
DESIGN OF SECURE BOOT PROCESS FOR RECONFIGURABLE
ARCHITECTURES

by

Ali Shuja Siddiqui

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2020

Approved by:

Dr. Fareena Saqib

Dr. Arindam Mukherjee

Dr. Madhav Manjrekar

Dr. Milind V. Khire

ii

c©2020
Ali Shuja Siddiqui

ALL RIGHTS RESERVED

iii

ABSTRACT

ALI SHUJA SIDDIQUI. Design of Secure Boot Process for Recon�gurable
Architectures. (Under the direction of DR. FAREENA SAQIB)

VLSI advancements have enabled proliferation in the Internet of Things(IoT) domain

where small scale System-on-a-Chip (SoC) are employed as sensors or actuators. IoT

devices are connected with other IoTs and with backend facilities. In today's world

IoT is ubiquitous and pervasive, as system designers continue to use IoT based de-

signs. In order to improve the lifespan of a device, hardware recon�gurability has

security and functional applications for IoTs. Connectivity, while essential to the op-

eration for an IoT device, also acts as a door for malicious actors. This work explores

and identi�es the threats to emerging IoT in the spaces of authentication, integrity,

con�dentiality and communication. For recon�gurable devices, the work extends boot

time security and provides solution for Over the Air update mechanisms for recon-

�gurable architectures. This work uses automotive and smart grid to demonstrate

applications of the research outcomes.

iv

DEDICATION

I would to like to begin by thanking God Almighty for giving me the opportunity

to travel half way around the world to earn my education, for providing for me and

specially for giving me ideas when nothing seemed to work.

I dedicate this work to my parents and my siblings, who have always believed in me

and have encouraged me to further myself. I thank them for all the support, wisdom

and the strength they have given me and for being with me when I needed them the

most.

This work is also dedicated to my wife Yameena, for being supportive, patient and

encouraging throughout. Her support made this degree a lot easier.

Lastly, I dedicate this work to my friends, Yutian Gui, Manikanta Bhagwatula,

Harsha Ganti, Amit Singh and Suyash Mohan Tamore.

v

ACKNOWLEDGEMENTS

I would like to thank and acknowledge the committee members for being a part of my

committee and for putting in the time and e�ort to make my research better. I would

also like to acknowledge the Graduate School for providing me with GASP grants that

helped me tremendously towards my degree. This research has been funded by Na-

tional Science Foundation Grant "CRII: SaTC: Hardware based Authentication and

Trusted Platform Module functions (HAT) for IoTs", NSF Award Number 1819687.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Contributions 2

1.3. Organization 3

LIST OF ABBREVIATIONS 1

CHAPTER 2: Background Study on Secure Boot and Overview of Hard-
ware Security Primitives

4

2.1. Internet of Things 4

2.1.1. Smart Grid 5

2.1.2. Automotive Security 6

2.2. Recon�gurable Architectures 7

2.3. Threat Models 8

2.3.1. Eavesdropping, Replay and Man in the Middle attacks 8

2.3.2. Private Key Exposure 9

2.3.3. Unauthorized Modi�cation to Firmware and Recon�g-
urable Logic Con�guration

10

2.3.4. Nonsecure Communication with Content Provider 11

2.4. Security Concepts 11

2.4.1. Con�dentiality, Integrity and Availability 11

2.4.2. Physical Unclonable Functions 12

vii

2.4.3. Secure Attestation 13

2.4.4. Trusted Platform Module 14

2.4.5. Secure Boot 14

2.4.6. Secure Over-the-Air Updates (OTA) 15

2.4.7. Trusted Execution Environment and the ARM Trust-
Zone

16

2.5. Secure Boot 17

2.5.1. Early implementations 17

2.5.2. Secure Boot Solutions in Desktops 18

2.5.3. Secure Boot in Embedded Systems 19

2.5.4. Secure Boot in Recon�gurable Computing 20

2.6. Logic Locking 23

CHAPTER 3: Boot Time Security and Over-the-Air Update Mechanisms
For FPGAs

25

3.1. Introduction 25

3.2. Threat Model for Secure Boot of FPGA Bitstreams 27

3.2.1. Bitstream Spoo�ng 27

3.2.2. Runtime Malicious Modi�cation 27

3.2.3. Non-secure Communication with Content Provider 28

3.3. Root of Trust Architecture 28

3.3.1. Hardware Overview 28

3.4. Design Objectives and Operations 30

3.4.1. Establishing Source of Trust 30

viii

3.4.2. Secure Over the Air (OTA) Update Mechanism 32

3.5. Implementation 36

3.6. Security Analysis 41

3.7. Conclusion 42

CHAPTER 4: Runtime Logic Camou�aging and Obfuscation 43

4.1. Introduction 43

4.2. PCAP Programming 44

4.3. FPGA Bitstream Architecture 46

4.3.1. Bitstream Contents 46

4.3.2. FAR Addressing 47

4.3.3. Reading and Writing to the PL Fabric 48

4.3.4. Mapping FAR to Resource 51

4.4. Proposed Scheme for Multi-layer Camou�aged Secure Boot 52

4.4.1. Device Enrollment 53

4.4.2. Device Authentication 55

4.5. Security Analysis 57

4.6. Conclusion 58

CHAPTER 5: Secure Communication Framework for Automotive 59

5.1. Secure ECU Communication 59

5.2. Hardware based Resource Isolation 65

5.3. Secure Code Execution 66

5.3.1. Scenario 1: Code Execution from Read Only Memory 66

ix

5.3.2. Scenario 2: Hardware-Based/Assisted Core Root of
Trust Measurement

67

5.4. Security Analysis 68

5.5. Conclusion 69

CHAPTER 6: Smart Grid Security 71

6.1. Secure Key Provisioning 71

6.1.1. Experimental Setup 74

6.1.2. Performance Analysis 76

6.2. Design for secure recon�gurable power converters 77

6.3. Security Analysis 81

6.4. Conclusion 82

CHAPTER 7: Conclusions and Future Work 83

REFERENCES 85

x

LIST OF TABLES

TABLE 2.1: Comparison between TPM 1.2 and TPM 2.0 14

TABLE 4.1: Xilinx PCAP Type 1 Packet [1] 44

TABLE 4.2: Xilinx PCAP Type 2 Packet [1] 45

TABLE 5.1: Standard Classical CAN Bus Frame 60

TABLE 5.2: Comparative Analysis of block comparatives speeds at dif-
ferent system clocks rates[2].

63

TABLE 5.3: Overhead overview at standard CAN connection speeds[2]. 64

TABLE 5.4: Secure Zone API[3] 65

TABLE 5.5: Overhead overview at Standard CAN connection speeds with
CANFD speed of 8mbps in normal operation

66

TABLE 6.1: Average operation times for 100 runs[4]. 77

xi

LIST OF FIGURES

FIGURE 2.1: Common Applications of Internet of Things. 4

FIGURE 2.2: Symmetric Encryption 10

FIGURE 2.3: Secure Attestation in devices. 13

FIGURE 2.4: Secure Boot Software Chain of Trust. 16

FIGURE 3.1: Proposed Secure Boot System Architecture. 29

FIGURE 3.2: Content Provider client FPGA's connection. 30

FIGURE 3.3: Key exchange in a trusted environment. 31

FIGURE 3.4: Keys shared between a client and server. 32

FIGURE 3.5: Server Client Interaction for Bitstream Updates. 33

FIGURE 3.6: Bitstream Update Archive 34

FIGURE 3.7: Bitstream Update Application Process 35

FIGURE 3.8: Hardware Setup 37

FIGURE 3.9: Secreenshot of tpm_xfer function. 38

FIGURE 3.10: Screenshot of TPM Driver Extend Functions. 39

FIGURE 3.11: ComputeHashLoc4 function computes cummulative hash
over the TPM.

40

FIGURE 4.1: Vivado Processing System Block Diagram. 44

FIGURE 4.2: Bitstream Generation Flow Diagram 46

FIGURE 4.3: Bitstream Header Snapshot 47

FIGURE 4.4: FAR Read / Write requests. 49

FIGURE 4.5: Test LUT5 Instantiation 50

FIGURE 4.6: Experimental design for evaluating bitstream mapping 50

xii

FIGURE 4.7: Experimental Setup for LUT5 placement. 51

FIGURE 4.8: Snapshot of the resource CLBLM_R_X29_Y37 from tar-
get test circuit.

52

FIGURE 4.9: Overview of the enrollment process [5]. 53

FIGURE 4.10: Overview of the in-�eld operation [5]. 53

FIGURE 4.11: Computing Latch-Capture Interval in HELPUF [6]. 54

FIGURE 4.12: Client Device Memory View on enrollment [5]. 55

FIGURE 4.13: Authentication and Application Bitstream Programming
[5].

56

FIGURE 4.14: FSBL code excerpt for LUT recon�guration [5]. 57

FIGURE 4.15: On-fabric LUT recon�guration [5]. 57

FIGURE 5.1: Controller Area Network Bus Connection Diagram[2]. 59

FIGURE 5.2: CANBus connection in a vehicle. 60

FIGURE 5.3: Demonstration of spoo�ng and Denial of Service[2]. 61

FIGURE 5.4: RX Bu�er at node CAN0 is over�owed[2]. 61

FIGURE 5.5: Hardware based Secure Communication Framework for
ECUs[2].

62

FIGURE 5.6: HELP PUF Construction[2]. 63

FIGURE 5.7: On the �eld code unsealing [7]. 68

FIGURE 6.1: Secure architecture for Smart Grid[4]. 71

FIGURE 6.2: Certi�cate generation[4]. 72

FIGURE 6.3: Secure communication channel establishment[4]. 73

FIGURE 6.4: Smart Grid test bed[4]. 74

FIGURE 6.5: TPM based RSA encryption[4]. 75

xiii

FIGURE 6.6: TPM based RSA encryption and decryption process[4]. 75

FIGURE 6.7: TPM based certi�cate generation[4]. 76

FIGURE 6.8: ECC Curve Parameters[4]. 76

FIGURE 6.9: ECC Key Blob[4]. 77

FIGURE 6.10: Certi�cate generation[4]. 77

FIGURE 6.11: Recon�gurable secure power electronic converter
framework[8].

79

FIGURE 6.12: Node Authorization Scheme for Power Converters[8]. 80

FIGURE 6.13: Iviea Atlas-I-Z8 board for Power Converter [8]. 81

CHAPTER 1: INTRODUCTION

1.1 Motivation

There is an estimated 19.4 billion connected devices in the year 2019, and this

number is expected to increase to 34.2 billion by the year 2025 [9]. It consists of

devices connected wirelessly, via a wired connection or through some proprietary

network stacks. The connection may either be one directional or bi-directional.

Networked devices have pervaded every domain of life in many forms. In the form

of computers, laptops tablets, mobile phones, smart watches, and other small scale

devices. Depending on the application, these devices may exist as smart appliances,

industrial sensors and actuators, and personal smart devices. They may be connected

with a comparatively resourceful backend server with or with an array of similar

devices in a mesh or similar network. Small scale devices are resource constrained

in terms of computing and storage. These limitations impact the e�ectiveness of the

device in the �eld. This requires systems designers to carefully plan the resources

that are available on a device, and plan what features can be e�ectively implemented

on the device.

When a system is designed, the basic two components of design are �rstly the hard-

ware and then the software stack. The software stack is only limited by the hardware

limitations. In terms of �xed fabricated hardware, once the hardware has been fab-

ricated, it cannot be altered in any way. In case there is some fault later discovered

in the hardware or an improvement in the architecture, it cannot be integrated. This

limitation can be overcome by integrating recon�gurable hardware design. Recon�g-

urable hardware, such as FPGAs have an array of hardware components implemented

on the fabric of a device. This fabric can be con�gured after the device fabrication

2

using in-�eld recon�gurable architectures.The use of FPGAs in the market is only

expected to increase from $63 billion in the year 2019 to $117.97 billion by the year

2026[10] [11].

Connected devices open a device to unwanted, rogue and malicious actors. These

actors pose various threats to the operations of the connected devices. This may

lead to sensitive information leakage, communication corruption and even malicious

modi�cation of the on-board software and in the case of recon�gurable devices, hard-

ware con�guration. This research focuses on addressing issues in resource constrained

recon�gurable hardware and presents novel hardware-based approaches.

1.2 Contributions

This research has following contributions towards improving boot and runtime

security in recon�gurable architectures:

• Identi�es security threats and presents threat models that a�ect boot and run-

time security of an IoT in the �eld. Existing work and their shortcomings are

also discussed.

• Proposes a novel boot time security and Over-the-Air update framework for

FPGAs. This scheme employs hardware assisted cryptographic systems, such

as Trusted Platform Module (TPM) to present a key update and a secure com-

munication scheme. To implement secure over-the-air update mechanism, the

server veri�es the integrity of the client device. This ensures in-�eld security

compliance.

• Presents a novel mechanism for implementing FPGA based logic obfuscation.

Pre-boot in-�eld device authentication scheme is extended to implement run-

time logic obfuscation. This obfuscation method is to best of knowledge the

�rst of its kind. This scheme manipulates application bitstream before being

deployed onto a device. Once the device has been authenticated with the con-

3

tent provider, only then will it provide the device with correct and complete

bitstream con�guration. In combination with the logic obfuscation, this scheme

uses key based logic locking to improve logic runtime bitstream security.

• Proposes hardware based secure communication and secure code isolation frame-

work for vehicular Electronic Control Units (ECUs).

• Provides a key provisioning scheme for IoT devices in the power grid and puts

forward a design for secure recon�gurable power converters for the power grid.

1.3 Organization

This document is divided into the following chapters. Chapter 2 describes the back-

ground information on the topics involved in this research. It also gives an overview

on the history and the progression of the existing work performed in the research and

commercial spheres. The remaining chapters explain the research conducted.

Chapter 3 details the contributions on proposing secure boot and over-the- air

update mechanisms for securely updating FPGA bitstreams. Chapter 4 presents a

mechanism for implementing runtime logic locking and bitstream logic obfuscation

scheme. Chapter 5 extends the research to secure communication and secure code

execution in the automotive domain. Chapter 6 proposes key provisioning and in

the smart-grid and a design for secure recon�gurable power converters using FPGAs.

Lastly, conclusions of the research are presented in Chapter 7.

CHAPTER 2: Background Study on Secure Boot and Overview of Hardware

Security Primitives

In this capter, we will overview the security concepts and hardware security prim-

itives for system integration.

2.1 Internet of Things

The term Internet of Things (IoT) was �rst coined in the year 1999 by Kevin

Ashton[12]. Initially, Internet of Things was designed for the purposes of supply

chain management, but with time, its application scope was widened to include other

domains as well. IoT is the network of connected devices which are automated in

nature and are used for sensing and/ or actuation. Sensing based IoTs result in

generating knowledge base for taking decisions on, whereas an IoT can use di�erent

actuation mechanisms to manipulate with the environment it is located in.

Figure 2.1: Common Applications of Internet of Things.

IoT systems consists of three entities, the backend, the middleware, and the end

5

device. Depending on the scale and application of the system, the backend can be

a personal computer, a dedicated server to even a scalable cloud environment. For

sensing applications, where an IoT device is resource constrained and cannot make

decisions itself, the decision-making is left at the backend. The information gathered

from sensors is sent o� to the backend, where it can take an informed decision based

on the information gathered. Big Data analytics has gained traction in IoTs for data

handling[13]. The middleware consists of the connecting technologies that connect

an end device with the backend. It comprises not just the networking elements,

such and router and switches etc., but also of any intermediary data collection and

decision-making nodes that lie between the backend and the end device[14].

For the end devices in an IoT system, there are various technological factors that

have resulted in the rapid adoption and growth of IoTs over the years. Two of such

factors are the constant improvement in the embedded systems computing domain

and the wireless connection mediums such as Wi-Fi, Bluetooth Low Energy (BLE)

and Zigbee, etc., With each iteration of these technologies, the focus has been on

improving speed of the network, the cost of computing and power e�ciency[15].

Internet of Things have found its ground in several areas, including consumer elec-

tronics, smart grid, automotive industry and automation. For the purpose of this

research, I have focused my e�orts on IoT devices in the smart grid.

2.1.1 Smart Grid

With the introduction of smart grid, the energy grid is no longer comprised from the

uni-directional (i.e. from the backend to the end nodes) data communication path,

but bi-directional. All electrical and computation-oriented devices generate data that

is communicated over a data communication network to the backend Supervisory

Control and Data Acquisition system (SCADA). Additionally, end consumers also

participate on the network using IoT devices, e.g. smart meters, smart appliances

and even electrical car chargers which exchange data with the smart grid middleware.

6

Smart grid allows inclusion of Distributed Energy Resources (DER) to the grid.

DERs are power generation systems that contribute to the electrical grid by producing

power. The generated power can come from di�erent sources such natural gas, hydro,

wind and solar etc. DER are equipped with IoT devices that communicate with the

SCADA backend. The communication between DER and SCADA is performed using

the standard IEC 61850[16].

2.1.2 Automotive Security

Vehicles are composed of individual systems that are connected together. They

are mechanical and electronic in nature. These systems include engine, steering[17],

brakes, air conditioning, the infotainment system, parking assistance, etc. Modern

vehicles are pushing towards increasingly making interaction between all on-board

systems digital. As such, instead of using the physical state of a system an Electronic

Control Unit (ECU) is connected, which broadcasts the state of the physical system

as a data message. All ECUs are connected with each other over a network. Cur-

rently, there are several network protocols being used. Some of the more widely used

are Controller Area Network (CAN), CAN with Flexible Data-rate (CANFD), and

EtherCAT etc.

ECUs had originally started as a way to �ne tune an engine on a vehicle. However,

in 1996, it was made mandatory that all vehicles provide access to On-Board Diag-

nostics using an OBD-II port. This law pushed car manufacturers to add a digital

interface to the components embedded in a car. Nowadays, automation in automo-

tive has progressed enough to o�er self-driving vehicles. Additionally, cars are also

connecting with each other and with a growing roadside infrastructure to form a V2V

and V2X infrastructure[18].

7

2.2 Recon�gurable Architectures

Application Speci�c Integrated Circuits (ASICs) are fabricated circuits that de-

signed to perform one task. Whereas microprocessors, on the other hand provide

freedom of what tasks can be performed on it. Tasks that can be performed on a

microprocessor are dictated by code that is executed on it. The ability of a micropro-

cessor is de�ned by its Instruction Set Architecture (ISA). Code itself cannot modify

the underlying architecture.

Recon�gurable architectures, most popular being the Field Programmable Gate

Arrays (FGPAs) lie in between the spectrum of a microprocessor and an ASIC. FPGA

allow recon�guration of hardware. FPGAs are composed of Programmable Logic

fabric (PL) consisting of programmable logic gates that are connected together to form

a digital logic circuit. The gates in an FPGA are made of Look-up Tables (LUTs).

