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ABSTRACT 

 

 

JASON ALLEN SHULTZ. Design, tolerancing, and experimental characterization of 

dynamic freeform optical systems. (Under the direction of DR. THOMAS J. SULESKI) 

 

Although freeform concepts have been considered for many decades, new fabrication 

capabilities have enabled new classes of optical components and sparked greatly 

increased interest in freeform optics. Generally defined as surfaces without rotational 

symmetry, freeform optics enable complex phase variations due to their asymmetry. One 

approach for freeform optics utilizes multiple freeform surfaces in close proximity. Light 

transmitted through these surfaces results in a composite wavefront, which is then 

dynamically changed through controlled relative motions of the freeform surfaces, 

thereby dynamically changing the overall optical function of the system. These ‘dynamic 

freeform optics’ offer advantages such as design miniaturization, decreased 

manufacturing costs, and optical design flexibility. Examples include the varifocal 

Alvarez lens and a variable diameter Gaussian to flat-top beam shaper. In these cases the 

output function is varied through relative lateral shifts. The analytical design procedures 

for these examples have been well documented in previous work. However, previous 

cases possess inherent design constraints. For example, the classic Alvarez lens has no 

optical power when the lateral shift is zero, and both examples are limited to rotationally 

symmetric output functions and lateral shifts along a single axis. A primary objective of 

this dissertation is to expand design procedures to overcome these constraints for creation 

of additional novel dynamic freeform optical systems. The optical performance of several 

example systems is characterized through experimental testing of diamond-machined 

freeform elements. Furthermore, as the advantages offered by freeform systems are 
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realized, there remain unknowns regarding performance sensitivity to several potential 

errors such as opto-mechanical alignment, surface form accuracy, and surface finish 

quality. To this end, this dissertation also includes individual tolerance analyses on each 

of these error sources, enabling the determination of meaningful tolerance specifications 

for dynamic freeform optical systems.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background and Motivation 

Although freeform concepts have been considered for many decades, new fabrication 

capabilities have enabled new classes of optical components and sparked greatly 

increased interest in freeform optics. Generally defined as surfaces without rotational 

symmetry, freeform optics enable complex phase variations due to their asymmetry. 

Furthermore, freeform surfaces have an intriguing advantage enabling the manipulation 

of a given input into a desired output form [1-4]. Example applications which utilize 

freeforms include aberration correction [5-7], extending depth of field [8-11], beam 

collimation and beam shaping [12-14], illumination and projection systems [15-24], and 

conformal optics applications [25-27].  

Another approach for freeform optics utilizes multiple freeform surfaces in close 

proximity. Light transmitted through these surfaces results in a composite wavefront; the 

overall optical function of the system is dynamically changed through controlled relative 

motions of the freeform surfaces. These ‘dynamic freeform optics’ offer advantages such 

as design miniaturization, decreased manufacturing costs, and optical design flexibility. 

This concept is demonstrated in Fig. 1.1 for relative lateral shifts. 
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Fig. 1.1: General demonstration of two freeform surfaces with a controlled relative lateral 

shift, creating a variable composite surface. 

 

The Alvarez lens and Lohmann lens are classic examples in this genre of optical 

systems, comprised of two superimposed freeforms with matching cubic surface profiles 

[28-30]. In these specific examples, a refractive lens with a variable focal length is 

achieved by laterally shifting the freeform components by equal amounts in opposite 

directions along a single designated axis. Alvarez lens prototypes have been created for 

visible light and fabricated using diamond turning [31-33]. Smilie et al. expanded this 

concept into the mid and long wave infrared (IR) through the analytical design, 

fabrication, and experimental characterization of a diamond milled Alvarez lens [34, 35]. 

Since the introduction of this concept, there have multiple designs presented which 

incorporate laterally or rotationally translated freeforms for improved varifocal imaging 

systems [36-43], and variable aberration generation or correction [5, 6, 44-48]. Smilie et 

al. [35, 49-51] further expanded on this design concept through an analytical design for a 
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novel variable diameter beam shaper. For this device, the energy from an incident source 

with Gaussian form is redistributed to an output spot with uniform irradiance, defined as 

a step-function. Varying output diameters are achieved while maintaining the uniform 

irradiance distribution at a target location by utilizing two laterally shifted freeforms, 

similar to the Alvarez lens. Fabrication and experimental characterization of this device 

were recently continued and are presented in this dissertation [51, 52]. 

While the design procedures for the Alvarez lens and beam shaping examples offer 

insights to the overall system design, they also have inherent limitations. For example, 

the analytical design procedure for the ‘standard’ Alvarez lens results in no optical power 

when there is no lateral shift in the system, and the composite surface acts a converging 

lens for negative shifts and as a diverging lens with positive shifts. Researchers have 

reported limited examples where the systems had optical power at zero relative shift by 

presetting a lateral offset of the lens apertures [53-55] or through optimization using 

optical simulation [56] where the procedure was not well defined. A consequence to 

defining the output irradiance of the variable beam shaper as a step-function is 

undesirable spikes of energy at the edges of the output spot from the Gibb’s phenomenon 

[57, 58]. A solution to this problem is to implement an output irradiance profile described 

as a super-Gaussian function as presented by Shealy and Hoffnagle [59]. However, since 

this is a continuous and more complex function, the analytical solutions previously used 

to determine the appropriate composite surface do not apply and a more general 

numerical approach is required. With this in mind, an extended design approach is 

considered, implementing an extended numerical analysis to avoid the constraints for 

both devices. This dissertation demonstrates this design procedure through creation of a 
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super-Gaussian variable diameter beam shaper [50, 51], and an Alvarez lens with a 

shifted focal range [60]. Fabrication and experimental characterization of these devices 

are also presented.  

The previous designs are also limited to output functions with radial symmetry in 

which the x and y parameters are varied simultaneously through a lateral shift along a 

single axis. For example, it has been demonstrated [42, 61-65] that shifting the Alvarez 

lens in the orthogonal direction inherently creates an astigmatic function. However, the 

variability of the x and y focal lengths are interdependent. As mentioned by Lohmann 

[30] and later demonstrated by Barbero [42], two crossed variable cylindrical lens pairs 

create a varifocal lens with appropriate lateral shifts, but independent x and y output 

functions were not demonstrated. A diffractive varifocal toric lens has been reported [66]; 

however, similar to other work, the design procedure was not reported. With this in mind, 

we consider cases where the output is no longer radially symmetric and cases where x 

and y dimensions of the optical output are varied independently of each other. We present 

three novel optical systems; a variable square output beam shaper with a 1-D shift [51], a 

variable rectangular output beam shaper with a 2-D shift [51], and a variable toric lens 

with a 2-D shift [67]. 

In addition to creating and characterizing novel optical systems, several different 

tolerance specifications are also investigated in this work. While dynamic freeform 

optical systems enable variable and compact functionality, the overall optical 

performance depends on the relative positioning and shape accuracy of the freeform 

surfaces. The ability to determine specific tolerance specifications precludes the over-

tolerancing of the system, where overly tight tolerances could unnecessarily increase 
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manufacturing costs and tolerances that are too loose could result in poorly functioning 

systems. 

Since there are multiple elements in these systems, tolerances on relative displacement, 

rotation, and tilt between the surfaces must be understood as part of the design process. 

As shown in other work [68-71], tolerancing typically utilizes a probabilistic Monte-

Carlo approach enabling cross-communication between different errors in the system. 

However, Monte Carlo methods are computationally intensive and inefficient for systems 

with large numbers of variables. Tolerancing freeform elements with this kind of 

approach presents several challenges, as some assumptions made are not valid due to the 

lack of rotational symmetry. We present a simplified deterministic procedure for defining 

optomechanical tolerances for dynamic freeform optical systems, demonstrated using 

imaging and non-imaging examples [72, 73]. 

The overall optical performance also depends on the surface form accuracy. Surface 

form error is a low frequency surface deviation from a desired prescription. Related 

tolerance methods and specifications for rotationally symmetric optical surfaces are well-

established through the international ISO 10110 standard [74, 75], which has been 

recently updated to include freeform surfaces [76]. Researchers have explored ways to 

develop surface form error specifications for freeforms within the ISO standards [77-81], 

although much of this previous work is application-specific and does not pertain directly 

to dynamic freeform systems. In this dissertation, we present a tolerance analysis to 

determine meaningful surface form accuracy specifications pertinent to both optical 

design and manufacturing. Both imaging and non-imaging examples of dynamic freeform 

systems are presented. 
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Lastly, the fabricated surface finish texture also has a significant impact on overall 

system performance. Each fabrication technique leaves residual mid-spatial frequency 

(MSF) surface errors that degrade the surface finish quality, introducing undesired optical 

artifacts. Though surface form errors and MSF errors are both a product of manufacturing 

errors, MSF errors are typically periodic with smaller feature sizes, thus requiring 

different simulation methods to account for diffraction and interference effects. Harvey 

and Tamkin et al. previously showed that the total surface finish can be decomposed into 

known segments where the effects from each segment are simply combined with one 

another [82-84]. As with surface form errors, researchers have previously explored the 

effects of some MSF errors on optical performance e.g. [82-86], but these studies have 

generally been limited to radially symmetric lenses in imaging systems. With this in 

mind, we investigate the optical effects of MSF errors on imaging and non-imaging 

examples, and compare approximated MSF errors resulting from diamond turning and 

diamond milling [87, 88]. 

 

1.2 Dissertation outline 

The theory and analytical design procedure used by Smilie et al. to create the step-

function variable diameter beam shaper are reviewed in Chapter 2. Additionally, Chapter 

2 discusses the different methods used to fabricate refractive freeform elements as well as 

the optomechanical design used for experimental testing. The initial fabrication and 

experimental test results of the variable beam shaper are presented in Chapter 3, where 

the overall functionality was confirmed, but the uniformity and overall quality of the 

output spots were poor. The reason for this poor output spot quality is investigated and 

discussed. Chapter 3 also introduces a second variable diameter beam shaper with a 
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super-Gaussian output function. The changes made in this design procedure, along with 

other key design alterations, are discussed. Fabrication and experimental test results from 

this system are presented, where the output spots were much improved. Using the same 

numerical design procedure as for the super-Gaussian beam shaper, an Alvarez lens with 

a shifted focal range is presented and compared to a ‘standard’ Alvarez lens in Chapter 4. 

Fabrication and experimental results of this device are also presented. 

 Chapter 5 presents additional novel dynamic freeform optical systems with non-

rotationally symmetric outputs using both one and two dimensional lateral shifts. The 

theory and analytical design procedure of a square output beam shaper is discussed in 

detail. Following this, the design of a variable square beam shaper with a 1-D shift and 

the design of a variable rectangular beam shaper with a 2-D shift are presented. 

Additionally, the design of a variable toric lens with a 2-D shift is presented. 

Chapter 6 discusses the importance of optomechanical tolerancing. Several different 

performance metric options suitable for these devices are discussed in detail along with a 

simplified optomechanical tolerancing procedure. This procedure is demonstrated using 

the Alvarez lens with a shifted focal range from Chapter 4 and the super-Gaussian 

variable diameter beam shaper from Chapter 3.  

A tolerance analysis regarding surface form accuracy is presented in Chapter 7. 

Different types of surface form error along with several assumptions made throughout the 

analysis are discussed in detail. This tolerance analysis is demonstrated using the same 

examples employed in Chapter 6. Additionally, a method for communicating tolerance 

specifications between a designer and a manufacturer is presented.  
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The performance effects of residual mid spatial frequency (MSF) surface errors are 

investigated in Chapter 8. The different characteristic MSF errors resulting from 

synchronized diamond turning and diamond milling fabrication processes are examined 

and compared. The optical effects from these MSF errors are demonstrated using a single 

element imaging lens along with a single element square beam shaper. Relations between 

these MSF errors and meaningful machining parameters are made, and methods to 

determine machining parameters balancing cost and performance are discussed.  

Chapter 9 summarizes the results from the research performed in this dissertation. 

Suggestions are given for continued research in the area of dynamic freeform optical 

systems. 

This work is a cooperative effort between the Center for Optoelectronics and Optical 

Communications and the Center for Precision Metrology at the University of North 

Carolina at Charlotte. This collaboration takes advantage of available design, fabrication, 

and testing capabilities to produce and characterize novel dynamic freeform optics.  

  



 

 

CHAPTER 2: METHODS AND PROCEDURES 

 

2.1 Design overview of a variable diameter beam shaper  

Much of the work discussed in this dissertation was heavily motivated by Paul Smilie’s 

research on the variable diameter beam shaper [35]. Therefore, it is essential to review 

the analytical design process and design parameters used to create this device. 

 

2.1.1 Introduction 

One function of a beam shaper is to redistribute the energy from an incident source 

with Gaussian form to an output with uniform irradiance. Beam shaping devices of this 

type are beneficial to several applications such as communications, machining, 

lithography, medical treatment, scanning, printing, illumination, and holography [89-

100]. Such beam shaping devices have been around since 1960 and have expanded over 

time [14, 101-109]. These devices are static, with a fixed shape determined from the 

input irradiance and the desired output. Laskin et al. [110] later expanded on this concept 

by creating a variable output using a fixed beam shaper in combination with additional 

zoom lenses. In contrast, Smilie et al. [35, 49] created an analytical design for a novel 

variable diameter beam shaper utilizing two laterally shifted freeform surfaces. In this 

particular device, the two freeform elements are shifted laterally by equal amounts d in 

opposite directions parallel to the x-axis, where relative shifts result in varying output 

diameters while maintaining the uniform irradiance distribution. Fig. 2.1 shows a 
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schematic demonstrating a fixed single element beam shaper as well as the variable 

diameter beam shaper with two freeform elements. 

 

Fig. 2.1: Schematic illustrations comparing (a) a fixed single element beam shaper and 

(b) the variable diameter beam shaper with two freeform elements. 

 

 

2.1.2 Analytical design procedure for the variable diameter beam shaper 

The general analysis used by Smilie et al. began with design of a single element beam 

shaper, referred to as the desired composite surface z(r). This composite surface 

represents the base optical function performed by the eventual combination of two 

appropriately defined freeform surfaces. In order to determine the height profile of the 

desired composite surface, a ray mapping technique was implemented. This utilizes 

energy conservation from the input beam I1(r) to the output beam I2(R), given by 
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 ∫ 𝐼1(𝑟)𝑟𝑑𝑟
𝑟0

0

= ∫ 𝐼2(𝑅)𝑅𝑑𝑅,
𝑅𝑜

0

 (2.1) 

where r is the input radial coordinate and R is the output radial coordinate. Assuming an 

input irradiance of Gaussian form with waist radius w0 and a uniform output irradiance 

defined as a step-function, the integrals can be solved analytically, yielding 

 ∫ 𝐼1(𝑟)𝑟𝑑𝑟
𝑟0

0

=  ∫ 𝑒𝑥𝑝[−2(𝑟/𝑤0)2]𝑟𝑑𝑟 =
𝑤𝑜

2

4
[1 − 𝑒𝑥𝑝[−2(𝑟𝑜/𝑤𝑜)2]],

𝑟𝑜

0

 (2.2) 

 ∫ 𝐼2(𝑅)𝑅𝑑𝑅
𝑅𝑜

0

=
1

2
𝐼𝑜𝑅𝑜

2. (2.3) 

Setting Eq. (2.2) equal to Eq. (2.3) and solving for I0 yields the constant output irradiance 

for which conservation of energy is achieved: 

 𝐼𝑜 =
𝑤𝑜

2

2𝑅𝑜
2 [1 − 𝑒𝑥𝑝[−2(𝑟𝑜/𝑤𝑜)2]]. (2.4) 

Next, Eq. (2.2) is again set equal to Eq. (2.3), where this time the output radial 

coordinate R is solved for while the input radial coordinate r is left as a variable. This 

inherently creates the aforementioned ray mapping function, given by 

 𝑅(𝑟) = [
𝑤𝑜

2

2𝐼𝑜
[1 − 𝑒𝑥𝑝[−2(𝑟/𝑤𝑜)2]]]

1/2

. (2.5) 

Several rays are then mapped from the input to the output at the target plane, located a 

distance z0 away from the center of the beam shaping surface, and used to determine the 

corresponding relationship between radial coordinates, as demonstrated in Fig. 2.2.  
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Fig. 2.2: Illustration of the ray mapping concept used to develop the relationship between 

the input radial coordinate r and the output radial coordinate R. 

 

Using this coordinate relationship in combination with Snell’s law and other 

geometrical considerations, it was shown in [35] that the slope of the desired composite 

surface dz/dr can be equated to a differential equation dependent on the input radial 

coordinate r, target distance z0, and material refractive index nl. This differential equation 

is given by,  

 
𝑑𝑧

𝑑𝑟
=

𝑅 − 𝑟

(𝑛1 − 1)(𝑧𝑜 − 𝑧(𝑟))
. (2.6) 

This equation can be solved numerically, creating a list of surface data points 

representing the desired composite surface. This composite surface can be represented by 

a general polynomial equation, given by  

 𝑧(𝑟) = ∑ 𝑎2𝑘(𝑟)2𝑘.
𝑛

𝑘=1
 (2.7) 

The polynomial coefficients a2k are determined in MATLAB
®
 by numerically fitting the 

surface data from Eq. (2.6) to Eq. (2.7), dependent on the desired input and output 

parameters. It should be noted that this can be any radially symmetric optical function, as 
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long as it can be accurately described using this general polynomial equation. However, 

as discussed in further detail in Chapter 5, this base composite surface can be altered such 

that asymmetric output functions can also be realized. 

Now that a method to define a composite beam shaping surface has been established, 

the next step is to define the freeform surfaces that create the composite form. In order to 

develop this general freeform approach, Smilie et al. developed a process which 

implemented the combination of two ‘components’ with different purposes and functions. 

The first is the base component zb which determines the system function with zero lateral 

shift (d = 0) of the two freeform surfaces. The second is a ‘variability’ component zv 

which changes the composite surface for non-zero shifts.  It is the combination of the 

base and variability components which create the freeform surfaces, demonstrated in Fig. 

2.3.  

  

Fig. 2.3: Decomposition of freeform surface into base component and variability 

component. 

 

The two freeform surfaces zf involved in this design are flipped 180
o
 relative to each 

other along the x-axis and aligned in close proximity along the optical axis (the separation 

is assumed to be negligible). The two freeforms combine to form the composite surface, 

defined as, 
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𝑍𝑐(𝑥, 𝑦) = 𝑧𝑓(𝑥, 𝑦) + 𝑧𝑓(−𝑥, 𝑦)                                                     

= 𝑧𝑏(𝑥, 𝑦) + 𝑧𝑣(𝑥, 𝑦) + 𝑧𝑏(−𝑥, 𝑦) + 𝑧𝑣(−𝑥, 𝑦). 

(2.8) 

Looking at Eq. (2.8) more closely, the base component is defined to be rotationally 

symmetric, meaning  𝑧𝑏(𝑥, 𝑦) + 𝑧𝑏(−𝑥, 𝑦) = 2𝑧𝑏(𝑥, 𝑦). Because this handles the specific 

case where there is no lateral shift, the base component is defined using Eq. (2.7), where 

it is halved because of the eventual combination of the two freeforms. Hence, the base 

component is defined as, 

 𝑧𝑏(𝑥, 𝑦) = ∑
1

2
𝑎2𝑘(𝑥2 + 𝑦2)𝑘.

𝑛

𝑘=1
 (2.9) 

The variability component is more difficult to define, partly due to the fact that it is 

not rotationally symmetric. As presented by Palusinski [44] for creation of variable 

aberration generators, when laterally shifting freeform elements, the desired composite 

surface is the derivative of the freeform surface with other terms. With this in mind, the 

variability component is defined as the integral of the general polynomial equation, 

 𝑧𝑣(𝑥, 𝑦) = ∫ 𝑧(𝑥, 𝑦)𝑑𝑥 = ∑ 𝑏2𝑘

𝑛

𝑘=1

∫(𝑥2 + 𝑦2)𝑘 𝑑𝑥, (2.10) 

where b2k represents the variability coefficients. With both the base and variability 

components defined, the general freeform surface can be mathematically described as,  

 𝑧𝑓(𝑥, 𝑦) = ∑
1

2
𝑎2𝑘(𝑥2 + 𝑦2)𝑘

𝑛

𝑘=1

+ ∑ 𝑏2𝑘 ∫(𝑥2 + 𝑦2)𝑘𝑑𝑥 + 𝑐𝑜𝑥

𝑛

𝑘=1

, (2.11) 

where c0 is a ‘tilt’ term used to minimize the overall sag of the surface without affecting 

the optical properties.  



15 

 

The next step is to determine the b2k coefficients found in Eq. (2.10) using Eq. (2.8) 

and Eq. (2.11), and introducing a lateral shift d along the x-axis. It should be noted that 

the lateral shift d represents the amount of displacement for one freeform lens, meaning 

the total displacement between both freeform lenses is 2d. With this in mind, the 

combined composite surface with the introduced lateral shifts is given by,  

 

𝑍𝑐(𝑥, 𝑦, 𝑑) = 𝑧𝑓(𝑥 + 𝑑, 𝑦) + 𝑧𝑓(−(𝑥 − 𝑑), 𝑦)                                      

= ∑ [𝑎2𝑘 + 2𝑏2𝑘𝑑](𝑥2 + 𝑦2)𝑘 +
𝑛

𝑘=1
𝜀(𝑥, 𝑦, 𝑑)

=  ∑ 𝑎2𝑘
′ (𝑥2 + 𝑦2)𝑘

𝑛

𝑘=1

+ 𝜀(𝑥, 𝑦, 𝑑), 

(2.12) 

where ε(x,y,d) represents the combined ‘error’ terms that are a byproduct of the 

integration. These error terms are negligible for small lateral shifts, though larger shifts 

can introduce error terms with more significant impacts on performance. 

From Eq. (2.12), the curvature/power of the composite surface is now a function of 

lateral shift, meaning the ‘overall’ composite surface coefficients a2k’ can be described as   

 𝑎2𝑘
′ (𝑑) = 𝑎2𝑘 + 2𝑏2𝑘𝑑. (2.13) 

As shown in Eq. (2.13), we note that when d = 0, the b2k terms go away meaning the 

composite surface is described solely by the base coefficients a2k, as expected. Further, 

for non-zero shifts, the composite surface coefficients a2k’ have a linear relationship with 

lateral shift d. To develop this linear relationship, several different desired base 

composite surfaces are created with incremental changes within a defined range of output 

parameters (output spot diameters), ultimately providing a catalog of varying composite 

surface coefficients. From this catalog, the average change in surface coefficients Δa2k is 
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determined for a given linear change in output spot diameter. This average change can be 

related to the lateral shift by  

 𝑏2𝑘 =
∆𝑎2𝑘

2∆𝑑
,   (2.14) 

where Δd is the defined amount of lateral shift corresponding to the given change in 

output spot diameter. This inherently assumes that the desired base composite 

coefficients vary linearly in correspondence with the linear variation in lateral shift, 

which is later shown to be a valid assumption. 

 

2.1.3 Optical design of the variable diameter beam shaper 

Using this design process, Smilie designed a variable output diameter beam shaper 

with a round, step-function output irradiance distribution [35, 49]. The waist diameter of 

the Gaussian input was defined to be 6 mm at a wavelength of 632.8 nm, and the output 

spot diameter was chosen to be 5 mm for the case with no relative shift in the system (d = 

0). The material chosen for the 12 mm diameter freeform surfaces was poly (methyl 

methacrylate) (PMMA) (nl = 1.49). The target distance, where the incident light is 

‘focused’ to a uniform distribution, was defined to be 150 mm. The variability 

component was determined by first defining the output diameter range to be from 3 mm 

to 7 mm over a lateral shift range +/-300 µm. This means that with every lateral shift of 

Δd =150 μm will result in a 1 mm change in output diameter. With these design 

parameters in mind, multiple fixed beam shapers with different output spot diameters 

were designed. Fig. 2.4 shows each surface profile on the same scale across the 12 mm 

aperture.   
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Fig. 2.4: Surface height profiles for multiple fixed beam shapers with various output spot 

diameters. 

 

For each surface height profile, a set of polynomial coefficients was fit to Eq. (2.7). 

Each set of coefficients are listed in Table 2.1 along with the average change, Δa2k.  

Table 2.1: Surface coefficients for five output spot diameters and the associated changes. 

 

This variable beam shaper is designed to have a 5 mm output diameter when there is 

no lateral shift in the system; therefore, the corresponding coefficients will inherently be 

defined as the base component coefficients (a2k). The average change in coefficients Δa2k 

per unit change in lateral shift (Δd = 150 μm) are then used in Eq. (2.14) to determine the 

variability coefficients b2k. Table 2.2 shows the resulting a2k and b2k coefficients for this 

design. 

a2k    

values 

(mm
-2k+1

) 

Output Diameter 

Avg. Δa2k 

(mm
-2k+1

) 3 mm 
(d=300um) 

4 mm 
(d=150um) 

5 mm 
(d=0) 

6 mm 
(d=-150um) 

7 mm 
(d=-300um) 

a2 -1.99E-03 -3.88E-04 1.22E-03 2.82E-03 4.42E-03 -1.60E-03 

a4 -1.33E-04 -1.78E-04 -2.22E-04 -2.67E-04 -3.11E-04 4.45E-05 

a6 4.09E-06 5.45E-06 6.81E-06 8.17E-06 9.53E-06 -1.36E-06 

a8 -9.87E-08 -1.32E-07 -1.64E-07 -1.97E-07 -2.30E-07 3.28E-08 

a10 1.70E-09 2.27E-09 2.83E-09 3.39E-09 3.96E-09 -5.64E-10 

a12 -1.84E-11 -2.45E-11 -3.06E-11 -3.67E-11 -4.27E-11 6.09E-12 

a14 9.23E-14 1.23E-13 1.53E-13 1.84E-13 2.14E-13 -3.05E-14 
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Table 2.2: Freeform surface coefficients for variable diameter beam shaper. 

 

A performance sweep was then performed on the tilt term to find the point at which the 

sag of the freeform surface was at a minimum. The resulting tilt term of 0.0484 decreased 

the sag from 695 µm to 291 µm over the 12 mm aperture diameter. Minimizing the sag 

make the surfaces easier to manufacture and also allows the two surfaces to be closer 

together, ultimately minimizing the potential error caused by the stand-off distance. The 

resulting freeform surface is shown in Fig. 2.5 along with the corresponding base and 

variability component. 

 

Fig. 2.5: Surface plots showing the (a) base component, (b) variability component, and 

(c) one of the two freeform surfaces. 

Order 

(k) 
a2k Values (mm

-2k+1
) b2k values (mm

-2k
) 

1 1.2153E-03 -5.3454E-03 

2 -2.2248E-04 1.4828E-04 

3 6.8131E-06 -4.5348E-06 

4 -1.6435E-07 1.0930E-07 

5 2.8309E-09 -1.8807E-09 

6 -3.0574E-11 2.0289E-11 

7 1.5346E-13 -1.0174E-13 
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2.1.4 Optical modeling of a variable diameter beam shaper 

VirtualLab™, a wave-based physical optical simulation software package was 

employed to simulate this dynamic optical system. In the following simulations, the 

freeform surfaces were modeled as two plano-freeform surfaces using the surface 

coefficients defined above. The stand-off distance between both freeform surfaces was 

set to 200 µm. The combined SPW/Fresnel propagation operator [111] was used as the 

propagation method for all simulations. The sampling distance of the output light field 

was set to 9 x 9 μm over a 9 x 9 mm window. The “Beam Parameters” function was used 

to determine the diameter of the output spot relative to the centroid at the target location 

(150 mm), which was taken to where the irradiance fell to zero. Table 2.3 shows the 

constant input diameter with the expected and simulated output diameters relative to the 

corresponding lateral shift.   

Table 2.3: Predicted and modeled input and output spot diameters for several amounts of 

lateral shift. 

 

The predicted results were in good agreement with simulated results in VirtualLab™; 

however, the output diameters do not say anything about the uniformity of the output 

spot. For this, the “Virtual Screen” detector in VirtualLab™ was used with the same 

sampling parameters and propagation method as before to simulate an image of the 

Lateral Shift 
d (µm) 

Input 
diameter 

(mm) 

Predicted   
Output diameter 

(mm) 

VirtualLab™ 
Output diameter 

(mm) 

-300 6.0 7.0 6.991 

-150 6.0 6.0 5.988 

0 6.0 5.0 4.988 

150 6.0 4.0 3.982 

300 6.0 3.0 2.950 
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output spot. Fig. 2.6 shows the input spot, displaying its Gaussian irradiance distribution, 

along with the simulation results for output spots with lateral shifts of 0 μm, +/-150 µm, 

and +/-300 µm.  

 

Fig. 2.6: Six VirtualLab™ images and 1-D profiles, (a) Gaussian input, (b) d = 300 µm, 

(c) d = 150 µm, (d) d = 0.0 mm, (e) d = –150 µm, and (f) d = –300 µm.  
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From the simulation results, the output spots are highly uniform along the cross 

section, suggesting the system works as intended; however, we note the undesired spike 

of energy along the edges of the spot. This is formally known as the Gibb’s phenomenon 

[57, 58] which is a result of using a step function for the output irradiance distribution. To 

combat this issue, a super Gaussian function [59] may be employed for its desired output 

irradiance distribution, where the output distribution is described in a continuous manner 

with controlled edge steepness. This approach is discussed in Chapter 3. 

 

2.2 Fabrication of refractive freeforms 

From a manufacturing perspective, the technology used for different optical fabrication 

methods has advanced tremendously over recent years, expanding overall capabilities 

while also increasing surface accuracy. Optical grinding and polishing methods are often 

viewed as ‘standard’ examples for material removal; however, these techniques are not 

always conducive to freeform manufacturing. In contrast, diamond machining allows for 

great design flexibility over a wide range of scales while still offering a high level of 

surface form accuracy [112, 113]. In conventional diamond turning, an optical workpiece 

on a rotating spindle is cut by a diamond tool at varying depths, resulting in a radially 

symmetric surface. Synchronized modulation of the tool depth with the rotating spindle 

(slow tool servo (STS) or fast tool servo (FTS)) [112, 113] enables cutting of non-

symmetric surfaces, illustrated in Fig. 2.7(a). In contrast, diamond milling involves a 

non-rotating workpiece that is laterally translated relative to a rotating diamond tool 

(endmill) at varying depths, illustrated in Fig. 2.7(b). In each method, the ‘step-over’ is a 

primary machining parameter that has a direct impact on surface finish. For diamond 

turning the step-over is equivalent to the lateral tool feed rate per revolution of the 
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workpiece, and for diamond milling the step-over is the lateral translation made between 

each cutting pass. A smaller step-over results in a better surface finish, but also results in 

an increase in the machine time which can potentially be costly.  

 

Fig. 2.7: Illustration of material removal methods through the use of (a) diamond turning 

and (b) diamond micro-milling. 

 

Although both methods possess the ability to fabricate freeform surfaces, they each 

have relative advantages and disadvantages. Diamond turning has been more commonly 

used to fabricate freeform surfaces [113-117]. While FTS diamond turning is 

significantly quicker, providing a major advantage in terms of machine time and relative 

costs, the maximum allowable surface deviation is smaller than what can be achieved 

with STS or diamond milling. Additionally, for surface features with high aspect ratios, 

there can be access problems based on tool geometries for diamond turning that would 

not exist for diamond milling. Thus, using a diamond milling approach enables, for 

example, fabrication of monolithic alignment features with freeform optical surfaces. 

With these advantages and disadvantages in mind, both STS diamond turning and 



23 

 

diamond milling are used to produce the freeform optics presented in this dissertation. 

Diamond milling is used to fabricate both of the variable PMMA beam shapers presented 

in Chapter 3. An Alvarez lens with a shifted focal range is fabricated using STS diamond 

turning in IRG26 chalcogenide glass [118], presented in Chapter 4. All the diamond 

machining discussed in this dissertation was performed on the Moore Nanotech
®
 350FG 

(Fig. 2.8) by students and staff in the UNC Charlotte Center for Precision Metrology. 

This is a five axis freeform generator with three linear axes (X, Y, and Z) and two rotary 

axes (B and C). 

 

Fig. 2.8: (a) The Moore Nanotech
®
 350 FG and (b) the spindle head with three linear axes 

(X, Y, and Z) and two rotary axes (B and C). 

 

In each case, fabrication of the freeform elements began with two diamond turned 

disks of the respective material, each with a 25.4 mm diameter and an initial thickness of 

3 mm. A point cloud describing the respective freeform surface was generated in 

MATLAB
®
 and used to establish the custom toolpath. The freeform surface was then 

machined into the substrate; where the area outside of the freeform surface diameter d0 

was machined down further to create a pedestal, illustrated in Fig. 2.9. At the same time, 

during the fabrication process, mechanical alignment features (slots) were machined into 
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the pedestal, also illustrated in Fig. 2.9. These monolithic slots were designed to coincide 

with alignment features in the experimental test setup.  

