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ABSTRACT 

SUMEDH MILIND HALBE.  Analyzing the Potential of Demand Response in 

Residential Buildings.  (Under the direction of DR. BADRUL CHOWDHURY) 

 

Due to increasing penetration in renewables in the grid, it has become 

increasingly necessary to provide a balance between supply and demand. Demand side 

management, especially in residential buildings, could play a vital role in providing this 

balance. They have a massive untapped potential which could support the grid of the 

future. These flexible loads could also help enhance the grid reliability and support 

system stability. A 500-house residential building system is created and simulated using 

a tool called GridLAB-D to estimate the potential of demand response from these 

residential buildings. The detailed model has the capability of controlling each 

individual end-use appliance. Impacts of rebound effects and methods to mitigate these 

rebound effects are also discussed. The primary aim of this thesis is to provide a 

methodology for estimating various value streams of demand response. Apart from 

peak reduction, demand response can provide several other functionalities. To assess 

the benefits, the residential building system is connected to an IEEE distribution test 

system. Finally, a framework is developed for evaluating the feasibility, viability, costs 

and benefits of the demand response programs.  
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CHAPTER 1: INTRODUCTION 
 

The complex electricity network requires a constant real-time balance between 

supply and demand to maintain the system stability and reliability. The conventional 

method to provide the balance is to use the traditional generators for ramping their 

power up or down as per the grid requirement.  Due to an increasing demand in recent 

years, rapidly increasing fuel costs and penetration of variable energy renewable 

resources, which are often unpredictable in nature, the challenge to provide this grid 

balance has become more complex . The stochastic nature of these variable energy 

resources introduces an increased need for operating reserve requirements on the 

system. The frequent ramping of conventional thermal generation reduces the system 

inertia affecting the stability of the system and affects the traditional method of 

providing reserves.  

Currently, the demand side is being underutilized, and the participation of these 

customers can bring in considerable changes in the electricity demand requirements. 

As the penetration of renewable energy generation increases in the generation portfolio, 

it becomes less controllable. Hence, these emerging technologies such as demand 

response (DR), micro-grid and virtual power plants would provide cost effective control 

for maintaining the demand and supply balance.  

1.1 Need for Demand Side Management 

1.1.1 Electricity Consumption History and Trends 

In 2017, 25570 TWh electricity was generated globally [2]. During the same 

year electricity generation increased by 3.1% and the increase in demand was faster 

than the generation. Electricity demand growth is associated with various factors like 

climate and economic development. Since the inception of industrial age, economic 



2 

 

development has been rapid. Hence, the requirement for electricity has been increasing. 

In 1973, global electricity consumption was highest in the industrial sector followed by 

residential sector and this can be seen in the Figure 1 below. The electricity 

consumption in all sectors except residential and commercial sector has decreased since 

then. It can be observed by a comparison of Figure 1.1, Figure 1.2 and Figure 1.3 that 

energy consumption in residential sector was highest and hence the focus of all energy 

management programs should be on the residential sector.  

 

FIGURE 1.1: Sector-wise global electricity consumption for year 1973 [2] 

Figure 1.2 shows the data for year 2015. Hence, to reduce the overall demand 

growth, the amount of electricity consumed by residential and commercial sectors 

should be decreased. The focus of this thesis is completely on the residential sector. 

The invention of new communication technologies, smart grids and awareness within 

the consumers has made this kind of demand side management possible.  
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FIGURE 1.2: Sector-wise electricity consumption for year 2015 [2] 

The United States is the second largest consumer of electricity in the world. It 

is estimated that by 2040, the demand for electricity in the US will rise by 18% [2]. The 

electricity utilization in the USA is different when compared with the global utilization. 

Residential sector accounts for the maximum electricity consumed. The primary reason 

for this is the high standard of living in the US and extreme climate experienced by 

different regions. As for the high standard of living, the consumption levels in Figure 

1.4 suggest that the new end uses have been increasing in the recent years. It is evident 

from the consumption levels of space heating and cooling, that the climate is a major 

factor responsible for driving these energy consumption levels up.  
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FIGURE 1.3: Sector-wise electricity consumption in the USA [3] 

1.1.2 Generation Mix in the US  

 

FIGURE 1.4: Electricity generation mix in the USA [3] 

Most of the electricity generated comes from fossil fuels. Only 17% of the total 

electricity is generated from renewables which includes hydro power as well. Fossil 

fuels, when used to generate electricity, emit carbon dioxide, and are responsible for 

creating global issues such as climate change in recent years. Apart from the 

environmental concerns, energy security and dependence on foreign countries for 

resources is also a key driver for reducing energy consumption.  
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1.1.3: A Typical Utility’s Generation Mix  

 Electricity cannot be stored economically, indicating that the supply of 

electricity must balance the demand at any given moment. The marginal cost of 

supplying these needs is variable as the demand fluctuates. Cost of electricity changes 

accordingly, although most of the customers are charged a flat rate which represents 

the average cost of production. This leads to inefficient use of resources.  

A utility or a generating company typically maintains a diverse generation 

portfolio. These generators are broken down primarily as base generators, intermediate 

generators and peaking generators. The base generators are typically cheapest and slow 

ramping units, for example coal and nuclear. These base generators run constantly as 

they provide power at the cheapest rate. When the demand is not being met by these 

base load plants, intermediate generators are dispatched which have a higher price and 

higher ramping rate than base load plants. During the peak periods, most expensive 

generators are dispatched. They have a very high ramp rate as well as high cost of 

generation. These plants are used only during peak periods and are on standby during 

the off-peak period.  

For any utility, around 60% generation capacity is supplied by the base load plants. 

Around 15-20% capacity is supplied by the intermediate plants and the remaining 20-

25% capacity is supplied from the expensive peaker units [4]. If the peaks are reduced, 

the need to dispatch these peaker plants would be reduced as well. A 20% reduction in 

demand would completely avoid use of these expensive peaker plants. Table 1 below 

describes Duke Energy Carolina’s generation portfolio based on dispatchability of 

various generating units.  
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TABLE 1.1: Duke Energy Carolinas generation mix 

Resource Type Percentage of Total Capacity 

Base 56% 

Intermediate 7.5% 

Peaking Renewables and Storage 15% 

Conventional Peaking Units 21.5% 

 

1.2: Demand Side Management 

Increasing demand has called upon the need for demand side management 

(DSM) programs. These are the methods in which the end user participates and helps 

in lowering or shifting the demand. Classification of DSM programs based on the 

duration and impact on the customer processes is shown in Figure 1.5. From the utility’s 

perspective, the program should have a long-term impact making energy efficiency the 

most suitable form of DSM, but, from customers’ point of view, short spanned 

programs would have the least impact on their processes. The changes involved in 

energy efficiency are permanent changes, and these changes include replacing the older 

equipment with new ones, such as replacing old pumps with newer efficient pumps, or 

improvements on the physical properties of the building, like adding insulation to the 

building or replacing single pane windows.  These changes permanently optimize the 

system, and hence, are considered the most effective means of energy savings by the 

utility, although, this would require heavy investments from the customers. Hence, 

these programs are less likely to be adopted by the customers without any provision for 

incentives from the utility. Market DR consists of real time pricing, price signals and 

incentives [5]. Market DR is usually done on a day ahead schedule in the day ahead 

market; an exception is real time pricing which takes place in the spot market [5]. In 

market DR, the participants could react by changing their load pattern in accordance 
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with the market prices. Examples are charging water heaters during valley hours and 

turning them off during peak periods.  Limited customer elasticity and situations not 

associated with the price of electricity can lead to load shedding for relieving the 

stresses on the grid. Thus, physical DR is used in the emergency situations. Direct load 

control is an example of physical DR program. Physical DR lasts for a shorter duration 

and sends out mandatory signals for load curtailment. A combination of the two would 

help in the smooth and optimal functioning of the grid.   

Energy Efficiency 

Market Demand 
Response

Process 
Impact

Duration

Long 
Term 

Days To hoursMinutes to 
Seconds

Optimized

Optimized 
Schedule

Temporarily 
reduced

Physical Demand 
Response

 

FIGURE 1.5: Demand side management programs classification [5] 

1.2.1: Energy Efficiency and Demand Response  

EE and DR are closely related. Both provide a means of reducing demand 

growth and utility bills, although, there are differences in the way these resources are 

utilized. Energy efficiency brings in permanent changes to electricity consumption by 

installing or replacing older appliances/devices with new and more efficient devices 
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that reduce the amount of energy required to perform its designated function or service 

[6].  

DR refers to a change in electric consumption pattern by end-use customers 

from their normal pattern in response to changes in price of electricity over time, or to 

incentive payments designed to promote lower electricity use at times of high wholesale 

market price or when system reliability is jeopardized [7].  

1.3: Demand Response  

The concept of DR in the US electric power industry can be traced back to mid-

1890’s. Initially, systems engineers and utility executives debated over the optimal 

pricing of electricity which was called as Hopkinson’s demand charge or time-of-day 

differentiated rates back then [8]. The initial motivation behind load management was 

driven by the increasing air conditioning in the system which caused sudden spikes and 

increased the peak to average ratio. In 1970s and 1980s with the help of integrated 

resource planning, utilities recognized the adverse impacts of system costs required for 

meeting peak loads and made load management as their reliability resource. The first 

load management programs developed in early 1970s were programs that directly 

curtailed/interrupted the end-use loads and the tariffs were received accordingly. The 

customer’s sold the rights, but were not obligated to curtail some of their load in 

exchange to receive incentives [9].  

In the mid-90’s, a wave of reforms created restructuring of electric sector and 

markets were created to support competition. These markets were intended to create 

competitive wholesale and retail markets. However, many problems arose in these 

restructured markets, such as the California crisis in 2001, price volatility and spikes, 

reliability concerns during peak demand and failure to generate economic benefits to 
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name a few. This led policymakers and stakeholders to focus on DR indicating that it 

is necessary for efficient functioning of electricity markets.   

It was energy policy act (EPACT) 2005 that passed laws pertaining to DR 

removing unnecessary barriers to wholesale market for DR participation in energy, 

capacity and ancillary services markets by customers and load aggregators, at either 

retail or wholesale level. [10]. Hence, it was necessary for the utilities to assess the 

performance of DRs, if it is to be used for load reduction or to respond to system 

emergencies.  

1.3.1: Types of DR Programs  

Various DR programs have been implemented by electric utilities since its 

inception. The primary objective of all DR programs is to modify the consumption 

patterns of electricity of all end users by altering the timing, level of instantaneous 

demand and total electricity consumption. The customer can primarily react in three 

ways to achieve all the goals of DR. The first involves changing the consumption 

pattern by reducing energy usage during peak periods. This method involves some loss 

of comfort since end users must sacrifice their day-to-day activities. This method could 

include changing set-points of thermostats during peak periods. The second option 

involves load shifting. Customers may shift some of their operations from peak periods 

to off-peak periods such as, not using dryers or washers during peak periods, or 

curtailing the use of pool pumps during peak periods. The third method involves use of 

external sources such as energy storage or distributed energy resources, or a 

combination of both. This option will help customers utilize the energy from this 

external source during peak periods, thus reducing the grid demand.  
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DR programs are broadly classified as incentive-based programs and price-

based programs. Incentive-based programs are further classified into classical DR 

programs and market-based programs. Classical DR programs are the oldest ones in 

which the utility has control of the participating customer’s appliances and the utility 

could decide to turn off the appliances during peak periods. Direct load control and 

interruptible programs are sub-types of classical DR programs. Participating customers 

receive incentives or discount on their tariffs. Participants are asked to reduce a fixed 

amount of load and customers who don’t respond can receive penalties.  

Market based programs include demand bidding, emergency DR, capacity 

market and ancillary services market. Market based programs unlike classical DR are 

bi-directional programs. In demand bidding participants submit a specific bid for load 

reduction in the wholesale market, if the bid is accepted the participant must curtail the 

specified load for a certain duration or face a penalty. In emergency DR programs, 

during emergency conditions the participating are asked to reduce their loads and these 

customers are paid incentives upon doing so [11]. The participants in capacity market 

programs commit to providing pre-specified load reductions when system 

contingencies arise [11]. The bids are usually accepted in the day-ahead market. On 

unsuccessful participation the customers receive a penalty. Ancillary service market 

allows customers to submit bid in spot markets as operating reserves (spinning and non-

spinning reserves). When customer bids are accepted, they are paid the spot market 

prices for their commitment to be on standby or paid with spot market energy price if 

load curtailment is required [11].  

Price based programs are based on dynamic electricity rates in which tariffs are 

not flat, and so the rates vary following the real time cost of electricity. The price-based 

programs prevent customers from high consumption of electricity during peak times by 
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inducing high electricity prices. The primary objective is to flatten the demand curve 

by inducing low prices during off-peak period and high prices during peak period.  