Current generation of Xilinx FPGAs are composed of either �ve input or 6 input

LUTs. Additionally, based on the size, and application target, FPGAs also provide

adders, registers, block memory, Digital Signal Processing (DSP) components, as well

as embedded microprocessors(PS). Following are the introductory FPGA concepts

that are referenced and used in this research:

• Slice: Slice is a collection of logic components in an FPGA. In Xilinx's 7000

series of FPGAs, each slice consists of four LUTs, eight storage elements (�ip-

�ops and latches), carry logic elements and multiplexers. There are two di�erent

kinds of slices, namely SLICEM and SLICEL. A SLICEL can only contain the

components listed above, whereas SLICEM can contain additional components

such as distributed RAM components as well as 32-bit shift registers.

• Con�guration Logic Block (CLB): CLBs consists of two slices. These slices

can either be a combination of SLICEL and SLICEM or two SLICELs.

• PCAP and ICAP: PCAP stands for Processor Con�guration Access Port

8

and ICAP stands for Internal Con�guration Access Port. An ICAP port is a

microprocessor based (PS) interface to the PL. PCAP interface provides capa-

bilities for reading and writing CLBs LUTs and memory elements as well partial

bitstream loading and bitstream readback. At the time the FPGA boots up,

the access to the PL fabric is �rst given to PCAP. FPGAs also provide an ad-

ditional Internal Con�guration Access Port (ICAP). This port is used by PL

fabric internally to modify itself on the run.

• Dynamic Partial Recon�guration: When an FPGA needs to be repro-

grammed, the execution of the PL must �rst be shutdown, the updated bit-

stream is copied to the fabric and then the fabric can be brought up again.

Dynamic Partial Recon�guration mitigates the issue of shutdown by enabling

allowing areas of the fabric to be set as Dynamic Partially Recon�gurable areas.

Such areas can be reprogrammed on the �y. The surrounding logic around these

areas stays the same throughout the operation. One common use case of DPR

is to have an area that can be used to implement multiple implementations of

the same design entity.

2.3 Threat Models

There is plethora of vulnerabilities found in IoT devices ranging from remote

network-based vulnerabilities, local as well as physical vulnerabilities. Di�erent com-

ponents of this research delve into presenting solutions against the following threats

faced at di�erent levels of operation of a device.

2.3.1 Eavesdropping, Replay and Man in the Middle attacks

In a network of devices, all devices with access to a medium can access information

travelling over that medium. As such, there is always a chance for an eavesdropper

listening to the conversation occurring over the medium. If the communication is

not encrypted, the eavesdropper can listen to this conversation and extract sensitive

9

information. Additionally, this information can be replayed to introduce unexpected

behavior at an unsuspecting victim. Furthermore, a malicious actor can then perform

a man in the middle attack by posing as a trusted node and communicating with a

legitimate node on the network.

An example of this attack is the 2015 attack that was performed on Jeep Cherokee[19].

The vehicle uses a service called Uconnect which runs on the car's infotainment dash-

board. This service connects to the internet to communicate with a backend infras-

tructure. The hackers got access remote access to the infotainment system using a

remote vulnerability found on the service. The infotainment system is connected with

the rest of the car ECUs using CAN bus. Hackers were able to communicate with

the other systems using CAN messages. They were able to have total control over

systems such as braking, steering, AC etc. Since the ECUs connected over the CAN

network perform no identity check, they accepted and reacted to all the malicious

information being broadcasted.

2.3.2 Private Key Exposure

For implementing private communication between two nodes over an untrusted

network, encryption is used. Encryption uses one-way function and an encryption

key to convert plain text input into cipher text. In case of symmetric key encryption

e.g. AES encryption, the encryption key is shared between the two communicating

parties beforehand. In case this key is leaked to an eavesdropping adversary, the

adversary can decrypt the entire �ow of tra�c between the nodes sharing the key.

The e�ect is exacerbated when a collection of devices uses the same key. Therefore,

it is a priority to store private keys in a secure area on a device. Recently, hackers

were able to retrieve encryption keys to a database encrypting personal information

on staying guests at a hotel chain[20].

10

Plain text

Symmetric
Encryp�on

Ciphertext Plain text

Symmetric
Decryp�on

Shared Secret

Figure 2.2: Symmetric Encryption

In case of asymmetric cryptography, for each node there is a pair of keys generated,

a pair of public and private keys. The public key can be distributed whereas the

private key must be key in a safe environment. A node uses its private key to sign a

message. When the message is received at the recipient, the public key of the sender

is used to verify the signature received. If the private key of a node is compromised,

a malicious node can pose as the sender.

2.3.3 Unauthorized Modi�cation to Firmware and Recon�gurable Logic

Con�guration

A microprocessor-based system performs the actions that are de�ned by the code

existing on its memory. The code may be low level �rmware code, operating system or

any application. Depending on the system, it can also be bare metal application that

is application centric and does not require an additional operating system layer. The

interest of an attacker is to redirect the normal �ow of execution to an unauthorized

piece of code[21][22].

In recon�gurable computing domain, SRAM based FPGAs allow modi�cation in

the �eld. In SRAM based FPGAs, PL is populated at boot time. This process is

either performed by the Zeroth Stage Boot Loader software commonly referred to as

BootROM[23] or by the First Stage Boot Loader (FSBL)[24] depending on the type

of FPGA. If the FPGA is equipped with a PS, it is the responsibility to load the

PL bitstream, otherwise BootROM takes care of the PL bitstream loading process.

11

A bitstream can also be modi�ed at runtime if the target FPGA is equipped with

a PCAP or ICAP port. In an FPGA, an attacker is interested in modifying the

bitstream. An attacker can either replace the PL logic to perform entirely di�erent

tasks, add or remove functionality (e.g. hardware trojan), or may even add a leakage

side channel for secret information extraction [25]. There are two points of attack

for an attacker namely, at boot or during runtime. At boot, before the bitstream is

loaded, an attacker may replace the bitstream with a malicious bitstream. Whereas

at runtime, once the bitstream has been loaded an attacker may target dynamic

recon�gurable partitions or may want to target certain portions of the con�guration.

To achieve this, an attacker can use the PCAP or the ICAP.

2.3.4 Nonsecure Communication with Content Provider

For an FPGA device placed in the �eld, bitstream updates can be provided manu-

ally physically by an engineer, through a physical update mechanism or through the

use of remote updates over a network. If a content provider over a network is not

secure, an adversary may spoof its identity to become a content provider. Therefore,

an adversary may be able to push malicious updates to the client. On the other

hand, an adversary can also impersonate a device on the �eld to download bitstream

updates from a content provider not meant for it.

2.4 Security Concepts

2.4.1 Con�dentiality, Integrity and Availability

Con�dentiality, Integrity and Availability (CIA)are core concepts of information se-

curity. This triad is a notion of guiding security policies. Con�dentiality refers to the

property that no unauthorized party is able access to secure information in a system.

Con�dentiality can be achieved through two ways. One way is by guaranteeing that

communicating parties are physically in an isolated environment. The other way is to

encrypt communication between the two communicating parties. Encryption allows

12

communicating parties to exist in an unsecure environment while freely communicat-

ing with each other. Integrity is a guarantee that all information part of a process

is safe from any unauthorized modi�cation from a malicious actor or from a compro-

mised authorized actor. Integrity can be ascertained through various scheme. Once

common scheme is by the use of MAC or Message Authentication Code. (MAC) or

Key Hashed Message Authentication Code (HMAC). Availability ensures that even

under less favorable conditions the system is still operational. This can be achieved

using redundancy and isolation.

2.4.2 Physical Unclonable Functions

Physical Unclonable Functions (PUF) are a new type of cryptographic primitive

used in hardware security to implement identity or secret keys. They rely on the

inherent manufacturing process variations, which are used to produce reliable and

device-unique output [26][6]. PUFs are based on a challenge-response pair (CRP)

mechanism. Challenges are input to the PUF circuit. They are de�ned using a string

of 0s and 1s. The length of the challenge input is decided by the PUF implementation.

PUF output, or its response is produced by the combination of the challenge input

and the fabric variation caused due to the challenge input.

There two di�erent types of PUFs, namely Weak and Strong PUFs. A major

di�erence between the two is that the weak PUFs have few challenges for which they

can uniquely generate a key whereas strong PUFs have a large challenge space and

therefore have a unique response for most of the challenges. The bit generation for

cryptographic applications is a two-step process that is enrollment and registration.

During the enrollment process, each PUF is given a set of challenges and the response

pairs are recorded. Later when the PUF is in �eld, these responses are regenerated

for use in identi�cation and encryption applications.

13

2.4.3 Secure Attestation

In the current landscape with IoTs, connectivity of a device dictates its reach. On

the other hand, connectivity also makes a device vulnerable to di�erent security issues.

There is a need to maintain integrity of the state of the device. To be certain that the

device has not deviated the concept of secure attestation has been introduced. Secure

attestation introduces the concept of a prover and a veri�er. These two entities work

together with each other to verify the integrity of a system. A veri�er is a trusted

party on the system. The prover on the other hand cannot be trusted initially and

must earn its trust with the veri�er. Veri�er's task is to query the prover with the

set of challenges. The prover in turn responds to these challenges by collecting data

from the running system. Veri�er based on the responses can attest the integrity of

the system.

Verifier Prover

Challenge

Compute Response

Response

Figure 2.3: Secure Attestation in devices.

There has much work on software attestation in embedded devices. SWATT[27] is

one of the earlier works in this domain. This work implements a software attestation

framework on over-the-shelf components. It uses time as a measure for integrity. The

veri�er keeps a model for timing for response times. In case there is deviation, it

14

corresponds to an attacker who has compromised the system to use code redirection

to get to the prover function. The veri�er the time di�erence with the reference value

and may deny attestation.

2.4.4 Trusted Platform Module

Trusted Platform Module (TPM) is a hardware module that implements crypto-

graphic functions. These functions can be encryption, data signing and data seal-

ing. TPMs follow TPM speci�cations put forward by the Trusted Computing Group

(TCG)[28]. All TPM implementation must follow the speci�cations however, the

speci�cations do provide �exibility in terms of the functionality it can provide. TPM

also has a limited tamper resistant non-volatile memory. This memory can be used

for storing cryptographic objects including keys and other user de�ned values. There

are currently two speci�cations that are being followed are TPM 1.2 and 2.0. How-

ever, there is a shift from TPM 1.2 to TPM 2.0 due to the advanced features that

TPM 2.0 provides. An overview of the di�erences between the two standards is given

in Table 2.1.

Table 2.1: Comparison between TPM 1.2 and TPM 2.0

Algorithm RSA
1024

RSA
2048

ECC
NISTP256

ECC
BNP256

AES
128

AES
256

SHA-
1

SHA-
2

TPM 1.2 Yes Yes No No Optional Optional Yes No
TPM 2.0 Optional Yes Yes Yes Yes Optional Yes Yes

2.4.5 Secure Boot

Secure Boot is a secure attestation mechanism to establish Root of Trust at boot

time. This mechanism works by attesting each layer of software before it can be

executed on a system. Since the �rst layer of execution is the �rmware or BootROM,

trust is �rst established at this level. Each next level is �rst attested by the running

layer before execution can be passed to it. As such, in a typical system, where

succeeding the layers of execution are �rmware, operating system, user applications,

15

etc., the �rmware will attest the operating system, the operating system will attest

the user applications and so on.

Secure boot is also commercially available as a part of personal computers. Com-

mercial secure boot implementations (e.g. Microsoft Windows, Trusted Grub, UEFI

etc.) rely on TPM to provide a trust anchor. TPM o�ers provisions for imple-

menting measurable boot using Platform Con�guration Registers (PCR). PCRs are

registers that hold cumulative hash values. These registers are populated using

TPM_PCR_Extend and or the data streaming enabled TPM_HASH structures.

256 bits of data is hashed using either SHA-1 or SHA-2 hashing algorithm on the

TPM. Once the process is completed, the computed SHA value is added to an exist-

ing selected PCR value. Equation 1 shows the process of PCR extension.

The boot process can be divided into stages, e.g. �rmware, operating system,

applications etc. For measuring the boot process, the PCR is computed and veri�ed

for the next layer in the process before the execution can be passed to that layer. At

the end of the process, the value of the PCR provides sequential attestation of the all

the components in the chain.

2.4.6 Secure Over-the-Air Updates (OTA)

Over the Air (OTA) updates is a mechanism for a system to push updates to

embedded systems, mobile market, automotive industry and IoT devices. IoT devices

placed in a �eld communicate with a speci�ed backend environment over their lifetime

for receiving updates. In such a scenario, an attacker would impersonate the update

server to be able to push malicious updates to an IoT device. In case of recon�gurable

hardware, this update can be to the recon�gurable logic fabric aboard a device. On

the other hand, an attacker may even want to appear as a connected device so that

it may download software not meant for it to access. As such there is a requirement

for establishment of trust between the two actors.

Secure OTA ensures that an update server and a connected client can trust each

16

other. One way of establishing this trust is by using identity. Identity can be estab-

lished using concepts such as digital certi�cation. One the �eld, during connection

establishment, the client and the server verify the communicating node's identity

using these certi�cates. Additionally, to mitigate eavesdropping, encryption is imple-

mented between the two nodes.

2.4.7 Trusted Execution Environment and the ARM TrustZone

Trusted Execution Environment (TEE) provides on-chip environment for trusted

code execution. Being on-board makes it di�cult for snooping or man-in-the-middle

attacks. The environment depending on its implementation provides an isolated

cell for running trusted code. TEE gives developers the access to write their own

functions, for example, proprietary encryption algorithms. Examples of commercial

Trusted Execution Environments are ARM TrustZone, Intel SGX and Intel TXT.

Firmware

Bootloader

Operating
System

Application

Attest then
continue

Attest then
continue

Attest then
continue

Figure 2.4: Secure Boot Software Chain of Trust.

ARM TrustZone is a Trusted Execution Environment which is implemented within

the processor fabric as a co-processor. ARM TrustZone provides isolation for main

memory elements, peripherals and provides isolation for system bus elements. It di-

vides the system into two worlds, namely secure and non-secure. The secure world has

complete access over all the resources; however, the non-secure world is a con�gured

as an isolated sandbox. The non-secure can be con�gured to execute general purpose

code such as Linux operating system. Secure world can instead run a custom min-

17

imal operating system that may run some security speci�c code. Some examples of

commercial systems ARM TrustZone are Samsung KNOX, Samsung Pay and Apple

TouchID.

2.5 Secure Boot

2.5.1 Early implementations

There is no set singular implementation of secure boot and is dependent on the

domain and the security requirements of the system. For the desktop systems, one

early approach was the adaption of minimal lightweight kernel design[29]. The kernel

was suggested to be minimal and veri�able by manual code inspection. This design

forced exokernel design, where every other module excluding the de�ned core kernel

exists in the user space. The purpose of the exokernel is to allocate and dis-allocate

memory securely. This scheme pushes the burden of security on the programmer alone

by suggesting use of using secure programming practices, inline cross domain function

calls and by use of type safe languages as the only form of security. Presently, this

scheme has limited practical applicability because of the large code base and short

development time.

A microprocessor-based system depends on external code sequence. Basic Input/

Output System (BIOS) historically is the �rst software code that is executed by a

processor. The BIOS performs critical hardware initialization and passes control to

a bootloader that loads the operating system. Authors in [30] use BIOS of the moth-

erboard as the root of trust. This secure bootstrap structure is called AEGIS. The

software is divided into layers. BIOS holds public keys and digital signatures to verify

the integrity of next layer. The architecture also holds recovery alternate code that is

loaded if the veri�cation process fails. This system implements a chain of trust. The

secure BIOS after verifying the integrity of the bootloader stage using cryptographic

hash veri�cation, gives the control to it. The bootloader will subsequently verify the

operating system and �nally the operating system veri�es the software layer. Public

18

keys are stored in X.509[31] certi�cates. Shortcoming of such a system is the reliance

on external components to implement the security scheme.

[32] is one of the earlier works in integrity checking for intrusion detection. Integrity

plays an integral role in measurable boot. This paper presents a software system

written checking integrity in a Unix environment. The scheme keeps track of new

�les, modi�cations and deleted �les during execution. This is useful in detecting an

attacker making unexpected changes to the running root �le system. The system

stores di�erence with the original �les and provided support for MD5 signature for

maintaining the integrity of �les. However, the attack to the �le system can be

extended to the tripwire system such that the attacker can cover up their tracks.

2.5.2 Secure Boot Solutions in Desktops

Uni�ed Extensible Firmware Interface (UEFI) is a modern alternative and a re-

placement to BIOS in desktop PCs. It o�ers several boot time and runtime services,

including support for device drivers, an operating system (OS) independent time

service, runtime variable store, UEFI booting and secure boot. To mitigate the pos-

sibility of executing unauthorized malicious bootkits[33], UEFI based secure boot

enables execution of digitally signed OS loaders that exist in UEFI executable for-

mats (EFI). Approved OS loaders are signed against the UEFI's master signatures.

These signatures are veri�ed every time the OS loader is executed. UEFI based secure

boot support does not extend to the operating system. Every operating system has

their own version of measured boot.

Of the current commercial proprietary and open source operating systems, Mi-

crosoft Windows has one of the more popular implementations of measured boot. It

uses TPM to support measured boot. At the end of secure boot, UEFI sends the

hash of the next software components, i.e. the kernel, Early Launch Anti-Malware

(ELAM) drivers and boot drivers, to the TPM. Additionally, TPM is also used for

signing the collected measured boot logs. These logs can also be used for remote

19

attestation of the platform before boot. TPM is also used to provide cryptographic

store for Microsoft's BitLocker drive encryption capabilities. In di�erent distributions

of Linux operating systems, the concept of measured boot is still under development

[34].

2.5.3 Secure Boot in Embedded Systems

Unlike the PC market, embedded systems have a constrained environment for appli-

cations that are allowed to execute on a platform. Embedded systems and IoTs design-

ers are much involved in the software development for the application stack. As such,

it allows system designers to be more �exible in their approach. A group of researchers

has proposed use of special architecture for implementing on chip security[35]. This

work is mainly focused towards real time systems and allows secure loading of tasks,

secure communication between processes and the mechanisms for local and remote

attestation. TrustLite architecture extends the security to runtime by providing a

hardware based exception handling and recovery mechanism [36].

