaches as proposed in [28] [55] [56], extract Action Rules directly

from the information system without additional classi�cation rules extraction like in

rule-based approaches. We discuss few of the object-based approaches for discovering

Action Rules below:

3.1.5 Association Action Rules

Authors Ras et. al [28] propose a method of extracting new form of Action Rules

from the given information system S using Apriori like algorithm [26] in the name

of Association Action Rules. Like Apriori algorithm, this system generates single

item pair and its support as an initial itemset. While forming a single itemset,

stable attribute values just form as items while the �exible attributes values form as

item actions. For the decision table S given in Table 2.1, Association Action Rules

algorithm generates following itemset pairs:

(A, a0 → a1), (A, a0 → a2), (B, b0), (B, b2), (D, d1 → d2)

Only the itemsets whose support matches the given minimum support are con-

sidered as frequent itemsets (Pruning step) and are taken to the next iteration to

combine with other frequent itemsets to combine k-element frequent itemset into

(k+1 )-element itemset (Merging step). The iteration continues until the algorithm

�nds m-element itemsets where m is the number of attributes in the information

system S or if no itemsets come out of Pruning step. Once the iterations complete,

the algorithm takes each frequent itemset containing the decision action and produce

Action Rules.
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3.1.6 Object Driven Action Rules

Authors A. Hajja et. al [55] propose a new dimension of action rule as object-driven

Action Rules. This system works on object-driven information system. The Decision

table S changes to Object-driven decision table So when some instances in the decision

table belong to an object `mi'. This way, the instances can group into `m' clusters

where `m' is the number of objects in the decision table. In addition, this system

introduces the notion of temporal constraint into the decision table. The authors used

medical data for this system. Each patient acts as an object. Each patient's records

are ordered by their visit to the hospital (i.e) means that the records of patient's yth

visit occurs immediately after (y-1)th visit. Object-driven action rule uses Association

Action Rules [28] to extract Action Rules from this new information system.

Table 3.1: Sample Decision Table for Object Driven Action Rules

Object ID A B C D
X0 1 a1 b1 c1 d1
X1 1 a2 b1 c1 d1
X2 1 a2 b2 c2 d2
X3 1 a1 b2 c1 d1
X4 1 a2 b1 c1 d2
X5 2 a1 b2 c1 d2
X6 2 a2 b1 c1 d1

Table 3.1 shows a simple information system for the object-driven Action Rules

algorithm. Action Rules extraction algorithm in this approach take instances of each

object as input and produces Action Rules for all m objects and �nally aggregat-

ing similar patterns of Action Rules from m objects. Thus, with this approach, the

authors give an object-independency assumption for extracting Action Rules for indi-

vidual objects where each object can have their own features or characteristics, which

they do not share with other objects. Authors also claim that the system extract

more accurate Action Rules for real world cases.

The object-driven approach in [55] can cause over-�tting problems by individualiz-
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ing each objects particularly when there are limited number of instances for an object.

For example, with an information system of n instances, the maximum support of

each action rule can be (n/2)2, that is when half of the instances satisfy precondition

of the action rule and the other half instances satisfy postcondition of the action

rule. When these n instances are divided into m subsystems where each subsystem

contains p instances which satisfy the condition p < m < n. Thus, it is obvious that

the maximum support (p/2)2 of the system after division reduces when the value of

m (number of subsystem) continues to become higher. To handle these problems in

object-driven Action Rules approach, A. Hajja et. al in [56] proposed a new algorithm

that uses a combination of object-driven action rule approach and classical action rule

mining approach. In this approach, the authors generalize or cluster some objects,

which contains similar features, after categorizing individual objects. For the medical

dataset with 225 unique objects or patients, the authors cluster the patients, who

react similarly for given treatments, into 40 di�erent subsystems. Table 4.1 shows

the e�ect of clustering in terms of number of Action Rules and their total support

from [56].

Table 3.2: Result comparison of Object-driven and Hierarchical Object-driven ap-
proach

Decision Shift
No. of Action Rules Total Support

Object-driven 40 clusters Object-driven 40-clusters
2 → 1 14 91133 28 931985
1.5 → 1 388 10054 776 66874
1 → 0.5 96 59927 200 497465
1 → 0 954 85769 1996 755361

3.1.7 LISp-Miner

Rauch and �im·nek [58] introduce a software LISP-Miner to extract G-Action Rules

using a GUHA procedure: Act4ft-Miner. GUHA is an exploratory data analysis tool.

GUHA procedure takes analyzed data, �nd patterns in the data and tests it with

the input data. Act4ft-Miner procedure in this software extracts Action Rules as an
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Figure 3.1: Confusion matrix and histogram of an action rule for a BMI dataset in
LISp-Miner

advanced version of association rules. Act4ft-Miner produces G-Action Rule R in the

form as represented in Equation 3.5

φSt ∧ ΦCHg ≈ ∗ψSt ∧ΨCHg (3.5)

where,

φSt - stable antecedent Boolean attribute;

ΦCHg - expression of change in �exible antecedent attributes;

ψSt - stable consequent Boolean attribute;

ΨCHg - expression of change in �exible consequent attributes;

≈* - Act4ft quanti�er

Lisp-Miner also output some visualizations in the form of confusion matrix and its

corresponding histogram for each extracted action rule. Figure 3.1. shows a sam-

ple visualization of a confusion matrix and corresponding histogram for an action rule.
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3.2 Discovery of Action Rules of Lowest Cost

Action Rule patterns are interesting, if the extracted rules are diverse. The patterns

are diverse if its elements di�er signi�cantly from each other. The more diverse the

extracted patterns are, the more interesting they are. Action Rules of low cost are

considered patterns of high interest. The cost is a subjective measure, in a sense

that domain knowledge from the user or experts in the �eld is necessary in order to

determine the costs associated with taking the actions.Action Rules costs the user or

company in some form of money or resources like energy, power, human resources or

even a moral value to make the recommended changes to achieve the desired action

or goal. For example, lowering the interest percent rate for a customer is a monetary

cost for the bank; while, changing the marital status from 'married' to 'divorced' has

a moral cost, in addition to any monetary costs which may be incurred in the process.

However, most of the Action Rules extraction algorithms does not guarantee the cost

economic recommendations to the user or company. To address this problem, Ras and

Tzacheva [4] introduced the notion of a cost and feasibility of an Action Rule. They

suggest a heuristic strategy for creating new Action Rules, where objects supporting

the new Action Rule also support the initial Action Rule but the cost of reclassifying

them is lower or even much lower for the new rule. In this way, the rules constructed

are of more interest to the users and in the context of a business action plan.

Tzacheva, et. al proposed a new method to extract low cost Action Rules and their

generalizations taking into account of correlations between individual atomic action

sets [59]. An action set is called n-pair set, if it comprises of n action terms in it.

We can iteratively create 2-pair, 3-pair,.....,n-pair sets. From a list of action rules, we

extract all atomic action sets. Next, we build a Correlation Matrix which shows the

most frequent pairs of atomic action sets within the list of action rules. Figure 3.2

shows a sample 1-pair Correlation matrix. An atomic action set pair is said to be

frequent if it satis�es the minimum frequency threshold ϑ speci�ed by the user. We
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Figure 3.2: Example 1-pair Correlation matrix for �nding low cost Action Rules from
the decisiont table S

scan the correlation matrix, and we *mark* all 1-pair sets which are found to be

frequent. Then a 2-pair correlation matrix is built by combining the marked from the

1-pair correlation matrix. The process is repeated with 3-pair, 4-pair, ... , n-pair

correlation matrix, until no more action set pairs are marked.



CHAPTER 4: DISTRIBUTED ACTION RULES MINING

In this chapter, we describe all of our proposed methods to extract Action Rules,

which scale for large data processing, using distributed computing frameworks such

as Hadoop MapReduce [18] and Spark [19]. We also discuss brie�y the challenges

involved in performing Action Rule extraction in a distributed environments. For

all the Action Rule extraction algorithms, we give three inputs: data, attributes and

parameters, where the data is a given data without any attribute or column names,

attributes is an input �le with all attribute names (A) and parameters is another in-

put �le with basic parameters such as a set of stable attributes (Ast), where Ast ⊆ A,

decision attribute (Ad) and conditions that every Action Rule has to satisfy such as

minimum support (ms), minimum con�dence (mc) including decision from (dfrom)

and decision to (dto) values.

Figure 4.1 gives an overview of our proposed methods for extracting Action Rules

using distributed computing frameworks. We take two of the existing Action Rules

extraction methods: ARoGS(the fastest method) and Association Action Rules(the

slowest method) as a motivation for all of our methods. We propose two varieties

of ARoGS method: SARGS(using Apache Spark) and MR-Random Forest(using

Hadoop MapReduce), and two varieties of Association Action Rules method: Ver-

tical Data Distribution and Semantic Data Distribution. Apart from from proposing

these methods, we also give plugin modules such as Class Data Distribution and Data

Granules Approach to partition/divide the given massive data into chunks. We are

giving this data partition methods as plugins because of the resulting data chunks

can be used by any distributed action mining algorithms.
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Figure 4.1: Overview of proposed methods to extract actionable patterns in a dis-
tributed setup

4.1 Distributed Rule Mining Algorithms

Rule based Machine Learning intends to circumscribe methods that identi�es,

learns or evolves rules to store, and manipulate knowledge [60]. This di�ers from

other machine learning algorithms, which identify a common model that can be uti-

lized in the future to make predictions. In data mining, the more useful classi�cation

methods are the rule - based algorithms because of its simplest nature to understand

and are easy to extract from the data records. Due to racing volume of big data,

many researches in the history have adopted distributed processing frameworks such

as Hadoop MapReduce [18] and Apache Spark [19] and help generating classi�cation

rules [61] [62] [63] for classi�cation or association rules [64] [65] [66] to get associativ-

ity between items in a short time for a large volume of data.

4.2 Distributed Classi�cation Rules Mining

Classi�cation is a process of allotting data objects to one of the several categories

or classes [67]. In other words, classi�cation is a supervised machine learning process

that learns a target function f that maps attribute set x to one of the labels y. For
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Figure 4.2: Overview of MR-Random Forest Algorithm to extract Action Rules using
LERS and ARAS and methods

classi�cation, the input data D is in the form of (Xi,Yi), i=1,2,. . . ,N , where X is a

set of `n' attributes A1, A2, A3, . . . . . . . , An and each attribute `Ak' have their own

values and Y is a class attribute which contains class values for each record in D.

Classi�cation algorithms read such input data and classify each object in the dataset

to a certain class value. Classi�cation rules is one of the classi�cation methods that

provide knowledge in a form of rules. Classi�cation rules can be extracted using direct

and indirect methods [68]. Direct methods induces classi�cation rules directly from

the given dataset. Whereas, in indirect methods, the algorithms produce intermediate
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results like decision trees from the data from which in turn we can extract classi�cation

rules by tracking a path from the root of the decision tree to a leaf of the decision

tree.

G. Wu et. al proposed a distributed computation of combination of decision tree

algorithm C4.5 [61] and ensemble learning method called Bagging [69] using MapRe-

duce framework. C4.5 calculates Entropy and Information Gain for each attribute

and choose splitting attribute As with high Information Gain as a root node r. Af-

ter choosing the splitting attribute, the algorithm creates n braches giving n di�erent

nodes, where n is a number of distinct values in As. C4.5 algorithm [60] �nds Entropy

and Information Gain for the resulting branch or intermediate nodes and attribute

splitting part continues for the branch nodes unless the node contains only one data

record in it or if a node contains single class label instances. From the decision tree,

we can form classi�cation rules by tracking the paths from root node to all leaf nodes,

that is we get one classi�cation rule for each path in the tree. Thus, C4.5 is an in-

direct method of providing classi�cation rules from decision trees. Let the classi�er

built from C4.5 algorithm for data D be ϕ(D). Bagging [38] is used to improve the

accuracy of machine learning algorithms particularly for classi�cation and regression.

Bagging splits the data D into m sequence datasets D1, D2, . . . .. , Dm and the algo-

rithm �lls each dataset Di using bootstrap sampling with replacement from D. Now

the algorithm builds classi�er ϕ on each Di. When a test sample x enters the system,

classi�ers ϕ(Di) takes x and the �nal class label of x is given using voting procedure

from the results of all ϕ(Di). Bagging also helps avoiding over�tting problems. In

[13], the algorithm split the data D into `m' partitions where `m' is number of map-

pers in Hadoop system. Algorithm C4.5 is used to build a base classi�er Ci on each

Di partitions where 1 ≤ i ≤ m. In the Reduce phase, bagging procedure collects all

Ci classi�ers and gives the test dataset to all the classi�er to predict class label of

records in the test dataset.
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W. Dai et. al. proposed a MapReduce implementation of traditional decision tree

algorithm C4.5 [62]. Considering the communication cost in the MapReduce model,

they created three data structures to store basic information such as:

• attribute table store attributes and their values and corresponding row_id and

class value of the attribute values

• count table stores number of instances of each class label for each attribute

value

• hash table to store link between the tree nodes

The attribute and count tables are �lled while reading data from the dataset using

single MapReduce phase. Remaining phases goes iteratively to compute information

gain ratio of each attribute in all nodes. The attribute with maximum gain ratio is

a splitting attribute and the algorithm updates hash table and count table during

the end of each iteration. In this way, the algorithm builds a decision tree using a

pipeline of MapReduce phases.

V. Kolias et. al proposed a direct method of extracting classi�cation rules in

MapReduce framework [63]. This system employs two-step: �rst step reads the train-

ing examples and create a set of conditions that covers most of the training examples

and second step combine the conditions from step 1 to form a rule and evaluate the

rule. The best rule that covers maximum number of training examples is considered to

the candidate rule. All training examples that is covered by the best rule is removed

from the training examples before searching for next best rule. This helps to �nd the

classi�cation rules that covers maximum number of examples in limited iterations.

Algorithm terminates once su�cient number of training examples are covered. In

MapReduce model, the system uses a driver module that orchestrates 2 jobs, one for

each step, to extract classi�cation rules. This driver module is necessary for providing

basic information of the dataset like attribute names, values and their types and it
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stores previous rules to check for the duplicate rules. Table 4.1 give evaluations on

multiple datasets showing that the system RuleMR acquires better or equal accuracy

comparatively to other classi�ers like J48, OneR and Random Forest algorithms.

Table 4.1: Accuracy comparison on RuleMR with other Classi�cation algorithms

Dataset RuleMR OneR J48 ID3 Rand. Forest
Breast Cancer 94.7 72.7 75.8 N/A 97.2
Car Evaluation 100 70.7 96.2 100 99.8

Weather 100 71.4 100 100 100
Mushroom 100 98.5 100 N/A 100

Vote 99.5 95.6 96.3 N/A N/A

Even though only few methods have been proposed to extract classi�cation rules

using distributed frameworks, no evaluation on these methods were given. Since

data is distributed into many partitions and each partition build their own classi�er,

evaluation of results comparing with the non-distributed system is required apart

from acquiring better coverage and more accurate rules [63] and faster results.

4.2.0.1 Distributed Association Rules Mining

Association rules are similar to the classi�cation rules discussed in the previous

section but association rules notify relations among attributes in the datasets, which

can be used in market basket problems. For example, to �nd patterns in customer

transactions from a supermarket. In most recent years, association rules are also being

used for classifying objects in a dataset. Since the data size is increasing rapidly in

this era of big data, �nding all possible relations among the attributes consume a

lot of time. This requires a need of distributed and parallel approaches to �nd such

patterns for iterative procedures such as Apriori algorithm [26]. Apriori algorithm

is a bottom-up procedure to build frequent itemsets from the given dataset. Apriori

algorithm reads the data and produces all 1-itemsets list. Then it goes through two

steps: 1. Candidate itemset generation and 2. Pruning step. Step 1 generates itemsets

of length k using the itemsets of length (k-1) from kth iteration using join operation
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on each itemset. Step 1 thus produces candidate itemsets Ck. Step 2 removes all

itemsets c ∈ Ck such that c does not form a subset of at least one itemset from

(k-1)th iteration. Apriori algorithm continues until it completes n iterations, where n

is the number of attributes in the dataset or it stops when it does not produce any

candidate itemsets. There have been few works on extracting association rules using

Apriori algorithm in distributed environments like MapReduce and Spark, which are

discussed below:

Lin proposed a MapReduce [18] based approach to extract association rules [64].

This system works by splitting the data records horizontally into `m' partitions. The

`m' mappers access their data partition and results in the format of <itemset, 1>.

`m' combiners collect data from their own mapper results and add the count value of

a single attribute value to result in <itemset, count>. MapReduce then shu�es the

obtained results into `r ' partitions, one to each reducer. Reducers sum up the count

of an attribute value from all mappers to produce �nal result of <itemset, count>.

Note that the length of the resulting itemset is equal to the iteration count. If the

iteration count is 1, length of the itemset is also 1; if the iteration count is 2, then

the length of the itemset will be 2. The resulting count is validated across the given

minimum support. Only itemsets which matches the minimum support moves into

next iteration (k+1). Iteration (k+1) use all frequent itemsets from iteration k to

perform candidate itemset generation. Pruning step uses the input data given to the

operating mapper node and deletes some itemsets. The pruned itemsets advance to

the reducer phase and the iteration goes on. This model operates in a single job for

both candidate itemset generation and pruning, which increases communication cost.

Qin et. al in [65] modi�ed the above discussed Apriori model and proposed Yet

Another Frequent Itemset mining(YAFIM) in Spark framework [19]. This system

operates in 2 phases. The �rst phase reads a transaction dataset, extract all frequent

itemsets of length 1 from it and create an RDD. It also broadcasts the transaction
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database to all nodes. The next phase operates iteratively for (n-1 ) iterations using

the input itemsets and broadcasted dataset to produce next set of frequent itemsets.

This system uses the Spark's advantage of retaining the data in the memory to store

the original dataset until the algorithm completing its process reducing communica-

tion and computation cost rapidly. Due to improved features in Spark and minor

changes in the algorithm, this system outruns the MapReduce implementation of

Apriori in [26].

Rathee et. al proposed Reduced-Apriori or R-Apriori [66] to speed up the algo-

rithms proposed in [64] and [65] using Spark [19]. In this paper, the authors focus

on the second phase of classical Apriori algorithm, which generates more candidate

itemsets from singleton frequent itemsets, which is stored in hash tree to prune faster

in the future. This step increases the time complexity for massive datasets. Reduced-

Apriori removes the time-consuming candidate itemset generation and uses bloom

�lter instead of hash tree. Bloom �lter is used to test whether a set contains particu-

lar element. Bloom �lter stores all itemsets from previous iteration. Each transaction

in the dataset is made intersection with all itemsets in the �lter such that the result of

intersection contains only items, which exist in the �lter. The algorithm then yields

all possible pairs of itemsets in the pruned transaction. Addition of results from mul-

tiple nodes gives the �nal count of the new frequent itemset pair. Fig. 4.3 shows the

speed comparison of methods proposed in [64] [65] and [66] during all iterations. From

these systems, it is notable that Spark, due to its capability of performing in-memory

computations suits better for iterative data mining algorithms like Apriori.

4.2.1 Granular Computing in Data Mining

Although Granular computing was originally intended by Zadeh [40] purely to rep-

resent human cognition, the idea of the topic has been adopted in multiple problems

like decision trees [70], divide and conquer [71], set theory, data reduction or com-

pression, and discretization [72]. One of the applications of information granules are
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Figure 4.3: Performance Analysis in iterations of systems MR-Apriori, YAFIM and
R-Apriori

�nding optimal solution that satis�es certain imprecise human assigned conditions

[71]. Granular computing has been used in certain image processing applications, by

grouping some pixels into semantically meaningful clusters or granules[73]. Recently,

Liu, et.al [74] used information granules for time series models.