 

Fig. 2.9: Illustration of the freeform fabrication concept, showing the freeform surface on 

a pedestal along with the monolithic slots serving as a rotational alignment feature. 

 

 

2.3 Optomechanical design for experimental tests 

A refractive IR Alvarez lens was designed, diamond machined, and experimentally 

characterized in previous work [34, 35]. A custom mounting assembly was designed and 

machined by Brian Dutterer for this testing. The optomechanical assembly included two 

mounting brackets, two mounting rings, and two Newport
®
 M-461 three-axis translation 

stages enabling linear shifts with 10 µm resolution, shown in Fig. 2.10. The mounting 

rings were specifically designed to minimize any applied stress in order to prevent any 

surface warping. Additionally, two locating pins were implemented on each of the 

mounting brackets, coinciding with monolithic slots machined in the freeform elements 

to ensure proper rotational alignment. For the examples presented in this dissertation, 

each of the freeform elements were designed and fabricated such that the existing 

optomechanical setup could again be utilized. 
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Fig. 2.10: (a) Solidworks
©
 model of the mounting assembly, (b) two three axis translation 

stages where the mounting brackets are mounted, (c) an close-up image of a mounting 

bracket displaying the location pins, and (d) an overview image of the entire 

optomechanical assembly. 

 

 

  



 

 

CHAPTER 3: VARIABLE DIAMETER BEAM SHAPER 

 

In this chapter, we present the fabrication and experimental test results of a variable 

diameter beam shaper previously designed by Smilie et al. [35, 49]. The analytical design 

of this device was reviewed in Chapter 2. Additionally, we present the design, 

fabrication, and experimental test results of a second variable diameter beam shaper with 

a super-Gaussian irradiance distribution. 

 

3.1 Fabrication results of a step function variable diameter beam shaper  

To fabricate this device, a diamond raster micro-milling approach was used, where the 

non-rotating work piece was translated along the X and Y axes as the tool rotated at high 

speeds and translated along the Z axis to cut away material. This device was fabricated at 

using a Moore Nanotech
®

 350 FG by Brian Dutterer, machinist at the UNC Charlotte 

Center for Precision Metrology. A point cloud describing the surface was generated 

using MATLAB
®
 and imported into MasterCAM

®
 to establish the toolpath. The radius of 

the diamond endmill was 1.0 mm and milling step-over was set at 20 µm. Fig. 3.1 

displays one of the two fabricated freeform elements.  
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Fig. 3.1: One of the two freeform elements for the first variable beam shaper, fabricated 

using diamond milled approach on the Moore Nanotech
®
 350 FG. 

 

The beam shaper surfaces were measured using a Zygo
®
 scanning white light 

interferometer (SWLI) and MetroPro
®
 software. These measurements were performed by 

Dr. Matthew Davies, Professor at the UNC Charlotte Center for Precision Metrology. 

Fig. 3.2 shows the results, where throughout the surface it can be seen that there is a 

significant amount of residual noise on the surface from the diamond milling process. 

The majority of this residual noise is believed to be a product of an interpolation error 

between data points in the MasterCam
©

 software when generating the toolpath. This 

noise resulted in a peak-to-valley (P-V) error of 0.542 μm, and an RMS surface error of 

0.093 μm. 
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Fig. 3.2: SWLI measurements showing the surface finish of the diamond milled freeform 

surface. 

 

3.2 Experimental test results of a step function beam shaper 

This device was tested using the optomechanical assembly discussed in Chapter 2. Fig. 

3.3 shows a schematic of the test setup, where a HeNe laser source with nominal 

wavelength of 632.8 nm was used as the Gaussian input. The nominal waist diameter of 

the HeNe laser source was 1.0 mm; therefore, because the beam shaper was designed for 

an input waist diameter of 6 mm, a Galilean beam expander [119] was designed and 

implemented. This beam expander consisted of a 12.7 mm diameter spherical lens with a 
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-25 mm focal length, followed by a 25 mm diameter spherical lens with a 150 mm focal 

length. A separation of 125 mm between the two lenses facilitates the required 6x 

magnification needed for the appropriate input waist diameter. A Uni-q™ digital CCD 

camera with a 4.785 mm x 4.757 mm detector was placed at the target location following 

the beam shaper to capture the output spot profile.  

 

Fig. 3.3: General schematic of the variable output beam shaper experimental test setup. 

 

Using translation stages, several different amounts of lateral shift d were introduced to 

the system, where images of and output spot were captured using Spiricon™ imaging 

software. These results are shown in Fig. 3.4 along with images of the input Gaussian 

beam before and after expansion. Additionally, for each case of lateral shift, output spot 

diameter was measured and summarized in Table 3.1.  
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Fig. 3.4: Experimental images of (a) the 632.8 nm Gaussian input, (b) the expanded input 

beam waist, and output irradiance spot profiles for lateral shifts of (c) -300 µm, (d) -150 

µm, (e) 0 µm, (f) 150 µm, (g) 300 µm, and (h) 450 µm. 



31 

 

Table 3.1: Predicted, modeled, and measured output spot diameters for several amounts 

of lateral shift for first beam shaper. 

Lateral Shift 

d  (mm) 
Predicted Modeled Measured 

Diameter (mm) Diameter (mm) Diameter (mm) 
-0.15 6.000 5.988 6.05 

0 5.000 4.988 4.97 
0.15 4.000 3.982 4.07 
0.3 3.000 2.968 2.96 
0.45 2.000 1.950 1.99 

 

Overall, the initial experimental testing showed mixed results. The variable beam 

shaping functionality was confirmed through the output spot images in Fig. 3.4 and, as 

seen in Table 3.1, the output spot diameters compared well with the predicted diameters. 

However, the output spot quality and overall uniformity was poor, with a significant 

amount of ‘noise’ in the spot. The reason for this noise is investigated in the next section. 

Considering this undesired noise, we note there is an undefined degree of uncertainty in 

the measurement of the output diameters. We also note that in some cases the detector 

was smaller than the size of the output spot, resulting in clipping at the edges of the spots.  

 

3.3 Spot quality investigation 

There are several potential contributors to the poor output spot quality of the beam 

shaper. First, during experimental testing the input waist diameter was measured to be 

1.15 mm (magnifying to 6.9 mm) which differs from the previously assumed diameter of 

6.0 mm. Next, the previous optical modeling assumed an ideal input beam, and did not 

include the beam expanding lenses in the simulations. Due to the sizes of these lenses, 

there could potentially be diffraction effects from the edges that would have a negative 

impact on the performance. In an attempt to investigate these effects, we modeled the 

complete experimental set up in VirtualLab™, expanding on previous models by 
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including the corrected input beam diameter and beam expansion lenses. Fig. 3.5 shows 

the results of this simulation and compares it to the ideal case. We see that the 

performance is negatively impacted by the changes, but these results do not suggest that 

these changes are the main contributors to the ‘noise’ seen in the experimental 

measurements. 

 

Fig. 3.5: Output irradiance profiles for the beam shaper with (a) the ideal input and (b) 

the experimental input diameter and beam expansion lenses. 

 

The surface finish of the freeform surfaces was thought to be a main driver in the poor 

spot quality. As seen earlier in Fig. 3.4, there was a significant amount of residual noise 

on the surface from the diamond milling process believed to be the result of a tool path 

generation error. While it is possible to import the measured surface texture into 

VirtualLab™ and impose it onto the freeform surfaces, this simulation was found to be 

impractical due to computational requirements. Instead, we approximated the SWLI 

surface structure with a grating structure, shown in Fig. 3.6. 
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Fig. 3.6: (a) Sample surface profile cross-section from the SWLI data for first beam 

shaper, (b) the approximation of this surface, and (c) the modeled surface imposed on the 

beam shaping surfaces in VirtualLab™. 

 

Due to the relative sizes of the surface textures; diffraction effects must be accounted 

for in order to achieve accurate results, therefore physical optics models are needed to 

accurately analyze the effects. This grating structure from Fig. 3.6c was defined in 

VirtualLab™ and imposed onto the freeform surfaces. With this surface imposed on the 

freeform surfaces, the simulation was performed again, using the same simulation 

parameters as in Fig. 3.5. While still not a model of the actual surface, the simulation 
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results shown in Fig. 3.7 display a more drastic impact on the output spot quality, and 

qualitatively match the poor spot quality seen in the experimental results. 

 

Fig. 3.7: (a) Output irradiance spot for the approximated SWLI data simulation, and (b) 

experimental output spot. 

 

3.4 Optical design of a super Gaussian variable diameter beam shaper  

Using information learned from the step function variable beam shaper discussed, a 

second variable diameter beam shaper was designed in an attempt to achieve higher 

quality output spots. As mentioned before, the previous beam shaper had an output 

irradiance distribution that was defined to be a step-function. As a consequence, there 

were undesirable spikes of energy at the edges of the output spot, known as the Gibb’s 

phenomenon [57, 58]. A solution to this problem is to implement an output irradiance 

profile described by a continuous distribution that contains edges that are less steep, such 

as the super-Gaussian form presented by Shealy and Hoffnagle [59]. The super-Gaussian 

irradiance distribution, ISG, is described by, 

 𝐼𝑆𝐺(𝑅) = 𝐼𝑜 exp (−2 (
𝑅

𝑅𝑆𝐺
)

𝑝

), (3.1) 
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where R is the output radial coordinate, RSG is the waist radius of the output spot, p is the 

parameter which controls the edge steepness, and Io is the constant output irradiance for 

which the energy conservation condition is met. Fig. 3.8 displays sample distributions 

with varying p parameters. Here, it can be see how the edge steepness increases as p 

increases, and performs essentially as a step-function as p approaches infinity. 

 

Fig. 3.8: Super-Gaussian irradiance distributions for several different edge steepness p 

values.  

 

In addition to altering the output irradiance distribution, there were several other design 

and fabrication issues addressed for this design. We implemented smaller output spot 

diameters to better fit the detector, and we adjusted the design to match the experimental 

input waist diameter. A custom tool path was also generated (by Dr. Joseph Owen) to 

improve the surface finish of the fabricated freeform surfaces [120].  

The design process for this device follows very closely to the process Smilie et al. used 

(in Chapter 2) when designing the step-function beam shaper [35], with one key 

difference. Recall the ray mapping technique, where complex integrals were implemented 

using energy conservation in combination with Snell’s law to derive the required 

composite surface en route to ultimately defining the freeform surface. Previously, this 
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part of the design process was purely analytical. However, there are no simple analytical 

solutions to those complex integrals for distributions such as the super-Gaussian function. 

In an effort to further generalize this design process and enable the implementation of 

different irradiance distributions, a custom MATLAB
®
 code (Appendix A.1.1) was 

created to numerically determine the ray mapping function. This custom code determines 

the constant output irradiance I0 such that the conservation of energy is achieved, and 

then numerically equates the input and output radial coordinates using a series of ‘for’ 

loops and the ‘fit’ function in MATLAB
®

, ultimately providing the ray mapping 

function. This process is illustrated in Fig. 3.9; where Fig. 3.9(a) and Fig. 3.9(b) show the 

integral of the input and output irradiance distributions as a function of the respective 

radial coordinates, and Fig. 3.9(c) shows the output radial coordinate R versus input 

radial coordinate r where the corresponding integral values were equal. Using this 

coordinate relationship, the remainder of this design procedure follows the procedure 

used for the step function beam shaper. This numerical aspect to the design process 

ultimately provides more flexibility in design, resulting in improved performance as well 

as the potential development of novel optical functions. 

 

Fig. 3.9: Integral of (a) the input Gaussian beam and (b) the output super-Gaussian beam 

as a function of their respective radial coordinate. (c) The output radial coordinate R 

versus input radial coordinate r where the corresponding integral values were equal (ray 

mapping function). 
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For this specific example, we define the output irradiance distribution to be super-

Gaussian with a p value of 40 across the range of output diameters. Some key design 

parameter changes included the input waist diameter of the Gaussian input, defined to be 

6.9 mm with a wavelength of 632.8 nm, which is equivalent to the experimental diameter 

measured in the previous tests. The output spot diameter was defined to be 3 mm for the 

specific case where there is no relative shift in the system (d = 0), and defined to have a 

range from 1 mm to 5 mm over the lateral shift range of d = +/-300 µm meaning that with 

every lateral shift of Δd =150 μm, there will be a 1 mm change in output diameter. These 

spots were defined to be slightly smaller than the previous example in order to avoid the 

previous clipping of the output spot by the detector. All other parameters were kept the 

same with the 12mm aperture diameter, 150 mm target distance, and PMMA material. 

Multiple beam shapers with output spot diameters ranging from 1-5 mm were designed 

using the numerical ray mapping procedure. Fig. 3.10 shows each surface profile on the 

same scale across the 12 mm aperture.   

 

Fig. 3.10: Surface height profiles for multiple beam shapers with various output spot 

diameters. 
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For each surface height profile, the “polyfit” function was used in MATLAB
®

 [121] to 

fit a set of polynomial coefficients to Eq. (2.7). Each set of coefficients are listed in Table 

3.2 along with the average change, Δa2k. Because this beam shaper is designed to have a 

3 mm output diameter when there is no lateral shift in the system, those corresponding 

polynomial coefficients will inherently be defined as the base component coefficients 

(a2k). 

Table 3.2: Surface coefficients for five output spot diameters and the associated changes. 

 

 

Now that the average changes in coefficients Δa2k per unit change in lateral shift Δd 

have been defined, Eq. (2.14) is used to determine the variability coefficients b2k, 

displayed in Table 3.3 along with the base coefficients a2k. Similar to before, a 

performance sweep was then performed on the tilt term to find the point at which the sag 

of the freeform surface was at a minimum. The resulting tilt term of 0.053 decreased the 

sag from 670 µm to 290 µm over the 12 mm aperture diameter. As before, the reduction 

in sag is beneficial both for fabrication as well as allowing the two surfaces to be closer 

together, ultimately minimizing the potential error caused by the stand-off distance. 

 

a2k    

values 

(mm
-2k+1

) 

Output Diameter 

Avg. Δa2k 

(mm
-2k+1

) 1mm 
(d=300μm) 

2mm 
(d=150μm) 

3mm 
(d=0) 

4mm 
(d=-150μm) 

5mm 
(d=-300μm) 

a2 -5.46E-03 -4.11E-03 -2.76E-03 -1.41E-03 -6.48E-05 -1.35E-03 

a4 -2.70E-05 -5.42E-05 -8.14E-05 -1.09E-04 -1.36E-04 2.72E-05 

a6 4.90E-07 9.79E-07 1.47E-06 1.96E-06 2.44E-06 -4.88E-07 

a8 -6.27E-10 -1.24E-09 -1.84E-09 -2.42E-09 -2.99E-09 5.90E-10 

a10 -2.24E-10 -4.49E-10 -6.73E-10 -8.98E-10 -1.12E-09 2.25E-10 

a12 5.13E-12 1.03E-11 1.54E-11 2.05E-11 2.57E-11 -5.14E-12 

a14 -3.89E-14 -7.78E-14 -1.17E-13 -1.56E-13 -1.95E-13 3.90E-14 
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Table 3.3: Freeform surface coefficients for the super-Gaussian variable diameter beam 

shaper. 

 

These coefficients are then used with Eq. (2.9) and Eq. (2.10) to define the base and 

variability components, and combined to create the desired freeform surface. Fig. 3.11 

displays the resulting base, variability, and freeform surfaces. 

 

Fig. 3.11: Surface plots showing the (a) base component, (b) variability component, and 

(c) one of the two freeform surfaces. 

 

Order (k) a2k Values (mm
-2k+1

) b2k values (mm
-2k

) 

1 -2.7600E-03 -4.4919E-03 

2 -8.1356E-05 9.0507E-05 

3 1.4671E-06 -1.6276E-06 

4 -1.8361E-09 1.9656E-09 

5 -6.7326E-10 7.4954E-10 

6 1.5407E-11 -1.7136E-11 

7 -1.1679E-13 1.2986E-13 
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3.5 Optical modeling of a super-Gaussian variable diameter beam shaper 

Using the same approach as before, VirtualLab™ was used to simulate the 

performance of this optical device. The only simulation parameter changed was the 

sampling distance of the output light field, which was now set to 6 x 6 μm over a 6 x 6 

mm window due to the smaller output spot sizes. The “Beam Parameters” function was 

again used to determine the diameter of the output spot where the irradiance fell to zero. 

Table 3.4 shows the constant input diameter with the expected output diameters and 

simulated output diameters relative to the corresponding lateral shift. The predicted 

results were in good agreement with the simulated results in VirtualLab™. 

 
Table 3.4: Predicted and modeled input and output spot diameters for several amounts of 

lateral shift. 

 

Fig. 3.12 shows images of the simulated input and output spots for lateral shifts of d = 

0 μm, +/-150 μm, and +/-300 μm. The output spots in Fig. 3.12 clearly display the 

variability function, as well as the desired uniform super Gaussian irradiance distribution 

where the aforementioned Gibb’s phenomenon is no longer observed. 

 

 

Lateral 
Shift d 
(µm) 

Input            
Diameter 

(mm) 

Predicted        
Output 

Diameter (mm) 

VirtualLab™      
Output 

Diameter (mm) 

-300 6.9 5.0 4.997 

-150 6.9 4.0 3.992 

0 6.9 3.0 2.988 

150 6.9 2.0 1.962 

300 6.9 1.0 0.953 

 



41 

 

 

Fig. 3.12: Six VirtualLab™ images and 1-D profiles, (a) Gaussian input, (b) d = 300 µm, 

(c) d = 150 µm, (d) d = 0.0 mm, (e) d = –150 µm, and (f) d = –300 µm. Note: the input in 

(a) is set to a different lateral scale. 
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3.6 Fabrication results of the super-Gaussian variable diameter beam shaper 

The freeform elements were again fabricated using a diamond milling approach with 

nearly the same procedure as the previous step function beam shaper. Fabrication was 

performed using a Moore Nanotech
®

 350 FG by Brian Dutterer, machinist at the UNC 

Charlotte Center for Precision Metrology. The diamond endmill used for fabrication had 

the same tool radius of 1.0 mm; however, a smaller milling step-over of 10 µm was used 

opposed to the larger step-over of 20 µm used in the previous case. The reason for this 

change was to achieve a better surface finish in an attempt to avoid undesired optical 

artifacts. Another key change in the fabrication was the method used for generating the 

milling toolpath. After fabrication of the step-function beam shaper, it was found that 

there was an interpolation error when using MasterCAM
®
, causing significant surface 

finish errors. Dr. Joseph Owen et al. addressed this through extensive research on 

generating a custom toolpath in order to achieve optimum results by compensating for 

different machining errors, such as tool edge waviness, tool offset error, and machine axis 

misalignment [120]. Additionally, a new spindle head was acquired that could be 

balanced to minimize vibrations, further increasing the surface finish quality. The effects 

of the surface finish quality will be discussed later in Chapter 8 with more detail. The 

resulting diamond milled PMMA freeform surfaces are shown in Fig. 3.13. 
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Fig. 3.13: Image of the two freeform elements diamond milled in PMMA for the super-

Gaussian variable diameter beam shaper. 

 

The super-Gaussian beam shaper surfaces were measured again using a Zygo
®

 

scanning white light interferometer (SWLI) and MetroPro
®
 software. These 

measurements were performed by Dr. Matthew Davies, Professor at the UNC Charlotte 

Center for Precision Metrology. Fig. 3.14 shows a cross-sectional slice of the measured 

surface data. As expected, through the number of improvements made throughout the 

fabrication process, there is much less residual noise on the surface on the freeform 

surfaces from the diamond milling process. This resulted in a 0.012 μm RMS and a 0.060 

μm P-V, which is significantly less than the previous example which had a 0.093 μm 

RMS and a 0.542 μm P-V. This suggests that the changes made were successful in their 

attempt to improve the surface finish quality. 
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Fig. 3.14: Sample surface profile cross section for super-Gaussian beam shaper from 

SWLI data. Note that the vertical scale in this measurement is an order of magnitude 

smaller than the measurement of the step-function beam shaper. 

 

 

3.7 Experimental testing of the super-Gaussian variable diameter beam shaper 

Experimental testing of this device was performed using the same setup described in 

earlier in this Chapter. Fig. 3.15 displays the Gaussian input before and after the beam 

expander as well as the experimental output spots for different values of lateral shift d. 

Table 3.5 shows the measured experimental output spot diameters. These results show a 

dramatic improvement in the output spot quality. This improvement is thought to be a 

direct product of the much improved surface finish. While the performance is much 

improved, there still remains some undesired noise in the output spot. This is still thought 

to be a product of additional surface finish errors (e.g., vibrations, thermal cycling, tool 

misalignment, tool chatter, etc.). Methods for further improvement of surface finish are 

currently being explored.  
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Fig. 3.15: Experimental results for (a) the 632.8 nm Gaussian input, (b) the expanded 

input beam waist, and output irradiance spot profiles for lateral shifts of (c) -300 µm, (d) 

-150 µm, (e) 0 µm, (f) 150 µm, and (g) 300 µm. 
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Table 3.5: Predicted, modeled, and measured output spot diameters for several amounts 

of lateral shift for second beam shaper. 

 

 

3.8 Discussion 

The results from both of these variable output diameter beam shaper were extremely 

encouraging, leaving several takeaways. Through the first set of experimental tests, the 

general functionality of the dynamic freeform system was confirmed. However, the 

uniformity was less than ideal with a significant amount of undesired noise observed in 

the output spots. While there are several contributing factors to this noise, the majority of 

the error was found to result from residual surface finish errors on the fabricated freeform 

surfaces, confirmed through SWLI tests and approximated simulations in VirtualLab™. 

Following this, a second beam shaper was designed, fabricated, and tested. Several 

improvements were made for this second iteration of a variable output diameter beam 

shaper. Design changes included smaller spot sizes, adjustments for the experimental 

input diameter, and implementation of a continuous super Gaussian irradiance 

distribution. Additionally, the ability to numerically define freeform surfaces based on a 

continuous output irradiance distribution was demonstrated in this chapter. The 

simulation results suggest that this design process could be applied to different semi-

Lateral Shift     

d (mm) 

Predicted 

Diameter    

(mm) 

Simulated 

Diameter    

(mm) 

Experimental 

Diameter    

(mm) 

-0.3 5.00 4.978 5.09 

-0.15 4.00 3.985 3.91 

0 3.00 2.991 2.93 

0.15 2.00 1.953 2.07 

0.3 1.00 0.947 1.05 
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arbitrary irradiance distributions that would otherwise be impossible using an analytical 

approach. These irradiance distributions could include both imaging and non-imaging 

applications. Fabrication improvements included a smaller step-over distance during 

milling, tool path corrections, and a balancing spindle head. With these changes, the 

surface finishes of the fabricated freeforms were improved by close to an order of 

magnitude. Experimental testing of this beam shaper showed significantly better output 

spot uniformity, but remaining noise in the output spot suggests the need for additional 

studies on surface finish. 

  



 

 

CHAPTER 4: ALVAREZ LENS WITH A SHIFTED FOCAL RANGE 

 

4.1 Introduction 

As mentioned in Chapter 1, the Alvarez lens and Lohmann varifocal lens are classic 

examples in which two superimposed freeforms with cubic phase profiles create a 

composite lens of whose focal length can vary simply by changing the relative lateral 

position of the surfaces [28-30]. Before explaining the advantages and novelty of the 

shifted focus Alvarez lens, it is important to understand the basic functionality of the 

‘standard’ Alvarez lens. To do this, we revisit the design process used in previous work 

done by Smilie et al. [34, 35], where the design, fabrication, and testing of a diamond 

micro-milled germanium Alvarez lens pair was first presented. In this example, the 

‘standard’ definition of the Alvarez lens pair was used, where the freeforms were 

described by, 

 𝑧 = 𝐴 (
1

3
𝑥3 + 𝑥𝑦2). (4.1) 

Here, the amplitude coefficient A controls the amount of surface depth modulation (sag) 

and essentially determines how the system’s optical power. Similar to before, the z-axis 

corresponds to the direction of light propagation, and the x-axis corresponds to the axis 

which the surfaces are inverted as well as the direction the lateral shifts are designed to 

take place. It was shown in detail that by following the first order analysis approach 

outlined by Alvarez and Humphrey [28, 29], the focal length f of the composite lens is 
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dependent on the amplitude coefficient A, the index of refraction nl, and the lateral shift 

d. The resulting relationship between these parameters is given by, 

 𝑓 =
1

4𝐴𝑑(𝑛𝑙 − 1)
. (4.2) 

In order to determine the amplitude coefficient, Eq. (4.2) can be reworked using simple 

algebra and assuming a minimum focal length at a maximum allowable lateral shift, 

resulting in the relationship given by, 

 𝐴 =
1

4𝑓𝑑(𝑛𝑙 − 1)
. (4.3) 

This analytical procedure was used to create an example design to demonstrate and 

compare the functionality and performance of this device. The material of choice for the 

examples in this chapter was IRG26 (nl = 2.79 at 4 µm wavelength) [118] due to 

collaborative research efforts with UNC Charlotte’s Center for Precision Metrology on 

ultraprecision manufacturing methods, specifically on chalcogenide glasses [60, 122-

125]. We define the minimum focal length to be 38.5 mm at the defined lateral shift limit 

of 1.8 mm. These considerations were input into Eq. (4.3) where the amplitude 

coefficient was determined to be A = 0.00201 mm
-2

, which resulted in a surface depth 

modulation of 669 µm over the 14.14 mm diameter. Similar to the previous variable 

beam shaper examples, a tilt term of 0.0443 was added, decreasing the height modulation 

to 279 μm. The resulting surface was decomposed into the equivalent base and variability 

components, as shown in Fig. 4.1. It can be seen that the base component has no surface 

curvature, meaning the freeform surface is essentially the same as the variability 

component. This is inherent given that the base component is defined as the composite 

surface when d = 0 mm, and for this ‘standard’ Alvarez example there is no optical power 
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present when there is no lateral shift present in the system. Fig. 4.2 shows a plot of the 

composite lens focal length as a function lateral shift, produced using Eq. (4.2) with the 

assumed design parameters for a lateral shift range of d = +/- 2 mm, further exemplifying 

the dynamic focal range of this optical system. 

 

Fig. 4.1: 3-D plots of the (a) base component, (b) variability component, and (c) freeform 

surface for the IRG26 standard Alvarez lens design. 

 

 

Fig. 4.2: Predicted focal length vs. lateral shift of the ‘standard’ Alvarez lens system. 
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As seen from this example; one limitation, when using the ‘standard’ definition of the 

Alvarez lens, is that the composite lens has no optical power with no lateral shift present. 

The composite lens acts as a converging lens with a negative shift –d, and as a diverging 

lens with a positive shift +d. Researchers have previously reported an approach to have 

the lens converge across the entire lateral shift range +/-d [53-55] by presetting a lateral 

offset while employing the first order analysis. This approach is effective, but requires an 

empirical selection of the assumed lateral offset. In addition to this, other work has been 

done to achieve this effect [56] through optimization in optical software for a specific 

system. As a result, the freeforms elements were no longer identical (zf1 ≠ zf2), and they 

were no longer plano-freeform. Again, this approach is effective, but does not provide a 

general procedure for future designs and curvature on both sides of each element could 

potentially add complexity to the fabrication process.  

In this chapter, we present a more general design approach for defining and 

implementing the shifted focal range. We utilize a 14
th

 order polynomial surface with the 

same design approach used for the super-Gaussian variable beam shaper (discussed in 

Chapter 3) to realize an Alvarez lens with a shifted focal range. The motivation for this 

approach is to add more flexibility throughout the design process by enabling the 

selectivity of a specific focal range that would otherwise not be possible using the 

standard analytical approach.  

 

4.2 Design of an Alvarez lens with a shifted focal range 

Recall from Chapter 2 that the composite lens was defined as the combination of two 

identical freeforms flipped 180
o
 relative to each other. We begin by designing the 
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composite lenses (MATLAB
®
 code shown in Appendix A.1.2), which in this case are 

spherical lenses of varying focal lengths (surface curvature). It is important to note that 

the induced lateral shift varies the composite surface curvature linearly with respect to the 

polynomial coefficients. From the well-known Lensmaker’s equation [126], the focal 

length of a spherical lens is inversely proportional to the surface curvature, which means 

the focal length will also be inversely proportional to lateral shift. To be consistent with 

the design process used previously, five different composite lenses with varying focal 

lengths were designed. Each focal length was determined using the following 

relationship; 

 
1

𝑓5
−

1

𝑓4
  =   

1

𝑓4
−

1

𝑓3
  =   

1

𝑓3
−

1

𝑓2
  =   

1

𝑓2
−

1

𝑓1
, (4.4) 

where the index on the focal lengths correspond to its respective lateral shift increment. 

With considerations to the mid-IR imaging system geometry and optomechanics which 

will be used for experimental testing, the focal length range was defined to be ∞ ≥ f ≥ 

38.5 mm across the lateral shift range of d = +/-1.8 mm. The intermediate focal lengths, 

determined using Eq. (4.4), are listed in Table 4.1 with their corresponding lateral shift.  

Table 4.1: Focal lengths and corresponding lateral shifts for the multiple composite 

surfaces designed. 

 

 

Index 
Lateral Shift 

(mm) 

Focal Length 

(mm) 

1 -1.8 ∞ 

2 -0.9 154 

3 0 77 

4 0.9 51.33 

5 1.8 38.5 
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Using IRG26 again as the lens material, the necessary surface height profiles of several 

composite lenses were determined using the numerical ray mapping procedure (discussed 

in Chapter 3). To put this into terms of the ray mapping function developed for the 

variable beam shaper, the target spot size (focal spot) for this device was essentially set to 

zero at a varying target location (focal length). The resulting composite surfaces are 

shown in Fig. 4.3. 

  

Fig. 4.3: Surface height profiles for multiple composite lenses of varying focal lengths. 

 

Following the same design procedure as in Chapter 3, a set of polynomial coefficients 

for each height profile was numerically assigned to fit the polynomial equation, Eq. (2.7). 

Each set of coefficients are listed in Table 4.2 along with the average change, Δa2k. 

Again, this system is defined to have a focal length of 77 mm when d = 0 mm, meaning 

the corresponding polynomial coefficients is inherently defined as the base component 

coefficients a2k. 
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Table 4.2: Surface coefficients for multiple spherical lenses of varying focal lengths, 

along with the associated changes 

 

The variability coefficients b2k were determined using Eq. (2.14), and are displayed in 

Table 4.3, along with the base coefficients a2k. As before, the tilt term was determined by 

performing a parameter sweep to find the point at which the sag of the freeform surface 

was at a minimum. The resulting tilt term of 0.0262 decreased the sag from 360 µm to 

214 µm over the 14.5 mm aperture diameter. Again, the reduction in sag is beneficial 

both for fabrication as well as allowing the two surfaces to be closer together, ultimately 

minimizing the potential error caused by the stand-off distance.  

Table 4.3: Freeform surface coefficients for the Alvarez lens with a shifted focal range 

 

 

a2k    

values 

(mm
-2k+1

) 

Focal Length 

Avg. Δa2k 

(mm
-2k+1

) 38.5 mm 
(d=1.8mm) 

51.33 mm 
(d=0.9mm) 

77 mm 
(d=0) 

154 mm 
(d=-0.9mm) 

inf 
(d=-1.8mm) 

a2 -7.24E-03 -5.43E-03 -3.62E-03 -1.81E-03 0.00E+00 -1.81E-03 

a4 6.80E-07 2.87E-07 8.50E-08 1.06E-08 0.00E+00 1.70E-07 

a6 -1.28E-10 -3.04E-11 -4.00E-12 -1.25E-13 0.00E+00 -3.20E-11 

a8 3.16E-14 4.40E-15 2.89E-16 3.56E-18 0.00E+00 7.91E-15 

a10 -5.48E-17 -1.23E-17 -1.61E-18 -5.11E-20 0.00E+00 -1.37E-17 

a12 6.84E-19 1.70E-19 2.31E-20 7.42E-22 0.00E+00 1.71E-19 

a14 -3.85E-21 -9.57E-22 -1.31E-22 -4.19E-24 0.00E+00 -9.61E-22 

 

Order (k) a
2k

 Values (mm
-2k+1

) b
2k

 values (mm
-2k

) 
1 -3.6190E-03 -1.0051E-03 
2 8.5045E-08 9.4472E-08 
3 -3.9980E-12 -1.7762E-11 
4 2.8850E-16 4.3921E-15 
5 -1.6077E-18 -7.6125E-18 
6 2.3135E-20 9.4941E-20 
7 -1.3056E-22 -5.3408E-22 
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Fig. 4.4 displays the resulting base, variability, and freeform surfaces. In this case, the 

base component has noticeable surface curvature, as compare to the standard Alvarez 

lens (Fig. 4.1) which has no surface curvature for the base surface. This difference is a 

result of the system being designed to have optical power when there is no lateral shift in 

the system. Fig. 4.5 shows the comparison between this new design and the 

corresponding ‘standard’ Alvarez lens.  