As IoTs and embedded systems are designed to perform a speci�c set of tasks;

this allows designers to perform control �ow analysis of the entire system. Control

Flow Integrity (CFI) analysis is one such static code analysis technique that records

all possible branches a code can take. Using CFI, advanced code-based attacks such

as Return Oriented Programming (ROP) can be mitigated. Using hardware based

trusted isolated execution environments such as ARM's TrustZone, CFI can be im-

plemented on an embedded system, where jump to each branch can be veri�ed prior

execution [37]. Hardware Performance Counters (HPCs) are special registers that

count the occurrence of hardware events. These counters are used in performance

tuning of applications. ConFirm architecture uses the HPC counters to count trig-

gered events embedded in the control �ow graph. CFI is ensured by use of these HPC

counters[38].

There are also commercial embedded systems speci�c solutions for implementing

20

secure boot. NXP o�ers secure boot for their architectures. Their secure boot mecha-

nism called High Availability Boot (HAB) is a part of the on-chip ROM. HAB provides

a root of trust to the remaining software components running on top of the device.

It can provide just signing or both signing and encryption for the software starting

from the First Stage Boot Loader (FSBL). Efuses on a device must be con�gured to

use the feature. Private keys are also stored on the efuses. Which means that one

the keys have been generated, they cannot be changed. However, the system allows

for up to four SRKs to be used. If needed, a SRK's use can be revoked. There is

also support for open-source second stage boot loader U-boot for this technology to

extend support to the Operating System, such as the Linux Kernel[39].

2.5.4 Secure Boot in Recon�gurable Computing

Commercial FPGA vendors have increasingly incorporated new security features

over the years, but that is not consistent across the recon�gurable devices and does

not include legacy devices. These security features target various aspects of security,

such as secure boot, encryption, and data integrity. Here, we give an overview of those

features targeted towards Secure Boot. Zynq 7000 FPGAs, the FPGA SoC provides

an AES 256 based encryption engine. Additionally, RSA asymmetric authentication

is used to ensure an authenticated source. These functions are implemented as a

hardware-based function on the FPGA fabric and are part of EDA tools with no

access to the end user [24]. Both the encryption and authentication processes use keys

to be de�ned before deployment. In the Zynq 7000 architecture, there are two ways

of key storage, namely Battery-Backed RAM (BBRAM) and one-time programmable

fuses. BBRAM is an on-chip volatile memory region, that has to be battery powered.

One-time programmable efuses are con�gurable fuses that are burned into the fabric

once they are programmed. There are caveats of using these technologies for holding

keys. The BBRAM is dependent on the presence of a dependable power source. In

the case there is any �uctuation in the power supply, the keys will be lost. On the

21

other hand, the efuses are once programmable. In the case the programmed keys leak,

there is no way to refresh them. Another serious �aw is that these keys are stored

unencrypted in the memory. Access can be gained to them through physical means

and through side channel attacks.

These cryptographic processes are invoked as part of the secure boot process

implemented in the Xilinx provided zeroth stage boot loader called BootROM[24].

BootROM code exists in non-volatile memory on the FPGA fabric. It is executed

by the Processing System on FPGA at the beginning of the boot cycle. Once the

execution is completed by the BootROM code, control is passed to user-de�ned code,

which can be an operating system or a user level application. The vendor provided

no access to the code implementation of BootROM and neither is there any read or

write access to the memory holding the BootROM code.

Much recently, in the newer Zynq UltraScale architecture, Xilinx has built upon

the schemes in the Zynq 7000 architecture to add more security solutions[40][41]. The

major revision is in the addition of Physical Unclonable Function (PUF) based key

support. Whenever keys are generated for encrypting bitstreams, they are given as

input to the on-board PUF to generate an encrypted key. This key can be stored onto

the efuses, the BBRAM or externally in any unencrypted space. Since an attacker

does not have access to the PUF implementation, they will not be able to decrypt

the encryption key. Once the host system sends an encrypted bitstream to the FPGA

board, the encrypted key is decrypted at runtime to reveal the bitstream decryption

key. This key is used by the encryption subsystem to decrypt the bitstream.

Recent work on the secure bitstream con�guration at the boot level proposes the

use of PUF technology and on-board peripherals for FPGA bitstream secure boot

[42]. Internal Con�guration Access Port (ICAP), that is a programmable interface[1],

is used to retrieve the con�guration of the current programmable logic. A Hardware-

Embedded Delay Physical Unclonable Function (HELPUF[6]) uses SHA3 digest as

22

the challenge input. The generated output is used as a key for decrypting the image

of the operating system and the application software to realize self- authentication.

This enables the second stage boot loader to program the programmable logic PL

and processing system PS. Since, vendor-provided secure boot is not used with this

system, ICAP also allows readback of on-chip memory elements such as the block

RAM and registers. If an adversary can capture the readback process, they will also

be able to read the PUF output as well and therefore will have access to decryption

keys.

Another recent work implements self-authentication of the logic fabric design and

extends the protection to include processor design[43]. As opposed to [42], this work

has employed the use of Elliptic Curve Cryptography based asymmetric keys with

Di�e Helman key exchange for the key generation for encryption. A fuzzy key ex-

tractor is used to use extract hardware-based variations and to generate a key. This

extracted key is used in the design by various cryptographic functions such as remote

attestation and encryption key generation.

Dynamic Partial Recon�guration (DPR) allows recon�guration of pre-de�ned sec-

tions of the FPGA fabric during runtime. Static design recon�guration requires the

FPGA to be shut down before it can be reprogrammed. Following current security

standards followed by FPGA manufacturers[44][24], the static encryption key must

also be shared with the third party. Thus, adding more actors who would have access

to the key. In [45], authors improve the security with the integration of hardware

vendors in the distribution process. Each end device has a Unique ID. This ID is

exchanged with the IP provider during an IP purchase transaction. The IP provider

passes the unencrypted IP bitstream and the obtained ID of the end device to the

vendor. The vendor has a database of IDs of end devices and their corresponding

encryption keys. It encrypts the bitstream using the end device's stored encryption

key before it is transmitted to the device. This solution does limit the issue of dis-

23

tribution of the encryption key between parties, however, promotes the use of static

symmetric encryption keys. Attacks on vendor provided security, such as Xilinx's

Secure Boot have also been reported. Outsourced trusted third-party IPs, based on

their application also have access to the main memory of the system. Since the main

memory is also used by secure boot to store the unencrypted Second Stage Boot

Loader (e.g. U-boot) used by the system, a hardware trojan can target the main

memory to manipulate the Second Stage Boot Loader to execute a malicious exe-

cutable. [46] suggests wrapper logic to be added to IPs before the IP is connected to

the system bus. Hardcoded con�guration of the wrapper de�nes the scope of memory

access by the connecting IP.

2.6 Logic Locking

Logic locking is a technique for combating IP piracy. In the semiconductor indus-

try, the chip designer has outsourced the manfucturing process to o�shore untrusted

foundaries. Because of the costs involved in manufacturing, there are separate in-

dustries that deal with design and manufacturing. Chip designers outsource their

fabrication needs to these companies. For the IP design owners, it is di�cult to mon-

itor their IP at a remote site. Their IP may become a prey to piracy in the form of

overbuilding, reverse-engineering and cloning.

Logic locking is a design for security mechanism that adds a lock into the circuit.

Gates with key inputs are placed at various locations in the target circuit. Until

the correct input key is not given as input, the circuit will not produce the correct

output. Logic locking can be incorporated into the IC manufacturing process to

mitigate IP piracy. [47] is one of the earliest solutions proposing use of logic locking

via combinational locking. A combinational lock is embedded into the fabrication

process. The key is kept hidden from the foundry and is only punched into the

design, once the fabricated chip is returned to the vendor. The foundry not having

access to the key is not able to unlock the chip. This method was defeated by [48],

24

as it notes that the method presented in [47] uses testing mechanisms that give out

details of the implementation. [48] presents methods that factor the test pattern

inputs. Logic locking is seen as a satis�ability problem. An attacker having access

to the inputs and the system's expected responses, can use a satis�ability solver to

solve for the key input values. This is known as a SAT attack[49]. Researchers were

able to �nd the keys for 95% of the 441 locked circuits considered.

More recently, work has been done to make circuits resistant to SAT attacks.

SARLock[50] is a mechanism that adds complexity by adding a masking block. If the

key input cannot be asserted against a system input, the output is �ipped. Therefore,

the circuit cannot be probed without the correct key input. An alternate method to

counter SAT attacks is Anti-SAT[51]. This method adds complexity to the output by

adding another layer of logic. For incorrect key input, the output regardless of the ex-

pected output will either be a 0 or a 1 depending on the inputs. This way, an attacker

will not be able to ascertain if the correct key input is given or not. [52] presents

an attack mechanism for AntiSAT and SARLock. This work proposes to reduce the

complexity of ANTI-Sat or SARLock locked circuit to the level where it can be solved

by a SAT solver. It does by trying to �nd random key inputs that may reduce the

output corruptibility for a system input. A recent approach towards implement logic

locking is Stripped Functionality Logic Locking (SFLL)[53]. In SFLL, parts of the

logic are removed from the logic circuit in a controlled manner. These removed parts

are expected to be added to target device in the form key input dependent circuit.

CHAPTER 3: Boot Time Security and Over-the-Air Update Mechanisms For

FPGAs

3.1 Introduction

Internet of Things (IoT) are ubiquitous devices that have limited functionality

and computational resources with the capabilities of connecting with other elec-

tronic devices and the Internet. Additionally, they have long life cycles spanning

over years. Changing requirements of a deployed embedded device are generally ad-

dressed through software or �rmware updates. Software updates can be provided

either manually or physically by using cables and programmer interfaces. Physical

access to a device for �rmware upgrade is always not possible and requires the con-

�guration of the devices in the �eld through secure channels. The connected nature

of IoTs makes them accessible remotely, and �rmware updates for devices can be

provided using Over the Air (OTA) �rmware updates [54][55].

Software �rmware updates change the functionality of the software; however, the

scope is limited by the hardware capabilities and its architecture. Depending on

the application and the expected life of a product, recon�gurable hardware architec-

ture can improve the hardware update needs to evolve an IoT's device architecture.

Recon�gurability allows the manufacturer to update the hardware design while the

machine is in the �eld. Using OTA, hardware updates allows for updating the device

hardware con�guration without the need for physically replacing it. Over the air

(OTA) updates are critical in the embedded system consumer domain such as the

cellular phone and the automotive industry. The requirements for availability and

quality of service is high in the growing and ubiquitous electronics on the move or

electronics on the wheel. For the vehicular domain, the requirement for availability is

26

directly tied to safety. Furthermore, it is not feasible for a car owner to take the car

to a service station, whenever there is a software update available. Instead, �rmware

updates can be provided remotely with OTA updates that can be transferred via the

cellular network directly by the manufacturer[56].

Root of Trust is an anchor for implementing trust in a device[57]. Maintaining

Root of Trust (RoT) is crucial once a device has been deployed in an untrusted �eld.

Tainted �rmware updates can break the trust. The software domain employs various

techniques for maintaining Root of Trust. Some popular examples include Universal

Extensible Firmware Interface (UEFI) secure boot extensions[58] and Microsoft Win-

dows' Secure Boot[59]. The former provides maintaining Root of Trust at the boot

level and the latter extends it to the operating system (OS) level. The root of trust

at this level can also be implemented using cryptographic processors, such as Trust

Platform Modules (TPM).

With new advancements, recon�gurable hardware has become pervasive in the

Internet of Things domain, there is a requirement for extending the root of trust to the

hardware. Commercial FPGA vendors provide limited security to the programmable

logic fabric and those security mechanisms are limited in application. Additionally,

the provided methods have closed access which the users can use in their systems but

cannot inspect themselves. There is a need for an open and reliable security structure

for the programmable fabric that can be integrated into the device's Root of Trust.

In this work, we present a framework to establish the Root of Trust for secure

boot and OTA updates of recon�gurable hardware. Bi-directional or mutual trust is

established between an FPGA device and server or the content provider. A scheme

for the provision of symmetric encryption keys is also presented. The novelty of this

work also extends into the integration of TPM with FPGA boot process to assist in

secure boot, key provisioning, and secure communication. Additionally, we present

schemes for runtime mitigation of malicious logic insertion.

27

3.2 Threat Model for Secure Boot of FPGA Bitstreams

The FPGA market is dominated by proprietary tools, Intellectual Properties (IPs)

and closed hardware implementation. There are a handful of vendors that provide

varying architectures and interfaces to those architectures. It forces reliance on the

vendor and the e�ectiveness of their often, closed source tools. The recon�gurable

fabric on FPGAs is programmed using bitstreams. The bitstream con�gures the

Look Up Tables (LUTs) in the logic fabric. These LUTs act as combinatorial logic

and sequential data paths for the hardware design. Bitstreams also con�gure other

fabric elements, e.g. on-chip memory, Digital System Processing (DSP), clocking

blocks and wire connections. An attack on the bitstream can a�ect the entire system

operation of a device on the �eld. This work focusses its e�orts towards the security

of the bitstream on the device and on providing security between a content provider

and a device.

3.2.1 Bitstream Spoo�ng

Bitstream spoo�ng is a way of updating the victim device with an update that may

seem to come from an authorized source. One way for performing bitstream spoo�ng

is by the use of relay and replay attacks[60]. An adversary can act as a man in the

middle between a bitstream content provider and a device. Once an authenticated

session has been set up between the two nodes, the adversary can replace the original

bitstream with a malicious one. Additionally, in case where the victim device is using

one single key for bitstream encryption, replay attacks can be used by an adversary.

An attacker can forward an older copy of the bitstream which has limited functionality

compared to the current version.

3.2.2 Runtime Malicious Modi�cation

Our work focuses on mitigating malicious logic insertion in the bitstream during

runtime. Once a bitstream has been programmed onto an FPGA programmable logic

28

fabric, an FPGA device may provide interfaces to the outside world for readback and

modi�cation of the running bitstream[61]. Using these interfaces, faults or trojans

can be introduced in the design[62]. Additionally, the same interfaces can be used to

make unauthorized modi�cations to the original design.

3.2.3 Non-secure Communication with Content Provider

For an FPGA device placed in the �eld, bitstream updates can be provided manu-

ally physically by an engineer, through a physical update mechanism or through the

use of remote updates over a network. If a content provider over a network is not

secure, an adversary may spoof its identity to send malicious updates. On the other

hand, an adversary can also impersonate a device on the �eld to download bitstream

updates from a content provider not meant for it.

3.3 Root of Trust Architecture

In the proposed scheme there are two actors, the content provider or the server and

client nodes. The content provider is a server that exists over a network for all client

nodes. It serves the latest bitstream to all clients. A client node is any authorized

FPGA device that is connected to the network of nodes. The authentication and

authorization privileges for a client to join the network is open to the implementa-

tion and is left at the discretion of the designer. There are two components in this

framework, namely the proposed hardware and the Secure First Stage Boot Loader

(SFSBL).

3.3.1 Hardware Overview

The reference recon�gurable platform is an SRAM based FPGA SoC that has a

hard-core Processing System (PS) and a Programmable Logic (PL) fabric. The PS

is a trusted veri�er and the PL design is the prover. The veri�er is a trusted source,

whereas the prover needs to prove its legitimacy to the veri�er. We investigate the

secure co-processor integration with the SoC and export the security functions and key

29

Processing System Programmable Logic

M
I
O

Trusted
Pla�orm
Module

Trusted
Execu�on

Environment

QSPI
Memory
Element

Figure 3.1: Proposed Secure Boot System Architecture.

provisioning onto an external cryptographic processor, such as the Trusted Platform

Module (TPM).

To provide isolation for a higher level of security functions that is for Secure OTA

update functions, the framework uses a Trusted Execution Environment (TEE), such

as ARM's TrustZone. TPM is interfaced using the Multiplexed Input /Output (MIO)

port of the FPGA via serial SPI interface on Xilinx Zynq 7000 series FPGA. An MIO

port is directly connected to the hard core of the PS and does not require any addi-

tional routing from the PL. The MIO based connection to the TPM is essential since

in the case PL based con�guration is used, the PL will be needed to be programmed

�rst, thus introducing a possible attack vector for the target platform.

To mitigate any damage caused due to privilege escalation attacks, PL program-

ming port and the TPM are con�gured to be accessible only through TrustZone's

secure world. The prototype is tested on the Xilinx platform that incorporates exter-

nal Quad Serial Peripheral Interface (QSPI) based �ash memory to hold the SFSBL

and the bitstream. The write access to the �ash memory is limited to TrustZone

con�gured secure world. This hardware is described in Figure 3.1.

30

Figure 3.2: Content Provider client FPGA's connection.

3.4 Design Objectives and Operations

The proposed framework is designed to provide three security services for recon-

�gurable hardware, namely establishing a source of trust, secure over the air updates

and secure boot process.

3.4.1 Establishing Source of Trust

A content provider/server may serve multiple client nodes, as illustrated in Figure

3.2. The server is assumed to be secure. To establish the identity of the content

provider and a client node, asymmetric digital keys are used. The proposed framework

uses Elliptic Curve Digital Signature Algorithm based NISTP256 curve keys [63] for

data signing. A pair of asymmetric signing keys are generated on the server as well

as each client node. The client nodes use the equipped TPM to generate the key

pairs. Additionally, a unique shared symmetric key is generated for each client. This

key acts as a base encryption key(Kb) and is updated during the bitstream update

process. The update process of the symmetric encryption key is discussed in detail

in the following subsections. A client's own private key (Kcpr), public key (Kcpb), the

server's public key (Kps) and the base encryption key are stored on a client's TPM, in

its NVM. The exchange of keys occurs in a trusted environment. The server's private

31

key (Krs) does not leave the system.

ServerServer Client

In trusted environment

Generate
Signing
Key pair

Generate
Signing
Key pair

and
base enc.

key

Send public signing and base enc. key

Store
 received

keys in TPM

Send public signing key

Store
Private key

in TPM

Figure 3.3: Key exchange in a trusted environment.

The server maintains a database of all its client's public keys and the base encryp-

tion keys. This system supports key renewal; however, the lifetime of the keys is

left at the discretion of the system designer. To mitigate chances for key theft, it is

assumed that the renewal process occurs in a trusted environment. Once deployed,

the public key of the server and private key of the client cannot be retrieved from the

TPM, however, they can be addressed for use within the TPM. The key exchange

process is illustrated in Figure 3.3.

Bitstreams are stored in the QSPI Flash on the hardware. The initial bitstream

is stored by the vendor in the trusted �eld. The proposed framework uses Platform

Con�guration Registers (PCR) to measure the boot process and to maintain pro-

longed integrity of the bitstream. PCR register, PCRt is used to store the cumulative

SHA256 of all the bitstreams loaded onto the client. Initially, the value of PCRt is

set to the SHA256 of the initial bitstream. The server also calculates the same cumu-

lative hash locally (SHAt). For use during secure boot at the client, the SHA256 of

the bitstream (SHAc) is stored on the NVM in the TPM. Figure 3.4 shows the keys

32

Client’s TPM View

Pla�orm Configura�on Registers

Tamper resistant Non Vola�le Memory
Server’s Database Entries for a Client

Node

Cummula�ve SHA256 PCRt

...