4.3 Simple Data Distribution methods

4.3.1 MR-Random Forest Algorithm - LERS and ARAS based

Algorithm 5 AR
Require: certainRules, dfrom and dto, where certainRules are provided by Algo-

rithm LERS
1: procedure procedure
2: for (k, v) in certainRules do
3: if value == dto then
4: actions← {}
5: for a ∈ key do
6: A← attributeName(a)
7: actions+ = (A,→ a)

8: Output actions
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Algorithm 6 ARAS
Require: actions, dfrom and dto, where actions is a list of actions from Algorithm

AR
1: procedure procedure
2: sV ← list of stable attribute values in actions
3: mV ← {missing �exible attribute values in actions}
4: actionSupport← {set of objects in S supporting sV ∩ dfrom}
5: for value ∈ mV do
6: newV alues← value+ sV
7: newSupport← set of objects in S supporting newV alues
8: if newSupport ⊆ actionSupport then
9: actions+ = value
10: Output actions as Action Rule

This is our �rst step on using cloud based techniques to extract Action Rules. In

this method, we select the ARAS algorithm [54] in association with LERS to get Ac-

tion Rules in a Hadoop MapReduce environment. Figure 4.2 gives an overview of this

proposed method [75]. Our MapReduce job consists of Map and Reduce parts. The

algorithms are designed to implement the Map part. Hadoop splits the data and give

splits of data to several Map parts. All mappers start executing Algorithms 4, 5 and

6, where the algorithm LERS outputs classi�cation rules, algorithm AR processes

classi�cation rules and give inputs to Algorithm ARAS. Algorithm ARAS inturn

outputs Action Rules. The resulting action rules from all the Maps are combined in

such a way that the action rule acts as a key and the support and con�dence from all

the maps acts as iterator list of values. The combined action rules are given to the

Reduce part which implements Random Forest algorithm. This algorithm check if an

action rule is resulting from 50% of the Maps. If so it averages all supports and con-

�dences and check them against the minimum support and con�dence. Algorithm 7

gives the overview of how the Reduce part works.
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Algorithm 7 MR-Random Forest Reduce algorithm
Require: key - action rule and values - list of support and con�dence for action

rule
1: procedure procedure
2: if |values| ≥ n/2 then
3: supp ← Mean of all supports in values
4: conf leftarrow Mean of all con�dence values in values
5: if supp ≥ minimum support and conf ≥ minimum con�dence then
6: Output Key with supp and conf

4.3.2 MR Apriori - Association Action Rules based

In this section, we describe our adaptation of the Association Action Rules method

from section 3.1.5. in Hadoop MapReduce [18] Algorithm 8 gives an overview of

Association Action Rules algorithm in a distributed environment. The frequent action

set generation is divided in two steps- merge and pruning. In merging step, merge

previous two frequent action sets into a new action set and in the pruning step,

discard the newly formed action set if it does not contain the decision action. From

each frequent action set, the association action rules are formed. Algorithm AAR

generates frequent action sets and association action rules from the action sets.

Algorithm 8 AAR
1: procedure procedure
2: primaryActionSets ← {all possible atomic action terms from decision table

S}
3: tempActionSets ← primaryActionSets
4: newActionSets← ∅
5: while tempActionSets 6= ∅ do
6: for set1 ∈ tempActionSets do
7: for set2 ∈ primaryActionSets do
8: if (decisionAtomicAction ⊆ set1 or decisionAtomicAction ⊆ set2

and set2attributes 6⊆ set1attributes) then
9: newActionSets+ = set1 ∪ set2
10: Output newActionSets
11: tempActionSets← newActionSets

Figure 4.4 gives an overview of this proposed method [75]. In Hadoop MapReduce

framework, the Association Action Rules method runs on mappers to produce an
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Figure 4.4: Overview of MR-Apriori Algorithm to extract Action Rules using Asso-
ciation Action Rules method

Association type of Action Rules (AAR). Hadoop splits the data and give splits of

data to several Map parts. The resulting action rules from all the Maps are combined

in such a way that the action rule acts as a key and the support and con�dence from

all the maps acts as iterator list of values. The combined action rules are given to

the Reduce part which implements Random Forest algorithm. This algorithm check

if an action rule is resulting from 50% of the Maps. If so it averages all supports and

con�dences and check them against the minimum support and con�dence. Algorithm

Reduce gives the overview of how the Reduce part works.
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4.3.3 SARGS - Speci�c Action Rule discovery based on Grabbing Strategy

In our next work [76], we proposed an alternate version of ARAS method: Speci�c

Action Rule discovery based on Grabbing Strategy (SARGS) using the Spark frame-

work [19]. Action Rules from the ARAS algorithm only one speci�c atomic action

term. The left side of other action terms are empty. These Action Rules can give

only a limited knowledge to the user and leave clueless due to the lack of speci�c

action terms. We proposed SARGS method to �ll all missing values in the action

rule schema produced by LERS algorithm in an e�cient time using Spark framework.

Algorithm 9 SARGS

Require: actions of type list(actions) and dFROM values
1: procedure procedure
2: sv ← list of stable attribute values in actions
3: as ← set of objects in decision system supporting sv ∩ dFROM

4: mv ← set of missing �exible attribute values in actions
5: smv ← Cartesian product of missing values
6: for valueSet ∈ cmv do
7: nv ← combine valueSet with sv
8: ns ← set of objects in the decision system supporting nv in actions
9: if ns ⊆ as then then
10: Add value to actions
11: Output actions as Action Rule

Algorithm 9 gives the modi�ed version of ARAS module that the SARGS algorithm

uses to extract all complete Action Rules. This algorithm extracts all missing values

from the conditional (left) part of the given Action Rule schema. The algorithm then

get cartesian product of all missing values (except the values of same attribute) and

�lls in the action rule.

In Spark, reading each �le: attributes, parameters and data creates three di�erent

RDDs. Spark has options to broadcast certain values among all worker nodes. We

broadcast values that we read from attributes and parameters �le, so that all nodes

can access them. The input data �le gets partitioned depending on its size.

Figure 4.5 gives an overview of SARGS execution. Once we distribute the given
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Figure 4.5: Distributed Actionable Pattern Mining using Spark framework

data using the above mentioned method, Spark splits the data to d partitions. Algo-

rithms LERS and SARGS run on each of RDDs, created by reading the data �le,

using MapPartition function, which is used to perform computations on each and

every partition of data. Each partition then results in their own set of Action Rules

with support and con�dence.

All Action Rules from the MapPartition function are sorted by the attribute name

and returned as (Key, Value) pairs. We choose action rule to be a Key and support

and con�dence pair to be a Value. We then use groupByKey() method to group all

supports and con�dences of a single action rule and aggregate them to calculate �nal

support ′fs′ and con�dence ′fc′ of an action rule. We output these Action Rules to

a text �le if fs >= ms and fc >= mc.
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4.4 Advanced Data Distribution Methods

4.4.1 Class Attribute Sampling

In the MR-Random Forest algorithm [75] or in SARGS algorithm [76], Hadoop

or Spark manages data distribution over the nodes in a cluster and all algorithms

� ARAS [54] and Association Action Rules [28], run on top of such partitions using

MapReduce or Spark frameworks. When dsitributed computing frameworks man-

age data distribution, there are some possibilities that all records of single decision

value move to a single partition which can cause some loss of valuable Action Rules.

Thus we introduce a new data distribution module into our SARGS method, which

executes before the execution of SARGS algorithm. This method employs a class

attribute value strategy to distribute the data, where the class attribute values and

their relative percentages are matched in each partition . It can be applied to any Ac-

tion Rule discovery algorithms, including ActionRules[27], system DEAR [53], ARAS

[28]. We propose a method similar to Strati�ed Sampling [77] for data distribution

to all partitions. We split the given data into groups where each group consists of

records matching single decision value. Also, we maintain the proportion constraint

Pg ' PS, where Pg is the proportion of records in a partition g with decision attribute

value di and PS is the proportion of records in the given information system S with

decision attribute value di. By this way, each partition contains same proportion of

data which is equal to the original dataset.By this way, each partition contains same

proportion of data which is equal to the original dataset. Figure 4.6 shows an example

data partition for the decision table S given in Table 2.1.

In Spark, reading each �le: attributes, parameters and data creates three di�erent

RDDs. We manually split the data �le into d �les, where d is a distinct number of

decision values. Each �le contains samples of records from the given data �le. Spark

on reading each of these �les create d RDDs. We also broadcast RDDs created from

reading attributes and parameters �le, so that all nodes can access them. Algorithms
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Figure 4.6: Data Distribution approach similar to Strati�ed Sampling

LERS (Algorithm 4)and SARGS (Algorithm 9) execute on each of these partitions

and �nal Action Rules are grouped together.

4.4.2 Vertical Data Partitioning

In this work[78], we propose a novel approach for extracting Action Rules by split-

ting the data vertically, in contrast with the classical horizontal split, which is per-

formed by parallel processing systems. This vertical split method can be applied to

the Association Action Rules discovery method described by Ras et. al [28]. Associ-

ation Action Rules is an exhaustive A-Priori like method, which extracts all possible

action rules by taking all combinations of ActionTerms through iterative nature. For

that reason, Association Action Rules is the most complex, and the most computa-

tionally expensive out of all Action Rules extraction algorithms. The method does not

scale very well with Big Data and with High Dimensional data, and su�ers from per-

formance time prospective. Therefore, this algorithm requires attention, and needs to

be adapted for scalable and faster computation. In this work, we propose the Vertical
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Data Split method, which allows for much faster computational time for Association

Action Rules extraction, as well as it it makes it possible to run the extraction in a

Cloud Cluster environment in parallel.

On the positive side, this Association Action Rules algorithm extracts all possi-

ble ActionRules, while other algorithms, have a chance to lose some valuable rules.

For that reason, Association Action Rules execution takes much longer than other

Action Rules extraction algorithms. Association Action Rules algorithm is similar

to Association Rules [79]extraction algorithm. Association Rules �nd patterns that

occur most frequently together in the given data. The most popular algorithm for

extracting Association Rules is the Apriori algorithm [66]. Apriori algorithm starts

with 2 element pattern and continues n iterations until it �nds n element patterns,

where n is the number of attribute in the given data. Sample Association rule, which

means that when a pattern a1 ∩ b2 occur together in the data, pattern c1 ∩ d2 also

occurs in the same data, are given below in Equation 4.1

(a, a1) ∩ (b, b2) −→ (c, c1) ∩ (d, d2) (4.1)

Action Rules also have relation to the Association Rules. When an actionable

pattern t1 ∩ t2 ∩ .... ∩ tn occurs, where ti represents an atomic action, the actionable

pattern based on the decision attribute di also occurs with minimum support(ms)

and con�dence(mc). Association Action Rules starts extracting Action Rules with a

pattern which comprises an atomic action on the left side of the rule and decision

action on the right side. The algorithm continues for maximum of n-1 iterations,

where n is number of attributes in the data and gives all actionable patterns in

the data. We propose a method provides very broad recommendations and works

comparatively faster than our previous approaches: MR-Random Forest algorithm

[75] and SARGS algorithm [76]. We propose this method that suits data that has

large attribute space. But the method works better with small data also. In this
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Figure 4.7: Example Vertical Distribution for Decision Table in Table 1

method, we split the data vertically into 2 or more partitions and with each partition

the data can be split horizontally by the default settings of the Spark framework.

Figure 4.7 presents an example vertical data partitioning with the sample Decision

table given in Table 2.1. Our algorithm runs separately on each partition, does

transformations like map(), �atmap() functions and combine results with join() and

groupBy() operations. Algorithm 10 gives our new algorithm to extract all possible

Action Rules from the data in a parallel fashion.

Our algorithm gets the pre-processed data (rid, rvalues) as input, where rid is the

row id and rvalues is a list of values for each record in the data. The algorithm also

takes decision from (dFROM) and decision to (dTO) values as parameters. Step

2 of the algorithm gets all distinct attribute values and their corresponding data

row indexes. This step involves a Map phase and a groupByKey phase of the Spark

frameworks. We collect the data row indexes to �nd the Support and Con�dence of



57

Algorithm 10 ActionRulesExtract

Require: data of type (rid, rvalues)) and dFROM , dTO values
procedure MyProcedure

2: dA := (s ∈ r|r ∈ data|(s, rid)).groupByKey()
cOLD ← dA

4: i← 2
parallel :

6: while i 6= n do
c← data.flatmap(r => (comb(rvalues, i)), rid)

8: cNEW ← c.groupByKey()
cV ALID ← cNEW .f ilter()

10: cFROM ← cV ALID.f ilter(dFROM)
cTO ← cV ALID.f ilter(dTO)

12: if cFROM = ∅ or cTO = ∅ then break

atomic← cFROM .jon(cTO).f ilter()
14: actionsupp ← (r ∈ atomic | findSupp(r)).f ilter()

if actionsupp = ∅ then break

16: atomicFROM ← atomic.filter()
atomicTO ← atomic.filter()

18: aFROM ← atomicFROM .join(cOLD)
aTO ← atomicTO.join(cOLD)

20: actionconf ← aFROM .join(aTO)
actions← actionsupp.join(actionconf )

22: collect actions
cOLD := cNEW

24: i := i+ 1
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Action Rules.

Finding Support and Con�dence is an iterative procedure. It takes O(nd) times

to collect Support and Con�dence of all Action Rules, where n is the number of Ac-

tion Rules and d is the number of data records. To reduce this time complexity, we

store a set of data row indexes of each attribute value in a Spark RDD. In Step 3,

we assign the distinct attribute values to old combinations (cOLD) RDD to start the

iterative procedure. Thus the dA RDD acts as a seed for all following transformations.

The algorithm runs maximum of (n) iterations, where n is the number of attributes

in the data. During the ith iteration, the algorithm extracts Action Rules with i-1

action set pairs on the left hand side of the rule. Step 8 uses �atMap() transforma-

tion on the data to collect all possible i combinations from a data record. We sort

the combination of attribute values since they act as key for upcoming join() and

groupBy() operations. We also attach a row id rid to all combinations to get the sup-

port (which data records contains a particular pattern) of each combination with the

use of Spark's groupByKey() method in Step 9. We do sequential �ltering in following

steps. In Step 10, we �lter out combinations for which the indexes count is less than

the given support threshold supp. From the �ltered combinations, we get combina-

tions (cFROM and cTO) that has decision from dFROM value and decision to dTO values

in Step 11 and Step 12 respectively. In Step 14, we join cFROM and cTO based on

attribute names, �lter outdFROM and dTO values since we know the decision action,

which is not required in �nding con�dence of Action Rules. This results in Action

Rules of the form (attributes, (fromV alues, fromIndexes), (toV alues, toIndexes)).

We then calculate actual support of the resultant Action Rules and �lter out rules

that has support atleast the given support threshold supp in Step 15 and reformat

it to the form given in Equation 2. From Step 14, we have |Y1.Z1| and |Y2.Z2| or

in other words numerator of the Con�dence formula. To �nd the denominator |Y1|

and |Y2|, we again from values indexes and to values indexes in Step 17 and Step 18



59

respectively. We perform join() operation with Old combinations and assign values

to aFROM and aTO in Step 19 and Step 20 respectively. Subsequently we perform

division operation of the Con�dence formula in the same steps. In Step 21, we join

aFROM and aTO and perform multiplication operation on the Con�dence formula and

reformat it the form given in Equation 2. We now join Action Rules with Support

from Step 15 and Action Rules with Con�dence from Step 21 to get �nal set of Action

Rules. In Step 23, we assign new combination to the old combinations and pass the

same to the next iteration.

4.4.2.1 Vertical Data Distribution using Information Granules

The basic advantage of information granularity is that we can break bigger problems

into �ne grained granules. Since our problem is with distribution of data, we incorpo-

rate information granules to our method[80]. Algorithm 11 gives a brief description

about the process we use to measure overlaps between 2 granules, and sub-granules

within each granule.

By granules, we mean a �nite set of attributes from the attribute set A from the

information system. For our initial experiments, we examine all combinations of 2

granules from the information system and minimize the correlations of granules given

by Equation 4.2, where C(G) represents correlation of a sub-granule with sub-granules

of the other granule and m,n represents number of combinations of values of granules

1 and 2 respectively.

m∑
i=1

C(Gi) +
n∑

j=1

C(Gj)

2
(4.2)

We now give an example on our optimization process for the given Information

System T in Table 2.1. Since we are handling data partitioning, we are taking at-

tribute types(Stable,Flexible and Decision attributes) into consideration. Given an

information system T, we run our optimization(minimizing Equation 4.2) on all gran-
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Algorithm 11 Granule Based Data Distribution
Require: partitions, dataSplit1, dataSplit2

split1Sum← 0.0
2: for data1 in dataSplit1 do

subpartitions←[ ]
4: subpartitionsCount← 0

for data2 in dataSplit2 do
6: commonLines← data1.lines ∩ data2.lines

if commonLines 6= ∅ then
8: subpartitions.addAll(commonLines)

subpartitionsCount+ = 1
10: if |subpartitions| == |data1.lines| then

split1Sum+ = 1/subpartitionsCount
12: break

split2Sum← 0.0
14: for data2 in dataSplit2 do

subpartitions←[ ]
16: subpartitionsCount← 0

for data1 in dataSplit1 do
18: commonLines← data1.lines ∩ data2.lines

if commonLines 6= ∅ then
20: subpartitions.addAll(commonLines)

subpartitionsCount+ = 1
22: if |subpartitions| == |data2.lines| then

split2Sum+ = 1/subpartitionsCount
24: break

split1Avg = split1Sum/|dataSplit1|
26: split2Avg = split2Sum/|dataSplit2|

return split1Avg − split2Avg
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Table 4.2: Sub-granules of granules: A,B and C,D

A,B C,D
Y,N - {x1} N,D1 - {x1, x5, x8}

Y,H - {x2, x3} Y,D2 - {x2, x6, x7}
N,N - {x4, x6} Y,D1 - {x3}

N,H - {x5, x7, x8} N,D2 - {x4}

ules: ({A,B} and {C,D},{A,C} and {B,D} . . . ). Example of such combinations and

sub-granules are given in Table 4.2. In the given example, the number of sub-granules,

m,n = 4. We measure the correlation of each sub-granule(C(Gi),C(Gj)) by checking

the overlap count of the sub-granule with sub-granules of other granule. For example,

C(GY,H) = 1
2
, since Y,H from A,B overlaps with Y,D2 and Y,D1 of the granule C,D.

The complete optimization is handled in a distributed fashion using the Spark

framework [19]. In this way, calculating the scores of each granule is performed

very e�ciently. A brief description about our optimization process has been given in

Figure 4.8.

Figure 4.8: Data Distribution Strategy based on information granules

4.4.2.2 Privacy settings for Data Distribution

In addition to parameters that we assign for extracting action rules, we de�ne pa-

rameters for privacy settings in our algorithms to manage privacy. The data that we
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use for extracting actionable recommendations may comprise of sensitive information

like user identi�ers, places, and practices. Some of this information when placed to-

gether reveals greater privacy details to the user. In most of the cloud computing

techniques, the data is distributed to multiple servers and the corresponding algo-

rithms use such distributed data to mine or extract patterns. Since the data gets

distributed to multiple servers, privacy of the data may get compromised and it is

important to address such issues. Although, we do not handle such problems algo-

rithmically, we give options to users to set input parameters, which protect the data

privacy. These parameters are then used in our data partitioning module, to give

certain attributes more importance, and protect them.

4.4.3 Semantic Data Distribution

In this section, we combine the methods proposed in Sections 4.4.1 and 4.4.2 in

order to reduce the load of each worker in the cluster. To achieve this, we �rst

partition the data by an attribute satisfying the needs of our proposed class attribute

data partitioning method 4.4.1. Next, with each partitioned data, we split the

attributes again satisfying the needs of our proposed vertical data distribution based

on information granules method 4.4.2. Since one big data is broken into multiple

chunks of small resilient distributed datasets, we can extract actionable patterns

from all such small partitions in parallel. However, the small chunks may sometimes

increase the complexity of our algorithms proposed in previous sections. For that

reason, we propose the following load balancing approach to handle the situations,

where the data has large number of attributes.

4.4.3.1 Load balancing parameter

Load balancing is another issue in cloud computing that we address in this work for

extracting actionable recommendations. During very large data processing with dis-

tributed environment, it is required to give manageable work loads to the processing
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unit to optimize throughput, scalability, and resource utilization [81]. Our method

handles two levels of load balancing. Attracted from dynamic load balancing algo-

rithms like Ant Colonization Optimization [82] and Honey Bee foraging [83], we pro-

pose load balancing that follows binary tree structure as given in Figure 4.9. We de�ne

a function that process this parameter and splits the data accordingly. This method

is an extension of the vertical data partitioning methodology given in Section 4.4.2.

Instead of terminating the data partitioning at depth 1, the data partitioning contin-

ues to depth n in a binary fashion, based on the assigned load balancing parameter.

From the binary tree, each node is a given as a load to the action rule extraction

algorithm and thus reducing the total load into tiny chunks. Assigning very high

value (example: LoadBalancingParameter=13, with numberOfAttributes=12, each

attribute would go into one partition) or very low value (example: LoadBalancingPa-

rameter=0, with numberOfAttributes=12), to this parameter increases complexity of

extracting patterns. We recommend to set a mid-range value to this parameter. For

all our experiments, we set this parameter as 2. The next level of load balancing is

in-built load balancing functions in Apache Spark framework.

