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ABSTRACT

ANBUMALAR SARAVANAN. S-RAD Single Run Action Detector over Video Stream .
(Under the direction of DR. HAMED TABKHI)

Vision based Activity Detection is concerned with the automatic extraction, analysis and

understanding of useful information from a sequence of images. It involves the develop-

ment of a theoretical and algorithmic basis to achieve automatic visual understanding. As

a scientific discipline, Vision based systems is concerned with the theory behind Artificial

systems that extract information from images. The image data can take many forms, such

as video sequences, or views from multiple cameras. Cameras provide very rich informa-

tion about persons and environments, and their presence is becoming more important in

everyday environments like airports, train and bus stations, malls, elderly care and even

streets. Therefore, reliable Vision-based action detection system is required for various ap-

plication like healthcare assistance system, crime detection and sports monitoring system

in real time scenarios. Our Approach takes initial strides at designing and evaluating a

Vision-based system for privacy ensured human activity monitoring. The proposed tech-

nology utilizing Artificial Intelligence (AI)-empowered proactive systems offering contin-

uous monitoring, behavioral analysis, and modeling of human activities. To this end, We

presents Single Run Action Detector (S-RAD) which is a real-time privacy-preserving ac-

tion detector that performs end-to-end action localization and classification. It is based on

Faster-RCNN combined with temporal shift modeling and segment based sampling to cap-

ture the human actions. Results on UCF-Sports and UR-Fall dataset present comparable

accuracy to State-of-the-Art approaches with significantly lower model size and computa-

tion demand and the ability for real-time execution on edge embedded device (e.g. Nvidia

Jetson Xavier).
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CHAPTER 1: INTRODUCTION

In recent years, deep learning has achieved success in fields such as computer vision and

natural language processing. Compared to traditional machine learning methods such as

support vector and random forest, deep learning has a strong learning ability from the data

and can make better use of datasets for feature extraction. Because of this practicability,

deep learning had become more and more popular to do research works.

Deep learning models usually adopt hierarchical structures to connect their layers. The

output of a lower layer can be regarded as the input of a higher layer using linear or non-

linear functions. These models can transform low-level features to high-level abstract fea-

tures from the input data. Because of this characteristic, deep learning models are stronger

than shallow machine learning models in feature representation. The performance of tra-

ditional machine-learning methods usually rely on user experiences and handcrafted meth-

ods, while deep learning approaches rely on the data.

Video data-based action detection has drawn considerable attention from the academic

community recently [1, 2], owing to its applications in many areas such as security and

video analytic. Consequently, the utility of video-based action detection has been explored

in many applications , refer Figure 1.1. However, previous works either ignore human

privacy [3, 4], or satisfy it with less optimal methods. For instance, the work of Chou et al

[5] limits their input to low resolution depth images. While this method preserves privacy,

it eliminates the possibility of fine-grained human analysis. The work of Asif et al [6]

preserves privacy through utilizing synthetic training data. This method fails to address

the actual human’s privacy, and furthermore the usage of bulky keypoint and segmentation

based models forces their approach to be run on a cloud server, further invalidating patient

privacy.
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Figure 1.1: Vision based Activity Detection Application

In designing an AI system that supports real-time action detection in videos, there are

two important cues that need to be taken into consideration. These include appearances

and temporal information. The performance of the detection system depends, to a large ex-

tent, on whether it is able to extract and utilize relevant information about human behavior,

physical movements, interactions among humans, and interactions between the human and

the environment. However, extracting such information is difficult due to a number of chal-

lenges, such as scale variations, view point changes, and camera motions that are common

when collecting data about behavioral health in uncontrolled environments. Therefore, it

becomes crucial to design effective end-to-end systems to overcome these challenges while

learning categorical information of human action classes.

The recent approaches in video analytic and deep learning algorithms like Convolutional

Neural Network (CNN) provides the opportunity for real-time detection and analysis of

human behaviors like walking,running or sitting down, which are part of Daily Living Ac-

tivities (ADL) [7]. Cameras provide very rich information about persons and environments

and their presence is becoming more important in everyday environments like airports, train

and bus stations, malls, elderly care and even streets. Therefore, reliable vision-based ac-
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tion detection systems is required for various application like healthcare assistance system,

crime detection and sports monitoring system. In our research we explored two different

domains (Sport and Healthcare), to prove the comprehensive nature of our proposed action

detector algorithm. Approaches like [8, 9, 10, 11] use larger CNN models that impose

huge computation demand and thus limit their application in real-time constrained sys-

tems, in particular on embedded edge devices. Additionally, these methods have not been

designed to fulfill requirements of pervasive video systems including privacy-preserving

and real-time responsiveness. Other works done in this area are based on the use of wear-

able sensors. These works used the tri-axial accelerometer, ambient/fusion, vibrations or

audio and video to capture the human posture, body shape change. However, wearable

sensors require relative strict positioning and thus bring along inconvenience especially in

the scenario of healthcare unit where elderly seniors may even forget to wear them.

1.1 Problem Statement

Recent approaches like [11, 10, 12] in Figure [1.2b, 1.2d,1.2e] uses computationally

heavy 3D kernels which would require the data to be moved to cloud server, hence looses

its purpose for the real-time application and is not aiding in preserving the privacy. And

approaches like [13, 1, 14, 8] in Figure[1.2c, 1.2d,1.2e] uses time intensive processing

of optical flow method or saliency map generation method and indulges double/triple of

the computation when using multi modal input rather than just using RGB images. In

Figure 1.2: Other two stream/ 3D CNN based approaches
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addition approaches like [13, 15, 16, 17] are more toward action classification and when

applied in real-time, it will fail on the crowded scenes. Some works like [18] uses off-

the-shelf external person detector to detect multiple human in the scene and then performs

classification on top of it hence it no longer provide an unified approach for the real-time

use cases.

1.2 Contributions

In-order to have a unified network that does human action localization and classification

together with a simple architecture and a single input, we introduce S-RAD single run

action detector. Our contributions are as follows:

1. Contribution 1: We introduce S-RAD, an action detector that provides detection by

regressing and classifying the sequence of frames in a single shot manner.

2. Contribution 2: We demonstrate that we can achieve comparable accuracy to the

State-of-the-Art approaches (on the UCF-Sports and UR-Fall datasets) at much lower

computation cost. We demonstrate our approach on two different dataset from Health-

care and Sport domain to prove it’s robustness and applicability to multiple action

detection domains.

3. Contribution 3: We additionally provide possibility’s of extending our network to

real-time scenarios on an edge device.

1.3 Thesis Outline

The outline of this thesis is as follows. Background will give you the background of the

technology used. It reviews the basic RCNN action detection model, Temporal shift mod-

ule. Related-Work, briefly overviews the related works in the field of object detector based

action detections and spatio-temporal action detections. Chapter1 proposes an overview

of the S-RAD approach, temporal sampling strategy explains how the 8 framed input is
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chosen from the video to capture action that has long range temporal structure , Base fea-

ture extractor explains the components of feature extraction in S-RAD base layer, it covers

the backbone and Temporal shift module, proposal network and S-RAD head explains the

process of Proposal generation and ROI Align . In Results, State-of-the-Art comparison

on dataset UCF-Sport and UR-fall dataset with metrics details are provided . Additionally,

Conclusion gives the summary of the approach and finally Future work concludes the area’s

of improvement in S-RAD for the future work.