 

Fig. 4.4: Surface plots showing the (a) base component, (b) variability component, and 

(c) one of the two freeform surfaces for the IRG26 shifted focus Alvarez lens. 
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Fig. 4.5: Predicted focal length vs. lateral shift for the shifted focus Alvarez lens system 

compared to an equivalent standard Alvarez lens. 

 

4.3 Optical modeling of the shifted focus Alvarez lens 

Ray-based optical simulations were performed using ZEMAX
®
 to better understand 

the performance of this device. These simulations assume a normally incident collimated 

input with a 4 µm wavelength and an 8 mm diameter aperture directly in front of the first 

element. As mentioned earlier, the design approach assumes a negligible air gap between 

the two freeform surfaces; however; a 400 µm standoff was added in the simulation 

setup. The center thickness of each freeform was set to 2.5 mm.  

To characterize the focal length of the system, rays were traced through both freeform 

elements for several different amount of lateral shift d. The ‘back distance’, defined as 

the distance between the second element and the image plane, was recorded for each 

case. In order to find the image plane, the back distance was set as a variable and 
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ZEMAX’s default RMS optimization algorithm was used to determine the location of the 

smallest RMS spot. Fig. 4.6 shows the results of geometrical ray-trace simulations for 

lateral shifts of d = -1.8 mm, d = 0 mm, and d = 1.8 mm. 

 

Fig. 4.6: Geometrical ray trace simulations of the shifted focus Alvarez lens for lateral 

shifts of d = -1.8 mm, d = 0 mm, and d = 1.8 mm.  

 

It is important to note, as it was presented in [34, 35], that the back distance is not 

equivalent to the system focal length due to the thickness of each freeform element. To 

determine an accurate value for the focal length, the second principal plane location h2 

was calculated using the equation for a thick lens [126] given by,      

 ℎ2 = −
𝑓(𝑛𝑙 − 1)𝑑1

𝑅𝑂𝐶 ∗ 𝑛𝑙
, (4.5) 

where d1 is the thickness of the lens, and ROC is the composite radius of curvature. The 

wavefront is only affected by the thickness of the second element, therefore d1 = 2.5 mm. 
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From the Lensmaker’s equation [126] the radius of curvature for a spherical lens is given 

by 

 𝑅𝑂𝐶 = 𝑓(𝑛𝑙 − 1). (4.6) 

By substituting ROC from Eq. (4.6) into Eq. (4.5), the location of the second principal 

plane is calculated as 

 ℎ2 = −
𝑑1

𝑛𝑙
= −

2.5

2.79
= −0.896 𝑚𝑚, (4.7) 

where the negative sign denotes the direction of which the plane is located with respect to 

the back surface of the second element. This means that the principal plane is located 

0.896 mm to the left of the back surface, illustrated in Fig. 4.7. The system focal lengths 

were then calculated by adding 0.896 mm to the back distance values previously 

determined in the ZEMAX
®
 simulations.  Table 4.4 compares the resulting modeled focal 

lengths for this system to predicted values. 

   

Fig. 4.7: Illustration of the second principal plane location h2, added to the back distance 

to determine the effective focal length of this system. 
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Table 4.4: Focal lengths determined using ZEMAX
®
 simulation models compared to 

theoretical values for different lateral shift increments.  

 

 

As observed in Table 4.4, the focal lengths from the ZEMAX
®
 simulations are in good 

agreement with predicted values. The slight differences between the two results are 

thought to result from geometrical aberrations introduced by the error terms (discussed in 

Chapter 2) that were assumed negligible for relatively small lateral shifts. These error 

terms are inherently dependent on lateral shift d which is why the difference between 

theoretical and simulated focal lengths increases as the magnitude of the lateral shift 

increases. Additional aberrations (relatively smaller) are caused by the inevitable air gap 

between the two freeform elements in the simulations. 

Focal spot diagrams in ZEMAX
®
 were also produced in to view the geometrical 

aberrations present in this system. Fig. 4.8 shows the spot diagrams in the image plane for 

lateral shifts d = -0.9 mm, d = 0 mm, and d = 1.8 mm. In each case, to assess the 

performance relative to the diffraction limit, the RMS spot radius was compared to the 

Airy disk radius, defined in ZEMAX
®
 using the definition found in [127].  

Lateral Shift d 

(mm) 

Theoretical Focal 

Length f (mm) 

Simulated Focal 

Length f (mm) 

-1.8 inf inf 

-1.35 308.00 310.29 

-0.9 154.00 154.53 

-0.45 102.67 102.82 

0 77.00 77.01 

0.45 61.60 61.53 

0.9 51.33 51.21 

1.35 44.00 43.85 

1.8 38.50 38.32 
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Fig. 4.8: Spot diagrams generated in ZEMAX
®
 compared to the diffraction limited Airy 

disk for lateral shifts of d = -0.9 mm, d = 0 mm, and d = 1.8 mm. 

 

The RMS spot radius and the Strehl ratio both provide quantitative metrics for the 

output image quality. The Airy disk radius defined as 1.22 times the wavelength times the 

system f-number, and the Strehl ratio S is defined as the ratio of the peak aberrated on-

axis image intensity and peak on-axis non-aberrated image intensity [126]. A perfect 

system has a Strehl = 1 and a system is generally considered to be diffraction limited with 

Strehl ≥ 0.8. Using these metrics, performance summary plots are presented in Fig. 4.9 

across the defined range of focal lengths, comparing this design with the equivalent 

standard Alvarez lens design mentioned earlier. Though both systems would be 

considered diffraction limited based on the RMS spot size, the shifted focus Alvarez lens 

has significantly smaller spot sizes and better Strehl ratios. This improvement is largely 

due to the decrease in the surface height modulation; a byproduct of defining the focal 

range over the entire lateral shift range (+/d). A possible advantage, as a result of this 

improvement, could be the use of a larger aperture size, allowing for more light to be 

captured while remaining diffraction limited. 
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Fig. 4.9: Performance summary plots for the shifted focus Alvarez lens across the range 

of lateral shifts with regards to (left) RMS spot radius and (right) Strehl ratio. 

 

To examine impacts of aperture diameter on performance, this system was simulated 

for a variety of aperture diameters ranging from 5 mm to 11 mm. For each simulation, the 

‘worst case’ scenario was modeled (focal length at its minimum of f = 38.5 mm and the 

lateral shift at its maximum of d = 1.8 mm). Additionally, for each aperture diameter, the 

system was re-optimized to find the back focal distance location where the RMS spot 

radius was at its minimum. Fig. 4.10 shows spot diagrams in the image plane for aperture 

diameters of 6 mm, 8 mm, and 10 mm.  

 

Fig. 4.10: Spot diagrams generated in ZEMAX
®

 compared to the diffraction limited Airy 

disk for different aperture diameters of 6 mm, 8 mm, and 10 mm. 
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Performance summary plots for RMS spot radii and Strehl ratio of this device across 

the defined lateral shift range are presented in Fig. 4.11, where this system was again 

compared to the equivalent standard Alvarez lens design. As expected, we note that 

aberrations increase for both systems as the aperture diameter increases. For the shifted 

focus Alvarez, the Strehl ratio decreases below the diffraction limit at an aperture 

diameter of ~9.25 mm. This is notably better than the standard Alvarez design where the 

Strehl ratio decreases below the diffraction limit at an aperture diameter of ~7.5 mm. 

Furthermore, these results suggest that an 8 mm aperture diameter is an adequate choice 

for the experimental tests with regards to power throughput while remaining diffraction 

limited. 

 

Fig. 4.11: Performance summary plots for the shifted focus Alvarez lens across a range of 

aperture diameters with regards to (left) RMS spot radius and (right) Strehl ratio. 

 

 

4.4 Fabrication of the shifted focus Alvarez lens 

The shifted focus Alvarez freeforms were fabricated in IRG26 chalcogenide glass [60, 

122, 125], using a slow tool servo (STS) diamond turning machining process along with a 

toolpath generated by the same custom code employed in the previous example [122]. 
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Fabrication was performed using a Moore Nanotech
®

 350 FG by Dr. John Troutman, 

Graduate Student at the UNC Charlotte Center for Precision Metrology. A controlled-

waviness tool with nose radius of 1.5 mm, 7
o
 clearance, and 0

o
 top rake was selected for 

this machining process where the finishing path had a 7.5 µm depth of cut, 2.0 µm step-

over per revolution, and a rotational rate of 16.66 rpm [125]. Similar to the previous 

examples in Chapter 3, monolithic slots were machined into the pedestal of the freeform 

surfaces to ensure proper rotational alignment in the optomechanical custom mounting 

assembly. The resulting IRG26 freeform elements are shown in Fig. 4.12.  

  

Fig.4.12: Image of the two fabricated IRG26 freeform elements for the shifted focus 

Alvarez lens. 

 

The fabricated surfaces were examined using a Zygo ZeGage Plus scanning white light 

interferometer (SWLI) where the test results indicated a surface roughness of 2 nm Ra, 

and a peak to valley form error of 1.726 µm with an RMS deviation of 100 nm [125]. Fig. 

4.13 shows a cross-sectional slice of the measured surface data. These measurements 

were performed by Daniel Barnhardt, Graduate Student at the UNC Charlotte Center for 

Precision Metrology.  
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Fig. 4.13: Sample surface profile cross section from the SWLI data of the shifted focus 

Alvarez lens.  

 

 

4.5 Experimental testing of the shifted focus Alvarez lens 

Experimental testing began with installing the fabricated surfaces into the same custom 

mounting assembly discussed in Chapter 2. The experimental test used for this device 

followed the same setup and procedure used by Smilie et al. in previous work testing a 

standard IR Alvarez lens [34, 35], where the setup is explained in more detail. To review, 

this setup included a hot plate mounted normal to the table approximately 2.54 m away 

from a liquid nitrogen-cooled Indigo Phoenix™ thermal imaging camera along its optic 

axis. The hot plate, which emits at wavelengths throughout the near to mid-IR range, 

doubles as a light source and imaging object due to its pattern of coils being detectable. 

The freeform assembly was mounted onto a Newport ILS linear motion stage, which was 

then mounted in front of the IR camera such that the linear motion was along the z axis 

(optic axis). This motion stage was equipped with a digital controller, enabling control of 

the stage along the z axis with measurement accuracy of 100 nm over a 200 mm range. 

Fig. 4.14 shows a schematic from [35] of the experimental test setup.  
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Fig. 4.14: Schematic of the experimental IR imaging test setup, where the lens assembly 

was moved along the z axis to form a clear image for each amount of lateral shift.  

 

The optic was translated until the best focus position (image distance) was determined 

at several different amounts of lateral shifts, ranging from d = -0.8 mm to d = 1.1 mm in 

0.1 mm increments. Each focus position was recorded three separate times, and the 

“near” and “far” blur locations were also recorded to provide a rough measurement of 

experimental error. This device was characterized by comparing the experimental focal 

length to the theoretical focal length. The focal length is related to the object (so) and 

image (si) distances by the well-known equation [126] 

 
1

𝑓
=

1

𝑠𝑜
+

1

𝑠𝑖
. (4.8) 

By keeping the distance between the hot plate and detector at a constant value, the image 

distance can be equated to si = 2540 – so. Applying this to Eq. (4.8), we can solve for the 

focal length as a function of the measured image distance. This relationship is given in 

mm by, 

 𝑓 =
𝑠𝑖(2,540 − 𝑠𝑖)

2,540
. (4.9) 

The experimental focal lengths for the corresponding lateral shifts were calculated using 

Eq. (4.9), and compared to the theoretical values calculated earlier. Fig. 4.15 displays 
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these results as well as the “near” and “far” blur values discussed previously, which are 

displayed as error bars in this plot. 

 

Fig. 4.15: Experimental focal length data for the shifted focus Alvarez lens, compared to 

the theoretical values along with the experimental error estimates. 

 

The experimental results shown in Fig. 4.15 demonstrate a clear variation of focal 

length per lateral shift. There are slight differences between the experimental and 

theoretical focal lengths, but the results are generally in good agreement. These 

differences are thought to be a result of inaccurate recordings of the ‘best’ focus location 

due to the inherent depth of focus. We also note that there are likely small uncertainties in 

the object distance, detector array distance in the camera, and lateral shift increments.   



67 

 

Several images of the hot plate were obtained using the IR camera for several different 

lateral shifts with an 8 mm diameter aperture placed directly in front of the lens assembly. 

Fig. 4.16 shows images for lateral shifts of d = -0.8 mm, d = 0 mm, and d = 1.0 mm. The 

magnification changes seen in Fig. 4.16 are expected due to the inherent changing of 

focal length and changes in the object and image distances. The slight aberrations 

observed in the optical modeling appear to be insignificant in these images for the d = -

0.8 mm and d = 0 mm cases. However, for the case where d = 1.0 mm, the image is 

noticeably worse. Some features on the optical table are now visible, while the features at 

the edge of the hot plate appear to be much brighter in comparison to the other images. 

This suggests that the IR camera was oversaturated at the point when this image was 

captured. This oversaturation is thought to be a direct product of imaging on the ‘hotter’ 

end of the heat cycle undergone by the hot plate, compared to the ‘cooler’ end of the heat 

cycle where the gain/offset of the IR camera was originally set for the images taken in 

Fig. 4.16(a) and Fig. 4.16(b).  

 

Fig. 4.16: Obtained images of the hot plate through for lateral shifts (a) d = -0.8 mm, (b) 

d = 0 mm, and (c) d = 1.0 mm. 
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4.6 Discussion 

The standard Alvarez lens prescription inherently assumes that the system has no 

optical power (f = inf) at lateral shift d = 0. By implementing the design process used in 

the earlier examples, this device was expanded upon by shifting the focal range such that 

the system had a positive focal length across the entire lateral shift range +/-d, including 

when d = 0. This alteration in design resulted in a surface height modulation of 214 μm, 

which was 65 μm smaller than equivalent standard Alvarez lens. As a result, the 

performance was much improved, as the respective spot sizes were significantly smaller 

and the Srehl ratio was increased. Experimental tests of the STS diamond turned freeform 

elements were performed where the results were in good agreement with the theoretical 

results, further verifying the variable functionality of this optical system. Future work 

using this design procedure could include, for example different composite surfaces to 

realize aspheric lenses to further improve the system performance and capabilities. 

Additionally, this design process serves as an excellent starting place for designing 

dynamic freeform systems, where simulation software packages could later be used for 

optimization to further improve overall system performance. 

  



 

 

CHAPTER 5: ADDITIONAL NOVEL DYNAMIC FREEFORM OPTICAL SYSTEMS 

 

5.1 Introduction 

Novel dynamic freeform optical systems were presented in previous chapters where the 

output functions (composite surfaces) were radially symmetric and the lateral shifts were 

constrained to one dimension along a single axis (x). The corresponding dynamic changes 

of the output functions were equal along the x and y directions, maintaining rotational 

symmetry in the outputs. In an effort to further expand on the design process for dynamic 

freeform optics, we now consider cases where the output is no longer radially symmetric. 

Additionally, we explore using lateral shifts along both the x and y axes, where the 

corresponding x and y dimensions of the optical output are varied independently of each 

other. In this chapter, three novel devices are presented; a variable square output beam 

shaper from 1-dimensional lateral shifts, a variable rectangular output beam shaper from 

2-dimensional lateral shifts, and a variable toric lens from 2-dimensional lateral shifts.   

 

5.2 Design of a square output beam shaper 

Consider a component in which a circular Gaussian input irradiance is redistributed 

into a square uniform step function rather than the circular step function discussed in 

Chapter 2. We begin by defining a single optical element using a non-radially symmetric 

polynomial equation to define the composite surface which is representative of the optical 

function to be performed. This is where this work begins to differ from the radially 
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symmetric composite surface described by Eq. (2.2). The general non-radially symmetric 

polynomial equation is defined as, 

 𝑧(𝑥, 𝑦) = ∑  (𝑎2𝑘𝑥 ∗ 𝑥2𝑘 + 𝑎2𝑘𝑦 ∗ 𝑦2𝑘)

𝑛

𝑘=1

 (5.1) 

where a2kx and a2ky represents the polynomial coefficients, dependent on index k, which 

control the overall shape or curvature of the surface in the x and y directions respectively. 

We note that this can again be used for any optical function, as long as it that can be 

accurately described accurately using this general polynomial equation. 

As in the previous design process (originally derived in [35]) a ray mapping technique 

is used using radial coordinates to generate the required radially symmetric surface 

needed to perform the desired optical function. For this new non-symmetric case we 

follow the same basic steps as in [35] but in separable x and y coordinates. We begin by 

defining the Gaussian input beam irradiance as   

 𝐼1(𝑥, 𝑦) = exp [−2 (
𝑥2

𝑤0𝑥
2

+
𝑦2

𝑤0𝑦
2

)], (5.2) 

where wox and woy are the beam waist radii, defined as the radius for which the irradiance 

has fallen to 1/e
2
 times its value at the x and y axes, respectfully [128, 129]. Because 

radial symmetry is no longer a constraint, the mathematical framework can be separated 

into two different components. More specifically, the input irradiance is separated into an 

x and y term, given by, 

 𝐼1𝑥 = 𝐼1(𝑥, 0), 𝐼1𝑦 = 𝐼1(0, 𝑦). (5.3) 
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It is important to note that the separation of the x and y components will continue for the 

remainder of this particular section, and for brevity, only the solution for the x term is 

shown here. The exact same procedure is employed using the y term. 

After separating the input irradiance, conservation of energy is implemented to equate 

the energy contained within a defined input radius to the energy contained within the 

defined output spot area. This energy conservation condition is defined as, 

 ∫ 𝐼1𝑥(𝑥)𝑑𝑥
𝑥0

0

= ∫ 𝐼2𝑥(𝑋)𝑑𝑋
𝑋0

0

, (5.4) 

where I1x and I2x are the irradiance distributions for the input and output spot, and the spot 

side lengths along the specified axis for the input and output spot are labeled as x0 and X0, 

respectively. Expanding the integral on the left side of Eq. (5.4) yields, 

 ∫ 𝐼1𝑥(𝑥)𝑑𝑥 =
𝑥0

0

∫ exp [−2 (
𝑥

𝑤0𝑥
)

2

]𝑑𝑥 =
𝑥0

0

w0x
2

4
{1 − exp [−2 (

𝑥0

𝑤0𝑥
)

2

]}. (5.5) 

The output irradiance distribution is defined to be a step function with a constant output 

irradiance given by I0x, for 0 ≤ X ≤ X0. Integrating the right side of Eq. (5.4) yields, 

 ∫ 𝐼2𝑥(𝑋)𝑑𝑋 =
𝑋0

0

𝐼0𝑥 ∫ 𝑋𝑑𝑋 =
1

2
𝐼0𝑥𝑋0

2
𝑋0

0

. (5.6) 

I0x can now be solved for by setting Eq. (5.5) to Eq. (5.6), providing the constant output 

irradiance for which the energy conservation condition is met: 

 𝐼0𝑥 =
𝑤0𝑥

2

2𝑋0
2 {1 − exp [−2 (

𝑥0

𝑤0𝑥
)

2

]}. (5.7) 

Next, several rays are mapped from the input to the output to determine the 

corresponding input and output axial coordinate relationship. Using Eq. (5.4), x and X are 

left as variables and again inserted into Eq. (5.5) and Eq. (5.6). These two equations are 
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set equal to each other. Solving for output spot coordinate X as a function of input 

coordinate x, yields the ray mapping function, given by 

 𝑋(𝑥) =
𝑤0𝑥

2

2𝐼0𝑥
{1 − exp [−2 (

𝑥

𝑤0𝑥
)

2

]}1/2. (5.8) 

Following the detailed derivations from [2, 13], Snell’s law and other geometric 

considerations are used to derive a differential equation. This differential equation was 

then used in combination with Eq. (5.8) to solve for a nominal surface height profile zx 

which represents the composite surface required to perform the desired optical function. 

The differential equation is given by 

 
𝑑𝑧𝑥

𝑑𝑥
=

𝑋 − 𝑥

(𝑛𝑙 − 1)[𝑧0 − 𝑧𝑥(𝑥)]
, (5.9) 

where zx is the surface height profile, nl is the refractive index, and z0 is the target location 

where the light output will be in the desired form. This height profile is then fit to the 

polynomial equation, numerically defining the a2kx coefficients. As before, the base 

component is symmetric across the x-axis, so  𝑧𝑏(𝑥, 𝑦) + 𝑧𝑏(−𝑥, 𝑦) = 2𝑧𝑏(𝑥, 𝑦).  

Because this handles the specific case where there is no lateral shift, the base component 

zb can be defined using Eq. (5.1). The component is halved due to the eventual 

combination of the two freeforms. The base component along the x direction of the lens is 

therefore defined as, 

 𝑧𝑥(𝑥) = ∑
1

2
(𝑎2𝑘𝑥 ∗ 𝑥2𝑘).

𝑛

𝑘=1

 (5.10) 

As mentioned at the beginning of this section, the x and y components were treated 

separately, where Eq. (5.10) is the x component. The same process is followed in order to 

define zy, with the option of changing different parameters based on the desired output, 
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i.e. square or rectangular shape. After going through the process again to determine the 

a2ky coefficients, the resulting base component is defined as, 

 𝑧𝑏(𝑥, 𝑦) = 𝑧𝑥(𝑥) + 𝑧𝑦(𝑦) = ∑  
1

2
(𝑎2𝑘𝑥 ∗ 𝑥2𝑘 + 𝑎2𝑘𝑦 ∗ 𝑦2𝑘)

𝑛

𝑘=1

. (5.11) 

The next step is to define multiple beam shapers of varying output parameters which 

will be used when determining the variability components. For the two variable square 

output beam shaper examples presented in the following sections, the base component 

will have the same form, while the variability components will differ based on the lateral 

shift functionality (1-dimensional and 2-dimensional).   

 

5.3 Variable square output beam shaper from a 1D lateral shift 

5.3.1 General analysis defining the variability component 

The first example presented is a variable square output beam shaper in which the 

output spot side lengths are varied in both the x and y directions simultaneously when the 

freeform surfaces are laterally shifted along the x-axis. We previously noted that the base 

component will take the form of Eq. (5.11); however, the variability component must still 

be defined. To this end, we utilize the result from Palusinski [44] that shows the desired 

composite surface z(x,y) is the derivative of the freeform surface zf. This implies that the 

variability component can be defined as the integral of the composite surface with respect 

to the x-axis (lateral shift axis). With this in mind, the variability component (ignoring the 

constant) is given by 

 𝑧𝑣(𝑥, 𝑦) = ∑ 𝑏2𝑘 ∫(𝑥2𝑘 + 𝑦2𝑘)𝑑𝑥

𝑛

𝑘=1

= ∑ 𝑏2𝑘 ( 
𝑥2𝑘+1

(2𝑘 + 1)
+ 𝑦2𝑘𝑥) ,

𝑛

𝑘=1

 (5.12) 
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where b2k represents the polynomial coefficients for the variability component. The 

integral in Eq. (5.12) is performed with respect to x because the only lateral shift is along 

the x-axis. Furthermore, the integral is performed on the x terms as well as the y terms 

because we want simultaneous variability of the output in the x and y direction per the 

lateral shift along the x-axis. With this in mind, we combine Eq. (5.11) with Eq. (5.12) to 

mathematically define the freeform surface as, 

 

𝑧𝑓(𝑥, 𝑦) = ∑[ 
1

2
(𝑎2𝑘𝑥 ∗ 𝑥2𝑘 + 𝑎2𝑘𝑦 ∗ 𝑦2𝑘)                    

𝑛

𝑘=1

+ 𝑏2𝑘( 
𝑥2𝑘+1

(2𝑘 + 1)
) + 𝑦2𝑘 ∗ 𝑥] + 𝑐0𝑥, 

(5.13) 

where c0 is the tilt term which is used to minimize the overall sag of the surface without 

affecting the optical properties. 

The next step is to determine the b2k coefficients found in Eq. (5.13). We complete this 

by calling on Eq. (2.1) and Eq. (5.13), while introducing a lateral shift d along the x-axis. 

The combined composite surface with the introduced lateral shifts in the appropriate 

direction is given by, 

 

𝑍𝑐(𝑥, 𝑦, 𝑑) = 𝑧𝑏(𝑥 + 𝑑, 𝑦) + 𝑧𝑏(−(𝑥 − 𝑑), 𝑦)                                      

+ 𝑧𝑣(𝑥 + 𝑑, 𝑦) + 𝑧𝑣(−(𝑥 − 𝑑), 𝑦) 

= ∑[𝑎2𝑘𝑥 ∗ 𝑥2𝑘 +

𝑛

𝑘=1

𝑎2𝑘𝑦 ∗ 𝑦2𝑘 + 2𝑑𝑏2𝑘(𝑥2𝑘 + 𝑦2𝑘) + 𝜀(𝑥, 𝑦, 𝑑)], 

(5.14) 

where ε(x,y,d) represents the combined error terms that come out of the integration which 

were determined to be negligible if the lateral shift d is small. In an attempt to simplify 

the equation for brevity purposes, we let a2kx = a2ky = a2k, which means the curvature will 
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be the same in both the x and y directions, resulting in a square output shape. With this 

simplification we can define the combined composite surface as, 

 

𝑍𝑐(𝑥, 𝑦, 𝑑) = ∑(𝑎2𝑘 + 2𝑑𝑏2𝑘) ∗ (𝑥2𝑘 +

𝑛

𝑘=1

𝑦2𝑘)

= ∑ 𝑎2𝑘′(𝑑) ∗ (𝑥2𝑘 +

𝑛

𝑘=1

𝑦2𝑘). 

(5.15) 

Here the lateral shift d again represents the amount of displacement for one freeform lens, 

meaning the total displacement between both freeform lenses is 2𝑑. This is very similar 

to the previous radially symmetric examples, where the only subtle difference is seen in 

the root polynomial equation, as desired. Similar to before, we see that the 

curvature/power of the composite surface is, as expected, a function of lateral shift. This 

means the same linear relationship exists between a2k’ and lateral shift d as in the radially 

symmetric examples. Hence, the same approach given by Eq. (2.14) was used to 

determine the b2k coefficients, stated again as, 

 𝑏2𝑘 =
∆𝑎2𝑘

2∆𝑑
. (5.16) 

As stated previously in Chapter 2, Δa2k is the average change per unit Δd, meaning that 

with every unit of lateral shift introduced in the system, there will be a change in the 

overall combined composite surface coefficient. 

 

5.3.2 Optical design 

To stay consistent with the previous examples, we keep much of the same design 

parameters as the previous beam shaping examples. The design parameters are 

summarized in Table 5.1. Multiple beam shapers with different output spot side lengths 
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were designed using the ray mapping procedure detailed in the previous section. Fig. 5.1 

shows each composite surface profile on the same scale across the 12 mm aperture.    

Table 5.1: Design parameter summary for the variable square beam shaper. 

 

 

Fig. 5.1: Surface height profiles for multiple beam shapers with various output spot side 

lengths. 

 

Following the same procedure as before, a set of polynomial coefficients was fit to Eq. 

(5.1) for each surface height profile. The resulting coefficients are listed in Table 5.2 

along with the average change, Δa2k. Because this beam shaper is designed to have a 4 

mm output side length with no lateral shift in the system, the corresponding polynomial 

Design Parameters 

Wavelength: 632.8 nm 

Input Waist Diameter 6 mm 

Material/index: PMMA/nl=1.49 

Aperture Diameter: 12 mm 

Target Distance: 150 mm 

Output Side Length Range: 2x2 ≤ X0xY0≤ 6x6 mm 

Lateral Shift Range: −300 ≤ d ≤ 300 μm 

 



77 

 

coefficients (a2kx and a2ky) for that output are the base component coefficients for the x 

and y directions. Eq. (5.16) was then used to determine the variability coefficients (b2k) 

displayed in Table 5.3 along with the base coefficients, a2k.  

Table 5.2: Surface coefficients for a square beam shaper with five different output spot 

side lengths and the associated changes. 

 

Table 5.3: Freeform surface coefficients for variable square output beam shaper. 

 

 

The tilt term was determined by performing a parameter sweep to find the point at 

which the sag of the freeform surface was at a minimum. The resulting tilt term of 0.06 

decreased the sag from 837 µm to 326 µm over the 12 mm aperture diameter. Eq. (5.13) 

was then used with these coefficients to define the freeform surface. The resulting base, 

variability, and freeform surfaces are displayed in Fig. 5.2. 

a2k     

values 

(x&y) 

(mm
-2k+1

) 

Output X & Y Side Length 

Avg. Δa2k 

(mm
-2k+1

) 2x2 mm 
(d=300μm) 

3x3 mm 
(d=150μm) 

 4x4 mm 
(d=0) 

5x5 mm 
(d=-150μm) 

6x6 mm 
(d=-300μm) 

a2 -3.19E-03 -1.38E-03 4.30E-04 2.24E-03 4.05E-03 -1.81E-03 

a4 -1.33E-04 -1.99E-04 -2.65E-04 -3.31E-04 -3.97E-04 6.62E-05 

a6 5.57E-06 8.35E-06 1.11E-05 1.39E-05 1.67E-05 -2.78E-06 

a8 -1.85E-07 -2.77E-07 -3.69E-07 -4.61E-07 -5.53E-07 9.21E-08 

a10 4.25E-09 6.36E-09 8.48E-09 1.06E-08 1.27E-08 -2.11E-09 

a12 -5.81E-11 -8.71E-11 -1.16E-10 -1.45E-10 -1.74E-10 2.89E-11 

a14 3.50E-13 5.25E-13 6.99E-13 8.73E-13 1.05E-12 -1.74E-13 

 

Order 

(k) 
a2kx (mm

-2k+1
) a2ky (mm

-2k+1
) b2k (mm

-2k
) 

1 4.3021E-04 4.3021E-04 -6.0315E-03 

2 -2.6511E-04 -2.6511E-04 2.2072E-04 

3 1.1124E-05 1.1124E-05 -9.2525E-06 

4 -3.6927E-07 -3.6927E-07 3.0703E-07 

5 8.4816E-09 8.4816E-09 -7.0494E-09 

6 -1.1601E-10 -1.1601E-10 9.6390E-11 

7 6.9909E-13 6.9909E-13 -5.8068E-13 
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Fig. 5.2: Surface plots showing the (a) base component, (b) variability component, and 

(c) one of the two freeform surfaces for the variable square beam shapers 

 

 

5.3.3 Optical modeling 

As before, we used VirtualLab™ to simulate this dynamic optical system. The surface 

coefficients defined in Table 5.3 were imported into the software as plano-freeform 

surfaces with 400 µm standoff distance between the freeform surfaces. The propagation 

method used for all simulations was the combined SPW/Fresnel propagation operator 

[111]. The sampling distance of the output light field was set to 4.5 x 4.5 μm over a 9 x 9 

mm window. The “Beam Parameters” function was used to determine the diameter of the 

output spot relative to the centroid at the target distance (150 mm).Table 5.4 shows the 

input diameter with the expected output side lengths X0 and Y0 and simulated output side 
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lengths X0 and Y0 for the corresponding lateral shifts. The predicted results were in good 

agreement with simulated results from VirtualLab™. 

Table 5.4: Predicted and modeled input and output spot side lengths for several amounts 

of lateral shift. 

 

Fig. 5.3 shows VirtualLab™ simulation results for output spots with lateral shifts of 0 

μm, +/-150 µm, and +/-300 µm, as well as the round, Gaussian input. The redistribution 

of energy can be seen where the output spots are highly uniform. We note that the output 

irradiance profiles have an undesired spike of energy along the edges (Gibb’s 

phenomenon) as a consequence of defining the output as a step-function. These spikes 

could be eliminated using the super-Gaussian output irradiance profile, as discussed in 

Chapter 3. Additionally, the shape of the output spot is now a square with varying side 

lengths which was assumed when we let a2kx = a2ky = a2k. It should be noted that, if 

desired, the output shape could be a rectangle with equally varying side lengths, 

depending on the freeform surface coefficients a2kx, a2ky, and b2k. 

Lateral 

Shift d 

(µm) 

Input 

Diameter 

(mm) 
Predicted Output 

X
0
 x Y

0
 (mm) 

VirtualLab™ Output 

X
0
 x Y

0
 (mm) 

-300 6.0 6.0 x 6.0 5.950 x 5.950 
-150 6.0 5.0 x 5.0 4.982 x 4.982 

0 6.0 4.0 x 4.0 3.988 x 3.988 
150 6.0 3.0 x 3.0 2.988 x 2.988 
300 6.0 2.0 x 2.0 1.991 x 1.991 
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Fig. 5.3: Six VirtualLab™ images and 1-D profiles, (a) Gaussian input, (b) d = 300 µm, 

(c) d = 150 µm, (d) d = 0.0 mm, (e) d = –150 µm, and (f) d = –300 µm.  
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5.4 Variable rectangular output beam shaper from 2D lateral shifts 

5.4.1 General analysis defining the variability component 

For the next example, we consider a similar beam shaper in which we independently 

vary the dimensions of a rectangular flat-top (step-function) output spot using 2-

dimensional lateral shifts; the output size varies in the y-direction when the freeform 

surfaces are laterally shifted parallel to the y-axis, and the output size varies in the x-

direction when the freeform surfaces are laterally shifted parallel to the x-axis. We 

assume the same base optical function as the previous example; the base component is 

thus defined using Eq. (5.11).  