Figure 4.9: Binary Tree Load Balancing Strategy for Data Distribution



CHAPTER 5: DISTRIBUTED ACTION RULES OF LOWEST COST USING

ACTION GRAPH

5.1 Extracting Actionable Patterns of Lowest Cost

Ras and Tzacheva [84] introduced the notion of cost and feasibility of Action Rules

as an interestingness measure. They proposed a graph based method for extracting

feasible and low cost Action Rules. Ras and Tzacheva [4] proposed a heuristic search

of new low cost Action Rules, where objects supporting new set of rules also supports

existing rule set but the cost of reclassifying them is much lower for new rules. Later,

Tzacheva and Tsay [33] proposed tree based method for extracting low cost Action

Rules.

Apart from Action Rules, some research has been done on extracting Actionable

knowledge. For example, Yang, et.al [85] considered Customer Attrition in Customer

Relationship Management (CRM) in telecommunications industry and the cost com-

plexities involved in gaining pro�t to all customers. They proposed a method to

extract low cost Actionable patterns for converting undesired customers to loyal ones

while improve the net pro�t of all customers. Karim and Rahman [86] proposed

another method to extract cost e�ective actionable patterns for customer attribtion

problem in post processing steps of Decision Tree and Naive Bayes classi�ers. Su,

et.al [87] proposed a method to consider positive bene�ts that occurs by following

an Action Rule apart from all costs that incur from the same rule. Cui, et.al [2]

proposed to extract optimal actionable plans during post processes of Additive Tree

Model (ATM) classi�er. These actionable patterns can change the given input to a

desired one with a minimum cost. Hu, et.al [88] proposed an integrated framework to

gather cost minimal actions sets to provide support for social projects stakeholders
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to control risks involved in risk analysis and project planning phases. More recently,

Hu, et.al [89] developed a cost sensitive and ensemble framework to predict software

project risk predictions and conducted large scale analysis over 60 models 327 real

world project samples.

5.2 Action Graph

We build a graph called Action Graph from the Action Rules extracted using the

SARGS algorithm as discussed in Section 5.3. We build Action Graph by using

atomic action terms in Action Rules and their relation with other action terms. In

general, graphs take the representation of G = (V,E)where V is a set of vertices and

E is a set of edges connecting vertex pairs in V. All vertices and edges can contain

their own properties that combined together uniquely represent vertices and edges

respectively. We represent our Action Graph as an undirected graph Ag = (Av, Ae).

In Action Graph, we treat action terms that we get from Action Rules as a set of

vertices (Av) and we create edge between a vertex pair (am, an|am, an ∈ Ri), where

Ri is an Action Rule. We set basic properties of an action term such as Vertex Id,

Name, Cost, Support, Neighbor Ids and Action Rules of low cost based on the vertex

as vertex properties of the Action Graph and Co-occurrence Frequency of a vertex

pair as an edge property. Figure 5.1 gives a sample Action Graph for Action Rules

extracted from Table 2.1 using the SARGS algorithm. For example red node means

highest frequency, yellow node means medium frequency, and blue node means low

frequency.

5.3 Action Graph Search Algorithms

Constructing an action graph from a set of action rules, we create three search

algorithms for action graphs: Dijkstra's Shortest Path, Breadth First Search, and
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Figure 5.1: Sample Action Graph with Vertex Properties and Edge weights; Vertex
color represents how frequently the action term occurs, with Red being the most
frequent, and Yellow the least frequent.

Depth First Search to extract low cost actionable patterns [90].

5.3.1 Dijkstra's Shortest Path Algorithm

In the context of Action Graph, Dijkstra's shortest path algorithm works similarly

to one given in Algorithm 1. However, introducing the notion of Cost of Action Rules,

we change the Algorithm, as shown in Algorithm 12. That gives an overview on the

Dijkstra's shortest path algorithm for Action Graphs. In Spark GraphX [48] library

for processing large graphs, all nodes process their properties in parallel. Thus we

consider following properties to each node in the graph:

• vertexName, vertexCost : corresponding vertex's name and cost respectively

• d : (key, value) pair, where key represents the starting vertex(s) and value con-

sists of a path followed from s to the current node and corresponding path's
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Figure 5.2: Dijkstra's algorithm �ow chart for Action Graph

cost

Algorithm 12 gives an overview of our search algorithm with functions to send,receive

and merge messages. The basic idea behind our search algorithm is very similar to Di-

jkstra's shortest path algorithm [91] adapted to distributed environment on cloud[90].

In each iteration: all vertices share their ActionTerm with its cost with their neigh-

bors; all vertices add ActionTerms arriving from neighbors to their dictionary; all

vertices combine the valid low cost ActionTerms with the ones already in their dic-

tionary; the resulting ActionRules are sorted by cost in descending order; �nally, all

vertices share the set of low-cost ActionRules with their neighbors; algorithm runs

for n − iterations, where n is the number of ActionTerms in the longest Action-

Rule, from the input list of ActionRules. The search algorithm takes the Action

Graph Ag = (Av, Ae), where Av is a set of vertices or ActionTerms and Ae is a set

of edges connecting vertex pairs in Av, and minimum cost threshold ρ. We send an

initial empty message to start the functions. The �rst function to execute is the

ReceiveMsg(). For better readability we explain in the order of SendMsg(),MergeMsg

and ReceiveMsg(). Steps 6-10 gives procedure to do for all vertices when they

need to send a message to their immediate neighbors. Each vertex process each

edge originating from them. For each available low cost Action Rule r, it checks if
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Algorithm 12 Dijkstra's Shortest Path algorithm for Action Graphs

Require: Ag = (Av, Ae), a source vertex u and cost threshold ρ
A′

g := Ag.mapVertices(v => (v.vertexName,v.vertexCost,d)
2: procedure SendMsg(id,srcVertex,dstVertex )

sources := Collect sources from srcVertex.d that are not available in dstVer-
tex.d

4: return a dictionary with sources to dstVertex
procedure MergeMsg(m1,m2)

6: mergedMessage := ∅
for source ∈ m1.sources do

8: if m1.source.cost < m2.source.cost then
mergedMessage.source := m1.source

10: else
mergedMessage.source := m2.source

12: return mergedMessage
procedure ReceiveMsg(id,oldProp,newProp)

14: for source ∈ newProp do
newCost := Add this.name,this.cost to newProp.source

16: oldProp.source = newCost
return oldProp

18: Afinal
g := A′

g.aggregateMessages(SendMsg, MergeMsg, ReceiveMsg)
return all paths and costs from all vertexes
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r ⊆ dstn.neighbors in Step 9. This step �lters the dictionary in each vertex remove

ActionTerms that are irrelevant to the destination vertex . To avoid duplicate rules

from multiple vertices, we send only the combination of ActionTerms that are new to

the destination vertex. In Steps 11-13 we give a procedure for each vertex to com-

bine messages from multiple vertices. This function simply combines all messages

(dictionaries of ActionTerms with their Costs) and into a single Dictionary. This

single Dictionary is processed via the ReceiveMsg() function for processing. In Steps

1-5 we show the processing the ReceiveMsg() performs - for all vertices when they

receive a message. When a vertex receives a set of ActionTerm combinations and

their corresponding costs, it adds its own cost to produce a Low Cost Action Rule. If

the total cost is less than or equal to the given cost threshold ρ, the vertex adds the

Action Rule to its list of Low Cost Action Rules. The main function is described in

Step 16, where we initiate the �rst messageSend() operation to v ∈ Av. First, we pop-

ulate ActionRules property of each vertex to the combination of current vertex and

its immediate neighbor and respective cost. Next, all vertices send an empty message

to all their immediate neighbors. This continues for n iterations as mentioned above.

Once all iteration are over, we obtain an Action Graph A′
g containing Action Rules

along with their cost for each vertex. We then sort the rules by cost in Descending

Order, and suggest to the user the top 5 lowest cost rules for each vertex. The top 5

lowest cost Action Rules from all vertices form the set of the discovred Action Rules

of Lowest Cost.

In summary: for Algorithm 1, in SENDMSG function, we choose the sources that

the destination is not having and send paths and costs of only sources that are not

available in the destination. In MERGEMSG function, for each source we select

a path with minimum cost and in RECEIV EMSG, we receive all messages and

add current node's cost and update graph properties. By following these functions,
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eventually paths and costs propagates to all nodes in the graph. By the end of n/2

iterations, all nodes would have least cost to reach from source to themselves.

5.3.2 Breadth First Search Algorithm for Action Graph

Figure 5.3: Breadth First Search algorithm �ow chart for Action Graph

Since maintaining a queue to track the traversal is complex in parallel computing

engines like Spark GraphX, we propose modi�ed strategies for Breadth-First and

Depth-First searches in Action Graphs. BFS works alike Algorithm 12 with one

exception. Instead of choosing a path with minimum cost in the MERGEMSG

function, for each source vertex we choose a path from the latest source. For example,

if vertexes 1 and 2 are sending path and cost for the source node 3 to vertex 4, the

MERGEMSG function of vertex 4 chooses path and cost of source node 3 from vertex

2. Once this entry is updated, it cannot be altered in future but it can propagate to

update its neighbor entries [92].

5.3.3 Depth First Search algorithm for Action Graph

Depth First Search (DFS) is one of the more computationally complex problems

(P − Complete) to be incorporated into parallel frameworks. For long time in the

literature, parallelizing DFS is one of the main concerns and several variations of

DFS has been proposed [93] [94]. In this work, we propose DFS for Action Graphs to

extract low cost Action Rules as given in Algorithm 13. For the sake of Spark GraphX
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framework, we attach following parameters to each node for the algorithm [92]:

• vertexName, vertexCost : corresponding vertex's name and cost respectively

• neighborPath: path followed by a node to traverse among immediate neighbors

• l : Similar to dictionary d in Algorithm 12. We also attach which node to visit

next along with path and cost

Thus each vertex share their neighborPath in the �rst iteration with their neigh-

bors(but only to speci�ed neighbor vertex get the content). In the remaining iterations

SENDMSG function sends the dictionary l. Unlike Dijkstra's and BFS, we are not

gathering paths for all possible source and destination pairs. Instead, we are setting

each vertex as a source vertex and collecting a path using DFS traversal to reach

all other vertexes. Thus in the MERGEMSG function, we are getting updated pat

and cost from neighbors. In RECEIV EMSG function, we simply �nd nodes, from

neighborPath, that are not visited and attach them to the path in same sequence and

update the cost and next node to visit parameters.

5.3.4 Post-processing of Low Cost Action Rules

By following the Algorithm 12 or 13, we obtain all low cost Action Rules. Some

Action terms in Action Rules may have high correlations. We propose a method to

reduce further the cost of the obtained rules by considering edge weights in our Action

Graph during post-processing steps. We assign edge weights between two vertices or

action terms based on their frequencies of co-occurring together in Action Rules. We

de�ne a correlation threshold θ to check if two action terms in an Action Rule is

highly correlated. We assume that two action terms ar1, br1|(ar1, br1) ∈ r1, where r1

is an Action Rule, to be highly correlated if their co-occurring frequency w is greater

than or equal to θ. We propose that when two action terms satisfy the w ≥ θ, then

the action suggested by the �rst term is expected to trigger the action suggested by
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Algorithm 13 Depth First Search algorithm for Action Graphs

Require: Ag = (Av, Ae), a source vertex u and cost threshold ρ
A′

g := Ag.mapVertices(v => (v.vertexName, v.vertexCost, neighborPath, l)
2: procedure SendMsg(id,srcVertex,dstVertex )

return dstVertex.l
4: procedure MergeMsg(m1,m2)

mergedMessage := ∅
6: for source ∈ m1.sources do

if |m1.source| > |m2.source| then
8: mergedMessage.source := m1.source

else
10: mergedMessage.source := m2.source

return mergedMessage
12: procedure ReceiveMsg(id,oldProp,newProp)

for source ∈ newProp.msg do
14: if newProp.source.target = id then

newPath = newProp.source.path
16: for node ∈ oldProp.neighborPath do

if node /∈ newProp.source.path then
18: newPath := Add (node.name,node.cost)

if allV ertices ∈ newPath.names then
20: target := ∅

else
22: target := newPath.last.name

oldProp.source := (newPath,target)
24: return oldProp

Afinal
g := A′

g.aggregateMessages(SendMsg, MergeMsg, ReceiveMsg)
26: return all paths and costs from all vertexes
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Figure 5.4: Example Correlation Matrix of the action term (b, 1− > 2)

the second one. Therefore, the lowest cost action can be dropped from the total cost.

For each vertex, we de�ne a correlation matrix, which gives correlation frequency

between the current vertex or action term and its neighbor. Figure 5.4 gives a sample

correlation matrix for the action term vertex (b, 1− > 2). With this correlation

matrix, we can identify which 2 terms are highly correlated. Then we process each

Action Rule from the dictionary of low cost Action Rules of the current vertex. When

a highly correlated pair occurs in the Action Rule, we drop the cost of lowest cost

action term. For example, cost of the Action Rule (b, 1− > 2) ∩ (c = 1) can be

reduced from 31 to 30, if the correlation threshold θ is set to 1.

All the above methods use random distribution of data. Either Hadoop or Spark

divides the data based on its block size, and assigns a random part of the data to each

data processing node. In the next section , we propose a more intelligent method for

distribution of the data, in order to accomplish more accurate support, con�dence,

utility, and coverage measures for the computed Action Rules.



CHAPTER 6: EXPERIMENTS AND RESULTS

To experiment on algorithms discussed in the previous chapter, we make use of

datasets available in the machine learning repository of the Department of Informa-

tion and Computer Science of the University of California, Irvine [95]. Out of many

datasets, we used Car Evaluation data and the Mammographic Mass data. These

datasets are more suitable for rule-based classi�cation algorithms and they have cat-

egorized attributes. Since these datasets are relatively small in size, in order to test

them for scalability with the proposed distributed processing algorithms, we replicate

their data rows 1024 and 2056 times respectively for CarEvaluation and Mammo-

graphicMass datasets, in order to increase data size. We test our algorithms on both

replicated and non-replicated data for CarEvaluation and Mammographic datasets.

6.1 Description of Datasets

6.1.1 Car Evaluation Data

The Car Evaluation Data consists of records describing a car's goodness and ac-

ceptability.

The Car Evaluation dataset [95] is donated by Prof. Dr. Marko Bohanec, from De-

partment of Knowledge Technolgoies, Jozef Stefan Institute, in Liublijana, Slovenia.

It is intended to evaluate cars according to the car acceptability, according to its

buying price, maintenance cost, technical characteristics such as comfort, number of

doors, number of persons to carry, the size of its luggage boot, and the car safety.

The Car Evaluation dataset has 1728 tuples, and 7 attributes.

For large scale testing, we replicated this dataset �rst 512 times, and then 1024 times.
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6.1.2 Mammographic Mass Data

Mammographic is the most e�ective method for screening breast cancer.

The Mammographic-Mass dataset [95] is donated by Prof. Dr. Rdiger Schulz-

Wendtland from the Institute of Radiology at the University Erlangen-Nuremberg,

Germany. This dataset is used to predict the severity (benign or malignant) of a

mammographic mass lesion from BI-RADS attributes and the patient's age. It con-

tains a BI-RADS assessment, the patient's age and three BIRADS attributes together

with the ground truth (the severity �eld) for 516 benign and 445 malignant masses

that have been identi�ed on full �eld digital mammograms collected at the University

Erlangen-Nuremberg. The Mammographic-Mass dataset contains 961 instances, and

has 6 attributes.

For large scale testing, we replicated this dataset �rst 1024 times, and then 2048

times.

6.1.3 Charlotte Business Data

We also test with the city of Charlotte North Carolina BusinesWise data , which is

donated by the Charlotte Chamber of Commerce. This data collects details of over

20,000 business companies in Mecklenburg county, North Carolina. The data includes

their City, StartYear, Sector, Specialization of the company in a selected sector,

SiteType, Employees count at the site, Total employees in the company including all

branches, Site building type, Total sites and Estimated Sales. From this data, our

focus is how to increase a company's estimated sales from < 2 million US dollars to

the range between 3 million and 10 million US dollars.

6.1.4 Net Promoter Score Data

The NPS (Net Promoter Score) [96] dataset is collected customer feedback data

related to heavy equipment repair. The entire dataset consists of 38 companies,

located in di�erent sites across the whole United States as well as several parts of
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Canada. Overall, there are about 340,000 customers surveyed in the database over

time span of 2011-2015. Customers were randomly selected to answer a questionnaire

which was speci�cally designed to collect information relevant to NPS (structured into

so-called "benchmarks"). All the responses from customers were saved into database

with each question (benchmark) as one feature in the dataset. Benchmarks include

numerical scores (0-10) on di�erent aspects of service: e.g. if job done correctly, are

you satis�ed with the job, likelihood to refer, etc. The dataset also contains customer

details (name, contact, etc.) and service details (company, invoice, type of equipment

repaired, etc.). The decision attribute in the dataset is PromoterStatus which labels

each customer as either promoter, passive or detractor. The decision problem here

is to improve customer satisfaction / loyalty as measured by Net Promoter Score.

The goal of applying Action Rules to solve the problem is to �nd minimal sets of

actions so that to "reclassify" customer from "Detractor" to "Promoter" and the

same improve NPS. Due to con�dential details in the data, we used some of this data

only in few of our evaluations. The given dataset contains three decision attribute

values: Promoter, Passive and Detractor. Figure 6.1 gives decision value Promoter

Status distribution for the four given datasets. Each dataset represents a business

at a particular location.

6.1.5 HCUP - Hospital Readmission Data

In this work, we experiment with a Medical domain dataset called: Healthcare Cost

and Utilization Project(HCUP) data. HCUP o�ers multiple data for analysis such

as Inpatient databases, Emergency department databases, and Readmission databsaes

at both state level and national level. However, the national level data is a weighted

sample of data collected from all state level datasets. For our analysis we use the

State Inpatient Data (SID) of the state Florida of years 2010-2012 [97]. All our data

are organized as each data record representing a patient's hospital visit and each

patient visit has 298 attributes. Table 6.1 gives a brief description about interesting
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Figure 6.1: Number of instances in each Customer Type

Table 6.1: Interesting attributes in the datasets

Attribute
Name

Attribute Description

Age Patient's age during discharge
Died Boolean indicator of whether a patient died

during the hospital stay
DX, DXCCS Diagnosis codes representing all diagnosis

that a patient follows during their hospital
visit

PR, PRCCS Procedure codes representing all procedures
that are followed on a patient during their
hospital stay

LOS Length of hospital stay
VisitLink Identi�er of a patient
Race Race of a patient
DaysToEvent Number of days before next admission

attributes that are available in our datasets and that we use in all our methods.

In total, our SID dataset has 4,008,182 records, representing patient visits, out of

which 2,625,083 are unique patients. In this work, we augment the HCUP dataset,

by adding a new Feature - called Readmitted attribute. We create this attribute by

calculating its value for each patient visit using attributes LOS and DaysToEvent.

Based on this measured Readmitted, attribute, we give a plot on number of patients
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with their corresponding number of hospital readmission in Figure 6.2. In this �gure,

we can see that the number of patients who have been readmitted to the hospitals at

very low frequency decreases constantly and have sudden spikes between readmission

frequencies 40 and 60, and becomes constant for higher frequencies. We also note

that almost 72% patients in the data has atleast been readmitted to the hospital at

least once.

Figure 6.2: Representation of number of patients in Florida with their corresponding
readmission frequency in 2011-2012

Out of 298 attributes, 70% of the attributes are allocated to mark diagnoses and

procedures that a patient follows during their hospital stay. Most importantly, these

diagnoses and procedures are represented as ICD-9-CM (International Classi�cation

of Diseases, Ninth Revision, Clinical Modi�cation) codes. The data reports two vari-

eties of diagnoses and procedures for covering these ICD-9-CM codes. One is simple

ICD-9-CM code, which has around 8,900 unique codes in all diagnoses and procedures.

And, the other is an aggregated version of these codes, de�ned by Clinical Classi�ca-

tion Software(CCS). These codes classi�es diseases to their major classi�cation and

thus we have only around 520 unique ICD-9-CM codes from these attributes. In all

our experiments, we use the later versions of codes to improve e�ciency of algorithms
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and robustness in recommendations.

Figure 6.3: Top 15 diagnosed diseases for patients in Florida based on their frequency
in 2011-2012

In Figures 6.3 and 6.4, we represent diseases that have been most diagnosed and

procedured in Florida in years 2011 and 2012. It is interesting to note that the most

diagnosed disease(Choronary Heart Disease) is not present in the top procedures list

and similarly, the top procedure(Benign Neoplasm) is not present in top diagnosis.