CHAPTER 2: BACKGROUND AND RELATED WORK

This chapter covers the necessary background needed to understand our approach in the

following chapter.

2.1 Background

2.1.1 Spatio-Temporal Action Localization And Classification

Spatial-temporal action localization and classification aims to recognize the actions of

interest that is present in a video and localize them in both space and time. Action localiza-

tion [19], is the task of classifying what action is being performed in a sequence of frames

(or video) as well as localizing each detection both in space and time. The localization can

be visualized using bounding boxes or masks. There has been an increased interest in this

task in recent years due to the increased availability of computing resources as well as new

advances in Convolutional Neural Network architectures. There are several approaches to

tackle this task. Most of the approaches revolve around the following approaches: discrim-

inative parts [20, 21], figure-centric models [21, 22], action proposals [23, 24], graph based

[25], 3D convolutional neural networks [26], and more.

On the other hand several methods [11, 27] uses 3D CNN to capture spatial-temporal

features from the frame sequence with the temporal dimension. However 3D CNN have

high computation cost with more parameters than the 2D CNN counterparts, thus are more

prone to over-fitting. Our framework has the same spatial temporal modeling ability as the

3D CNN while having the computation and parameter as 2D CNN.

There are several works to trade off between temporal modeling and computation cost,

like post-hoc fusion [28, 17, 29, 30] and mid-level temporal fusion [31, 32, 33]. Such

methods sacrifice the low-level temporal modeling and much of the useful information is
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lost during the feature extraction before the temporal fusion happens.

2.1.2 R-CNN Based Action Detection

2.1.2.1 R-CNN Object Detector

The main idea is composed of two steps. First, using selective search, it identifies a man-

ageable number of bounding-box object region candidates (region of interest or RoI). And

then it extracts CNN features from each region independently for classification. To bypass

the problem of selecting a huge number of regions, Ross Girshick et al. [34] proposed

a method where selective search is used to extract just 2000 regions from the image and

called them region proposals. Therefore, now, instead of trying to classify a huge number

of regions, you can just work with 2000 regions refer Figure 2.1.

Figure 2.1: Slow R-CNN

Below are the problems of R-CNN:

1. It still takes a huge amount of time to train the network as you would have to classify

2000 region proposals per image.

2. It cannot be implemented real-time as it takes around 47 seconds for each test image.
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3. The selective search algorithm is a fixed algorithm. Therefore, no learning is happen-

ing at that stage. This could lead to the generation of bad candidate region proposals.

2.1.2.2 Fast R-CNN Object Detector

Drawbacks of R-CNN are used to build a faster object detection algorithm and it was

called Fast R-CNN [35]. The approach is similar to the R-CNN algorithm. But, instead

of feeding the region proposals to the CNN, input image is fed into the CNN to generate

a convolutional feature map. From the convolutional feature map, the region of proposals

are identified and warped into squares and by using a ROI pooling layer it is reshaped into

a fixed size so that it can be fed into a fully connected layer refer Figure 2.2. The reason

Fast R-CNN is faster than R-CNN is because you dont́ have to feed 2000 region proposals

to the convolutional neural network every time. Instead, the convolution operation is done

only once per image and a feature map is generated from it. However, Fast R-CNN during

Figure 2.2: Fast R-CNN

testing time, including region proposals slows down the algorithm significantly than the

one when compared to not using region proposals. Therefore, region proposals become

bottlenecks in Fast R-CNN algorithm affecting its performance.
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2.1.2.3 Faster R-CNN Object Detector

Both of the above algorithms (Slow R-CNN Fast R-CNN) uses selective search to find

out the region proposals. Selective search is a slow and time-consuming process affecting

the performance of the network. Similar to Fast R-CNN, the image is provided as an input

to a convolutional network which provides a convolutional feature map. Instead of using

selective search algorithm on the feature map to identify the region proposals, a separate

network is used to predict the region proposals refer Figure 2.3. The predicted region

proposals are then reshaped using a RoI pooling layer which is then used to classify the

image within the proposed region and predict the offset values for the bounding boxes.

Figure 2.3: Faster R-CNN

2.1.2.4 Faster R-CNN based Action Detection

Inspired by the advances in the field of object detection [36],[37],[38], most recent

work approaches the action detection task based on two-stage framework: where in the

first stage action proposals are produced by a region proposal algorithm or densely sam-

pled anchors, and in the second stage the proposals are used for action classification and
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localization. Compared to object detection in images, spatial-temporal action detection

in videos is however a more challenging problem. Unlike images, action detection in

videos involve effective temporal modelling to capture all the temporal information to dis-

tinguish the class of action. For example activity standing up and activity siting down

would require the temporal order to be maintained in the consequent frames. Many recent

approaches[1, 39, 40, 41, 42, 19, 43] extended the above two stage framework with optical

flow to capture the motion cues and used linking algorithm to connect the frame level de-

tection results to video level. Although these methods have achieved prominent results they

are computationally heavy and failed to exploit the temporal property of the videos since

the detection’s are performed on each frame independently. We surpass this limitation and

treat the video as a sequence of frames.

2.1.3 Temporal Shift Module

Figure 2.4: Temporal shift across the layers in N frames

The intuition behind TSM [44]: data movement and computation can be separated in

a convolution.The whole idea is to shift part of the channels i.e feature maps between

neighboring frames in the 8 framed input sample which in a way helps sharing features

across frames in the temporal dimension. As in Figure 2.4 part of the features are shifted

across the frames after every convolution into the next stage. Despite the zero-computation

nature of the shift operation, it introduces two major issues for video understanding:
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1. It is not efficient: shift operation is conceptually zero FLOP but incurs data move-

ment. The additional cost of data movement is non-negligible and will result in la-

tency increase. This phenomenon has been exacerbated in the video networks since

they usually have a large memory consumption (5D activation).

2. It is not accurate: shifting too many channels in a network will significantly hurt

the spatial modeling ability and result in performance degradation. To tackle the

problems, we adhere to two main hyper-parameter from the Ablation study of [44].

So in order to overcome those problems:

1. We deploy temporal partial shift strategy: instead of shifting all the channels, we

shift only a small portion of the channels for efficient temporal fusion. Such strategy

significantly cuts down the data movement cost (Figure 2.4 )

2. We insert TSM inside residual branch rather than outside so that the activation of the

current frame is preserved, which does not harm the spatial feature learning capability

of the 2D CNN backbone.

2.2 Related Work

2.2.1 Activity Recognition using Wearable Sensors

Most prior research focuses on using wearable and mobile devices (e.g., smartphones,

smartwatches) for activity recognition . In designing efficient activity recognition systems,

researchers have extensively studied various wearable computing research questions. These

research efforts have revolved around optimal placement of the wearable sensors [45], au-

tomatic detection of the on-body location of the sensor [46], minimization of the sensing

energy consumption [47], and optimization of the power consumption [48]. A limitation

of activity monitoring using wearable sensors and mobile devices is that these technologies

are battery-powered and therefore need to be regularly charged. Failure to charge the bat-

tery results in discontinuity of the activity recognition, which in turn may lead to important

behavioral events remaining undetected.
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2.2.2 Action Recognition in Video data

Action recognition is a long-term research problem and has been studied for decades.