Base encryp�on key Kb

Individual Bitstream SHA256 SHAc

Asymmetric Client Key Pair (Kcpr, Kcpb)

Server’s Public Key Kps

Client’s Public Key Kcpb

Cumula�ve hash value for client
Bitstreams SHAt

Symmetric Encryp�on Key Kb

SHA256 of bitstream SHAc

Figure 3.4: Keys shared between a client and server.

on a client node and shared between a server.

3.4.2 Secure Over the Air (OTA) Update Mechanism

When the updated bitstream available on the server, the connected and autho-

rized client nodes receive a noti�cation from the server. This triggers a client to

initiate secure communication with the server. At a client, the mode of operation

switches from normal mode to the update mode. The update mode is handled by the

trusted execution environment at the client. In the case of TrustZone, the processor

mode switches from the non-secure world to the secure world. The update process

is assigned its own memory area, isolated from the non-secure world. The update

procedure consists of the following processes:

3.4.2.1 Secure Communication Handshaking

To enable secure communication between the server and the client, as well to

maintain that the integrity of the bitstreams is maintained between two subsequent

updates, we propose a handshaking scheme. The scheme is summarized in Figure

3.5. A client generates a True Random Number (TRNa) using the True Random

Number Generator equipped on the TPM. The PCR register value PCRt is XORed

with TRNa and is then symmetrically encrypted using the base encryption key Kb.

33

Server Client Interac�on for Bitstream Updates

Se
rv

er
C

lie
n

t

Bitstream Update TransferSecure Communica�on Handshaking

No�fy client
about update

Generat
e TRNa

XOR TRNa
with PCRt

Encrypt msg
with Kb to
create me

Append
hash and
signature

Send
messag

e

Verify
Signature
of Client

Update Kb

Update
Kb

Prepare
Bitstream

Archive

Send
Bitstream

Archive

Start Update
Process

Figure 3.5: Server Client Interaction for Bitstream Updates.

me = AES128((PCRt ⊕ TRNa), Kb) (3.1)

The construction of the encrypted message (me) is shown in Equation 3.1. Hash of

me is asymmetrically signed using Kcpr. Message me and its hash is sent to the server.

After transmission, the Kb is updated client side by taking a XOR with TRNa. Kb

on the TPM is also replaced with the newly computed value. Equation 3.2 illustrates

the update process.

Kb = Kb ⊕ TRNa (3.2)

The server using its copy of Kcpb recalculates the hash of the received message me.

Once the client has been authenticated, the server decrypts me using the stored key

Kb. To retrieve TRNa, the server computes the XOR of SHAt with the decrypted

message. Like the client node, Kb is updated at the server.

3.4.2.2 Secure Update Packaging and Transfer

The bitstream update is compiled into an archive package before it is sent to a client.

Using the bitstream update and SHAt, the server calculates the new cumulative hash

and updates SHAt. The updated bitstream and SHAt are combined and encrypted

using the updated key Kb. This encrypted block is copied to the update archive

34

Update Archive

Encrypted with Kb

Bitstream Update

Updated SHAt value

SHA256 of the Encrypted block

Signature of SHA256

Figure 3.6: Bitstream Update Archive

package along with its SHA256 value. The SHA256 value is signed using its own

private key Krs. The signature is appended to the package. This update archive is

sent to the client. The client stores the package in its NVM and triggers the update

process. Figure 3.6 shows the archive package.

3.4.2.3 Applying the update

The process of applying the update on the target platform is handled by the secure

update process running on the client FPGA. Once the bitstream package has been

downloaded, SHA 256 of the package is recalculated client side and is compared with

that in the download package. The signature of the computed hash is recomputed

using the key Kps on the TPM. This signature is compared against the signature

packaged in the update archive. Once the identity of the server has been veri�ed,

the encrypted archive is decrypted using Kb. Using the TPM PCR functions, PCRt

is updated and veri�ed against the archived SHAt value. If the updated PCRt and

SHAt values are equal, the initial bitstream on the NVM is replaced by the update,

otherwise if in case any check fails during the update process, the node is assumed to

be compromised and the server is noti�ed. On completion of the update process, the

individual SHA256 of the bitstream calculated and SHAc is updated. The process is

35

Start

Download Update
Package

Calculate SHA256 of
the update archive

Can server
signature be

verified?

Decrypt encrypted
package using Kb

True

Compute PCRt

Is PCRt = SHAt?

Discard bitstream
and report server.

False

False

End

Replace bitstream
with new bitstream

Recompute and
update SHAc using

new bitstream

Figure 3.7: Bitstream Update Application Process

described in the �owchart in Figure 3.7.

3.4.2.4 Secure FSBL Boot Process

We have designed a Secure First Stage Boot Loader(SFBSL) that is integrated with

the Trusted Platform Module with custom device drivers that enable the device to

communicate with the TPM before the device has booted. In an FPGA, the zeroth

stage boot loader referred to as BootROM is executed by the Processing System on

FPGA at the beginning of the boot cycle. BootROM code exists in a non-volatile

memory of the FPGA fabric and is assumed to be secure. Once the BootROM has

completed its execution, the control is passed to the proposed SFSBL that exists in

the on-board QSPI memory. The SFSBL code extends and integrates the security

functions to the FSBL. FSBL con�gures the device with the hardware bitstream and

con�gures the processing system with a bare-metal application or loads the second

stage boot loader to the RAM. This, in turn, loads the operating system. The vendor

FSBL design does not verify the integrity of the bitstream or what it is programming

the processing system. This lack of security at the boot process can be circumvented

with the proposed secure FSBL that integrates key management and security features

to validate the con�guration �les before programming the device.

36

The proposed SFSBL begins execution with initializing on-board components and

memory elements. Once the basic devices have been initialized, the TrustZone is set

up. The access to the MIO port connected to the TPM as well as the QSPI ports

is both con�gured to be accessible only by TrustZone's secure world. The secure

world code is copied onto the RAM. This segment of memory is only addressable

through secure applications. Once the setup is complete, the control is switched to

the secure world. The secure world initiates the process of secure FPGA boot. To

mitigate exploitation of Time of Check Time of Use (ToCToU)[64] by an attacker,

the processing system recomputes the cumulative SHA256 of the bitstream on the

TPM. This value is compared with SHAc stored on the TPM during the bitstream

update process. If the values are di�erent, the boot process stalls and the violation is

recorded for later reference. Otherwise, the bitstream is con�gured onto the FPGA

programmable logic fabric and the boot process continues.

The secure world sets up service hooks for the non-secure world. These hooks

can be used to provide security functions for applications. One such service is the

bitstream update service, in which the control is switched to the secure world. The

SFSBL process continues with loading the non-secure world application, which can

be either a bare-metal application or a second stage boot loader, e.g. U-Boot[65].

The SFSBL process �nishes by switching back to the non-secure world and passing

the control of execution to the non-secure world.

3.5 Implementation

The proposed framework has been implemented on a Xilinx Zedboard FPGA board

equipped with a Zynq-7000 XC7Z020-CLG484[66]. The FPGA has an embedded

ARM Cortex A9 hard processor. It is integrated with the In�neon TPM SLB9670,

a secure coprocessor for the key management and secure boot processes[67]. The

processor is equipped with ARM's TrustZone for Trusted Execution Environment

(TEE). Additionally, the on-board QSPI memory is used for holding the SFSBL im-

37

Figure 3.8: Hardware Setup

plementation and the bitstream package extracted from the bitstream update process.

Experimental setup of the proposed framework is shown in Figure 3.8.

The FPGA board communicates with the TPM via the Serial Peripheral Interface

(SPI) over the dedicated MIO port. The proposed SFSBL implementation is the

extension of the Xilinx provided First Stage Boot Loader (FSBL). Secure extensions

are added to the existing FSBL that uses the custom device driver library written as

part of this research.

The MIO ports are accessible through the secure world con�gured using ARM

processor TrustZone [68]. Total RAM on the Xilinx Zedboard is 512 MB. We have

con�gured upper 64 MB of the RAM space to be used by the secure world. This

setting is controlled using the TZ_DDR_RAM register. Additionally, to limit access

to the QSPI memory, the QSPI_S_APB bit in the SECURITY6_APB_SLAVES

register is set to 0. Typically, for the con�guration of peripherals in TrustZone, the

value `0' signi�es that a peripheral is set to be secure or only accessible from the

secure world.

To incorporate the TPM with the FPGA board at the FSBL level, we have imple-

38

Figure 3.9: Secreenshot of tpm_xfer function.

mented a device driver library. This library provides all necessary functions to set up

the TPM and implements security functions on the TPM. To the best knowledge of

the authors, this is the �rst library of its kind. The SPI interface accessible through

the secure world implements the TPM transfer function driver to communicate with

the TPM device. This communication is required at the FSBL level to perform se-

cure boot, which is not supported until the second stage boot loader in the traditional

design �ow. Figure 3.9 shows the transfer function, that is part of the TPM driver

library to establish the SPI interface.

The device driver library is open source and is made available online for public

use. The services provided by the library can be divided into two categories, device

power-up services, and cryptographic functions. TPM 2.0 architecture has �ve layers.

These layers signify the boot stage for a target platform and are termed as localities.

Each locality o�ers speci�c functionalities and implements privileges with restrictions

of allowed functions, for example, the PCR registers are resources limited to speci�c

localities. Our library implementation provides access to di�erent secure boot speci�c

39

Figure 3.10: Screenshot of TPM Driver Extend Functions.

functions at all localities. In the proposed framework implementation, the TPM is

only accessible from the trusted secure world, the library exists in the scope of the

secure world and is not accessible from the non-secure world.

Timing overhead for the proposed solution is dependent on the data rate of the SPI

interface and the wait time for each operation. The data rate of the SPI interface is

dependent on the host and the TPM device. The TPM2 speci�cations only specify a

maximum timeout for a message transfer and timeout for primitive operations such

as requesting a locality and checking the ownership of a locality, etc.

For each message transfer, the TPM can send back a signal for wait state for a reply.

The TPM can send a maximum of 100 wait states before a timeout can occur. For

the secure boot operation, the TPM structure TPM2_PCR_EXTEND reads data in

chunks of 32 bytes to extend a PCR. The bitstream for the Xilinx Zedboard is 3.85

MB in size. Each TPM2_PCR_EXTEND operation takes an input of 32 bytes, it

40

Figure 3.11: ComputeHashLoc4 function computes cummulative hash over the TPM.

takes a total of 126k hashing operations. A snapshot of the TPM extend function

from our driver implementation is given in Figure 3.10 for reference.

To reduce the timing overhead for computing cumulative hash in real world applica-

tions, TPM 2.0 provides o�ers a separate locality, locality 4. It allows calling the three

structures TPM_HASH_START, TPM_HASH_DATA and TPM_HASH_END.

To compute cumulative hash of the bitstream, �rstly, the TPM_HASH_START

structure is issued. It dictates the TPM to become ready to receive streaming data.

Using TPM_HASH_DATA structure, SFSBL streams the bitstream over to the TPM

iteratively. Once the transfer is complete, the TPM_HASH_END structure is sent

to denote the end of the data input. The computation time was observed to be 40

seconds for the target bitstream �le. Fig. 11 shows the implementation of the func-

tion. In the SFSBL implementation, this function is made part of the image_mover.c

�le, since this �le is responsible for copying bitstream images between mediums.

41

3.6 Security Analysis

Recon�gurable computing is becoming common platform for the IoT devices. The

primary goal of SFSBL framework is to enable security features to establish secure

boot and TPM based over the air secure hardware con�guration updates on the �eld

to enable these devices to evolve and update with the change in device requirements,

such as security patches. In this section, we discuss the security properties of the

proposed framework.

• Digital certi�cates are used for the identi�cation of the server and participating

nodes. The certi�cates are shared before deployment by the trusted authority

and can only be modi�ed by the trusted facility. Thus, impersonation and data

spoo�ng is not possible in the proposed scheme.

• The encrypted con�guration bitstream is packaged with the SHA256 of the

encrypted bitstream, along with the bitstream package signature signed o� with

the private key of the server. Any changes in the bitstream will fail the hash

comparison and device will discard the updates. This prohibits the man in the

middle, and data spoo�ng attacks and provides an authentication mechanism

for securely transfer the con�guration �les.

• The keys are stored on the tamper-resistant storage inside TPM on server and

device nodes, eliminating invasive and probe attacks to break the key. Further-

more, the private keys never leave the premises thus mitigates the man in the

middle attack.

• The symmetric encryption key is updated on every bitstream. It ensures fresh-

ness of encryption keys as well as mitigates replay attacks. Once the key is

used it is never used again and hence any repeated keys can be used to identify

attacks.

42

• During the execution, the device cannot be altered, and the keys can be accessed

with the hardware isolation protection of the SPI interface. The TPM interface

is only accessed in the secure mode.

3.7 Conclusion

This work investigates the security extensions of recon�gurable logic based em-

bedded devices to enable secure boot processes and the �rmware updates that can

recon�gure the hardware and software that runs on the device in an untrusted �eld.

We have integrated the TPM capabilities at the boot level with the custom drivers

that are integrated at the �rst stage boot loader to verify the bitstream before the

programmable logic is con�gured or the software is loaded to identify any malicious

modi�cations in the device con�guration �les. The framework integrates the existing

security features such as the trusted execution environment and enables the trusted

platform module capabilities with the custom drivers that interface with the FSBL

to implement secure boot process. We demonstrate the secure boot process and

authentication and process for the over the air updates to the �rmware in the �eld.

CHAPTER 4: Runtime Logic Camou�aging and Obfuscation

4.1 Introduction

Existing work in boot time security for recon�gurable architectures for IoTs [42]

[69] [46] present various boot time techniques to secure IPs on the FPGA fabric. How-

ever, the proposed techniques all follow similar themes for providing security. Such

that the Programmable Logic (PL) space is divided into two partitions, secure and

dynamically recon�gurable application partition. The secure blocks consist of cryp-

tographic functions that may provide authentication and encryption functions. Once

the device's identity can be veri�ed, the application partition space is recon�gured

dynamically.

The application bitstream is either provided at runtime by a backend server, or is

stored on the system in encrypted form. This bitstream is decrypted at runtime using

response of security functions implemented on the system. To tie the bitstream to

the system, existing works have used PUFs to generate device speci�c responses. The

limitation of current work is that they do not provide runtime security for application

logic partitions. Once the application logic has been decrypted and programmed onto

the fabric, attacker having access to fabric can read o� the application design. Thus,

resulting in opportunities in bitstream cloning.

This chapter presents techniques for extending security to runtime using logic lock-

ing and a novel mechanism of Look-Up-Table (LUT) based bitstream logic obfusca-

tion. It discusses the design and implementation details of how can the PL fabric be

interacted, its architecture and scheme for implementing runtime logic obfuscation

and camou�aging.

44

4.2 PCAP Programming

As previously discussed in Section 2.2, Processor Con�guration Access Port (PCAP)

and Internal Con�guration Access Port (ICAP) are used to interface with the PL fab-

ric. There are a number of alternative ways using which the fabric can be con�gured

including SelectMap, Serial, SPI and JTAG [1]. However, PCAP provides an on-chip

method. The PCAP hardware becomes available to the on-board processor at boot.

Figure 4.1: Vivado Processing System Block Diagram.

Communicating with PCAP is performed using 32-bit words formed into packets.

There are two types of packets, 1 and 2. Packet type 1 has the length of a single

32-bit word.

Table 4.1: Xilinx PCAP Type 1 Packet [1]

Header Type Opcode Register Address Word Count
[31:29] [28:27] [17:13] [10:0]
001 xx xxxxx xxxxxxxxxx

00 - NOP
01 - Read
10 - Write

11 - Reserved

Packet 1 is described in Table 4.1. Header type speci�es that it is a packet of type

45

1. There are four kinds of type 1 opcodes, out of which three are usable. In a read

and write packet, the number register address speci�es which address to read from /

write to, and word count speci�es the number of expected words. However, a write

packet expects a following type 2 packet as input for multi packet input. Type 2 can

only be sent after a type 1 packet. Table 4.2 illustrates the packet formation.

Table 4.2: Xilinx PCAP Type 2 Packet [1]

Header Type Opcode Word Count
[31:29] [28:27] [26:0]
010 xx xxxxxxxxxxxxxxxxxxxxxxxxxx

There are several con�guration registers that are a part of the ICAP interface. The

registers related to this work are discussed here.

• CRC - Register Address 00000: The CRC register holds the checksum of

the bitstream that exists on the fabric.

• FAR - Register Address 00001: Also known as Frame Address Register.

FAR is the addresses resources on the PL fabric. Details of FAR are covered in

Section 4.3

• FRDI - Register Address 00010: Frame Data Register, Input Register is a

register which accepts inputs data to the PL fabric. Writing to FDRI is set up

using Write Con�guration (WCFG) command.

• FDRO - Register Address 00011: Frame Data Register, Output Regis-

ter is a readable register, which is used for reading data from the PL fabric

addressed by FAR. Fabric data can be read following sending a Read Con�gu-

ration (RCFG) command.

• CMD - Command Register 00100: Command Register is used to send to

perform set actions to the fabric.

46

4.3 FPGA Bitstream Architecture

4.3.1 Bitstream Contents

FGPA bitstream consists of initialization con�guration of logic gates, logic and

clock routing, interconnects and hard blocks. Starting from a high level design using

hardware descriptive languages such as Verilog and VHDL, the synthesis tool gen-

erates an RTL output. This RTL output consists of netlist of the gates used in the

design. In the implementation phase, Place and Route (PNR) process is applied. In

this process, gates present in the netlist are placed on the PL fabric using resource

placement algorithms.

Start

High Level
Design

Synthesis /
RTL Design

Implementation /
Place and Route

Bitstream
Generation

Figure 4.2: Bitstream Generation Flow Diagram

With the resources placed, routing is performed between components. This process

tries to generates a placement policy with the constraints de�ned. Based on the

performed implementation, the bitstream is generated. The bitstream output consists

of sequence of commands sent to the ICAP. These commands initialize the PL fabric,

set up and perform the transfer and start up the fabric to execute the programmed

design. A snapshot of the bitstream is given in Figure 4.3. First, the width of the

data transmission is con�gured with the ICAP. The bitstream suggests performing

an automatic width detection, as shown from location 0x90 - 0x97. The connection is

synchronized by sending the word 0xAA995566. This bitstream performs additional

initialization actions, including setting up the watchdog timer, clock frequency for

47

data transfer, checking the model of the FPGA etc., (0xA4 - 0x13F. At address

0x140, the FAR register is set to address 0x0. The WCFG command is executed to

ready the FDRI register to accept con�guration data. The con�guration length is

set at address 0x158. Figure 4.3 shows bitstream of Zynq 7010 FPGA. The amount

0x5007F0A0 corresponds to 1,342,697,632 words. This is followed by the bitstream

sequence and the fabric bring up sequence (address: 0x1FC3DC).