The simplest form of price-based programs is the time of use rates. This 

program has rates segregated into two blocks: peak and off-peak period. This program 

reflects average cost of electricity during different periods. Critical Peak Pricing (CPP) 

rates includes a pre-specified high price of electricity superimposed on TOU rates or 

normal flat rates. CPP rates are used during contingencies or when the wholesale price 

of electricity is very high for a limited duration of hours or days in a year [11]. Extreme 

day pricing is like critical peak pricing, the only difference being the high price is in 

effect throughout the 24 hours of the extreme day [12]. In extreme day rates, CPP rates 

for both peak and off-peak periods are applied during extreme days, and a flat rate is 

used for other days. In Real Time Pricing (RTP) programs, customers are charged based 

on hourly fluctuating price which is reflected by the real cost of electricity in the 

wholesale market [12]. Real time prices are displayed on a day-ahead basis or hour-

ahead basis.  
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Demand Response 
Programs

Incentive Based 
Programs

Classical DR 
programs

Market Based 
Programs

Price Based 
Programs

Time of use (TOU)

Critical Peak Pricing

Extreme Day CPP

Extreme Day Pricing

Real Time Pricing

Direct Load Control

Interruptible Programs

Demand Bidding

Emergency DR

Capacity Market

Ancillary Services Market

 

FIGURE 1.6: Types of various demand response programs 

1.4: DR in Residential Sector  

A typical house in residential sector includes single and multi-family homes. In 

residential sector, the breakdown of electricity as shown in Figure 1.7 below. It is 

evident that space heating and cooling requires maximum electricity, and account for 

more than 30% of the total electricity consumption, whereas small appliances and new 

end uses constitute the second highest consumer, contributing nearly 25% of the overall 

consumption. These new end uses include all the kitchen equipment, phones, hot tub 

pumps and all other small appliances. Residential energy consumption survey 

conducted by EIA, has classified these loads separately as new end uses.  
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FIGURE 1.7: Residential electricity consumption in USA (2017) 

 In residential homes the most commonly used scheme is time of use (TOU) 

tariffs. These tariffs are set ahead in advance and are not a representation of the 

wholesale price of electricity at any moment. The TOU program is static DR strategy 

rather than a dynamic DR strategy.  

Another such program which is one of the most widely adopted DR programs 

is direct load control of air conditioning units. In this program, switches are installed at 

the compressor of the HVAC unit and these switches are controlled either manually, 

remotely or by means of an under-frequency sensors [12]. Customers are provided with 

incentives after signing up for such DR programs. The attributes of a good DR strategy 

are its detection and acceptance by the customers. In the case of direct load control 

programs, sometimes the duration of DR is long enough to cause discomfort to the 

customers as the indoor temperature would become unbearable. This induces a decrease 

in the participation over time. These resources were later tested for short term 

responses, and by aggregating them, their potential participation in ancillary markets as 

operating reserves was tested as well. This short-term program was successfully 
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implemented since most of the time, the DR event’s duration was short enough to go 

unnoticed.  

With the development of numerous communication devices and smart 

appliances in the residential buildings, the potential of aggregating these various small 

loads has increased. The benefits obtained can comprise of larger loads available for 

curtailment as well as increasing the duration of curtailment by sequential shedding of 

loads within a cluster of loads, by varying the response time from individual loads. The 

currently installed appliances have proprietary and independently operated 

communication protocols which reduces the visibility of aggregation. Although, there 

are pilots that can resolve this issue by creating a translator from one protocol to an 

appliance specific module [13]. These type of integrated platforms like home area 

network do exist but the relatively small benefit, discomfort for occupants and long 

payback period have prevented wide acceptance of these programs.  

With the advent of programmable controlled thermostats (PCTs) they have been 

a leading technology in this field. Comprehensive studies have been conducted on PCTs 

with regard to the model and control of thermostatically controlled loads for a variety 

of aggregation algorithms and timescales of grid transactions [14]  The PCT market is 

rapidly growing with shipments expected to grow from 1 million units in 2014 to 19.2 

million units by 2023 [15]. These PCTs have demonstrated energy savings as well as 

they can be deployed in the DR programs.  

Decreasing cost of communication technologies has increased the feasibility 

of several smart DR programs in the residential sector. The current adoption rate of DR 

in residential customers is fairly low, but the potential among this class hasn’t been 

completely utilized. It has been estimated that residential customers only provide 17% 
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of today’s DR potential, although they have the potential of providing about 45% DR 

impacts in the achievable participation case [7]. The amount of total system peak 

reduction that can be expected from the residential customers in achievable 

participation case is about 8% whereas a full participation can create peak reduction of 

about 10% or 100GW [7]. 

1.5: Current status of DR in USA 

 DR is a critical resource for satisfying the country’s requirement of electricity. 

This will reduce the requirement for constructing new and expensive generation units 

by reducing the peak demand. Although, according to Federal Energy Regulatory 

Commission (FERC) report published in June 2009, A National Assessment of DR  

Potential, the status of DR programs utilized back then was less than a quarter of the 

total market potential for DR [7]. FERC staff collaborated with the stakeholders to 

develop the National Action Plan on Demand Response which provided the necessary 

actions for achieving the DR potential [7]. The Energy Independence and Security Act 

(EISA 2007) has set new standards or has improved upon the previous standards which 

ensures efficient working of appliances.   

 DR programs are being widely implemented in both regulated and deregulated 

markets. The first generation of DR programs were incentive-based programs in which 

the participants played a passive role. The utility had a direct control over the 

participant’s load. The second-generation DR programs included participation of 

regional transmission operators (RTOs) and Independent system operators (ISOs). The 

third-generation of DR programs includes involvement of price responsive DR in both 

wholesale and retail electricity markets [16]. Since the invention of advanced metering 

infrastructure (AMI), it has become easier for utilities to deploy the DR programs. The 

increase in DR adoption among all three classes of customers - residential, commercial 



16 

 

and industrial has been on the rise. In 2014, the number of residential customers 

enrolled in DR programs were 8,603,402 which increased to 8,739,535 in 2016 [17]. 

The actual peak demand in residential sector increased from 3,147 MW in 2014 to 3,608 

MW in 2016 [17]. The potential for peak demand reduction during this period increased 

as well. These statistics show the increase in DR adoption among all types of customers, 

especially residential customers.   

 Currently DR programs are offered by numerous RTOs/ISOs such as California 

ISO (CAISO), PJM-ISO, NY-ISO, NE-ISO to name a few. Even large utilities such as 

Duke Energy, Pacific Gas and Xcel Energy have started providing DR programs to their 

customers. Since the inception of DR programs, the number of participants has 

increased every year. ISO New England for example offers three incentive-based 

programs to its customers [18]. The customers are allowed to participate in day-ahead 

markets or real-time markets through these programs. PJM has separate markets for 

energy, ancillary services and capacity [18]. The programs offered by PJM differ by 

their dispatch process. In some of the programs, the participants have to dispatch during 

an emergency conditions whereas in others, the consumers are required to commit a 

certain capacity prior to the DR event. A qualified DR resource is eligible to participate 

in the wholesale market and provide ancillary services such as synchronized reserves, 

regulation reserves, or day ahead scheduling reserves. The minimum acceptable 

capacity for any participant to enrol in a DR program in PJM is 100kW [18]. NY-ISO 

has five different DR programs. The programs are incentive based DR programs as well 

some programs price-based DR programs which strictly pay for the energy. NY-ISO 

like PJM has DR program which allows participants to provide ancillary services. With 

help of web enabled services and advanced metering infrastructure it is possible for 

ISOs to collect real-time information from the consumers allowing them to participate 
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in the real-time market. Even various utilities have their DR programs. For example, 

Xcel Energy and PG&E have a critical peak pricing and TOU based DR programs. 

Duke Energy Carolinas a vertically integrated utility has various DR programs, which 

include direct load control program as well interruptible programs and rate-based 

programs [18]. For residential customers there is only program available which enables 

customers to participate voluntarily and reduce their HVAC consumption during the 

peak periods.  

1.6: Costs and Benefits of DR  

 For any program to be deemed to be successful, it is required that the program 

produces more benefits than the costs incurred to implement that program. In this 

section, the costs and benefits of DR are briefly discussed. For some components, the 

costs incurred by the utility, could be a benefit for the customer or vice-versa. Also, 

these costs and benefits would vary with the market structure [11]. A detailed 

explanation and methods for quantifying some of these costs and benefits are provided 

in chapter 5 of this thesis.  

1.6.1: Costs of DR  

Table 1.2 below provides a brief summary for the costs incurred by the program 

participant as well as the costs incurred at the system level.  

TABLE 1.2: Costs of DR  

Cost Bearer  Type of Cost Details  

Participant costs Initial Costs  Enabling technologies 

such as smart thermostats, 

peak load controls.  

Establishing DR plans, 

customer training.  

Ongoing Costs / Event 

specific costs 

Comfort / inconvenience 

costs  

Rescheduling costs, Loss 

of business activity  
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TABLE 1.2: Costs of DR (Continued) 

Cost Bearer  Type of Cost Details  

  Fuel and maintenance 

costs of on-site generators 

System costs Initial costs Metering and 

communication system 

upgrades such as AMI 

(advanced metering 

infrastructure)  

Billing system upgrades, 

equipment and software 

upgrades. 

Rebates on technology, 

training etc. 

Ongoing program costs Administration costs  

 

1.6.2: Benefits of DR  

Table 1.3 below provides a brief summary of benefits obtained from the DR programs.  

TABLE 1.3: Benefits of DR  

Type of Benefit  Recipients  Details  

Direct benefits  Participants in the DR 

programs  

Financial benefits such as 

bill savings and incentives 

received from the utility  

Reliability benefits such as 

reduced risk of blackouts 

and forced outages  

Collateral benefits  Some or all consumers  Reduced marginal 

costs/prices of electricity  

Reduced risk of market 

interventions such as price 

cap 

Avoided variable supply 

costs  

Utility, RTOs/ISOs or 

LSE 

Avoided (deferred) 

capacity costs  

Avoided (deferred) 

transmission and 

distribution capacity 

upgrades  

Avoided energy costs due 

to better link between retail 

rates and marginal costs  
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TABLE 1.3: Benefits of DR (Continued) 

Type of Benefit  Recipients  Details  

 Reliability improvement 

due to diverse resources 

Other benefits  Customers, utility, 

ISO/RTO and LSE  

Option to manage 

electricity price where 

retail competition is not 

available  

Environmental benefits 

due to reduced emissions 

from peaking generators 

Energy independence and 

security as reliance on 

outside supply is reduced 

Elasticity reduces the 

market power 

 

The next chapter will discuss the base case on which different DR strategies would be 

implemented.    
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CHAPTER 2: BASE RESIDENTIAL HOUSE MODEL 
 

 The methodology to evaluate the impacts of DR is represented in the Figure 2.1 

below. First a residential system model is prepared using the data for a particular region. 

After building the model, different DR strategies are implemented and the impact of 

that particular strategy on the load is evaluated. After evaluating the impacts on the load 

model, the impacts on the distribution system are evaluated. Finally, various value 

streams generated from demand response are analyzed.  
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Build base residential 
model using the 
available data

Implement various 
DR strategies

Analyze impacts on 
the distribution 

system

Evaluate various 
value streams 

generated

 

FIGURE 2.1: Framework for methodology  

  A 500-house residential building system is prepared as a base case. The system 

can act as an aggregator and respond to the signals from the ISO or the utility. The data 

and information for modeling was extracted from various credible sources to prepare a 

model which is close to a real system. Critical residential building parameters were 

obtained from Energy Information Administration’s (EIA) residential energy 

consumption survey (RECS) which was carried out in 2015 [19]. The data available 
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here is classified into various regions and climate zones. For this study, data from 

various regions was collected. For the final model, Charlotte, North Carolina was 

chosen to be the location. Hence, the data for south-Atlantic region was used. The 

assumptions made for creating a residential building model are described below in 

Table 2.1.  

TABLE 2.1: Assumptions for residential building model 

No. Property Value 

1 Floor Area 1500-2000 Sq.Feet 

2 Cooling Coefficient of Performance 4.0 

3 Heating Coefficient of Performance 4.0 

4 R-value of roof 30.0 DegF.sf.h/Btu 

5 R-value of walls 13.0 DegF.sf.h/Btu 

6 R-value of floor 19.0 DegF.sf.h/Btu 

7 R-value of doors 5.0 DegF.sf.h/Btu 

8 R-value of windows 1.66 DegF.sf.h/Btu 

 

Floor area for average home size in U.S was obtained from RECS survey [19]. 

The R values decide the thermal integrity of the house. These values were obtained 

from the Department of Energy’s standards on insulation for various climate zones [20]. 

It is assumed that all cooling appliances are all electric, whereas the heating appliances 

are either natural gas or electric [19]. The cooling COP of HVACs has a wide variation. 

The cooling COP here was considered as 4.0 after reviewing, seasonal energy 

efficiency ratios of various commercially available residential HVAC systems. The 

heating COP was assumed to be 4.0 as well. Each house is a detailed model and various 

end-use appliances are modeled separately. 

2.1: HVAC Model 

Thermostatically controlled loads (TCLs) are modeled as equivalent thermal 

parameters [21]. The ETP model is a series-parallel combination of active and passive 
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elements analogous to an electric circuit [22].  These models are suitable for modeling 

and simulating residential as well as commercial buildings. The control hysteresis and 

heat balance dictate the pulse width and frequency of these TCLs. The power output 

changes between two fixed values. For residential HVACs without variable frequency 

drives (VFDs), the power level is either zero during the OFF state or rated power during 

the ON state since the control is ON-OFF control. The sizing of HVACs is based on 

the COP and floor area of the house. The HVAC output of each house will be different 

based on its floor area, setpoint preferences and COP of the equipment.  