According to our data, almost 12% of patient visits resulted in death after following

certain procedures to cure diseases. In Figure 6.5, we show the top 15 diseases that

result in patient's death during their procedure to cure the disease. From this �gure,

we can note that these 75% of diseases correlates with top diseases for which the

patients have undergone procedures as given in the Figure 6.4.

We also evidence that our datasets are rich in diversity. Our dataset comprise of

details about 58% female patient and 42% female patients. We show the diversity in
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Figure 6.4: Top 15 procedured diseases for patients in Florida based on their frequency
in 2011-2012
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Figure 6.5: Top 15 diseases that caused death for patients in Florida during their
hospital admission in 2011-2012
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patients race in the Figure 6.6. From this �gure, we note that our dataset has a good

representaion of white, black, and hispanic patients.

Figure 6.6: Distribution of diversity of patients and their corresponding admission
rates in Florida hospitals during 2011-2012

6.1.5.1 Hospital Readmission Reduction

There are few works that use data mining techniques to study the increasing hos-

pital readmissions problem. Unplanned hospital readmissions are expensive for both

patients and healthcare, and they create unfortunate outcomes to everyone (patients,

physicians, tax payers, and healthcare systems) [98]. After the advent of Hospital

Readmission Reduction Program in A�ordable Care Act, the hospital readmission in

the country declines moderately, but still creating new challenges to hospitals [99].

Recently various domains like medicine [100], education [101], and business [102]

started adopting data science research in their respective problems. Many research

studies have focused on using the voluminous real world datasets for healthcare appli-

cations and decision making using such data mining and knowledge extraction tech-

niques [103]. For example, in particular to hospital readmission, researchers create a

machine learning model to predict patient readmissions using just billing codes and
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basic patient admission characteristics [104]. Some focus on predicting the liklihood

of patient readmitting to the hospital, modelled as risk prediction, using Support

Vector Machines, Random Forests, and Neural Networks [105]. Similarly, there is a

study on using logistic regression to measure the relationship between diabetes and

early readmission [106], and a study on using a classic data mining technique like

Support Vector Machine to predict readmission [107] using other features such as pa-

tient demographics, disease type, admission type, and clinical procedures undertaken.

Recently, there is an interesting study on designing a personalized procedure graphs,

which gives a probability on patient's future procedure and recommend hospitals in

making decisions for a patient [21, 108].

6.2 Experiment System Con�guration

Figure 6.7: Hadoop cluster statitics - load distribution, active node status, cluster
load, and cluster memory

We conduct all our experiments in the University of North Carolina at Charlotte's
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Hadoop research cluster (URC). The cluster comprise of 4 master nodes and 16 slave

nodes, each node with 87 tera-bytes of Hadoop Distributed File System(HDFS) avail-

able to the research faculty and students. Each computer core consists of 12 cores,

totaling upto 192 computer cores in the cluster. Each node is dual Intel 2.93GHz

6-core processor with 64GB RAM. The Hadoop cluster uses an open source job mon-

itoring system named Ganglia to monitor the hardware performance and jobs that

are running in the cluster. We show these monitoring systems in Figures 6.7 and

6.8. Figure 6.7 illustrates the monitoring system that presents the load distribution

within nodes in the cluster, number of active/inactive nodes, average load and aver-

age resource utilization, total loads/processes, and cluster memory usage. Figure 6.8,

illustrates the monitoring system that presents the CPU utilization of the job in the

cluster, total networking activity in the cluster for the job(data transfers between

nodes), and load for each node in the cluster.

6.3 MR Random Forest Experiment - in Hadoop MapReduce

We used two datasets for testing our proposed MR - Random-Forest algorithm

for distributed action rules discovery: Car Evaluation dataset and Mammographic-

mass dataset, obtained from the Machine Learning Repository by Information and

Computer Sciences of the University of California, Irvine [95].

We ran the ARoGS and AAR (Association Action Rules) algorithms on the Uni-

versity of North Carolina at Charlotte Hadoop Research cluster, which has 73 nodes.

Hadoop splits the data with respect to its block size. Even though the default block

size in Hadoop is 64 MB, it can be reduced to support smaller datasets. The mini-

mum block size we can set is 1.04 MB. Since the minimum block size in Hadoop is

1.04 MB, it would not be splitting our original data. As we are adapting the Action

Rules discovery algorithm to work witch much bigger datasets, than it has worked

with before, then we replicate the original datasets multiple times to test the pro-
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Figure 6.8: Hadoop cluster statitics - CPU usage, network activity, and load/node
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posed algorithm in a distributed environment. This also brings the �nal dataset to

size greater than 1.04 MB, so Hadoop splits it automatically.

We chose the Car Evaluation dataset, and the Mammographic-mass dataset for this

study, in order to illustrate the application of Action Rules in two di�erent domains:

transportation domain, and medical domain.

Table 6.2 shows complete properties, like number of instances, replication factor

and data size, of the above discussed datasets.

Table 6.2: Properties set for Car Evaluation dataset and Mammographic-Mass
Dataset for MR-Random Forest and MR-Apriori Algorithms

Property Car Eval. Data Mammo. Mass
Data

Number of in-
stances

1728 961

Rplication Factor 116 518
Number of in-
stances after
replication

200448 497798

Attributes

7 attributes
-Buying

-Maintenance
-Doors
-Persons

-Luggage Boot
-Safety
-Class

6 attributes
-BI-RADS

-Patient's age
-Shape
-Margin
-Density
-Severity

Decision attribute
values

Class
(unacc, acc,
good, vgood)

Severity
(0 - benign,
1- malignant)

Original data size 52KB 16KB
Data size after
replication

5.922MB 7.93MB

The Car Evaluation dataset [95] is donated by Prof. Dr. Marko Bohanec, from

Department of Knowledge Technolgoies, Jozef Stefan Institute, in Liublijana, Slove-

nia. It is intended to evaluate cars according to the car acceptability, according to

its buying price, maintenance cost, technical characteristics such as comfort, number
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of doors, number of persons to carry, the size of its luggage boot, and the car safety.

The Car Evaluation dataset has 1728 tuples, and 7 attributes, as shown in Table 6.2.

For the purpose of this study, the Car Evaluation dataset was replicated 116 times,

in order to increase its size, and demonstrate the scalability of our proposed method.

Action Rules extracted for this dataset can suggest actions to be undertaken (changes

in �exible attributes) if the user would like to increase the car's safety, or if the user

would like to change the car state from `unacceptable' (unacc) to `acceptable' (acc).

An example Action Rule extracted from this dataset is:

arCar1

(
class, unacc→ acc

)
=
(
buying, buyinglow → buyinglow

)
∧

(persons, persons2→ persons4
)
∧
(
safety,→ safetyhigh

)
−→

(
class, unacc→ acc

)
[Support : 237&Confidence : 93.0%]

The rule arCar1 means that: if the buying price of the car remains low (buyinglow),

and the number of persons it can carry increases from 2 (persons2 ) to 4 (persons4 ),

and the safety of the car increases from any value to high (safetyhigh), then the

decision attribute (class) value is expected to change from unacceptable (unacc) to

acceptable (acc). A total of 237 tuples (objects) support this rule, and we are 93%

con�dent in the validity of this rule. Example Actions, called Meta-Actions, which

can trigger the above changes are: `improve air bags' (to increase safety); `improve

breaks' (to increase safety); `make larger salon' (to increase person capacity of the

vehicles). These are called Meta-Actions as described by Tzacheva and Ras [35],

since they trigger the suggested changes in �exible attributes speci�ed by the Action

Rules. The Meta-Actions can either be provided by expert in the domain and added

to the original data to augment it, or they can be automatically extracted from text

descriptions associated with the data as shown by Kuang and Ras [20]. For this study,

the attributes Buying, Maintenance, Doors are designated as Stable Attributes, and

the attributes Persons, LuggageBoot, Saftety are designated as Flexible Attributes,

and the attribute Class is designated as the decision attribute, which is also a �exible
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attribute. These parameters are shown in Table 6.

The Mammographic-Mass dataset [95] is donated by Prof. Dr. Rdiger Schulz-

Wendtland from the Institute of Radiology at the University Erlangen-Nuremberg,

Germany. This dataset is used to predict the severity (benign or malignant) of a

mammographic mass lesion from BI-RADS attributes and the patient's age. It con-

tains a BI-RADS assessment, the patient's age and three BIRADS attributes together

with the ground truth (the severity �eld) for 516 benign and 445 malignant masses

that have been identi�ed on full �eld digital mammograms collected at the University

Erlangen-Nuremberg. The Mammographic-Mass dataset contains 961 instances, and

has 6 attributes, as shown in Table 5. For the purpose of this study, the Car Evalua-

tion dataset was replicated 518 times, in order to increase its size, and demonstrate the

scalability of our proposed method. Action rules extracted from the Mammographic-

Mass dataset can suggest actions to be undertaken (changes in �exible attributes),

in order to re-classify a mammographic mass lesion (tumor) from class: malignant to

class: benign. An example Action Rule extracted from this dataset is:

arMam1(severity, 1→ 0) = (Margin, 3→ 4)∧ (BI−RADS, 5→ 4)∧ (Density,→

3) =⇒ (severity, 1→ 0)[Support : 284&Confidence : 82.4%]

The rule arMam1 means that: if the Margin of the lesion (tumor) changes from

3 to 4, and the BIRADS assessment changes from 5 to 4, and the Density of the

lesion (tumor) changes from any value to 3, then the severity (decision attribute)

is expected to change from value 1 (malignant) to value 0 (benign). A total of 284

tuples (objects) support this rule, and we are 82.4% con�dent in the validity of this

rule. The suggested desired changes can be triggered by Meta-Actions [35]. Example

Meta-Actions, which can trigger the above changes are: `doctor prescribes speci�c

medication' (to change BI-RADS assessment); or `doctor performs a speci�c medial

procedure' (to change the margin of the lesion). For this study, we designate BIRADS,

Margin, Density, Shape as Flexible Attributes. We designate Shape, Age as a Stable
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Attributes. We designate Severity as our decision (class) attribute, which is also a

�exible attribute. These parameters are shown in Table 6.3.

Table 6.3: Parameters used for Action Rules discovery on the Car Evaluation dataset
and Mammographic- Mass dataset for MR-Random Forest and MR-Apriori Algo-
rithms

Property Car Eval. Data Mammo. Mass
Data

Stable attributes Maintenance, Buy-
ing Price, Doors

Age, Shape

Required decision
action

(Class) unacc →
acc

(Severity) 1→ 0

Minimum Support
α and Con�dence β

150, 80% 50, 70%

Since we replicated the datasets multiple times, as shown in Table 6.2, the size of

the data was substantially increased from the original. Next, we ran our experiment,

and Hadoop made 6 splits of the data for the Car Evaluation dataset, and it made 8

splits of the data for the Mammographicmass dataset. The ARoGS algorithm took

1.84 minutes to process the Car Evaluation data on a single node, and it took 1.12

minutes to process the Car Evaluation dataset on 6 nodes. The Association Action

Rules algorithm took 11.09 minutes to process the Car Evaluation dataset on a single

node, and it took 5.4 minutes to process the Car Evaluation dataset on 6 nodes. The

ARoGS algorithm took 0.53 minutes to process the Mammographic Mass dataset on

a single node, and it took 0.29 minutes to process the Mammographic Mass dataset

on 8 nodes. The AAR algorithm took 9.4 minutes to process the Mammographic

Mass dataset on a single node, and it took 5.4 minutes to process the Mammographic

Mass dataset on 8 nodes. A comparison of the processing time for these algorithms

is shown on Table 6.4.

The processing times shown in Table 6.4. indicate that: the larger the data size is,

the faster our algorithms run (both ARAS and AAR algorithms), when using multiple

nodes (in a distributed environment with MapReduce framework), compared to a
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Table 6.4: Comparison of processing time for ARAS and AAR algorithms using
MapReduce method on Hadoop

Dataset # of splits
(nodes)

ARAS(mins) AAR(mins)

Car Evaluation
Data

1 1.84 11.09

6 1.12 5.4
Mammographic
Mass Data

1 0.53 9.4

8 0.29 6.2

single node (a single machine). From the results in Table 6.4, we can also see that

ARAS algorithm generates the Action Rules much faster than the AAR algorithm

does, while using the MR - Random Forest method in the Reduce phase for both. The

AAR (Association Action Rules) takes a much longer time to generate Action Rules

because it follows Apriori-like method described in section 3.3 to produce all possible

combination of action sets and from these action sets, it generates all possible Action

Rules. Table 8. depicts sample comparison of rules generated by both the algorithms

on the Car dataset.

Next, we compare the ARAS and the AAR algorithm. Our results indicate that

the ARAS algorithm produces more general Action Rules, while the AAR algorithm

produces more speci�c Action Rules. By general Action Rule we mean that the rule

contains an atomic action set like (safety,→ safetyhigh) i.e. the safety is changed

from any value to value safetyhigh. On the other hand, the AAR algorithm pro-

duces only speci�c Action Rules i.e. the action sets have both values chageFrom and

changeTo speci�ed, such as: (safety, safetlylow → safetyhigh). Even though the

AAR algorithm follows Apriori-like method and takes much longer time to process,

it generates more rules comparing to the ARAS method. For our study, the ARAS

produced 20 Action Rules the Car Evaluation Dataset, while AAR produced 124 Ac-

tion Rules, out of which 80 rules can be generalized to the rules produced by ARAS

algorithm. We show an example of ARAS general Action Rule, and its corresponding
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AAR speci�c Action Rules on Table 6.5.

Table 6.5: Comparison of general and speci�c Action Rules produced by ARAS and
AAR respectively

ARAS AAR
(safety,→ safetyhigh)
(buying, buyinglow → buyinglow) ∧
(maint,maintvhigh → maintvhigh) ∧
(persons, persons2 → persons4) ∧
(safety,→ safetyhigh) =⇒
(Class, unacc → acc)[Support :
232&Confidence : 100.0%]

(buying, buyinglow → buyinglow) ∧
(maint,maintvhigh →
maintvhigh) ∧ (persons, persons2 →
persons4) ∧ (safety, safetylow →
safetyhigh) =⇒ (Class, unacc →
acc)[Support : 232&Confidence :
100%]]
(buying, buyinglow → buyinglow) ∧
(maint,maintvhigh →
maintvhigh) ∧ (persons, persons2 →
persons4) ∧ (safety, safetymed →
safetyhigh) =⇒ (Class, unacc →
acc)[Support : 232&Confidence :
100%]]
(buying, buyinglow → buyinglow) ∧
(maint,maintvhigh →
maintvhigh) ∧ (persons, persons2 →
persons4) ∧ (safety, safetyhigh →
safetyhigh) =⇒ (Class, unacc →
acc)[Support : 232&Confidence :
100%]]

6.4 SARGS Experiment - in Apache Spark

We used datasets: Car Evaluation dataset and Mammographic-mass dataset shown

in [95] to test our system and compare the results with the Hadoop system. These

datasets are publicly available Machine Learning Repository generated by Depart-

ment of Information and Computer Science of the University of California, Irvine.

Since these datasets are relatively small for the distributed frameworks, we replicated

multiple times to execute the proposed system in a distributed environment. Also, we

used NPS (Net Promoter Score) [20] dataset to test our system on a real time data.
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Table 6.6. gives details about the datasets such as number of instances, attribute

names, decision attribute values and data size.

Table 6.6: Properties of the datasets for SARGS

Property
Car Evalua-
tion Data

Mammographic
Mass Data

Business
Data

# of instances 1728 961 2236

Attributes

7 attributes
-Buying
-Maintenance
-Doors
-Persons
-Luggage
Boot
-Safety
-Class

6 attributes
-BI-RADS
-Patient's age
-Shape
-Margin
-Density
-Severity

17 attributes

Decision
attribute
values

Class
(unacc, acc,
good, vgood)

Severity
(0 - benign, 1-
malignant)

Promoter
Status
(Detractor,
Passive,
Promoter)

# of in-
stances /
decision value

unacc - 1210
acc - 384
good - 69
vgood - 65

0 - 516
1 - 445

Detractor-112
Passive - 238
Promoter-
1870

Replication
Factor

1024 2048 -

# of instances
after replica-
tion

1,769,472 1,968,128 -

Original data
size

52 KB 16 KB 261 KB

Data size
after replica-
tion

52 MB 26 MB -

The Car Evaluation dataset [95] is to evaluate cars about their goodness and ac-

ceptability based on their buying frequency, maintenance cost, price and other char-

acteristics related to cars such as safety measure, number of persons it can carry

and luggage boot size. Mammography is the most e�ective method for breast cancer
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screening. The Mammographic mass dataset [95] is to measure the severity of breast

cancer based on BI-RADS (measures how severe the breast cancer), patient's age,

shape and density of the cancer. Out of these attributes, we set some parameters

which are given to the algorithms. Table 6.7 shows the parameters that we set for

the selected datasets.

Table 6.7: Parameters used for Action Rule discovery used for both MR-random
Forest and SARGS

Property
Car Evalua-
tion Data

Mammographic
Mass Data

Business
Data

Stable at-
tributes

Buying,
Maintenance,
Doors

Shape, Age

Client Name,
Division,
Survey Type,
Channel
Type

Required de-
cision action

(Class)
unacc→ acc

(Severity)
1→ 0

Promoter
Status
Detractor →
Promoter

Minimum
Support and
Con�dence

2000, 60% 500, 60% 2, 60%

The NPS (Net Promoter Score) [20] dataset is collected customer feedback data

related to heavy equipment repair. The entire dataset consists of 38 companies,

located in di�erent sites across the whole United States as well as several parts of

Canada. Overall, there are about 340,000 customers surveyed in the database over

time span of 2011-2015. Customers were randomly selected to answer a questionnaire

which was speci�cally designed to collect information relevant to NPS (structured into

so-called "benchmarks"). All the responses from customers were saved into database

with each question (benchmark) as one feature in the dataset. Benchmarks include

numerical scores (0-10) on di�erent aspects of service: e.g. if job done correctly, are

you satis�ed with the job, likelihood to refer, etc. The dataset also contains customer

details (name, contact, etc.) and service details (company, invoice, type of equipment
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repaired, etc.). The decision attribute in the dataset is PromoterStatus which labels

each customer as either promoter, passive or detractor. The decision problem here is

to improve customer satisfaction / loyalty as measured by Net Promoter Score. The

goal of applying Action Rules to solve the problem is to �nd minimal sets of actions so

that to "reclassify" customer from "Detractor" to "Promoter" and the same improve

NPS.

We use the University of North Carolina at Charlotte Research Cluster to evaluate

the algorithms on the chosen datasets. This is a Hadoop cluster comprising of 72

nodes. For testing purpose, we also run Hadoop system on the selected datasets and

the results are evaluated with the current system. Also, we tested the system both

in single node and 4 nodes and many evaluations are given below.

Table 6.8 shows sampled Action Rules extracted from all selected datasets. ARC,

ARM and ARN represents Action Rules extracted from Car evaluation, Mammo-

graphic mass and NPS datasets respectively. First, we give sample Action Rules that

obtained using the Hadoop system [46] and then we give details about Action Rules

extracted from all three datasets.

Following Action Rules are generated by the Hadoop system for the Car Evaluation

dataset:

• (maint, high → high) ∧ (safety, low → high) ∧ (buying, high → high) ∧

(persons,→ 4) −→ (class, unacc→ acc)

• (maint, low → low)∧ (persons, 2→ 4)∧ (buying, vhigh→ vhigh)∧ (safety,→

high) −→ (class, unacc→ acc)

Since the Hadoop system uses ARoGS algorithm, some of the action terms in the

above Action Rules remain meaningless. For example, the action terms (persons,→

4) and (safety,→ high), means that the attributes persons and safety can from any
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Table 6.8: SARGS output samples - Action Rules

Car Dataset

1. ARC1 : (buying = med) ∧ (doors = 3) ∧ (maint = med) ∧
(persons, 2→ more) ∧ (safety, high→ med) −→ (class, unacc→
acc)[Support : 6000, OldConfidence : 100%, NewConfidence :
100%]

2. ARC2 : (buying = high) ∧ (doors = 3) ∧ (maint = low) ∧
(persons, 4 → more) ∧ (safety, low → high) −→ (class, unacc →
acc)[Support : 6000, OldConfidence : 100%, NewConfidence :
100%]

Mammographic Mass Dataset

1. ARM1 : (BI − RADS, 55 → 2) −→ (Severity, 1 → 0)[Support :
14700, OldConfidence : 100%, NewConfidence : 100%]

2. ARM4 : (BI − RADS, 5 → 4) ∧ (Margin, 5 → 2) ∧ (Shape =
3) −→ (Severity, 1 → 0)[Support : 2100, OldConfidence :
100%, NewConfidence : 100%]

NPS Dataset

1. ARN3 : (BM : DealerCommunication, Low → V eryHigh) ∧
(BM : EaseofUseforOnlineStore, Low → High) −→
(PromoterStatus,Detractor → Promoter)[Support :
19, OldConfidence : 100%, NewConfidence : 100%]

2. ARN4 : (BM : DealerCommunication, Low → High) ∧ (BM :
OverallSatisfaction,Medium → V eryHigh) ∧ (BM :
PartsOrderAccuracy, Low → V eryHigh) ∧ (BM :
PartsAvailability,Medium → High) ∧ (ClientName =′

Client2′) ∧ (Division =′ Tractor&Equipment′) −→
(PromoterStatus,Detractor → Promoter)[Support :
3, OldConfidence : 100%, NewConfidence : 100%]

values to ′4′ and ′high′ respectively. Since this kind of Action Rules are incomplete,

they provide only limited knowledge to the users.