Figure 4.3: Bitstream Header Snapshot

4.3.2 FAR Addressing

Frame Address Register addresses resources on the FPGA fabric. The size of a

frame depends on the FPGA model. For Xilinx 7 Series FPGAs, the frame size is

�xed to 101 32-bit words. The FAR address itself is divided into segments based on

the spatial resource division on the fabric. The division is as follows:

• Bits [25:23]: There can be three valid values. 000 for CLB, I/O and clock

resources, 001 for block RAM and 010 for CFG_CLB for per CLB con�gura-

tion.

• Bit [22]: The fabric is divided into two regions, top and bottom. This bit

selects between the two global clock regions.

• Bits [21:17]: These bits are for row selection. The zero point is the center of

the fabric, where the two halves meet.

48

• Bits [16:7]: Column selection bits select the column. The addressing starts

from 0, from the left of the fabric and increases with ascending columns.

• Bits[6:0]: These bits represent the minor addresses within a resource.

4.3.3 Reading and Writing to the PL Fabric

Algorithm 1: Generating FAR list
Result: FAR list
frame_count = 0;
frame_array = [];
current_address =0;
last_address=0;
read_word_length = frame length;
Set FAR=0;
while (frame_count AND 0x38000000) != 0x02000000 do

Add Shutdown to request;
Add RCFG (Read Con�guration Command) to request;
Set RCFG request length to read_word_length;
Execute request;
current_address = current FAR value;
if current_address = last_address then

read_word_length = 2 x (frame length);
else

read_word_length = frame length;
frame_array[frame_count++] = current_address;

end

end

Xilinx does not provide a list of addresses to the PL. On examination of the

bitstream, as mentioned in Section 4.3.1, the FAR address is initialized to address

0x00000000. For each continuing word that is written to the fabric, the address in-

crements automatically, once the end of the frame is reached. This behavior presents

a challenge for reading and writing to individual frames, due to two reasons. As

observed, the FAR address does not include the entire 32 bits range of addresses.

It only includes addresses that are valid to address a resource as mentioned in the

Section 4.3.2. Additionally, single step incremental addresses stop incrementing once

49

Dummy Frame
101 words

Configuration Frames
X words

10
1

+
 X

 w
or

ds
 R

ea
d

R
eq

ue
st

Read Request

Dummy Frame
101 words

Configuration Frames
X words

10
1

+
 X

 w
or

ds
 W

ri
te

 R
eq

ue
st

Write Request

Figure 4.4: FAR Read / Write requests.

the end of row is reached. For example, a valid range of addresses is from address

0x0 to 0x29. The next valid address is 0x80. The address range in between the two

points is not valid.

Algorithm 2: Performing Readback from the PL fabric
Result: Frame data for FAR address A
frame_data =[];
Initialize request packet;
Set FAR = A;
Add Shutdown request;
Add RCFG to request;
Set read length to two frames;
Execute read request;
Discard �rst frame;
frame_data = 2nd frame data;

We designed algorithms to capture the entire valid address range. ICAP allows

reading con�guration data from the fabric, once it has been con�gured. This process

is called readback. We used readback to traverse through the address space. During

the readback process, once the end of a row in reached, the FAR register does not

increment. Once this condition occurs, we can perform a readback of two frames (2

x 101 words) in a single request. This forces FAR to jump to the next valid address.

This process is repeated until the address can no longer increment. For Xiling Zynq

7010, this boundary was found out to be address 0x02000000. The algorithm is

illustrated in Algorithm 1.

Once the address list has been generated, direct read and write operations can

50

Figure 4.5: Test LUT5 Instantiation

be performed to speci�c addresses. However, the read and write operations require

adding a padding frame. The position of the frame is dependent on the type of

the operation. For a successful read operation, the dummy frame is added to the

beginning by the PL fabric and is discarded. On the other hand, for a write operation,

a dummy frame is added to end of the request when it is sent to ICAP. ICAP will

discard this frame when writing onto to fabric. The algorithm for performing the

readback on a single frame is given in Algorithm 2.

Figure 4.6: Experimental design for evaluating bitstream mapping

51

Figure 4.7: Experimental Setup for LUT5 placement.

4.3.4 Mapping FAR to Resource

To study the mapping, a single LUT based design was used. Look-Up-Tables

(LUTs) are the building blocks of combinational logic. Xilinx Zynq architecture o�er

a six-input two output LUT primitive. There are four LUTs per a slice within a

CLB. These LUTs can further be programmed to implement one to �ve input LUTs.

In our experiment, we con�gured a single �ve input LUT. In order to have access

to the PCAP interface the on-board hard processor was instantiated. To create a

maximum bit di�erence on the resultant bitstream, the LUT5 was set to its maximum

initialization value, 0xFFFFFFFF. Additionally, to ensure that the component is not

optimized out from the bitstream by the PNR tool, additional attributes were set

during its initialization. The de�nition of the instantiation is given in Figure 4.5

and the resulting system design is given in Figure 4.6. To allow for reliable analysis,

the LUT was placed and �xed at the tile location CLBLM_R_X29_Y37, LUTA, as

given in Figure 4.7.

De�nition for a CLB is divided into multiple frames. Examining reverse engineering

mapping, it can be observed that resource information is divided into rectangular

blocks, in the form of multiple rows and columns[70] [71] [72] [73]. The size of the

52

memory region taken by a resource is dependent on the type of resource. For example,

a CLBLM_R resource takes 2 words x 36 frames on the bitstream. This block

contains information related to LUT con�guration, carry blocks, MUXes used to

route signals, �ip-�ops and latches interconnect information. As a part mapping

resources to the bitstream, a framework is written for performing readback from the

fabric, and querying resource information from the bitstream. Using the framework,

a snapshot of the resource CLBLM_R_X29_Y37 of our test bitstream is shown in

Figure 4.8.

Figure 4.8: Snapshot of the resource CLBLM_R_X29_Y37 from target test circuit.

4.4 Proposed Scheme for Multi-layer Camou�aged Secure Boot

The proposed scheme provides a multi-layer approach for providing secure boot for

FPGAs in an un-trusted �eld [5]. In the �eld, the device contacts a secure content

server placed in a trusted �eld. The server is assumed to be secure. The applica-

tion bitstream used by a client is provisioned by the server. Each client device has

two memory areas, a Read Only Memory (ROM) and an Application Non-Volatile

Memory (ANVM).

As opposed to the existing secure boot solutions, this work proposes use of two

bitstreams, namely Attestation Bitstream (ASB) and Application Bitstream (APB).

The ASB is composed of a Physical Unclonable Function (PUF) which is used to

generate the per-device unique responses, based on the input challenges. APB is the

53

encrypted logic-locked and LUT camou�aged version of the application bitstream.

An overview of the enrollment and in-�eld operations is given in �gures 4.9 and 4.10.

Attestation
Bitstream

FSBL

Attestation Bitstream

Logic Locked Application Bitstream

LUT Camouflaged Application
Bitstream

Encrypt Locked Application
Bitstream

Remote Server

Enrollment
Process CRPS

Device Specific LUT
Configuration

Logic Locking
Key

Encryption Key

Figure 4.9: Overview of the enrollment process [5].

Attestation
Bitstream

FSBL

Attestation Bitstream

Decrypt the Logic locked bitstream

LUT Configuration of Application
Bitstream

Unlocked Application Bitstream

Remote Server

Privacy
preserving

Mutual
Authentication

Device Specific LUT
Configuration

Encrypted and
camouflaged

bitstream

Decryption Key

Logic Locking Key

Figure 4.10: Overview of the in-�eld operation [5].

4.4.1 Device Enrollment

To ensure that only legitimate devices can used on the network, the devices are to

be enrolled. Enrollment occurs in a trusted environment. Only authenticated devices

can communicate with the server and are eligible to receive updates. ASB consists

of the PUF design. Although, the platform is PUF agnostic, for this demonstration,

HELPUF is being used. HELPUF implementation generates unique per-device keys

[74].

HELPUF is a unique kind of PUF which utilizes functional unit of the design to

generate process-variation based delays. This work uses AES encryption unit as the

54

Figure 4.11: Computing Latch-Capture Interval in HELPUF [6].

functional unit. Clock phase di�erences act as path delays. Input challenges are

provided to the PUF controller. The controller translates the inputs to sensitization

for the di�erent paths within the AES unit. To capture the delay on each path, a pair

of �ip-�ops, namely launch and capture �ip-�ops are used. The interval between the

triggering and capture is called Launch-Capture Interval (LCI). This interval provides

the source of entropy of HELPUF. Additional helper data is required to reliable data.

Details of bit generation and mutual authentication using HELPUF is described in

[6] and [75].

There are two memory areas on each client device, a Read Only Memory (ROM)

and Application NVM. The ROM is once-writable, whereas the ANVM provides a

multiple-write persistent storage area. In the trusted �eld, the ASB is stored on

the ROM on the client. The FPGA is booted up and the ASB is con�gured on the

PL fabric. The server has a large set of common challenges stored in a database.

It provides the set of challenges serially to the client device and stores it responses

against the device ID in database. The server then selects a unique challenge (c),

which is stored on the client's ANVM. The response of challenge c, Rs is used as a

private key of the key. To maintain on-�eld anti-tampering measures, the key is not

stored on the device itself.

There are two steps required to create the APB. The application design is �rst

55

Read Only Memory (ROM)

Application NVM (ANVM)

Encrypted Application Bitstream
(APB)

PUF Challenge (c)

Data + Applications

Attestation Bitstream (ASB)

Secure FSBL

Server Public Key (Ps)

ENC(SF, Rs)

Figure 4.12: Client Device Memory View on enrollment [5].

considered. Using any logic locking technique, a logic locked version of the application

design is created. This work proposes a novel logic camou�aging mechanism for

bitstream. The server chooses and removes multiple frames from the logic locked

bitstream. This list of stripped frames is used to generate an ID (SF) which after

being encrypted with Rs is stored on the server against each client device. SF also

acts as an ID in the authentication process described in proceeding subsections. This

list is also stored on the client FPGA. This generated bitstream then encrypted using

Rs, before being placed on the ANVM.

In-�eld booting is performed using the First Stage Boot Loader (FSBL) software.

Since it is the task of the FSBL to load the ASB and APB on the �eld, it should

not be allowed to change over time. Therefore, it is stored on the ROM. To provide

digital signing for server-side messages, the server also stores its public key Ps on the

client's ROM. For this scheme, RSA is being used, however, any other scheme can

also be used [76].

After the enrollment process is complete, the view of the client-side memory is

given in Figure4.12 and can now be placed in an un-trusted �eld.

4.4.2 Device Authentication

The device placed on the �eld is assumed to have a connection to the back-end

server. The connection is required for authentication and APB bring-up. On device

56

Server Client FPGA

Send attestation request
Use challenge c to generate Rs
DEC_APB=AES(APB, Rs)
Copy decrypted APB in main memory

Verify Sign + HMAC using Ps

Rs_list = Responses for Ch_list
Send Rs_list

Decrypt M using Rs

Verify HMAC
Program PL with DEC_APB and apply Key_list

Open Connection
Ch_list = Subset of random challenges
M = Ch_list + HMAC (Ch_list) + Sign (HMAC(Ch_list))
Send M

Use Rs_list and Ch_list to find Client ID
Discard ch_list from future use.
Key_list = key bits associated with Client ID
EN_KEY = Encrypt Key_list with Rs

M = EN_KEY + HMAC(Key_list) + Sign(HMAC(Key_list))

Figure 4.13: Authentication and Application Bitstream Programming [5].

boot-up, the bootROM performs initial device initialization and gives the execution

command to the ROM resident FSBL. The FSBL then loads the ASB on the PL

fabric. The PUF design encapsulated in the ASB is brought up. Challenge c from

the ANVM is provided as an input challenge to PUF. The response recorded Rs is

copied onto the main memory for further use. This response is used to decrypt the

encrypted APB. The decrypted APB is placed on the main memory. The FSBL shuts

down the fabric and con�gures it with this APB, overwriting the ASB logic present

on the fabric.

Authentication of the device with the server is a part of the secure boot process.

Once Rs has been recorded, SF is decrypted using Rs and a nonce is XORed to it. The

resultant is encrypted again using Rs and sent to the server. For all devices enrolled

at the server, the server performs reverse fuzzy matching on the message received

to �nd the correct device. The server then compiles the missing frame information,

encrypts it using Rs and sends it to the client device. The server additionally sends

key required to unlock the locked design. This key is later used in logic unlocking. The

FSBL in the client device decrypts the message and applies the missing frames using

the PCAP register. When the con�guration is complete, the PL fabric is brought up

again.

To unlock the logically locked application, the key received from the server is ap-

57

Figure 4.14: FSBL code excerpt for LUT recon�guration [5].

plied. If the key is correct, the PL application will start its function correctly, thus

denoting a successful boot operation. The authentication scheme is illustrated in

Figure 4.13. Figure 4.15 demonstrates modi�cation of LUT data within a frame.

Figure 4.15: On-fabric LUT recon�guration [5].

4.5 Security Analysis

In this section, the presented framework is evaluated against di�erent attack vec-

tors. Since the presented framework provides a solution for boot time as well as

runtime attacks, the security analysis is performed on both avenues:

• Existing works partition the PL fabric space into two. The static partition

consists of a cryptographic function. This function can be a Physical Unclon-

58

able Function (PUF), an encryption unit or a hash function etc., whereas the

application is programmed inside a dynamically recon�gurable partition. This

introduces secret information leakage issues. If the application PL logic is ma-

licious, or software code running on the system is composed of vulnerable code

that can be exploited, an attacker can get access to secrets from the security

partition. This presented framework isolates the secrets by dividing the au-

thentication and application bitstreams in two separate full packages. Once the

application bitstream is decrypted, it overwrites over the security bitstream.

This ensures that they cannot exist at the same time.

• Logic locking and bitstream obfuscation solution guarantees that once the de-

vice has been authenticated and has been programmed with the application

bitstream, the system can still be made secure. If an attacker gets access to

the decrypted application bitstream, they will not have access to the entire

bitstream.

• Proceeding de-obfuscation, is application of logic-key for unlocking the logic-

locked application design. This extra layer of protection mitigates adversaries

which get access to the bitstream once de-obfuscation has been applied. Since

the application design requires correct key combination to function, the adver-

sary still will not be able to perform IP cloning attacks e�ciently.

4.6 Conclusion

We propose a multilayer secure boot process, that utilizes device level unique phys-

ical unclonable function for unlocking the design and updating the LUT frame unique

per device to mitigate the security vulnerabilities of maliciously modifying the boot

image of bitstream to program the programmable logic. This multilayer secure boot

allows the remote attestation server to mutually authenticate, and verify the design

running on the fabric with logic locking and LUT frame modi�cation.

CHAPTER 5: Secure Communication Framework for Automotive

We propose a secure automotive framework for Electronic Control Unit (ECU)

secure intra communication and code execution

5.1 Secure ECU Communication

The attack demonstrations, enforce the security needs in the safety critical infrastructure[77].

Controller Area Network (CAN) Bus is a multi-master bus where all ECUs broadcast

messages over the bus. CAN bus is inherently not secure, all data that is transmitted

over the bus is visible to all the nodes connected. The bus requires only a pair of

wires namely, CAN Low (CANL) and CAN High (CANH) to form a bus. Devices

wanting to connect to the bus only need to connect the CAN transceiver with the

bus using these two wires. This bus is linear with terminating resistors at both ends

of the bus. A block diagram of the connection is given in Figure 5.1.

Figure 5.1: Controller Area Network Bus Connection Diagram[2].

[78] and subsequently based on it, its follow-up paper [2], document the weaknesses

of the CAN bus protocol stack and propose a hardware based secure communication

framework for Electronic Control Units (ECUs) connected to a Controller Area Net-

work. The CAN bus is susceptible to eavesdropping, spoo�ng and Denial of Service

60

Naviga�on
System

Dashboard
Window
Control

Steering
System

Accelera�on
System

CANBus

Figure 5.2: CANBus connection in a vehicle.

(Denial of Service).

Table 5.1: Standard Classical CAN Bus Frame

SOF Arbitration Control Data CRC Field ACK EOF
1 bit 12 bits 6 bits 0 - 64 bits 16 bits 2 bits 7 bits

Table 5.1 shows a standard classical CAN bus frame. In a CAN bus frame, arbi-

tration bits are used by an ECU to denote the identity of the sender as well as the

priority. All connected nodes listen on the bus. Based on the arbitration ID of each

frame received, the nodes may decide to react to a message or ignore it. In the Jeep

attack, attackers after getting remote access to the infotainment system spoofed the

IDs of the connected systems on the infotainment system. Thereby, the infotainment

system appeared as other systems on the bus, e.g. the steering, the brakes, accelerator

pedal, etc.

Experimental setup for deriving attack and threat models was set up in lab for

this research, as shown in Figure 5.2. It consists of three CAN nodes namely, CAN0,

CAN1 and CAN2. CAN0 and CAN2 are considered two legitimate nodes on the

network, whereas CAN1 is a rogue node. Figure 5.3 demonstrates CAN1 spoo�ng

ID of another node on the bus and performing a DoS attack. From Figure 5.3, 7DF

is the ID of a spoofed node. Any node that recognizes the ID 7DF as a legitimate

node on the bus, will accept the message and will react based on the contents of the

61

Figure 5.3: Demonstration of spoo�ng and Denial of Service[2].

message. In the experimental setup, this caused the vendor provided software stack

to crash at CAN0, as is shown in Figure 5.4.

From [2], the proposed hardware based security framework is given in Figure 5.5.

It uses Elliptic Curve Cryptography (ECC), asymmetric key exchange with Ellip-

tic Curve Di�e Helman (ECDH) and AES symmetric encryption for achieving secure

communication between nodes in a vehicle. The framework is equipped on all connect-

ing ECUs and is connected to their processing system in an ECU's System-on-Chip

(SoC). The hardware framework consists of �ve major components, namely, private

key generation, key pair generation block, key storage, encryption/ decryption block

and shared secret generation block.

There are two phases to the proposed scheme namely, enrollment and deployment.