Existing State-of-the-Art methods mostly focus on modelling the temporal dependencies

in the successive video frames [49, 15, 27]. For instance, [15] directly averaged the mo-

tion cues depicted in different temporal segments in order to capture the irregular nature

of temporal information. [49] proposed a two-stream network, which takes RGB frames

and optical flows as input respectively and fused the detection’s from the two streams as the

final output. This was done at several granularities of abstraction and achieved great perfor-

mance. Beyond multi-stream based methods, methods like [27, 12] explored 3D ConvNets

on video streams for joint spatio-temporal feature learning on videos. In this way, they

avoid calculating the optical flow, keypoints or saliency maps explicitly. However all the

above approaches are too large to fit in a real-time edge device. On the other hand [9] uses

features calculated from variations in the human keypoints to classify falling and not falling

actions, [8] uses VGG16 based on Multi-stream (optical flow, RGB, pose estimation) for

human action classification. The above approaches only concentrate on the classification

of single human action at scene level and will not perform well if multiple human’s are

present in an image, which is essential for the healthcare and other public place monitor-

ing systems. Our proposed approach performs human detection and action classification

together in a single shot manner where algorithm first localises the human’s in an image

and classifies his/her action.

2.2.3 Spatio-Temporal Human Action Detection

Spatio-temporal human action detection is a challenging computer vision problem, which

involves detecting human actions in a video as well as localizing these actions both spatially

and temporally.
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2.2.3.1 Object Detector based Action Detection

Generally, 2D action regions are detected in each frame, and are stacked or linked to-

gether to generate 3D action volumes [50]. For example, Track Localization [41] tracks

current proposals to obtain anchor in next frame by taking advantage of motion cues with

optical flow, and selects the best regions in the neighborhood of anchors using a sliding

window. However, distinguishing actions from single frame could be ambiguous. To ad-

dress this issue, ACT [14] takes as input a sequence of frames and outputs tube proposals

instead of operating on single frames. Also they uses object detectors like SSD [38] to

generate spatio-temporal tubes by deploying high level linking algorithm on frame level

detection’s and also suffers from the foreground/background imbalance due to single stage

training where Two-stage detectors easily handle this imbalance. The RPN narrows down

the number of candidate object-locations, filtering out most background instances. Inspired

by R-CNN approaches, [1] used Faster-R-CNN [36] to detect the human in an image by

capturing the action motion cues with the help of optical flow and classify the final hu-

man actions based on the actionness score. [39] extracted proposals by using the selective

search method on RGB frames and then applied the original R-CNN on per frame RGB

and optical flow data for frame-level action detection’s and finally link those detection’s

using the Viterbi algorithm to generate action tubes.

2.2.3.2 3D CNN

On the other hand Tube CNN[11] uses 3D CNN to generate spatio-temporal tubes by ex-

tending 2D Region-of-Interest pooling to 3D Tube-of-Interest (ToI) pooling with 3D con-

volution. It directly generates tube proposals on each fixed-length clip and then link the clip

to represent the entire video. Approaches like [10] is a generalization of capsule network

from 2D to 3D, which takes a sequence of video frames as input and the 3D generalization

drastically increases the number of capsules in the network, making capsule routing com-

putationally expensive. Also the routing-by-agreement in the network inherently models
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the action representations and various action characteristics but pixel-wise localization of

actions made the network computationally heavy to be deployed in the real-time embedded

edge device. All these methods poses high processing time and computation cost due to the

introduction of new dimension in the form of 3D kernels in the 3D CNN related works. As

such, the aforementioned methods are unable to be applied in real-time monitoring system.

2.2.3.3 Multi-Stream Convolution Neural Network

Video can naturally be decomposed into spatial and temporal components. The spatial

part, in the form of individual frame appearance, carries information about scenes and

objects depicted in the video. The temporal part, in the form of motion across the frames,

conveys the movement of the observer (the camera) and the objects. So in order to capture

the spatial and temporal part , Few Approaches utilised two-stream networks [49, 16, 17,

1] that uses two inputs RGB to capture appearance cues and optical flow to capture the

temporal cues into the network with two branched architecture. Firstly, computing Optical

Flow from the RGB involves more processing time. Secondly, Two Branched architecture

doubles the computation cost leading to heavy model and thus making it not deploy-able

on embedded edge devices. Methods like [13] uses saliency map to capture the temporal

cues along with Optical Flow to detection fall in the elderly care unit and the computation

overhead makes it impossible to be deployed in real-time. Another disadvantages of multi-

stream CNN based algorithm is the need of the cloud server where the human identifiable

information has to be transferred to the cloud which in turn compromises the privacy of

human data.



CHAPTER 3: S-RAD

We introduce S-RAD, an agile and real-time activity monitoring system. Our approach

unifies spatio-temporal feature extraction and localization into a single network, allowing

the opportunity to be deployed on edge device. This "on-the-edge" deployment eliminates

the need for sending sensitive human data to privacy invalidating cloud servers, similar

to [7]. Instead our approach can delete all video data after it is processed and can store

only the high level activity analytics. Without stored images, S-RAD can be used to solely

focus on differentiating between the human actions rather than identifying or describing

the human.

Figure 3.1: Overview of the activity detector. Given a sequence of frames we extract channel shifted
convolutional features from the base feature extractor to derive the activity proposals in the action
proposal network. We then ROI align the activity proposals to predict their scores and regress their
co-ordinates.

In order to achieve this privacy preserving edge execution, it is important to have an

algorithm able to perform in a resource constrained edge environment. Traditionally such

constraints resulted in either accuracy reduction, or increased latency. The overview of S-
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RAD is shown in Figure 3.1. S-RAD takes an input sequence of N frames f1, f2, f3, ..., fN

and outputs the detected bounding box and confidence score per each class of the propos-

als. The model consists of a base feature extractor integrated with temporal shift module

(TSM) to capture low level spatio-temporal features. TSM [44] are highly hardware effi-

cient. Temporal shift module are inserted into the bottleneck layer of Resnet-50 [51] of the

feature extractor to sustain the spatial information using the identity mapping along with

the temporal information using the shifted features. The base feature extractor is made

up of the first 40 layers of the original ResNet-50 [51] backbone. The base feature maps

are processed by the Proposal Network using a sliding window approach with handpicked

anchors and generates action proposals for each frame. An Proposal Network is a fully

convolutional network that simultaneously predicts action bounds and actionness scores

at each position. The Proposal Network is trained end-to-end to localize and detect valid

region action proposals (the foreground) from background. This sliding window approach

to generate the proposals is the source of its accuracy as opposed to SSD’s [38] rigid grid

base proposal generation.

Following the first stage, the original spatio-temporal base features, in conjecture with

the proposals are passed into the Region of interest Align (ROI-Align) layer which aligns

the varying sized action proposals in to a fixed 7x7 spatial sized action proposals. The

second stage of the action detector further classifies each valid action proposals to the

action classes in that particular frame. The final classification layer outputs C+1 scores for

each action proposal, one per each action class plus one for the background. The regression

layer outputs 4 x K where K is the number of action proposals generated in each frame.

