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ABSTRACT

MATTHEW J. TRUSNOVIC. Application of Local Transmission Line Modelled
Metasurfaces and Comparison to Huygens-Fresnel Principle Modelled Metasurfaces.

(Under the direction of DR. KATHRYN WELDON)

Metasurfaces have many applications, from beam steering effects to polarization

control. There are two main theories that are used in the creation of modern meta-

surfaces, one based on the Huygens-Fresnel Principle and one based on Local Trans-

mission Line models of the metasurface. The Local Transmission Line model is the

more commonly used theory, but comparing structures constructed using this method

to metasurfaces created using the Huygens-Fresnel principle will show the advantages

and disadvantages to each design theory.

The Huygens-Fresnel Principle modeled metasurfaces operate on the principle of

a duel dipole radiation which is powered by an incident wave. The duel dipoles,

electric and magnetic, radiate energy forward and backward from the surface which

constructively and destructively interfere with one another. This interference creates

the output wavefront as well as backward propagating waves. The metasurface is

constructed of various unit cells which contain electric and magnetic dipoles, which

are matched to the required transmission coefficient phase and magnitude. If this

matching is not perfect, then significant backward radiation can occur and cause

errors. Despite this, the output wavefront can be steering in extreme steering angles

and with unique behaviour if done correctly.

The Local Transmission Line modelled surfaces operate with generalized Snell’s

Law at its core, which allows the metasurface to guide and transform the incident

wave. The metasurface is modelled as a series of admittance blocks on a transmission

line, with length of transmission line that correspond to dielectric layers between

the admittance layers. The metasurface is also designed to operate multiple input

modes simultaneously, allowing for the steering of TE and TM waves at different
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angles using the same structure. This application is impossible for Huygens-Fresnel

modelled surfaces as that theory requires different surface configurations for each

operating mode, requiring the dipoles to be oriented normally to the input electric

field. However, the Local Transmission Line modeled surfaces decrease in overall

length as the desired steering angle increases, which decreases the accuracy of the

surface for larger steering angles.

Overall, Local Transmission Line modeled metasurfaces have far more application

and versatility when compared to metasurfaces designed using the Huygens-Fresnel

principle. Although extreme steering angles and unique wave behaviour can be de-

signed using the Huygens-Fresnel principle, the disadvantages in designing such a

surface and the errors caused by improper matching of unit cells make this method

less versatile. The Local Transmission Line theory requires a less rigorous design

process for creating unit cells, and there is room for some error in the admittances

that do not compromise the basic functionality of the structure. This theory also

lends itself to easier design, as these surfaces can be created directly on dielectrics

using current PCB technology.
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CHAPTER 1: Introduction

1.1 Motivation

In modern society, many aspects of technology are being pushed to become elec-

tromagnetically wireless for both convenience and efficiency. This includes common

place things such as high speed Wi-Fi and cellular technology, to more technologi-

cally advanced applications such as satellite technology and space travel. As such,

the desire to create more dynamic and compact electromagnetic devices grows with

each passing year. Most of these devices use antennas and electromagnetic structures

that are composed of materials which are naturally found, or which are created as

homogeneous mixtures of preexisting materials. These materials work well enough

for many applications, but the limit at which these can be used for future devices is

fast approaching. Antennas that are required to operate at high frequencies become

physically tiny using traditional antenna design, and devices that are required to op-

erate over large ranges of frequencies can become spatially complex and impractical

to fabricate. To overcome these problems, special structures known as metamaterials

can be used.

Metamaterials have the potential to create regions where the electromagnetic re-

sponse of the structure acts as a material with designed properties not found in the

natural world. These properties can be things such as an altered permittivity and

permeability, varying wave speeds, and even a beam steering effect. With the advent

of metamaterials, wireless applications can become more efficient and diverse to keep

up with societal demands. These materials have a drawback however, in that meta-

materials are generally three dimensional objects and as such occupy a large amount

of space. An offshoot of metamaterials can solve this problem for applications in-
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volving the control of electromagnetic waves, known as metasurfaces. These devices

are structures that are small enough compared to the incoming wave that they are

essentially two dimensional boundaries in space which can instantaneously change

electromagnetic waves. There are several methods in which these metasurfaces can

be created, such as using a Local Transmission Line theory and the other less intu-

itive methods using the Huygens-Fresnel principle as its basis. This thesis will go

through the design process of using the Local Transmission Line model theory for the

production of a beam steering metasurface, as well as compare it to a metasurface

designed using the Huygens-Fresnel principle as its basis. The factors by which the

transmission line model is more advantageous will be discussed, as well as applications

in which these types of metasurface may be applied to.