We define the variability component using the approach from Section 5.3.1 in which 

the desired composite surface is the derivative of the freeform surface. The desired 

composite surface in this example must be separable along the x and y axes because we 

want independent output variations along x and y directions with corresponding lateral 

shifts dx and dy. Thus, we separate the x and y components of the composite surface and 

integrate the x terms with respect to the x-axis, and integrate the y terms with respect to 

the y-axis. The resulting variability component is given by  

 

𝑧𝑣(𝑥, 𝑦) = ∑[ (𝑏2𝑘𝑥

𝑛

𝑘=1

∫ 𝑥2𝑘𝑑𝑥) + (𝑏2𝑘𝑦 ∫ 𝑦2𝑘𝑑𝑦) ]

= ∑[ 𝑏2𝑘𝑥 ∗  
𝑥2𝑘+1

(2𝑘 + 1)
+ 𝑏2𝑘𝑦 ∗

𝑦2𝑘+1

(2𝑘 + 1)
 ]

𝑛

𝑘=1

, 

(5.17) 

where b2kx and b2ky represent the variability coefficients for the x and y directions, 

respectively. The base component, defined in Eq. (5.11), is then combined with Eq. 

(5.17) to mathematically describe the freeform surface as 
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𝑧𝑓(𝑥, 𝑦) = ∑[ 
1

2
(𝑎2𝑘𝑥 ∗ 𝑥2𝑘 + 𝑎2𝑘𝑦 ∗ 𝑦2𝑘) + 𝑏2𝑘𝑥 ∗

𝑥2𝑘+1

(2𝑘 + 1)

𝑛

𝑘

               

+ 𝑏2𝑘𝑦 ∗
𝑦2𝑘+1

(2𝑘 + 1)
] + 𝑐0𝑥 ∗ 𝑥 + 𝑐0𝑦 ∗ 𝑦, 

(5.18) 

where c0x and c0y are the tilt terms for the x and y axes, respectively, used to minimize the 

overall sag of the surface without affecting the optical properties. 

In order to view the relationship between lateral shift and composite surface profile, we 

again combine the freeforms, while introducing a lateral shift dx along the x-axis and 

lateral shift dy along the y-axis. The combined composite surface with the introduced 

lateral shifts in the appropriate direction is given by, 

 

𝑍𝑐(𝑥, 𝑦, 𝑑𝑥 , 𝑑𝑦) = 𝑧𝑏(𝑥 + 𝑑𝑥 , 𝑦 + 𝑑𝑦) + 𝑧𝑏(−(𝑥 − 𝑑𝑥), −(𝑦 − 𝑑𝑦))

+ 𝑧𝑣(𝑥 + 𝑑𝑥 , 𝑦 + 𝑑𝑦) + 𝑧𝑣(−(𝑥 − 𝑑𝑥), −(𝑦 − 𝑑𝑦))

= ∑(𝑎2𝑘𝑥 + 2𝑑𝑥𝑏2𝑘𝑥) ∗ 𝑥2𝑘 +

𝑛

𝑘=1

(𝑎2𝑘𝑦 + 2𝑑𝑦𝑏2𝑘𝑦) ∗ 𝑦2𝑘

+ 𝜀(𝑥, 𝑦, 𝑑𝑥 , 𝑑𝑦), 

(5.19) 

where ε(x,y,dx,dy) represents the combined error terms, deemed negligible when dx and dy 

are small. We see that the surface curvature in the x direction is linear with respect to the 

lateral shift along the x-axis, independent of the lateral shift along the y-axis. Similarly, 

the surface curvature in the y direction is independent of the lateral shift along the x-axis. 

With this in mind, we define the variability coefficients in a similar fashion as in Eq. 

(5.16), now defined as, 

 𝑏2𝑘𝑥 =
∆𝑎2𝑘𝑥

2∆𝑑𝑥
, 𝑏2𝑘𝑦 =

∆𝑎2𝑘𝑦

2∆𝑑𝑦
, (5.20) 



83 

 

where Δa2kx and Δa2ky represent the average change in surface curvature per unit Δdx and 

Δdy, respectively. 

 

5.4.2 Optical design 

In order to draw direct comparisons to the previous example in section 5.3, all of the 

same base input parameters were used. The output spot was designed to be a uniform 4 x 

4 mm square when there is no lateral shift in the system in either direction, which means 

a2kx = a2ky, as before. The output spot side lengths were defined to have the same range 

from 2 mm to 6 mm over lateral shift range d = +/-300 µm in both the x and y directions; 

with every lateral shift of Δdx =150 μm, there will be a 1 mm change in output side length 

in the x direction. Similarly, with every lateral shift of Δdy =150 μm, there will be a 1 mm 

change in output side length in the y direction.  

Multiple beam shapers with different output spot side length configurations were 

designed using the ray mapping procedure defined previously. Fig. 5.4 shows a grid of 

composite surfaces for several different configurations of lateral shift, all of which are on 

the same scale across the 12 mm aperture. 
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Fig. 5.4: Composite rectangular beam shaping surface profiles for several different 

configurations of x and y lateral shifts, all of which are on the same color scale. 

 

A set of polynomial coefficients was then fit to Eq. (5.1) for each surface height 

profile. Since the same base parameters and side length ranges were chosen, the cross-

sectional profiles for each of the composite surfaces are the same as in Section 5.3, listed 

in Table 5.1. This means that this device has the same a2k and b2k coefficients for the x 

and y directions; the main difference ends up being in the mathematical description of the 
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freeform lens. The surface coefficients for the base component and variability component 

are listed in Table 5.5.  

Table 5.5: Freeform surface coefficients for the variable rectangular output beam shaper. 

 

The tilt terms c0x and c0y were both determined by performing parameter sweeps to find 

the point at which the sag of the freeform surface was at a minimum. The resulting tilt 

term of 0.0304 decreased the sag from 542 µm to 258 µm over the 12 mm aperture 

diameter with respect to the un-tilted surface. Eq. (5.18) was then used with these 

coefficients to define the freeform surfaces. Fig. 5.5 displays the resulting base, 

variability, and freeform surfaces. Similar to the first square beam shaper example, the 

output spot was designed to be a 4 x 4 mm square with no lateral shifts. It should be 

noted that this is not a constraint, and was only done this way for brevity in the 

presentation with a2kx = a2ky. If it were desired to have a rectangular output at the zero-

shift point, a2kx would no longer be the same as a2ky, which is acceptable because the 

freeform equation treats x and y independently. The equality of the b2kx and b2ky 

coefficients is likewise not a constraint; it is possible to have different rates of side length 

change along the x and y directions per the respective units of lateral shift.  

Order (k) a2kx (mm
-2k+1

) a2ky (mm
-2k+1

) b2kx (mm
-2k

) b2ky (mm
-2k

) 

1 4.3021E-04 4.3021E-04 -6.0315E-03 -6.0315E-03 

2 -2.6511E-04 -2.6511E-04 2.2072E-04 2.2072E-04 

3 1.1124E-05 1.1124E-05 -9.2525E-06 -9.2525E-06 

4 -3.6927E-07 -3.6927E-07 3.0703E-07 3.0703E-07 

5 8.4816E-09 8.4816E-09 -7.0494E-09 -7.0494E-09 

6 -1.1601E-10 -1.1601E-10 9.6390E-11 9.6390E-11 

7 6.9909E-13 6.9909E-13 -5.8068E-13 -5.8068E-13 
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Fig. 5.5: Surface plots of the variable rectangular output beam shaper, showing the (a) 

base component, (b) variability component, and (c) one of the two freeform surfaces. 

 

 

5.4.3 Optical modeling 

The resulting system was again modeled in VirtualLab™ using the same parameters 

and methods as in Section 5.3.3. Table 5.6 shows the constant input diameter with the 

expected output side lengths X0 and Y0 and simulated output side lengths X0 and Y0 for the 

corresponding lateral shift and axis orientation. The predicted results are again in good 

agreement with simulated results in VirtualLab™. 
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Table 5.6: Predicted and modeled input and output spot side lengths for several different 

lateral shift configurations. 

  

 

Fig. 5.6 shows a grid of simulation results for output spots with multiple lateral shift 

configurations of 0 μm and +/-300 µm for dx and dy. The redistribution of energy can be 

seen with uniform irradiance distributions and the output size varied independently in the 

x and y directions. Similar to the previous results, the Gibb’s phenomenon was present in 

the output spots due as a product of using a step-function, and could be eliminated using 

the super-Gaussian irradiance distribution. Overall, the success of this design and 

additional flexibility to independently vary the output field in two directions opens up 

new classes of optical devices and possibilities that lie within this idea of freeform optics 

and general mathematical approach. 

Shift dx 

(µm) 

Shift dy 

(µm) 

Input Do 

(mm) 

Predicted Output 

X0 x Y0 (mm) 

VirtualLab™ Output 

X0 x Y0 (mm) 

-300 -300 6.0 6.0 x 6.0 5.948 x 5.948 

-300 0 6.0 6.0 x 4.0 5.948 x 3.961 

-300 300 6.0 6.0 x 2.0 5.948 x 1.989 

0 -300 6.0 4.0 x 6.0 3.961 x 5.948 

0 0 6.0 4.0 x 4.0 3.961 x 3.961 

0 300 6.0 4.0 x 2.0 3.961 x 1.989 

300 -300 6.0 2.0 x 6.0 1.989 x 5.948 

300 0 6.0 2.0 x 4.0 1.989 x 3.961 

300 300 6.0 2.0 x 2.0 1.989 x 1.989 
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Fig. 5.6: Physical optics simulations of spot irradiance at 150 mm target distance for 

different relative shifts along x- and y-axes for a Gaussian to variable rectangular flat-top 

(step-function) beam shaper. 
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5.5 Variable toric lens from 2D lateral shifts 

5.5.1 Introduction  

Up to this point in this Chapter we have only considered non-imaging applications. For 

a final example, we expand the design approach of implementing lateral shifts in two 

dimensions to create a variable toric lens. Similar to the variable rectangular beam shaper 

with lateral shifts along the x and y axes; the focal length varies in the x-direction when 

the freeform surfaces are shifted along the x-axis, and the focal length varies 

independently in the y-direction when the freeform surfaces are shifted along the y-axis. 

Researchers [42, 61-65] have previously demonstrated that shifting the Alvarez lens in 

the adjacent direction inherently creates a toric function, but the variability in the x and y 

focal lengths are not independent of each other and the respective shifts. It was 

mentioned by Lohmann [30] that two crossed variable cylindrical lens pairs creates a 

varifocal lens with appropriate lateral shifts. This was later demonstrated by Barbero 

[42], where the performance of a varifocal Lohmann lens was compared to a standard 

Alvarez lens. However, in those cases, the independent x and y output functions were not 

realized, nor did the presented designs include optical power when no lateral shift was in 

the system. Additional work was done involving a diffractive varifocal lens where a 

variable toric function was realized [66]; however, similar to other work, the system was 

designed using optimization, where the procedure was not reported. Furthermore, there 

has not been any work reported (to the knowledge of the author) which included a 

variable toric lens with independently varied x and y focal lengths, while also having 

optical power when no lateral shift is present.  
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5.5.2 Optical design 

Due to the fact that the base optical function is now a spherical lens, use of Eq. (5.1) is 

not required to represent the composite surface. However, the implementation of a second 

lateral shift to achieve the variable toric effect necessitates the separate treatment of the x 

and y terms for the base function. With this consideration in mind, Eq. (5.18) was again 

used to represent the freeform surfaces of this lens pair.  

In order to draw direct comparisons to the shifted Alvarez lens example in Chapter 4, 

all of the same base input parameters were used. In this case, the focal lengths in the x 

and y directions (fx and fy) were both centered at 77 mm, and both ranged from infinity to 

38.5 mm for the same lateral shift range of Δdx = Δdy = +/-1.8 mm. Fig. 5.7 shows 

individual plots of the independent focal ranges for each axis corresponding to the 

respective lateral shift axis.  

 

Fig. 5.7: Independent variable lens focal lengths vs. lateral shift relationships along the 

(left) x- and (right) y- axes for a variable toric lens. 

 

As before, multiple toric lenses with different x and y focal length configurations were 

designed using a ray mapping procedure. Fig. 5.8 shows a grid of composite surfaces for 

several different configurations of lateral shift, all with the same scale across the 14.5 mm 
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aperture. These results clearly show how the composite curvature changes in the x 

direction independently of the y direction with their corresponding lateral shifts. 

 

Fig. 5.8: Composite toric lens surface profiles for several different configurations of x 

and y lateral shifts. All images are on the same color scale. 

 

A set of polynomial coefficients was then fit to Eq. (5.1) for each surface height 

profile. Since the base parameters and focal length range are the same as in the Chapter 4 

example, the cross-sectional profile for each of the composite surfaces are also the same 

(Table 4.2). Additionally, because fx and fy have the same change per lateral shift range 
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and are centered at the same value, the polynomial coefficients for the x terms will be the 

same as the y terms, (a2kx = a2ky and b2kx = b2ky) as in the previous beam shaping example. 

The resulting surface coefficients for the base and variability components are listed in 

Table 5.7. 

Table 5.7: Freeform surface coefficients for the variable toric lens pair. 

 

As before, the tilt terms c0x and c0y were both determined by performing parameter 

sweeps to find the point at which the sag of the freeform surface was at a minimum. The 

resulting tilt term of 0.013 decreased the sag from 254 µm to 173 µm over the 14.5 mm 

aperture diameter with respect to the untilted surface. Eq. (5.18) was then used to define 

the freeform surfaces. The resulting base, variability, and freeform surfaces are shown in 

Fig. 5.9. Again, we note that the equality of the x and y coefficients is not a constraint 

because x and y are separable in the freeform prescription; the focal length ranges and 

center focal lengths can be different for the x- and y- axes. 

Order (k) a
2kx

 (mm
-2k+1

) a
2ky

 (mm
-2k+1

) b
2kx

 (mm
-2k

) b
2ky

 (mm
-2k

) 
1 -3.6190E-03 -3.6190E-03 -1.0051E-03 -1.0051E-03 
2 8.5045E-08 8.5045E-08 9.4472E-08 9.4472E-08 
3 -3.9980E-12 -3.9980E-12 -1.7762E-11 -1.7762E-11 
4 2.8848E-16 2.8848E-16 4.3921E-15 4.3921E-15 
5 -1.6072E-18 -1.6072E-18 -7.6125E-18 -7.6125E-18 
6 2.3128E-20 2.3128E-20 9.4940E-20 9.4940E-20 
7 -1.3052E-22 -1.3052E-22 -5.3407E-22 -5.3407E-22 
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Fig. 5.9: Surface plots of the variable toric lens, showing the (a) base component, (b) 

variability component, and (c) one of the two freeform surfaces. 

 

 

5.5.3 Optical modeling 

Ray-trace simulations were performed using ZEMAX
®
 to verify the independent 

variable functionality of this device. As in the shifted Alvarez example in Chapter 4, 

these simulations assumed a normally incident collimated input with 4 µm wavelength 

and 8 mm diameter aperture directly in front of the first element. The center thickness of 

each freeform element was set to 2.5 mm, with a 400 µm standoff gap between the lens 

pair. Fig. 5.10 displays a grid of multiple ray-trace simulation results with several 

different configurations of x and y lateral shifts ranging from dx = +/-1.8 mm and dy = +/-

1.8 mm.  
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Fig. 5.10: Geometric ray-trace simulations of the variable toric lens for several different 

configurations of x and y lateral shifts. All simulations are on the same axial scale. 

 

Two ray-trace simulations were also performed for each lateral shift configuration to 

characterize the independence of the x and y focal lengths of the system. The distances 

between the second element and the corresponding focal plane (the back distance) along 

the x or y axis were recorded for each configuration. In order to find the focal plane, the 

back distance was set as a variable and ZEMAX’s default RMS optimization algorithm 

was used to determine the location of the smallest RMS spot size for each of the 

respective axes. Recall from the discussion in Chapter 4, the back distance is not 
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necessarily equivalent to the system focal length due to the thickness of each freeform 

element. The focal length was determined by adding the location of the second principal 

plane to the back distance recorded in the ZEMAX
®
 simulations. The location of the 

principal plane was determined in Chapter 4 to be 0.896 mm. Table 5.8 compares 

predicted values to modeled results of the x and y focal lengths for this system for several 

different lateral shift configurations.  

Table 5.8: Focal lengths in the x and y direction determined using ZEMAX
®

 simulation 

models compared to theoretical values for different lateral shift configurations.  

 

 

The focal lengths from the ZEMAX
®
 simulations are in good agreement with the 

predicted values. The slight difference between the two results is thought to be a 

consequence of geometrical aberrations caused by the air gap between the two freeform 

Lateral Shift Predicted Focal Length ZEMAX
®
 Focal Length 

dx (mm) dy (mm) fx (mm) fy (mm) fx (mm) fy (mm) 

-0.9 -0.9 154 154 154.22 154.23 

-0.9 0 154 77 154.18 76.94 

-0.9 0.9 154 51.3 154.14 51.19 

-0.9 1.8 154 38.5 154.08 38.32 

0 -0.9 77 154 76.93 154.18 

0 0 77 77 76.92 76.92 

0 0.9 77 51.3 76.90 51.19 

0 1.8 77 38.5 76.88 38.32 

0.9 -0.9 51.3 154 51.19 154.13 

0.9 0 51.3 77 51.18 76.90 

0.9 0.9 51.3 51.3 51.17 51.18 

0.9 1.8 51.3 38.5 51.16 38.31 

1.8 -0.9 38.5 154 38.32 154.07 

1.8 0 38.5 77 38.31 76.88 

1.8 0.9 38.5 51.3 38.31 51.16 

1.8 1.8 38.5 38.5 38.29 38.30 
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elements. Similarly, as a lateral shift is varied along a single axis, there is minimal change 

in the focal length for the orthogonal axis, which further verifies the independent variable 

functionality of this device. 

For the specific configurations where the x and y focal lengths are equal (fx = fy), x-y 

spot diagrams in ZEMAX
®
 were produced in order to assess the geometrical aberrations 

present in this system. Fig. 5.11 shows the spot diagrams in the image plane for lateral 

shifts d = -0.9 mm, d = 0 mm, and d = 1.8 mm [dx = dy = d], compared to the Airy disk 

radius to assess the performance relative to the diffraction limit. Compared to the 

previous shifted focus Alvarez lens (Chapter 4), this device has a slightly better 

performance regarding spot size. This improvement is thought to result from the use of 

bilateral shifts versus a unilateral shift. Though the effective focal range is the same, the 

lateral shift takes place along a diagonal for the variable toric lens, which is inherently a 

larger shift compared to shifting along one axis. For example, the shifted focus Alvarez 

was laterally shifted 1.8 mm along the x axis, whereas the variable toric lens was shifted 

√2*1.8 mm along the diagonal between the x and y axes. As a result, noted in [42], this 

inherently decreases the required surface curvature (surface depth modulation), resulting 

in a better performance. 
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Fig. 5.11: Spot diagrams generated in ZEMAX
®

 compared to the diffraction limited Airy 

disk for lateral shifts of d = -0.9 mm, d = 0 mm, and d = 1.8 mm 

 

Fig. 5.12 shows performance summary plots of this device across the defined lateral 

shift range [when dx = dy = d] for RMS spot radii and Strehl ratio. Recall that a system is 

generally considered to be diffraction limited for Strehl ratio Strehl ≥ 0.8. The aberrations 

found in the image plane are below the diffraction limit for the range of lateral shifts, 

suggesting that the image would be of high quality. 

 

Fig. 5.12: Performance summary plots for the variable toric lens across the range of 

lateral shifts (for dx = dy = d) with regards to (left) RMS spot radius and (right) Strehl 

ratio. 
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5.6 Discussion 

Three novel dynamic freeform optical systems were presented in this chapter; a 

variable square output beam shaper from 1-dimensional lateral shifts, a variable 

rectangular output beam shaper from 2-dimensional lateral shifts, and a variable toric lens 

from 2-dimensional lateral shifts. These examples all expanded on earlier design 

processes by enabling non-radially symmetric variable outputs. Furthermore, the design 

process was expanded by enabling independent control of x and y dimensions of the 

optical outputs through independent lateral shifts along the x and y axes. The performance 

of each of these designs shows that the general design process works as intended and also 

suggests other applications are possible in this genre of optical systems with arbitrary 

irradiance distributions or imaging properties. Similarly, it is important to note that the 

demonstrated design approaches were analytic, with no numerical optimization 

performed to achieve the freeform lens prescription. As in conventional lens design in 

which analytic methods are used to provide promising initial design forms prior to 

numerical optimization, this process provides a starting point for numerical optimization 

of future freeform designs using optical simulation software for enhanced performance. 

  



 

 

CHAPTER 6: OPTOMECHANICAL TOLERANCING OF DYNAMIC FREEFORM 

OPTICAL SYSTEMS 

 

6.1 Introduction 

To this point, a significant amount of research has been demonstrated on general 

design processes within the genre of dynamic optical systems. However, there has been 

no consideration of performance sensitivity to potential system errors. For example, since 

there are two elements in the dynamic optical systems we consider, tolerances on relative 

spacing, displacement, rotation, and tilt (illustrated schematically in Figure 6.1) between 

the surfaces must be understood as part of the design process. Having an optical system 

that requires a substantial amount of optomechanics could be costly, bulky, and prone to 

additional error [130-132]. Performing a tolerance analysis provides a necessary insight 

into the impacts that specific system errors have on optical performance. Furthermore, the 

ability to determine specific tolerance specifications precludes the over-tolerancing of the 

system, where overly tight tolerances could unnecessarily increase system costs.  

The computational time and accuracy needed for determining tolerance values are very 

important. To put the need for a well-established tolerance procedure in perspective, first 

consider a straight-forward approach in which every possible permutation of different 

errors between the two freeform surfaces is simulated. If we consider displacement and 

rotational (tilt) errors on all three axes (x, y, & z) (Fig. 6.1) for both freeform elements 

individually, then there would be a total of 12 independent variables of error (six for each 

lens). Assuming each variable can take one of five predetermined deviation values, there 
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would need to be 5^12 = 24,4140,625 simulations to simulate every possible 

permutation. Assuming 10 seconds for each simulation, this would take approximately 

~77 years for one individual system.  

 

Fig. 6.1: Illustration of the direction of the (a) controlled lateral shift, and the potential (b) 

lateral, (c) axial, and (d-f) rotational misalignment errors along their respective axes. 

 

Many different methods and approaches have been taken to develop standard 

tolerancing procedures for different optical systems and to reduce computational effort. 

These methods range from connecting design performance to production costs to achieve 

the most cost-effective design [133-135], to incorporating different statistical approaches 

to drive down computational efforts while still maintaining the required accuracy [68-71, 

136-140]. The majority of previous approaches [68-71] utilize a Monte Carlo analysis. 

Monte Carlo analyses enable cross-communication between error sources by randomly 

deviating the system a predetermined number of times while viewing the performance 

trends. This approach eventually provides statistically relevant tolerance results based on 

a specified performance metric. This is a relatively standard approach for tolerancing 
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systems with multiple rotationally symmetric optical components, where alignment errors 

can be described in terms of tilt and decenter (fewer variables).  

In our case, many of the assumptions made in Monte Carlo procedures are not valid 

due to the lack of rotational symmetry in the freeform components, thereby increasing the 

computational requirements. Additionally, Monte Carlo analyses are inherently based 

around statistical measures, meaning the procedure is not entirely deterministic. To this 

end, we consider a simplified deterministic procedure for defining optomechanical 

tolerances for dynamic freeform optical systems. This procedure is aimed towards 

decreasing the computational effort by making several assumptions that are based on 

‘worst-case’ scenarios. 

6.2 Performance metric study 

Tolerance analyses require a performance metric in order to provide the desired 

tolerance specification. Though we are using the same methods and procedure for our 

two dynamic freeform examples, the different functionalities achieved (imaging vs non-

imaging) require different performance metrics. We now consider the chosen 

performance metrics for the imaging and non-imaging examples in more detail. 

 

6.2.1 Imaging performance metrics 

Well-known standards exist within the classical optics regime for imaging devices. In 

the case of the Alvarez lens, we consider the RMS spot radius and the Strehl ratio. The 

RMS spot radius is simply a measure of the output spot size in the focal plane of the 

system [126]. As mentioned earlier, the Strehl ratio is defined as the ratio between the 

peak aberrated on-axis image intensity and peak non-aberrated image intensity [126], 
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providing a measure of the quality of optical image formation. Both metrics can easily be 

related to a diffraction limited system which can be used as a basis for tolerance 

allowances.  

 

6.2.2 Non-imaging performance metrics 

Non-imagining devices have various measures of performance that depend on 

application. For the variable output beam shaper, the performance can be segmented into 

three separate categories; size, shape, and uniformity of the output irradiance pattern. 

Each of these metrics can be qualitatively analyzed while viewing the simulated output. 

Conversely, there are not many known standards to quantitatively evaluate each of these 

metrics. In each of the tolerance analyses, there needs to be a quantitative metric in order 

to determine the necessary specifications. For this reason, a significant amount of 

research was performed to enable and define quantitative measures of the size, shape, and 

uniformity of the output spots. Multiple custom codes (presented in Appendix A.2) were 

created in MATLAB
®
 to enable these analyses. We now consider this work in more 

detail.  

Spot size and shape determination 

To measure the size and shape of the output irradiance, a custom edge finding 

algorithm (EFA) was created in MATLAB
® 

to find the outer edge of the spot irradiance. 

This algorithm begins with import of the simulated output spot into MATLAB
®
 as a 2D 

array, where the contrast of the spot is then enhanced using the “nthroot” command 

[141]. Enhancing the contrast creates a sharper transition at the edge of the spot, and 

improves the accuracy and consistency of the end result. Next, a numerical derivative is 
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performed on the data along both the x and y axes separately and then added together. 

Calculating the derivative on the data maps the change of irradiance within the spot, and 

highlights the areas where there are large changes in irradiance – i.e. along the edge of 

the spot. Fig. 6.2 shows an example of a simulated output spot as originally imported, as 

contrast enhanced, and the resulting x and y derivatives added together to highlight the 

edges. 

 

Fig. 6.2: Example of a simulated output spot as (a) originally imported, (b) contrast 

enhanced, and (c) the resulting x and y derivatives added together to highlight the edges. 

 

The next step in the EFA is to trace the outer edge to create a ‘radius-map’ that plots 

the radius as a function of theta. To do this, code was written in MATLAB
®
 to find the x 

and y location of the maximum value as a function of the azimuthal angle θ, as 

demonstrated in Fig. 6.3. Once these locations are found they are translated into a radial 

component using R
2 

= x
2 

+ y
2
. A numerical curve fit algorithm was then implemented in 

MATLAB
®
, using the ‘fit’ command [142], to create a continuous spot radius function as 

a function of θ. The results for the example output spot shown in Fig. 6.2 are shown in 

Fig. 6.3. 
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Fig. 6.3: Demonstration of the EFA using the (a) derivative of the output spot to create a 

(b) radius map by tracing the edges and then generating a (c) spot radius function 

dependent on θ. 

 

To further demonstrate this algorithm and its usefulness, another example output spot 

was created, in which an alignment error was introduced that skewed the shape of the 

spot. Fig. 6.4 shows the deviated output spot along with the highlighted edge and spot 

radius function compared to the reference spot. Figure 6.4(d) shows how much the shape 

deviates from the reference. 
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Fig. 6.4: Further demonstration of the EFA; purposely deviated output spot (a) as 

imported and (b) contrast enhanced, along with the (c) derivative of the output spot and 

(d) the spot radius function, both compared to the reference. 

 

Though, it is clear that the algorithm works as intended, a quantitative measure of 

shape is still required. To this end, we apply a standard deviation root mean square error 

(RMS) approach given by, 

 𝑅𝑟𝑚𝑠 = √∑(𝑅𝑖(𝜃𝑖) − 𝑅𝑟𝑒𝑓_𝑎𝑣𝑔)
2

𝑁

𝑖=1

/𝑁 (6.1) 

where Ri(θi) is the spot radius function, Rref_avg is the average radius of the reference 

output spot, and N is the number of data points used in the analysis. Since this application 

is a dynamic system with multiple output spots of varying diameter, there are multiple 

data sets with different output parameters that must be compared. A shape error 
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coefficient of variation RCV is used to avoid any potential confusion when quantitatively 

comparing the magnitude of shape error for output spots with different diameters. RCV is a 

unit-less measure of variability relative to the reference mean, enabling a comparison of 

dissimilar data sets. The shape error coefficient of variation [143] is defined as 

 𝑅𝐶𝑉 =
𝑅𝑟𝑚𝑠

𝑅𝑟𝑒𝑓_𝑎𝑣𝑔
. (6.2) 

This provides a good quantitative metric for both size and shape; however, there are no 

known standards for this particular unit of measure. With this in mind, a pass-fail 

threshold must be determined during the tolerancing procedure. The important takeaway 

is the ability to quantitatively evaluate the shape and size of the output spot. 

Spot uniformity determination 

The second measure of performance is the uniformity error of the output spot. 

Uniformity, otherwise described as lack of variance, is a standard mathematical term used 

in a variety of different applications. Despite this being the most common of all the 

metrics used, there are subtleties that must be addressed. The unclear edge of the output 

spot has potential to cause confusion and inconsistencies when comparing results; 

therefore, only a certain percentage of the spot window is analyzed [107, 144]. This spot 

window will herein be referred to as the clear aperture (CA) window. Figure 6.5 shows 

an example output spot with its corresponding cross-sectional irradiance, where the clear 

aperture window is shown.  
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Fig. 6.5: (a) Example of a simulated output spot with its (b) corresponding cross-sectional 

irradiance where the clear aperture (CA) window is shown as a percentage of the entire 

spot window. 

 

For a non-deviated system, the output spot is circular, which makes it relatively easy to 

distinguish a clear aperture window with a smaller diameter. However, once error has 

been introduced to the system, the shape and size can change to something more random. 

To combat this potential issue, a MATLAB
®
 code was written which employs the EFA 

again to create a spot radius function. This function is then decreased to the clear aperture 

window percentage, which in this case was set to 95%. Fig. 6.6 shows an example of the 

decreased radius function used to create the clear aperture window.  

 

Fig. 6.6: (a) Example of a simulated output spot showing the outer edge as well as the 

inner clear aperture window. (b) Demonstration of the radius map decreased to the clear 

aperture window percentage.  
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Now that the clear aperture window of the output spot has been distinguished, we use a 

similar root mean square error approach as a quantitative measure for uniformity error. 

This is given by,  

 𝑈𝑟𝑚𝑠 = √∑(𝐼(𝑖) − 𝐼𝑎𝑣𝑔)
2

𝑁

𝑖=1

/𝑁 (6.3) 

where I(i) is the irradiance distribution of the output spot within the clear aperture 

window, Iavg is the average spot irradiance, and N is the number of data points used in the 

analysis. We note that this metric is compared to the mean of its individual data set, since 

the overall uniformity error of the output spot is of primary concern, rather than the 

average magnitude of irradiance of the target output spot. Much like the shape error, the 

standard deviation for uniformity error is an adequate measure for an individual system, 

but this is a dynamic system and there are multiple data sets with different parameters 

that must be compared. Thus, we employ a coefficient of variation again, defined as, 

 𝑈𝐶𝑉 =
𝑈𝑟𝑚𝑠

𝐼𝑎𝑣𝑔
. (6.4) 

There are no well-established standards for beam shaper uniformities, as most examples 

depend on the specific application. With this in mind, the pass-fail threshold must again 

be qualitatively determined during the tolerancing procedure.  

Combination of spot size, shape, and uniformity 

The previous two performance metrics measured the shape-size and uniformity 

separately. In order to have a combined quantitative measure of spot output quality, we 

implement a correlation degree function following the approach taken by Zwick and 
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Timinger [77, 78]. This approach evaluates the quality of the generated irradiance 

distribution by evaluating the similarity to an ideal target distribution by first using the 

cross-correlation integral described given by,  

 Γ12(𝜏, 𝜂) = ∬ 𝐼1(𝑥, 𝑦) 𝐼2(𝑥 + 𝜏, 𝑦 + 𝜂)𝑑𝑥𝑑𝑦, (6.5) 

where I1 describes the ideal irradiance distribution and I2 describes the generated 

irradiance distribution with the error source included. This function provides the 

coordinates where the two distributions best match. Similarly, setting τ=0 and η=0, and 

normalizing this function allows a measurement of correlation between the two 

distributions. This correlation degree is defined as, 

 𝐶𝑑(0,0) = |
Γ12(0,0)

√Γ11(0,0) Γ22(0,0)
|. (6.6) 

The correlation degree lies within 0 ≤ Cd ≤ 1, where Cd = 1 corresponds with a perfect 

match and Cd = 0 is non-conforming. Again, there are no known standards for this 

particular performance metric and the pass-fail threshold must be qualitatively 

determined during the tolerancing procedure. 