 

FIGURE 2.2: Equivalent thermal parameter model of a home in GridLAB-D 

Here, conductance of the building is given as UA and outdoor air temperature as To, TA, 

is the indoor air temperature and TM is the inner mass temperature. HM is the 

conductance between inner solid mass and inner air. QA is the heat flux of interior mass, 

CA is the thermal mass of the air and CM is the thermal mass of building and QM is the 

heat flux of inner solid mass.  

2.2: End Use Appliance Modeling 

Each appliance was modeled with a heat fraction that is the amount of waste 

heat released while carrying out its desired function. These values were taken from 

Department ofEnergy’s DOE2’s inbuilt values and 2001 ASHRAE fundamentals 

handbook. The appliances that are modeled are:  
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1) Lights and Plug Loads 

2) Water heaters  

3) Clothes Dryer and Clothes Washer  

4) Cooking Range and Microwave Oven  

5) Dishwasher  

6) Refrigerator  

For each appliance commercially, available units were used for modeling. The 

models for each appliance are as described below.  

1) Lighting and Plug Loads: Residential lighting is a combination of various types 

of fixtures. It was assumed that all houses were equipped with similar type of 

lights. CFLs have the average luminous efficacy hence for simplicity, it was 

assumed that all lights are CFLs. Average lux or lumens/m2 requirement for 

residential buildings is 150 [23]. Average luminous efficacy for CFL’s 55 

lumens/watt [24]. Using these values, required wattage was calculated using the 

equations below. The heat fraction from lights and plug loads is fixed at 30%. 

These heat fractions are accounted for additional heat gains. The power factor 

of the light depends on the type of the light but at aggregated level the power 

factor is fixed at 0.95 (lagging).  

1.1) Lighting requirement calculations:  

𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (
𝑤𝑎𝑡𝑡

𝑚2
) =

 𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑒𝑓𝑓𝑖𝑐𝑎𝑐𝑦

𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦
    (1) 

=
150

55
 

            = 2.7
𝑊𝑎𝑡𝑡

𝑚2
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                  =  0.25
𝑤𝑎𝑡𝑡

𝑓𝑡2
 

Average area of a house = 1750 Sq. Ft  

𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎 ℎ𝑜𝑢𝑠𝑒 ∗

                                                          𝐿𝑢𝑚𝑖𝑛𝑜𝑢𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦   (2) 

                = 1750 * 0.25 

                = 437.5 Watts.  

1.2) Plug loads:  

They consist of TVs, Computers and phone chargers.  The power rating for each 

of the appliance is as given below.  

a) TVs – 100 to 300 watts  

b) Computers- 100 to 200 watts  

c) Mobile Phone chargers- 5 watts x 4 = 20 watts  

So, the total plug loads ranges from 650 watts to 1250 watts depending upon 

the number of televisions, computers and phones. A random uniform 

distribution was created using these value range. The demand profile for lights 

and plug loads was obtained from [25]. Figure 2.3 shows the normalized 

demand profile for lights and plug loads.  
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FIGURE 2.3: Demand profile for lights and plug loads 

2) Water Heaters 

The water heater sizing was based for a typical four-person family. A.O.Smith 

model of water heaters for a residential home was used [26]. The heating element 

capacity is 4.5 kW and the average tank size is 40-80 gallons. The specifications 

required for the model were heating element capacity, tank height, tank volume and 

were obtained from the A.O.Smith’s brochure. The heat retention capacity of the 

water heater was calculated using equation (3). Where tua is the thermal coefficient. 

The thermal resistance R is considered as 12 ft²·°F·h/Btu which is the minimum 

thermal resistance value recommended by DOE for water heaters [27].   

       tUA = tSA / R     (3) 

The profile of hot water requirement for one day was obtained from ASHRAE’s 

90.2 standards [28]. Average consumption of hot water for one single day is 64.3 

gallons and the profile are as shown in Figure 2.4. This percentage consumption 

from ASHRAE was converted to gallons per minute usage, and then the gallons per 
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minute value for a single home was multiplied to a normal distribution to obtain a 

diversity in the consumption. Finally, a 30-minute schedule was created for the 

model.  

 

FIGURE 2.4: Hot water consumption for one day [7] 

The inlet cold water usually enters the tank at the bottom part and the hot water 

is drawn from the top. This is a continuous process, i.e whenever hot water is drawn, 

cold water enters the bottom of the tank. The water heaters usually have two heating 

elements one placed at the top part of the tank and other one at the bottom. Heating 

is done by the lower element and the top element comes into action only when cold 

water reaches the top.  

The two ways of modeling a water heater differ from each other depending upon 

the state of the tank at a moment [29]. 

I) One-Node Model: This is a simplified version of modeling a water heater. 

This model considers that the water inside the tank is at a uniform 

temperature.  
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II) Two-Node Model: This model considers water into two different slugs each 

at uniform temperature. The upper portion is the hot water which is near the 

heater’s setpoint temperature, and the lower portion is the cold water which 

is near the inlet water temperature. This model has a better performance 

since it considers the thermal boundary between hot and cold nodes, and this 

helps in calculating the movement of that boundary as water is drawn or 

when head is added.  

2.1. The mathematical model for water heater 

𝐶𝑇𝑊 =  𝑉𝑜𝑙(𝑔𝑎𝑙) ∗  (1
𝑓𝑡^3

7.48(𝑔𝑎𝑙)
) ∗  62.4 (

𝑙𝑏𝑚

𝑓𝑡^3
 ) ∗  1 (

𝐵𝑡𝑢

𝑙𝑏𝑚
∗ 𝐹)  (4)  

The thermal capacitance of the water is a function of the tank volume given by 

the equation 4 [29] above. The thermal conductance (UA) which is conductance 

times surface area of the tank is calculated from the known R-values of the tank.  

2.1.1. One Node Temperature model 

The heat balance of the one node temperature model at water node is as given 

by equation 5. Here Qe is the heat input rate, m is the mass flow rate, UA is the 

conductance and CTW is the thermal capacitance. Tw is the temperature of 

water node, Ta is the temperature of ambient conditions and Tin is the 

temperature of inlet water. dTw/dt is the change in the water temperature. 

Equation 5 [29] shows the one node temperature model.  

𝑄𝑒 –  𝑚 ∗ 𝐶𝑝 ∗ (𝑇𝑤 − 𝑇𝑖𝑛) +  𝑈 ∗ 𝐴 ∗ (𝑇𝑎 –  𝑇𝑤) =  𝐶𝑇𝑊 ∗
𝑑𝑇𝑤

𝑑𝑡
   (5)  
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2.1.2. Two Node Temperature model 

In the two-node mode, the time required to change the hot water column from 

an initial height of hint to final height of hfinal is given by equation 6 [29]. Here 

dh/dt is the temperature gradient and this is a function of mass flow rate.  

   𝑇1 –  𝑇0 =
1

𝑏
∗ log (

𝑑ℎ

𝑑𝑡
)   (6)  

3) Clothes Dryer and Washer  

G.E appliances [30, 31] models for dryer and washer were used. The power ratings 

of these appliances are 4.4kW and 0.5kW respectively. The average cycle duration 

for dryer and washer was obtained from [30, 31]. The power factor of these 

appliances is fixed at 0.95 (lagging).  

4) Cooking Range and Microwave Oven  

Cooking range is a resistive load and each heating element is cycled on or off using 

a TRIAC device. Like dryer and washer, commercially available models for 

residential use from G.E appliances were considered [32, 33]. Like the cooking 

range these devices are constant power consumers during their operating state. The 

power ratings for cooking range and microwave oven were chosen as 3 kW and 1 

kW respectively. For cooking range, it is considered that 95% of the total energy is 

lost to surrounding as heat. Whereas for microwave, 65% of the total energy is 

considered as heat gains. The power factor of both appliances is fixed at 0.99 

(lagging) [34].  

5) Dishwasher  

G.E appliances dishwasher was chosen with a power rating of 0.91 kW [35]. The 

cycle duration for dishwasher was chosen from [35]. For dishwasher it is considered 
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that 55% of the total energy is lost as heat to the surroundings. The power factor of 

dishwashers is fixed at 0.96 (lagging) [34].  

6) Refrigerator  

Refrigerator was modeled along with a freezer. A freezer on top of the refrigerator 

was chosen for this purpose. A G.E appliance model with power rating of 0.8 kW 

was chosen [36]. According to G.E appliances newer refrigerator run almost 

continuously i.e they have almost 80 to 90 percent duty cycle. Load shape for south-

eastern region was verified from [25]. Below Figure 2.5 shows the demand profile 

of a refrigerator. Although, it is assumed that the refrigerator runs throughout the 

day the amount of power consumed changes depending upon ambient weather 

conditions, number of door openings, heat gain from the addition of food to the 

refrigerator. These are the factors which would increase the inside temperature and 

force more refrigeration by having more cycles. The power factor of refrigerator is 

fixed at 0.95 (lagging).  

 

FIGURE 2.5: Refrigerator demand profile [25] 
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2.3: End-use Appliance Saturation 

After selecting the models for all the aforementioned end-use appliances, 

saturation levels for each appliance for a particular region was selected from the RECS 

survey [19]. Saturation level here is defined as the number of houses equipped with an 

appliance out of total number of houses. For example, the saturation for refrigerators in 

the U.S is 99.5%. Table 2.2 below shows saturation percentages for the whole U.S, 

Southeast region of the U.S and South-Atlantic region of the U.S. 

TABLE 2.2: Appliance saturation levels  

No. Appliance U. S South-East 

Region 

South-Atlantic 

Region 

1. Electric 

Cooking 

Stove/Range 

56.2% 66.8% 70.6% 

2. Microwave 

Ovens 

96.2% 96.5% 96.5% 

3. Refrigerator 99.5% 99% 99.1% 

4. Dishwasher 67.5% 69.3% 71.0% 

5. Clothes Washer 82.5% 87.9% 88.9% 

6. Electric Clothes 

Dryer 

64.5% 79.2% 80.42% 

7. Electric Water 

Heaters 

46.2% 67.7% 71.4% 

 

After selecting the appliances and their saturation levels in the residential 

building system, a schedule for their usage was necessary to be developed. This 

schedule is highly dependent upon human behavior. The frequency of appliance usage 

was collected from RECS 2015. A survey was created by the author of this study to get 

the specifics about the appliance use. All the details about the survey are explained in 

Appendix A. 
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2.4: Base Case Summer 

A peak summer weekday was chosen for developing a base case. Since the 

output of HVACs is driven by the weather to get the maximum output, usually a day 

with maximum number of cooling degree days would be chosen. Degree days indicate 

how warm or cold a day is [3]. A comparison between mean average outdoor 

temperature with a standard defined temperature which is 65-degree F will give the 

number of degree days. Hence a day with very high cooling degree days will have a 

greater mean temperature. For this study, typical meteorological year (TMY3) weather 

data was used. TMY weather file for Charlotte region was obtained from the National 

Renewable Energy Laboratory’s website [37]. TMY data sets are hourly values of local 

climate, solar irradiation for period of 1 year. Hence, after observing the TMY files a 

day with maximum mean temperature was chosen. As seen from the Figure 1.7 above 

HVACs constitute a large portion of the total demand. Indicating that the demand from 

HVACs will drive up the overall demand if all other appliances are being used at same 

rate on other days as well.  

As seen from FIGURE 2.6 below, various inputs such as weather, time, 

geographical location, residential house models, end-use appliance models explained 

in previous section are given as inputs to the solver. This Solver is basically a complex 

algorithm which has millions of differential equations for each object in the system. 

This solver is event driven solver and is based on the states of the system and not time 

[38]. The states are then synchronized with time using a clock to obtain a time-series 

output.  
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FIGURE 2.6: Architecture for building residential load models 

From the Figure 2.7 below, displays the results for base case generated for summer 

season and it was observed that the peak occurs at 7.40pm and the demand during that 

time is 2215.85 kW. It is evident that the demand is low during the night as everyone 

is asleep as well as the HVAC load is low. During the base load period the demand 

stays constant near 800 kW. As the day begins and people start getting ready for their 

day, an increase in demand is observed. This demand continues to climb up as the 

outside air temperature increases and at the end of the day the demand reaches its peak, 

when people get engaged with the household chores such as cooking, washing clothes, 

watching TV etc. As the day is about to end, people stop their activities and also the 

outside air temperature reduces hence a plummet in load is observed.  
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FIGURE 2.7: Demand profile for base summer case 

Using this base case, various reference periods are defined, depending upon the 

loads, for application of various DR strategies.  

i) Peak period – 5pm to 9pm  

ii) Off peak period – 1am to 5am  

Referring to section 1.1.2, the peaker and expensive plants would be dispatched 

from 5pm to 9pm and during the off-peak period only base load plants would be 

running. Hence, the most ideal period for peak shaving is the peak period and storing 

energy is the off-peak period.  
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2.5: Base Case Winter 

Like the summer peak weekday case, a winter peak weekday case is developed. 

It is considered that the end use appliance usage will be like the summer season. The 

architecture used to obtain the time series output is similar as well. For a winter peak 

weekday case a day with lowest mean minimum temperature is chosen by observing 

the TMY weather file. The day with lowest mean minimum temperature will have 

maximum heating degree days (HDD).  