To overcome this scenario, we proposed SARGS algorithm to extract complete
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Action Rules. Consider ARC1, ARM4 and ARN4 from Table 6.8.

ARC1 : (buying = med) ∧ (doors = 3) ∧ (maint = med) ∧ (persons, 2 → more) ∧

(safety, high→ med) −→ (class, unacc→ acc)[Support : 6000, Confidence : 100%]

This action rule de�nes that when a ′BuyingCost′ is ′Medium′, ′DoorCount′

is ′3′, ′MaintenanceCost′ is ′Medium′, if ′SeatingCapacity′ increases from ′2′ to

′morethan5′ and if ′Safetymeasure” decreases from ′high′ to ′medium′, some of the

unacceptable cars can become acceptable with support of 6000 and con�dence of

100%

ARM4 : (BI−RADS, 5→ 4)∧(Margin, 5→ 2)∧(Shape = 3) −→ (Severity, 1→

0)[Support : 2100, OldConfidence : 100%, NewConfidence : 100%]

This action rule means that when ′BI −RADSmeasure′ decreases from ′5′ to ′4′,

′Marginvalue′ decreases from ′5′ to ′2′ and if the ′shapeofthetumor′ is ′3′, severity

of the cancer can be reduced.

ARN4 : (BM : DealerCommunication, Low → High)∧

(BM : OverallSatisfaction,Medium→ V eryHigh)∧

(BM : PartsOrderAccuracy, Low → V eryHigh)∧

(BM : PartsAvailability,Medium→ High) ∧ (ClientName =′ Client2′)∧

(Division =′ Tractor&Equipment′) −→ (PromoterStatus,Detractor → Promoter)

[Support : 3, Confidence : 100%]

This action rule de�nes that when benchmarks (BM): ′DealerCommunication′

increases from ′Low′ to ′High′, ′OverallSatisfaction′ increases to ′V eryHigh′, 'Parts

Order Accuracy' increases to ′V eryHigh′ and ′PartsAvailability′ increases to ′High′

and when the ′Client′ is ′Client2′ and when the ′Division′ is ′Tractor&Equipment′,

the ′PromoterStatus′ can change from ′Detractor′ to ′Promoter′ with support of 3

and con�dence of 100%. By making changes provided in this action rule, some of the
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customer who are not supporting (Detractors) currently can convert into Promoters.

Thus, by using our proposed SARGS algorithm all action terms are complete. So,

the knowledge given by any action rule formed by such complete action terms from

our system is also completely meaningful.

Table 6.9 shows the number unique Action Rules produced by the two systems

for the selected datasets. Since Car evaluation and Mammographic mass datasets

are relatively small, we tested our data sampling method (manually distributing the

data partitions to nodes) only NPS data. When Spark distribute the data among the

nodes, our system could not able to �nd some of the valuable Action Rules and it

extract only 1200 rules. This count continues to decrease when data size increases and

Spark runs our system in more partitions. But with manual sampling method de�ned

in section III.G, our system extracts more 1359 Action Rules. For Car evaluation and

Mammographic mass datasets, with our SARGS algorithm, equal number of Action

Rules are extracted from the system unlike MR-Random Forest algorithm which skips

most of the rules while running in multiple nodes.

Table 6.10 shows running time of our systems in both single node and multiple

nodes. It shows that our Spark system has the ability to complete the entire processing

within seconds for which the Hadoop system took minutes to complete. that our

present system works way faster than our previous Hadoop system. This improved

running time e�ciency is due to the Spark framework [19] and its ability to perform

in-memory computations.

6.5 Data Distribution - Class Attribute Sampling Experiment

To test our methods, we use three datasets: Car Evaluation data, Mammographic

Mass data, and the Charlotte North Carolina BusinesWise data.

The Car Evaluation and Mammography are obtained from the Machine Learning
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Table 6.9: Action Rules Count Evaluation of MR-Random Forest and SARGS on the
datasets

Dataset # of nodes MRRandom
on Hadoop
(Action
Rules
Count)

SARGS on
Spark (Ac-
tion Rules
count)

Business
Data

1 - 1265

2 (default
data distribu-
tion)

- 1200

2 (manual
data distribu-
tion)

- 1359

Car Evalua-
tion

1 950 251

4 230 251
Mammographic 1 673 319
Mass Data 4 145 319

Table 6.10: Runtimes Evaluation of MR-Random Forest and SARGS on the datasets

Dataset # of nodes Hadoop
(minutes)

Spark (min-
utes)

Business
Data

1 - 6.2

2 - 5.5
Car Evalua-
tion

1 2 1.2

4 1.4 0.95
Mammographic 1 1.55 0.66
Mass Data 4 0.8 0.4

repository of the Department of Information and Computer Science of the University

of California, Irvine [95]. The Car Evaluation Data consists of records describing a

car's goodness and acceptability based on features such as buying frequency, mainte-

nance cost, safety measure, seating capacity and luggage boot size. Mammographic

is the most e�ective method for screening breast cancer. The Mammographic Mass

data contains records that measure severity of the cancer based on patient's age, can-
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cer shape, cancer density and BI-RADS(a test score to denote how severe the cancer

is). Since these datasets are relatively small in size, in order to test them for scal-

ability with the proposed distributed processing algorithms, we replicate their data

rows 1024 and 2056 times respectively for CarEvaluation and MammographicMass

datasets, in order to increase data size. We test our algorithm on both replicated and

non-replicated data for CarEvaluation and Mammographic datasets.

We also test with the city of Charlotte North Carolina BusinesWise data , which is

donated by the Charlotte Chamber of Commerce. This data collects details of over

20,000 business companies in Mecklenburg county, North Carolina. The data includes

their City, StartYear, Sector, Specialization of the company in a selected sector,

SiteType, Employees count at the site, Total employees in the company including all

branches, Site building type, Total sites and Estimated Sales. From this data, our

focus is how to increase a company's estimated sales from <2 million US dollars to

the range between 3 million and 10 million US dollars. Further Table 6.11 gives a

broad picture of the datasets, , like number of instances, replication factor and data

size, that we used to test our algorithm.

Table 6.12 show parameters that we set for each dataset to collect Action Rules.

For the Car Evaluation data, we choose Class attribute as a decision attribute and

we collect Action Rules to help the car company to change the car from Unacceptable

state to Acceptable state. For the Mammographic Mass data, we choose Cancer

Severity as a decision attribute and we collect Action Rules to reduce the severity

from Malignant to Benign. For the Business data, we choose Estimated Sales as a

decision attribute and we collect Action Rules to increase the Estimated Sales of a

company from < $3M to $3M − $10M . For our vertical data distribution method

evaluations, we split the Business data only because of the small number of attributes

in Car Evaluation data and Mammographic Mass data.

In Table 6.13, we give number of Action Rules extracted from our di�erent method-
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Table 6.11: Properties of datasets for Data Distribution Experiments

Property Car Eval. Data Mammo. Mass
Data

Business Data

Attributes

7 attributes
-Buying

-Maintenance
-Doors
-Persons

-Luggage Boot
-Safety
-Class

6 attributes
-BI-RADS

-Patient's age
-Shape
-Margin
-Density
-Severity

17 attributes
including
-City
-Sector

-Site Type
-Building Type
-Estimated Sales
-Total Employees

Decision attribute
values

Class
(unacc, acc,
good, vgood)

Severity
(0 - benign,
1- malignant) Est. Sales

< $2M ,3-10M,
10-25M, 25-50M,

50-100M,100-500M,
> 500M

# of instances / de-
cision value

unacc - 1210
acc - 384
good - 69
vgood - 65

0 - 516
1 - 445

< $2M - 12503
$2-$10M - 1927
$10-$25M - 393
$25-$50M - 130
$50-$100M - 69
$100-$500M - 57
> $500M - 50

Replication Factor 1024 2048 -
# of instances after
replication

1,769,472 1,968,128 -

Original data size 52KB 16KB 5.5MB
Data size after
replication

52MB 26MB -

ologies: MR-Random Forest Algorithm, SARGS with default data partitioning and

SARGS with class distribution methods which are based on LERS and ARAS and

we validate our methods with the traditional non-parallel algorithm.

In Table 6.14, we give runtimes of our MR-Random Forest and SARGS methods

and compare them with the runtime of traditional Action Rule extraction algorithm.

Note that our SARGS implementation with Class Distribution technique take some

extra time for data partitioning task. But time taken for this step gradually reduces
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Table 6.12: User de�ned Parameters used in all Action Rule discovery algorithms

Property Car Eval. Data Mammo. Mass
Data

Business Data

Stable attributes Maintenance,
Buying Price,
Doors

Age, Shape Start Year

Required decision
action

(Class) unacc →
acc

(Severity) 1→ 0
Est. Sales

$2M − $10M →
$10M − $25M

Minimum Sup-
port α and
Con�dence β

2048, 70% 4096, 70% 10, 70%

Table 6.13: Performance of Action Rule extraction algorithms in terms of number of
rules generated

Data Non-
Parallel
Algorithm

MR-
Random
Forest

SARGS
- Default
Data Distri-
bution

SARGS -
Class Dis-
tribution
Algorithm

Car Evalua-
tion Data

64 49 53 53

Mamm. Mass
Data

393 125 165 165

Business
Data

N/A N/A 2048 3100

when the data size grows bigger. Avoiding that, our distributed versions of algorithms

runs much more e�ciently compared to the traditional non-parallel algorithm.

6.6 Data Distribution - Vertical Split Experiment

In Table 6.15, we give analysis of Association Action Rules extraction methods

using MapReduce(MR-Apriori) and Spark(Vertical Data Distribution) methods. We

validate our methods with the traditional Association Action Rules extraction method.

From this table, it is noticeable that we can reduce Action Rule loss while execut-

ing them in distributed computing frameworks using our vertical data partitioning

technique compared to our random horizontal data partitioning in MapReduce.
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Table 6.14: Time taken by Action Rule extraction algorithms to extract Action Rules

Data Non-
Parallel
Algorithm

MR-
Random
Forest Al-
gorithm

SARGS
- Default
Data Distri-
bution

SARGS -
Class Dis-
tribution

Car Evalua-
tion Data

34secs 25secs 17secs 30secs

Mamm. Mass
Data

45secs 36secs 23secs 32secs

Business
Data

> 5hr N/A ∼ 3hr ∼ 3hr

Table 6.15: Performance of Association Action Rules algorithms in terms of number
of rules generated

Data Non-Parallel
Algorithm

MR-Apriori
Forest Algo-
rithm

Vertical Data
Distribution
Algorithm

Car Evaluation
Data

3512 2478 3496

Mamm. Mass
Data

5802 4892 5756

Business Data ∼ 210000 N/A ∼ 210000

In Table 6.16, we give runtimes of our Association Action Rules techniques and

compare them with non-parallel method. It is worth mentioning here that this Asso-

ciation Action Rules technique is more complex than other Action Rules extraction

methods because this method extracts all possible rules from the Decision Table. We

found that our distributed algorithms works much faster than the traditional method.

Within our distributed methods, it is more interesting to note that our vertical data

distribution approach works much faster than our random and horizontal data distri-

bution method.

Along with the above datasets, we used Net Promoter Score(NPS) dataset also to

evaluate this vertical data partitioning method. For this data, we just make compari-

son between the traditional version of the Association Action Rules algorithm and our

Distributed version of Association Action Rules algorithm using Spark framework.
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Table 6.16: Time taken by Association Action Rules extraction algorithms to extract
Action Rules

Data Non-Parallel
Algorithm

MR Apriori Al-
gorithm

Vertical Data
Distribution
method

Car Evaluation
Data

72mins 11mins 104secs

Mamm. Mass
Data

40mins 9.3mins 82secs

Business Data > 20hrs N/A 2.3hr

Figure 6.9: Runtimes of Association Action Rules extraction algorithms for NPS
datasets in Traditional vs Spark Environments

From Figure 6.9, we can note that our algorithms with vertical data distribution

outperforms the traditional version of the algorithm. We noted some interesting pat-

terns during this evaluations. For datasets like Company_16 and Company_30 which

contains more number of instances than datasets Company_17 and Company_20 re-

spectively, the traditional algorithms outputs actionable recommendations in a short

time. This is due to many empty values in those datasets. Our Spark version of the

algorithm takes same time to produce results due to data separation and combining

results overload in its process.

In Table 6.17, we compare coverage of traditional and Spark versions of algorithms.
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It is notable that our Spark version loses some coverage due to minor errors in data

distribution in some datasets.

Table 6.17: Comparison of coverage of Association Action Rules extraction algorithms
for NPS datasets

Data Traditional algo-
rithm

Spark algorithm

Company_17 - 547
rows

77.3% 77.3%

Company_16 -
2078 rows

75% 76.9%

Company_20 -
2590 rows

80.5% 81.8%

Company_30 -
3335 rows

79.8% 79.8%

6.7 Vertical Data Split with Information Granules

To test the proposed Vertical Data Split method with Information Granules, we

use three datasets: Car Evaluation data [95], Mammographic Mass data [95], and the

Net Promoter Score dataset data [96].

Table 6.18 show parameters that we set for each dataset to collect Action Rules.

For the Car Evaluation data, we choose Class attribute as a decision attribute and

we collect Action Rules to help the car company to change the car from Unacceptable

state to Acceptable state. For the Mammographic Mass data, we choose Cancer

Severity as a decision attribute and we collect Action Rules to reduce the severity

from Malignant to Benign.

We show the Action Rules extracted using our methods in two tables. In Ta-

ble 6.19, we give Action Rules extracted from Car Evaluation and Mammographic

Mass datasets and in Table 6.20, we give Action Rules extracted from 4 NPS datasets.

These Action Rules provide actionable recommendations to users who wants to achieve

the desired decision action. For example, from Table 6.19, when a user wants to
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Table 6.18: Parameters used in all Action Rule discovery algorithms

Property Car Evalua-
tion Data

Mamm.
Mass Data

NPS Data

Stable at-
tributes

Maintenance,
Buying Price,
Doors

Age Survey name
Survey type
Division
Channel type
Client name

Required deci-
sion action

(Class)
unacc→ acc

(Severity) 1 →
0

Promoter
Status
Detractor →
Promoter

Minimum Sup-
port α and
Con�dence β

2048, 70% 4096, 70% 2, 80%

achieve the action Class, unacc→ acc, our system give actionable recommendations

to achieve that goal. Action Rules ARC1 and ARC2 in Table 6.19 are example recom-

mendations given by our system for the appropriate parameters given in Table 6.18.

For example, Action Rule ARC1 recommends if the car company maintains Buying

cost to medium and Maintenance Cost to Very high and decrease the Seating capac-

ity from More than 4 to 4 and increase Safety measures from medium to high with

support of 1107 and minimum con�dence of 74%

Similarly, we give example Action Rules for all NPS datasets: Company_16, Com-

pany_16_31, Company_17 and Company_30 in Table 6.20. In all cases, we use

parameters given in Table 6.18. For example, consider ARN2 which recommends that

if the company can improve user's ratings on Completion of repair correctly from

5 points to 10 pints and improve user's ratings on Technician communication from

3 points to 9 points, the company can convert some Detractors to Promoters with

support of 2.0 and con�dence of 90.0%.

In Figure 6.10, we give run time analysis of Association Action rules extraction

methods implemented in non-parallel method and our technique of splitting the data
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Table 6.19: Action Rules of Car Evaluation and Mammographic Mass datasets

Car Evaluation Data

1. ARC1 : (buying = med) ∧ (maint = vhigh) ∧ (persons,more →
4) ∧ (safety,med → high) =⇒ (class, unacc → acc)[Support :
1107, OldConfidence : 74%, NewConfidence : 100%, Utility :
74%

2. ARC2 : (buying = med) ∧ (maint = vhigh) ∧ (persons,more →
4) ∧ (safety,med → high) =⇒ (class, unacc → acc)[Support :
1353, OldConfidence : 85%, NewConfidence : 100%, Utility :
85%

Mammographic Mass Data

1. ARM1 : (BIRADS, 6→ 2) ∧ (Density, 4→ 3) =⇒ (Severity, 1→
0)[Support : 12288, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%]

2. ARM2 : (Age = 42) ∧ (Density, 1 → 3) ∧ (Shape =
1) =⇒ (Severity, 1 → 0)[Support : 10240, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]

by attributes using information granules and extracting Association Action rules in

parallel using Apache Spark framework. As mentioned earlier, since Association Ac-

tion rules methodology is a complex algorithm, we can see from the Figure 6.10 that

non-parallel method takes long time to give actionable recommendations. On the

other hand, our method takes only fraction of minutes. The speed increases when

the data set size increases. For example, for NPS data: company 30, which is the

largest in our datasets, the non-parallel version takes around an 60 minutes to produce

results, while our method takes 3 minutes.

In Table 6.21, we compare number of Action Rules extracted by our parallel and

non-parallel algorithms. Due to the data partitioning step involved in our method,

we lose some Action Rules. In Table 6.22, we give Coverage measure of Action
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Table 6.20: Action Rules of NPS datasets: 16, 16_31, 17, 30

Company_16

1. ARN1 : (ChannelType = Ag) ∧ (Benchmark : Service −
TechnicianCommunication, 1 → 10) =⇒ (PromoterStatus,Detractor →
Promoter)[Support : 2.0, OldConfidence : 87.5%, NewConfidence :
100.0%, Utility : 87.5%]

2. ARN2 : (Benchmark : Service − RepairCompletedCorrectly, 5 →
10) ∧ (Benchmark : Service − TechnicianCommunication, 3 → 9) =⇒
(PromoterStatus,Detractor → Promoter)[Support : 2.0, OldConfidence :
90.0%, NewConfidence : 90.0%, Utility : 100.0%]

Company_16_31

1. ARN3 : (BenchmarkPartsOrderAccuracy, 3 → 10) ∧
(ClientName = HOLTCAT ) → (Division = Parts) ∧
(BenchmarkPartsT imeitTooktoP laceOrder, 4 → 9) =⇒
(PromoterStatus,Detractor → Promoter)[Support : 2.0, OldConfidence :
80.0%, NewConfidence : 100.0%, Utility : 80.0%]

2. ARN4 : (BenchmarkPartsHowOrdersAreP laced, 2 → 4) ∧
(BenchmarkPartsOrderAccuracy, 6→ 10)∧(ClientName = HOLTCAT )∧
(Division = Parts) ∧ (BenchmarkPartsKnowledgeofPersonnel, 5 →
10) =⇒ (PromoterStatus,Detractor → Promoter)[Support :
2.0, OldConfidence : 100.0%, NewConfidence : 100.0%, Utility : 100.0%]

Rules extracted for each dataset and compare them with Coverage of Action Rules

extracted using non-parallel methods. In 50% of our experiments we are able to

achieve the same coverage as Action Rules extracted using non-parallel approach.