1.2 Topical Overview of Thesis

This thesis will first cover general background material needed to have a basic un-

derstanding of how electromagnetic (EM) waves operate and several key characteris-

tics by which EM waves operate. These concepts include things such as the method

by which waves are defined, wave operational modes, and polarization types. Material

characteristics are then discussed as well as how materials interact with propagating

waves. From there, an outline on the basics of materials is described as well as an

introduction to the concept of metamaterials. Different types of metamaterials are

then discussed, including thermal, acoustic, and electromagnetic. As a special cat-

egory of electromagnetic metamaterials, the concept of metasurfaces is introduced.

The idea of metasurfaces is expanded upon as well as their application in electromag-

netic wave interactions for the two different design theories: Local Transmission Line

and Huygens-Fresnel theories.

Following the background information, the derivations for essential concepts needed

for the testing of the metasurfaces is discussed, such as impedance and Floquet Anal-

ysis. These concepts will be defined and their utility with respect to metasurface
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design will be discussed.

After the design concepts that are common between the two design methods are

discussed, the design of Huygens-Fresnel theory based metasurfaces will be discussed.

The basic concept and foundational theories behind this approach are covered. The

theory is then applied to the application of a two dimensional surface and the scat-

tering parameters of the surface are defined for the electric and magnetic dipoles

required for the theory to be valid.

Next, the process to create the local transmission line modelled metasurface will

be started. First the local transmission line model is created to simulate the inter-

action between the incoming wave and the metasurface. The desired phase shift for

the outgoing wave is then defined and the required admittance profiles needed to

create this shift are found using the transmission line model. The size of the surface

is also adjusted to allow for a single period of admittance to appear across it, and the

ideal admittance profile to create the phase shift is discretized to allow for allocation

of unit cells. Individual unit cells that, when combined, create a profile of admit-

tance that simulates the ideal admittance profile are then created and assigned to the

metasurface structure. From there, the structure is tested in Ansys’ High-Frequency

Structure Software (HFSS) to verify its operation.

We conclude with a comparison of the two separate design methodologies, and a

thorough discussion of the advantages and disadvantages of each method. Applica-

tions in which the two design theories excel are also separately discussed, showing

where and how each method is viable.



CHAPTER 2: Background

2.1 Overview of Electromagnetic Waves

Electric and magnetic fields travel through space through a phenomenon known

as electromagnetic radiation. This propagation is characterized by a simultaneous

oscillation of both the electric and magnetic fields, which is commonly known as a

wave. These coupled fields can be described as waves when they satisfy a second

order differential equation with respect to space and time, known as a wave equation.

This equation can be represented with currents and charges, known as sources, or for

homogeneous regions with no currents and charges. The wave equations in homoge-

neous regions are largely used in calculations of waves since many natural materials

do not contain wave generating currents and charges. For this derivation, the source-

less wave equations are used. These equations represents how the fields change as

time advances and as the wave travels through space. Both the electric and magnetic

fields must satisfy these equations, which can be seen below in Eq. 2.1 and Eq. 2.2 [7]

(
∇2 − ω2µε

)
E = 0 (2.1)

(
∇2 − ω2µε

)
B = 0 (2.2)

In Eq. 2.1 and Eq. 2.1, E is the electric field, B is the magnetic flux density,ω is the

angular frequency, µ is the magnetic permeability, and ε is the electric permittivity.

These two equations are derived using Maxwell’s Equations which, along with the

Lorentz force, characterize modern electromagnetics. Since it was defined that these

fields are oscillating in a synchronistic manner, a frequency at which the fields oscillate
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can be defined as f . This frequency is a measure of how many cycles of the fields

occur within one second, measured in Hertz (Hz), and can be measured as an angular

frequency ω = 2πf . The partial spatial derivative in Eq. 2.1 and Eq. 2.2 is represented

as the vector Laplacian operator ∇2, which is the divergence of the gradient of a

function for a given space [8].

Writing the wave equations with respect to the phasor forms of the electric and

magnetic field, the wave equations can be defined as the Helmholtz equations for

electric and magnetic fields. These equations can be seen in Eq. 2.3 and Eq. 2.4 [7].

∇2E + ω2µεE = 0 (2.3)

∇2H + ω2µεH = 0 (2.4)

In Eq. 2.4, H represents the magnetic field, and was converted from B in order

to have the equation have the same form as Eq. 2.3. Electromagnetic waves can

oscillate in a variety of different ways, known the polarizations. These polarizations

describe how the electric field of a wave changes with respect to time, and are named

after the shape that is ‘traced’ by the electric field on a plane of space perpendicular

to the direction of propagation as time passes. There are three polarization states

that electromagnetic waves can be characterized as, linear, elliptical, and circular.