Figure 2.8 represents the base profile for a winter peak weekday. As it can be 

observed that there are two peaks; one during the early morning and one during the late 

evening. The HVAC load is almost constant throughout the 24-hour period. There is 

slight decrease in the demand during mid-day hours as the temperature increases, and 

the heating requirement reduces. The two peaks are driven by the end-use appliances. 

The morning peak is when people wake up and start their activity and leave their homes. 

The evening peak occurs when people return home and finish their domestic chores. It 

is observed that, the system peak occurs at 7.40pm with a value of 1960 kW. During 

the off-peak period the demand stays fairly constant at 1300 kW.  

Like the summer base case, reference periods are defined for the winter peak 

weekday case depending upon the loads.  

i) Peak period – 7am to 10am and 6pm to 9pm.  

ii) Off-peak period – 1am to 5am. 

iii) Valley period – 12pm to 4pm.  



36 

 

 

FIGURE 2.8: Base case winter demand 

2.5: Summer Demand vs Winter Demand  

 

FIGURE 2.9: Summer Demand vs Winter Demand 

From Figure 2.9 above shows the summer vs winter demand comparison it is evident 

that the absolute annual peak occurs during summer. Although the average demand is 
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higher during the winter peak day. The HVAC load for both these cases is very different 

and there are various reasons for these results.  

• For winter case the HVAC load is high during the night. The reason for HVAC 

load being high at night is due to the fact that, the night air temperature during 

this particular day was very low. 

• For summer case the HVAC load is low during the night and most of the end-

use appliances are not being used hence the total demand is very low. During 

night time the outside air temperature is moderate and the cooling demand for 

the HVACs is minimal.  

• For winter case the HVAC load drops during the day as outside air temperature 

increases. For summer case this is exactly opposite. The cooling load increases 

during the day.  

• The internal heat gains from appliances and people contribute to the heating 

load during winter reducing the heating demand. These gains work conversely 

during summer by adding to the cooling loads. Thus, during summer internal 

gains increase the cooling demand.  

• Combination of high HVAC load, heat gains and end use appliances coincide 

with each other and hence, summer peak is greater than the winter peak.  

• All the cooling equipment is electric whereas for heating the equipment used is 

partly electric and partly gas. This reduces the overall electric demand.  

• Electric resistive heaters or bargeboard heaters are not centralized heaters; 

hence they would have to be modeled into multiple zones. Sufficient data on 

their sizing, saturation and usage in the South Atlantic region is not available.  
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FIGURE 2.10: Summer cooling demand vs winter heating demand 

As the absolute annual peak was observed during summer season, henceforth 

all the DR strategies applied will consider the summer case only. Although, for winter 

peaking cases similar strategies could be implemented without any major 

modifications. 
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CHAPTER 3: DR USING THERMOSTATICALLY CONTROLLED LOADS 
 

After developing a base case, it is possible to predict the time period during 

which various DR strategies need to be implemented. From Figure 1.7, it is evident that 

thermostatically controlled loads such has HVACs and electric water heaters make up 

for the maximum demand in the residential buildings. Hence, reducing consumption 

from these loads should be the most effective strategy. Since the advent of smart grid 

technologies such as advanced metering infrastructure (AMI), programmable 

thermostats and remote access to these appliances through internet of things (IoT) it is 

possible for utilities to accurately determine the needs of customers and implement DR 

strategy accordingly.  

Almost every utility has a DR program for its customers. The pioneer DR 

programs were based on direct load control or curtailment of these consumer loads. 

These TCLs are flexible loads and they can work in aggregation to provide the required 

capacity reduction. Apart from TCLs, it is possible to perform DR on other end-use 

devices as well, provided that they have the ability to communicate with the grid. A 

priority based approach for multiple device groups to participate in DR programs has 

been proposed in [39].  

3.1: DR in HVACs 

In direct load control programs for HVACs, it is essential to consider the 

duration of DR signal as longer duration signals could increase the indoor temperature 

significantly and create discomfort for the customers. This could create a negativity 

about the DR program and non-participation would rise. The DR strategy has been best 

implemented in study by Lawrence Berkeley National Laboratory study on evaluating 

customer impact on participating in the Southern California Edison’s DR program [40].  
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According to ASHRAE standard 55-2010, the cyclic variation should not be 

less than 15 minutes. Within a cycle of 15 mins, the operative temperature should not 

exceed by 2 deg F [41]. The limits on temperature variation for a particular time period 

is given below in Table 3.1. The DR strategies implemented in the next sections have 

adhered to these numbers. Studies have been performed to measure the DR obtained 

using air conditioners/ HVACs in [42, 43]. 

TABLE 3.1: ASHRAE standard 55-2010 indicating maximum operative temperature 

change  

 

 

 

 

3.2: DR in Electric Water Heaters 

 In residential buildings, electric water heaters have been identified as perfect 

candidates due to their ability to store energy in the form of thermal energy. Also, these 

EWHs contribute to a large amount of load, and they have very high-power ratings 

(usually 4.5kW). Also the power consumption is co-incident with the utility’s peak 

demand [44, 45]. These water heaters are similar to HVACs, and a longer DR signal 

would cause a large decrease in the water temperature, which would eventually interfere 

with the customer’s comfort. A simple peak shifting algorithm for water heaters is 

proposed in [46].  

3.2.1: Water Temperature in EWH 

 The temperature for water heater set-point has been identified in various studies. 

A pre-set value of 125 Deg F is a typical set point for water heaters based on a study by 

Time Period (hours) 0.25 0.5 1 2 4 

Maximum Operative 

Temperature Change 

Allowed (Deg C) 

1.1 1.7 2.2 2.8 3.3 

Maximum Operative 

Temperature Change 

Allowed (Deg F) 

2.0 3.0 4.0 5.0 6.0 
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Lawerence Berkeley National Laboratory (LBNL) on hot water usage data in residential 

homes [47]. This is also beneficial from the perspective of consumer health. According 

to a 2003 report on Legionella bacteria, it was observed that the bacterial growth is 

optimum between temperatures 95 Deg F to 113 Deg F [47] and the range for growth 

is between 68 Deg F to 122 Deg F [47]. Hence, any temperature below 122 Deg F is 

not recommended.   

3.3: HVAC vs Water Heaters 

 Amongst the two TCLs - the HVAC and the water heater, most of the studies 

select HVAC. Both these TCLs have a huge potential for providing DR support. 

Although, there are various fundamental differences between the operation of these two 

devices:  

i) Specific heat capacity: HVACs are used for cooling/heating air, whereas 

water heaters are used for heating water. Air and water are two different 

substances, and both have a difference in their specific heat capacities. 

Specific heat capacity is defined as amount of energy required to change the 

temperature of the unit mass of a substance by one degree [48].  Specific 

heat capacity of water is 4.23 times greater than air [48]. Hence this indicates 

that the energy storing capacity of water is greater than air. Water heaters 

can be used to store energy for longer times as compared to HVACs.  

ii) Operation: HVACs and water heaters operate continuously, although the 

energy consumption of water heaters is much less than the HVACs. The 

time intervals during which water heaters are not is use are large, whereas, 

HVACs cycle throughout the day to maintain the temperature around the 

set-point temperature.  
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iii) Loads: The amount of load on HVAC is much higher when compared with 

the water heaters. The volume of water to be heated is much less than the 

volume of air that needs to be cooled. The loads on HVACs are more 

predictable than water heaters, as the hot water consumption is solely based 

on human behavior.  

3.4: DR Signal for TCLs 

 Using various load forecasting techniques, utilities have information about the 

duration of peak period and the demand during this peak period. Using the base from 

section 2.4 and 2.5 as a reference, we know that peak period during summer is usually 

between 5pm to 9pm, whereas, during winters it is between 6pm and 8pm. Controllers 

are used to adjust the demand from these TCLs. These controllers are installed on the 

TCLs of participating customers. From the reference demand curve, a target demand 

reduction is set. As described in section 1.1.2, usually a 15-20% peak reduction would 

avoid generation from peaker plants. Hence a 20% target reduction is selected. When 

the demand is within this range the controllers on these TCLs will react and try to ramp 

down the demand.  

3.4.1: Controllers 

 Controllers are attached to each thermostatically controlled device. The utility 

will communicate with the TCLs using these controllers. Depending upon the type of 

utility, the type of signal will vary. For a market-based utility, the type of signal will be 

price-based signal, whereas a regulated utility will send out demand signals. Depending 

upon the level of the signal, the TCLs will react. These controllers are transactive 

controllers which are broadly referred to a type of market-based building control 

systems [49].  These transactive controllers are specifically designed to react to the 

thermostatic set points [50]. For a controller average price or average demand, the 
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rolling standard deviation, current market price or current demand are used to determine 

the operational set points of the controller object [50]. 

3.4.2: Controller Operation for HVACs 

 In this study, passive controllers are used. These are like transactive controllers 

except that they don’t have the capability to bid back into the market. This kind of 

controller is used since this can be implemented by both regulated utility as well as 

market. This type of controller is more suitable for TOU and CPP rates [50]. 

For cooling mode operation certain parameters can be set by the user which are 

described below:  

i) Range high: This is the allowable temperature rise from the current cooling 

setpoint the participant is willing to allow before it becomes too hot.  

ii) Range low:  This is the allowable temperature decrease or pre-cooling from 

the current cooling setpoint the participant is willing to allow before the DR 

signal is sent.  

Similarly, for heating mode operation the functionality of these parameters gets 

reversed as described below:  

i) Range high: This is the allowable temperature increase or pre-heating from 

the current heating setpoint the participant is willing to allow before the DR 

signal is sent.  

ii) Range low: This is the allowable temperature decrease from the current 

heating setpoint the participant is willing to allow before it becomes too 

cold.  

Other important properties associated with the controller object are average price or 

average demand and the standard deviation. These quantities are decided by the utility. 
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In this study it is assumed that all the participants in a scenario are willing to participate 

in the DR program. Hence standard deviation is 1 as well as the ramp is 1. The new 

setpoints for cooling mode operation are given by equation 7 and equation 8 [50]:   

𝑇𝑠𝑒𝑡 =  𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 +  (𝐶𝑙𝑒𝑎𝑟𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 –  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑) ∗

(
𝑅𝑎𝑛𝑔𝑒 ℎ𝑖𝑔ℎ

𝑅𝑎𝑚𝑝 ℎ𝑖𝑔ℎ ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)       (7)  

𝑇𝑠𝑒𝑡 =  𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 +  (
𝑅𝑎𝑛𝑔𝑒 ℎ𝑖𝑔ℎ

𝑅𝑎𝑚𝑝 ℎ𝑖𝑔ℎ ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)    (8)  

In passive controllers, the controllers are not allowed to bid back hence the values of 

clearing demand and average demand are irrelevant. Therefore, equation 7 can be also 

written as equation 8. As seen from equation 8 the set-points will change when clearing 

demand is different than average demand. In an organized market instead of demand 

signal a price signal will be considered. For cooling mode operation, Tset becomes the 

new adjusted setpoint for the controller and when the temperature rises above this 

adjusted setpoint plus the thermostat deadband, cooling will restart. Similar operation 

will occur in the heating mode. When both these demands are equal the controller is 

inactive.  

For heating mode operation, range high is replaced with the range low and ramp high 

is replaced with ramp low in equation 9 and equation10 [50]. The equations can be re-

written as shown below:  

𝑇𝑠𝑒𝑡 =  𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 +  (𝐶𝑙𝑒𝑎𝑟𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 –  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑) ∗

(
𝑅𝑎𝑛𝑔𝑒 𝑙𝑜𝑤

𝑅𝑎𝑚𝑝 𝑙𝑜𝑤 ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)        (9)  

𝑇𝑠𝑒𝑡 =  𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 +  (
𝑅𝑎𝑛𝑔𝑒 𝑙𝑜𝑤

𝑅𝑎𝑚𝑝 𝑙𝑜𝑤∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)    (10)  
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A graphical representation of the above description for cooling mode of HVACs is 

provided in the Figure 3.1. If the participant sets a cooling set point of 72 Deg F during 

the period where the demand is less than the average demand the HVACs continue their 

normal operation, when the cleared demand goes above the average demand, setpoints 

are altered. In this case we can see that the new setpoints are 78 Deg F as the range high 

for cooling mode was set to 6.  

 

FIGURE 3.1: Graphical representation of cooling mode controller operation 

3.4.3: Pre-cooling or Pre-heating 

As explained earlier that for both cooling mode and heating mode of operations, 

participants can have a choice of pre-cooling or pre-heating respectively. During the 

night times when the load falls below a specific value, base load units must be ramped 

down. To avoid this consumer can use this pre-cooling or pre-heating.  

In the cooling mode operation, instead of following the range high now, the controllers 

will follow the range low. This will be a negative number indicating the value of 

temperature the participant is willing to alter. The new setpoint Tset1 given is given by 

equation 11 and equation 12 [50]. 
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 𝑇𝑠𝑒𝑡1 =  𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 +  (𝐶𝑙𝑒𝑎𝑟𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑1 –  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑1) ∗

(
𝑅𝑎𝑛𝑔𝑒 𝑙𝑜𝑤

𝑅𝑎𝑚𝑝 𝑙𝑜𝑤 ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)      (11)  

𝑇𝑠𝑒𝑡1 =  𝑇𝑑𝑒𝑠𝑖𝑟𝑒𝑑 +  (
𝑅𝑎𝑛𝑔𝑒 𝑙𝑜𝑤

𝑅𝑎𝑚𝑝 𝑙𝑜𝑤 ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)   (12)  

 During the night-time when the cleared demand1 falls below the average 

demand1 the controllers will react by decreasing the setpoint to a new value. If the 

participant sets a cooling set point of 72 Deg F during the period where the demand is 

greater than the average demand1 the HVACs continue their normal operation, when 

the cleared demand1 goes below the average demand1, setpoints are altered. In this case 

we can see that the new setpoints are 70 Deg F as the range low for cooling mode was 

set to 2. A graphical representation for pre-cooling mode is as shown below.  