From this table, we can assure that our method of extracting Action Rules using

the distributed computing framework like Spark [19] can produce results in a faster

runtime by losing only a limited knowledge.
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Figure 6.10: Speed Performance of Non-parallel and Parallel algorithms of Association
Action Rules extraction

Table 6.21: Performance, in terms of number of resulting Action Rules, using paral-
lel and non-parallel versions of Association Action Rules extraction methods for all
datasets

Dataset Non-parallel al-
gorithm

Parallel algo-
rithm

Car Evaluation
data

3500 3496

Mammographic
Mass data

5790 5756

NPS data: Com-
pany_16

900 798

NPS data: Com-
pany_16_31

83643 83000

NPS data: Com-
pany_17

37256 37000

NPS data: Com-
pany_30

184000 182000
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Table 6.22: Performance of algorithms for all datasets in terms of a Coverage measure

Dataset Non-parallel
algorithm

Parallel al-
gorithm -
Random
distribution

Parallel al-
gorithm -
Granule
distribution

Car Evalua-
tion data

99.5% 99% 99%

Mammographic
Mass data

94% 92.53% 92.53%

NPS data:
Company_16

89.2% 86.9% 86.9%

NPS data:
Com-
pany_16_31

73% 70.77% 70.77%

NPS data:
Company_17

72.7% 72.7% 72.7%

NPS data:
Company_30

75.5% 75.5% 75.5%

6.8 Semantic Data Partitioning Results

In this section, we show the robustness of our proposed method using the HCUP

data for the State of Florida [97] and a massive replicated data of the Car Evaluation

data. In these experiments, we aim to show how our proposed method perform not

only with the improved execution time e�ciency but also with improved resource

utilization and load balancing.

Since we followed semantic data distribution, we split the data by their diagnosis

codes �rst. We set these partitioned data as a source of input for algorithms. For

vertical data distribution algorithms, we split these data again by their attributes.

Since there are 208 diagnosis codes found in the data(208 di�erent datasets), we give

only the results of few diagnosis due to space constraints. Finally we give results of

the cumulative data. With all diagnosis we show the execution time of all algorithms.

For the cluster based algorithms, we also give the amount of loads per process for



110

Table 6.23: Execution time of algorithms for the HCUP data

Dataset Non-
parallel
algo-
rithm

SARGS Vertical
Data
Distri-
bution

Semantic
Data
Distri-
bution

670(Mental
Health Disorders)

>2 days 2.14
hours

49 mins 13.7
mins

250(Nausea &
Vomiting)

>2.5
days

2.62
hours

1.14
hours

17 mins

654(Developmental
disorders)

>2days 1.8
hours

35 mins 11.5
mins

233(Intracranial
injury)

>2days 2.3
hours

57 mins 13.8
mins

236(Open
wounds)

>2days 2 hours 46 mins 8.6 mins

each algorithm.

In Table 6.23, we give the execution time of all our proposed algorithms. We can

note that for big datasets like the HCUP data, the non-parallel version of the ac-

tion rule extraction method takes very long time to extract action rules. Whereas,

the proposed cloud based performs much faster than the non-parallel methods. Par-

ticularly, our latest paralellized vertical data distribution algorithm - the semantic

data distribution - achieves better execution time compared to our other cloud based

counterparts.

In Figure 6.11, we give total node usage in the cluster by simple vertical data

distribution and semantic data distribution algorithms for the diagnosis code 250.

It is notalble from this �gure that the simple vertical data distribution takes more

than 1 hour to complete extracting all actionable patterns, whereas the semantic data

distribution taken only around 17 minutes for extracting the recommendations. Also

we can see that in the vertical data distribution method from Figure 6.11a, one or

two nodes execute most of the time and in our semantic data distribution method

from Figure 6.11b utilizes much more parallalization in the cluster.
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(a) Vertical Data Distribution cluster usage

(b) Semantic Data Distribution cluster usage

Figure 6.11: Total cluster usage by simple vertical data distribution and semantic
data distribution

We also give the cluster memory usage in Figure 6.12. We can note from Fig-

ure 6.12a that the vertical data distribution method starts with loading large quan-

tity of data in the memory and slowly it reduces as the algorithm starts extracting

the recommendations. However, the semantic data distribution in Figure 6.12b oc-

cupies only limited quantity of data in the memory while the algorithm progress in

extracting actionable patterns.

In Table 6.44, we give action rules of diagnoses given in Table 6.23. We consider

these actionable patterns as recommendations to hospitals in such a way that for a
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(a) Vertical Data Distribution cluster memory (b) Semantic Data Distribution cluster mem-
ory

Figure 6.12: Total cluster memory occupied by simple vertical data distribution and
semantic data distribution

given disease, if the hospital provides treatment or care for recommended diseases,

hospitals can potentially reduce the number of hospital readmissions. For example

with disease code 250, if hospitals give treatment for disease codes 21 (Bone cancer)

and 251 (Abdomen pain), hospitals can reduce readmission by 50%. The support of

143 shows that the framework identi�es 143 entries in the data to acquire this change.

6.9 Experiments on Massive Dataset

(a) SARGS job load (b) Vertical Data Distribution job load

Figure 6.13: Load of algorithms for the massive dataset

We also conduct experiments on the applicability of our proposed algorithms with

massive datasets with data size of half terabytes and with approximately 1 billion
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Table 6.24: Sample Action Rules from the HCUP data for selected diagnosis

670(Mental Health Disorders)
250(Nausea & Vomiting)

1. H250AR1 : (DX, 21(Bone Cancer) → 251(Abdominal pain)
) ⇒ (Readmission, 1− > 0)[Support : 143.0, OldConfidence :
49.47%, NewConfidence : 58.68%]

2. H250AR2 : (DX, 21(Bone Cancer) → 234(Internal injury)
) ⇒ (Readmission, 1 → 0)[Support : 38.0, OldConfidence :
52.92%, NewConfidence : 60.52%]

654(Developmental disorders)

1. H654AR1 : (DX, 238(Surgical procedure complication) →
11(Neck/Head Cancer) ) ⇒ (Readmission, 1 → 0)[Support :
49.0, OldConfidence : 44%, NewConfidence : 51.43%]

2. H654AR2 : (DX, 45(Radiotherapy) → 100(Myocardial infarction)
) ⇒ (Readmission, 1 → 0)[Support : 44.0, OldConfidence :
−51%, NewConfidence : 63.72%]

233(Intracranial injury)

1. H233AR1 : (DX, 228(Skull fracture) → 52(Nutritional de�ciency)
) ⇒ (Readmission, 1 → 0)[Support : 65.0, OldConfidence :
40.85%, NewCOnfidence : 51.5%]

2. H233AR2 : (DX, 131(Respiratory failure) → 108(Congestive
heart failure) ) ⇒ (Readmission, 1 → 0)[Support :
72.0, OldConfidence : 33.10%, NewConfidence : 40.24%]

236(Open wounds)

1. H236AR1 : (DX, 236(Open wounds) → 197(Skin infection)
&654(Developmental disorders) ) ⇒ (Readmission, 1 →
0)[Support : 37.0, OldConfidence : 63.18%, NewConfidence :
78.57%]

2. H236AR2 : (DX, 236(Open wounds) → 49(Diabetes) ) ⇒
(Readmission, 1 → 0)[Support : 49.0, OldConfidence :
51.55%, NewConfidence : 67.79%]
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data records. For testing purposes, we use the car data described in Section 6.1.1 and

replicated the data to 0.5 TeraBytes size. We use MR-Random Forest and SARGS

algorithms for our experiments since the data contains very few attributes(6). To

provide robustness of our proposed vertical data distribution method, we use the

algorithm but keep the number of vertical partitions as 1. We show the evaluation

of our methods through the hadoop cluster's status monitoring system. Figure 6.13

shows the runtime taken by our methods to extract actionable patterns and overall

load taken by the proposed methods. Figure 6.14 gives the network activity through

out the job. It is evident from these �gures that the proposed SARGS algorithm

executes much faster(2x times) than that of the Association Action Rules method. We

claim that this result is because of very few attributes(6) in the dataset. Moreover,

since the data is not split into partitions for Association Action Rules method, it

executes longer than expected execution time. It is also notable from Figure 6.13

that SARGS method results only limited load to the cluster. This is because of the

design of SARGS method that marks certain rules and extracts Action Rules from the

marked rules. On the other hand, with Association Action Rules, since the algorithm

functions on the complete input the load also increases accordingly.

(a) SARGS job network activity (b) Vertical Data Distribution job network ac-
tivity

Figure 6.14: Network activity of algorithms for the massive dataset

In Figure 6.14, we compare the overall network activity (data transfers during the

job execution) for each method. Our association action rules method causes only
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limited data transfers between executors during the execution. Even though, the

quantity of data transfers is high, such transfers complete very quickly unlike the

SARGS method which keeps transferring data constantly over time. In addition,

we are able to extract 985 rules from the vertical data partitioning method (which

extracts association action rules), whereas the SARGS method extracts only 52 rules

from the given massive data with the current parameters.

6.10 Action Rules of Lowest Cost - Correlation Matrix Experiment

To evaluate our approach in a distributed environment we used Car Evaluation

dataset and Mammographic Mass dataset [95] from the University of California,

Irvine's Machine Learning Repository maintained by the Department of Information

and Computer Science. We compare the results with the e�ciency to generate lowest

cost Action Rules using the existing algorithm. As our approach aims in adapting

the algorithm that computes the lowest cost of Action Rules to work with bigger

datasets, and as the original datasets are relatively small, we replicate the original

datasets multiple times to test the performance of our proposed approach in a dis-

tributed environment. Table 2 provides all details about both the datasets such as

number of instances, replication factor, attributes, and decision attribute values.

Table 6.27 shows some of the sample Action Rules, Action Rules Cost and Lowest

Cost Action Rules extracted for Car dataset. From Action Rules section in the Ta-

ble 6.27, it is notable that our distributed Action Rules extraction algorithm produces

more speci�c Action Rules that are capable of delivering complete knowledge to the

user. Consider the rules AR1, ARC1 and LCAR1 from Table 6.27.

AR1 is the action rule that describes when `SeatingCapacity ' is `4 ' , if `BuyingCost '

decreases from `high' to `medium' , if `LuggageBootSize' decreases from `big ' to `small '

, if `MaintenanceCost ' decreases from `veryhigh' to `medium' and if `SafetyMeasure'

increases from `med ' to `high' , certain cars marked as `Unacceptable' can become

`Acceptable' with support of 5104 and con�dence of 100%.



116

Table 6.25: Properties of the datasets for �nding Action Rules of lowest cost

Property Car Evaluation-
Data

Mammographic
Mass Data

Number of in-
stances

1728 961

Replication Factor 1024 2048
Number of in-
stances after
replication

1,769472 1,968,128

Attributes 7 attributes
-Buying
-Maintenance
-Doors
-Persons
-Luggage Boot
-Safety
-Class

6 attributes
-BI-RADS
-Patient's age
-Shape
-Margin
-Density
-Severity

Decision attribute
values

Class
(unacc, acc, good,
vgood)

Severity
(0 - benign, 1- ma-
lignant)

Original data size 52 KB 16 KB
Data size after
replication

52 MB 26 MB

In order to make the suggested changes in AR1, a Meta-Action [35] has to be

de�ned by an expert in the domain. In this case, the car manufacturer determines

the Meta-Action in order to make the speci�ed change occur: `BuyingCost' decreases

from `high' to `medium'. For example, what can be done do decrease the overall

production cost of this make and model car. Meta-Action is an action about the

action. In other words, these are high level actions performed by domain experts,

which trigger the changes suggested by the Action Rule [35].

Action Rules in ARC section gives Action Rules and their corresponding cost given

by the experts. ARC1 de�nes the same meaning as AR1. This Action Rule provides

the Cost that is 1100 units.

Action Rules in LCAR section gives low cost Action Rules recommendation for all

Action Rules in AR and ARC section. For example, the action rule LCAR1 means
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Table 6.26: Parameters used for Action Rule discovery

Property Car Evaluation
Data

Mammographic
Mass Data

Stable attributes Buying, Persons,
Doors

Shape, Age

Required decision
action

(Class) unacc →
acc

(Severity) 1→ 0

Minimum Support
and Con�dence

2000, 60% 500, 60%

that when `SeatingCapacity' is `4 ', `LuggageBootSize' decreases from `big ' to `small ',

if `MaintenanceCost ' decreases from `veryhigh' to `medium' and if `SafetyMeasure'

increases from `med ' to `high', we can obtain the same results but with reduced cost.

These changes would trigger the high cost atomic action term (buying, high→ med).

The algorithm does not stop with providing single low cost Action Rule recommenda-

tion. For example, for Action Rule ARC3 with cost of 1200 units, there are two low

cost Action Rules recommendations LCAR3.1 with cost of 1000 units and LCAR3.2

with cost of 800 units. From these recommendations, the user or a company can

choose most desired Action Rule that �t their needs.

Table 6.28 shows running time of the algorithm in single machine as well as in

distributed data processing environment. It can be inferred from the results that,

with the current approach the computational time for both the datasets has drastically

improved with Spark environment, where the entire processing has completed within

seconds, which otherwise would take several minutes with single machine.

6.11 Lowest Cost Graph - Experiment 1 - in Spark GraphX

For evaluating our �nding Action Rules of lowest cost using Action Graphs method,

we used Car Evaluation, Mammographic Mass data and the Charlotte Businesswise

datasets. In Table 6.29, we give all parameters that we set for discovering Action

Rules using SARGS algorithm and minimum cost threshold φ that we set to discover

low cost Action Rules. With addition to these parameters, we also give cost of atomic
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Table 6.27: Sample output results from Car Dataset

Action Rules

1. AR1 : (buying, high → med) ∧ (lugBoot, big → small) ∧
(maint, vhigh → med) ∧ (persons = 4) ∧ (safety,med →
high) −→ (class, unacc → acc)[Support : 5104, OldConfidence :
100%, NewConfidence : 100%]

2. AR2 : (buying,med → low) ∧ (lugBoot, big → small) ∧
(maint,med → low) ∧ (persons = 4) ∧ (safety, low →
med) −→ (class, unacc → acc)[Support : 5104, OldConfidence :
100%, NewConfidence : 100%]

3. AR3 : (buying, high → med) ∧ (lugBoot, small → big) ∧
(maint,med → vhigh) ∧ (persons = more) ∧ (safety, low →
high) −→ (class, unacc → acc)[Support : 5104, OldConfidence :
100%, NewConfidence : 100%]

Action Rules Cost

1. ARC1 : (buying, high → med) ∧ (lugBoot, big → small) ∧
(maint, vhigh → med) ∧ (persons = 4) ∧ (safety,med →
high)[Cost : 1100]

2. ARC2 : (buying,med → low) ∧ (lugBoot, big → small) ∧
(maint,med→ low)∧ (persons = 4)∧ (safety, low → med)[Cost :
1500]

3. ARC3 : (buying, high → med) ∧ (lugBoot, small → big) ∧
(maint,med → vhigh) ∧ (persons = more) ∧ (safety, low →
high)[Cost : 1400]

Low Cost Action Rules

1. LCAR1 : (lugBoot, big → small) ∧ (maint, vhigh → med) ∧
(persons = 4) ∧ (safety,med→ high)[Cost : 800]

2. LCAR2 : (lugBoot, big → small) ∧ (maint,med → low) ∧
(persons = 4) ∧ (safety, low → med)[Cost : 1000]

3. LCAR3.1 : (lugBoot, small → big) ∧ (persons = more) ∧
(safety, low → high)[Cost : 1000]

4. LCAR3.2 : (buying, high → med) ∧ (maint,med → vhigh) ∧
(persons = more) ∧ (safety, low → high)[Cost : 800]
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Table 6.28: Evaluation of lowest cost Action Rules in Single Machine vs Spark Envi-
ronment

Dataset # Records # Action
Rules

Single Ma-
chine Al-
gorithm
Running
time (min)

Spark Al-
gorithm
Running
time(sec)

Car Evalua-
tion

1728 40 1.1 4

2,204,927 415 >15 6.5
Mamm. Mass
Data

961 185 0.29(17 sec) 4.5

1,968,124 443 1.8 6.25

action terms. Usually, the cost of each action term is speci�ed by an expert in the

domain. For example, for the Mammography dataset, a medical doctor speci�es the

cost for the suggested actions. For Car Evaluation data, the car manufacturer speci�es

the cost for the suggested actions. However, for our experiment purpose, we assign a

random cost number to each Action Term. We assign the cost of 0 for ActionTerms

which have stable attributes, because the stable attributes cannot be changed. For

the Flexible Attributes Action Terms the cost values are between 0 and 1000. We

calculate total cost of each Action Rule by adding the cost of all action terms in the

rule.

Next, we build an Action Graph using the list of extracted Action Rules as an

input. We implement the Action Graph in both non-parallel environment, and in a

clustered environment for performance and scalability comparision. The Non-parallel

version is implemented in Java. The Apache Spark [19] using the Spark GraphX

library. We use Scala programming language. We test the system on a Spark cluster

running over Hadoop YARN. The cluster has 6 nodes connected via 10 GigaBits per

second Ethernet network. We use Pregel API [49] in Spark GraphX [48] framework to

search the Action Graph in an iterative procedure by using the Algorithm described

in Algorithm 12. This algorithm returns all low cost Action Rules (cost < φ). From
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Table 6.29: Parameters used for Action Rule discovery with SARGS and discovering
low cost Action Rules

Property Car Evaluation
Data

Mamm. Mass
Data

Business Data

Stable attributes Doors, Persons Age Start Year, City,
Sector, Special-
ization(SIC)

Required decision
action

(Class) unacc →
acc

(Severity) 1→ 0 Estimated Sales
$2M − $10M →
$10M − $24M

Minimum Sup-
port α and
Con�dence β

2, 70% 2, 70% 100, 70%

Cost Threshold φ 1500 2000 3000

these Action Rules, we do post processing step and highly correlating action terms

pair (correlation frequency ≥ η). If there is any correlation pair in the Action Rule,

we drop the lowest cost in that pair.

A visualization of the Action Graph for the Car Evaluation data is shown in Fig-

ure 6.15. The color and size of the vertex v in the Action Graph represent how

frequently a speci�c ActionTerm occurs in our Action Rules set. The more frequent

ActionTerms are shown in larger size nodes, and the less frequent in smaller size

nodes. Also, the darker colors signify the most frequently occuring ActionTerms,

and the lighter colors less frequent ActionTerms. For the Car Evaluation data, the

ActionTerm (persons=more) occurs most frequently, is shown in the red color red

node in Figure 6.15 , and the ActionTerm (safety, low → high) is the second most

frequent term in our Action Rules set, which is shown in green color thegreen node.

Table 6.30 gives details about the number of Action Rules, and the processing time

in seconds for the proposed algorithm to build Action Graphs (one for each dataset)

and basic properties of these graphs such as number of nodes and edges.

In Table 6.31, Table 6.32 and Table 6.33, we give sample actionable recommenda-

tions from our algorithms for �nding low cost Action Rules for Car, Mammographic
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Figure 6.15: Action Graph for Action Rules from Car Evaluation Dataset

Mass and Business datasets respectively.

These Action Rules de�ne what actions do a company/user should employ to

achieve their desired goal. For example, the rule ARC1 recommends that if a car

company increases the Buying Cost from low to Very High and increases the Luggage

Boot Size from Medium to Big and lowers the Maintenance Cost from Very High

to Low and increases Safety Measures from Medium to High, then the Car Condi-

tion may change from Unacceptable to Acceptable with the cost of 2200.0. For all

datasets, we consider cost just as a measure of an Action Rule since the actual costs

are assigned by experts.

In Table 6.34, we give our system's runtime performance comparing with non dis-
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Table 6.30: Properties of Action Graphs

Property Car Evaluation
Data

Mamm. Mass
Data

Business Data

No.of Action Rules 415 290 2043
No.of Action Terms
/ Nodes

33 98 224

No. of Edges 636 750 % 7390
Time taken to build
Action Graph(secs)

7.2 7.3 9

tributed version of the same algorithm. The distributed version of the Action Graph,

which we implement in Apache Spark [19] using the GraphX [48] library, and the

Pregel API [49], shows faster processing times for large datasets compared to single

machine implementation in Java.

6.12 Action Graph Search Algorithms - Experiment 2 - Action Graphs

To test the proposed methods, we use three datasets: Car Evaluation data, Mam-

mographic Mass data, and the city of Charlotte North Carolina BusinesWise data,

whose properties are given in Table 6.35

With our datasets, we run the SARGS algorithm on each data. We collect Action

Rules which meet the minimum support(s), and minimum con�dence(c), threshold.

If we have n action terms in an Action Rule, we record the cost(ρ) for each n Action

Terms. We calculate Total Cost of each Action Rule by adding the cost of all Action

Terms in the rule. The cost of each action term is provided by a domain expert who

has enough knowledge about the data. For example, for the Mammography dataset,

a medical doctor speci�es the cost for the suggested actions. For Car Evaluation

data, the car manufacturer speci�es the cost for the suggested actions. However,

for our experiment purpose, we assign a random cost number to each ActionTerm.