S-RAD goes beyond action classification to action detection. This is valuable for com-

munal areas such as mesh halls, and for interactions with other human’s and with objects.

We chose Faster-R-CNN [36] as our detection baseline due to its fine-grained detection ca-

pabilities when compared to SSD [38]. This fine grained detection is especially applicable

to the healthcare domain when dealing with wandering patients and fine-grain abnormal
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behaviors. Despite the complexity of such tasks our utilization of TSM [44] enables the

extraction of the necessary spatio-temporal features for human action localization and in-

dividual action classification, in a streaming real-time manner while maintaining privacy.

The components of S-RAD are explained in the following session in the order as given

below:

1. Temporal sampling strategy: describes the input sampling technique to choose the

frames from the video.

2. Base Feature Extractor: describes the backbone and feature extraction of S-RAD.

• Temporal Shift Block: describes the TSM and its implementation in the base

feature extractor.

3. Proposal Network and S-RAD head : describes the proposal generation network

and R-CNN component of S-RAD head.

4. Formulations : describes the training loss in details.

3.1 Temporal Sampling Strategy

ConvNets(Convolution Neural Network) in their current forms has their inability in mod-

eling long-range temporal structure. This is probably due to their limited access to tempo-

ral context since they are designed to operate only on a single frame or a single stack of

frames in a short snippet. However, complex actions, such as sports action, comprise mul-

tiple stages spanning over a relatively long time in a video. It would be quite a loss failing

to utilize long-range temporal structures in these actions into ConvNet training. To tackle

this issue, we used temporal segment network, a video-level sampling strategy as shown in

Figure 3.3, to enable to model dynamics throughout the whole video.

3.1.1 Dense Sampling Strategy

Recently there are a few attempts [52, 29] to deal with the problem of capturing long

temporal structure. These methods mostly rely on dense temporal sampling as in Fig-
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ure 3.2 with a pre-defined sampling interval, which would incur excessive computational

cost when applied to long videos. More importantly, the limited memory space available

severely limits the duration of video to be modeled. This poses a risk of missing important

information for videos longer than the affordable sampling duration. For Example in Fig-

ure 3.2 if the action happens at the start,end of the frames in the video, the dense sampling

does not capture those cues instead it is a bunch of redundant frames that does not have any

useful information in it for the network to learn.

Figure 3.2: Dense Sampling Strategy

3.1.2 Temporal Segment Sampling Strategy

In terms of temporal structure modeling, a key observation is that consecutive frames

are highly redundant. Therefore, dense temporal sampling, which usually results in highly

similar sampled frames, is unnecessary. Instead a sparse temporal sampling strategy will

be more favorable in this case. Motivated by this observation, we used the video-level

framework, called temporal segment network (TSN) [15].

The TSN framework first extracts short snippets over a long video sequence with a sparse

sampling scheme,where the video is first divided into a fixed number of segments and one

snippet is randomly sampled from each segment as in Figure 3.3. By this means, tem-

poral segment networks can model long-range temporal structures over the whole video,

in a way that its computational cost is independent of the video duration. Moreover, this

sparse sampling strategy preserves relevant information with dramatically lower cost, thus
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Figure 3.3: Temporal Segment Sampling Strategy

enabling end-to-end learning over long video sequences under a reasonable budget in both

time and computing resources. In Figure 3.3 we sample 5 frames from the video in a sparse

manner compared to the dense sampling . However the final frames(1,3,6,7,9) captures the

entire video sequence rather than choosing the redundant frames. In our S-RAD, we used 8

segments to choose 8 images from the videos and resized the images to 300x400 resolution

to have comparison with the State-of-The-Art approaches. Increasing the number of seg-

ments to 16 segments didn’t improvise the accuracy as 40 layers of Resnet-50 is not deep

enough to increase the receptive field of 16 frames, also it introduced additional computa-

tion constraint, so for the rest of the work we stick to 8-framed input, as 8-framed input

produced comparable accuracy with other State-of-The-Art approaches.

3.2 Base Feature Extractor

Base feature extractor consists of 40 layers of Resnet-50 [51] as the backbone. Resnet-50

alleviate the vanishing-gradient problem, strengthen feature propagation, encourage feature

reuse, and substantially reduce the number of parameters.
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Figure 3.4: Base feature extractor

3.2.1 Base Feature Extractor

ResNet-50 architecture proposed Residual connection, from previous layers to the cur-

rent one which helps us eradicate the problem of combining spatial and temporal modelling

and it will be covered in the following section. Features extracted from the input images

are passed into the Proposal Network to generate the Proposal Regions based on the pixel

wise location. The Base feature extractor accepts any input resolution making it suitable

for multi-scale experiments. Base feature extractor in Figure 3.4 consists of the bottleneck

layers with Temporal shift module in the residual connection to capture the motion cues

and the output channel of the feature map is matched to align to the Proposal Network.
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3.2.2 Temporal Shift Module

Temporal shift block TSM [44] are highly hardware efficient. Temporal shift module

are inserted into the bottleneck layer of Resnet-50 [51] based feature extractor to sustain the

spatial information using the identity mapping along with the temporal information using

the shifted features. We tried two approaches as shown in the Figure 3.5 as they are the

hyper-parameters mentioned in the [44] work. The Inplace TSM as in Figure 3.5a affected

Figure 3.5: In-place Vs Residual TSM

the spatial modelling capablity and performed worse than the Residual TSM as in Figure

3.5b. Residual TSM in turn captures the temporal modelling without loosing the spatial

modelling through identity mapping.

As shown in Figure 3.6, each shift receives the C channels from the previous layer.

We shift 1/8th of the channels from the past frame to the current frame and shift 1/8th of

the channels from current frame to the future frame, while the other part of the channels

remain unchanged. The new features (channels are referred to as features) x̂2, have the

information of both the past x1 and future x2 frames after the "shift" operation. The features

are convoluted and mixed into new spatio-temporal features. The shift block coupled to the

next layer will do the same operation. Each shift block increases the temporal receptive

field by a magnitude of 2 neighbor frames until N frames. For our work we choose N = 8

since features are in the magnitude of 8 in Resnet-50 architecture [51].

3.3 S-RAD Head

S-RAD Head consists of Proposal Network, ROI Align and R-CNN top. The convolu-

tional features with the temporal information shifted and shared among the 8 frames are

passed into the Proposal Network to get the proposal regions in the form of 4 box co-
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Figure 3.6: Temporal shift block

ordinates. The Proposal Region in turn with the base features are fed in the ROI Align

layer to crop features of the proposal in the fixed spatial size 7x7 and is in turn passed into

the R-CNN top to convolute for the final classification and regression. Each component is

described in detail in below sections.