 

FIGURE 3.2: Graphical representation of pre-cooling mode 

Combining pre-cooling mode with regular controller operation can be used for load-

leveling. In load-leveling the HVACs will consume more power during low load level 

by shifting the setpoints to a lower value. During the peak periods, HVACs will turn 

down the consumption by shifting the setpoints to a higher value. When the cleared 
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demand is between average demand and average demand1 the controllers remain 

inactive. The graphical representation for load-leveling will be as shown in Figure 3.3. 

 

FIGURE 3.3: Cooling mode operation for load-leveling application 

This operation will be similar in heating mode as well. The values for range low 

and ramp low will be replaced with range high and ramp high.  

3.4.4: Controller Operation for Electric Water Heaters 

 The controller operation for electric water heaters will be exactly similar to 

heating mode operation in the HVACs. Both HVACs and EWH will be tested for 

various DR scenarios.  

3.5: Customer Participation in DR Programs 

 DR programs require customers to reduce demand by shifting their consumption 

patterns. These DR programs may create some discomfort or deviation from regular 

behavior which could discourage the customers to participate in a DR program. Various 

studies have made an effort to estimate the number of participants in the DR programs 

[7, 51]. Apart from these reasons, lack of knowledge about a DR program will also 

create a decrease in the participation rate.  
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 The number of participants is dependent on the participant rate and their 

eligibility in any DR program [52]. The number of eligible participants is based on 

various factors like the number of customers by a segment and the number of customers 

with specific equipment [52]. A FERC study has proposed a hierarchical architecture 

for participation in DR programs [52]. For this study various DR scenarios are created. 

It is assumed that all customers are eligible to participate in the DR program since, 

saturation of end-use appliances is already considered while creating the base model. 

The scenarios created are described in the Table 3.2.   

TABLE 3.2: Number of participants in DR programs for TCLs 

Scenario No. of Participants 

 HVACs Cooling 

Mode 

HVACs Heating 

Mode 

Water Heaters 

Base Case 0 0 0 

25% Adoption 125 125 88 

50% Adoption 250 250 178 

75% Adoption 375 375 266 

100% Adoption 500 500 355 

 

For other appliances the same adoption cases will be considered if they are 

participating in the DR program. 

3.6: DR potential of thermostatically controlled loads 

3.6.1: Case Study 

 This is the simplest case where all the above-mentioned scenarios in Table 7. 

are simulated for analyzing the DR potential of TCLs. The demand reduction in each 

case is compared with the base scenario.   

3.6.2: Unified DR Signal 

 Figure 3.4 displays the peak shaving potential of TCLs for summer peak 

weekday profile. Here, a 0% participation indicates the base case without any DR. Both 
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HVACs and EWHs are given a unified signal to reduce their demand at 19.00. From 

figure 3.4 it can be observed that the TCLs respond immediately. The HVACs setback 

(range high) their temperature by 6 Deg F whereas water heaters setback their 

temperatures by 20 Deg F. The DR signal stops at 21:00 and it can be observed that all 

TCLs come online at the same exact time. This causes a sudden need for demand among 

all the appliances. This effect is called as rebound effect from DR. It can be observed 

that, the peaks due to the rebound at 21:30 are much larger than the original system 

peak. Hence, instead of mitigating the peaks, DR will have adverse effects if a proper 

control on the devices is not implemented. Figure 3.4 and Figure 3.5 show the impacts 

of rebound when unified signal is used for DR.  

 

FIGURE 3.4: Peak reduction using TCLs 
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FIGURE 3.5: Peak reduction and rebound during the DR event 

Table 3.3 provides a summary for the peak reduction using both TCLs.  

TABLE 3.3: Summary of peak reduction for DR using TCLs 

Adoption 

Scenario 

Peak 

reduction 

without 

rebound kW 

% Peak 

reduction 

without 

rebound 

Peak 

reduction 

with rebound 

kW 

% Peak 

reduction 

with rebound 

0% adoption - - - - 

25% adoption 350.93  15.8 325.25 14.67 

50% adoption 589.36 26.6 -185.48 -8.3 

75% adoption 856.54 38.6 -703.39 -31.74 

100% 

adoption 

1052.53 47.5 -1237.07 -55.82 

 

From Table 3.3, it is clear that the rebound, instead of reducing the peak shifts the peak 

to a different time which is much larger than the original peak. For 25% adoption 

scenario rebound does not create much difference as the number of appliances 

responding to the DR signal is very small. It can be concluded that although the peak 

reduction without considering rebound increases as the adoption rate increases, the 
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rebound effect creates larger system peaks which have adverse effects and these peaks 

increase as the adoption rate among the customers increases. For 100% adoption rate, 

the rebound is 56% greater than the original system peak.  

3.6.3: Diversified Signal 

 Various techniques have shown that this rebound effect can be mitigated. The 

fundamental cause behind this rebound is all devices trying to recover after the DR 

signal and which causes them to come back online at the same exact time. Hence, if a 

diversity in signal is created, then devices can be brought back online in groups with a 

specific time delay between two groups.  

 In this study, for the purpose of proving that the diversity in signals would 

mitigate the rebound effect, 5 different signals are created. These 5 signals are applied 

to HVACs, and a similar set of 5 signals is applied to water heaters. There is a 20 min 

delay between each signal. Table 3.4 shows the duration, start time and end time for 

signals.  

TABLE 3.4: Diversity amongst DR signals 

Signal Name Duration Start Time End Time 

Signal 1 2 hours 19:00 21:00 

Signal 2 2 hours 20 mins 19:00 21:20 

Signal 3 2 hours 40 mins 19:00 21:40 

Signal 4 2 hours 18:40 20:40 

Signal 5 2 hours 18:20 20:20 

 

 Figure 3.6 and Figure 3.7 shows the mitigation in the rebound when diverse signals are 

applied to the system.  
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FIGURE 3.6: Rebound mitigation using diverse signals 

 

FIGURE 3.7: Peak reduction and rebound mitigation during the DR event 

Table 3.5 provides a summary for the peak reduction and rebound mitigation by 

applying diverse signals to both TCLs. 
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TABLE 3.5: Summary of diversified signal in both TCLs 

Adoption 

Scenario 

Peak 

reduction 

without 

rebound kW 

% Peak 

reduction 

without 

rebound 

Peak 

reduction 

with rebound 

kW 

% Peak 

reduction 

with rebound 

0% adoption - - - - 

25% 

adoption 

288.61 13.02 288.61 13.02 

50% 

adoption 

562.64 25.39 337.95 15.25 

75% 

adoption 

834.44 37.65 87.28 3.9 

100% 

adoption 

1053.24 47.53 -53.12 -2.3% 

 

Thus, from Table 3.5, it can be observed that the peak reduction increases when 

adoption increases. Also, the rebound is mitigated when compared with the values from 

Table 3.4 which indicates the scenarios for unified signal. Figure 3.8 shows a 

comparison between unified and diversified signal for 75% adoption case. It can be 

clearly seen that; unified signal creates massive rebound. Also, it can be concluded that 

the maximum potential for peak reduction using both TCLs is 47.5%.  

 

FIGURE 3.8: Unified signal vs Diversified Signal 

0

500

1000

1500

2000

2500

3000

3500

D
em

a
n

d
 (

k
W

)

Time of the day

Unified Signal vs Diversified signal

0% adoption 75% Adoption Diversified 75% Adoption Unified



54 

 

The rebound can be further reduced by creating more diversity in the DR signals. This 

can be achieved by either one or all the measures mentioned below:  

• Creating more signals  

• Increasing the delay between the signals  

• Varying the start and end time  

• Spreading out the signals by increasing the duration of some of the signals  

3.7: DR Using HVACs 

 In this section the potential of DR from air conditioner has been gauged. It is 

considered that participants in each adoption scenario shift their thermostat set-points 

by 6 deg F. The water heaters continue to work normally, and the DR signal is applied 

to the HVACs only. Figure 3.9 shows response from HVACs upon triggering a unified 

DR signal.  

 

FIGURE 3.9: Unified signal for DR from HVACs 

The above Figure 3.9 is for the whole day. Figure 3.10 indicates the peak reduction and 

rebound during the event horizon.  
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FIGURE 3.10: Peak reduction and Rebound from HVACs 

The Summary of DR and rebound from unified signals is given in Table 3.6 below.  

TABLE 3.6: Summary of unified signal in HVACs 

Adoption 

Scenario 

Peak 

reduction 

without 

rebound kW 

% Peak 

reduction 

without 

rebound 

Peak 

reduction 

with rebound 

kW 

% Peak 

reduction 

with rebound 

0% adoption - - - - 

25% adoption 302.01 13.62 302.01 13.62 

50% adoption 473.71 21.37 440.68 19.88 

75% adoption 705.11 31.82 279 12.59 

100% 

adoption 

856.37 38.64 102.63 4.63 

 

 From Table 3.6, it is evident that for DR using HVAC only, increase in the 

adoption in DR programs by customers increases the peak reduction, although the 

rebound increases as well. In the HVAC only case, the rebound peak was less than the 

original peak despite triggering them with a unified signal. The peak reduction with 

rebound is highest for 50% adoption case. 
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3.7.1: Diverse Signals 

Like the case for DR in both TCLs described in section 3.6.3, a diversified signal 

will be created to mitigate this rebound. A total of 5 signals are created for HVACs, 

while the water heaters continue their normal function. Figure 3.11 shows how the 

diversified signal helps in reducing the rebound.  

 

FIGURE 3.11: Diversified signal for DR from HVACs 

Figure 3.12 shows the peak reduction and rebound mitigation for the DR event horizon 

only.   
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FIGURE 3.12: Peak reduction and rebound mitigation from HVACs 

The summary for peak reduction and rebounds mitigation from HVACs is provided in 

Table 3.7.  

TABLE 3.7: Rebound reduction due to diversified signals for HVACs 

Adoption 

Scenario 

Peak 

reduction 

without 

rebound kW 

% Peak 

reduction 

without 

rebound 

Peak 

reduction 

with rebound 

kW 

% Peak 

reduction 

with rebound 

0% adoption - - - - 

25% adoption 226.41 10.21 226.41 10.21 

50% adoption 473.71 21.37 440.68 19.88 

75% adoption 662.54 29.90 453.49 20.50 

100% 

adoption 

841 37.95 102.63 13.87 

  

 Thus, from Table 3.7, it is evident that the rebound has fairly decreased when 

diversified signal is given instead of a single signal. The peak reduction without 

rebound is highest for the 75% adoption case at 20.5%. Thus, it can be concluded that 
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the maximum potential of peak reduction by using HVACs is 38.64%. Figure 3.13 

below shows rebound reduction when diversified signal is given.  

 

FIGURE 3.13: Unified vs Diversified signal for HVACs 

3.8: Impact of Thermostat Range on DR 

 The thermostat range here is the temperature range by which the participants 

are willing to roll back their thermostats from their original setpoints. The original case 

had a 6 deg F temperature range. To study the impact, a case where all HVACs have a 

2 deg F range is created. Figure 3.14 shows the impact.  
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FIGURE 3.14: Impact of thermostat range 

  Figure 3.15 shows the impact during the DR event duration. The most 

significant impact is on the DR duration. For a 2 Deg F program, the DR duration is 

around 20 mins only whereas for the 6 Deg F program, the maximum reduction 

achieved remains for the entire 2 hours DR duration. The temperature inside the 

participating houses starts to rise when the thermostats are set back, a 2-degree gain 

will be completed quickly but, since the house has some thermal resistance it will take 

a long time to gain that 6-degree range.  

It can be concluded that for achieving a longer DR capacity reduction, a higher 

temperature range should be set, although the drawback of selecting a higher 

temperature range will see larger rebounds in the system as can be observed from Figure 

3.15.  
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FIGURE 3.15: Impact of range during the DR event 

3.9: Demand Response from Water Heaters 

 In this section potential of DR from electric water heaters has been studied. 

Electric water heaters are slightly different from HVACs in terms of their operation 

although, both are thermostatically controlled flexible loads. In the initial assessment 

for DR, the water heaters are completely shut during the DR duration. In the next cases, 

the heat storage capacity of the water heaters has been examined. Figure 3.16 depicts 

the DR from electric water heaters when a single unified signal is triggered during the 

DR event. From Figure 3.16 it is evident that a unified signal in water heaters will 

produce a rebound similar to HVACs.  
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FIGURE 3.16: Unified DR from the water heaters 

 

FIGURE 3.17: Peak reduction and rebound from water heaters 

Table 3.8 provides a summary for unified DR from electric water heaters.  
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TABLE 3.8: Summary of unified signal in EWHs  

Adoption 

Scenario 

Peak 

reduction 

without 

rebound kW 

% Peak 

reduction 

without 

rebound 

Peak 

reduction 

with rebound 

kW 

% Peak 

reduction 

with rebound 

0% adoption - - - - 

25% 

adoption 

158.35 7.1 158.35 7.1 

50% 

adoption 

244.92 11.05 153.26 6.9 

75% 

adoption 

286.76 12.94 -184.62 -8.3 

100% 

adoption 

335.39 15.13 -580.86 -26.2 

 

 From the above Table 3.8, it is evident that unified signal produces a massive 

rebound in EWHs. The rebound produced is very high as the power rating of each EWH 

is approximately 4.5 kW. A peak 26.2% higher than the original peak is observed when 

100% participant react to the unified signal. The maximum potential without rebound 

is 15.13% for 100% adoption case, which is much less than 38.6% obtained from the 

HVACs. This difference arises due to the operating characteristics of both these 

devices.  