 

6.3 Methods and assumptions 

Several assumptions are made to reduce the number of system variables in the system 

and computational effort while maintaining an adequate level of accuracy. To start, we 

refer back to design examples in the earlier chapters where we noted that the standoff 

distance between the two freeforms had an insignificant effect on performance. With this 

in mind, the first assumption is to ignore the displacement along the z axis for both 
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lenses, reducing the number of variables from 12 to 10. Next, both elements are assumed 

to have equal x- and y-axis displacement tolerances and the same x and y-axis tilt 

tolerances. This assumes a worst-case scenario, and reduces the error variables from 10 to 

6. Lastly, we assume both freeform elements to have equal tolerances for each alignment 

error by modeling the second freeform with alignment errors of equal magnitude in the 

opposite direction as the first freeform. Again, the worst-case scenario is inherent in this 

final assumption due to the relative positioning error between the two lenses always 

being at a maximum. To this end, the number of variables is reduced to 3: displacement 

Sxy, tilt Txy, and rotation Rz. Fig. 6.7 illustrates the two assumptions regarding 

displacement error. It should be noted that these assumptions are made for the tilt and 

rotational errors as well, but are not illustrated in Fig. 6.7. 

 

Fig. 6.7: Illustration of the displacement error before and after the assumptions made for 

the optomechanical tolerancing where both elements are (a) assumed to have equal x and 

y-axis tolerances (Sxy=Sx=Sy) and (b) assumed to have equal magnitude tolerance values 

in the opposite direction (S1=-S2). Note that these assumptions are also made for tilt and 

rotational errors despite not being shown. 

 

Since the freeform surfaces are not rotationally symmetric, the performance impact is 

not assumed to be equivalent for positive and negative errors. Therefore, with the other 

assumptions in mind, the orientation of the first lens must be considered. In other words, 

the magnitude of the error will remain the same, while each case will include a series of 

different orientations of the error introduced. For the displacement and tilt errors, there 
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are four orientations each because they both have x and y components. The rotational 

error only has two orientations because it only has a z-axis component. This will be 

discussed in more detail later in this section. Fig. 6.8 demonstrates each of the different 

orientations for the displacement, tilt and rotational errors.  

 

Fig. 6.8: Schematic of each different error source, demonstrating the worst-case scenario 

assumptions made, along with the different error orientations. 

 

We have reduced complexity considerably with our assumptions, and now briefly 

outline the simplified optomechanical tolerancing procedure, as shown in Fig. 6.9. This 

process begins with a sensitivity analysis (SA) to provide an isolated measure of 

performance and initial tolerance bounds for each variable in the system. This is followed 

by a combined error analysis (CEA) that enables cross-communication between different 

errors in the system by implementing worst-case scenarios within a hierarchical 

progression model. These results are then used in combination with a curve-fitting 

algorithm in MATLAB
®

 to create an empirical formula that is used as a design tool to 
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accurately predict the error budget (EB) and determine the worst-case performance of the 

system within the input tolerance ranges, based on the chosen performance metric.  

 

Fig. 6.9: Flow chart for the simplified optomechanical tolerancing procedure.  
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The sensitivity analysis procedure is relatively straight forward, and is performed by 

independently simulating a defined range for each of the three error variables. Analyzing 

each error of interest independently from the others allows us to determine the individual 

influence of each error on the optical system and determines the starting tolerance bounds 

for the combined error analysis. Considering the previous assumptions regarding x and y 

displacement and tilt errors, each parameter sweep will consist of all possible 

orientations, with the worst case scenario recorded. The end goal is to enable 

optomechanical tolerancing of the entire dynamic system. Since this tolerance analysis 

considers the entire system and its entire dynamic range, the sensitivity analysis is 

performed for the specific case (1) where no lateral shift is introduced (d = 0), and for the 

cases (2, 3) where the lateral shifts are at the design extremes (d = +/-dmax). Comparing 

the results from these analyses provides information on which specific lateral shift is 

most sensitive to the individual errors, for use in the combined error analysis. Using the 

results from the most sensitive case, the tolerance bound is determined as the minimum 

error value for which the performance is beyond the defined pass-fail threshold.  

To begin the combined error analysis, each error variable is divided into five different 

‘tolerance classes’. The first class is defined such that no error is introduced and the last 

class has the maximum allowable error determined from the previous sensitivity analyses. 

The intermediate classes have errors evenly spaced between the first and last class. As a 

visual aid, Fig. 6.10 encapsulates all of the assumptions made to this point, displaying 

representative images for each of the error variables (displacement, tilt, and rotational). 

Each representative image consists of the different orientations (O1-O4) in the respective 

quadrants, as well as the different tolerance classes (S0-S4 for displacement, T0-T4 for 
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tilt, and R0-R4 for rotational). The tolerance classes are color coded on a green-to-red 

scale, ranging from a smaller to larger magnitude, where red represents the maximum 

allowable error for each respective alignment error.  

 

Fig. 6.10: Illustration of the different tolerance classes and the multiple orientations for 

the (a) displacement, (b) tilt, and (c) rotational errors.  
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Next, a hierarchical progression model is implemented, with each class from each error 

variable used to simulate all possible permutations of deviated systems, or ‘tolerance 

class variations’. There are five tolerance classes per error variable and three different 

error variables, resulting in 5^3 = 125 different tolerance class variations. For each class 

variation, the first class has no error introduced and thus only one orientation. For each of 

classes two through five, there are four orientations for the displacement and tilt and two 

orientations for rotational error. This means there is a total of 4x4+1 = 17 orientations to 

simulate for each of the displacement and tilt errors, and a total of 4x2+1 = 9 orientations 

to simulate for the rotational error. The hierarchical model thus require 17x17x9 = 2601 

simulations to complete this procedure, which is considerably less than needed for the 

‘brute-force’ method discussed previously. Fig. 6.11 illustrates the hierarchical 

progression model for all 125 tolerance class variations. The color code of each tolerance 

classes matches the color code from Fig. 6.10.  
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Fig. 6.11: Illustration of the hierarchical progression model showing all 125 tolerance 

class variations.  
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A custom MATLAB
®
 code was created to generate a 2601 line text file containing all 

the possible error permutations (Appendix A.3). This this text file is imported into 

ZEMAX
®
 using a custom macro to simulate and record the system performance for each 

error permutation. The results are then imported back into MATLAB
®

 for further 

analysis. All possible orientations are evaluated for each class variation and the worst 

performing permutation is considered to be the worst-case scenario for the corresponding 

tolerance range.  

For example, if we consider a hypothetical dynamic system with displacement, tilt, and 

rotational tolerance of classes 2 (S1), 3 (T2), and 5 (R4) respectively, are a total of 32 

possible orientations within this class variation. Of these 32 simulations, the worst 

performance recorded amongst these simulations is then considered the worst-case 

scenario, ensuring the system within that specific tolerance range would never perform 

worse than that. Figure 6.12 shows an expanded version of the hierarchical progression 

for this specific example, with the worst performance highlighted. Note that the 

performance metric used in Fig. 6.12 is chosen arbitrarily for demonstration of the 

process.  
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Fig. 6.12: Illustration of an expanded sub-segment of the hierarchical progression model, 

demonstrating the worst-case scenario performance for an example system with a 

tolerance class variation of S1, T2, and R4.  
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Once all 125 class variations have been analyzed, the next step is to apply the results to 

determination of meaningful specifications. The first approach present the results visually 

by creating a 4-dimensional scatter plot, where the x, y, and z plot axes respectively 

correspond to the displacement, tilt, and rotational errors, and the c-axis (color) is 

weighted based on the performance metric. These results are then interpolated between 

intermediate class variations to achieve a much finer sampling for a similar 4-

dimensional surface plot. This plot can be viewed as a ‘visual roadmap’ for determining 

tolerance values for the system of interest. We note that interpolation assumes that the 

performance impact is linear between each of the classes. 

While this visual representation provides a wealth of information, the resulting 4-D 

surface plot can be difficult to interpret, particularly if there is an interest in a specific 

tolerance value between tolerance classes. For this reason, we consider an approach used 

in [70, 145] where a quadratic equation was used to determine the correlation between 

performance impact and associated alignment errors. Rather than using this approach to 

determine the correlation, we utilize a similar method to create an empirical formula to 

quantitatively predict the performance impact based on the results from the combined 

error analysis with the associated alignment errors. This empirical formula is given by,  

 𝑃(𝑆𝑥𝑦, 𝑇𝑥𝑦, 𝑅𝑧) = ∑ ∑ ∑ (𝑎𝑖𝑗𝑘𝑆𝑥𝑦
𝑖𝑇𝑥𝑦

𝑗𝑅𝑧
𝑘)

𝑁

𝑘=0

𝑁

𝑗=0

𝑁

𝑖=0
. (6.7) 

A curve-fitting algorithm in MATLAB
®
 is used to determine the aijk weighting 

coefficients. This formula determines the worst-case performance P of the system within 

the input tolerance ranges for displacement, tilt, and rotational errors (Sxy, Txy, and Rz). 

This empirical formula can be used as a design tool to quantitatively determine the error 
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budget as well as the necessary optomechanical tolerance specifications that will 

ultimately result in a ‘pass-only’ system.  

 

6.4 Optomechanical tolerancing example: imaging system 

To demonstrate this tolerancing procedure, we consider the example presented in 

Chapter 4; an Alvarez lens with a shifted focal range of ∞ ≥ f ≥ 38.5 mm across the 

lateral shift range of d = +/-1.8 mm. All simulations for this analysis were performed for 

a system with an 8-mm diameter aperture located in front of the first freeform lens. 

Additionally, the focal plane was set to the location where the RMS spot size was 

smallest for the ideal system (no error), determined using ZEMAX’s default optimization 

algorithm. It is worth noting that there was no re-optimization for the best focal spot after 

alignment errors were introduced. Since this is an imaging system, Strehl ratio and focal 

spot size where chosen as performance metrics.  

The sensitivity analyses were performed for the specific systems where d = -0.9 mm (f 

= 154 mm), d = 0 mm (f = 77 mm), and d = 1.8 mm (f = 38.5 mm), all across error ranges 

of +/-50 µm (displacement), +/-5
o
 (tilt), and +/-1

o
 (rotation). Fig. 6.13 shows the results 

from the sensitivity analysis, where the Strehl ratio, RMS spot radius, and spot size/Airy 

Disk ratio are used as performance metrics. These results suggest that the system 

performance is more sensitive to rotational errors than tilt errors, and that the system is 

most sensitive to these alignment errors when d = 1.8 mm. This is not surprising since the 

effective focal length is shorter, meaning the composite lens has more surface curvature 

and thus steeper slope angles.  
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Fig. 6.13: Results from the Alvarez lens alignment sensitivity analysis for the cases 

where d = -0.9 mm (f = 154 mm), d = 0 mm (f = 77 mm), and d = 1.8 mm (f = 38.5 mm). 

 

The initial tolerance bounds were then determined as the minimum error magnitudes 

for which the performance is equal to the pass-fail threshold, which in this example is 

defined as the diffraction limit. When using the Strehl ratio as the pass-fail threshold 

(Strehl = 0.8), the initial tolerance bounds were determined to be +/-8 µm (displacement), 

+/-2.0
o
 (tilt), and +/-0.35

o
 (rotational error). The initial tolerance bounds were imported 

into a custom macro created in ZEMAX
®
, for combined error analysis. As described 
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previously all 125 tolerance class variations and their respective orientations were 

simulated, and the worst-case scenarios for each class variation were determined in the 

custom MATALB
®

 code. The results are displayed in Fig. 6.14, where the custom c-axis 

(color scale) of the 4-dimensional scatter plot is weighted based on the Strehl ratio. 

 

Fig. 6.14: A 4-dimensional scatter plot displaying the results from the combined error 

analysis where the minimum Strehl ratio is displayed through a custom color scale based 

on the alignment tolerance values. 

 

These results were then interpolated in order to achieve a finer sampling between 

tolerance classes. Displaying a finely sampled 4-dimensional surface plot proved to be 

difficult. Instead, multiple ‘slices’ of the data were taken along the x, y, and z axes and 

the transparency of each data point was weighted to only be visible when above the pass-

fail threshold (Strehl ≥ 0.8); only the data points that qualify as a ‘passing’ system are 

visible, as demonstrated in Fig. 6.15. The final surface plot shows the performance 

impact of multiple alignment errors at different magnitudes and serves as a visual 

representation of the tolerancing specifications for this particular system.  
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Fig. 6.15: Interpolated results from the Alvarez lens combined error analysis displayed 

using (a) multiple slices through a 4-dimensional surface plot, combined with (b) a 

custom transparency plot where only the tolerance class variations with passing Strehl 

ratios (Strehl ≥ 0.8) are visible in the (c) final surface plot.  

 

The same analysis approach was applied using the Airy disk radius (23.6 µm) as the 

pass-fail metric. The initial tolerance bounds were determined to be +/-20 µm 

(displacement), +/-2.5
o
 (tilt), and +/-0.5

o
 (rotational error). The end results are shown in 

Fig. 6.16, where the transparency and custom c-axis (color scale) of the 4-dimensional 

scatter plot is weighted based on the RMS spot size.  
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Fig. 6.16: Interpolated results from the Alvarez lens combined error analysis displayed 

through a 4-dimensional surface plot using a custom color and transparency scale based 

on (a) the RMS spot size radius and (b) the RMS spot size/diffraction limit ratio. 

 

The surface plots from each of the CEA results suggest that the system would fail 

based on Strehl ratio before it would fail based on the spot size but are difficult to 

interpret together when quantitative tolerance specifications are required. Therefore, an 

empirical formula based on Eq. (6.7) was created to serve as a predictive model. A 

MATLAB
®
 curve fitting algorithm was used to fit Eq. (6.7) to the CEA Strehl ratio 

results, with the resulting coefficients listed in Table 6.1. We note that this same 

empirical approach can be generated for any quantitative metric, including the RMS spot 

radius. 
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Table 6.1: Empirical formula coefficients for determining the system Strehl ratio as a function of 

the input tolerance specifications for displacement (Sxy), tilt (Txy), and rotational (Rz) errors. 

Empirical Formula Coefficients 
Strehl = ∑∑∑a

ijk 
Sxy

i
Txy

j
Rz

k

 
a000 0.0676   a100 0.0381   a200 0.1164   a300 0.0015   a400 -0.0102 
a001 0.0000 

 
a101 -0.0007 

 
a201 0.0602 

 
a301 -0.1729 

 
a401 0.1162 

a002 0.1533 
 

a102 -0.0641 
 

a202 0.2215 
 

a302 -0.0953 
 

a402 -0.0881 
a003 0.0037 

 
a103 0.0372 

 
a203 -0.2810 

 
a303 0.1444 

 
a403 0.1001 

a004 -0.0145 
 

a104 0.0248 
 

a204 -0.0207 
 

a304 0.1254 
 

a404 -0.1273 
a010 0.0137 

 
a110 0.0794 

 
a210 0.0003 

 
a310 -0.0050 

 
a410 0.0174 

a011 0.0038 
 

a111 -0.1025 
 

a211 0.0990 
 

a311 0.0853 
 

a411 -0.1025 
a012 -0.0489 

 
a112 0.2102 

 
a212 -0.0536 

 
a312 -0.0903 

 
a412 0.1106 

a013 0.0588 
 

a113 -0.1957 
 

a213 0.1866 
 

a313 -0.2468 
 

a413 -0.0116 
a014 -0.0091 

 
a114 0.0656 

 
a214 -0.0930 

 
a314 0.1028 

 
a414 0.0228 

a020 0.2299 
 

a120 -0.1570 
 

a220 -0.1151 
 

a320 0.0231 
 

a420 -0.0943 
a021 0.0243 

 
a121 0.0510 

 
a221 -0.3981 

 
a321 0.4154 

 
a421 -0.0449 

a022 0.1207 
 

a122 -0.4171 
 

a222 -0.1274 
 

a322 0.1693 
 

a422 -0.1972 
a023 -0.2291 

 
a123 0.3370 

 
a223 0.1164 

 
a323 -0.2355 

 
a423 0.5058 

a024 0.0228 
 

a124 -0.2457 
 

a224 0.3784 
 

a324 -0.0594 
 

a424 -0.2237 
a030 -0.6102 

 
a130 0.4204 

 
a230 0.2886 

 
a330 -0.1179 

 
a430 0.1724 

a031 -0.0428 
 

a131 0.2527 
 

a231 0.2299 
 

a331 -0.3405 
 

a431 -0.1143 
a032 0.0367 

 
a132 0.2435 

 
a232 -0.2620 

 
a332 0.0328 

 
a432 0.3769 

a033 0.0406 
 

a133 0.2972 
 

a233 -0.3000 
 

a333 0.2391 
 

a433 -0.4455 
a034 0.1288 

 
a134 -0.1125 

 
a234 -0.2892 

 
a334 0.2543 

 
a434 -0.1315 

a040 0.4976 
 

a140 -0.1634 
 

a240 -0.2099 
 

a340 0.0652 
 

a440 -0.0829 
a041 0.0223 

 
a141 -0.1465 

 
a241 -0.1381 

 
a341 0.1278 

 
a441 0.1220 

a042 -0.1234 
 

a142 -0.2308 
 

a242 0.5105 
 

a342 0.1805 
 

a442 -0.4809 
a043 0.1158 

 
a143 -0.1170 

 
a243 -0.1496 

 
a343 -0.3493 

 
a443 0.3791 

a044 -0.1334   a144 0.0758   a244 0.3092   a344 -0.3010   a444 0.2428 
 

Several different tolerance class variations were analyzed to demonstrate the 

application of this empirical formula, as shown in Table 6.2.  

Table 6.2: Example of several different tolerance class variations and their respective 

minimum system Strehl ratios predicted using the empirical approach and Eq. (6.7). 

Example   

No. 
X-Y Disp.    

Sxy (µm) 
X-Y Tilt                       

Txy (deg) 
Z Rot.             

Rz (deg)  
Predicted 

Strehl 

Ratio 
1 8 2 0.35 0.447 
2 8 2 0.15 0.516 
3 5 2 0.15 0.620 
4 5 1 0.15 0.797 
5 5 1 0.1 0.811 
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We note that the initial class variation chosen for this example did not produce a pass-

only system. However, multiple pass-only systems can be achieved by tightening the 

input tolerance parameters. The demonstrated methods provide a useful approach for 

determining acceptable optomechanical tolerances.  

 

6.5 Optomechanical tolerancing example: non-imaging system 

To demonstrate this tolerancing procedure on a non-imaging system, we consider the 

super-Gaussian variable diameter beam shaper presented in Chapter 3. This example 

utilizes two laterally shifted PMMA freeform elements, resulting in uniform irradiance 

distributions of varying output radii R from 0.5 – 2.5 mm for a lateral shift range of d = 

+/-300 µm. We note that all simulations for this device were previously performed using 

VirtualLab™. However, for this tolerance analysis all simulations were performed using 

ZEMAX
®
 due to its speed and capability to automate a large amount of simulations. 

Since this is a non-imaging system, uniformity error (UCV), shape error (RCV), and 

correlation degree (Cd) were used as performance metrics.  

The sensitivity analyses were performed for the specific systems where d = -1.8 mm (R 

= 2.5 mm), d = 0 mm (R = 1.5 mm), and d = 1.8 mm (R = 0.5 mm), all across error ranges 

of +/-90 µm (displacement), +/-6
o
 (tilt) and +/-1

o
 (rotational). Fig. 6.17 shows the worst-

case results from the sensitivity analysis for each of the performance metrics. These 

results suggest, again, that the system performance is more sensitive to rotational errors 

than tilt errors. Also, compared to the other alignment variables, the displacement error 

appears to have the most impact on the shape error RCV while having minimal effect on 

the spot uniformity UCV. This is largely due to the fact that this device is designed to 



127 

 

maintain uniformity with shifts in the x direction. Additionally, these results suggest that 

the system is most sensitive to these alignment errors when d = 1.8 mm (R = 0.5 mm). 

Similar to the imaging example, this is due to the fact that the composite lens at this point 

has more surface curvature and thus steeper slope angles. 

 

Fig. 6.17: Results from the beam shaper alignment sensitivity analyses for the cases 

where d = -1.8 mm (R = 2.5 mm), d = 0 mm (R = 1.5 mm), and d = -1.8 mm (R = 0.5 

mm). 
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Pass-fail thresholds must be determined in order to determine the initial tolerance 

bounds. As discussed previously, performance metrics for these types of components are 

not standardized or well defined. For this reason, we subjectively determined acceptable 

thresholds by viewing the series of deviated spots. Comparing this qualitative assessment 

to quantitative metrics, the correlation degree Cd appears to be a good overall 

performance metric, accounting for shape, size, and uniformity. We therefore based the 

initial tolerance bounds off of this metric, with a pass-fail threshold of Cd >= 0.90. It 

should be noted that a specific application might demand a specific performance metric 

value which could then be used as a threshold. Fig. 6.18 displays the deviated output 

spots at the extremes of the initial tolerance bounds which were determined to be +/-30 

µm (displacement), +/-2.5
o
 (tilt), and +/-0.55

o
 (rotational error).  

 

Fig. 6.18: Deviated output spots at the extremes of the initial tolerance bounds. 

 

Once again, after importing the initial tolerance bounds into the custom macro created 

in ZEMAX
®
, the CEA was performed, simulating all 125 tolerance class variations and 
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their respective orientations. These results were interpolated to achieve a finer sampling 

between tolerance classes. The results from the interpolated CEA are displayed for each 

performance metric in a 4-dimensional surface plot in Fig. 6.19. Only the data points that 

qualify as a ‘passing’ system are visible. The pass-fail thresholds for shape error RCV and 

uniformity error UCV were both subjectively set to be 0.15. The same trends from the 

sensitivity analyses can be seen here, where the shape error is most impacted by 

displacement and the uniformity is most impacted by the tilt errors.    

 

Fig. 6.19: Interpolated results from the beam shaper combined error analysis displayed 

through a 4-dimensional surface plot using a custom color and transparency scale based 

on (a) the shape error RCV, (b) the uniformity error UCV, and (c) the correlation degree Cd. 

 

An empirical formula based on Eq. (6.7) was created for the correlation degree Cd to 

serve as a predictive model. This was performed for the worst case scenario by focusing 

on the case shown to be most sensitive to alignment errors (d = 300 µm and R = 0.5 mm). 
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For this specific case, a MATLAB
®
 curve fitting algorithm was used to fit Eq. (6.7) to the 

CEA results for the correlation degree, with the resulting coefficients are listed in Table 

6.3. We note again that this procedure can be implemented for any of the performance 

metrics, but the correlation degree was used since it incorporates measures of shape, size, 

and uniformity in a single metric. 

Table 6.3: Empirical formula coefficients for determining the minimum system 

correlation degree Cd as a function of the input tolerance specifications for displacement 

(Sxy), tilt (Txy), and rotational (Rz) alignment errors. 

Empirical Formula Coefficients 
C =∑∑∑ a

ijk 
Sxy

i
Txy

j
Rz

k

 
a000 0.0322   a100 0.0543   a200 0.0188   a300 -0.0116   a400 0.0035 
a001 0.0020 

 
a101 -0.0076 

 
a201 0.0656 

 
a301 -0.2053 

 
a401 0.1482 

a002 0.0498 
 

a102 -0.0802 
 

a202 0.2741 
 

a302 -0.0827 
 

a402 -0.1351 
a003 0.0201 

 
a103 0.0135 

 
a203 -0.2781 

 
a303 0.1729 

 
a403 0.1097 

a004 -0.0048 
 

a104 0.0550 
 

a204 -0.0549 
 

a304 0.1233 
 

a404 -0.1283 
a010 0.0172 

 
a110 -0.0155 

 
a210 0.0084 

 
a310 0.0108 

 
a410 -0.0072 

a011 -0.0027 
 

a111 -0.0773 
 

a211 0.0379 
 

a311 0.0746 
 

a411 -0.0830 
a012 -0.0453 

 
a112 0.2467 

 
a212 -0.1280 

 
a312 -0.0745 

 
a412 0.1518 

a013 0.0756 
 

a113 -0.1964 
 

a213 0.1481 
 

a313 -0.1997 
 

a413 0.0221 
a014 -0.0373 

 
a114 0.0468 

 
a214 -0.0907 

 
a314 0.1467 

 
a414 -0.0086 

a020 -0.0106 
 

a120 0.0038 
 

a220 -0.0069 
 

a320 0.0749 
 

a420 -0.0706 
a021 0.0325 

 
a121 0.2461 

 
a221 -0.2902 

 
a321 0.4059 

 
a421 -0.1317 

a022 0.1656 
 

a122 -0.3224 
 

a222 -0.1082 
 

a322 0.1301 
 

a422 -0.2837 
a023 -0.1821 

 
a123 0.3433 

 
a223 0.1070 

 
a323 -0.2820 

 
a423 0.4081 

a024 0.0638 
 

a124 -0.2450 
 

a224 0.4112 
 

a324 -0.0822 
 

a424 -0.3318 
a030 0.1307 

 
a130 -0.0781 

 
a230 0.0492 

 
a330 -0.2123 

 
a430 0.1813 

a031 -0.0849 
 

a131 -0.0389 
 

a231 0.1948 
 

a331 -0.3155 
 

a431 -0.0409 
a032 -0.0793 

 
a132 0.0991 

 
a232 -0.2566 

 
a332 0.0950 

 
a432 0.4948 

a033 -0.0652 
 

a133 0.1865 
 

a233 -0.2823 
 

a333 0.3097 
 

a433 -0.3250 
a034 0.0620 

 
a134 -0.1774 

 
a234 -0.2168 

 
a334 0.3577 

 
a434 -0.0047 

a040 -0.0644 
 

a140 0.0599 
 

a240 -0.0426 
 

a340 0.1226 
 

a440 -0.1005 
a041 0.0544 

 
a141 -0.0751 

 
a241 -0.0947 

 
a341 0.1014 

 
a441 0.0966 

a042 -0.0607 
 

a142 -0.1037 
 

a242 0.5071 
 

a342 0.1234 
 

a442 -0.5052 
a043 0.1699 

 
a143 -0.0299 

 
a243 -0.1989 

 
a343 -0.4339 

 
a443 0.3430 

a044 -0.0865   a144 0.1279   a244 0.2635   a344 -0.3785   a444 0.2081 
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Several different tolerance class variations were analyzed to demonstrate the 

application of this empirical formula, as shown in Table 6.4.  

Table 6.4: Example of several different tolerance class variations and their respective 

minimum system correlation degrees determined using empirical approach and Eq. (6.7). 

Example   

No. 
X-Y Disp.    

Sxy (µm) 
X-Y Tilt                       

Txy (deg) 
Z Rot.             

Rz (deg)  
Predicted 

Correlation 

Degree Cd 
1 10 1.5 0.3 0.794 
2 10 1.5 0.15 0.833 
3 5 1.5 0.15 0.862 
4 5 1 0.15 0.893 
5 5 1 0.1 0.902 

 

We note that the initial class variation chosen for this example did not produce a pass-

only system. However, multiple pass-only systems can be achieved by tightening the 

input tolerance parameters. The demonstrated methods provide a useful approach for 

determining acceptable optomechanical tolerances for non-imaging systems.  

 

6.6 Discussion 

A simplified tolerancing procedure has been developed and demonstrated for dynamic 

freeform optical systems with an eye towards efficiency and certainty. This procedure 

consisted of sensitivity analyses, a combined error analysis, and creation of an empirical 

formula for prediction of an error budget based on three individual tolerance parameters 

(displacement, tilt, and rotational). The ‘pass-fail’ approach applied ensures that the 

device will work properly within the determined tolerance parameters. 

Multiple assumptions were made throughout this procedure, considering a sequence of 

worst-case scenarios in an attempt to have a deterministic end result while simplifying 

the entire process. The first assumption supposed equal tolerances for both elements by 

modeling the second freeform with an equal and opposite misalignment as the first. Both 
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elements were also assumed to have equal x and y-axis displacement and tilt tolerances. 

These assumptions significantly reduced the number of required simulations, though at a 

slight cost as they subtly increase the potential of over-tolerancing along the x or y 

direction. For example, tolerances for displacement in one direction could be set too 

tightly as a consequence of the system being more sensitive to displacement in the 

orthogonal direction. This subtlety was not considered in this dissertation. Future 

research could explore these assumptions to potentially produce more accurate tolerance 

specifications while maintaining simplicity and certainty. 

This procedure was demonstrated using an Alvarez lens and a variable output beam 

shaper as case studies. In both cases, the results suggested that the system performance is 

less sensitive to tilt errors than to displacement and rotational errors. Also, comparing the 

performance sensitivity of the systems with different lateral shifts suggested that the 

sensitivity to alignment errors increases as the composite surface curvature increases. 

Lastly, we note the importance of the performance metric used when determining 

tolerances. The chosen performance metrics determines the pass/fail thresholds, which 

then ultimately determines the tolerance specifications. While the standards for imaging 

devices are well-established, the same cannot be said for non-imaging devices. In 

practice, several different performance metrics should be considered to ensure proper 

system performance. 

 



 

 

CHAPTER 7: SURFACE FORM ERROR TOLERANCING OF DYNAMIC 

FREEFORM OPTICAL SYSTEMS 

 

7.1 Introduction 

In addition to the performance dependency on proper optomechanical alignment, 

dynamic freeform optical systems are also sensitive to the accuracy of the manufactured 

surface shape. Form error, often called figure error, is a low spatial-frequency deviation 

of a surface from a desired shape. Form errors can be caused by a number of different 

factors, including tool wear, tool shape error, tool alignment error, machine errors, 

thermal effects, and others. Understanding the impact of surface errors and the 

corresponding form tolerances is vital when considering the necessary balance between 

manufacturing costs and product performance. Overly tight tolerances on surface form 

unnecessarily increase manufacturing costs, while tolerances that are too loose can result 

in unusable optical components [130, 131].  

Significant research has been performed on surface form error considerations for 

rotationally symmetric optical surfaces, including design methods for easier 

manufacturing [146-148], methods based on cost-versus-performance relationships [149, 

150], and interpretations of tolerance specifications [151]. Rotationally symmetric 

surfaces generally follow specifications on power and irregularity error in the 

international ISO10110 standards [74, 75]. The power error specification is typically 

described by tolerances on the radius of curvature and conic constant based on the 

original lens prescription, while irregularity is described either by the P-V (peak to 
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valley) or root mean square RMS maximum of the residual surface error after a best fit 

sphere has been removed [152, 153]. In some cases power and irregularity errors are not 

sufficient, typically for complex aspheric surfaces. In such cases, a surface waviness 

tolerance is often implemented, where the maximum surface deviation and slope errors 

are specified relative to a surface that best fits the desired surface [79, 152].  

Recent updates have been added to the ISO10110 standard which includes freeform 

surfaces in their tolerance standards [76, 154, 155]. Explained with greater detail in 

[154], these updates implement the specification of three coordinate systems 

corresponding to; (1) the origin of the freeform description, (2) a coordinate reference 

system at the intersection of a reference axis and surface, and (3) component reference 

points. Using these coordinate systems, a freeform surface can be specified through 

irregularity and slope tolerances at specific Cartesian coordinate points.  

While surface form tolerance standards for freeform optical surfaces are now well-

established, the same is not true for surface form tolerancing methods and procedures. 

This is partially due to the relative immaturity of freeform manufacturing processes, and 

largely due to the complexity and variety of freeform descriptions. The type of form error 

signature and required specification depends heavily on both the manufacturing method 

(diamond milled, diamond turned, polishing, etc.) and the mathematical description of the 

desired surface (toroidal, biconic, anamorphic, off-axis parabola, point clouds, Zernike 

polynomials, XY polynomials, etc.). Significant research has been performed on 

developing surface form error tolerancing methods for freeforms [77-81]. However, 

much of this work is application-specific and lacks a methodology for specifying 

tolerances on surface form accuracy for dynamic freeform systems such as the Alvarez 
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lens and variable diameter beam shaper. To this end, performance impacts of low 

frequency surface form errors were explored for dynamic freeform systems, with an eye 

towards developing meaningful manufacturing specifications.  