Enrollment is performed in a trusted environment. In case of a vehicle, this can be a

factory, a dealer or a trusted service center. There is a resourceful enrollment server

that is installed on the vehicle. This server is assumed to be secure and is connected

to the same CAN bus as the ECUs. Every component that is installed on a vehicle is

�rst registered with the enrollment server. For the process of enrollment, a challenge

input string is �rst selected for the PUF. This input string is stored in the key storage

to be used for authentication. From this input string, the PUF hardware will generate

Figure 5.4: RX Bu�er at node CAN0 is over�owed[2].

62

Figure 5.5: Hardware based Secure Communication Framework for ECUs[2].

an output response. This output response of the PUF is used as a private key. The

private key is used by the ECC key generation block to generate a public key. The

generated public key is stored in the enrollment server. Similarly, the public key of

the server is stored in the client's key storage.

On deployment at every boot of the vehicle, the on-board PUF uses the stored

challenge input to generate a response. The response is reliable between boots and

can be used as a private key. This private key is when used with the ECC based key

generation block to generate a public key. Using the enrollment server's stored public

key, the ECU's private key and the ECDH module to generate a shared key. This

key is used by the encryption / decryption module to encrypt communication with

the server. The client constructs a message for the server encrypting its own public

key. The server will then wait for all the connected nodes to do the same for a set

amount of time. Once the time is over, it will verify the identity of all the connected

nodes. This requires the server sending all connected nodes the public keys of the

authenticated nodes. If a node cannot be veri�ed, it is blacklisted, and its public key

is not forwarded to the other nodes.

63

Figure 5.6: HELP PUF Construction[2].

The public keys of communicating nodes are stored in the on-board key storage.

The communicating node's public key and a node's private key is used to generate

a shared secret key using the ECDH module. This generated key is used in the

symmetric encryption / decryption block. Whenever, a message is generated by

the processing system, based on the destination, the proposed framework used the

generated symmetric key for the communicating node to encrypt the directed tra�c.

Similarly, the receiving node, based on the sender in the arbitration �eld in a CAN

message, loads the associated symmetric key in the encryption block. The message

is decrypted and passed to the processing system block.

Table 5.2: Comparative Analysis of block comparatives speeds at di�erent system
clocks rates[2].

AES-128 ECC Operation
At 60 MHz 3666.66 ns 23.8ms
At 100 MHz 220 ns 14.28ms
At 200 MHz 110 ns 7.14ms

This framework enables system wide encryption of the tra�c. The public keys of

the all the nodes are exchanged in a trusted environment and are stored in the key

storage. This mitigates addition of rogue nodes into the system. Additionally, since

the system is using PUF for private key generation, it is not stored in any persistent

medium. Hardware Embedded Delay PUF (HELP)[79] Block diagram of HELP PUF

is given in Figure 5.6. The addition of PUF mitigates the possibility for an attacker for

64

Table 5.3: Overhead overview at standard CAN connection speeds[2].

125 kbps 500 kbps 1 Mbps
Time for sending one frame 864ms 216ms 108ms

During Authentication
Node sending encrypted message to
server (2 frames)

1.728ms 432ms 216 ms

Server's reply (3 frames) 2.592ms 648ms 324 ms

extracting private keys that may be used by an attacker to spoof identities. However,

since each standard CAN packet can hold 64 bits, and an encrypted packet is of 128

bits, each message requires two transmissions.

For verifying the design of the framework design, the design was implemented on

a Xilinx Kintex KC705 FPGA. The ECC core requires a total of 1428 cycles. With

the clock running at 200MHz, the total time to compute a single multiplication point

is 7.14 microseconds. In the process for shared key generation, two single point

multiplication operations at each node are performed. The ECC core uses a total of

25,454 LUT slices. The AES 128 computation takes 22 cycles to complete, therefore

it takes 110 nanoseconds for a complete encryption or decryption operation. It has

a footprint of 2560 LUT slices. The generated keys are stored in an on-chip volatile

memory, block RAM resources. A block RAM of 128-bit width and 512 elements is

instantiated. Key storage area overhead is 8 KB BRAM. This memory element has a

read and write speed of one cycle. Table 5.2 shoes operation speeds for ECC and AES

operations at di�erent system clock speeds, whereas Table 3 shows the transmission

times for sending and receiving messages between nodes and the between a node and

the server. This work was awarded Best Poster Award at FICS Conference 2017 in the

category of �Hardware Countermeasures�[80]. An extension of this work uses FPGA

based Arbiter PUF design for private key generation[81].

65

Table 5.4: Secure Zone API[3]

Function Name Description
generatePubKeyAuth() This function is used to generate the authentication mes-

sage for the server. It contains the public key of the node
encrypted using the shared encryption key computed to
be used with the server.

addNode() Once the server responds with an authenticated node,
this function is used to pass the encrypted public key of
the authenticated node to the secure framework, where it
can be decrypted and added to the Key Storage. It also
stores the node ID in the normal world for reference.

generateMessage() This function is passed a node ID of the receiver node
and the message to be sent. This function will instruct
the framework to encrypt the message using the shared
encryption key generated for that node.

decryptMessage() Once a node sends an encrypted message over the net-
work. This function is called, the sender node ID along
with the encrypted message is passed as arguments.

5.2 Hardware based Resource Isolation

The work in [2] and [81] protects the private keys and the entire secure communi-

cation process isolated from the rest of ECU on classical CAN. One limitation of this

work is that since it uses CAN bus based messages, it is limited by space and date rate

of the bus. Each message requires two CAN frames to be transmitted. Additionally,

the processing system has direct access to the hardware interface. In case an attacker

is able to compromise the processing system, they will have access to the interface of

the secure framework. Furthermore, in the previous work, an enrollment sends the

ids of all veri�ed nodes to all the nodes across the network. This process not only has

a space and network overhead but is also a potential threat. A compromised node

having access to all the public keys in its key storage will be able to encrypt data and

communicate with all of them.

[3] improves over the secure communication framework to include three major ad-

vancements. It uses CANFD, instead on classical CAN. CANFD allows high speed

66

Table 5.5: Overhead overview at Standard CAN connection speeds with CANFD
speed of 8mbps in normal operation

125kbps 500kbps 1 Mbps
Node sending en-
crypted message to
server

256ms 76ms 24.42 ms

Server's reply 257.37 ms 77.375 ms 47.375 ms

transfer as well as data payloads to up to 64 bytes. So, only one CANFD frame is suf-

�cient for a message transfer. To reduce the message transfer between each client and

the server, on boot the client only receives the public keys of the client it is expected

to communicate with, from the server. Additionally, to maintain isolation between

the ECU processes and the secure cryptographic IPs and key exchange, this work

employs Trusted Execution Environment (TEE). The secure framework can only be

accessed through the secure world. To provide an interface to the ECU code, this

work presents a set of Application Programming Interface (API) visible to the normal

world to handle its communication with the secure framework. A list of functions

available are described in Table 5.4. Table 5.5 shows the overhead time incurred for

authentication and typical communication operation.

5.3 Secure Code Execution

The proposed scheme detect the malicious intrusion at the time of boot, [7] and

during runtime using TPM.

5.3.1 Scenario 1: Code Execution from Read Only Memory

Traditionally, the boot code is placed in the Read Only Memory (ROM) (e.g.

BIOS). This code is copied into the RAM at the time of execution. This technique is

known as �shadowing�. However, with the advancement in high-speed memory tech-

nologies and interfaces, it is now possible to execute code from non-volatile memories

without the need to copy the code onto to RAM. It is referred to as �eXecute In

Place� (XIP) [64]. It is achievable using newer interfaces such as Quad Serial Pe-

67

ripheral Interface (SPI). Quad SPI allows a higher throughput than the classical SPI.

MCUs and the memory can be con�gured to use XIP mode. Depending on the type

of memories and the frequencies of memory accesses, the MCU and the ROM can

both be con�gured to a Random Access or Sequential (Send Instruction Only Once)

modes.

In XIP all executable code will exist in the ROM, where the ROM is mapped to

the �rst executable address of the attached MCU. For example, at address 0x0 for a

CPU. Depending on the size of the memory, higher address spaces can be mapped to

a RAM. The RAM can be used for storing dynamic structures. With this scheme, it

can be assumed that the Program Counter (PC) of the CPU can only remain within

the ROM address space. With this execution model, any memory access for code

outside this region can be considered as illegal access. A hardware monitor is used

to check the current value of the PC register. This monitor reads the value of PC

at each cycle and it screens each packet and con�rms that it is within the ROM

address space. With any address access outside this region, the MCU is considered

compromised and is logged into the system.

5.3.2 Scenario 2: Hardware-Based/Assisted Core Root of Trust Measurement

In case the executable code is on RAM, it can be modi�ed at the boot time. To

avoid the attack during the boot process, the TPM maintains the golden measure-

ments of the trusted executable code. This work proposes a TPM based application

code sealing mechanism to avoid �rmware update/modify attacks on automotive. In

this approach, code sealing is employed before the application code can be executed

on the processor.

A TPM provides a set of registers known as Platform Con�guration Registers

(PCRs). PCRs hold a Hash-based Message Authentication Code (HMAC) digest of

the operations performed on a TPM. These register values are changed only using

extend operations. Extend uses an old result, for example, HMAC from a previous

68

Figure 5.7: On the �eld code unsealing [7].

operation, concatenates the new result to it and then computes the hash value again.

This value is saved to the assigned PCR. By use of this chaining process, the resultant

is used as a veri�cation checksum.

The proposed scheme has two phases towards providing CRTM. The �rst phase is

sealing the application code. This is performed in a trusted execution environment.

A pair of public and private keys are generated on the TPM. The public key is

exported whereas the private key is stored inside the TPM. Using the pair of keys,

the application code is sealed. This process requires passing the TPM sequential

chunks of the application code, the keys generated and the policy for the PCRs

chosen for the sealing process. This process returns the encrypted sealed application

code and the computed digest values. All the keys and the digest values are stored

in the persistent area of the TPM. These areas are then made immutable with TPM

authorization policies. Figure 5.7 describes the measurable secure process in the

proposed framework.

5.4 Security Analysis

The security enhanced features of the proposed framework improves the security

at the device level and communication over the CAN bus. The framework assumes a

69

secure server for the enrollment of legitimate ECUs, and the hardware feature HELP

PUF allows the detection of any modi�cations or invasive attacks to the legitimate

ECUs, that will corrupt the key generation process and will fail the authentication

process at boot-up. Isolation mechanism allows connected ECUs to protect the keys

from illegitimate accesses via CAN and does not allow unauthorized code execution.

In the framework proposed, there is no unencrypted exchange of information. An

ECU node stores only the public key of the server. No secret or shared key is stored

on non-volatile memory the connecting nodes. This makes it resilient against probing

attacks and evades the attack where an attacker can retrieve any shared key with

physical access to a device and to the NVM.

In the event a node is compromised, the attacker will not be able to retrieve the

secret keys to any node. Furthermore, since PUFs are being used to generate keys

on each node, all the nodes have di�erent keys. As such, on compromise of a single

node, even if an attacker can retrieve a private key from one node, the private key to

the other node will still be unknown to the attacker.

In case a malicious node wants to join a secured ECU network; it will fail the

authentication process. Before the server can send the public key of this node to the

other connected ECUs, it must be authenticated. Since the malicious node's public

key is not stored in the server, the server will not authenticate it and therefore will

not communicate its ID with the other nodes. In the scenario where an attacker has

acquired the public key of a legitimate node on the network, or in case of a server

database compromise, adversary can only retrieve the public keys of participating

ECUs. Once a communication from the adversary is initiated, the legitimate node

will reject it since public key was not initially sent by the server.

5.5 Conclusion

This research investigates the threat models associated with internal vehicular net-

work communication using CAN Bus and propose a secure framework incorporating

70

security primitives, including PUF, hardware isolation mechanism to protect devices

from illegitimate access and hardware based authentication protocols to have trusted

and secure communication. The framework is implemented with hardware based au-

thentication and point-to-point encrypted communication for ECUs. The research

provides an in-depth description, implementation and performance analysis in terms

of timing analysis and area overhead.

CHAPTER 6: Smart Grid Security

Recently, power system's security has gotten much attention due to the various

attacks that have surfaced[82][83] [84]. There have been instances of attackers gaining

remote access to the power grids causing data/power theft[85] and extreme cases cause

power outages, blackouts and physical harm.

6.1 Secure Key Provisioning

[4] proposes a secure framework for key management and secure communication

over smart grids using a hardware-based cryptographic processor. The framework

protects the con�dentiality and integrity of data between each node and additionally

provides authentication for the communicating parties.

ProcessorI/O
Trusted
Pla�orm
Module

Memory

Network
Hardware

Network

Boot ROM

Figure 6.1: Secure architecture for Smart Grid[4].

In the presented architecture, combinations of cryptographic functions are used to

ensure not only end to end communication security, but also platform security. The

proposed framework assumes multiple nodes to be servicing a target area. Nodes are

connected through a network that can be wired or wireless and is left at the discretion

72

of the designer. For each area which is serviced by a group of nodes, there exists a

server that acts as an area Certi�cation Authority(CA) and a master node. The

server node is assumed to be secure. Any number of data acquisition or actuation

services can be running on the nodes and is dependent on the application and the

roles. Each node on the network is equipped with a TPM 2.0 which will act as a root

of trust for the node it is attached with. All the nodes hold the public key of the

certi�cate authority in the TPM. The basic architecture at each node is described in

Figure 6.1.

Node 1 Node N CA...

Node Public Key

Signed Cer�ficate

Figure 6.2: Certi�cate generation[4].

Before a node can be deployed, its private and public key pair is generated in a

trusted environment. Simultaneously, the private and public key pair of the area

is generated at the CA. The private keys of the nodes and the public key of the

area CA are stored on the TPM. To ensure the security of these keys, TPM provides

authenticated access to override or to delete existing keys using ownership. Therefore,

on deployment, the security of the keys can be guaranteed. Additionally, the public

keys of all the nodes are signed by the CA using its private key. The generated

certi�cate is stored at each respective node. Figure 6.2 shows the interaction. Unlike

the private keys, there is no requirement to store the certi�cates in any secure storage,

and thus the certi�cates can be stored in any local storage.

73

Node 1 Node 2

Request for communica�on

Send Public Key + Cer�ficate

Verify Signature

alt

[Signature verified at both Node 1 and 2]

Acknowledgment

Send Public Key + Cer�ficate

Verify Signature

CA

Encrypted Message

Encrypted message

else if [Signature not verified at Node 1]

No�fy

else

No�fy

Figure 6.3: Secure communication channel establishment[4].

Once a node has been deployed in the �eld, to initiate communication between

nodes, they both exchange their stored CA-signed certi�cates. The CA generated

signature of the public key of the communicating node is veri�ed against public key

of the CA stored in the TPM. The process is illustrated in Figure 6.3.

Once the identity has been veri�ed, the two nodes communicate by encrypting the

tra�c. For implementing forward secrecy, once the session has been established, both

the nodes generate and exchange a pair of ephemeral session keys used for encryp-

tion. The public keys are exchanged unencrypted along with the certi�cates. The

ephemeral keys are discarded once the session ends. To deter from replay attacks,

each encrypted packet contains a unique nonce, which is also veri�ed by the receiving

party before accepting a message. For maintaining the integrity of messages commu-

nicated between nodes, SHA256 of the plaintext message is computed on the TPM.

This hash is appended to the encrypted message before transmission.

Once the message packet is received on the other end, the message is decrypted, and

the integrity is veri�ed. During digital certi�cate and message integrity veri�cation,

if the signature or the hash does not match respectively, the CA is noti�ed. The CA

74

may notify the backend and blacklist the reported node as compromised, barring it

from further communication.

6.1.1 Experimental Setup

Figure 6.4: Smart Grid test bed[4].

A testbed of Hardware-in-the-Loop (HIL) simulation is emulated with ARM-based

microprocessors using Raspberry Pi 3 (RPi3) platform. The nodes are integrated

to In�neon TPM 2.0 SLB9670 using SPI interface to add hardware-assisted security

to the platform. The con�guration of multiple nodes over a network of four nodes

was set up, where one of the nodes acts as a master and the rest of the three as

clients. A snapshot of the con�guration is given in Figure 6.4. Linux kernel versions

4.4 and upwards provide the driver stack for TPM 2.0. Later versions of the kernel

have included a kernel-based resource manager, whose task is to provide multiple user

access and access context tracking etc.

To implement forward secrecy and to demonstrate TPM's RSA capabilities, ephemeral

RSA 2048 asymmetric encryption is used to encrypt the tra�c. To generate the pri-

mary key of a hierarchy, the TPM2_CREATEPRIMARY structure is used. Based

on the primary key created, the TPM2_CREATE structure is used to generate key

pairs. Once the key pairs are generated, they are returned to the host machine. This

pair is loaded onto the TPM's volatile memory using the TPM2_LOAD structure. To

store the pair of keys on the tamper-resistant storage, the TPM2_EVICTCONTROL

75

Figure 6.5: TPM based RSA encryption[4].

structure is used. Figure 6.5 and Figure �g:smartgrid-tpm-rsa-enc-dec shows the TPM

based RSA key generation and encryption and decryption.

Figure 6.6: TPM based RSA encryption and decryption process[4].

For certi�cates signing, ECC NISTP256 curve is used for demonstration of its high

speed and low overhead (256 bits). The industry adopted transport layer protocol is

OpenSSL for certi�cate generation within the network or by a third-party certi�ca-

tion authority. A challenge of using TPM based keys is to be able to use them with

OpenSSL. Figure 8 shows the engine integration on the OpenSSL library to be able

to communicate the keys generated by the TPM. The engine converts TPM based

structures to OpenSSL accessible Distinguished Encoding Rules (DER) and Privacy

Enhanced Mail (PEM) formats. Additional tools were created for self-signing certi�-

cates on an area CA. The block diagram of this tool is given in Figure 6.7.

76

Figure 6.7: TPM based certi�cate generation[4].

The key ECC parameters are incorporated into the certi�cate, an example is shown

in Figure 6.8. An example of the blob that is communicated to the OpenSSL is shown

in Figure 6.9 and Figure 11 shows the certi�cate generation process at the certi�cation

authority using OpenSSL.

Figure 6.8: ECC Curve Parameters[4].

6.1.2 Performance Analysis

For this work, a performance analysis was performed, and the results gathered are

assembled in Table 6.1. The TPM hardware provides a reliable trust anchor for the

host machine. The authors in [86], proposed an RSA implementation which takes 420

77

Figure 6.9: ECC Key Blob[4].

Figure 6.10: Certi�cate generation[4].

milliseconds to compute RSA encryption for 10Kilobytes of data on 32 bit Arduino

Mega 2560R3 microcontroller. TPM takes 3.08 seconds to compute the encryption

for the same sized block. Micro-ECC [87] is an ECC implementation meant for

microcontrollers[88].

Table 6.1: Average operation times for 100 runs[4].