3.8.1: Diversified Signal 

Similar to the case for DR in both TCLs described in section 3.6.3, a diversified 

signal will be created to mitigate this rebound. A total of 5 signals are created for EWHs 

while the HVACs continue their normal function. Figure 35 shows how the diversified 

signal helps in reducing the rebound.  
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FIGURE 3.18: Peak reduction with diverse signals for EWHs 

Figure 3.19 shows the peak reduction and rebound mitigation for the DR event horizon 

only.   

 

FIGURE 3.19: Rebound mitigation using diverse signals 

Table 3.9 provides a summary for rebound mitigation using diverse signals in EWHs. 
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TABLE 3.9:  Summary of diverse signal in EWHs 

Adoption 

Scenario 

Peak 

reduction 

without 

rebound kW 

% Peak 

reduction 

without 

rebound 

Peak 

reduction 

with rebound 

kW 

% Peak 

reduction 

with rebound 

0% adoption - - - - 

25% 

adoption 

123.14 5.55 123.14 5.51 

50% 

adoption 

215.38 9.72 176.70 7.97 

75% 

adoption 

288.82 13.03 121.96 5.50 

100% 

adoption 

311.54 14.05 24.35 1.09 

 

From the above Table 3.9, it is evident that the diverse signal reduces the 

rebound in the electric water heaters. The peaks tend to reduce for every adoption 

scenario unlike the unified signal, but maximum potential with rebound is obtained for 

50% adoption case at 7.97%. Figure 3.20 shows the difference between the unified and 

the diversified signals for the EWHs. The rebound which occurs during the unified case 

is well above the original system peak, whereas in the diversified scenario, it is below 

the original system peak.  

 

FIGURE 3.20: Unified vs diversified signals for EWHs 
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3.9: EWH vs HVAC Demand Response 

 In the above sections, the potential of two thermostatically controlled devices - 

water heaters and HVACs, has been analyzed in 3.7 and 3.8. There are clear differences 

between the two devices due to their operating characteristics and physical properties 

as described in section 3.3.  

The main observations from the analysis are:  

i) HVACs have more DR capacity than water heaters. The primary reason for 

this is, HVACs operate more frequently than water heaters.  

ii) HVACs have a shorter DR duration as compared to EWHs, as the water has 

a very high specific heat capacity.  

iii) Due to the high rated power of water heaters, the rebound from water heaters 

is higher than the one from the HVACs.  

3.10: Using Energy Storage for Load Leveling and Mitigating Rebound Effects 

 Use of energy storage for peak shaving has been reviewed in several studies. 

With the decreasing prices, energy storage is becoming a lucrative option for providing 

services like peak shaving and other ancillary services for the utility [53]. As observed 

in the previous section 3.6 thermostatically controlled loads create a rebound when they 

are used for DR. Energy storage can be used to mitigate these rebounds created by TCLs 

as well. There are several types of energy storage systems, but this study will focus on 

battery energy storage system using lithium ion batteries. Lithium ion contributes to 

more than 80% of the installed capacity battery storage in operation in the United States 

[53]. The high energy density, high-cycle efficiency and fast response makes them the 

perfect choice for residential purposes. Other storage options like compressed air 
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storage systems or flywheels have better performance, but for this application BESS is 

a better fit, due to its low initial costs and less site requirements [54, 55]. 

 In this study, battery energy storage system (BESS) will be primarily used for 

load leveling and mitigating the rebound effects created by the TCLs. A simple yet 

effective approach for peak load shaving using BESS by maintaining the SOC has been 

discussed in [54].   

3.10.1: BESS Operation for Load Leveling 

 In this study, BESS are considered to be distributed at the customer location. 

The primary objective of these BESS is to mitigate the rebound effects and level the 

load. Hence, their operation schedule is based according to the DR events. Energy 

storage is charged during the night time or during the afternoon valley period when the 

demand is very low, and the prices of electricity are low as well. This stored energy is 

then discharged during the peak period. Referring to the base case scenario in section 3 

it can be observed that, for summer case peak period is defined from 5pm to 9pm 

whereas off-peak period is defined from 1am to 5am. Hence these periods will be used 

for discharging and charging the energy storage. Figure 3.21 describes the algorithm 

for battery operation.  

 As the battery charging and discharging is based on the peak and off-peak 

periods, the base demand profile is provided as an input for the battery controllers this 

demand profile is a time-series profile. For discharging, the DR event signal is fed as 

input as well. When the DR event occurs, the batteries start discharging and they keep 

discharging until 1 hour after the DR event. As the TCLs start their recovery, there is a 

risk of rebound, hence during this period the discharging batteries will provide the 

support. Thus, the discharge of batteries will help mitigate the rebound. If there is no 
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DR event the controller checks if the current time is between 1am and 5am which is the 

charging period. If not, then the battery remains inoperative.  

 The battery charging rates, discharging rates and other factors which will impact 

the load leveling and rebound mitigation performance will be discussed in the next 

section. 

Model Inputs: Clock, Base 
load profile , DR duration
Storage capacity available

 
 Has DR event Occurred

 at Time = X

Batteries 
discharge from x 

to (x + DR 
duration + 1 hour)

Yes

No

Is time between 1 
am and 5 am

Yes

No

Charge Batteries

Do nothing

End

 

FIGURE 3.21: Battery scheduling algorithm for load leveling and DR mitigation 
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3.10.2: Battery Model 

 In this study as mentioned in above section 3.10, lithium ion batteries are being 

used due to their characteristics as well as commercial availability. The Tesla 

Powerwall, developed for implementation in residential houses, has been modeled [56]. 

The capabilities such as self-solar consumption and time-based control make it an 

attractive option [56]. Table 3.10 describes the characteristics of BESS used in 

modeling.  

TABLE 3.10: Battery model description 

Battery Characteristic Value 

Usable Capacity  13.5 kWh 

Efficiency  90% 

Power 5kW continuous 

Maximum Charging rate 5kW 

Maximum Discharging rate 5kW 

Depth of Discharge 100% 

Initial SOC 0.0  

Round trip efficiency  90% 

 

3.10.3: BESS for Load Leveling and DR Rebound Mitigation   

 As explained in section 3.10.1, the battery energy storage system’s potential for 

DR and rebound mitigation were tested. Two cases are developed as described in Table 

3.11. Figure 39 below shows rebound mitigation using BESS for 25% adoption 

scenario.  

TABLE 3.11: Energy storage scenarios 

Scenario    

Case 1 25% DR participation  25% BESS adoption  

Case 2 100% DR Participation  25% BESS adoption  
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FIGURE 3.22: Rebound mitigation and load leveling for 25% DR and 25% BESS 

adoption scenario 

Figure 3.22 shows how BESS can be used for reducing the rebound caused by DR. 

Also, during the off-peak period it is evident that charging of the batteries increases the 

demand which can support the load leveling function.  Similarly Figure 3.23 represents 

case 2 for BESS.  

 

FIGURE 3.23: Rebound mitigation and load leveling for 100% DR and 25% BESS 

adoption scenario 
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From the above Figure 3.23, it is evident that the rebound has decreased massively, 

even with just 25% participants adopting the BESS. Table 3.12 provides a summary for 

with and without battery energy storage scenarios.  

TABLE 3.12: Battery storage and no battery storage comparison 

Scenario Peak reduction 

without rebound 

(kW) 

% decrease 

in peak with 

respect to 

base case 

Peak 

reduction 

with 

rebound 

(kW) 

% decrease in 

peak with 

respect to base 

case 

Base case 0 0 0 0 

Case-1 

without 

storage 

288.65 13% 288.65 13% 

Case-1 

with 

Storage 

425.98 19.2% 425.98 19.2% 

Case-2 

without 

storage 

1053.57 47.54% -53.08 -2.3% 

Case-2 

with 

storage 

1233.48 55.66% 509.10 23% 

 

The above Table 3.12 indicates the importance of BESS in reducing the peaks 

as well as mitigating the rebounds. For case 1, where 25% DR participants are involved 

the rebounds are minimum hence the mitigation is not clearly observed. The peak 

reduction improves from 13% to 19.2% when BESS are installed. For case 2, 100% DR 

participants create a rebound which creates peak-shifting. The peak demand with 

rebound is 2.3% higher than the original demand. Although, with BESS this rebound is 

reduced significantly and the new peak demand is 15.7% less than the original demand.  

Battery energy storage can clearly aid the impacts caused by the rebound effect. 

Increasing the BESS penetration in the system will decrease the rebounds even further. 

Also, with load leveling the peak demand to base demand ratio is improved as well.  
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3.11: Potential of Water Heater as Thermal Energy Storage Device 

 Water heaters with storage tank can be used to store thermal energy before the 

peak periods and can be left off during the peak period. Many utilities are trying to 

adopt the electric thermal energy storage (ETS) program for water heaters [29]. Water 

heaters can store energy which allows the water heater to be kept off for up to 6 hours.  

 On the day when DR response is expected, electric water heaters can be used to 

store thermal energy by increasing their setpoints. Due to high specific heat of water 

they would be able to maintain the water temperature above a certain desired value. The 

heat loss in the water heater can be calculated using,  

𝑄 =  𝑈 ∗ 𝐴 ∗  𝛥𝑇        (13) 

Here Q is the heat transferred or lost, U is the heat transfer coefficient, A is the surface 

area of the water heater and ΔT is the differences between the water temperature and 

ambient temperature.  

 Referring to Figures 3.18 and 3.19 it is certain that both diversified or unified 

DR signals for water heaters create rebound effects when 75% of the customers 

participate in the DR program. Hence a 75% participation case will be used to verify if 

the rebounds are completely mitigated using this strategy.  

 Figure 3.24 shows the algorithm used for using water heaters as thermal energy 

storage devices. The number of participants is equally divided into x groups. Depending 

upon the number of groups, different DR signals are created which trigger different 

EWHs at different times.  
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Input data 

DR signal, Demand 

Data, Time, No. of 

participants, No of 

signals X

Is DR signal expected at Time = 

Y hours

Water Heater 

Setpoint = 140 for 

xth signal

Do Nothing

Stop

For i = 1 to X ;  

Time Y = Time – 

X(i)

YES NO

 

FIGURE 3.24: Water heaters as thermal storage devices 

3.12: Case Study of Electric Water Heaters as Thermal Energy Storage and Rebound 

Mitigators 

 As mentioned before, rebound was evident for 75% adoption scenario hence, 

the application of EWHs as thermal storage was tested for 75% DR adoption scenario. 

It is considered that these EWHs are grouped into 5 different groups. Groups receive 

signal sequentially prior to the DR event to raise their setpoints for 1 hour. For example: 

Group 1 receives signal from 1pm to 2pm then group will receive signal from 2pm to 

3pm. This continues until all groups receive signal.   
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FIGURE 3.25: Using EWH as thermal energy storage 

 In the above Figure 3.25 which shows the use of EWH as thermal energy storage 

it can be observed that when EWH is used as thermal energy the demand increases from 

12pm to 5pm. 5 Bumps are observed in the demand curve which represent the increase 

in demand for 5 groups. It can be observed that along with peak reduction rebounds are 

completely mitigated in this case, because water heaters are able to maintain their 

supply water temperature above a specified set point even after the DR event. This can 

be observed in the Figure 3.26 below. The water temperature never drops below 120 

Deg F. Hence, this method helps support DR and rebound mitigation without affecting 

the consumer comfort. Also, from the usage pattern it can be observed that, the hot 

water demand during the afternoon is low hence, this wouldn’t affect the consumer’s 

activities significantly.  
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FIGURE 3.26: Water temperature and demand from water heater 

3.12 Conclusions 

1) This chapter discussed the appliances which have high potential for DR in 

residential buildings.  

2) A comparison between the two thermostatically controlled flexible loads 

HVACs and EWHs was made, and difference in their operation and potential 

response that can be obtained from them was analyzed.  

In the next chapter, impacts of this DR on the electric grid, mainly the distribution 

system, will be studied.  
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CHAPTER 4: : IMPACTS OF DR ON THE DISTRIBUTION SYSTEM 
 

DR is bound to have some impacts on the electric grid. Some of the impacts on 

the system reliability are described in [57-59]. The loads used for DR are responsive 

loads and are flexible enough to provide ancillary services support to the grid. In fact, 

these flexible loads have a much faster response than conventional generating plants. 

DR can be used to support various ancillary services such as [58]: 

i) Energy Imbalance- Load following and energy imbalance addresses the 

intra or inter-hour balancing requirement of the utility or the ISO. With 

the flexibility of the DR resources, they can provide the energy 

imbalance service to the grid by ramping up or ramping down the 

demand requirement. The response speed for these services is usually 

10 minutes and the duration of their requirements is anywhere between 

10 mins to hours[58].  

ii) Operating reserves- These services are required in case of a contingency. 