3.3.1 Proposal Network

A Proposal Network takes an image (of any size) as input and outputs a set of rectan-

gular action proposals, each with an actioness score. Proposal Network is a fully convolu-

tional network [53], which share a common set of convolutional layers. To generate action

proposals, a small network is slided over the convolutional feature map output by the last

shared convolutional layer. This small network takes as input an n x n spatial window of the

input convolutional feature map. Each sliding window is mapped to a lower-dimensional

feature (256-d for Resnet-50 and 512-d for VGG [54], with ReLU [55] following). This

feature is fed into two sibling fully connected layers regression layer (reg) and classification

layer (cls) which classifies foreground from background. At each sliding-window location,

we simultaneously predict multiple region proposals, where the number of maximum pos-
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sible proposals for each location is denoted as k. So the reg layer has 4k outputs encoding

the coordinates of k boxes, and the cls layer outputs 2k scores that estimate probability

of action or no action for each proposal. The k proposals are parameterized relative to k

reference boxes, which we call anchors. An anchor is centered at the sliding window in

question, and is associated with a scale and aspect ratio. In our approach we use 5 scales

and 3 aspect ratios, yielding k = 15 anchors at each sliding position. For a convolutional

feature map of a size W x H (typically appr.2,400), there are WxHk anchors in total. An-

chors are the hyper parameters and are highly dependent on the dataset. We explored the

options handpicked anchors and data driven anchors by k-means clustering algorithm on

the training dataset. The hand-picked anchors boosted the accuracy by 2 % in UCF-sport

Action dataset, so rest of the approach we stick to the hand-picked anchors.

3.3.2 ROI Align

Region of Interests (ROI) are obtained either by pooling or align operations from the in-

put convolutional features. When Proposal Network return region proposals, all proposals

are the offsets for each anchors. Using the offsets, proposed bounding boxes coordinates

are obtained which in turn are based on original image size. Region of interest is obtained

by cropping the feature map from the predicted bounding box. So, first the given feature

map was decreased k times from the original image (via convolutions). It means that each

coordinate can be decreased k times. ROI pooling proposes to divide each coordinate by k

and take an integer part: [x / k]. To get fixed size output from ROI pooling, cropped feature

part is divided into bins. Such kind of division gives n x n grid. And from each bin can be

taken maximum or average value. However ROI pooling looses large amount of data due

to the above quantisation process. To avoid this we used the better technique ROI Align

from [37]. ROI align divides each coordinate by k: x / k and do NOT take integer part.

It means that there is no definite pixel in grid that can be taken, because new coordinates

are float values. Nevertheless, cropped part is also divided into grid, but for defining con-

crete values in these bins ROI align choose regularly 4 points in each bin using bilinear
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interpolation. And from these 4 points maximum or average value from each bin is taken.

Since this proved to have better accuracy than ROI warp or ROI Pooling we chose to use

ROI-Align in S-RAD. The cropped feature are reshaped to 7x7 spatial sized feature maps

for the S-RAD R-CNN based top.

3.3.3 R-CNN S-RAD Top

The Proposal Network and R-CNN S-RAD top network act as one unified network dur-

ing training. In each SGD iteration, the forward pass generates region proposals which are

treated just like fixed, pre-computed proposals when training a Fast R-CNN detector. The

backward propagation takes place as usual, where for the shared layers the backward prop-

agated signals from both the Proposal Network loss and the R-CNN loss are combined.

The details about the Loss are described in the following section briefly. The last 10 layers

of Resnet-50 are used as R-CNN top and coupled along with a regression and classification

layer. Unlike the Proposal network which classifies foreground/background the purpose of

these layers is classify the action class like walking,standing from the input ROI-Aligned

features. The last 10 layers of Resnet-50 are converted to R-CNN top which cleverly eradi-

cate the need of introducing the computationally heavy "fully connected layers" from being

modelled at the end.

3.4 Formulations

3.4.1 Proposal Network Loss

For training Proposal Networks , we assign a binary action class label (of being an action

or not i.e foreground vs background) to each anchor. We assign a positive action class label

to two kinds of anchors:

1. The anchors with the highest Intersection-over Union (IoU) overlap with a ground-

truth box

2. An anchor that has an IoU > 0.7 with any ground-truth box. We assign a negative

action class label to a non-positive anchor if it’s IoU < 0.3 for all ground-truth boxes
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Anchors that are neither positive nor negative do not contribute to the training. With these

definitions, our loss function for Proposal Networks is defined as:

Lrpn({pi}, {bbi}) = 1
K .

K∑
i=1

Lcls(pi, p
∗
i ) +

1
K .

K∑
i=1

p∗iLreg(bbi, bb
∗
i ) (3.1)

Here, i is the index of an anchor in a mini-batch and pi is the predicted probability of anchor

i belonging to an action class. The ground-truth label p∗i is 1 if the anchor is positive, and

0 if the anchor is negative. The vector representing the 4 coordinates of the predicted

bounding box is bbi, and bb∗i is the ground-truth box associated with a positive anchor. The

term p∗i Lreg dictates the smooth L1 regression loss is activated only for positive anchors

(p∗i = 1) and is disabled otherwise (p∗i = 0). Lcls is log loss(cross-entropy) over two classes

(action vs. no action) and is averaged over K frames.

3.4.2 R-CNN Loss

The seconds stage of the detector assigns the action class label to the region of interest or

foreground proposals from the RPN training. It involves classification loss and regression

loss. The classification layer here includes detecting the correct action class label for the

proposals from ROI align layer and regression layer is to regress the detected box with

ground truth.

The R-CNN loss is defined as :

Lrcnn({pi}, {bbi}) = 1
K .

K∑
i=1

Lcls(pi, p
∗
i ) +

1
K .

K∑
i=1

Lreg(bbi, bb
∗
i ) (3.2)

where i is the index of proposals or region of interests with spatial dimension 7x7 and pi

is the predicted probability of the action class label, with p∗i being the ground truth class

label. The vector representing the 4 coordinates of the predicted bounding box is bbi, and

bb∗i is that of the ground-truth box. Lcls is log loss (cross-entropy) over multi-classes, Lreg

is the smooth L1 regression loss and is averaged over K frames. In training mode we set

the network to output 256 proposals and in inference mode network outputs 300 proposals.
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3.4.3 Total loss

Total loss of S-RAD is given below and the network is trained together as a single net-

work with Total loss. Total loss is defined as sum of R-CNN and RPN loss:

Total_loss= Lrpn({pi}, {bbi}) + Lrcnn({pi}, {bbi}) (3.3)

where i is the index of the proposals or region of interest, during training the number is

set to 256. pi is the predicted probability of the action class label and the vector representing

the 4 coordinates of the predicted bounding box is bbi. Lrpn is the summation of Lreg and

Lcls from Stage 1 as explained in Section 3.4.1 and Lrcnn is the summation of Lreg and Lcls

from Stage 2 from Section 3.4.2 . Total loss is summation of four different loss from Stage-

1 and Stage-2. Total loss is propagated back to the network to train all the independent

network as single unified network and both the Stage1 and Stage 2 learns together based

on this fact.



CHAPTER 4: EXPERIMENTAL RESULTS

4.1 Results on UCF-Sport Action Dataset

The UCF-Sports dataset [56] consists of 150 videos from 10 action classes. All videos

have spatio-temporal annotations in the form of frame-level bounding boxes and we follow

the same training/testing split used by [39]. On average there are 103 videos in the training

dataset and 47 videos in the testing dataset. Videos are truncated to the action and bounding

boxes annotations are provided for all frames.

To quantify our results, we report the mean Average Precision (mAP) at the frame level

(frame mAP). Frame-level metrics allow us to compare the quality of the detection’s inde-

pendently. We use the Precision-Recall AUC (Area under curve) to calculate the average

precision per class. We compute the mean of the average precision per class to see how our

algorithm is able to differentiate the features of images between different action classes.