We assign the cost of 0 for Action Terms which have stable attributes, because the

stable attributes cannot be changed. For the Flexible Attribute Action Terms the

cost values are between 0 and 1. In Table 6.36, Table 6.37 and Table 6.38, we show
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Table 6.31: Example Action Rules of Lowest Cost for Car Evaluation Dataset

1. ARC1 : (buying, low → vhigh) ∧ (lugBoot,med → big) ∧
(maint, vhigh → low) ∧ (persons = more) ∧ (safety,med →
high) =⇒ (class, unacc → acc)[Support : 4, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 2200.0

2. ARC2 : (buying, low → vhigh) ∧ (lugBoot, small → big) ∧
(maint,med → low) ∧ (persons = more) ∧ (safety, low →
high) =⇒ (class, unacc → acc)[Support : 4, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 2100.0

Low Cost Action Rules

1. ARC4 : (buying, high → med) ∧ (lugBoot,med → small) ∧
(maint, low → med) ∧ (persons = 4) ∧ (safety, low →
high) =⇒ (class, unacc− > acc)[Support : 4, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 1300.0

2. ARC5 : (buying, low → med) ∧ (lugBoot,med → big) ∧
(maint, low → med) ∧ (persons = more) ∧ (safety, low →
med) =⇒ (class, unacc− > acc)[Support : 4, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 1400.0

Low Cost Action Rules after Correlation

1. ARC4 : (buying, high → med) ∧ (lugBoot,med → small) ∧
(maint, low → med) ∧ (persons = 4) ∧ (safety, low →
high) =⇒ (class, unacc− > acc)[Support : 4, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 1000.0

2. ARC5 : (buying, low → med) ∧ (lugBoot,med → big) ∧
(maint, low → med) ∧ (persons = more) ∧ (safety, low →
med) =⇒ (class, unacc− > acc)[Support : 4, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 1100.0



124

Table 6.32: Example Action Rules of Lowest Cost for Mammographic Mass Data

High Cost Action Rules

1. ARM1 : (BIRADS, 55 → 4) ∧ (Density, 3 → 2) ∧ (Shape, 4 →
1) =⇒ (Severity, 1 → 0)[Support : 7, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 1300.0

2. ARM2 : (BIRADS, 6 → 4) ∧ (Margin, 5 → 4) ∧ (Shape, 4 →
1) =⇒ (Severity, 1 → 0)[Support : 3, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 1200.0

3. ARM3 : (BIRADS, 5 → 4) ∧ (Margin, 2 → 4) ∧ (Shape, 4 →
1) =⇒ (Severity, 1 → 0)[Support : 3, OldConfidence :
85%, NewConfidence : 100%, Utility : 85%]COST : 1100.0

Low Cost Action Rules

1. ARM4 : (BIRADS, 6 → 4) ∧ (Density, 3 → 2) ∧ (Margin, 5 →
1) −→ (Severity, 1 → 0)[Support : 25, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 550.0

2. ARM5 : (Age = 60) ∧ (BIRADS, 6 → 4) −→ (Severity, 1 →
0)[Support : 11, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%]COST : 450.0

3. ARM6 : (BIRADS, 6 → 4) ∧ (Margin, 5 → 1) ∧ (Shape, 3 →
2) −→ (Severity, 1 → 0)[Support : 13, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 800.0

Lowest Cost Action Rules after Correlation

1. ARM4 : (BI − RADS, 6→ 4) ∧ (Density, 3→ 2) ∧ (Margin, 5→
1) −→ (Severity, 1 → 0)[Support : 25, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 450.0

2. ARM5 : (Age = 60) ∧ (BIRADS, 6 → 4) −→ (Severity, 1 →
0)[Support : 11, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%]COST : 400.0

3. ARM6 : (BIRADS, 6 → 4) ∧ (Margin, 5 → 1) ∧ (Shape, 3 →
2) −→ (Severity, 1 → 0)[Support : 13, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%]COST : 600.0
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Table 6.33: Example Action Rules of Lowest Cost for the Business Data

Low Cost Action Rules

1. ARB4 : (EMPALLSITE, 5099Employees → 250-
499Employees) ∧ (EMPSITE, 5099Employees → 4-
9Employees) ∧ (SECTOR, Services → RetailT rade) ∧
(STARTY R = 20062010) =⇒ (ESTSALES, $2M -
$10M → $10M$24M)[Support : 2, OldConfidence :
60%, NewConfidence : 66%, Utility : 90%]COST : 1615.0

2. ARB5 : (CITY,Matthews → Charlotte) ∧ (EMPALLSITE, 25-
49Employees → 500999Employees) ∧ (EMPSITE, 4-
9Employees → 1024Employees) ∧ (OWNBLDG, Y -
→ N) =⇒ (ESTSALES, $2M$10M → $10M$24M)[Support :
2, OldConfidence : 100%, NewConfidence : 100%, Utility :
100%]COST : 1276.0

Lowest Cost Action Rules after Correlation

1. ARB4 : (EMPALLSITE, 5099Employees → 250-
499Employees) ∧ (EMPSITE, 5099Employees → 4-
9Employees) ∧ (SECTOR, Services → RetailT rade) ∧
(STARTY R = 20062010) =⇒ (ESTSALES, $2M -
$10M → $10M$24M)[Support : 2, OldConfidence :
60%, NewConfidence : 66%, Utility : 90%]COST : 1330.0

2. ARB5 : (CITY,Matthews → Charlotte) ∧ (EMPALLSITE, 25-
49Employees → 500999Employees) ∧ (EMPSITE, 4-
9Employees → 1024Employees) ∧ (OWNBLDG, Y -
→ N) =⇒ (ESTSALES, $2M$10M → $10M$24M)[Support :
2, OldConfidence : 100%, NewConfidence : 100%, Utility :
100%]COST : 1213.0
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Table 6.34: Analysis on Action Graphs

Dataset Non-distributed
Algorithm

Distributed Al-
gorithm

Car Evaluation
Data

1.2 mins 7.1 secs

Mamm. Mass
Data

17 secs 5.8 secs

Business Data >10 mins 3.1 mins

samples of high cost Action Rules, medium cost Action Rules and Low Cost Action

Rules, for the Car Evaluation Data, Mammographic Mass Data and Business Data

respectively. The high cost Action Rules are actions that the user would probably

ignore since they are very high compared to the given cost threshold ρ. The user may

or may not accept medium cost Action Rules because their costs are in the border

of low cost and high cost Action Rules. The low cost Action Rules are more suitable

for users since all low cost Action Rules are below the given cost threshold ρ. In

Table 6.36, Table 6.37 and Table 6.38, low cost Action Rules are ones which has cost

less than ρ.

These Action Rules de�ne what actions do a company/user should employ to

achieve their desired goal. For example, the rule ARC1 recommends that if a car

company decreases the Buying Cost from very high to low and increases luggage boot

size from medium to big and increases the Maintenance Cost from low to very high

and increases Safety Measures from low to medium and if the Seating Capacity is

more than 4, then the Car Condition may change from Unacceptable to Acceptable

with the cost of 3.53. For all datasets, we consider cost just as a measure of an Action

Rule since the actual costs are assigned by experts.

Next, we build an Action Graph using the list of extracted Action Rules as an

input. We implement the Action Graph in both non-parallel environment, and in a

clustered environment for performance and scalability comparision. The Non-parallel

version is implemented in Java. The Apache Spark [19] using the Spark GraphX
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library. We use Scala programming language. We test the system on a Spark cluster

running over Hadoop YARN. The cluster has 6 nodes connected via 10 GigaBits per

second Ethernet network. We then use algorithms 13 and 12 to return all low

cost Action Rules (cost < ρ). From these Action Rules, we do post processing step

and highly correlating action terms pair (correlation frequency ≥ η). If there is any

correlation pair in the Action Rule, we drop the lowest cost in that pair. For example,

consider the low cost Action Rule ARB5 from Table6. Cost of this Action Rule is

1394.0. In the post-processing step, we �nd that the Action Term (EMPSITE, 4−

9Employees→ 10−24Employees) of cost 504.0 co-occurs frequently with the action

term (EMPALLSITE, 25 − 49Employees → 500 − 999Employees) of cost 63.0.

So we consider that one of these action terms trigger the other action to happen

eventually. Thus, we drop the cost of (EMPALLSITE, 25− 49Employees→ 500−

999Employees) and reduce the cost of the Action Rule to 1213.0.

A visualization of the Action Graph for the Car Evaluation data is shown in in

Figure 6.15. The color and size of the vertex v in the Action Graph represent how

frequently a speci�c ActionTerm occurs in our Action Rules set. The more frequent

ActionTerms are shown in larger size nodes, and the less frequent in smaller size

nodes. Also, the darker colors signify the most frequently occuring ActionTerms, and

the lighter colors less frequent ActionTerms. For the Car Evaluation data, the Action-

Term (persons=more) occurs most frequently, is shown in the red color red node in

Figure 6.15, and the ActionTerm (safety,low->high) is the second most frequent term

in our Action Rules set, which is shown in green color thegreen node in Figure 6.15.

Table 6.39 gives details about the number of Action Rules and basic properties of

these graphs such as number of nodes, edges and number of connected component in

Action Graphs and parameters set for algorithms to extract rules. It is notable that

the Action Graph for the Business data is disconnected and contains 3 component in

the graph. For experiment purpose, we set the minimum cost threshold ρ as 1.3 for
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all datasets.

In Tables 6.40, 6.41 and 6.42, we give our system's runtime performance com-

paring with non distributed and distributed versions of the Dijkstra's shortest path,

Breadth First Search and Depth First Search algorithms respectively for �nding low

cost Action Rules. The distributed version of the Action Graph, which we implement

in Apache Spark [19] using the GraphX [48] library shows faster processing times for

large datasets compared to single machine implementation in Java.

6.13 Action Graph Search Algorithms for Hospital Readmission

For all experiments, we use H-CUP data (described in Section 6.1.5) and we use

vertical data distribution method to extract actionable patterns. We evaluate all

action graph search methods: Dijkstra's, Breadth First Search, and Depth First Search

algorithms to extract low cost action rules. Action rules from these graph search

algorithms determine knowledge in the data that help hospitals to reduce readmissions

at the lowest cost possible. For simplicity, we split the data by diagnosis - such that

hospitals can actionable knowledge for the given disease. With this approach we add

a concept of personalization towards diseases. In Table 6.43, we give a very short

description about the data and also, we give parameters that we set for extracting

action rules. Since actionable patterns require expert knowledge to assign cost, we

assign random cost to these extracted patterns. For action term in the action rule,

we assign the random cost values ranging from 0 to 1.

We show the Action Rules extracted using the vertical data distribution method for

each diagnosed diseases in Table 6.44. Due to space constraints, we give action rules

of only 2 disease codes: 227(Spinal cord injury) and 217(Anomalies during and before

child birth). We consider these actionable patterns as recommendations to hospitals

in such a way that for a given disease, if the hospital provides treatment or care for

recommended diseases, hospitals can potentially reduce the number of hospital read-

missions. For example, consider the action rule H217AR2 that corresponds to disease
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code 217 (Anomalies during and before child birth). The action rule recommends to

the hospital that if hospitals prefer giving diagnosis for disease code 98 (Hypertension)

in addition to treatment for disease code 217 and prefer treatment for disease code

138 (Ulcer) in addition to the code 58 (Nutritional disorders), hospitals can reduce

readmission by 44%. The support of 35 shows that the framework identi�es 81 en-

tries in the data that supports condition. The total cost of this recommendation is

1.37.

Figure 6.16: Sample Action Graph derived from Action Rules of Diagnosis 227 -
Spinal Cord Injury

In Figures 6.16 and 6.17, we give sample action graphs built from actionable

recommendations given by the knowledge extraction algorithm. Since the original

action graph is much bigger for visualization, we used only a sample of the actionable

patterns from the complete knowledge. The action graph of Diagnosis 217 comprise

of 6626 nodes and 16288 edges and that Diagnosis 227 comprise of 831 nodes and
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4671 edges. In these graphs, size and color of a node represents the frequency of the

actionable pattern given by the recommender's system. Bigger the node, it has been

used more in common with other actionable patterns and smaller nodes represent the

actionable patterns have been recommended less frequently.

Figure 6.17: Sample action graph derived from action rules of Diagnosis 217 - Anoma-
lies During and Before Child Birth

In the Table 6.45, we give action rules of lowest cost derived from action rules given

in Table 6.44. It is notable from this recommendation that since the recommendations

are made of 2 action terms, the recommender's system removes one of the terms to

provide the low cost action rules.

In Tables 6.46 and 6.47, we give execution times of all the proposed action graph

search algorithms for diagnosis codes 217 and 227 respectively. It is notable from

these tables that Breadth First Search and Dijkstra's Shortes Path algorithms achieve

much faster execution times(ateleast 2x times). On the other case Depth First Search
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executes slower compared to the Java version of the algorithm. This is mainly because

of complex parallelization approach followed by the algorithm to extract low cost

action rules.
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Table 6.35: Properties of the datasets

Property Car Evalua-
tion Data

Mamm.
Mass Data

Business
Data

# of instances 1728 961 22441
Attributes 7 attributes

-Buying
-Maintenance
-Doors
-Persons
-Luggage Boot
-Safety
-Class

6 attributes
-BI-RADS
-Patient's age
-Shape
-Margin
-Density
-Severity

17 attributes
including
-City
-Sector
-Site Type
-Building
Type
-Estimated
Sales
-Total Em-
ployees Count

Decision at-
tribute values

Class
(unacc, acc,
good, vgood)

Severity
(0 - benign, 1-
malignant)

Estimated
Sales
(<$2M,2-
10M,10-
25M,25-
50M,50-
100M,100-
500M,>500M)

# of instances
/ decision
value

unacc - 1210
acc - 384
good - 69
vgood - 65

0 - 516
1 - 445

<$2M - 12503
$2-$10M - 1927
$10-$25M - 393
$25-$50M - 130
$50-$100M - 69
$100-$500M -
57
>$500M - 50

Data size 52 KB 16 KB 5.5 MB
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Table 6.36: Example Action Rules of Lowest Cost, Medium Cost and High Cost for
Car Evaluation Dataset

High Cost Action Rules

1. ARC1 : (doors = 2) ∧ (lugBoot, big → small) ∧ (maint, low →
vhigh) ∧ (persons, 2 → more) =⇒ (class, unacc → acc)[Support :
4, OldConfidence : 25%, NewConfidence : 100%, Utility :
25%COST : 3.523]

2. ARC2 : (buying, vhigh → high) ∧ (lugBoot,med → big) ∧
(maint, low → med) ∧ (persons = 4) ∧ (safety, low →
med) =⇒ (class, unacc → acc)[Support : 4, OldConfidence :
25%, NewConfidence : 100%, Utility : 25%, COST : 3.42]

3. ARC3 : (buying, high → med) ∧ (lugBoot, small → big) ∧
(maint, low → high) ∧ (persons = more) ∧ (safety,med →
high) =⇒ (class, unacc → acc)[Support : 4, OldConfidence :
44%, NewConfidence : 100%, Utility : 44%, COST : 3.049]

Low Cost Action Rules

1. ARC7 : (buying, high → vhigh) ∧ (doors = 4) ∧ (lugBoot, big →
med)∧(maint, vhigh→ low)∧(persons = more)∧(safety, high→
med) =⇒ (class, unacc → acc)[Support : 1, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, COST : 1.289]

2. ARC8 : (buying, vhigh → low) ∧ (doors = 2) ∧ (lugBoot, big →
med) ∧ (maint, vhigh → med) ∧ (persons = 4) ∧ (safety, high →
med) =⇒ (class, unacc → acc)[Support : 1, OldConfidence :
50%, NewConfidence : 100%, Utility : 50%, COST : 1.095]

3. ARC9 : (buying,med → high) ∧ (doors = 5more) ∧
(maint,med → low) ∧ (persons = more) ∧ (safety, low →
high) =⇒ (class, unacc → acc)[Support : 3, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, COST : 0.776]
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Table 6.37: Example Action Rules of Lowest Cost, Medium Cost and High Cost for
Mammographic Mass Data

High Cost Action Rules

1. ARM1 : (BI − RADS, 6 → 4) ∧ (Margin, 5 → 3) ∧ (Shape, 4 →
2) =⇒ (Severity, 1 → 0)[Support : 13, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, ;COST : 2.688]

2. ARM2 : (BI − RADS, 6 → 4) ∧ (Density, 3 → 2) ∧ (Shape, 4 →
1) =⇒ (Severity, 1 → 0)[Support : 7, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, COST : 2.683

3. ARM3 : (BI − RADS, 3 → 4) ∧ (Margin, 5 → 3) ∧ (Shape, 4 →
2) =⇒ (Severity, 1 → 0)[Support : 13, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, COST : 2.45

Low Cost Action Rules

1. ARM7 : (BI − RADS, 5 → 2) ∧ (Density, 1 →
3) =⇒ (Severity, 1 → 0)[Support : 6, OldConfidence :
80%, NewConfidence : 100%, Utility : 80%, COST : 1.286

2. ARM8 : (BI−RADS, 6→ 2)∧ (Shape, 4→ 2) =⇒ (Severity, 1→
0)[Support : 2, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%, COST : 1.089

3. ARM9 : (Age = 63) ∧ (Margin, 5 → 1) =⇒ (Severity, 1 →
0)[Support : 9, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%, COST : 0.783
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Table 6.38: Example Action Rules of Highest Cost and Lowest Cost for the Business
Data

High Cost Action Rules

1. ARB1 : (BLDGTY PE,Miscellaneous → Office) ∧ (EMPALLSITE, 1 −
3Employees → 10 − 24Employees) ∧ (EMPSITE, 1 − 3Employees →
4 − 9Employees) ∧ (OWNBLDG, Y → N) ∧ (SECTOR, Services →
WholesaleTrade) ∧ (SITETY PE, SingleSite → Headquarters) =⇒
(ESTSALES, $2Mto$10M → $10Mto$25M)[Support : 2, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, COST : 4.069

2. ARB2 : (CITY, P ineville → Matthews) ∧ (INTLBUS,N →
Y ) ∧ (OWNBLDG,N → Y ) ∧ (SECTOR,RetailT rade →
Manufacturing) ∧ (SITETY PE,Headquarters → SingleSite) =⇒
(ESTSALES, $2Mto$10M → $10Mto$25M)[Support : 2, OldConfidence :
100%, NewConfidence : 100%, Utility : 100%, COST : 3.969

3. ARB3 : (EMPALLSITE, 25 − 49Employees → 50 − 99Employees) ∧
(EMPSITE, 4 − 9Employees → 50 − 99Employees) ∧ (INTLBUS, Y →
N)∧(OWNBLDG, Y → N)∧(SITETY PE, SingleSite→ Headquarters)∧
(STARTY R = 1981 − 1990) =⇒ (ESTSALES, $2Mto$10M →
$10Mto$25M)[Support : 2, OldConfidence : 100%, NewConfidence :
100%, Utility : 100%, COST : 3.811

Low Cost Action Rules

1. ARB7 : (CITY,Matthews → Cornelius) ∧ (EMPALLSITE, 50 −
99Employees→ 100−249Employees)∧(EMPSITE, 1−3Employees→ 50−
99Employees) =⇒ (ESTSALES, $2Mto$10M → $10Mto$25M)[Support :
2, OldConfidence : 100%, NewConfidence : 100%, Utility : 100%, COST :
1.071

2. ARB8 : (BLDGTY PE, Industrial → Office) ∧ (CITY,Matthews →
Cornelius) ∧ (EMPSITE, 25 − 49Employees → 50 − 99Employees) =⇒
(ESTSALES, $2Mto$10M → $10Mto$25M)[Support : 2, OldConfidence :
80%, NewConfidence : 100%, Utility : 80%, COST : 0.827

3. ARB9 : (EMPALLSITE, 10 − 24Employees → 100 − 249Employees) ∧
(SECTOR, I → TransportationandPublicUtilities) ∧ (STARTY R =
1971 − 1980) =⇒ (ESTSALES, $2Mto$10M → $10Mto$25M)[Support :
2, OldConfidence : 100%, NewConfidence : 100%, Utility : 100%, COST :
0.277
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Table 6.39: Analysis on Action Graphs

Property Car Evalua-
tion Data

Mamm.
Mass Data

Business
Data

Stable at-
tributes

Doors, Buying Age Start Year

Required deci-
sion action

(Class)
unacc→ acc

(Severity) 1 →
0

Estimated
Sales $2M −
$10M →
$10M − $24M

No.of Action
Rules

82,503 552 191,934

No.of Action
Terms / Nodes

45 112 188

Minimum
Support s and
Con�dence c

1, 10% 2, 70% 2, 60%

Table 6.40: Runtimes of Dijkstra's shortest path algorithm on di�erent datasets in
seconds