NISTP256 RSA
Time to generate key pair 0.52s 0.472s

Time to generate signature (32 bytes) packet 0.56s 0.908s
Time to encrypt (32 bytes) packet N/A 0.308s

6.2 Design for secure recon�gurable power converters

Distributed Energy Resources (DER) such as solar photovoltaic (PV) systems, wind

power systems, battery energy storage systems (BESS) utilize power converters such

as dc-ac inverters and dc-dc converters to interface with the power grid. These con-

verters use power electronic semiconductor devices, gate drives, sensors, and digital

controllers. Functionally, the PV inverters process dc available power from the PV

arrays and supply the real power to the grid. The battery inverters process bidirec-

78

tional power, enabling the charging and discharging of the batteries. Recon�gurable

architectures such as Field Programmable Gate Arrays (FPGA) allow for �ner con-

trol of power converters than a processor-based system. Logic on the FPGAs can be

programmed to react to events at a higher speed than the processor-based system

[89].

FPGAs o�er signal processing capabilities in the form of Digital Signal Processing

(DSP) blocks that are used in conditioning input /output signals[90]. FPGAs operate

on concurrent logic as opposed to microprocessor-based systems which, if e�ectively

employed can provide higher e�cient control [91]. Additionally, the logic design on

the SRAM based FPGAs can be recon�gured on runtime. This recon�gurability

allows FPGAs based in-�eld device to be updated with the changing requirements.

The open source and recon�gurable hardware extend the service life of the device.

Based on [4], [8] proposes a design for secure FPGA based power converters. A

TPM based secure communication and certi�cation framework is proposed in the

design to mitigate attacks that may corrupt the communication between the backend

SCADA system and a recon�gurable power converter. An attacker having access

to the smart grid network can perform any number of remote attacks on a power

converter: (1) An attacker may pose as the SCADA server to a connected power

converter and send erroneous command inputs to the power converter, a�ecting its

stability; (2) a third-party power converter joining the grid network may eavesdrop

on the network communication or even attempt attacks on other connected nodes; (3)

FPGA based power converters allow recon�guration of hardware as well as software.

For updating the system, the backend can also send hardware (bitstream) or software

(�rmware) updates. A malicious entity posing as a server can push tainted software

to a power converter that may pose a threat either to the power converter or to the

connected network.

Any device, �rst or third party, before is added to the grid must �rst be enrolled.

79

Figure 6.11: Recon�gurable secure power electronic converter framework[8].

The enrollment process is performed in a trusted environment. This can be a utility

o�ce for the grid. Identity of each power converter is established using asymmetric

keys. Lightweight key provisioning schemes e.g. Elliptic Curve Digital Signature

Algorithm (ECDSA) and other schemes are evaluated for the framework. ECDSA

scheme uses a pair of public and private key to establish identity. The key provisioning

scheme includes enrollment and regeneration for identi�cation and authentication.

During the enrollment process, the onboard TPM is used to �rst generate a primary

key. This primary is used as a root key for the further key generation processes. TPM

2.0 o�ers a structure called TPM2_CREATE_PRIMARY.

This structure creates a primary key and returns the context for the key to the host

machine. The key itself does not leave the TPM. Based on this key, using the TPM's

TPM2_CREATE structure, set of a private and public key is generated. The private

key is stored in the TPM's persistent tamper resistant memory using NV_WRITE

structure. The public key is stored at the Registration Server(RS) for in�eld reference

and authentication. Additionally, the server public key is stored on the node's TPM's

memory. Enrollment ensures that no unauthorized node can become a part of the

80

Node Authentication

P
ow

er

co
nv

er
te

r
R

eg
is

tr
at

io
n

S
er

ve
r(

R
S

)
F

ie
ld

 S
er

ve
r

(F
S

)
On deploymentDuring registration

Generate Keys
Generate Certificate
Signing Request for

RS

Generate and sign
certificate using

private key

Store Certificate
against Node
information

Send certificate
to node and
relevant FS

Store Certificate
in TPM

Store Certificate

Node Boots up
and locates FS

Establish
TLS with FS

Establish TLS
with Power
converter

Send certificate
to FS

Verify
certificate of

Power converter

Is node
authorized

Blacklist Power
converter

False

Continue
communication with

Power Converter
True

Figure 6.12: Node Authorization Scheme for Power Converters[8].

network. Required connection settings are also transferred to the client node. This

may include the con�guration that may be required for a client node to connect with

the grid server.

Once a power converter has been enrolled with the RS, it can now be brought

online as a part of the grid network. Using the network and server con�guration

passed to the client during the enrollment phase, the client attempts to connect with

the grid. A client locates its assigned in-�eld server (FS) on the grid network. Before

deployment, the RS sends every FS, the certi�cates of the end nodes FS expect

communication with, on the �eld. Once FS is �rst located by an end node, the

end node establishes a TLS session with the FS. For encryption, an end node uses

TPM to create ephemeral encryption keys. TPM 2.0 speci�cation supports ECDH

based ephemeral key creation support using the command TPM2_EC_Ephemeral to

create a pair of ephemeral keys and TPM2_ECDH_KeyGen to generate a symmetric

encryption key from the node's private key and the public key of the FS.

On symmetric key generation, the TPM's AES encryption engine is now used for

encrypting and decrypting session data. Once an encrypted session has been estab-

lished, both the nodes exchange their certi�cates. The �eld server now authenticates

the connecting power converter node by verifying the RS signed certi�cate. If the

identity fails to verify, the �eld Server blacklists the o�ending node by sending a

81

Figure 6.13: Iviea Atlas-I-Z8 board for Power Converter [8].

request to the registration server. This scheme is illustrated in Figure 6.13.

The presented architecture in [8] has been implemented on an Iviea Atlas-I-Z8

FPGA board [92] with Blackwing Carrier board. This board is equipped with Xilinx

UltraScale+ ZU2CG FPGA core which has a dedicated PS and a PL region. The

Controller Block design for the power converter is a combination of code implemen-

tation on the Processing System and logic implementation on the PL logic. The

design is using a vendor provided Linux distribution with Kernel version 4.9. Power

electronics control logic is implemented on the PL. Control logic implements a Pulse

Width Modulation (PWM) which can control a DC to AC inverter. The design uses

In�neon TPM 2.0 SLB9670 as a security platform, which is connected to the FPGA

board using SPI. IBM's TPM Software Stack (TSS) is used to build tools required

for accomplishing our framework.

6.3 Security Analysis

The TPM based secure framework provides secure key provisioning, secure boot

process for smart grid devices, authentication and secure communication. The keys

are generated and stored on a node's TPM in a trusted and a tamper-resistant envi-

ronment, where the primary private key never leaves the node, and ephemeral keys

are used for secure communication sessions. In case an attacker gets unauthorized

access to the node, the private key stays safe and inaccessible. All the updates to the

82

keys are made in a trusted environment and/or by a trusted entity.

The secure communication halts the man in the middle and data spoo�ng is mit-

igated by the data signatures using the one-way hash functions. The secure boot

guarantees the system is booted into a known state. To provide runtime guarantee,

the FSBL can be extended to implement a watchdog-based interrupt to timely ver-

ify the integrity of the code that is executed on the system. The CA is responsible

for signing the keys and the messages are signed using digital signatures. The client

nodes periodically query the CA for an update, to access the new enrolled public keys

of the area nodes. In case an update is available, it can simply be overwritten over

the existing application package to add/update nodes.

6.4 Conclusion

This work demonstrates the state of security of the current power grid. The power

grid is composed of edge devices that are resource constrained. The communication

needs are and the requirement for security in such resource-constrained devices is

presented. Based on the requirements, a secure communication framework is pre-

sented that uses modern security constructs such as TPMs, while also performing

the necessary power processing and grid support functionality. The proposed secure

framework can be extended beyond power electronic converters, to critical power

components such as breakers, relays, and other distribution grid components.

CHAPTER 7: Conclusions and Future Work

Advancement in recon�gurable architectures, Internet of Things (IoT) and resource

constrained devices have increased the complexity of these devices. This has lead to

increased reliance on such devices for more tasks. Based on the application area,

vendors require that their application code and hardware design is unchanged once

the device is placed on the �eld. As existing works presented in this research have been

shown to be inadequate for current trends, this work mitigates their shortcomings by

presenting innovative schemes and frameworks.

Secure boot schemes for the bitstream ensure that any bitstream that is loaded onto

the FPGA can �rst be veri�ed for security that it came from a valid and integrity

can be veri�ed. The scheme presented in Chapter 3 builds on the limitation of the

current solutions. Existing works implement security as a partition on the application

bitstream. This approach �rstly limits the area for application logic, secondly opens

a door for malicious application logic IP to access sensitive data from the security

partition. The solution presented in this research instead relies on well-established

hardware based cryptographic solutions such as TPMs to provide a root of trust and

an isolated secure environment.

Considering future work for this research, one direction is extending the role of

security into runtime domain by check-pointing output responses generated from the

application logic. A secure process thread should routinely be able to read the state

of the circuit, a cumulative hash can be computed which can become one of the inputs

in the key update scheme.

Bitstream based logic obfuscation scheme presented in Chapter 4 is a novel medium

of providing runtime bitstream security. Existing security methods have considered

84

the bitstream as a monolithic block of data. However, this research has opened an

avenue to implement intra-bitstream security. To apply bitstream obfuscation, no

knowledge of the application is required and only the generated bitstream is used.

This aids system designers that want a generic solution to provide runtime security.

However, as shown, to improve runtime application security a logic locking scheme is

also introduced. This provides an additional design based security.

A potential future research direction is using RTL design in the generation of bit-

stream obfuscated bitstream. Markers within the RTL code can provide metadata to

the bitstream obfuscation process. These markers can indicate which LUT informa-

tion should be corrupted and which ones should be blanked out. Additionally, the

markers can also be used to exclude design elements from the obfuscation process.

85

REFERENCES

[1] Xilinx Inc., �UG 470 - 7 Series FPGAs Con�guration.� [On-
line]. Available: https://www.xilinx.com/support/documentation/user_guides/
ug470_7Series_Con�g.pdf

[2] A. S. Siddiqui, Y. G. J. Plusquellic, and F. Saqib, �Secure communication over
CANBus,� in Midwest Symposium on Circuits and Systems, vol. 2017-Augus.
IEEE, aug 2017, pp. 1264�1267.

[3] A. S. Siddiqui, C.-C. Lee, W. Che, J. Plusquellic, and F. Saqib, �Secure Intra-
Vehicular Communication over CANFD,� in IEEE Asian Hardware-Oriented Se-
curity and Trust (AsianHOST), Beijing, China, 2017.

[4] A. S. Siddiqui, Y. Gui, D. Lawrence, S. Laval, J. Plusquellic, M. Manjrekar,
B. Chowdhury, and F. Saqib, �Hardware assisted security architecture for smart
grid,� in Proceedings: IECON 2018 - 44th Annual Conference of the IEEE In-
dustrial Electronics Society. IEEE, oct 2018, pp. 2890�2895.

[5] A. S. Siddiqui, G. N. Shirley, S. R. Joseph, Y. Gui, J. Plusquellic, M. V. Dijk, and
F. Saqib, �Multilayer camou�aged secure boot for SoCs,� in Microprocessor/SoC
Test, Security & Veri�cation (MTV19). IEEE, 2019.

[6] W. Che, F. Saqib, and J. Plusquellic, �PUF-based authentication,� in 2015
IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, nov 2015, pp. 337�344.

[7] Y. Gui, A. S. Siddiqui, and F. Saqib, �Hardware Based Root of Trust for Elec-
tronic Control Units,� in Conference Proceedings - IEEE SOUTHEASTCON,
vol. 2018-April. IEEE, apr 2018, pp. 1�7.

[8] A. S. Siddiqui, P. R. Chowdhury, Y. Gui, M. Manjrekar, S. Essakiappan, and
F. Saqib, �Design of Secure Recon�gurable Power Converters,� in 2019 IEEE
CyberPELS, CyberPELS 2019, Knoxville, TN, 2019.

[9] K. Lasse Lueth, �State of the IoT 2018: Number of IoT devices now at 7B -
Market accelerating,� 2018. [Online]. Available: https://iot-analytics.com/state-
of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/

[10] �Meet FPGA: The Tiny, Powerful, Hackable Bit of ...� [Online].
Available: https://www.darkreading.com/edge/theedge/meet-fpga-the-tiny-
powerful-hackable-bit-of-silicon-at-the-heart-of-iot/b/d-id/1335730

[11] Wise Guy Reports, �Global SRAM FPGA Market Report 2019 - Mar-
ket Size, Share, Price, Trend and Forecast- WiseGuyReports.� [Online].
Available: https://www.wiseguyreports.com/reports/4144914-global-sram-fpga-
market-report-2019-market-size-share-price-trend-and-forecast

https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/
https://www.darkreading.com/edge/theedge/meet-fpga-the-tiny-powerful-hackable-bit-of-silicon-at-the-heart-of-iot/b/d-id/1335730
https://www.darkreading.com/edge/theedge/meet-fpga-the-tiny-powerful-hackable-bit-of-silicon-at-the-heart-of-iot/b/d-id/1335730
https://www.wiseguyreports.com/reports/4144914-global-sram-fpga-market-report-2019-market-size-share-price-trend-and-forecast
https://www.wiseguyreports.com/reports/4144914-global-sram-fpga-market-report-2019-market-size-share-price-trend-and-forecast

86

[12] K. Ashton, �That 'Internet of Things' Thing,� RFiD Jour-
nal, 2009. [Online]. Available: http://www.itrco.jp/libraries/RFIDjournal-
ThatInternetofThingsThing.pdf

[13] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, �IoT-Based Big Data Storage
Systems in Cloud Computing: Perspectives and Challenges,� IEEE Internet of
Things Journal, vol. 4, no. 1, pp. 75�87, 2017.

[14] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, �IoT Middle-
ware: A Survey on Issues and Enabling Technologies,� IEEE Internet of Things
Journal, vol. 4, no. 1, pp. 1�20, 2017.

[15] É. Morin, M. Maman, R. Guizzetti, and A. Duda, �Comparison of the Device
Lifetime in Wireless Networks for the Internet of Things,� IEEE Access, vol. 5,
pp. 7097�7117, 2017.

[16] T. A. Youssef, M. E. Hariri, N. Bugay, and O. A. Mohammed, �IEC 61850: Tech-
nology standards and cyber-threats,� in EEEIC 2016 - International Conference
on Environment and Electrical Engineering. IEEE, jun 2016, pp. 1�6.

[17] R. Isermann, R. Schwarz, and S. Stölzl, �Fault-tolerant drive-by-wire systems,�
IEEE Control Systems Magazine, vol. 22, no. 5, pp. 64�81, oct 2002.

[18] O. Brandl, �V2X tra�c management,� Elektrotechnik und Informationstechnik,
vol. 133, no. 7, pp. 353�355, nov 2016.

[19] A. Greenberg, �Hackers Gain Direct Access to US Power Grid Controls,� Wired,
pp. 1�8, 2017. [Online]. Available: https://www.wired.com/story/hackers-gain-
switch-�ipping-access-to-us-power-systems/

[20] T. Brewster, �Marriott Hackers Stole Data On 500 Million Guests -
Passports And Credit Card Info Included,� Forbes, pp. 19�22, 2018.
[Online]. Available: https://www.forbes.com/sites/thomasbrewster/2018/11/
30/marriott-admits-hackers-stole-data-on-500-million-guests/

[21] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, �StackGuard: Automatic adaptive detection
and prevention of bu�er-over�ow attacks,� Usenix, p. 5, 1998.

[22] M. Prandini and M. Ramilli, �Return-oriented programming,� pp. 84�87, nov
2012.

[23] Xilinx, �Zynq-7000 All Programmable SoC Software Developers Guide,�
Tech. Rep., 2013. [Online]. Available: https://www.xilinx.com/support/
documentation/user_guides/ug821-zynq-7000-swdev.pdf

[24] Xilinx Inc., �Zynq-7000 All Programmable SoC Secure Boot,� 2014. [On-
line]. Available: https://www.xilinx.com/support/documentation/user_guides/
ug1025-zynq-secure-boot-gsg.pdf

http://www.itrco.jp/libraries/RFIDjournal-That Internet of Things Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That Internet of Things Thing.pdf
https://www.wired.com/story/hackers-gain-switch-flipping-access-to-us-power-systems/
https://www.wired.com/story/hackers-gain-switch-flipping-access-to-us-power-systems/
https://www.forbes.com/sites/thomasbrewster/2018/11/30/marriott-admits-hackers-stole-data-on-500-million-guests/
https://www.forbes.com/sites/thomasbrewster/2018/11/30/marriott-admits-hackers-stole-data-on-500-million-guests/
https://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/support/documentation/user_guides/ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1025-zynq-secure-boot-gsg.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1025-zynq-secure-boot-gsg.pdf

87

[25] Y. Gui, S. Mohan Tamore, A. S. Siddiqui, and F. Saqib, �Key Update Counter-
measure for Correlation-Based Side-Channel Attacks,� Journal of Hardware and
Systems Security, 2020.

[26] C. Herder, M. D. Yu, F. Koushanfar, and S. Devadas, �Physical unclonable
functions and applications: A tutorial,� pp. 1126�1141, aug 2014.

[27] A. Seshadri, A. Perrig, L. Van Doom, and P. Khosla, �SWATT: SoftWare-based
ATTestation for embedded devices,� in Proceedings - IEEE Symposium on Secu-
rity and Privacy, vol. 2004. IEEE, 2004, pp. 272�282.

[28] �TPM Library Speci�cation.� [Online]. Available: http://
www.trustedcomputinggroup.org/resources/tpm_library_speci�cation

[29] D. R. Engler, M. F. Kaashoek, and J. W. O'Toole, �The operating system kernel
as a secure programmable machine,� ACM SIGOPS Operating Systems Review,
vol. 29, no. 1, pp. 78�82, 1995.

[30] W. Arbaugh, D. Farber, and J. Smith, �A secure and reliable bootstrap archi-
tecture,� in Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat.
No.97CB36097). IEEE Comput. Soc. Press, 1997, pp. 65�71.

[31] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, �Internet X.509 Public Key Infrastructure Certi�cate and Certi�cate
Revocation List (CRL) Pro�le,� Tech. Rep., 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5280https://www.rfc-editor.org/info/rfc5280

[32] G. Kim and E. Spa�ord, �Experiences with tripwire: Using integrity checkers for
intrusion detection,� 1994.

[33] A. S. Siddiqui, C. C. Lee, and F. Saqib, �Hardware based protection against
malwares by PUF based access control mechanism,� in Midwest Symposium on
Circuits and Systems, vol. 2017-Augus, 2017, pp. 1312�1315.