The operating reserves include spinning, non-spinning and 

supplemental reserves.  

a) Spinning reserves: These are online reserves synchronized to the 

grid that can ramp their outputs upon receiving the signal. These 

resources must reach their maximum capacity within 10 minutes to 

comply with NERC’s standard [58].  

b) Non-Spinning reserves: These resources are like spinning reserves, 

except that they are offline and must reach their output within 10 

mins when called upon. They react after the spinning reserves.  
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c) Supplemental or replacement reserves: They have a slower response 

time and they are used to restore spinning and non-spinning reserves 

to their pre-contingency state [58].  

iii) Frequency Regulation- These are online resources which respond to the 

automatic generation control and track the minute to minute fluctuations 

in the system load and correct these fluctuations [58]. These are fast 

ramping resources and are required to respond within a minute. Their 

response duration lasts for few minutes.  

iv) Voltage Control and Reactive Power Supply- Reactive power supply is 

needed to maintain the voltage stability throughout the system. Loads 

with large solid-state drives could be able to supply this although this 

must be co-ordinated with the transmission provided [58]. Reactive 

power is local and hence the requirements are location specific when 

compared to the real power. This service is required for seconds and 

duration of this service is also anywhere between few seconds to few 

minutes.  

Figure 4.1 shows the difference between the ancillary services based on their response 

speed and duration.   
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10.1 10 100
Time (Minutes)

Supplemental reserve

Non-spinning reserve

Spinning reserve

Energy Imbalance

Frequency Regulation

Voltage Control

 

FIGURE 4.1: Ancillary Services based on response speed and duration 

4.1: IEEE 37 Node Test Feeder 

To test the impact of DR on the electric grid an IEEE 37 node test feeder model 

was developed to connect the residential loads and implement various DR strategies. 

Figure 4.2. below shows the schematic of this radial distribution feeder.  This feeder is 

an actual real feeder located in the state of California. The system operates at a nominal 

voltage of 4.8 kV [60]. All the lines are underground cables. Loads can be connected 

as spot loads or distributed along the line section, but for this study all loads are 

connected spot loads and consist of constant current loads, constant impedance and 

constant PQ loads [60].  

This base system was modified to connect the residential loads. These 

residential loads are spot loads and are connected as single-phase loads using a split-

phase transformer to a triplex node. A cluster of houses is created and this cluster 

through a triplex line is connected to the node of the 37-node test feeder.  
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Using the triplex lines and transformers, 10 nodes were created with the 

provision to connect the residential loads. A specific criterion was not set for choosing 

these 10 nodes. Although it was kept in mind that whole most of the test system should 

be covered within these nodes.  

There is one regulator connected between the substation node and node 701. 

This regulator is always connected to the system i.e the switch position is closed.  The 

Figure 4.2 below shows the nodes with provision to connect residential loads. These 

nodes are colored red and a square box covering the node number is an indicator for 

such nodes.  

Substation Bus 799

701

702

712

742

705

722

713 704

724

707

720

706

725718

714703

730

727

744729

728

731

709

708732

736

710

735

733

734

737 738 711

740

741  

FIGURE 4.2: Nodes with provision to connect residential load 
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4.2: Thermostatically Controlled Loads as Operating Reserves  

 Spinning and Non-spinning reserves are called upon when there is contingency 

in the system, i.e., whenever a transmission line or a generator fails. These reserves are 

deployed automatically if the failure violates the system frequency outside the dead-

band of the governor. If the real power interchange between control areas is impacted 

even, then operating reserves could be called upon. Smaller contingencies are addressed 

with frequency regulation [57, 58].  

 As explained in the previous section, according to NERC reliability standards, 

the response of spinning reserves should be within 10 mins and they should be able to 

provide this response for a maximum duration of 2 hours. Although, historically the 

contingency reserves are deployed for a much shorter duration with an average of 10 

minutes. Table 4.1 shows some historic statistics related to deployment of spinning 

reserves:  

TABLE 4.1: Spinning reserve deployment for various ISOs 

RTO/ISO  Average 

Duration (mins)  

No. of 

Deployments  

Time Between 

Deployment 

(days) 

NYISO (2002) 11 239 1.5  

ISO-NE (2005)  11 19 19 

CAISO (2005)  9 26 14 

 

 Thermostatically controlled loads such as HVACs and Electric water heaters 

have the capability to withstand numerous short curtailments and infrequent sustained 

curtailments. These loads are flexible enough to be rapidly restarted and curtailed 

immediately upon receiving the contingency signal. The characteristics that sets these 

loads apart from the conventional generators is that, these loads do not have constraints 
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that the conventional generators possess, such as, there is no ramp time and minimum 

on or minimum off time.  

 These characteristics make TCLs more superior than the conventional 

generators for providing spinning reserves. The consumption curtailment is more rapid 

than ramping up the generation. The only time delay involved in this process is caused 

by the control signal to get from the system operator to the load.  This time delay is 

well within the 10 minutes duration allowed for generation to fully respond [58].  

 Furthermore, using these TCLs for supplying contingency reserves is much 

more practical and feasible as compared to providing peak shaving since the duration 

for which response is required is much shorter and the response frequencies are less as 

well. For peak shaving these TCLs are required to respond for multiple hours per day 

also it is quite possible that these loads are called upon for several days in a row. These 

could put some constraints on the customers participating in the peak shaving DR 

program. For example: Peak load reduction is required at the same time when HVAC 

functioning is required.  

 For providing contingency reserve requirements these flexible loads should be 

available to respond immediately whenever a contingency occurs and can continue to 

operate normally otherwise. Supplying fast responding ancillary services is 

economically beneficial since the value of these ancillary services is based upon 

response speed rather than duration.  

 The price of contingency reserves is highest when the demand is very high, 

hence it makes sense to use these TCLs as operating reserves when the demand is at or 

near peak value. During the low load condition, the base or intermediate generators 

have enough capacity to support the contingencies.  
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4.2: Methodology to Determine the Potential of TCLs as Operating Reserves  

 The available operating reserves capacity from the TCLs depends upon several 

factors and there is much uncertainty involved. The aggregated capacity from the air 

conditioners is evaluated in a several articles.  The response capacity, duration and ramp 

rate quantified in [61]. Using temperature set back strategy, the HVAC response and 

their operation characteristics of individual and aggregated air conditioners are 

analysed in [62]. DR management approach is proposed for controlling DR duration 

time and capacity by considering temperatures [63].   Figure 4.3 describes the proposed 

architecture for evaluating the operating reserves capacity. The approaches mentioned 

earlier do not consider the actual HVAC operation based on the climate. Also, some of 

the approaches do not consider the uniqueness among the HVAC devices such as the 

variation in their fuel source, size of HVAC and so on.  

  

Physical model 
solver

Location, 
Time and 
climate 

End Use 
appliances 
and usage

Residenti
al model 

Total 
Demand

Available operating reserve 
capacity

No. of DR 
participants

Temp 
preference of 

end users 
(Set-points 
and Range) 

Time of 
Contingency

TCL 
model

Response 
Duration

Response 
Capacity

Response 
obtained = (Total 

demand – 
Available capacity)

 

FIGURE 4.3: Operating reserves capacity architecture 
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 Using the original base system model, the total demand at a particular time is 

calculated. This total demand includes the TCL demand. The available operating 

reserve capacity at any moment will be dependent upon the number of customers 

willing to participate in this program, their temperature preferences such as their current 

setpoint, and the range by which they are willing to offset their setpoints. The time of 

contingency will decide the available HVAC capacity as well. Response capacity is 

mainly dependent upon the no. of participants and the time of contingency. Whereas, 

the duration of response is based on the temperature range, by which these participants 

are willing to offset their setpoints.  

 Various cases are designed to test the potential of these TCLs for provide 

operating reserves. Like DR, four participation scenarios are created. 25% adoption, 

50% adoption,75% and 100% adoption to the program. These participation scenarios 

are tested at various time of the day.  

4.2.1: Case Study 

 As mentioned before, various the potential of TCLs to serve as operating 

reserves (spinning and non-spinning reserves) is tested. Contingencies are created at 

different times during the day. For off-peak period 2am was chosen since demand 

during this time is very low. For peak period 7pm was chosen as demand is highest 

during this hour. Morning period when demand is high, but the weather conditions are 

moderate might produce different effects to test this 10am was chosen as time when 

contingency occurs. For testing the potential during afternoon hours 1pm was chosen.  
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FIGURE 4.4: Contingency at 2am 

 

FIGURE 4.5: Contingency at 10am 
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FIGURE 4.6: Contingency at 1pm 

 

 

 

 FIGURE 4.7: Contingency at 7pm  
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The above Figures 4.4 to 4.7 shows contingency at various times of the day and 

from them it is observed that response of TCLs is unique for each case. The response 

duration and capacity are dependent various exogenous factors like weather and human 

behavior. It is clear that use of TCLs during off peak periods like 2am isn’t feasible as 

the response capacity is very low and unnecessarily rebounds would be created. In all 

these case DR signals were sent for 3 hours and 10am in the morning provided the 

maximum response duration. This is due to the fact that, the weather conditions were 

not extreme and available TCL capacity was high as well. Even during the peak period 

at 7pm in the evening, TCLs provide the 2 hours response also, the capacity obtained 

is highest int this case.  

Unified signals create peaks higher than the original system peak in almost all 

cases. Hence diversified signal should be used to bring back these resources online. For 

off-peak period even diversified signals would create peaks higher than the case 

indicating inefficiency of TCLs to provide operating reserves during off-peak periods. 

For peak periods even with 75% DR participation higher than system peak rebounds 

are not observed.  

From the results above, the use of TCLs as operating reserves can be justified 

as they match all the required criteria. Although, during off-peak period it makes more 

sense to use the utilities available generation as most of the cheaper generators are 

available for dispatch.  

4.3: Impact on System Voltage 

 As, voltage is inversely proportional to the current, when electrical load 

increases the current drawn increases, and this creates a drop in the voltage. Various 

voltage regulation methods are discussed in [64]. Conventional methods involve use of 
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on load tap changers (OLTC) which maintains a stable secondary voltage by effectively 

selecting tap positions. The tap change position usually takes anywhere between 3 and 

10 minutes and several minutes between frequent operations [64]. Another method 

includes large synchronous generators that can control voltage levels by adjusting their 

output. More modern techniques involve use of shunt capacitors is usually done to 

supply the reactive power in response to the voltage drop and shunt reactors to lower 

the voltage [57].   

 In this section, the use of TCLs to provide voltage support has been tested out. 

By curtailing the load during high demand hours, voltage drop can be mitigated. For 

this purpose, the residential houses are connected to the IEEE 37 node test feeder 

described in section 4.1. 

 

FIGURE 4.8: Improvement in voltage profile during the DR event 
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the peaks are reduced and hence an improvement in the voltage profile is observed. 

Figure 4.9 shows that increase in the DR participants decreases the voltage drop. Hence, 

the voltage profile smoothens and any plummets in the voltage are mitigated.  

Although, the rebound created by the TCLs can cause violation in voltage drops 

as it can be seen below in Figure 4.9. When large number of customers participate in 

any DR program care should be taken that, rebound mitigation measures are considered 

as well.  

 

FIGURE 4.9: Voltage post DR event 
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TABLE 4.3: Adverse effect on voltage due to rebound effects 

Scenario  Minimum Voltage (P.U)  

Base Case (No DR)  0.9487 

3 Nodes DR 0.9480 

5 Nodes DR 0.9488 

8 Nodes DR 0.9416 

 

From the above Tables 4.2 and 4.3, it can be observed, that due to high demand there 

is violation in voltage limits. With DR the voltage drops are reduced and hence an 

improvement in the minimum voltage is observed. However, if proper actions to 

mitigate the rebound are not taken, an adverse effect on the system voltage could be 

observed. 

4.4: Impact on Line Losses 

  Since losses that occur in the power system lines are proportional to the square 

of the current, any load shifts from peak to off-peak period will result into a net 

reduction in T&D losses. Mathematical formulation for these loss savings due to load 

leveling has been studied in [65]. Techniques for mitigation of these losses using 

hysteresis band current controlled based STATCOM has be proposed in. Another 

approach discusses about optimum placement of capacitors and optimum voltage 

setting of generators and SVC placement for reduction in line losses [66, 67]. In this 

study use of flexible residential loads to reduce the peaks has been used as a tool to 

reduce the line losses. Any shifts in the peak demand will create a squared reduction in 

line losses. To test methodology, IEEE-37 node test feeder is used for simulating 

various cases.  
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Since all the residential loads are connected at distribution system, the equivalent 

impacts will be observed on the transmission system as well. Loss savings in both T&D 

systems will be observed. Below Figure shows the impact of DR on losses in the 

system.  

 

FIGURE 4.10: Impact of DR on system losses 
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losses were lowest.  

 Although, when DR is carried out with thermostatically controlled devices there 
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rebounds on system losses was studied as well. Figure 4.11 shows the impact on system 

losses if rebounds are not mitigated.  