We followed the same procedure as in the PASCAL VOC detection challenge [57] to have

an apple to apple comparison with the State-of-the-Art approaches in the detection task.

We first evaluate S-RAD on the widely used UCF-Sports dataset. Table 4.1 indicates

frame level Average Precision per class for an intersection-over-union threshold of 0.5.

Our approach achieves a mean AP of 85.04% .

While obtaining excellent performance on most of the classes, "Walking" is the only

action for which the framework fails to detect the humans (40.71% frame-AP). This is

possibly due to several factors, the first being that the test videos for "walking" contain

multiple actors in close proximity, which results in false detections due to occlusions. Ad-

ditionally, walking is a very slow action with fine grained features and potentially lacks

enough temporal displacement in 8 frames to be picked up by our detector due to sparse

temporal sampling strategy. Ultimately, our approach is off by only 2% when compared to
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Table 4.1: State-of-the-Art comparison per class frame mAP at IOU threshold 0.5 in UCF-Sports

Action Class Action tubes[39] Learning to Track[41] Multi-region[1] Tube CNN[11] S-RAD

Diving 75.79 60.71 96.12 84.37 99.90

Golf 69.29 77.54 80.46 90.79 87.20

Kicking 54.60 65.26 73.48 86.48 76.00

Lifting 99.09 100.00 99.17 99.76 99.96

Riding 89.59 99.53 97.56 100.0 99.90

Run 54.89 52.60 82.37 83.65 89.79

Skate Boarding 29.80 47.14 57.43 68.71 67.93

Swing1 88.70 88.87 83.64 65.75 88.78

Swing2 74.50 62.85 98.50 99.71 99.9

Walk 44.70 64.43 75.98 87.79 40.71

the State-of-the-Art approaches that utilize either multi-modal, 3-dimensional, or complex

proposal architecture solutions.The State-of-the-Art comparison in terms of mean Average

precision (mAP) is summarised in Table 4.2. The Precision Recall AUC is ploted in Figure

Table 4.2: Overall frame mAP at IOU 0.5 threshold comparison in UCF-Sports Action dataset

Action tubes[39] Learning to Track[41] Multi-region[1] Tube CNN[11] ACT[14] Videocapsulenet[10]] S-RAD
mAP 68.09 71.90 84.51 86.70 87.7 83.9 85.04

4.1 shows the capability of our algorithm to separate different classes.

We also provided the confusion matrix to better understand the detections with the orig-

inal ground truth in Figure 4.2. The confusion matrix is calculated considering both the de-

tection and classification tasks. Here the grids in the diagonal are the true positive’s whose

IOU>0.8 and the detected action class label match with the ground truth action class label.

Other columns are the false positive whose IOU>0.8 but the detected action class label

does not match the ground truth action class label. The last column contains false nega-

tives with detections with an IOU<0.8. We used 0.8 as IOU threshold only in confusion

matrix for demo purpose to understand why and where the algorithm is struggling to find

the patterns.
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Figure 4.1: Precision-Recall curve per Action class in UCF-Sports

Figure 4.2: Confusion matrix of S-RAD on UCF-Sports
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4.2 Results on UR-Fall Dataset

We have also evaluated our framework on the healthcare extensive dataset [58]. The UR-

fall dataset is composed of 70 videos: (i) 30 videos of falls; and (ii) 40 videos displaying

diverse activities. We used [59] pre-trained only on the person class in the coco dataset to

obtain the bounding box annotations for the ground truth. On average there are 56 videos

in the training and 14 videos are in the testing dataset.

For the UR-fall dataset we calculate specificity, sensitivity and accuracy along with mAP

for comparison.

1. Sensitivity: A metric to evaluate detecting falls. And compute the ratio of trues

positives to the number of falls.

Sensitivity =
TP

TP + FN
∗ 100 (4.1)

2. Specificity: A metric to evaluate how much our algorithm detects just "fall" and

avoids misclassification with the "not fall" class.

Specificity =
TN

TN + FP
∗ 100 (4.2)

3. Accuracy: Metric to compute how much our algorithm can differ between falls and

non-fall videos.

Accuracy =
TP + TN

TN + FP + TP + FN
∗ 100 (4.3)

True positive (TP) means that the frame has a fall and our algorithm has detected fall

in those frames. True negative (TN) refers to the frames that donât contain fall and our

algorithm does not detect fall in those frames. False negative (FN) designates the frames

containing falls, however our algorithm fails to detect the fall in those frames. Finally,

false positive (FP) indicates the frames dont contain a fall, yet our algorithm claims to

detect a fall. For the sake of comparison with the other classification based State-of-the-

Art approaches we take the detection with the highest confidence score from the output
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of S-RAD and compare it’s class label with the ground truth class label to calculate the

above mentioned parameters. Since our approach is based on frame level detection, the

classification task on UR-fall dataset is also done in frame level. We achieved a competitive

score of 96.54 % in mAP (detection task at frame level). It is important to note, other State-

of-the-Art approaches on this dataset relied solely on classification, hence our comparison

is concentrated on the classification metrics. The Results are shown on Table 4.3, showing

S-RAD’s true capabilities in the field of healthcare.

Figure 4.3: Confusion matrix of S-RAD on UR-fall dataset

The confusion matrix on Figure 4.3 shows the ability of the S-RAD to distinguish Fall

and Not Fall with only 4 instances being misclassified as Fall.

Table 4.3: State-of-the-Art per frame comparison in UR-fall dataset

Keypoint Based[9] 3DCNN Based [12] Multi-stream Based[8] Three-stream Based[13] S-RAD

Sensitivity 100 - 100 100 100

Specificity 95 - 98.61 98.77 93.75

Accuracy 97.5 99.27 98.77 98.84 96.46
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4.3 Real-Time Execution Results

4.3.1 Server Class Execution Results of S-RAD

The S-RAD framework has the advantage of reduced inference time and less num-

ber of parameters, enabling us to perform real-time on the edge activity monitoring in a

privacy-aware manner. We compare our framework with others in terms of FPS (Frame-

Per-Second) and mAP in Table 4.4 on the UCF-Sports Action dataset.

Table 4.4: Comparison on Server Class Execution on Nvidia Titan platform

Approach Input Resolution Param # (M) FPS mAP

Multi-stream [1] RGB+Flow 600x1067 274 11.82 84.51

CapsuleNet[10] RGB 112x112 103.137 78.41 83.9

TubeCNN[11] RGB 300x400 245.87 17.391 86.7

ACT[14] RGB+Flow 300x300 50 12 87.7

S-RAD RGB 300x400 28.35 41.64 85.04

We tested our models on one Titan V GPU (except the work of TubeCNN [11], which

was reported on a Titan X). The trade-off is between accuracy and inference FPS, as well

as parameters. Among the State-of-the-Art approaches, our method has the second fastest

run time and can process 41 frames per second which is three times faster than [11] and

[1]. Moreover, the number of parameters of our framework is the smallest, about 28.36

M in Table 4.4, although works like [10] have better FPS with their models, their features

are too heavy to fit into a real-time edge device, additionally our work maintains a higher

mAP at a high resolution when compared to their work. We were unable to provide per-

formance comparisons with the State-of-the-Art approaches on the UR-fall dataset as most

of the approaches are not publicly available to run on the edge device, and do not provide

performance metrics of their own.