 

7.2 Methods and assumptions 

Modeling freeform surfaces with intentional form errors presents many challenges due 

to the complexity of the freeform surface definitions as well as their inherent rotational 

asymmetry. The shape of standard spherical and aspheric lenses is typically defined by 

two parameters; radius of curvature and a conic constant [126]. This small number of 

parameters enables straightforward ways to model a deviated surface and tolerance the 

system based on performance impacts through optical simulations. For aspheric lenses 

with additional aspheric terms, well-known Zernike polynomials have been used to 

model the deviated surface, which can be done using common optical design software 

[152, 156]. Additional methods have been implemented in order to tolerance complex 

aspheric lenses using rotationally symmetric surface slope deviations to represent the 

surface form error [157, 158]. Though effective, these methods do not directly apply to 

the freeform surfaces used in the examples presented in this dissertation. This is because 

the freeform surface prescriptions involve multiple terms that do not directly relate to 

meaningful form error tolerance specifications. Furthermore, in a general sense, signature 

form errors for freeforms are not accurately represented by Zernike polynomials and 

rotationally symmetric surface slope. Thus, a method for modeling deviated freeform 

surfaces is essential to enable meaningful specification of any form errors.  
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To begin the discussion, we note that surface form error characteristics are heavily 

dependent on the chosen fabrication method. For this analysis, the freeforms are assumed 

to be diamond raster-milled (discussed in Chapter 2), and each of the two freeforms in the 

dynamic system are assumed to have the same form error (εzf1 = εzf2) for all subsequent 

simulations. Based on fabrication results from previous research and conversation with 

Dr. Joseph Owen from the Center of Precision Metrology at UNC Charlotte [159], there 

are two dominating characteristics of form error. The first is a surface deviation which is 

scaled relative to the local height of the prescribed surface Zref. The respective form error 

εHS is represented by, 

 𝜀𝐻𝑆(𝑥, 𝑦) = 𝑍𝑟𝑒𝑓(𝑥, 𝑦) ∗ 𝐻𝑆, (7.1) 

where HS is the unitless height scale used to control the amount of deformation 

introduced to the lens. This type of error can be a product of several contributors such as 

thermal drift, position control errors from the machine, errors in the programmed tool 

path, etc. In essence, this is a straightforward way to vary the optical power of the system, 

conceptually illustrated in Fig. 7.1 for both a spherical lens and freeform surface.  
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 Fig. 7.1: Illustration of the height-scaled surface form error for (a) a spherical lens and 

(b) a freeform lens. 

 

Performing a sensitivity analysis using HS as a variable enables a practical tolerance 

specification on this parameter. However, the height-scale specification by itself is not 

sufficient to represent the necessary surface accuracy, as there could be additional errors 

in the fabricated surface. Thus, we also incorporate the second dominating form error 

characteristic; a surface deviation based on the local slope angle of the prescribed surface. 

This characteristic can be attributed to multiple error sources, including machine errors 

due to cutting forces, errors in tool shape, tool path error, thermal drift, and others. In 

order to define this form error, the prescribed surface’s slope angle dZref must be 

determined. Referenced to the surface normal, this is given by,    
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 𝑑𝑍𝑟𝑒𝑓(𝑥, 𝑦) = √(
𝑑𝑍𝑟𝑒𝑓

𝑑𝑥
)

2

+ (
𝑑𝑍𝑟𝑒𝑓

𝑑𝑦
)

2

. (7.2) 

The surface error can then be defined as, 

 𝜀𝑆𝑆(𝑥, 𝑦) = 𝑑𝑍𝑟𝑒𝑓(𝑥, 𝑦)2 ∗ 𝑆𝑆, (7.3) 

where SS is the unitless slope scale used to control the amount of deformation introduced 

to the surface. This form error is illustrated in Fig 7.2 for a spherical lens and freeform 

surface. The maximum amount of error is located where the prescribed surface angle is at 

its maximum.   

 

Fig. 7.2: Illustration of the slope-scaled surface form error added to (a) a spherical lens 

and (b) a freeform lens. 

 



139 

 

Performing a sensitivity analysis using SS as a variable enables a practical tolerance 

specification on this parameter. The resulting specification could be in the form of a 

maximum P-V value, RMS value, or slope error. As before, however, the slope-scale 

specification by itself is insufficient to represent the required surface accuracy 

A straightforward way to tolerance freeform surface accuracy is to determine a 

specification on the maximum allowable P-V or RMS from the reference surface. This is 

determined using results gathered from simulations performed in the individual 

sensitivity analyses. Each sensitivity analysis provided a threshold for the maximum 

allowable height and slope scale. Maximum P-V and RMS values are embedded in these 

scale thresholds for both height scale HS and slope scale SS; the smaller of the height or 

scale P-V or RMS would serve as the threshold for the entire surface. This implies that as 

long as the fabricated surface is within a single tolerance range, the surface is considered 

acceptable. Although this is a deterministic way of tolerancing the surface, this approach 

can result in over-tolerancing. For example, assume the maximum acceptable P-V for a 

given surface was determined to be 0.5 µm for the height scale HS and 1 µm for the slope 

scale SS, and the overall P-V threshold would be set as the smaller of the two. With this 

in mind, assume a maximum measured P-V of 0.75 μm, above the threshold where the 

surface would be considered faulty. There is a possibility that the surface form error was 

almost entirely dependent on the slope angle of the surface, in which case the measured 

P-V would actually have been acceptable.  

To avoid this potential issue, the two specifications must be modeled and simulated as 

a pair in order to view the performance impact that the entire surface form error has on 

the system. The total surface form error is defined as 



140 

 

 𝜀𝑍(𝑥, 𝑦) = 𝜀𝐻𝑆(𝑥, 𝑦) + 𝜀𝑆𝑆(𝑥, 𝑦). (7.4) 

Combining the height scale and slope scaled errors helps ensure that all possibilities of 

low frequency form deviations are considered when determining the specifications, 

illustrated in Fig. 7.3 for a spherical lens and freeform surface. 

 

Fig. 7.3: Illustration of the combined height scale and slope-scaled surface form errors 

added to (a) a spherical lens and (b) a freeform surface. 

 

With these factors in mind, the proposed method for tolerancing surface form error is 

to individually perform sensitivity analyses for each of the height scale and slope scale 

errors. Similar to the optomechanical tolerancing procedure discussed in Chapter 6, this 

approach must consider the entire dynamic range of the system. Therefore, the sensitivity 

analyses are performed for the case where no lateral shift is introduced (d = 0) and for the 

cases where the lateral shifts are at the design extremes (d = +/-dmax). Comparing the 
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results from these analyses provides information on which specific case of lateral shift is 

most sensitive to the individual form errors. Using the results from the most sensitive 

case, the initial tolerance bounds are determined where the system crosses the chosen 

performance metric threshold. These tolerance bounds are then used in the combined 

scale analysis where the height scales and slope scales are varied such that all possible 

scenarios are simulated for the specific laterally shifted system which was most sensitive 

to form error. This provides a grid of the system performance based on the respective 

error-scales that acts as a tolerance map for determining whether a fabricated surface 

passes or fails. We will demonstrate this approach in subsequent sections of this chapter.   

 

7.3 Surface form error tolerancing example: imaging system 

To demonstrate this tolerancing procedure, we again consider an Alvarez lens with a 

shifted focal range of ∞ ≥ f ≥ 38.5 mm across the lateral shift range of d = +/-1.8 mm. A 

custom MATLAB
®

 code was used to generate the freeform surfaces with the imposed 

surface form errors. These surfaces were exported from MATLAB
®
 as DAT files, where 

the stored data included surface heights and slope angles for a grid of x and y coordinates. 

These surfaces were imported into ZEMAX
®
 [127] as “grid sag” surface types, and an 8-

mm diameter aperture was placed in front of the first freeform surface. Similar to the 

optomechanical tolerancing procedure (Chapter 6), the focal plane was set to the location 

where the RMS spot size was smallest for the ideal system (no error), and there was no 

re-optimization for the smallest focal spot after surface form errors were introduced. 

The first sensitivity analysis was performed for the specific systems where d = -0.9 mm 

(f = 154 mm), d = 0 mm (f = 77 mm), and d = 1.8 mm (f = 38.5 mm), all across a height 
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scale HS range of +/-0.015. We note that only a portion of the freeform lens is being 

used, due to the smaller 8 mm aperture stop in front of the freeform elements. For a fixed 

system, it would be more accurate to measure the form error within the central 8 mm 

circular area of the freeform surface. However, considering the dynamic range of this 

device, the location of the aperture stop in reference to the freeform surface is dependent 

on the lateral shift d in the system, shown in Fig. 7.4. This means that the area of the 

freeform, from which the form error is measured and specified, is also a function of 

lateral shift d. Though possible, this adds a level of complexity that is considered beyond 

the scope of this work; however, it should be considered in future work for a more 

accurate specification. For now, the resulting form error, specified as maximum P-V and 

RMS values, were measured across the entire 14.5 mm lens diameter, shown in Fig. 7.5. 

 

Fig. 7.4: Illustration of how lateral shift d changes the location of the aperture stop in 

reference to the freeform surface, implying that the area from which the form error is 

measured and specified is also a function of lateral shift d. 
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Fig. 7.5: (a) Resulting maximum P-V and RMS values of Alvarez freeform surfaces with 

the intentionally added height scale HS surface form errors, (b) measured across the 

entire 14.5 mm lens diameter.  

 

The results from the sensitivity analyses are shown in Fig. 7.6. The Strehl ratio, spot 

size radius, and spot size/Airy disk radius ratio were used as performance metrics with 

respect to the height scale HS and the corresponding P-V and RMS measurement of the 

deformed surface. We note that the performance impact was not symmetric for positive 

and negative scales; therefore, the results shown in Fig. 7.5 represent the worst-case 

performance for the respective form error specification. These results suggest that the 

system performance is most sensitive to these form errors when d = 1.8 mm (f = 38.5 

mm). This is due to the fact that the effective focal length is shorter at this specific lateral 

shift, meaning the composite lens has more surface curvature and is affected more 

strongly by the height scale form error.  
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Fig. 7.6: Results from the Alvarez lens height scale HS form error sensitivity analyses for 

the cases where d = -0.9 mm (f = 154 mm), d = 0 mm (f = 77 mm), and d = 1.8 mm (f = 

38.5 mm).  

 

The same procedure was followed again; varying the slope scale SS rather than the 

height scale HS. Using another custom MATLAB
®
 code, freeform surfaces were 

generated with imposed form errors with a slope scale SS range of +/-3.6E-05. For the 

same reasons discussed earlier regarding the area from which the form error is measured, 
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the resulting maximum P-V and RMS values were again measured across the entire 14.5 

mm lens diameter, shown in Fig. 7.7.   

 

Fig. 7.7: Resulting maximum P-V and RMS values of the freeform surfaces with the 

intentionally added slope scale SS surface form errors. 

 

The results from the sensitivity analyses are shown in Fig. 7.8 using the same 

performance metrics as before. Similar to the height scale analysis, the performance 

impact asymmetric for positive and negative scales; therefore, the results shown in Fig. 

7.7 represent the worst-case performance for the respective form error specification. 

These results again suggest that the system performance is most sensitive to these 

particular form errors when d = 1.8 mm (f = 38.5 mm) where the composite lens has more 

surface curvature (larger slope angles) and is affected more strongly by the slope scale 

form error.  



146 

 

 

Fig. 7.8: Results from the Alvarez lens slope scale SS form error sensitivity analysis for 

the cases where d = -0.9 mm (f = 154 mm), d = 0 mm (f = 77 mm), and d = 1.8 mm (f = 

38.5 mm).  

 

Next, the initial tolerance bounds were determined as the minimum error magnitudes 

for which the performance equaled the pass-fail threshold, in this case the diffraction 

limit. When using the Strehl ratio as the pass-fail threshold (Strehl = 0.8), the initial 

bounds were determined to be +/-0.004 for the height scale, and +/-1.75E-05 for the slope 

scale. The combined scale analysis was performed using these tolerance bounds, 

simulating all possible scenarios for positive and negative height scales and slope scales. 
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We note that there are four possible permutations of scale direction for each combination 

of HS/SS (+/+, +/-, -/+, and -/-). The worst performance of the permutations was recorded 

for each combination. The resulting Strehl ratios are shown in Fig. 7.9(a) with a custom 

color scale to show a distinct pass-fail cutoff line. The slope scale was also converted to 

the maximum allowable irregularity of the surface, with the results shown in Fig. 7.9(b). 

In this case the irregularity is the measured P-V value of the surface form error after 

removal of the reference and best-fit height scale.  

 

Fig. 7.9: Results from the combined height scale and slope scale analyses for the Alvarez 

lens, showing the Strehl ratio performance impact regarding (a) the height scale and slope 

scale and (b) the height scale and remaining irregularity P-V of the freeform. 

 

As mentioned earlier, these results act as tolerance maps for determining pass-fail 

conditions for a fabricated surface. To demonstrate this procedure, we assume a 

fabricated Alvarez lens where the measured surface is shown in Fig. 7.10(a) and the 

surface form error (Z-Zref) is shown in Fig. 7.10(b). The height scale HS = 0.0035 was 

determined using a standard best-fit parameter sweep. This height scale is then removed 

from the form error, as shown in Fig. 7.10(c), leaving behind the residual surface error 

(irregularity) with a max P-V of 0.75 μm. The tolerance map is then used with both of 

these measurements to determine that the worst-case performance for that fabricated lens, 
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as shown in Fig. 7.10(d). For this particular example, the worst-case performance is a 

Strehl ratio of 0.7. This is unacceptable, suggesting that the fabricated surface is likewise 

unacceptable.  

 

Fig. 7.10: Demonstration of the form error tolerance procedure, illustrating (a) an 

assumed fabricated Alvarez lens, (b) the total form error after removing the reference 

surface, (c) the irregularity after removing a best fit height scaled surface from the total 

form error, and (d) use of the tolerance map to determine the lens acceptability. 

 

 

7.4 Surface form error tolerancing: non-imaging example 

To further demonstrate this tolerancing procedure, we again consider the super-

Gaussian variable diameter beam shaper presented in Chapter 3. This design consists of 

two laterally shifted freeform elements that produce varying uniform irradiance output 
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distributions with diameters from 1-5 mm for a lateral shift range of d = +/-300 µm., 

Freeform surfaces were generated with added form errors and exported as DAT files 

using the same custom MATLAB
®
 code as the imaging example and imported into 

ZEMAX
®

 as “grid sag” surface types as before. The target plane was located using the 

reference surfaces. No adjustments were made after the deviated surfaces were imported. 

Following the procedure, sensitivity analyses were performed for the specific systems 

where d = -1.8 mm (R = 2.5 mm), d = 0 mm (R = 1.5 mm), and d = 1.8 mm (R = 0.5 

mm), all across the height scale HS range +/-0.03. We note that for all the simulations in 

this section, a 10 mm diameter aperture stop was placed in front of the freeform elements. 

For the same reasons discussed in Section 7.3, he resulting maximum P-V and RMS 

values were measured across the 12 mm component diameter, as shown in Fig. 7.11.  

 

Fig. 7.11: Resulting maximum P-V and RMS values of the freeform beam shaper 

surfaces with intentionally added height scale surface form errors. 

 

The results from the sensitivity analyses are shown in Fig. 7.12, where the shape 

deviation RCV, uniformity UCV, and correlation degree Cd are used as performance metrics 

with respect to the height scale and the corresponding P-V and RMS measurement of the 

deformed surfaces. We note that the performance impact was not symmetric for positive 
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and negative scales; therefore, the results shown in Fig. 7.12 represent the worst-case 

performance for the respective form error specification. These results suggest that the 

system performance is most sensitive to these particular form errors when d = 1.8 mm (R 

= 0.5 mm). This matches the observations made in the Alvarez example In this case; the 

spot diameter is smaller at this specific lateral shift, meaning the composite lens has more 

surface curvature and is affected more strongly by the height scale form error. 

 

Fig. 7.12: Results from the beam shaper lens height scale HS form error sensitivity 

analysis for the cases where d = -1.8 mm (R = 2.5 mm), d = 0 mm (R = 1.5 mm), and d = 

1.8 mm (R = 0.5 mm).  
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Next, the same procedure was followed for the slope scale SS range of +/-3.0E-05, 

where a custom MATLAB
®
 code was again used to generate the freeform surfaces with 

the added form errors. Fig. 7.13 shows the resulting maximum P-V and RMS values 

measured across the entire 12 mm component diameter.   

 

Fig. 7.13: Resulting maximum P-V and RMS values of the freeform beam shaper 

surfaces with the intentionally added slope scale surface form errors. 

 

The results from the slope scale sensitivity analyses are shown in Fig. 7.14 using the 

same performance metrics as before, again representing the worst-case performance for 

the respective form error specification. These results further suggest that the system 

performance is most sensitive to these particular form errors when d = 1.8 mm (R = 0.5 

mm). As expected, this matches the trends observed previously, as the spot diameter is 

smaller at this point, meaning the composite beam shaper has more surface curvature 

(larger slope angles) and is more strongly affected by the slope scale form error.  
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Fig. 7.14: Results from the beam shaping lens slope scale form error sensitivity analyses 

for the cases where d = -1.8 mm (R = 2.5 mm), d = 0 mm (R = 1.5 mm), and d = 1.8 mm 

(R = 0.5 mm). 

 

Next, the initial tolerance bounds were determined as the minimum error magnitudes 

for which the performance equaled the pass-fail threshold. For brevity, we focus solely 

on the correlation degree Cd as a performance metric, as it was previously shown to 

represent a good balance between spot size, shape, and uniformity. However, it should be 

noted that a specific application might require a specific performance metric value which 

would then be used to set a pass-fail threshold. In order to define the Cd threshold, we 
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refer to the discussion on optomechanical tolerancing in Chapter 6.5, where we 

determined that a correlation degree above 0.9 would be acceptable. With this in mind, 

the initial bounds were determined to be +/-0.011 for the height scale HS, and +/-1.70E-

05 for the slope scale SS. The combined scale analysis was performed using these 

tolerance bounds, simulating all possible scenarios for positive and negative height scales 

and slope scales. Considering the four possible cases of the HS/SS scale direction (+/+, 

+/-, -/+, and -/-), the worst-case performance results for the combined scale analsysis are 

shown in Fig. 7.15(a). These resulting worst-case correlation degrees are displayed using 

a custom color scale to show a distinct pass-fail cutoff line. The slope scale was again 

converted to the maximum allowable irregularity of the surface, as shown in Fig. 7.15(b). 

The irregularity in this case is the maximum P-V value of the surface form error after 

removing the reference and best-fit height scale.  

 

Fig. 7.15: Results from the combined height scale and slope scale analyses of the variable 

output beam shaper, showing the Correlation degree Cd performance impact regarding (a) 

the height scale and slope scale and (b) the height scale and remaining irregularity P-V of 

the freeform. 

 

To demonstrate the implementation of this tolerance map, we assume a pair of 

fabricated freeform beam shaper surfaces where the measured surface is shown in Fig. 
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7.16(a) and the surface form error (Z-Zref) is shown in Fig. 7.16(b). The height scale HS = 

0.004 was determined using a standard best-fit parameter sweep. This height scale is then 

removed from the form error, as shown in Fig. 7.16(c), leaving behind the residual 

surface error (irregularity) with a max P-V of 0.8 μm. The tolerance map is then used 

with both measurements to determine that the worst-case performance for that fabricated 

surface, as shown in Fig. 7.16(d). For this particular example, the worst-case performance 

gives a correlation degree of 0.91. This is acceptable, suggesting that the fabricated 

surface is likewise acceptable.  

 

Fig. 7.16: Demonstration of the form error tolerance procedure, illustrating (a) an 

assumed fabricated beam shaping surface, (b) the total form error after removing the 

reference surface, (c) the irregularity after removing a best fit height scaled surface from 

the total form error, and (d) use of the tolerance map to determine surface acceptability. 
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7.5 Discussion 

As demonstrated in this section, the performance of dynamic freeform systems is 

heavily dependent on surface accuracy. A deterministic approach was used to develop a 

procedure for specifying the surface accuracy of freeforms. This procedure considered 

two primary characteristics of low-frequency form error; height scale (HS) as a function 

of the surface height, and slope scale (SS) as a function of surface slope of the reference 

prescription.  

This procedure, like the previous optomechanical tolerance procedure discussed in 

Chapter 6, is heavily dependent on the chosen performance metric. The performance 

metric determines the pass/fail threshold, which ultimately determines the tolerance 

specifications. In the examples presented in this chapter, the Strehl ratio was used as a 

performance metric for the Alvarez lens and the correlation degree Cd was used as a 

performance metric for the variable output beam shaper. However, it is possible to use a 

different metric (wavefront error, spot size, uniformity UCV, shape deviation RCV, etc.) if 

the application calls for it, with the only stipulation being that the metric must be 

quantitative. The performance metric must be chosen by the designer when generating 

the surface form specifications. 

We note that there are different types of low-frequency form error that are not 

specifically represented by the height scale and slope scale (i.e. resulting from tilt, 

decenter, waviness, ogive errors, etc. [86]). However, these additional types of form error 

are specific to either a particular application or a particular fabrication method and not as 

straightforward to model, and are not considered in this dissertation. Investigating these 

additional form error signatures in the future would provide more insights into surface 
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accuracy requirements for dynamic freeform optical systems. Furthermore, it would be 

useful to expand this analysis to include errors that are a product of specific tool errors. 

Specifically for diamond machining methods, the tool path is based off of an assumed 

tool tip shape (curvature, symmetry, etc.); an error in this assumed shape would result in 

a loss of surface accuracy. Most diamond tools come with tolerance specifications on the 

tool shape. While there have been methods developed to account for some tool error 

when generating the final tool path [120, 122, 125, 160], it would be extremely useful for 

the manufacturer to be able to determine a pass-fail threshold based on the actual tool 

shape tolerance specification. 

In addition to the enhancements suggested above, we note that specifying the surface 

irregularity as a maximum P-V value is deterministic for the form error characteristics 

simulated in this work. However, including more types of form errors will likely require a 

less-ambiguous irregularity specification. This is largely due to the fact that P-V values 

are single quantities that are generally not linked to any certain location on the surface, 

potentially subjecting the fabricated surface to a faulty pass/fail decision. With this in 

mind, an RMS specification for the irregularity could be implemented, where the error 

would be represented as the standard deviation of the entire surface rather than a single 

point. Similarly, a maximum or average surface slope error specification could also be 

implemented for the irregularity.  

 



 

 

CHAPTER 8: ANALYZING SURFACE FINISH QUALITY – MID-SPATIAL 

FREQUENCY ERRORS 

 

8.1 Introduction 

Freeform optical surfaces can be manufactured using multiple techniques, ranging 

from coordinated-axis diamond turning and raster milling to grinding and 

magnetorheological finishing. Each of these techniques leaves residual mid-spatial 

frequency (MSF) surface errors that degrade the surface finish quality, ultimately 

degrading optical performance and introducing undesired optical artifacts that in many 

cases must be determined empirically. This genre of surface errors differs from the form 

errors discussed previously as MSF errors are typically periodic with smaller spatial 

frequencies, requiring different simulation methods to account for diffraction and 

interference artifacts. Understanding the impacts of MSF errors on optical performance is 

vital for freeform manufacturing, particularly when quantifying design specifications that 

affect performance, cost, and cycle times. Thus, optical models capable of simulating the 

effects from residual surface textures are highly desirable. Researchers have previously 

explored some effects of MSF errors on optical performance e.g. [82-86]. However, these 

studies have generally been limited to radially symmetric lenses in imaging systems. As 

discussed in Chapter 3, we have previously compared simulation models to experimental 

results from a diamond milled dynamic freeform beam shaper [51, 52]. The results from 

this previous work emphasized the need to investigate the effects that surface finish 

quality has on system performance. More specifically, specifications using parameters 



158 

 

relevant to the fabrication process, such that the machining parameters can be determined 

through optimization.  

 

8.2 Methods and assumptions 

As discussed previously in Chapter 2, diamond turning and diamond milling provide 

two key methods for fabrication of freeform surfaces. Diamond turning involves an 

optical workpiece on a rotating spindle relative to a diamond tool with synchronized 

modulation of tool depth. In contrast, diamond turning involves a non-rotating workpiece 

laterally translated relative to a rotating diamond tool (endmill) at varying depths. In both 

fabrication approaches, the diamond tool used for material removal has a nominally 

round tip. This results in characteristic ‘cusp’ grating patterns (radial for diamond turning 

and linear for diamond raster milling), as shown in Fig. 8.1. The grating period is 

determined by the increment distance (step-over) Λcusp of the diamond tool, and the 

grating amplitude hcusp is determined by the step-over and diamond tool radius R.  

 

Fig. 8.1: (a) Cross-sectional profile of the ‘cusp’ grating along with illustrations of this 

error and its respective orientation for (b) diamond turning and (c) diamond milling. 
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As it was demonstrated in Chapter 3 regarding experimental results from the dynamic 

beam shaper, additional issues give rise to MSF errors that must also be considered. 

Researchers have previously have examined MSF errors and the impact of surface finish 

by decomposing the total error into known error sources [82, 85]. These sources can 

include, but are not limited to vibrations, thermal cycling, tool path error, and tool 

chatter. To investigate the impact of multiple MSF errors, we consider including the 

effects of thermal cycling, where the fluctuation of the temperature creates a 

characteristic sinusoidal grating pattern (radial for diamond turning and linear for 

diamond raster milling), as shown in Fig. 8.2. This grating period Λsin is of lower 

frequency than the ‘cusp’ grating, and is determined by the combination of the thermal 

cycle time and the tool feed rate during the machining process. The grating amplitude hsin 

is determined by the temperature gradient. Fig. 8.2 shows the cross-sectional profile of 

the sinusoidal grating along with illustrations of this error and its directions for both 

machining methods. 

 

Fig. 8.2: (a) Cross-sectional profile of sinusoidal grating arising from thermal cycling 

effects. Illustrations of this error and its directions for (b) diamond turning and (c) 

diamond milling. 
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Due to the relative sizes of both surface textures, models based on geometrical ray 

tracing are generally insufficient; optical diffraction and interference effects must also be 

considered. To this end, wave-based physical optical models are implemented in 

LightTrans VirtualLab™, using a combined Fresnel/Spectrum of Plane Waves (SPW) 

propagator, to quantify optical performance impact of both MSF error types. Both 

profiles are added together directly, as demonstrated in Fig. 8.3, and are imposed onto the 

optical component to simulate the fabricated surface.  

 

Fig. 8.3: Illustration of the cusp grating combined with the sinusoidal grating to 

approximate the (a) diamond turned and (b) diamond milled surface finishes.  
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We note that each MSF error parameter can be directly related to controllable 

machining parameters, which provides the ability to quantitatively determine meaningful 

tolerance specifications based on simulation performance. While ability is important for 

knowledge of system performance, it is also very useful for considering manufacturing 

costs (machine time, tool selection, etc.). Justifying specific machining parameters helps 

ensure that components are not ‘over-toleranced’ such that no gain is acquired for 

additional manufacturing time and cost.   

 

8.3 Surface finish tolerancing: imaging example 

As a representative example of an imaging system, we consider a simple spherical lens 

with a 4 mm aperture diameter and 100 mm focal length at 532 nm wavelength. Fig. 8.4 

shows a geometrical ray trace of this system along with its corresponding spot diagram 

demonstrating that it is indeed diffraction limited.  

 

Fig. 8.4: (a) Geometrical ray trace of the spherical lens system along with the (b) spot 

diagram compared to the diffraction limited Airy disk (black circle). 

 

The lens is assumed to be fabricated in poly (methyl methacrylate) PMMA (nl = 1.49) 

using diamond tools with 1 mm radius and a 60 µm step-over for both diamond turning 

and diamond milling, resulting in a P-V height of hcusp= 450 nm. Fig. 8.5 shows the cusp 
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gratings imposed on this spherical surface, with the features exaggerated in height for 

visual aid. 

 

Fig. 8.5: (a) Diamond turned and (b) diamond milled cusp grating structures imposed on 

the example spherical surface.  

 

Because this texture is a repeating structure, it is expected that there will diffraction 

effects. In general, for a grating, the separations of the diffraction order maxima ym are 

given by 

 𝑦𝑚 =
𝑚𝑓𝜆

𝛬
=

1 ∗ 100,000 ∗ 0.532

60
 µm = 889.6 µm, (8.1) 

where m is the diffraction order, f is the axial distance (focal length), and Λ is the period 

of the structure (step-over). To examine the impact these characteristic cusp gratings have 

on the imaging performance, we first consider the Point Spread Function (PSF) to 

describe the response of this system to a point source. This system was simulated using 

VirtualLab™ for both machining processes. Fig. 8.6 displays and compares the 

calculated PSF’s from the two fabrication methods.  
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Fig. 8.6: Simulated point spread functions of the (a) diamond turned and (b) diamond 

milled spherical lens. 

 

As expected, the PSF’s show that the cusp grating casts undesired diffraction orders, 

radially for the diamond turned case and laterally for the diamond milled case. The 

locations of the maxima match the theoretical values. To investigate how an actual image 

would be impacted by this behavior, we consider the Fourier transform of the PSF, 

known as the Modulation Transfer Function (MTF), which is the normalized contrast of 

an image as a function of spatial frequency [161]. A diffraction limited imaging system 

will have a contrast of 1 where the spatial frequency is zero, dropping to a contrast of 

zero at some larger spatial frequency defined by the system. Fig. 8.7 shows the 2-

dimensional MTF plots generated in VirtualLab™ for both fabrication methods. 
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Fig. 8.7: Simulated 2-dimensional modulation transfer functions (MTF) for the (a) 

Diamond turned and (b) diamond milled spherical lens. (c) Comparison of the MTF along 

the x-axis for both fabrication methods.  

 

Comparing these results to the diffraction limited MTF curve shows the drastic effect 

that MSF errors have on this system. Using the Strehl ratio again as a quantitative metric; 

the variation in the MTF curve decreases the system’s Strehl ratio from ~1 to 0.52 for 

both cases. We simulate the same imaging system with varying step-overs (Λ = 10, 30, 

and 60 µm) to demonstrate how manufacturing parameters can be chosen to reduce the 

effects of MSF errors on the optical performance; results are shown in Fig. 8.8. 
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Fig. 8.8: Comparison of the MTF with varying step-overs for the (a) diamond turned and 

(b) diamond milled spherical lens.  

 

As can be seen from these results, the choice of smaller step-over leads to a smoother 

surface texture and significantly improves the optical performance. This trend holds true 

for both fabrication methods. Decreasing the step-over to 10 µm results in a system MTF 

close to the diffraction limit for both fabrication methods; additional gains are unlikely if 

a smaller step-over (and thus longer cycle time) is used. Step-over is inversely related to 

manufacturing time which should be minimized if possible for cost purposes. With this in 

mind, the ability to simulate and choose an optimum step-over that will perform near or 

at the diffraction limit is very advantageous. 

As discussed previously, the system can also experience a periodic thermal drift during 

the manufacturing process which introduces a lower frequency structure onto the final 

lens surface. This is represented here as a sinusoidal grating with period and amplitude 

which are a product of the thermal cycling time, tool feed rate, and temperature gradient. 



166 

 

Fig. 8.9 shows the cusp gratings combined with the added sinusoidal grating and imposed 

on a spherical surface with the features exaggerated vertically for visual aid. 

 

Fig. 8.9: (a) Diamond turned and (b) diamond milled spherical lens with the added cusp 

and sinusoidal grating structures. 

 

To demonstrate the effects of adding another MSF error, we consider the same imaging 

system as before, fabricated using both diamond turning and diamond milling with a 30 

µm step-over and 1 mm tool radius, along with a sinusoidal grating with a 1 mm period 

and 300 nm amplitude. The MTF’s for each system were again generated in VirtualLab™ 

and the results are shown in Fig. 8.10. 

 

Fig. 8.10: Modulation transfer functions along the x-axis with the added sinusoidal 

grating structure for the (a) diamond turned and (b) diamond milled spherical lens. 
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As seen from the results, the addition of the sinusoidal grating has a significant 

negative impact on the system MTF curve. We note the shallow higher frequency 

oscillation from the cusp grating as well as a deeper MTF variation at lower frequency 

resulting from the thermal cycling error. This suggests that the impact of each MSF error 

adds linearly in this case, validating the idea of considering the total surface texture as a 

combination of multiple MSF errors that have their own individual impacts on the system 

performance. We note that the amplitude used to model thermal cycling effects is a 

relatively extreme value to illustrate the concept. While more difficult to control than the 

‘cusp’ textures, reduction of MSF errors due to thermal cycling can result in significant 

performance improvements.  

 

8.4 Surface finish tolerancing: non-imaging example 

As a representative example of a non-imaging system, we consider a single freeform 

beam shaping element that converts a round Gaussian input to a square ‘flat-top’ 

irradiance distribution. This single element beam shaper was designed using the same 

techniques discussed in Chapter 5 [35, 51]. In this specific example, the component 

diameter is 14 mm, with an incident Gaussian waist diameter of 6 mm at a 632.8 nm 

wavelength, designed to produce a 3-mm square flat-top at target distance 100 mm. Fig. 

8.11 shows a general schematic of this system along with its corresponding Gaussian 

input and reference output spot. 
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Fig. 8.11: (a) General schematic of the single element beam shaping system along with its 

corresponding (b) round Gaussian input (c) reference output spot. 