Illustrations of each of these polarizations can be seen in Fig. 2.1.
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(a) (b) (c)

Figure 2.1: Three different polarization states for an electromagnetic wave; a) Linear
polarization, b) Elliptical polarization, c) Circular polarization

Electromagnetic waves can also have several operational modes that are defined

relative to the space around them. These modes are known as Transverse Electric

(TE), Transverse Magnetic (TM), and Transverse Electromagnetic (TEM) waves.

These different modes are defined by how the electric and magnetic fields are oriented

with respect to the surrounding space and structures. For example, a wave that is

incident to a surface is known to be have a TE orientation when the entire electric

field is tangential to the incident surface. In the same situation, a wave is considered

to be TM when the magnetic field is tangential to the incident surface. Finally, a

wave is defined to be TEM when the electric and magnetic fields are tangent to the

incident surface. An example showing TE and TM mode propagation can be seen in

Fig. 2.2.
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(a) (b)

Figure 2.2: Two different operational modes of an incident wave; a) TE mode, b) TM
mode

Attached to the spatial derivative component of the wave equations is the phase

velocity of the propagating wave, denoted as vp. This phase velocity is a measure

of the rate at which a wave of a certain frequency travels through materials, with

the electric and magnetic properties of the materials determining this velocity. As

such, the phase velocity can be defined purely with respect to the electromagnetic

characteristics of the material in which the wave is travelling. The electric response

of the material is known as the electric permittivity, given by ε = εrε0 where εr

is the relative permittivity of the material and ε0 = 8.85 × 10−12 is the vacuum

permittivity, and the magnetic response of the material is given by the magnetic

permeability, shown as µ = µrµ0 where µr is the relative permeability of the material

and µ0 = 4π × 10−7 is the vacuum permeability. The material properties are simply

factors which scale the vacuum permittivity (ε0) and permeability (µ0) relative to

the material. These relative factors can vary with time, space, frequency, as well as

being tensoral with respect to the incoming wave. Most materials do not exhibit such

behaviour, being classified as isotropic materials, but materials which have a tensoral

behaviour that contributes to its relative permittivity and permeability are known as

anisotropic materials. This anisotropic behaviour can come about due to factors such

as the physical structure of the material, the number of free electrons in the material,
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as well as many other factors.

2.2 Basics of Metamaterials

The basis of all engineering starts with manipulating materials into useful appli-

cations for specific problems. This may involve applications such as using wood to

create a boat, using copper to transmit electricity, or even using steel to create probes

for deep space missions. For most of human history, the list of materials that were

available for use were limited to what was naturally found in our environment. Later

on we learned how to mix different materials together to create a new material, in-

cluding mixing metals to create new metals and incorporating beams into concrete.

These new techniques of compiling existing materials has led to a vastly larger pool

of materials at our collective disposal. This trend continues to advance, but a new

concept has recently started to appear which offers a variety of new applications sim-

ilar to the introduction of mixed materials compared to natural materials. This new

concept is known as metamaterials, which involves creating periodic structures of

mixed materials that operate outside of the normal characteristics of its constituent

materials. The word metamaterial itself explains what it is, as ‘meta’ in Greek means

‘beyond’ [9], which implies that this new concept creates materials which are beyond

what was capable before. There are several varieties of these metamaterials including

thermal, acoustic, and electromagnetic.

2.2.1 Types of Metamaterials

The concept of metamaterials has been applied to a variety of different fields,

including thermal dynamics, acoustics, and electromagnetics. In each of these fields,

the desired effects from the metamaterial structures is due to the geometry, size,

orientation, and spacing with respect to the constituent materials from which the

structures are created. Each application uses metamaterials for different purposes

and each field has different methods for creating varying effects.
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2.2.1.1 Thermal Metamaterials

The main characteristic of interest for thermal metamaterials is the thermal con-

ductivity of said materials. This is usually done through the use of laminates, which

are defined as layered materials that are constructed of alternating materials of differ-

ent thermal conductivities [10]. These laminates take advantage of the second law of

thermodynamics, which states that the entropy of a closed system does not increase

for reversible processes but increases for instantaneous processes. This law does not

take into account the process by which this entropy can increase, so the laminate

materials take advantage of this by shaping the entropy response in time and space

[10]. As a result these new materials can be designed to create anisometic materi-

als, redirecting thermal energy in a certain direction more than other directions, or

even create thermal cloaking. Examples of anisometric thermal materials are given in

[11, 12, 13]. These laminates can also be used to create thermal cloaking by control-

ling the direction of the heat flux, as shown in [14]. In this paper, cloaking is achieved

by creating an environment of perfect insulation around the desired cloaking region

as well as directing the heat flux around the region as well. Other examples of ther-

mal cloaking are shown in [1, 15], where similar concepts are used. The experiment

showing the concept of thermal cloaking in [1] can be seen in Fig. 2.3
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Figure 2.3: Thermal cloaking shown in [1]

Focusing of thermal energy is also possible through the use of metamaterials uti-

lizing laminates. This focusing can involve concentrating the energy into a specific

region, or even inverting the thermal energy in certain regions. This inversion is done

through twisting many layers of a laminate material, creating a spiral effect of the

thermal energy. This behaviour can be seen from [2] in Fig. 2.4.