4.3.2 Embedded Edge Execution Results of S-RAD

We additionally evaluated our work on an edge platform, the Nvidia Xavier to test its

performance on an resource constrained edge platform. We compare the work of Video-
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CapsuleNet [10] with our approach, and despite their initial performance advantage on the

Titan V in terms of FPS, our work is the only model capable of running on the memory

constrained edge device. S-RAD, as opposed to VideoCapsuleNet folds temporal data into

the channel dimension, and as a result avoids introducing another dimension to the tensor

sizes. VideoCapsuleNet not only process 3D spatial-temporal feature maps, but they also

introduce another dimension of complexity in the form of capsules. We also observed 6.0

FPS with only 5.21W of total SoC (on chip) power consumption and it is summarised in

the Table 4.5 where other methods like [10, 1, 11] were not able to fit into the edge devices.

Table 4.5: Comparison on Embedded Edge device platform on Nvidia Xavier

Approach Input Resolution Param # (M) FPS Power mAP

CapsuleNet[10] RGB 112x112 103.137 - - 83.9

S-RAD RGB 300x400 28.35 6.0 5.21 85.04



CHAPTER 5: CONCLUSION and RELATED WORK

5.1 Conclusion

We introduced a novel Single Run Action detector (S-RAD) for activity monitoring.

S-RAD provides end-to-end action detection without the use of computationally heavy

methods with the ability for real-time execution of embedded edge device. S-RAD is a

privacy-preserving approach and inherently protects Personally Identifiable Information

(PII). Results on UCF-Sports and UR-Fall dataset presented comparable accuracy to State-

of-the-Art approaches with significantly lower model size and computation demand and

the ability for real-time execution on edge embedded device.

5.2 Future Work

Our Future work would include introducing the two pathway to utilise the sparse sam-

pling strategy to capture the long temporal structure and dense sampled strategy to capture

the short fine grained temporal structure. Also improvement in that area would impro-

vise the fine grained action like "Walking". Different from grid-shaped structures of im-

ages/videos, human skeleton, consisting of a series of joints and bones, has an irregular

geometric structure. Human action may be regarded as a consecutive dynamic sequence of

such irregular structures. Considering the motion complexity of the entire body skeleton,

the sophisticated strategy is to separately model the trajectory of each joint or clique of

joints through skeletal based information and they are less computationally intensive than

the heavy pixel wise RGB based method. Additionally leveraging skeletal action detection

just like [60, 61] with graph convolution [62] will reduce the GFLOP of pixel wise calcula-

tion of RGB images and also will reduce the appearance noise introduced by RGB images

in the scene level detection .



35

REFERENCES

[1] X. Peng and C. Schmid, “Multi-region two-stream R-CNN for action detection,”
vol. 9908 of Lecture Notes in Computer Science, (Amsterdam, Netherlands), pp. 744–
759, Springer, Oct. 2016.

[2] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-pooled deep-
convolutional descriptors,” CoRR, vol. abs/1505.04868, 2015.

[3] P. V. K. Borges and N. Nourani-Vatani, “Vision-based detection of unusual patient
activity.,” in HIC, pp. 16–23, 2011.

[4] B. Ni, C. D. Nguyen, and P. Moulin, “Rgbd-camera based get-up event detection
for hospital fall prevention,” in 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1405–1408, IEEE, 2012.

[5] E. Chou, M. Tan, C. Zou, M. Guo, A. Haque, A. Milstein, and L. Fei-Fei, “Privacy-
preserving action recognition for smart hospitals using low-resolution depth images,”
arXiv preprint arXiv:1811.09950, 2018.

[6] U. Asif, B. Mashford, S. Von Cavallar, S. Yohanandan, S. Roy, J. Tang, and S. Harrer,
“Privacy preserving human fall detection using video data,” in Machine Learning for
Health Workshop, pp. 39–51, 2020.

[7] C. Neff, M. Mendieta, S. Mohan, M. Baharani, S. Rogers, and H. Tabkhi, “Revamp2t:
Real-time edge video analytics for multicamera privacy-aware pedestrian tracking,”
IEEE Internet of Things Journal, vol. 7, no. 4, pp. 2591–2602, 2020.

[8] S. A. Cameiro, G. P. da Silva, G. V. Leite, R. Moreno, S. J. F. GuimarÃ£es, and
H. Pedrini, “Multi-stream deep convolutional network using high-level features ap-
plied to fall detection in video sequences,” in 2019 International Conference on Sys-
tems, Signals and Image Processing (IWSSIP), pp. 293–298, 2019.

[9] A. Y. Alaoui, S. El Fkihi, and R. O. H. Thami, “Fall detection for elderly people using
the variation of key points of human skeleton,” IEEE Access, vol. 7, pp. 154786–
154795, 2019.

[10] K. Duarte, Y. S. Rawat, and M. Shah, “Videocapsulenet: A simplified network for
action detection,” in Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPSâ18, (Red Hook, NY, USA), p. 7621â7630,
Curran Associates Inc., 2018.

[11] R. Hou, C. Chen, and M. Shah, “Tube convolutional neural network (t-cnn) for ac-
tion detection in videos,” in The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[12] N. Lu, Y. Wu, L. Feng, and J. Song, “Deep learning for fall detection: Three-
dimensional cnn combined with lstm on video kinematic data,” IEEE Journal of
Biomedical and Health Informatics, vol. 23, no. 1, pp. 314–323, 2019.



36

[13] G. Leite, G. Silva, and H. Pedrini, “Fall detection in video sequences based on a three-
stream convolutional neural network,” in 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA), pp. 191–195, 2019.

[14] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid, “Action tubelet detector for
spatio-temporal action localization,” CoRR, vol. abs/1705.01861, 2017.

[15] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. V. Gool, “Tempo-
ral segment networks for action recognition in videos,” CoRR, vol. abs/1705.02953,
2017.

[16] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action
recognition in videos,” CoRR, vol. abs/1406.2199, 2014.

[17] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream network
fusion for video action recognition,” CoRR, vol. abs/1604.06573, 2016.

[18] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video recogni-
tion,” CoRR, vol. abs/1812.03982, 2018.

[19] Y. Ye, X. Yang, and Y. Tian, “Discovering spatio-temporal action tubes,” CoRR,
vol. abs/1811.12248, 2018.

[20] S. Ma, J. Zhang, N. Ikizler-Cinbis, and S. Sclaroff, “Action recognition and localiza-
tion by hierarchical space-time segments,” in 2013 IEEE International Conference on
Computer Vision, pp. 2744–2751, 2013.

[21] Y. Ke, R. Sukthankar, and M. Hebert, “Event detection in crowded videos,” in 2007
IEEE 11th International Conference on Computer Vision, pp. 1–8, 2007.

[22] A. Prest, V. Ferrari, and C. Schmid, “Explicit modeling of human-object interactions
in realistic videos,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 4, pp. 835–848, 2013.

[23] M. Jain, J. v. Gemert, H. JÃ c©gou, P. Bouthemy, and C. G. M. Snoek, “Action lo-
calization with tubelets from motion,” in 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 740–747, 2014.