Dataset Java Dijkstra's Spark Dijkstra's
Car Evaluation
data

5s 2s

Mammographic
Mass data

4s 4s

Business data 16s 10s

Table 6.41: Runtimes of Breadth First search algorithm on di�erent datasets in sec-
onds

Dataset Java BFS Spark BFS
Car Evaluation
data

3s 2s

Mammographic
Mass data

4s 4s

Business data 11s 7s
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Table 6.42: Runtimes of Depth First search algorithm on di�erent datasets in seconds

Dataset Java DFS Spark DFS
Car Evaluation
data

4s 5s

Mammographic
Mass data

5s 7s

Business data 18s 9s

Table 6.43: HCUP data attributes and Algorithm parameters

Property Description
Attributes 67 attributes with DX(1-31)

; PR(1-31) ; Gender ; Race
; IsHomeless

Stable attributes Gender ; Race ; IsHomeless
; PR(1-31)

Decision at-
tribute

IsReadmitted

Required deci-
sion action

IsReadmitted(1→ 0)

Minimum sup-
port

30

Minimum con�-
dence

40%

No. of diseases 262
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Table 6.44: Sample Action Rules from the HCUP data for selected diagnosis

227(Spinal cord injury)

1. H227AR1 : (DX, 237 → 254) ∧ (DX, 199 → 231) ⇒
(Readmission, 1− > 0)[Support : 40.0, OldConfidence :
56%, NewConfidence : 64.58%, 1.505]

2. H227AR2 : (DX, 237 → 205) ∧ (DX, 244 → 205) ⇒
(Readmission, 1 → 0)[Support : 32.0, OldConfidence :
51.14%, NewConfidence : 57.82%, Cost : 1.465]

3. H227AR3 : (DX, 2 → 254) ∧ (DX, 199 → 155) ⇒
(Readmission, 1 → 0)[Support : 39.0, OldConfidence :
43.01%, NewConfidence : 51.62%, Cost : 1.111]

4. H227AR4 : (DX, 199 → 2) ∧ (DX, 159 → 244) ⇒
(Readmission, 1 → 0)[Support : 30.0, OldConfidence :
46.68%, NewConfidence : 53.27%, Cost : 1.253]

217(Other congenital anomalies)

1. H217AR1 : (DX, 217 → 205) ∧ (DX, 217 → 48) ⇒
(Readmission, 1 → 0)[Support : 40.0, OldConfidence :
75.03%, NewConfidence : 75.03%, Cost : 1.627]

2. H217AR2 : (DX, 217 → 98) ∧ (DX, 58 → 138) ⇒
(Readmission, 1 → 0)[Support : 35.0, OldConfidence :
−44.28%, NewConfidence : 51.46%, Cost : 1.37]

3. H217AR3 : (DX, 213 → 53) ∧ (DX, 213 → 98) ⇒
(Readmission, 1 → 0)[Support : 47.0, OldConfidence :
46.55%, NewConfidence : 53.51%, Cost : 1.085]

4. H217AR4 : (DX, 122 → 205) ∧ (DX, 217 → 58) ⇒
(Readmission, 1 → 0)[Support : 39.0, OldConfidence :
55.99%, NewConfidence : 61.68%, Cost : 1.556]
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Table 6.45: Sample Low Cost Action Rules recommendations from the HCUP data
for selected diagnosis

227(Spinal cord injury)

1. H227AR1 : (DX, 237 → 254) ⇒ (Readmission, 1− > 0)[Support :
40.0, OldConfidence : 56%, NewConfidence : 64.58%, 0.748]

2. H227AR2 : (DX, 237 → 205) ⇒ (Readmission, 1 → 0)[Support :
32.0, OldConfidence : 51.14%, NewConfidence : 57.82%, Cost :
0.984]

3. H227AR3 : (DX, 2 → 254) ⇒ (Readmission, 1 → 0)[Support :
39.0, OldConfidence : 43.01%, NewConfidence : 51.62%, Cost :
0.854]

4. H227AR4 : (DX, 159 → 244) ⇒ (Readmission, 1 → 0)[Support :
30.0, OldConfidence : 46.68%, NewConfidence : 53.27%, Cost :
0.651]

217(Other congenital anomalies)

1. H217AR1 : (DX, 217 → 205) ⇒ (Readmission, 1 → 0)[Support :
40.0, OldConfidence : 75.03%, NewConfidence : 75.03%, Cost :
0.634]

2. H217AR2 : (DX, 217 → 98) ⇒ (Readmission, 1 → 0)[Support :
35.0, OldConfidence : −44.28%, NewConfidence : 51.46%, Cost :
0.641]

3. H217AR3 : (DX, 213 → 98) ⇒ (Readmission, 1 → 0)[Support :
47.0, OldConfidence : 46.55%, NewConfidence : 53.51%, Cost :
0.63]

4. H217AR4 : (DX, 122 → 205) ⇒ (Readmission, 1 → 0)[Support :
39.0, OldConfidence : 55.99%, NewConfidence : 61.68%, Cost :
0.807]
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Table 6.46: Execution times of Action Graph search algorithms for Diagnosis 217

Algorithm Java execution Spark execution
Breadth First
Search

8 mins 4.19 mins

Depth First Search 5.25 mins 4.2 mins
Dijkstra's Shortest
Path

9.53 mins 3 mins

Table 6.47: Execution times of Action Graph search algorithms for Diagnosis 227

Algorithm Java execution Spark execution
Breadth First
Search

4.62 mins 2.76 mins

Depth First Search 8 mins 6.5 mins
Dijkstra's Shortest
Path

2 mins 1.15 mins



CHAPTER 7: CONCLUSIONS

7.1 MR-Random Forest

In this work, we propose a novel method MR � Random Forest Algorithm for Dis-

tributed Action Rules Discovery, which adapts two Action Rules discovery algorithms,

ARoGS and AAR, to a distributed environment through Random-Forest approach,

using MapReduce framework on Hadoop. The proposed new method presents a highly

scalable solution for Action Rules discovery as it adjust to large datasets, through

splitting the data, and utilizing multiple nodes for processing. Our results show sig-

ni�cant improvement in processing time for Action Rules extraction, with increased

data size, when using multiple nodes, compared to the standard single node (sin-

gle machine) processing. The large datasets are very di�cult to process on a single

machine using the currently existing Action Rules discovery methods.

Action rules can be used in medical, �nancial, education, transportation, and in-

dustrial domain. Action rules suggest actions (changes in �exible attributes) the

user can undertake to accomplish their goal. In our study, example goals were: in

transportation domain: `change the car state from unacceptable to acceptable'; in

medical domain: `re-classify a breast tumor form malignant to benign severity'. In

other domains example goals can be: in �nancial domain: `increase the customer

loyalty'; `how to decrease the risk of a loan'; education domain: `how to improve stu-

dent evaluations'. Considering the fact that nowadays all these organizations collect

and store large amounts of data, and the fact that the amount of data grows at high

rate on daily basis, this study makes an important contribution by adapting the Ac-

tion Rules discovery algorithms to a distributed environment, using MapReduce and

Random Forest approach, therefore making the algorithm highly scalable to handle
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large amounts of data. Very limited work has been done on adapting Action Rules

discovery to a distributed environment processing, therefore this study contributes to

solving an important challenge.

As future work, we plan experiments of the proposed MR-Random Forest algorithm

for distributed Action Rules discovery with �nancial, and education datasets, as well

as social network data. Future work also includes experiments with Spark distributed

environment, as an alternative to MapReduce, because of its capabilities to hold large

amounts of data in memory between jobs, which may improve the processing time.

In the future we also plan to optimize the AAR (Association Action Rules) algorithm

to extract general Action Rules similar to ARoGS, in order to reduce the complexity

of AAR algorithm.

7.2 SARGS

In this paper, we propose a new algorithm Speci�c Action Rule discovery based

on Grabbing Strategy (SARGS) as an alternative to system ARoGS to extract com-

plete Action Rules like system DEAR, ARED and Association Action Rules. We

use this algorithm on a distributed cloud framework, Apache Spark, to e�ciently

produce Action Rules for the larger datasets. Our system outperforms the Hadoop

MapReduce system for distributed Action Rules mining because of Spark's ability

to perform in-memory computations and reduced communication cost compared to

Hadoop MapReduce. We also suggest a more appropriate way to partition the data

given to multiple nodes for Action Rules extraction.

In future, we plan to introduce more robust and automated method of data sam-

pling based not only on the decision attribute but also on stable and �exible attributes.

Further we plan to test our system with more real-time large data like NPS dataset to

improve system's scalability and feasibility. Finally, we plan to introduce the notion

of cost of the Action Rules generated from the distributed environment.
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7.3 Data Distribution

We propose two new methods for Data Distribution for Cloud Parallel processing ,

which can be applied to Actionable Pattern Mining via Action Rules. The Method 1

can be applied to most Action Rules algorithms, including ActionRules [27], system

DEAR [27], ARAS [54].

Method 2 is speci�cally designed for Association Action rules [28], which is the most

complex and time-consuming Action Rules extraction method, however it discovers

all possible Action Rules. Previous works divide the data by random using default

partitioning provided by Hadoop MapReduce, and Apache Spark. For that reason,

the calculation of Support and Con�dence may not represent very well the original

support and con�dence for ActionRules extracted on the entire dataset, or the support

and con�dence may be incorrect alltogether.

Our results show improved support, con�dence, and utility with the new proposed

methods, which more closely represent the correct support and con�dence as obtained

by non-parallel methods. In addition, uur results show much faster computational

times with BigDatasets for the exhaustive Association Action Rules method. Future

work includes, introduction the notion of cost the suggested Actions, and �ltering the

ActionSets based on cost, to further reduce the computational time, and povide the

most interesting and usable Action Rules.

7.4 Vertical Data Distribution with Information Granules

Action Rules are recently being used in variety of domains like medicine, business

and natural language processing. A distributed approach to derive Action Rules from

the given data can bene�t many such domains. In this work, we propose a novel

method that divides the data using information granules rather than performing ran-

dom distribution. This method provides more coherent optimization for data parti-

tioning by taking correlations of granules with other granules. Combining this data
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partitioning method with Action Rules extraction produces higher quality rules, with

good processing time for larger datasets. The downside of the proposed approach can

be taking combinations of rules from multiple partitions, which can become complex

when each partition produce large number of rules. Thus the proposed method can

be improved in the future by designing an approximation function for vertical data

partitioning. The data partitioning can be done in such a way that we simply merge

all rules from multiple partitions instead of combining or taking cartesian product of

rules.

7.5 Semantic Data Distribution

In this section, we extend the algorithm from 4.4.2 by adding additional param-

eters to set privacy settings and load balancing to the actionable pattern extraction

techniques. More importantly we propose a binary tree based load balancing mod-

ule that split the data by attributes upto certain depth. Our results show that this

method improves the algorithm performance in execution time for very large data

like HCUP. Our analysis is the �rst e�ort to extract actionable recommendations for

reducing hospital readmission in very e�cient processing times and by utilizing data

semantics.

Although our methods proved e�cient in execution time, it is not very optimal in

memory usage in the distributed setup. Also, our methods lack subject matter experts

input to evaluate actionable recommendations. In future, we plan to address these

problems by providing more optimal load balancing modules that are both memory

and time optimal. We also plan to use experts input to evaluate our results.

7.6 Action Rules Cost in Spark

Considering the large volumes of patterns discovered by data mining methods, an

interestingness measure is essential to �lter out the patterns to the most useful ones.

Action Rules mining discovers actionable patterns, which are considered interesting.
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Little research has been done to measure interestingness of association rules or Action

Rules. Action Rules of low cost are considered patterns of high interest, and as such

are important.

The actions suggested by these special rules can be used for decision making pur-

pose and to achieve the desired goals of the user or an organization. They can be

applied in several domains including: medical, �nancial, industrial, educational, and

social networks. However, with the advent of Big Data, the Action Rules algorithm

require changes in order to adapt it to distributed environment processing and cloud

computing. Current cloud computing frameworks o�er a few adaptations for machine

learning algorithms, however currently there do not exist any adaptations for Action

Rules method or Action Rules lowest cost method.

In this work, we present an adaptation of Action Rules at lowest cost method

to distributed processing using Apache Spark. The proposed adaptation improves

the method, and acts as a scalable solution for producing low cost of Action Rules

for large volumes of data at a reasonable processing time. The proposed approach

outperforms the existing method in terms of computational e�ciency with the Car

Evaluation dataset and Mammographic dataset. In the future, we plan to improve

the action set correlations matrix in order to reduce the cost, and perform additional

experiments with �nancial data and social network data.

7.7 Action Graph

The distributed version of the Action Graph Search for Lowest Cost Action Rules,

which we ipmlement in Apache Spark [19] using the GraphX [48] library, and the

Pregel API [49], shows faster processing times for large datasets compared to single

machine implementation in Java. Our proposed method presents an improvement

over the Search for Action Rules of Lowest Costs in [4], as we use a distributed

version for Graph Search, which is suitable to scale well for big datasets. In addition,

it addresses a signi�cant drawback of the previous method, which is using a heuristic
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search, and hence sometimes it is unable to reach the goal, and discovery any rules.

The new proposed method always reaches the goal, and discovers the rules of lowest

cost. In the future, we plan to build a DecisionTree like structure, which can be

searched, and shows the Lowest Cost Action Rules at the leaves of the tree. We

plan to improve the support and con�dence of the discovered Low Cost Acton Rules

by incorporating these parameters into the search procedure. We also plan to use

the proposed Graph structure in order to design a distributed version of Association

Action Rules extraction algorithm.

7.8 Action Graph Search Algorithms

We study 3 methods for searching the Action Graph for Rules of Lowest Cost. We

�nd that BFS and DFS perform better in terms of processing time, for large datasets

when incorporated into parallel frameworks like Spark GraphX. For smaller datasets,

all parallel algorithms perform almost similar to serialized versions of algorithms.

However, the Dijkstra's Shortest Path discovers higher number of Low Cost Action

Rules. We implement the DFS method in Spark GraphX, which has not been im-

plemented before. For Action Graphs, we propose a modi�cation of DFS algorithm

to work similar to neighborhood aggregation. This is great advantage over previous

implementations, as it allows for DFS search in very large graphs.

The proposed method presents a distributed version of the Action Graph Search

for Lowest Cost Action Rules [4]. We ipmlement this method in Apache Spark [19]

using the GraphX [48] library. This new method shows faster processing times for

large datasets compared to single machine implementation in Java. Our proposed

method presents an improvement over the Search for Action Rules of Lowest Cost

in [4], as we use a distributed version for Graph Search, which is suitable to scale

well for big datasets. In addition, it addresses a signi�cant drawback of the previous

method, which is using a heuristic search, and hence sometimes it is unable to reach

the goal, and discovery any rules. The new proposed method always reaches the goal,
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and discovers the rules of lowest cost.

7.9 Low Cost Action Rules for Hospital Readmission

In this section, we use the data provided by the HCUP [97] to extract actionable

patterns for recommending insights to reduce hospital readmissions.

We incorporate the Action Graphs algorithm in 5.3 to action graphs and search for

low cost actionable patterns from very large data. We use distributed computing tools

like Apache Spark GraphX for fast and parallel graph search processing. We show

that the proposed method can extract actionable patterns that potentially reduce the

cost that the hospitals spend for reducing patient readmission. We also show that

our method extracts these patterns within a span of seconds using the distributed

processing tools.

Although our methods provide actionable recommendations to hospitals to reduce

readmissions at lowest cost, the recommended actions require subject matter experts

to analyze the recommendations, and provide their opinion. Since the recommenda-

tions involve the risk of lives of patients, it is best have the second opinion of medical

expert to analyze these suggested actionable recommendations. This work can be

extended in the future to engage experts or medical doctors input to evaluate and

analyze the results.



CHAPTER 8: FUTURE WORK

In this work, we propose several algorithms to extract Actionable patterns from

large datasets using distributed computing frameworks such as MapReduce[18] and

Spark[19]. We also propose our initial steps on extracting low cost Action Rules and

de�ne the concept of Action Graph.

8.1 Granular Computing for Advanced Data Distribution

We propose an approach which uses Data Granules for Advanced data distribution

for the vertical data partitioning methodology. This approach can ideally have much

future work. We plan to consider the idea of studying the semantical relation between

attributes, apart from just performing correlations between the attribute values. The

application for this approach can be with the hospital readmission problem. Since

in the hospital readmission problem the diagnoses and procedures are related to one

another, considering such inter-relations would result in more intuitive recommen-

dations for reducing hospital readmission. For example, instead of considering each

diagnosis as a separate entity, if the algorithm considers the semantical relationaship

or in�uence of one diagnosis over another, then the data can be split in more in-

telligent way. Hence, the problem becomes more �ne grained and the results more

accurate.

8.2 Vertical Data Distribution with Information Granules

This Information Granules approach has a shortcoming of taking combinations of

rules from multiple partitions, which can increase the complexity when each partition

produces large number of rules. We plan to improve this in the future by designing

an approximation function for vertical data partitioning. The data partitioning can
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be performed by merging all rules from multiple partitions instead of combining or

taking the cartesian product of rules.

8.3 Semantic Data Distribution

The Semantic Data Distribution method is e�cient in execution time, however it

is not very optimal in memory usage in the distributed setup. In future, we plan

to address this problem by providing more e�cient load balancing modules that are

both memory and time optimal. We also plan to use domain data experts input to

evaluate our results.

8.4 Action Rules of Lowest Cost Graph

In the future we plan to improve our proposed Action Rules of Lowest Cost Graph

method. The current method is using Dijkstra's shortest path method to �nd the

Action Rule of lowest cost within the graph. We plan to propose a more advanced

Heuristic Search Graph algorithm, and implement and test it using the Apache Spark

GraphX library. We plan to evaluation the results with Large dataset.

8.5 Large Scale Experiments and Evaluation

In the future we plan to test our proposed methods with much larger datasets to

evaluation computational tie and performance.

8.5.1 Amazon Product Recommendation

In the future we plan to apply our proposed Actionable Pattern mining methods

to Amazon Product Recommendation data. We believe our proposed methods would

extract interesting Actionable Patterns to suggest to users who search or purchase

products on Amazon.com.

We plan to use the Amazon Bin Image Dataset [109], which is a public dataset

provided by Amazon Web Services (AWS) [12]. It contains Over 500,000 bin JPEG

images and corresponding JSON metadata �les describing items in the bin. We plan

to use the "aft-vbi-pds" S3 bucket, which is for the US East Region. The total overall
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size of the data is 634.7 Gigabytes . We plan to utilize the AWS Cloud platform for

accessing, and analyzing this large dataset in a distributed fashion.

8.5.2 Social Networks and Information Cascades

In the future we plan to experiment and apply the proposed Actionable Pattern

mining methods to a Social Network data. We believe Actionable Pattern Recom-

mendations can be applied to analyze Information Cascades in Social Networks. As

well as our Large Graph Search algorithms, since the Social Networks can be repre-

sented in the form of a Large Graph. Since more people are actively participating in

such social networks, they turn into a forum to innovate and exchange ideas and also

help to in�uence our friends' behavior and make decisions [110]. Each social network

node, which makes a decision, can a�ect its neighboring nodes for their decisions,

and form a decision cascade [111]. Actionable patterns can be extracted to suggest

actions to the node's advantage, such as: taking a �ue vaccine, or recommending a

hotel, or restaurant to friends.

All nodes in the network may have a �xed decision. However, this decision may

change over time. Action Rules can provide actionable recommendations on what

structural and temporal properties can trigger a change in a node's decision.

In the future, we plan to apply and evaluate our proposed methods for actionable pat-

tern discovery on information cascades to the Live Journal Social Network dataset

[112]. This is a free online network community with almost 10 million members,

who are currently active and maintains journals and blogs. Out of them a signi�cant

number of people update their data for every 24 hours. This network comprises of

4.8 million nodes and 69 million edges.

Another dataset that can bene�t from our proposed methods is Twitter network(s)

[113]. This dataset de�nes information spreading patterns on Twitter during, before,

and after an event. The event can be reading a news article. This dataset provides de-

scription of information propagation in terms of re-tweeting, replying and mentioning
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patterns and also based on social relationships between users. The data was collected

between 1st and 7th of July, 2012 and it contains 990,000 tweets from 456,000 users.

Since the Social Network data is very large in size, our proposed methods for dis-

tributed Actionable Pattern mining, and Large Graph Search, are essential for ana-

lyzing data of such size.
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