[34] �Trusted Boot - Gentoo Wiki.� [Online]. Available: https://wiki.gentoo.org/
wiki/Trusted_Boot

[35] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl,
�TyTAN,� in Proceedings of the 52nd Annual Design Automation Conference on
- DAC '15. New York, New York, USA: ACM Press, 2015, pp. 1�6.

[36] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, �TrustLite: a security
architecture for tiny embedded devices,� in Proceedings of the Ninth European
Conference on Computer Systems - EuroSys '14. New York, New York, USA:
ACM Press, 2014, pp. 1�14.

[37] T. Abera, N. Asokan, L. Davi, J. E. Ekberg, T. Nyman, A. Paverd, A. R. Sadeghi,
and G. Tsudik, �C-FLAT: Control-�ow attestation for embedded systems soft-
ware,� in Proceedings of the ACM Conference on Computer and Communications

http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
https://tools.ietf.org/html/rfc5280 https://www.rfc-editor.org/info/rfc5280
https://wiki.gentoo.org/wiki/Trusted_Boot
https://wiki.gentoo.org/wiki/Trusted_Boot

88

Security, vol. 24-28-Octo. New York, New York, USA: ACM Press, 2016, pp.
743�754.

[38] X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri, �ConFirm: Detecting
�rmware modi�cations in embedded systems using Hardware Performance Coun-
ters,� in 2015 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 2015. IEEE, nov 2016, pp. 544�551.

[39] NXP, �Secure Boot on i.MX 50, i.MX 53, i.MX 6 and i.MX 7 Series using
HABv4,� 2018. [Online]. Available: https://www.nxp.com/docs/en/application-
note/AN4581.pdf

[40] Xilinx Inc., �Zynq UltraScale+ Device Technical Reference Manual
UG1085,� 2018. [Online]. Available: https://www.xilinx.com/content/dam/
xilinx/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

[41] �Developing Tamper-Resistant Designs with Zynq UltraScale+ Devices,�
2018. [Online]. Available: https://www.xilinx.com/support/documentation/
application_notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf

[42] D. Owen Jr., D. Heeger, C. Chan, W. Che, F. Saqib, M. Areno, and J. Plusquellic,
�An Autonomous, Self-Authenticating, and Self-Contained Secure Boot Process
for Field-Programmable Gate Arrays,� Cryptography, vol. 2, no. 3, p. 15, jul
2018.

[43] I. Lebedev, K. Hogan, and S. Devadas, �Invited paper: Secure boot and remote
attestation in the sanctum processor,� in Proceedings - IEEE Computer Security
Foundations Symposium, vol. 2018-July. IEEE, jul 2018, pp. 46�60.

[44] Xilinx and Inc, �Using Encryption and Authentication to Secure an
UltraScale/UltraScale+ FPGA Bitstream Application Note (XAPP1267),�
2017. [Online]. Available: https://www.xilinx.com/support/documentation/
application_notes/xapp1267-encryp-efuse-program.pdf

[45] A. Carelli, C. A. Cristofanini, A. Vallero, C. Basile, P. Prinetto, and S. Di Carlo,
�Securing bitstream integrity, con�dentiality and authenticity in recon�gurable
mobile heterogeneous systems,� in 2018 IEEE International Conference on Au-
tomation, Quality and Testing, Robotics, AQTR 2018 - THETA 21st Edition,
Proceedings. IEEE, may 2018, pp. 1�6.

[46] N. Jacob, J. Heyszl, A. Zankl, C. Rolfes, and G. Sigl, �How to break secure boot
on FPGA SoCs through malicious hardware,� in Lecture Notes in Computer
Science (including subseries Lecture Notes in Arti�cial Intelligence and Lecture
Notes in Bioinformatics), vol. 10529 LNCS. Springer, Cham, 2017, pp. 425�442.

[47] J. A. Roy, F. Koushanfar, I. L. Markov, J. Roy A., and I. Markov L., �EPIC:
Ending Piracy of Integrated Circuits,� 2008 Design, Automation and Test in
Europe, vol. 43, no. 10, pp. 1069�1074, 2008.

https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://www.nxp.com/docs/en/application-note/AN4581.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/content/dam/xilinx/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf

89

[48] S. M. Plaza and I. L. Markov, �Protecting integrated circuits from piracy with
test-aware logic locking,� in IEEE/ACM International Conference on Computer-
Aided Design, Digest of Technical Papers, ICCAD, vol. 2015-Janua, no. January.
IEEE, 2015, pp. 262�269.

[49] P. Subramanyan, S. Ray, and S. Malik, �Evaluating the security of logic en-
cryption algorithms,� in Proceedings of the 2015 IEEE International Symposium
on Hardware-Oriented Security and Trust, HOST 2015. IEEE, may 2015, pp.
137�143.

[50] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, �SARLock: SAT
attack resistant logic locking,� in Proceedings of the 2016 IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2016. IEEE, may
2016, pp. 236�241.

[51] Y. Xie and A. Srivastava, �Mitigating SAT attack on logic locking,� in Lecture
Notes in Computer Science (including subseries Lecture Notes in Arti�cial Intel-
ligence and Lecture Notes in Bioinformatics), vol. 9813 LNCS. Springer, Berlin,
Heidelberg, 2016, pp. 127�146.

[52] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, �AppSAT: Ap-
proximately deobfuscating integrated circuits,� in Proceedings of the 2017 IEEE
International Symposium on Hardware Oriented Security and Trust, HOST 2017.
IEEE, may 2017, pp. 95�100.

[53] F. Yang, M. Tang, and O. Sinanoglu, �Stripped Functionality Logic Locking with
Hamming Distance-Based Restore Unit (SFLL-HD)-Unlocked,� IEEE Transac-
tions on Information Forensics and Security, vol. 14, no. 10, pp. 2778�2786, oct
2019.

[54] S. Schmidt, M. Tausig, M. Hudler, and G. Simhandl, �Secure Firmware Update
Over the Air in the Internet of Things Focusing on Flexibility and Feasibility,�
in Internet of Things Software Update Workshop (IoTSU), At Dublin, no. June,
2016.

[55] H. Chandra, E. Anggadjaja, P. S. Wijaya, and E. Gunawan, �Internet of Things:
Over-the-Air (OTA) �rmware update in Lightweight mesh network protocol for
smart urban development,� in Proceedings - Asia-Paci�c Conference on Com-
munications, APCC 2016, 2016, pp. 115�118.

[56] C. E. Andrade, S. D. Byers, V. Gopalakrishnan, E. Halepovic, M. Majmundar,
D. J. Poole, L. K. Tran, and C. T. Volinsky, �Managing massive �rmware-over-
the-air updates for connected cars in cellular networks,� in CarSys 2017 - Pro-
ceedings of the 2nd ACM International Workshop on Smart, Autonomous, and
Connected Vehicular Systems and Services, co-located with MobiCom 2017. New
York, New York, USA: ACM Press, 2017, pp. 65�72.

90

[57] V. Zimmer and M. Krau, �Establishing the root of trust,�
2016. [Online]. Available: http://www.ue�.org/sites/default/�les/resources/
UEFIRoTwhitepaper_Final8816(003).pdf

[58] R. Wilkins and B. Richardson, �Ue� Secure Boot in
Modern Computer Security Solutions,� UEFI Forum, 2013.
[Online]. Available: http://www.ue�.org/sites/default/�les/resources/
UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf

[59] �Secure the Windows 10 boot process | Microsoft Docs.� [Online].
Available: https://docs.microsoft.com/en-us/windows/security/information-
protection/secure-the-windows-10-boot-process

[60] J. Zhang, Y. Lin, and G. Qu, �Recon�gurable Binding against FPGA Replay At-
tacks,� ACM Transactions on Design Automation of Electronic Systems, vol. 20,
no. 2, pp. 1�20, mar 2015.

[61] Xilinx, �AXI Hardware ICAP.� [Online]. Available: https://www.xilinx.com/
products/intellectual-property/axi_hwicap.html

[62] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, �Hardware trojan
insertion by direct modi�cation of FPGA con�guration bitstream,� IEEE Design
and Test, vol. 30, no. 2, pp. 45�54, apr 2013.

[63] NIST, �RECOMMENDED ELLIPTIC CURVES FOR FEDERAL GOVERN-
MENT USE,� 1999.

[64] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, �A minimalist ap-
proach to Remote Attestation,� in Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), 2015.

[65] �WebHome - U-Boot - DENX.� [Online]. Available: https://www.denx.de/wiki/
U-Boothttp://www.denx.de/wiki/U-Boot/WebHome

[66] AVNET, �ZedBoard | Zedboard.� [Online]. Available: http://zedboard.org/
product/zedboard

[67] �SLB 9670VQ2.0 - In�neon Technologies.� [Online]. Avail-
able: https://www.in�neon.com/cms/en/product/security-smart-card-
solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/

[68] Xilinx and Inc, �Programming ARM TrustZone Architecture on the Xilinx
Zynq7000 All Programmable SoC User Guide (UG1019),� 2014. [On-
line]. Available: https://www.xilinx.com/support/documentation/user_guides/
ug1019-zynq-trustzone.pdf

[69] J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, �SACHa: Self-Attestation
of Con�gurable Hardware,� in Proceedings of the 2019 Design, Automation and
Test in Europe Conference and Exhibition, DATE 2019. IEEE, mar 2019, pp.
746�751.

http://www.uefi.org/sites/default/files/resources/UEFI RoT white paper_Final 8 8 16 (003).pdf
http://www.uefi.org/sites/default/files/resources/UEFI RoT white paper_Final 8 8 16 (003).pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://docs.microsoft.com/en-us/windows/security/information-protection/secure-the-windows-10-boot-process
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://www.xilinx.com/products/intellectual-property/axi_hwicap.html
https://www.denx.de/wiki/U-Boot http://www.denx.de/wiki/U-Boot/WebHome
https://www.denx.de/wiki/U-Boot http://www.denx.de/wiki/U-Boot/WebHome
http://zedboard.org/product/zedboard
http://zedboard.org/product/zedboard
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-tpm/slb-9670vq2.0/
https://www.xilinx.com/support/documentation/user_guides/ug1019-zynq-trustzone.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1019-zynq-trustzone.pdf

91

[70] M. Ender, M. Wilhelm, P. Swierczynski, P. M. Knopp, S. Wallat, and C. Paar,
�Insights into the mind of a Trojan designer: The challenge to integrate a trojan
into the bitstream,� in Proceedings of the Asia and South Paci�c Design Automa-
tion Conference, ASP-DAC. Institute of Electrical and Electronics Engineers
Inc., jan 2019, pp. 112�119.

[71] S. Wallat, N. Albartus, S. Becker, M. Ho�mann, M. Ender, M. Fyrbiak,
A. Drees, S. Maaen, and C. Paar, �Highway to HAL: Open-Sourcing the
First Extendable Gate-Level Netlist Reverse Engineering Framework,� in ACM
International Conference on Computing Frontiers 2019, CF 2019 - Proceedings,
2019, pp. 392�397. [Online]. Available: https://github.com/emsec/hal

[72] SymbiFlow, �SymbiFlow - the GCC of FPGAs.� [Online]. Available:
https://symbi�ow.github.io/

[73] �SymbiFlow/prjxray: Documenting the Xilinx 7-series bit-stream format.�
[Online]. Available: https://github.com/SymbiFlow/prjxray

[74] J. Aarestad, P. Ortiz, J. Plusquellic, and D. Acharyya, �HELP: A hardware-
embedded delay PUF,� IEEE Design and Test, vol. 30, no. 2, pp. 17�25, apr
2013.

[75] W. Che, M. Martin, G. Pocklassery, V. Kajuluri, F. Saqib, and J. Plusquellic,
�A Privacy-Preserving, Mutual PUF-Based Authentication Protocol,� Cryptog-
raphy, vol. 1, no. 1, p. 3, nov 2016.

[76] D. Johnson, A. Menezes, and S. Vanstone, �The Elliptic Curve Digital Signa-
ture Algorithm (ECDSA),� International Journal of Information Security, vol. 1,
no. 1, pp. 36�63, aug 2001.

[77] C. Miller and C. Valasek, �Remote Exploitation of an Unaltered Passenger Ve-
hicle,� Black Hat USA, 2015.

[78] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, �Poster: Hardware based
security enhanced framework for automotives,� in 2016 IEEE Vehicular Network-
ing Conference (VNC). IEEE, dec 2016, pp. 1�2.

[79] W. Che, V. Kajuluri, M. Martin, F. Saqib, and J. Plusquellic, �Analysis of
Entropy in a Hardware-Embedded Delay PUF,� Cryptography, vol. 1, no. 1, p. 8,
jun 2017.

[80] FICS, �2017 FICS Research Conference Poster Winners - Florida Insti-
tute for Cybersecurity Research - University of Florida,� 2017. [Online].
Available: https://�cs.institute.u�.edu/2017-�cs-research-conferenbce-poster-
winners/?doing_wp_cron=1564510713.2381839752197265625000

[81] A. S. Siddiqui, Y. Gui, J. Plusquellic, and F. Saqib, �A Secure Communication
Framework for ECUs,� Advances in Science, Technology and Engineering

https://github.com/emsec/hal
https://symbiflow.github.io/
https://github.com/SymbiFlow/prjxray
https://fics.institute.ufl.edu/2017-fics-research-conferenbce-poster-winners/?doing_wp_cron=1564510713.2381839752197265625000
https://fics.institute.ufl.edu/2017-fics-research-conferenbce-poster-winners/?doing_wp_cron=1564510713.2381839752197265625000

92

Systems Journal, vol. 2, no. 3, pp. 1307�1313, aug 2017. [Online]. Available:
http://astesj.com/v02/i03/p165/

[82] O. Blog, �A Look Back at SCADA Security in 2015 | OPSWAT Blog.� [Online].
Available: https://www.opswat.com/blog/look-back-scada-security-2015

[83] H. Chae, A. Shahzad, M. Irfan, and H. Lee, �Industrial Control Systems Vulner-
abilities and Security Issues and Future Enhancements,� 2015, pp. 144�148.

[84] S. Biddle, �(Known) SCADA Attacks Over The Years,� 2015. [Online]. Available:
https://blog.fortinet.com/2015/02/12/known-scada-attacks-over-the-years

[85] Brian Krebs, �FBI: Smart Meter Hacks Likely to Spread - Krebs on
Security,� 2012. [Online]. Available: https://krebsonsecurity.com/2012/04/fbi-
smart-meter-hacks-likely-to-spread/

[86] Q. A. Al-Haija, M. A. Tarayrah, H. Al-Qadeeb, and A. Al-Lwaimi, �A
Tiny RSA Cryptosystem based on Arduino Microcontroller Useful for Small
Scale Networks,� Procedia Computer Science, vol. 34, pp. 639�646, jan
2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877050914009466

[87] �micro-ecc.� [Online]. Available: http://kmackay.ca/micro-ecc/

[88] M. Tausig and S. Schmidt, �Performance Evaluation of Cryptographic Opera-
tions on a SAMR21-XPRO Board,� researchgate.net.

[89] A. Stumpf, D. Elton, J. Devlin, and H. Lovatt, �Bene�ts of an FPGA based
SRM controller,� in Proceedings of the 2014 9th IEEE Conference on Industrial
Electronics and Applications, ICIEA 2014. IEEE, jun 2014, pp. 12�17.

[90] M. Dagbagi, L. Idkhajine, E. Monmasson, and I. Slama-Belkhodja, �FPGA im-
plementation of Power Electronic Converter real-time model,� in SPEEDAM
2012 - 21st International Symposium on Power Electronics, Electrical Drives,
Automation and Motion. IEEE, jun 2012, pp. 658�663.

[91] A. De Castro, P. Zumel, O. García, T. Riesgo, and J. Uceda, �Concurrent and
simple digital controller of an AC/DC converter with power factor correction
based on an FPGA,� IEEE Transactions on Power Electronics, vol. 18, no. 1 II,
pp. 334�343, jan 2003.

[92] Iveia, �Atlas-I-Z8 Low-Power Zynq UltraScale+ SoM - iVeia.� [Online].
Available: http://iveia.com/atlas-i-z8

http://astesj.com/v02/i03/p165/
https://www.opswat.com/blog/look-back-scada-security-2015
https://blog.fortinet.com/2015/02/12/known-scada-attacks-over-the-years
https://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/
https://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/
https://www.sciencedirect.com/science/article/pii/S1877050914009466
https://www.sciencedirect.com/science/article/pii/S1877050914009466
http://kmackay.ca/micro-ecc/
http://iveia.com/atlas-i-z8

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation
	Contributions
	Organization

	Background Study on Secure Boot and Overview of Hardware Security Primitives
	Internet of Things
	Smart Grid
	Automotive Security

	Reconfigurable Architectures
	Threat Models
	Eavesdropping, Replay and Man in the Middle attacks
	Private Key Exposure
	Unauthorized Modification to Firmware and Reconfigurable Logic Configuration
	Nonsecure Communication with Content Provider

	Security Concepts
	Confidentiality, Integrity and Availability
	Physical Unclonable Functions
	Secure Attestation
	Trusted Platform Module
	Secure Boot
	Secure Over-the-Air Updates (OTA)
	Trusted Execution Environment and the ARM TrustZone

	Secure Boot
	Early implementations
	Secure Boot Solutions in Desktops
	Secure Boot in Embedded Systems
	Secure Boot in Reconfigurable Computing

	Logic Locking

	Boot Time Security and Over-the-Air Update Mechanisms For FPGAs
	Introduction
	Threat Model for Secure Boot of FPGA Bitstreams
	Bitstream Spoofing
	Runtime Malicious Modification
	Non-secure Communication with Content Provider

	Root of Trust Architecture
	Hardware Overview

	Design Objectives and Operations
	Establishing Source of Trust
	Secure Over the Air (OTA) Update Mechanism

	Implementation
	Security Analysis
	Conclusion

	Runtime Logic Camouflaging and Obfuscation
	Introduction
	PCAP Programming
	FPGA Bitstream Architecture
	Bitstream Contents
	FAR Addressing
	Reading and Writing to the PL Fabric
	Mapping FAR to Resource

	Proposed Scheme for Multi-layer Camouflaged Secure Boot
	Device Enrollment
	Device Authentication

	Security Analysis
	Conclusion

	Secure Communication Framework for Automotive
	Secure ECU Communication
	Hardware based Resource Isolation
	Secure Code Execution
	Scenario 1: Code Execution from Read Only Memory
	Scenario 2: Hardware-Based/Assisted Core Root of Trust Measurement

	Security Analysis
	Conclusion

	Smart Grid Security
	Secure Key Provisioning
	Experimental Setup
	Performance Analysis

	Design for secure reconfigurable power converters
	Security Analysis
	Conclusion

	Conclusions and Future Work
	REFERENCES