 

We assume the beam shaper is fabricated in PMMA (nl = 1.49) using diamond tools of 

1 mm radius and a 60 µm step-over for both diamond turning and milling, resulting in a 

P-V height of hcusp= 450 nm. Fig. 8.12 shows the cusp gratings imposed on this beam 

shaper surface, where the vertical features are exaggerated again for visual aid. 

 

Fig. 8.12: (a) Diamond turned and (b) diamond milled cusp grating structures imposed on 

the example beam shaping surface. 
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VirtualLab™ was used to simulate this system for both machining processes to 

examine the impacts of these characteristic cusp gratings on beam shaping performance. 

Fig. 8.13 displays and compares the resulting output spots from these simulations along 

with cross-sections of their irradiance profiles. 

 

Fig. 8.13: Simulated beam shaper outputs fabricated through (a) diamond turning and (b) 

diamond milling, both with a 60 µm step-over and 1 mm tool radius. 

 

Comparing these results to the reference output spot again shows the drastic effect that 

MSF errors can have on optical system performance. Similar to the imaging example, the 

cusp grating casts multiple undesired orders radially for the diamond turned case and 

laterally for the diamond milled case. These undesired diffraction orders overlap and 

interfere with one another, resulting in the high frequency variation of irradiance 

observed in the output spots. We simulate the same beam shaping system with smaller 

step-overs (Λ = 10 and 30 µm) to demonstrate how manufacturing parameters can be 

chosen to reduce the effects of MSF errors on optical performance. The results are shown 

in Fig. 8.14. 
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Fig. 8.14: Simulated outputs for beam shapers fabricated through diamond turning and 

diamond milling with various step-overs. 

 

To quantify how much the output spot is impacted; we consider the uniformity of the 

irradiance distribution. This is determined using Eq. (6.3), where in this case the 

uniformity error Urms is determined for a cross-sectional slice along the x-axis. It is 
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important to mention how the unclear edge of the output spot can cause confusion, 

therefore we implement a clear aperture (CA) window (discussed in Chapter 6). In this 

case, the CA window was set to 95% of the entire output spot window. Fig. 8.15 shows 

the approximate relationship between uniformity and step-over for both fabrication 

methods. 

     

Fig. 8.15: Comparison of the uniformity error across the x-axis of the beam shaper output 

spot fabricated through diamond turning and diamond milling with various step-overs. 

 

Intuitively, and as seen in the results in Fig. 8.14 and Fig. 8.15, smaller step-overs lead 

to smoother surface textures and significantly improve optical performance. This trend 

holds true for both fabrication methods. Decreasing the step-over to 10 µm results in 

irradiance uniformity equal to the reference output spot as a result of the undesired 

diffraction orders no longer overlapping one another. Additional gains are unlikely if 

smaller step-overs (and thus longer cycle times) are used, demonstrating the ability to 

simulate and choose an optimum step-over for manufacturing. 

To demonstrate the effects of incorporating another MSF error, we again impose a low 

frequency sinusoidal grating on the optics to represent the effect of thermal cycling 
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during the fabrication processes. We consider beam shapers fabricated using both 

diamond turning and diamond milling with a 30 µm step-over and a 1 mm tool radius, 

along with a sinusoidal grating with 1mm period and 300 nm height. VirtualLab™ was 

again employed to simulate the respective output irradiance profiles. Fig. 8.16 shows the 

optical surfaces with the added structure for both fabrication methods, with the vertical 

features exaggerated for visual aid, along with the resulting output distributions.  

 

Fig. 8.16: (a) Diamond turned and (b) diamond milled beam shaping surface with cusp and 

sinusoidal grating structures. (c-d) Simulated output spots for both fabrication methods with the 

added sinusoidal grating. (e-f) Cross-sectional irradiance distribution of the output spots. 
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As with the imaging system example, the addition of the sinusoidal grating has a 

significant negative impact on system performance. For the diamond turned example, the 

cross-sectional uniformity error Urms increased by 98% and for the diamond milled 

example, Urms increased by 177%. Conceptually similar to the MTF results seen for the 

imaging example, we note shallow higher frequency oscillations in the irradiance profile 

from the cusp grating and a deeper variation at lower frequency resulting from the 

thermal cycling error. This further validates the idea of considering the total surface 

texture as a combination of multiple MSF errors that have their own individual impacts 

on system performance.  

 

8.5 Manufacturing process optimization path 

As demonstrated in the previous section, the ability to simulate system performance 

based on machining parameters offers promise for optimization of the manufacturing 

process. As a simple demonstration, we performed a series of parameter sweeps of the 

step-over and endmill radius to create a range of MSF textures on the dynamic beam 

shaper design from Chapter 3. VirtualLab™ simulations were performed to generate the 

corresponding collection of output spots. For each output spot, a cross-section of the 

irradiance along the x-axis was manually exported. Each irradiance profile was then 

analyzed in MATLAB
®
, where Eq. (6.3) was used to determine the uniformity error Urms 

with a clear aperture window set to 90%. The results are shown in Fig. 8.17. 
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Fig. 8.17: Simulated uniformity error as a function of step over and endmill radius of 

curvature for the super-Gaussian beam shaper design from Chapter 3. 

 

From these results, we note the increase in the uniformity error Urms as the tool radius 

decreases and step-over increases. Also, the uniformity errors appear to plateau for step-

overs less than 15 µm as a result of the diffraction orders no longer overlaying and 

interfering with each other. This approach enables determination of the minimum step-

over needed for a required uniformity specification. Since manufacturing time and costs 

scale inversely with the step-over, determining this threshold is extremely useful for 

optimization of the manufacturing process. 

 

8.6 Discussion 

The performance impact of MSF errors resulting from diamond turning and diamond 

milling fabrication methods were investigated using a spherical lens and a fixed output 

beam shaper as case studies. The residual MSF structures were approximated as 

characteristic ‘cusp’ grating patterns and related to relevant manufacturing parameters 
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(step-over and tool radius). While varying these parameters, simulations were performed 

using wave-based optical models. Results from these simulations indicated that the step-

over has a value for which the impact of the resulting MSF errors became negligible due 

to the undesired diffraction orders from the cusp grating no longer overlapping one 

another. Additionally, MSF errors due to thermal cycling were incorporated as a lower 

frequency sinusoidal structure and combined with the cusp structure for both fabrication 

methods. These simulation results suggested that the impacts from each MSF error could 

be considered separately. The results from these simulations are encouraging for future 

research. Defining additional MSF errors in terms of manufacturing parameters could 

enable development of a tolerance procedure in which the manufacturing parameters are 

optimized for minimal machine usage while maintaining a required optical performance.  

 

 

 



 

 

CHAPTER 9: CONCLUSION 

 

9.1 Summary 

Many different aspects of dynamic freeform optics have been explored in this 

dissertation. Experimental tests were performed on a diamond raster-milled variable 

output diameter beam shaper, previously designed by Smilie et al. [45]. Initial 

experimental test results confirmed the general functionality of this device, but the 

uniformity was less than ideal with a significant amount of undesired noise observed in 

the output spots. The majority of this noise was found to result from residual surface 

finish errors on the fabricated freeform surfaces. An extended design approach was then 

used to create a second beam shaper with a super Gaussian irradiance distribution, rather 

than the previously-used step-function. Many fabrication improvements were also made 

which ultimately decreased the surface roughness by an order of magnitude, resulting in 

significantly better output spot uniformity. (Discussed in Chapter 3) 

In Chapter 4, an Alvarez lens with a shifted focal range was designed using this 

extended design approach to have a positive focal length across the full range of lateral 

shifts. Compared to a equivalent ‘standard’ Alvarez lens, this new design resulted in 

decreased surface height modulation, which improved the overall performance which was 

realized through smaller spot sizes and increase in the Strehl ratio. Experimental tests of 

the STS diamond turned freeform elements were performed with the results in good 

agreement with the theoretical results, further verifying the variable functionality of this 

optical system. 
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In Chapter 5, we created three additional novel dynamic freeform optical systems with 

non-rotationally symmetric outputs using both one and two dimensional lateral shifts; a 

variable square output beam shaper with a 1-D shift, a variable rectangular output beam 

shaper with a 2-D shift, and a variable toric lens with a 2-D shift. These examples all 

expanded on earlier design procedures as they were limited to output functions with 

radial symmetry in which the x and y parameters are varied simultaneously through a 

lateral shift along a single axis. Simulations were performed for each of these designs, 

where the results indicated that the general design process worked as intended. 

In addition to creating and characterizing novel optical systems, several different 

tolerance specifications were also investigated in this work. In Chapter 6, we developed a 

simplified optomechanical tolerancing procedure for dynamic freeform optical systems 

with an eye towards efficiency and certainty. This procedure consisted of sensitivity 

analyses, a combined error analysis, and creation of an empirical formula for prediction 

of an error budget based on three individual tolerance parameters (displacement, tilt, and 

rotation). In each of the analyses, a ‘pass-fail’ approach was implemented using worst 

case scenarios to ensure that the device would work properly within the determined 

tolerance parameters. The shifted focus Alvarez and the super Gaussian beam shaper 

were both used as case studies, and the importance of the chosen performance metric was 

discussed. 

In Chapter 7, we developed a deterministic tolerancing procedure for specifying the 

surface form accuracy of freeforms using the same case studies and performance metrics 

as in the optomechanical tolerancing case. This procedure considered two primary 

characteristics of low-frequency form error; surface deformation of the reference 
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prescription as a function of surface height (HS), and surface slope (SS). These two 

characteristic errors were used in a combined error analysis to ensure that all possibilities 

of low frequency form deviations were considered. Resulting surface specifications 

consisted of two terms: (1) the maximum allowable height scale after removal of the 

reference and (2) the irregularity, which was the measured P-V value of the surface form 

error after removal of the reference and best-fit height scale. 

In Chapter 8, we investigated the performance impact of mid-spatial frequency (MSF) 

errors resulting from diamond turning and diamond milling fabrication methods. The 

residual MSF structures were approximated as characteristic ‘cusp’ grating patterns and 

related to relevant manufacturing parameters (step-over and tool radius). A spherical lens 

and a fixed output beam shaper were used as case studies. For both cases, simulation 

results indicated that the step-over has a value for which the impact of the resulting MSF 

errors became negligible due to the undesired diffraction orders from the cusp grating no 

longer overlapping with one another. Additionally, MSF errors due to thermal cycling 

were incorporated as a lower frequency sinusoidal structure and combined with the cusp 

structure for both fabrication methods. These simulation results suggested that the 

impacts from each MSF error could be considered separately. 
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9.2 Future research 

9.2.1 Optical design 

A primary objective in this dissertation was expansion of analytical design procedures 

used in previous examples to overcome their inherent design constraints. Several novel 

designs were created through the development of an extended design procedure. The 

design advancements made in these designs can be summarized in four categories:  

(1) Numerical definition of freeform surfaces based on a continuous output 

irradiance distribution.  

(2) Varifocal system using laterally shifted freeform surfaces with optical power 

when lateral shift is zero.  

(3) Definition of freeform surfaces based on non-rotationally symmetric 

irradiance distributions. 

(4) Independent control of x and y dimensions of the optical outputs through 

independent lateral shifts along the x and y axes. 

These advances are enabling and suggest that additional applications are possible in 

this genre of optical systems. Future work could include non-imaging applications with 

semi-arbitrary irradiance distributions, such as Gaussian beams with higher order modes 

[128]. Additional imaging applications could include, for example, different composite 

surfaces to realize variable aspheric lenses to further improve system performance and 

capabilities. Although these advancements are encouraging for future designs, the current 

design procedure is still limited in two ways; (1) the desired composite surfaces must be 

accurately represented by an XY polynomial with only even degree orders, and (2) the 

input dimensions are assumed to be fixed. Future work could focus on even further 
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expanding the design procedure to overcome these limitations, enabling the potential for 

additional novel designs. 

Additionally, it is important to note that the demonstrated design approaches did not 

use numerical optimization in order to achieve the freeform lens prescriptions. As in 

conventional lens design, in which analytic methods are used to provide promising initial 

design forms prior to numerical optimization, our process provides a starting point for 

numerical optimization of future freeform designs using optical simulation software for 

enhanced performance.  

 

9.2.2 Fabrication and experimental testing 

Fabrication and experimental test results for the super Gaussian beam shaper discussed 

in Chapter 3 were much improved compared to the previous step-function beam shaper. 

However, remaining noise in the output spot suggested the need for better surface finish 

and for a thorough understanding of the performance impacts caused by different MSF 

errors. Additional research is being performed by others at UNC Charlotte on deeper 

understanding of the impact of MSF errors on optical performance and on methods to 

further improve and expand the capabilities of the fabrication process using diamond 

machining. With the continued advancement of fabrication capabilities, improved surface 

finish, and understanding of MSF error impacts, the experimental performance of current 

and future dynamic freeform designs could be significantly improved. 

Experimental tests were performed on the shifted focus Alvarez lens, as discussed in 

Chapter 4. The system was characterized through experimental focal length 

measurements and captured images, using a hot plate as both a light source and imaging 
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object, with the experimental results in good agreement with theoretical predictions. 

Though encouraging, this system could be further expanded in order to more fully 

characterize the imaging properties. This could potentially involve a more complex 

experimental test setup to enable the measurement of the point spread function (PSF), as 

well as characterization of the system modulation transfer function (MTF). 

 

9.2.3 Tolerancing methods and procedures 

Tolerance analyses were performed with regards to three primary areas of potential 

error; optical alignment, surface form error, and surface finish quality. However, due to 

the vast number of variables within the system, this research was limited by separately 

performing a tolerance analysis for each error source. Though necessary to develop 

individual tolerance procedures, we realize that these errors can interact and have the 

potential to have compounded impacts on system performance. In order to properly 

tolerance these dynamic freeform systems, future research should work towards 

developing a global tolerancing procedure which encompasses the compounding 

performance impacts as multiple error sources are introduced.  

Optomechanical tolerancing 

Multiple assumptions were made throughout the optomechanical tolerancing procedure 

discussed in Chapter 6 in order to significantly reduce the number of required 

simulations. In particular there were two specific assumptions that could potentially be 

avoided; (1) equal displacement and tilt tolerances along the x and y axes, and (2) equal 

positive and negative tolerances. These assumptions came with a slight cost which subtly 

increased the potential of over-tolerancing along the x and y directions and in the positive 
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and negative directions. For example, tolerances for displacement in one direction could 

be set too tightly as a consequence of the system being more sensitive to displacement in 

the orthogonal direction. Future research on this procedure should focus on removing 

these assumptions to enable a more accurate tolerance specification, while still 

maintaining the primary advantages of being computationally efficient and deterministic. 

Surface form error tolerancing 

The tolerancing procedure used to specify the surface accuracy (discussed in Chapter 

7) considered the combination of two primary characteristics of form error (HS and SS). 

This was assumed to generally capture the majority of possible form errors. However, 

there are different signatures that are not specifically represented by this assumption (i.e. 

resulting from tilt, decenter, waviness, ogive errors, etc. [86]). Investigating additional 

form error signatures in the future would provide more insights into general surface 

accuracy requirements. Furthermore, it would be useful to expand this analysis in future 

work to include errors that are products of specific tool errors. For example, an error in 

the assumed tool tip shape used in diamond machining methods would result in a loss of 

surface accuracy. Future work could include developing a procedure to determine a pass-

fail threshold based on a tolerance specification of the actual tool shape. This would be an 

extremely useful capability to aid communication between designer and manufacturer.  

Additionally, regarding surface error specifications, the resulting irregularity was 

specified as a maximum allowable P-V value. Though this is deterministic, including 

more types of form errors will likely require a less-ambiguous irregularity specification in 

order to avoid potentially subjecting the fabricated surface to a faulty pass/fail decision. 

With this in mind, a suggestion for future work is to specify the irregularity as an RMS 
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measurement of either the residual surface height error or surface slope error, where the 

error would be represented as the standard deviation of the entire surface rather than of a 

single point, as is the case with a P-V measurement.  

Surface finish quality – MSF errors 

The investigation on MSF errors and the corresponding performance impact (discussed 

in Chapter 8) provided results that are encouraging for future research. Defining 

additional MSF errors in terms of manufacturing parameters could enable development of 

a tolerance procedure in which the manufacturing parameters are optimized for minimal 

machine usage while maintaining a required optical performance. Additionally, this 

analysis on MSF errors was performed on single element devices, straying away from the 

dynamic freeform optical systems discussed throughout this dissertation. Future work 

should include similar analyses on dynamic freeform optical systems in which the 

addition of a second freeform and standoff distance between the two freeforms further 

increases the level of complexity. 
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APPENDIX A: MATLAB CODES 

 

A.1 Optical design 

A.1.1 Super Guassian variable beam shaper: freeform surface coefficient generator 

% SG_beamshaper_for_dissertation.m 

% Beam shaper design in PMMA using a super gaussian approach 
% Author: Jason Shultz 
% Date: 05/04/15 
clear all 
%---------------all units in millimeters------------ 
%Base Parameters 
z0=150;     %target length 
nl=1.49;    %refractive index for PMMA 
w0=3.45;    %waist radius for HeNe laser151 
r0=6;       %lens radius 
R0=1.5;     %output radius at d=0 
change=.5;  %output radius change per unit shift increment (del) 
p=40;       %super gaussian parameter 
num=141;    %number of points in this analysis (keep odd) 

  
%%%%%%%%--------develop composite surfaces------%%%%%%%%%% 
%------Output diameter of 1mm-------- 
R_1=R0-2*change; 
a2k_1=curvefit_sg_2(R_1,w0,r0,z0,nl,num,p);   

  
%-------Output diameter of 2mm------- 
R_2=R0-change; 
a2k_2=curvefit_sg_2(R_2,w0,r0,z0,nl,num,p); 

       
%-------Output diameter of 3mm------- 
R_3=R0; 
a2k_3=curvefit_sg_2(R_3,w0,r0,z0,nl,num,p); 
a2k=a2k_3; %base component 
%-------Output diameter of 4mm------- 
R_4=R0+change; 
a2k_4=curvefit_sg_2(R_4,w0,r0,z0,nl,num,p); 

  
%-------Output diameter of 5mm------- 
R_5=R0+2*change; 
a2k_5=curvefit_sg_2(R_5,w0,r0,z0,nl,num,p); 

  
%-----------------determine b2k coefficients--------------- 
                    %b2k=dela2k/(2deld) 
del_d=.15; %amount of lateral shift for 1mm diam. increments  

  
del_a2k_avg=((a2k_1-a2k_2)+(a2k_2-a2k_3)+(a2k_3-a2k_4)+(a2k_4-

a2k_5))./4; 
flipud(del_a2k_avg); 

  
b2k=del_a2k_avg./(2*del_d); %variability coefficients 
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%reorganize them for clearer display 
a_surface_coeffs_2_14=flipud(a2k) 
b_surface_coeffs_2_14=flipud(b2k) 

  
%-------------------generate freeform surfaces----------------- 
%-------------------circular plot for surface---------------------- 
pts=291; 
r1 = linspace(0,r0,pts);    % radius array for plotting actual surface 
th1 = linspace(0,2*pi,pts);  % theta array for plotting 

  
%Define the r and th grids 
[r,th] = meshgrid(r1,th1); 
[x,y] = pol2cart(th,r); 

  
%define a2k, and b2ks explicitly 
a2=a2k(7); a4=a2k(6); a6=a2k(5); a8=a2k(4); a10=a2k(3); a12=a2k(2); 

a14=a2k(1); 
b2=b2k(7); b4=b2k(6); b6=b2k(5); b8=b2k(4); b10=b2k(3); b12=b2k(2); 

b14=b2k(1); 

  
%individual terms for variable component function 
b2xy = (1/3)*(x.^3) + x.*(y.^2); 
b4xy = (1/5)*(x.^5) + (2/3)*(x.^3).*(y.^2) + x.*(y.^4); 
b6xy = (1/7)*(x.^7) + (3/5)*(x.^5).*(y.^2) + (x.^3).*(y.^4) + 

x.*(y.^6); 
b8xy = (1/9)*(x.^9) + (4/7)*(x.^7).*(y.^2) + (6/5)*(x.^5).*(y.^4) + 

(4/3)*(x.^3).*(y.^6) + x.*(y.^8); 
b10xy = (1/11)*(x.^11) + (5/9)*(x.^9).*(y.^2) + (10/7)*(x.^7).*(y.^4) + 

2*(x.^5).*(y.^6) + (5/3)*(x.^3).*(y.^8) + x.*(y.^10); 
b12xy = (1/13)*(x.^13) + (6/11)*(x.^11).*(y.^2) + (5/3)*(x.^9).*(y.^4) 

+ (20/7)*(x.^7).*(y.^6) + 3*(x.^5).*(y.^8) + 2*(x.^3).*(y.^10) + 

x.*(y.^12); 
b14xy = (1/15)*(x.^15) + (7/13)*(x.^13).*(y.^2) + 

(21/11)*(x.^11).*(y.^4) + (35/9)*(x.^9).*(y.^6) + (35/7)*(x.^7).*(y.^8) 

+ (21/5)*(x.^5).*(y.^10) + (7/3)*(x.^3).*(y.^12) + x.*(y.^14); 

  
r = sqrt((x.^2) + (y.^2)); %converting coordinates for brevity 
fb=(a2*r.^2 + a4*r.^4 + a6*r.^6 + a8*r.^8 + a10*r.^10 + a12*r.^12 + 

a14*r.^14)./2; %function for base component 
fv=b2*b2xy + b4*b4xy + b6*b6xy + b8*b8xy + b10*b10xy + b12*b12xy + 

b14*b14xy; %function for variable component 

  
fs=fb+fv; %freeform surface without tilt 

  
%---------------determine tilt for lowest sag on freeform surface------

---- 
c_limit=.5; 
tilt=tilt_term(x,fs,c_limit) 
fs=fs+tilt.*x; %add tilt term 
sag_freeform=abs(max(max(fs))-min(min(fs))) %surface height modulation 

  
figure(1) 
surf(x,y,fb), shading interp, colorbar, view(20,45) %plot of base 

component 
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xlabel('x(mm)'),ylabel('y(mm)'),zlabel('z(mm)'),title('Base 

Component'),xlim([-6 6]),ylim([-6 6]) 

  
figure(2) 
surf(x,y,fv+tilt*x), shading interp, colorbar, view(20,45) %plot of 

variable component 
xlabel('x(mm)'),ylabel('y(mm)'),zlabel('z(mm)'),title('Variability 

Component'),xlim([-6 6]),ylim([-6 6]) 

  
figure(3) 
surf(x,y,fs), shading interp, colorbar, view(20,45) %plot of freeform 

surface 
xlabel('x(mm)'),ylabel('y(mm)'),zlabel('z(mm)'),title('Freeform 

Surface'),xlim([-6 6]),ylim([-6 6]) 

 
%curvefit_sg_2.m 
function [a2k] = curvefit_sg_2(R0, w0, r0, z0, nl, num,p)  
% composite surface design-Super gaussian approach 
% Author: Jason Shultz 
% Date: 05/04/15 
%------this function will be called later in program----- 

  
% develop equation relating r and R for ode45 

  
RR=linspace(0,R0,4501)'; %output radius vector 

  
num=141;                    %number of points in this analysis (keep 

odd) 
r_=linspace(-r0,r0,num)';   %radius vector from -r0 to +r0 (diameter) 

  
I1=w0^2/4*(1-exp(-2*(r0/w0)^2)); %input gaussian integral 
%from wolfram integral calc (see integral_attempt.m) 
I2=(gammainc( (2/R0^p).*R0.^p , 2/p)).*(R0^2/(p*2^(2/p))); 
I0=I1/I2; 

  
%right hand side of the conservation of energy eq. (output) 
rhs=I0.*(gammainc( (2/R0^p).*RR.^p , 2/p)).*(R0^2/(p*2^(2/p))); 

  
%left hand side of the conservation of energy eq. (input) 
lhs=w0^2/(4).*(1-exp(-2.*(r_./w0).^2));  

  
%loop to create the output R vector relative to the input r vector 
for k=1:length(lhs) 
for i=1:length(rhs) 
    A=lhs(k); B=rhs(i); 
    if abs(A-B)<=0.001 
        Rz(k)=RR(i); 
        break 
    end; end; end 

  
%Rz is the output radius coordinates that would normally be a function 

of 
%the input radius coordinates 
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%%%%%---------------------------------------------------------------

%%%%% 

  
  R_zfit= fit(r_,Rz','splineinterp');  %creating a fit function for Rz 

and r 

  
 R_z=@(rz) [R_zfit(rz)]; 
 dzdr= @(rz,z) [(R_z(rz)-rz)./((nl-1).*(z0-z))]; 

  
 Tspan=linspace(0,r0,num-floor(num/2))'; %Tspan see help ode45 

  
 %differential eq function in matlab to solve for z(r) based on Snell's 

law 
 [rz,z]=ode45(dzdr, Tspan, 0);   

  
 %%%%%%%%-----fitting the z(r) values to a polynomial function----

%%%%%%%% 
  %creating a full length z vector from -r0 to +r0 
 z_base_fit=[fliplr(z') z(2:round(num/2))']';    

  
 N=14; %polynomial order in which we wish to fit 
 %create function to fit data to polynomial of order n 
 z_fit= @(z_bc) polyfit(r_,z_bc,N);  
    zfit=z_fit(z_base_fit); 

  
 a14=zfit(1); a12=zfit(3); a10=zfit(5); a8=zfit(7); a6=zfit(9); 

a4=zfit(11); a2=zfit(13); 
 a2k=[a14 a12 a10 a8 a6 a4 a2]'; %create vector for a2k coefficients 

 

 

 

 
% tilt_term.m 

% tilt term generator 
% Author: Jason Shultz 
% Date: 05/04/15 

  
function [tilt]=tilt_term(x,zf,c_limit) 
c0=[0:.0001:c_limit]'; %create tilt term array 

 
k=1;  

 
while 1 
   sag_b=(max(max(zf+c0(k)*x)))-(min(min(zf+c0(k)*x))); 
   sag_a=(max(max(zf+c0(k+1)*x)))-(min(min(zf+c0(k+1)*x))); 
        if sag_b<sag_a 
            break 
        end     
      k=k+1; 
end 

 
tilt=c0(max(k)); 
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A.1.2 Shifted focus Alvarez: freeform surface coefficient generator 

% shifted_focus_alvarez_for_dissertation.m 

% Shifted focus Alvarez design in IR26 
% Author: Jason Shultz 
% Date: 03/14/16 
clear all 
%---------------all units in millimeters------------ 
%Base Parameters 
z0=77;       %focal length 
nl=2.7943;   %refractive index for IRG26 
r0=7.25;     %lens radius 
max_d=1.8;   %maximum lateral shift 
min_f_at_max_d=38.26; %mininum focal length at maximum shift 
num=81;      %number of points in this analysis (keep odd) 

  
%%%%%%%%--------develop composite surfaces------%%%%%%%%%% 
z05=500000; %close to infinte 
z04=2*z05*z0/(z05+z0); 
z03=z0;  
z02=(z03*z04)/(2*z04-z03); 
z01=(z02*z03)/(2*z03-z02); 

  
%------focal length at d=1.8mm-------- 
a2k_1=curvefit_alvarez(r0,z01,nl,num);   

  
%------focal length at d=0.9mm-------- 
a2k_2=curvefit_alvarez(r0,z02,nl,num); 

       
%------focal length at d=0mm-------- 
a2k_3=curvefit_alvarez(r0,z03,nl,num); 

  
%------focal length at d=-0.9mm-------- 
a2k_4=curvefit_alvarez(r0,z04,nl,num); 

  
%------focal length at d=-1.8mm-------- 
a2k_5=curvefit_alvarez(r0,z05,nl,num); 

  
%-----------------determine b2k coefficients--------------- 
                    %b2k=dela2k/(2deld) 
del_a2k_avg=((a2k_1-a2k_2)+(a2k_2-a2k_3)+(a2k_3-a2k_4)+(a2k_4-

a2k_5))./4; 

  
b2k=del_a2k_avg./(2*(max_d/2)); 

  
a2k=[a2k_3(1) a2k_3(2) a2k_3(3) a2k_3(4) a2k_3(5) a2k_3(6) a2k_3(7)]'; 

  
a_surface_coeffs_2_14=fliplr(a2k')' 
b_surface_coeffs_2_14=fliplr(b2k')' 
focal_range=[z01 z02 z03 z04 z05]' 
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%---------------determine tilt for lowest sag on freeform surface------

---- 
c_limit=.2; 
tilt=tilt_term(a2k,b2k,c_limit,r0) 

  

  
%-------------------generate freeform surfaces----------------- 
%-------------------circular plot for surface---------------------- 
pts=291; 
r1 = linspace(0,r0,pts);    % radius array for plotting actual surface 
th1 = linspace(0,2*pi,pts);  % theta array for plotting 

  
%Define the r and th grids 
[r,th] = meshgrid(r1,th1); 
[x,y] = pol2cart(th,r); 

  
%define a2k, and b2ks explicitly 
a2=a2k(7); a4=a2k(6); a6=a2k(5); a8=a2k(4); a10=a2k(3); a12=a2k(2); 

a14=a2k(1); 
b2=b2k(7); b4=b2k(6); b6=b2k(5); b8=b2k(4); b10=b2k(3); b12=b2k(2); 

b14=b2k(1); 

  
%individual terms for variable component function 
b2xy = (1/3)*(x.^3) + x.*(y.^2); 
b4xy = (1/5)*(x.^5) + (2/3)*(x.^3).*(y.^2) + x.*(y.^4); 
b6xy = (1/7)*(x.^7) + (3/5)*(x.^5).*(y.^2) + (x.^3).*(y.^4) + 

x.*(y.^6); 
b8xy = (1/9)*(x.^9) + (4/7)*(x.^7).*(y.^2) + (6/5)*(x.^5).*(y.^4) + 

(4/3)*(x.^3).*(y.^6) + x.*(y.^8); 
b10xy = (1/11)*(x.^11) + (5/9)*(x.^9).*(y.^2) + (10/7)*(x.^7).*(y.^4) + 

2*(x.^5).*(y.^6) + (5/3)*(x.^3).*(y.^8) + x.*(y.^10); 
b12xy = (1/13)*(x.^13) + (6/11)*(x.^11).*(y.^2) + (5/3)*(x.^9).*(y.^4) 

+ (20/7)*(x.^7).*(y.^6) + 3*(x.^5).*(y.^8) + 2*(x.^3).*(y.^10) + 

x.*(y.^12); 
b14xy = (1/15)*(x.^15) + (7/13)*(x.^13).*(y.^2) + 

(21/11)*(x.^11).*(y.^4) + (35/9)*(x.^9).*(y.^6) + (35/7)*(x.^7).*(y.^8) 

+ (21/5)*(x.^5).*(y.^10) + (7/3)*(x.^3).*(y.^12) + x.*(y.^14); 

  
r = sqrt((x.^2) + (y.^2)); %converting coordinates for brevity 
fb=(a2*r.^2 + a4*r.^4 + a6*r.^6 + a8*r.^8 + a10*r.^10 + a12*r.^12 + 

a14*r.^14)./2; %function for base component 
fv=b2*b2xy + b4*b4xy + b6*b6xy + b8*b8xy + b10*b10xy + b12*b12xy + 

b14*b14xy+tilt*x; %function for variable component 

  

  
fs=fb+fv; %freeform surface 
sag_freeform=abs(max(max(fs))-min(min(fs))) 
%% 
figure(1) 
surf(x,y,fb), shading interp, colorbar, view(-45,50) %plot of base 

component 
xlabel('x(mm)'),ylabel('y(mm)'),zlabel('z(mm)'), title('Base 

Component'), xlim([-7.5 7.5]), ylim([-7.5 7.5]) 
colormap('jet') 
figure(2) 
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surf(x,y,fv), shading interp, colorbar, view(-45,50) %plot of variable 

component 
xlabel('x(mm)'),ylabel('y(mm)'),zlabel('z(mm)'),title('Variability 

Component'),xlim([-7.5 7.5]),ylim([-7.5 7.5]),zlim([-0.125 .125]) 
colormap('jet') 
figure(3) 
surf(x,y,fs), shading interp, colorbar, view(-45,50) %plot of freeform 

surface 
xlabel('x(mm)'),ylabel('y(mm)'),zlabel('z(mm)'),title('Freeform 

Surface'),xlim([-7.5 7.5]),ylim([-7.5 7.5]), zlim([-0.2 .1]) 
colormap('jet') 

 
 

% curvefit_alvarez.m 
function [a2k] = curvefit_alvarez(r0,z0,nl,num)  
% composite surface design-shifted focus Alvarez 
% Author: Jason Shultz 
% Date: 03/14/16 
%------this function will be called later in program----- 
r=linspace(-r0,r0,num)'; %input radius vector 

    
%equation relating r and R for ode45 
 R_z= @(rz) 0; %focusing lens 

  
 dzdr= @(rz,z) (R_z(rz)-rz)./((nl-1).*(z0-z)); 
 [rz,z]=ode45(dzdr,[0 r0], 0); 