 

FIGURE 4.11: Impact of rebound on system losses 

 Thus, from the Figure 4.11 above, it can be observed that the losses during DR 

scenarios are much higher than the base case. This is because of the rebounds created 
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the above Figure 4.11.  
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TABLE 4.5: Adverse impacts on losses due to rebound effects 

Scenario  Losses (VAh) Excess Losses 

Base Case (No DR)  115471.6 - 

3 Nodes DR (30%) 135609.9 14.8% 

5 Nodes DR (50%) 140443.7 17.7% 

8 Nodes DR (80%) 153829.5 24.9% 

 

As observed from the above Tables 4.4 and 4.5, DR could create loss savings if 

implemented properly. Although, there is a risk of increase in losses if rebounds are not 

mitigated. These losses incur due to sudden inrush currents from the motors of the 

devices that respond in unison to the DR signal.  

4.6: Conclusion 

In this chapter various impacts of DR on the grid were studied. These impacts provided 

a different perspective on how these flexible resources can be deployed rather than just 

implementing them for peak shaving or load leveling applications.  
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CHAPTER 5: BENEFITS OF DR 
 

In section 1.6 costs and benefits of DR are discussed briefly. Success of any 

program will be determined by the net benefits it produces. The benefits produced by 

DR depends upon the type of the DR program as well as the market structure it is 

implemented in [DOE]. In this chapter 5, detailed framework for deriving some of the 

components is proposed. Only utility’s perspective is considered for developing the 

methodology of these components.   

 As evident from chapters 3 and 4 that DR not only produces reduction in peak 

demand but also provides various other benefits. Following benefits were identified to 

have a maximum impact and hence, this study will be limited to those components only. 

The components are:  

1) Avoided Energy  

2) Avoided Generation Capacity 

3) Avoided Transmission and Distribution Capacity  

4) Avoided System Losses  

5) Environmental Benefits  

6) Operating Reserves Capability  

7) Voltage Support    

All of the above-mentioned benefits can be obtained from the models developed for 

the DR. Most of the components are evaluated for their annual benefit. It is assumed 

that, the number of participants in DR programs are fixed so that the available capacity 

is fixed.  
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5.1 Avoided Energy  

The benefits associated with energy are primarily obtained due to the avoided 

energy from peaking generation units. Usually, a production cost model which has unit 

commitment and economic dispatch abilities is used to quantify this benefit [68, 69]. In 

this study an alternative approach is proposed which simplifies the methodology as well 

as omits the need for using a production cost model [70]. Two cases are developed; one 

with DR and one without DR. Difference between these two cases would give the 

avoided energy benefits. Benefits obtained during peak period are associated with the 

operating costs and energy reduction during that period. These are given by equation 

14, below:  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 ($) =  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑝𝑒𝑎𝑘𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡𝑠 (
$

𝐾𝑊ℎ
) ∗

 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐾𝑊ℎ)   (14) 

As we know that post DR event the appliances try to recover back to their normal state 

and hence, can consume more than normal energy. This excess consumption costs are 

given by equation 15 below,  

𝐸𝑥𝑐𝑒𝑠𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 ($) =  𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑏𝑎𝑠𝑒 𝑝𝑙𝑎𝑛𝑡𝑠 (
$

𝐾𝑊ℎ
) ∗

 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 (𝐾𝑊ℎ)   (15) 

The net benefit is obtained by subtracting equation 15 from equation 14.  

𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 =  𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑎𝑣𝑖𝑛𝑔𝑠 –  𝐸𝑥𝑐𝑒𝑠𝑠 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡  (16) 

Running annual simulations would give annual benefits obtained from DR.  

5.1.1 Case Study  

 Annual avoided energy was obtained using the methodology describe in section 

5.1. DR would be implemented on peak days only and these peak days would occur 
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during extreme seasons; summer and winter. Hence, three summer months from June 

to August are considered whereas, for winter December to February are considered for 

analysis.  

 Random days - 15 days per month are selected from these months and two cases, 

with and without DR are run for each day. The avoided energy calculated is averaged 

and multiplied over 30 days to get the avoided energy over that month. This step is 

repeated for every month. This methodology and assumptions will be applied to all 

other components mentioned below. 

 Results for a sample peak day are given below in Table 5.1. Using equations 14, 

15 and 16 the results are evaluated. The variable O&M costs were obtained from EIA 

levelized cost and levelized cost of generation 2019 report.  

TABLE 5.1: Avoided energy costs for 1 day  

With DR Value Without DR  Value 

Energy consumption 

during peak period 

(KWh) 

8403.947 

 

Energy consumption 

during peak period 

(KWh) 

8722.895 

 

Energy consumption 

during recovery 

period (KWh) 

4195.423 

 

Energy consumption 

during recovery 

period (KWh) 

3979.705 

 

Variable O&M costs 

during peak period 

($/KWh) 

0.052 

 

Variable O&M costs 

during peak period 

($/KWh) 

0.052 

 

Variable O&M costs 

during recovery 

period ($/KWh) 

0.031 

 

Variable O&M costs 

during recovery 

period ($/KWh) 

0.031 

 

Avoided energy 

during peak period 

(KWh) 

318.94 

Excess energy 

during recovery 

period (KWh) 

215.71 

Avoided energy 

costs ($/KWh) 

9.985 
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5.2 Avoided Generation Capacity  

The primary goal of DR is to reduce the system peaks. This would decrease the 

need of adding new generation. DR will displace some of the conventional centralized 

generating plants. Although, DR is obtained from flexible loads their availability is 

uncertain due to numerous factors. This means that DR can displace only a certain 

percentage of generation capacity. This percentage is known as the capacity factor of 

that resource. There are numerous methods which can compute the capacity factor. 

Effective load carrying capability (ELCC) is most effective method that estimates the 

amount of capacity DR can contribute reliably [70-72]. Like 5.1, for this component 2 

cases are developed; with DR and without DR. Difference between these two cases 

would give the avoided generation capacity.  

𝐸𝐿𝐶𝐶 =
𝐷𝑒𝑚𝑎𝑛𝑑 𝑚𝑒𝑡 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐷𝑅 (𝑘𝑊)–  𝐷𝑒𝑚𝑎𝑛𝑑 𝑚𝑒𝑡 𝑤𝑖𝑡ℎ 𝐷𝑅 (𝑘𝑊)

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐷𝑅 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

(16) 

𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑘𝑊) =  𝐸𝐿𝐶𝐶(%) ∗  𝑇𝑜𝑡𝑎𝑙 𝐷𝑅 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑘𝑊) 

                  (17)  

𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐶𝑜𝑠𝑡𝑠 ($)     =

 𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑘𝑊)    ∗  𝐶𝑜𝑠𝑡 𝑜𝑓 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 (
$

𝑘𝑊
) 

             (18)  

As DR would be required only during the peak days, simulations for extreme weather 

months are performed where the chance of having peak demand is most probable. For 

summer months random days from June and July are selected for winter December and 

January are selected.  
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5.2.1 Case Study 

 Like avoided energy, the process of simulating random days per month is 

repeated. Using the methodology defined in 5.2, the avoided generation capacity costs 

are evaluated for 25% adoption in DR.  

Table 5.2 below summarizes the results obtained for avoided generation capacity during 

summer season.  

TABLE 5.2: Avoided generation capacity costs in summer 

Maximum capacity 

reductions due to DR 

(kW)  

390 

Average capacity 

reductions due to DR 

(kW) 

252 

Effective load carrying 

capability of (%)  

64% 

Percentage reduction peak 

generation in capacity   

11.3%  

Avoided generation 

capacity costs ($) 

23,184 

 

5.3 Avoided Transmission and Distribution Capacity  

Like avoided generation capacity, transmission and distribution will have an equivalent 

impact. All residential loads are located on the distribution system hence, a kW 

reduction on distribution system will be reflected on transmission system as well. A 

methodology similar to 5.2 is developed. Marginal cost of T&D due to load growth are 

used derive the benefit.  

5.3.1 Case Study  

 The results from 5.2.1 are applied to avoided transmission and distribution 

capacity as well. The only difference being that marginal costs of transmission and 

distribution are considered instead of generators [73]. Since, the peak reduction is 
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observed at substation level the distribution and transmission system impacts would be 

similar to generation.  

Table 5.3 provides summary for avoided T&D costs.  

TABLE 5.3: Avoided T&D costs  

Maximum capacity 

reductions due to DR 

(kW)  

390 

Average capacity 

reductions due to DR 

(kW) 

252 

Effective load carrying 

capability of DR (%)  

64% 

Percentage reduction in 

peak transmission and 

distribution capacity  

11.3% 

Avoided T&D capacity 

costs ($) 

12,600 

 

5.4 Avoided System Losses 

As observed in section 4.5, DR reduces the line losses. Using the results 

obtained in that section loss savings can be derived as, 

𝐿𝑜𝑠𝑠 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 (𝐾𝑊ℎ) =

 𝐿𝑜𝑠𝑠𝑒𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐷𝑅 (𝐾𝑊ℎ) –  𝐿𝑜𝑠𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝐷𝑅 (𝐾𝑊ℎ)   (19) 

5.5 Environmental Benefits  

DR will reduce the need for energy from inefficient peaking plants. These plants usually 

emit large amount carbon dioxide. DR will reduce the of generation from these plants.  
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𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 (
$

𝐾𝑊ℎ
)

=
(𝐴𝑣𝑜𝑖𝑑𝑒𝑑 𝑐𝑎𝑟𝑏𝑜𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑀𝑇))

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 𝑑𝑢𝑒 𝑡𝑜 𝐷𝑅 (𝑀𝑊𝐻)

∗  𝑆𝑜𝑐𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 (
$

𝑀𝑊ℎ
)  

           (20)  

5.5.1 Case Study  

 Using the emission and generation resource integrated database (eGRID) per 

unit emission for each type of peaking plants were obtained. In this scenario, since the 

assumption is that, natural gas plants are peaking plants emissions for those plants 

would be used.  Using equation 20 the value for avoided carbon could be evaluated. A 

sample one day avoided carbon is calculated in table 26 below.  

TABLE 5.4: Avoided carbon dioxide for one sample day 

Emissions for NG plant 

(Lbs/MWh) 

926.53 

Social cost of carbon ($/MWh) 40 

Total reduction in energy 

(KWh)  

103 

Avoided Emissions (MT) 0.043 

Avoided Carbon ($/MWh) 16.69 

 

5.6 Operating reserves capability  

As discussed in chapter 4, DR being a flexible resource has ability to supply 

operating reserves. Hence, a need for maintaining additional operating reserves would 
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be reduced. The benefit obtained from this component will be associated with the 

marginal operating costs of these contingency generators.  

5.7 Voltage support  

In chapter 4, it is observed that with DR the voltage at farthest node improves. 

This effect is observed on the whole system. Hence, need for additional voltage support 

equipment could be deferred. The benefit obtained from this component will be 

associated with the costs of these additional equipment such as capacitors and voltage 

regulators.  

5.8 Costs of DR 

In this study the costs of DR have not been included as they are subjective to 

the utility. Referring to table 1.2 it can be observed that these costs are associated with, 

cost of equipment such as modern communication technologies as well as the costs 

incurred from educating the customers and marketing/promoting the DR programs. 

These costs are subjective and would depend upon the willingness or the expenditure 

power of the utility. For example, bigger utilities with more spending power could 

invest more in the state of art technology whereas smaller utilities could choose 

technology just enough to meet the requirements. Some utilities could promote the DR 

programs through expensive digital communication whereas some would just distribute 

informative brochures.  

Although, these costs are important as they would decide the participation in 

DR program and define its success. No framework to quantify these costs from DR has 

been established yet and hence, a comprehensive study in future could help determine 

it.  
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CHAPTER 6: CONCLUSION AND FUTURE SCOPE 

 

 DR in residential buildings could play a major role by maintaining a supply 

demand balance of the grid of the future. Residential buildings have a huge potential to 

provide DR and still most of it is still untapped. Higher participation in DR program 

would produce greater benefits. Although, a proper care to mitigate the rebounds during 

recovery period should be taken.  

In this study, DR strategies on thermostatically loads are performed primarily. 

Although, with better communication capabilities for other end-use devices it would be 

possible to perform DR using those devices as well. For example, changing the duty 

cycle of the refrigerator during peak periods or shifting the schedule from peak to off-

peak period would also create similar effects. Decreasing cost of batteries makes it a 

leading candidate to support DR programs in future.  

Apart from peak shaving or load leveling DR also provides several other 

benefits. DR also provides ancillary service support such as operating reserves, 

frequency regulation and voltage support. Flexible loads make DR a better option than 

conventional generator to provide these services. These services can generate various 

value streams for the stakeholders making DR a lucrative option.  

DR also provides capacity related benefits to the utility. Implementing a 

comprehensive DR study in the resource planning would yield better benefits. These 

benefits would save several expensive infrastructure investments. Energy related 

benefits would be achieved by both customers and the utility/ISO. Avoiding or reducing 

the use of peaking plants would also create environmental benefits for the society. A 

comprehensive study would be able to determine the exact value of DR. This would 

help stakeholders make investment decisions and help in increasing the societal 
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benefits. A real-time tool could also help assess the impact of DR on the grid and with 

help of modern communication technologies load could be adjusted in the real-time 

during the DR period which will improve the system stability and reliability. Integrating 

DR with distributed energy resources would yield maximized benefits by reducing the 

stress on the grid and improving the system reliability. Using these flexible resources, 

it would be possible to shift the paradigm from generation following the load to load 

following the generation. 
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