[24] G. Yu and J. Yuan, “Fast action proposals for human action detection and search,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1302–1311, 2015.

[25] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for
skeleton-based action recognition,” CoRR, vol. abs/1801.07455, 2018.

[26] A. Diba, V. Sharma, and L. V. Gool, “Deep temporal linear encoding networks,”
CoRR, vol. abs/1611.06678, 2016.

[27] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “C3D: generic features
for video analysis,” CoRR, vol. abs/1412.0767, 2014.



37

[28] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. C. Russell, “Actionvlad: Learning
spatio-temporal aggregation for action classification,” CoRR, vol. abs/1704.02895,
2017.

[29] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for visual
recognition and description,” CoRR, vol. abs/1411.4389, 2014.

[30] B. Zhou, A. Andonian, and A. Torralba, “Temporal relational reasoning in videos,”
CoRR, vol. abs/1711.08496, 2017.

[31] M. Zolfaghari, K. Singh, and T. Brox, “ECO: efficient convolutional network for
online video understanding,” CoRR, vol. abs/1804.09066, 2018.

[32] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy, “Rethinking spatiotemporal feature
learning for video understanding,” CoRR, vol. abs/1712.04851, 2017.

[33] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A closer look
at spatiotemporal convolutions for action recognition,” CoRR, vol. abs/1711.11248,
2017.

[34] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for ac-
curate object detection and semantic segmentation,” CoRR, vol. abs/1311.2524, 2013.

[35] R. B. Girshick, “Fast R-CNN,” CoRR, vol. abs/1504.08083, 2015.

[36] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: towards real-time object
detection with region proposal networks,” CoRR, vol. abs/1506.01497, 2015.

[37] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,” CoRR,
vol. abs/1703.06870, 2017.

[38] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg, “SSD:
single shot multibox detector,” CoRR, vol. abs/1512.02325, 2015.

[39] S. Saha, G. Singh, M. Sapienza, P. H. S. Torr, and F. Cuzzolin, “Deep learning for
detecting multiple space-time action tubes in videos,” CoRR, vol. abs/1608.01529,
2016.

[40] “Online real time multiple spatiotemporal action localisation and prediction on a sin-
gle platform,” CoRR, vol. abs/1611.08563, 2016. Withdrawn.

[41] P. Weinzaepfel, Z. Harchaoui, and C. Schmid, “Learning to track for spatio-temporal
action localization,” CoRR, vol. abs/1506.01929, 2015.

[42] Z. Yang, J. Gao, and R. Nevatia, “Spatio-temporal action detection with cascade pro-
posal and location anticipation,” CoRR, vol. abs/1708.00042, 2017.



38

[43] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid, “Joint learning of object
and action detectors,” in ICCV - IEEE International Conference on Computer Vision,
(Venice, Italy), pp. 2001–2010, IEEE, Oct. 2017.

[44] J. Lin, C. Gan, and S. Han, “Temporal shift module for efficient video understanding,”
CoRR, vol. abs/1811.08383, 2018.

[45] L. Atallah, B. Lo, R. King, and G.-Z. Yang, “Sensor positioning for activity recog-
nition using wearable accelerometers,” IEEE transactions on biomedical circuits and
systems, vol. 5, no. 4, pp. 320–329, 2011.

[46] R. Saeedi, J. Purath, K. Venkatasubramanian, and H. Ghasemzadeh, “Toward seam-
less wearable sensing: Automatic on-body sensor localization for physical activity
monitoring,” in 2014 36th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, pp. 5385–5388, IEEE, 2014.

[47] J. Pagan, R. Fallahzadeh, M. Pedram, J. L. Risco-Martin, J. M. Moya, J. L. Ayala,
and H. Ghasemzadeh, “Toward ultra-low-power remote health monitoring: An op-
timal and adaptive compressed sensing framework for activity recognition,” IEEE
Transactions on Mobile Computing (TMC), vol. 18, no. 3, pp. 658–673, 2018.

[48] S. I. Mirzadeh and H. Ghasemzadeh, “Optimal policy for deployment of machine
learning modelson energy-bounded systems,” in Proceedings of the Twenty-Ninth In-
ternational Joint Conference on Artificial Intelligence (IJCAI), 2020.

[49] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action
recognition in videos,” CoRR, vol. abs/1406.2199, 2014.

[50] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Detect to track and track to detect,”
CoRR, vol. abs/1710.03958, 2017.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.

[52] J. Y. Ng, M. J. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici, “Beyond short snippets: Deep networks for video classification,” CoRR,
vol. abs/1503.08909, 2015.

[53] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” CoRR, vol. abs/1411.4038, 2014.

[54] S. Liu and W. Deng, “Very deep convolutional neural network based image classifica-
tion using small training sample size,” in 2015 3rd IAPR Asian Conference on Pattern
Recognition (ACPR), pp. 730–734, 2015.

[55] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th International Conference on Machine Learning
(ICML-10) (J. FÃŒrnkranz and T. Joachims, eds.), pp. 807–814, 2010.



39

[56] K. Soomro and A. R. Zamir, “Action recognition in realistic sports videos,” 2014.

[57] M. Everingham, L. Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal
visual object classes (voc) challenge,” Int. J. Comput. Vision, vol. 88, p. 303â338,
June 2010.

[58] B. Kwolek and M. Kepski, “Human fall detection on embedded platform using depth
maps and wireless accelerometer,” Computer methods and programs in biomedicine,
vol. 117 3, pp. 489–501, 2014.

[59] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu,
Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai,
J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open mmlab
detection toolbox and benchmark,” arXiv preprint arXiv:1906.07155, 2019.

[60] C. Li, Z. Cui, W. Zheng, C. Xu, and J. Yang, “Spatio-temporal graph convolution for
skeleton based action recognition,” CoRR, vol. abs/1802.09834, 2018.

[61] C. Li, Q. Zhong, D. Xie, and S. Pu, “Skeleton-based action recognition with convolu-
tional neural networks,” CoRR, vol. abs/1704.07595, 2017.

[62] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” CoRR, vol. abs/1609.02907, 2016.


	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Problem Statement
	Contributions
	Thesis Outline

	BACKGROUND AND RELATED WORK
	Background
	Spatio-Temporal Action Localization And Classification
	R-CNN Based Action Detection
	Temporal Shift Module

	Related Work
	Activity Recognition using Wearable Sensors
	Action Recognition in Video data
	Spatio-Temporal Human Action Detection


	S-RAD
	Temporal Sampling Strategy
	Dense Sampling Strategy
	Temporal Segment Sampling Strategy

	Base Feature Extractor
	Base Feature Extractor
	Temporal Shift Module

	S-RAD Head
	Proposal Network
	ROI Align
	R-CNN S-RAD Top

	Formulations
	Proposal Network Loss
	R-CNN Loss
	Total loss


	EXPERIMENTAL RESULTS
	Results on UCF-Sport Action Dataset
	Results on UR-Fall Dataset
	Real-Time Execution Results
	Server Class Execution Results of S-RAD
	Embedded Edge Execution Results of S-RAD


	CONCLUSION and RELATED WORK
	Conclusion
	Future Work

	REFERENCES