  
%%%%%%%%-----fitting the z(r) values to a polynomial function----

%%%%%%%% 
%creating a full length z vector from -r0 to +r0 
 z_base_fit=[fliplr(z') z(2:round(num/2))']'; 

  
 N=14; %polynomial order in which we wish to fit 
%create function to fit data to polynomial of order n 
 z_fit= @(z_bc) polyfit(r,z_bc,N);  
    zfit=z_fit(z_base_fit); 

  
 a14=zfit(1); a12=zfit(3); a10=zfit(5); a8=zfit(7); a6=zfit(9);  

a4=zfit(11); a2=zfit(13); 
 a2k=[a14 a12 a10 a8 a6 a4 a2]'; %create vector for a2k coefficients 
  

 

% tilt_term.m 
% shifted focus alvarez tilt term 
% Author: Jason Shultz 
% Date: 03/14/16 
%------this function will be called later in program----- 
function [tilt]=tilt_term(a2k,b2k,c_limit,r0) 
%------------------define x and y grid---------------------- 
%preferred method 
pts=291; 
r1 = linspace(0,r0,pts);    % radius array for plotting actual surface 
th1 = linspace(0,2*pi,pts);  % theta array for plotting 

  
%Define the r and th grids 
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[r,th] = meshgrid(r1,th1); 
[x,y] = pol2cart(th,r); 

  
%define a2k, and b2ks explicitly 
a2=a2k(7); a4=a2k(6); a6=a2k(5); a8=a2k(4); a10=a2k(3); a12=a2k(2); 

a14=a2k(1); 
b2=b2k(7); b4=b2k(6); b6=b2k(5); b8=b2k(4); b10=b2k(3); b12=b2k(2); 

b14=b2k(1); 

  
%individual terms for variable component function 
b2xy = (1/3)*(x.^3) + x.*(y.^2); 
b4xy = (1/5)*(x.^5) + (2/3)*(x.^3).*(y.^2) + x.*(y.^4); 
b6xy = (1/7)*(x.^7) + (3/5)*(x.^5).*(y.^2) + (x.^3).*(y.^4) + 

x.*(y.^6); 
b8xy = (1/9)*(x.^9) + (4/7)*(x.^7).*(y.^2) + (6/5)*(x.^5).*(y.^4) + 

(4/3)*(x.^3).*(y.^6) + x.*(y.^8); 
b10xy = (1/11)*(x.^11) + (5/9)*(x.^9).*(y.^2) + (10/7)*(x.^7).*(y.^4) + 

2*(x.^5).*(y.^6) + (5/3)*(x.^3).*(y.^8) + x.*(y.^10); 
b12xy = (1/13)*(x.^13) + (6/11)*(x.^11).*(y.^2) + (5/3)*(x.^9).*(y.^4) 

+ (20/7)*(x.^7).*(y.^6) + 3*(x.^5).*(y.^8) + 2*(x.^3).*(y.^10) + 

x.*(y.^12); 
b14xy = (1/15)*(x.^15) + (7/13)*(x.^13).*(y.^2) + 

(21/11)*(x.^11).*(y.^4) + (35/9)*(x.^9).*(y.^6) + (35/7)*(x.^7).*(y.^8) 

+ (21/5)*(x.^5).*(y.^10) + (7/3)*(x.^3).*(y.^12) + x.*(y.^14); 

  
c0=[-c_limit:.0001:c_limit]'; 

  
r = sqrt((x.^2) + (y.^2)); %converting coordinates for brevity 
fb=(a2*r.^2 + a4*r.^4 + a6*r.^6 + a8*r.^8 + a10*r.^10 + a12*r.^12 + 

a14*r.^14)./2; %function for base component 
fv=b2*b2xy + b4*b4xy + b6*b6xy + b8*b8xy + b10*b10xy + b12*b12xy + 

b14*b14xy; %function for variable component 

  
fs=fb+fv; %freeform surface 

  
k=1;  
while 1 
   sag_b=abs(max(max(fs+c0(k)*x)))+abs(min(min(fs+c0(k)*x))); 
   sag_a=abs(max(max(fs+c0(k+1)*x)))+abs(min(min(fs+c0(k+1)*x))); 
   if k==4000 
      break 
   end 
   if sag_b<sag_a  
      break 
   end     
   k=k+1; 
end 
    tilt=c0(max(k)-1); 
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A.2 Beam shaper performance metrics 

% BSspot_metric_for_dissertation.m 
% Beam shaper output spot performance analysis 
% Author: Jason Shultz 
% Date: 11/25/16 
clear all 
fclose('all'); 

  
x0=1.5/2; %window size 
y0=1.5/2; 
n=512; %data points in spot window 
X=linspace(-x0,y0,n); 
Y=linspace(-y0,y0,n); 
[x,y]=meshgrid(X,Y); %coordinate system 
th=(atan2d(y,x)+180); 
R=sqrt(x.^2+y.^2); 

  
%%%%%%%%%%%%%%% Reference %%%%%%%%%%%%%% 
%target output spot txt file 
 filename=sprintf('target_ref_D1mm_042017_X01.5.txt');  
 I_ref=load(filename); 

  
 h=1/12*ones(4);h(1,1)=0;h(1,4)=0;h(4,1)=0;h(4,4)=0; 
 I_ref=filter2(h,I_ref); %smooth results 

  
[R_ref,Idiffref]=edge_finder(I_ref,7,n,x0,y0); %EFA 

  
rfref=fit(linspace(0,360,length(R_ref))',smooth(R_ref),'linearinterp'); 
Iref_CA=zeros(n);  
for u=1:n 
    for w=1:n 
        if R(u,w)<=(0.95*rfref(th(u,w))) 
             Iref_CA(u,w)=I_ref(u,w); 
        end,end,end 

  
 %% 
%%%%%%%%%%%%%%%% Results %%%%%%%%%%%%%%%%% 
N=2601; %number of files/spots to analyze 
for i=1:N 
  %load output spot 
  filename=sprintf('ME_BS_D1mm_042017_%d.0000.txt',i); 
  I1=load(filename); 
  I1=filter2(h,I1); %smooth 

   
 %%%% Shape deviation 
  [R_1,Idiff1]=edge_finder(I1,7,n,x0,y0); 
  RU(i)=sqrt(sum((R_1-mean(R_ref)).^2)/length(R_1)); 
  RU_CV(i)=RU(i)/mean(R_ref); 
  Rsig(i)=std(smooth(R_1),1); 
  RCV(i)=std(smooth(R_1),1)/mean(smooth(R_1)); 

   
%%%%%%%%%%%%%%%% clear aperture window analysis %%%%%%%%%%%%%%%%% 
%output spot radius as a function of theta 
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rf=fit(linspace(0,360,length(R_1))',smooth(R_1),'linearinterp'); 
I_CA=zeros(n); 
ivec=0;I_vec=0; 
for u=1:n 
    for w=1:n 
        if R(u,w)<=(0.95*rf(th(u,w))) 
            ivec=ivec+1; 
            I_CA(u,w)=I1(u,w); 
            I_vec(ivec)=I1(u,w); 
     end,end,end  

   
 %%%% Correlation degree 
  C_11i=trapz(trapz(I_ref.*I_ref)); 
  C_12i=trapz(trapz(I_ref.*I1)); 
  C_22i=trapz(trapz(I1.*I1)); 
  Cdi=C_12i./(sqrt(C_11i.*C_22i)); 
  C(i)=Cdi; 
%%%% Correlation degree of the CA 
  C_11i_CA=trapz(trapz(Iref_CA.*Iref_CA)); 
  C_12i=trapz(trapz(Iref_CA.*I_CA)); 
  C_22i=trapz(trapz(I_CA.*I_CA)); 
  Cdi_CA=C_12i./(sqrt(C_11i.*C_22i)); 
  C_CA(i)=Cdi_CA; 

   
%%%% Spot uniformity  
  Usig(i)=std(I_vec,1); 
  UCV(i)=std(I_vec,1)/mean(I_vec); 

  
end 
%% 
  Results=[RU' RU_CV' Rsig' RCV' Usig' UCV' C' C_CA']; 
  save('ME_BS_results_042017_RU_RUCV_Rsig_RCV_Usig_UCV_C_CCA_1-

1301.txt','Results','-ascii'); 

  
%% 

 

 
% edge_finder.m 
function [R_1,Idiff1]=edge_finder(I_1,nroot,n,x0,y0) 
% edge finding algorithm for output spot 
% Author: Jason Shultz 
% Date: 11/25/16 

  
fclose('all'); 

  
I_1=nthroot(I_1,nroot); 
 xd=linspace(-x0,x0,n); yd=xd; [Xd,Yd]=meshgrid(xd,yd); 

  
Idiffx1=zeros(n,n);Idiffy1=Idiffx1; 
for i=1:n-1 
Idiffx1(i,[2:n])=(abs(diff(I_1(i,:)))); 
Idiffy1([1:(n-1)],i)=(abs(diff(I_1(:,i)))); 
end 

  
Idiff1_=Idiffx1+Idiffy1; 
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Idiff1=zeros(n,n); 
for i=1:n 
    j=i; 
     if i==1 
         j=n; 
     end 
    Idiff1(:,i)=Idiff1_(:,j-1); 
end 
Idiff1=nthroot(Idiff1,1); 

  
%%%%%%%%%%%%%%%%%%%%% Raidus algorithm%%%%%%%%%%%%%%%%%%%%% 
err=.01; 
th=linspace(0,2*pi-2*pi/200,200); 

  
R_1=zeros(length(th),1); 
for g=1:length(th) 
    TH=zeros(n,n); 
    for i=1:n-1 
        for k=1:n-1 
            th_d=atan2(Yd(i,k),Xd(i,k))+pi; 
            if (th_d >= th(g)-err && th_d <= th(g)+err) 
            TH(i,k)=1; 
            end  
        end 
    end 
    [pk1,loc1]=max(nthroot(slice_check_1,3)); 
    [pkx1,locx1]=max(pk1); 
    locy1=loc1(locx1); 

     
    R_1(g)=sqrt(Xd(locy1,locx1).^2+Yd(locy1,locx1).^2); 
end 
end 
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A.3 Optomechanical tolerancing 

A.3.1 Error generation – pre simulation 

% CEA_dev_gen.m 
% error generation - pre simulation 
% Author: Jason Shultz 
% Date: 11/25/16 

  
clear all 

  
Smax=.01; %maximum displacement 
Tmax=1.5; %maximum tilt 
Rmax=.3;  %maximum rotational 

  
%different orientations 
Sx=[0 Smax/4  Smax/4 -Smax/4 -Smax/4 Smax/2  Smax/2 -Smax/2 -Smax/2 

Smax*3/4  Smax*3/4 -Smax*3/4 -Smax*3/4 Smax  Smax -Smax -Smax]; 
Sy=[0 Smax/4 -Smax/4  Smax/4 -Smax/4 Smax/2 -Smax/2  Smax/2 -Smax/2 

Smax*3/4 -Smax*3/4  Smax*3/4 -Smax*3/4 Smax -Smax  Smax -Smax]; 
Tx=[0 Tmax/4  Tmax/4 -Tmax/4 -Tmax/4 Tmax/2  Tmax/2 -Tmax/2 -Tmax/2 

Tmax*3/4  Tmax*3/4 -Tmax*3/4 -Tmax*3/4 Tmax  Tmax -Tmax -Tmax]; 
Ty=[0 Tmax/4 -Tmax/4  Tmax/4 -Tmax/4 Tmax/2 -Tmax/2  Tmax/2 -Tmax/2 

Tmax*3/4 -Tmax*3/4  Tmax*3/4 -Tmax*3/4 Tmax -Tmax  Tmax -Tmax]; 
Rz=[0  Rmax/4 -Rmax/4  Rmax/2 -Rmax/2  Rmax*3/4 -Rmax*3/4  Rmax -Rmax]; 

  
n=1; 
for s=1:17 
   sx1=Sx(s); sx2=-Sx(s); 
   sy1=Sy(s); sy2=-Sy(s); 
for t=1:17 
   tx1=Tx(t); tx2=-Tx(t); 
   ty1=Ty(t); ty2=-Ty(t); 
for r=1:9 
   rz1=Rz(r); rz2=-Rz(r); 

     
   devs_list(n,:)=[n sx1 sx2 sy1 sy2 tx1 tx2 ty1 ty2 rz1 rz2]; 

  
n=n+1; 
end,end,end 

  
save('ME_BS_D1mm_devs_042017.txt','devs_list','-ascii') 
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A.3.2 Combined error analysis – post simulation 

% CEA_results_analysis_for_dissertation.m 
% Combined error analysis - post simulation 
% Author: Jason Shultz 
% Date: 11/25/16 

  
clear all 

  
devs=load('ME_BS_D1mm_devs_042017.txt'); 
results=load('ME_BS_results_042017_RU_RUCV_Rsig_RCV_Usig_UCV_C_CCA.txt'

);%.txt');% 
Smax=.01; %max displacement 
Tmax=1.5; %max tilt 
Rmax=.3;  %max rotational 

  
sx1=devs(:,2); 
tx1=devs(:,6); 
rz1=devs(:,10); 
cs=ones(2601,1);ct=cs;cr=cs;%tolerance classes 
%index the different tolerance classes 
for i=1:2601     
    if abs(sx1(i))==Smax/4 
        cs(i)=2; 
    elseif abs(sx1(i))==Smax/2 
        cs(i)=3; 
    elseif abs(sx1(i))==(Smax*3/4) 
        cs(i)=4; 
    elseif abs(sx1(i))==Smax 
        cs(i)=5; 
    end 

     
    if abs(tx1(i))==Tmax/4 
        ct(i)=2; 
    elseif abs(tx1(i))==Tmax/2 
        ct(i)=3; 
    elseif abs(tx1(i))==(Tmax*3/4) 
        ct(i)=4; 
    elseif abs(tx1(i))==Tmax 
        ct(i)=5; 
    end     

  
    if abs(rz1(i))==Rmax/4 
        cr(i)=2; 
    elseif abs(rz1(i))==Rmax/2 
        cr(i)=3; 
    elseif (abs(rz1(i))>Rmax/2 && abs(rz1(i))<Rmax) 
        cr(i)=4; 
    elseif abs(rz1(i))==Rmax 
        cr(i)=5; 
    end 
end 
ci=cs/10+ct/100+cr/1000; 

  
u=1; 
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for i=1:5 
    for j=1:5 
        for k=1:5             
           S(u)=(i-1)/4; 
           T(u)=(j-1)/4; 
           R(u)=(k-1)/4; 
           C(u)=i/10+j/100+k/1000; 
           CS(u)=i; 
           CT(u)=j; 
           CR(u)=k; 

            
           w1=1; 
           for w=1:2601 
               if ci(w)==C(u) 
                   temp_res(w1)=results(w,7);%/results(1,7); 
                   temp_res_UCV(w1)=results(w,6); 
                   temp_res_RCV(w1)=results(w,2); 
                   temp_class(w1)=w; 
                   w1=w1+1; 
               end 
           end 
           [Cmin(u),Cloctemp]=min(temp_res); 
           [UCVmin(u),Uloctemp]=max(temp_res_UCV); 
           [RCVmin(u),Rloctemp]=max(temp_res_RCV); 

  
            CN(u)=temp_class(Cloctemp); 
            UN(u)=temp_class(Uloctemp); 
            RN(u)=temp_class(Rloctemp); 
           temp_res=0; 
           temp_res_UCV=0; 
           temp_res_RCV=0; 
           u=u+1; 
        end 
    end 
end 
%% 
u=1; 
for i=1:5 
    for k=1:5 
        CS1(i,k)=Cmin(u); 
        CS2(i,k)=Cmin(u+25); 
        CS3(i,k)=Cmin(u+50); 
        CS4(i,k)=Cmin(u+75); 
        CS5(i,k)=Cmin(u+100); 

         
        UCVS1(i,k)=UCVmin(u); 
        UCVS2(i,k)=UCVmin(u+25); 
        UCVS3(i,k)=UCVmin(u+50); 
        UCVS4(i,k)=UCVmin(u+75); 
        UCVS5(i,k)=UCVmin(u+100); 

         
        RCVS1(i,k)=RCVmin(u); 
        RCVS2(i,k)=RCVmin(u+25); 
        RCVS3(i,k)=RCVmin(u+50); 
        RCVS4(i,k)=RCVmin(u+75); 
        RCVS5(i,k)=RCVmin(u+100); 



210 

 

        u=u+1; 
    end 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
%%%%%%%%%%%%%%%%%%%%%%% colormap and alphamap 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
  cmap=[linspace(1,1,50)' linspace(0,.75,50)' zeros(50,1) 
        linspace(1,0,50)' linspace(1,1,50)' zeros(50,1)]; 

     
  cmap2=[linspace(0,1,400)' linspace(1,1,400)' zeros(400,1) 
      linspace(1,1,600)' linspace(0.75,0,600)' zeros(600,1)]; 

   
  cmap3=[linspace(0,1,400)' linspace(1,1,400)' zeros(400,1) 
      linspace(1,1,600)' linspace(0.75,0,600)' zeros(600,1)]; 

   
    amap=linspace(min(Cmin),1,1000);%linspace(.00,.00,773) 

linspace(1,1,1000-773)];/max(Cmin) 
    amapU1=linspace(min(UCVmin),1,1000); 
    amapR1=linspace(min(RCVmin),1,1000); 
    for i=1:1000 
        if amap(i)>=0.90 
            amap(i)=1;%amap(i); 
        else amap(i)=0; 
        end 

         
        if amapU1(i)<=0.15 
            amapU(i)=1; 
        else amapU(i)=0; 
        end 

         
        if amapR1(i)<0.149 
            amapR(i)=1; 
        else amapR(i)=0; 
        end 
    end 

     
    rot_=[0,.1,.2,.3,.4]; 
    tilt_=[0, 1, 2, 3, 4]; 
    shift_=[0, .0025, .005, .0075, 0.01]; 
    [rot,tilt]=meshgrid(rot_,tilt_); 

  

  
%%%%%%%%%%% Interpolation %%%%%%%%%%%%%%% 

  
[CR_,CT_,CS_]=meshgrid((0:4)*Rmax/4,(0:4)*Tmax/4,(0:4)*Smax/4); 
Cmin_(:,:,1)=CS1;Cmin_(:,:,2)=CS2;Cmin_(:,:,3)=CS3;Cmin_(:,:,4)=CS4;Cmi

n_(:,:,5)=CS5; 

  
[crq,ctq,csq]=meshgrid((0:.1:4)*Rmax/4,(0:.1:4)*Tmax/4,(0:.1:4)*Smax/4)

; 
cminq=interp3(CR_,CT_,CS_,Cmin_,crq,ctq,csq); 
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UCVmin_(:,:,1)=UCVS1;UCVmin_(:,:,2)=UCVS2;UCVmin_(:,:,3)=UCVS3;UCVmin_(

:,:,4)=UCVS4;UCVmin_(:,:,5)=UCVS5; 
UCVminq=interp3(CR_,CT_,CS_,UCVmin_,crq,ctq,csq); 

  
RCVmin_(:,:,1)=RCVS1;RCVmin_(:,:,2)=RCVS2;RCVmin_(:,:,3)=RCVS3;RCVmin_(

:,:,4)=RCVS4;RCVmin_(:,:,5)=RCVS5; 
RCVminq=interp3(CR_,CT_,CS_,RCVmin_,crq,ctq,csq); 

  
%%%%%%%%%%% Slices %%%%%%%%%%%%%%% 
sx=[3.5 3 2.5 2 1.5 1 .5 0.001]*Rmax/4; 
sy=[3.5 3 2.5 2 1.5 1 .5 0.001]*Tmax/4; 
sz=[3.5 3 2.5 2 1.5 1 .5 0.001]*Smax/4; 

  

  
figure(1) 
slice(CR_,CT_,CS_,Cmin_,[0 .2],0,0) 
xlabel('Z Axis Rotation (deg)'),ylabel('X-Y Axis Tilt 

(deg)'),zlabel('X-Y Lateral Shift (mm)') 
colormap(cmap),caxis([0.85,1]),view(157,62), 
c=colorbar;c.Label.String='Correlation Degree'; 

  
%% 
figure(2) 
p1a=slice(crq,ctq,csq*1000,cminq,sx,sy,sz*1000); 
    

set(p1a,'EdgeColor','none','EdgeAlpha','interp','AlphaDataMapping','sca

led','FaceColor','interp','FaceAlpha','interp') 
       alpha('color'),alphamap(amap) 
    hold on 
p1b=slice(crq,ctq,csq*1000,cminq,0,0,0); 
    set(p1b,'EdgeColor','none','FaceColor','interp') 
       alpha(p1b,.75) 
    hold off 
        xlabel('Rotational (deg)'),ylabel('Tilt 

(deg)'),zlabel('Displacement (um)') 
        

colormap(cmap),caxis([0.80,1]),c=colorbar;c.Label.String='Correlation 

Degree'; 
        view(143,34),ylim([0 Tmax]),xlim([0 Rmax]),zlim([0 Smax*1000]) 

  
 figure(3) 
p1aU=slice(crq,ctq,csq*1000,UCVminq,sx,sy,sz*1000); 
     

set(p1aU,'EdgeColor','none','EdgeAlpha','interp','AlphaDataMapping','sc

aled','FaceColor','interp','FaceAlpha','interp') 
       alpha('color'),alphamap(amapU) 
    hold on 
p1bU=slice(crq,ctq,csq*1000,UCVminq,0,0,0); 
    set(p1bU,'EdgeColor','none','FaceColor','interp') 
       alpha(p1bU,.75) 
    hold off 
        xlabel('Rotational (deg)'),ylabel('Tilt 

(deg)'),zlabel('Displacement (um)') 
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colormap(cmap2),c=colorbar;caxis([0.05,0.3]);c.Label.String='Uniformity 

Error CV'; 
        view(143,34),ylim([0 Tmax]),xlim([0 Rmax]),zlim([0 Smax*1000]) 

         
 figure(4) 
p1aR=slice(crq,ctq,csq*1000,RCVminq,sx,sy,sz*1000); 
    

set(p1aR,'EdgeColor','none','EdgeAlpha','interp','AlphaDataMapping','sc

aled','FaceColor','interp','FaceAlpha','interp') 
       alpha('color'),alphamap(amapR) 
    hold on 
p1bR=slice(crq,ctq,csq*1000,RCVminq,0,0,0); 
    set(p1bR,'EdgeColor','none','FaceColor','interp') 
       alpha(p1bR,.75) 
    hold off 
        xlabel('Rotational (deg)'),ylabel('Tilt 

(deg)'),zlabel('Displacement (um)') 
%          
        

colormap(cmap3),caxis([0.05,0.3]),c=colorbar;c.Label.String='Shape 

Error CV'; 
        view(143,34),ylim([0 Tmax]),xlim([0 Rmax]),zlim([0 Smax*1000]) 
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A.4 Surface form tolerancing 

A.4.1 Surface form error generation (combined height and slope scale) – pre simulation 

% Beam shaper: combined_scales_form_error_generator_for_dissertation.m 
% Surface form error generation (combined height and slope scale) – pre 

simulation 
% Author: Jason Shultz 
% Date: 2/21/17 

  
clear all  
fclose('all'); 

  
%load reference surface 
Z_freeform_L1=load('BS_reference_surface.txt'); 
Zref=Z_freeform_L1; 

  
nx=301;nxf=299; %number of data points in surface 
r=linspace(-6,6,nx);%radial vector 
x(2:nx+1)=r; 
delx=abs(r(1)-r(2)); 
x(1)=-6-delx; 
x(nx+2)=6+delx; 

  
[X,Y]=meshgrid(r,r); 
X=X+7.25*0; Y=Y+7.25*0; 
R=sqrt(X.^2+Y.^2); 
 th=atan2(Y,X); 

  
%%create aperture 
 aperture14mm=ones(nx,nx); 
 R_=sqrt((X-7.25*0).^2+(Y-7.25*0).^2); 
for i=1:(nx) 
    for k=1:(nx) 
        if R_(i,k)>6 
            aperture14mm(i,k)=0; 
        end 
    end 
end 

  
Zref_max=max(max(Zref.*aperture14mm)); 
Zref_min=min(min(Zref.*aperture14mm)); 
diff=abs(Zref_min)-Zref_max; 
Zref=Zref+diff/2; 

  
[FX,FY]=gradient(Zref); 
dzdx_ref=FX/delx; 
dzdy_ref=FY/delx; 

  
dzdth=R.*(-dzdx_ref.*sin(th)+dzdy_ref.*cos(th)); 
dzdr_ref=sqrt(dzdx_ref.^2+dzdy_ref.^2); 

  
maxdzdr=max(max(abs(dzdr_ref.*aperture14mm))); 
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maxdzdrth=atan(maxdzdr); 

  

  
%%%%deviated surfaces 
slope=linspace(-.0018,.006,21); 
scale=linspace(-.05,.02,21); 

  
m=0; 
tic 
for u=1:21 
     for v=1:21 
m=m+1 
for ii=1:nx 
    for ki=1:nx 
        offset=(abs(dzdr_ref(ii,ki))/maxdzdr)^2*slope(u); 
        Z_1(ii,ki)=Zref(ii,ki)*(1+scale(v))+offset; 
    end 
end 

  
errdiff(m)=max(max(abs(Z_1-Zref).*aperture14mm)); 

  
PV_baseR(m)=max(max(abs(Zref-Z_1).*aperture14mm)); 
rms_baseR(m)=rmse(zeros(nx,nx),(Z_1-Zref).*aperture14mm); 
PV_irreg(m)=max(max(abs(Z_1-Zref*(1+scale(v))).*aperture14mm)); 
rms_irreg(m)=rmse(zeros(nx,nx),(Z_1-Zref*(1+scale(v))).*aperture14mm); 

  
Z_2=-Z_1(:,nx:-1:1); 

  
%%%%%%%%%%%%%%%%%%______data file for L1_____%%%%%%%%%%%%% 
      % nx ny delx dely unitflag xdec ydec 
      % z dz/dx dz/dy d2z/dxdy nodata 
%  k=1; 
  first_line=[nxf nxf delx delx 0 0 0]; 
%   filename=sprintf('SA_Alvarez_L1_scaleoffset_%d.dat',m); 
  filename=sprintf('FE_BS_SA_combined_scale_051017_L1_%d.dat',m); 

  
  fid=fopen(filename,'w'); 
  fprintf(fid,'%f %f %f %f %f %f %f \r\n',first_line); 

   
  for j=2:nxf+1 
  for i=2:nxf+1 
          dzdx=(Z_1(j,i+1)-Z_1(j,i-1))/(delx*2); 
          dzdy=(Z_1(j-1,i)-Z_1(j+1,i))/(delx*2); 
          d1dxy=(Z_1(j-1,i+1)-Z_1(j-1,i-1))/(delx*2); 
          d2dxy=(Z_1(j+1,i+1)-Z_1(j+1,i-1))/(delx*2); 
          dzdxy=(d1dxy-d2dxy)/(delx*2); 
  next_line=[Z_1(j,i) dzdx dzdy dzdxy]; 
  fprintf(fid,'%f %f %f %f \r\n',next_line); 
  end 
  end 

   
 fclose(fid); 

  
%%%%%%%%%%%%%%%%%%______data file for L2_____%%%%%%%%%%%%% 
  first_line=[nxf nxf delx delx 0 0 0]; 
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%   filename=sprintf('SA_Alvarez_L2_scaleoffset_%d.dat',m); 
  filename=sprintf('FE_BS_SA_combined_scale_051017_L2_%d.dat',m); 

  
  fid=fopen(filename,'w'); 
  fprintf(fid,'%f %f %f %f %f %f %f \r\n',first_line); 

   
  for j=2:nxf+1 
  for i=2:nxf+1 
          dzdx=(Z_2(j,i+1)-Z_2(j,i-1))/(delx*2); 
          dzdy=(Z_2(j-1,i)-Z_2(j+1,i))/(delx*2); 
          d1dxy=(Z_2(j-1,i+1)-Z_2(j-1,i-1))/(delx*2); 
          d2dxy=(Z_2(j+1,i+1)-Z_2(j+1,i-1))/(delx*2); 
          dzdxy=(d1dxy-d2dxy)/(delx*2); 
  next_line=[Z_2(j,i) dzdx dzdy dzdxy]; 
  fprintf(fid,'%f %f %f %f \r\n',next_line); 
  end 
  end 

  
fclose(fid); 

  
HS(m)=scale(v); 
SS(m)=slope(u); 
toc 
     end 
end 
toc 
dev_index=[[1:m]' HS' SS' PV_baseR' rms_baseR' PV_irreg' rms_irreg']; 
save('FE_BS_SA_combined_scale_051017_dev_index.txt','dev_index','-

ascii'); 
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A.4.2 Combined error analysis – post simulation 

% BS_FE_combined_error_results_for_dissertation.m 
% Beam shaper: Combined error analysis – post simulation 
% Author: Jason Shultz 
% Date: 2/21/17 

  
clear all 
fclose('all'); 

  
devs=load('FE_BS_SA_combined_scale_051017_dev_index.txt'); 
results=load('FE_BS_combined_error_results_D1mm_051017_N_RU_RUCV_Rsig_R

CV_Usig_UCV_C_CCA.txt'); 
m=0; 
for i=1:21 
    for k=1:21 
        m=m+1; 
        HS(i,k)=devs(m,2); 
        SS(i,k)=devs(m,3)*0.10977^2; 
        PVbase(i,k)=devs(m,4); 
        rmsbase(i,k)=devs(m,5); 
        PVI(i,k)=devs(m,6); 
        rmsI(i,k)=devs(m,7); 

        
        UCV(i,k)=results(m,7); 
        RCV(i,k)=results(m,3); 
        C(i,k)=results(m,8); 
        C_passed(i,k)=C(i,k); 
        if C(i,k)<0.9 
            C_passed(i,k)=0; 
        end 
    end 
end 

  
%%%%custom colormap%%%% 
  cmap=[linspace(1,1,667)' linspace(0,.75,667)' zeros(667,1) 
        linspace(1,0,333)' linspace(1,1,333)' zeros(333,1)]; 

  
  cmap2=[linspace(0,1,500)' linspace(1,1,500)' zeros(500,1) 
         linspace(1,1,500)' linspace(0.75,0,500)' zeros(500,1)]; 

   
figure(1) 
surf(HS,SS*-1,C) 
ylabel('Slope Scale'),xlabel('Height Scale'),zlabel('Correlation 

Degree') 
colormap(cmap),caxis([0.7 1]),shading 

interp,alpha(.8),set(gca,'GridAlpha',1) 
c=colorbar;c.Label.String='Correlation Degree'; 
axis square,grid on,view(0,90) 
xlim([-0.0,.011]),ylim([-0.00,0.000017]) 

  

  
figure(2) 
surf(HS,SS,UCV) 
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axis square,grid on,colormap(cmap2),caxis([0 .3]),colorbar,shading 

interp 
xlim([-0.012,.012]),ylim([-0.0014,0.0014]) 
ylabel('Slope Scale'),xlabel('Height Scale') 

  
figure(3) 
surf(HS,SS,RCV) 
axis square,grid on,colormap(cmap2),caxis([0 .3]),colorbar,shading 

interp 
xlim([-0.012,.012]),ylim([-0.0014,0.0014]) 
ylabel('Slope Scale'),xlabel('Height Scale') 

  
figure(4) 
 PVI(6:21,:)=PVI(6:21,:)*-1; 
surf(HS*100,PVI*1000,RCV) 
ylabel('Irregularity PV (um)'),xlabel('Power Percentage 

(%)'),zlabel('Shape Deviation CV') 
colormap(cmap2),caxis([0 .3]),colorbar,shading 

interp,alpha(.8),set(gca,'GridAlpha',1) 
c=colorbar;c.Label.String='Shape Deviation CV'; 
 xlim([-0.00,1.1]),ylim([0,1.4]),view(0,90) ,axis square 

  
figure(5) 
surf(HS*100,PVI*1000,UCV) 
ylabel('Irregularity PV (um)'),xlabel('Power Percentage 

(%)'),zlabel('Uniformity CV') 
colormap(cmap2),caxis([0 .3]),colorbar,shading 

interp,alpha(.8),set(gca,'GridAlpha',1) 
c=colorbar;c.Label.String='Uniformity CV'; 
 xlim([-0.00,1.1]),ylim([0,1.4]),view(0,90),axis square 

  
figure(6) 
%  PVI(6:21,:)=PVI(6:21,:)*-1; 
surf(HS,PVI*1000,C) 
ylabel('Irregularity PV (um)'),xlabel('Height 

Scale'),zlabel('Correlation Degree') 
colormap(cmap),caxis([0.7 1]),colorbar,shading 

interp,alpha(.8),set(gca,'GridAlpha',1) 
c=colorbar;c.Label.String='Correlation Degree'; 
 xlim([-0.00,.011]),ylim([0,1.4]),view(0,90),axis square 
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