Figure 2.4: Thermal cloaking shown in [2]
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2.2.1.2 Acoustic Metamaterials

Acoustic metamaterials face a different problem from most other types of metama-

terials, that being the need for a medium needed for wave transfer. Since acoustic

metamaterials deal with pressure waves, different considerations must be made when

designing acoustic materials. Despite these limitations, acoustic metamaterials can

create effects of negative phase velocity [16, 17], as well as effective acoustic cloaking

[18]. These effects can be achieved via mapping these materials with varying phase ve-

locities onto inhomogeneous and anisometric materials to create the desired cloaking

effects. Similarly to the double negative permittivity and permeability metamaterials

shown in the next section, acoustic metamaterials can have a double negative bulk

modulus and mass density. This double negative behaviour can lead to a negative

phase phase velocity for acoustic waves [3]. An example of a structure that exhibits

this behaviour can be seen in Fig. 2.5

Figure 2.5: Device which creates a negative phase velocity effect on acoustic waves
from [3]

The combination of membranes and holes present in the structure shown in Fig. 2.5

creates the negative phase velocity effect for different frequencies, allowing wave prop-

agation from one end of the pipe to the other end when above a certain designed for

frequency. There have also been advances in the region of semi-two dimensional acous-

tic metamaterials, which can generate an effective negative bulk modulus [19]. This

effect was achieved through a series of closely located holes along a subwavelength

thin waveguide.
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2.2.1.3 Electromagnetic Metamaterials

Electromagnetic metamaterials are mainly used to control different parameters

of electromagnetic wave propagation such as phase velocity, wave polarization, and

varying permittivity and permeability of materials. The original goal of many early

electromagnetic metamaterials was to create materials that have both negative per-

mittivity and negative permeability. These two quantities represent the measure of

the electric polarizability and magnetization of a specific material. In other words,

these two variables represent how electromagnetic fields travel through a medium

and explain certain properties of these traveling waves as well. The first theorization

behind making these properties a negative value was done by Veselago [20] in 1968.

He theorized that it may be possible to create a material that has simultaneously

negative permittivity and permeability values. This situation led to the derivation

of so called ‘Left-handed’ materials, which are named for their opposite calculation

of propagation from conventional materials and their ‘Right Hand Rule’. From this

initial definition, several conclusions can be drawn from these left handed materials,

including a negative refractive index and a reverse Doppler effect. At the time this

theory was left untested as there were no realizable materials that possessed both a

negative permeability and permittivity.

Materials with a negative permeability were possible, such as certain plasmas, but

materials with a negative permittivity were not feasible. This changed in 1999 when

Pendry et.al published a work that showed a bulk material that had an effective

negative permittivity [4]. This paper showed that for a certain geometry placed in a

periodic structure, an effective negative permeability can be found at high frequencies.

This structure is now known as a split ring resonator and can be seen in Fig. 2.6,

along with the permeability response as frequency changes in Fig. 2.7.
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Figure 2.6: Periodic structure that shows a negative permeability at high frequencies
[4]

Figure 2.7: Permeability response of the geometry shown in Fig. 2.6 as frequency
changes [4]

It can be seen in Fig. 2.7 that there is a resonant response in the periodic structure

at around 13.5GHz, and that it is directly after this resonant point that the structure
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shows a negative permeability behaviour. This is due to the ratio of capacitive cou-

pling and inductive response at this specific frequency that this behaviour occurs. It

is important to note that the incident electric field has to be parallel to the plane of

the structure for this response to be valid, any other polarization of the incident field

will not give the same effect. Now negative permeability materials exist, but a pure

left handed material had not been achieved yet. This final breakthrough happened

in 2000 in [21], where a combination of periodic split ring resonators and straight

wires created a region in which both parameters were negative. This combination of

resonators was designed by [5] and can be seen practically built in Fig. 2.8, and shows

that the split ring resonators and wire arrays are printed on either side of a dielectric

material. The dispersion curve for a structure like this can be seen in Fig. 2.9, where

the solid lines is the response of the split rings alone, with the dotted lines repre-

senting the combined response of the resonators and the wire array. It can be seen

that from this dispersion that the combined response bridges the previously forbidden

frequency range in the response, which is due to the double negative behaviour of the

structure.

Figure 2.8: Geometry of the left handed metamaterial created in [5]
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Figure 2.9: Dispersion curve of the a structure like the one shown in Fig. 2.8 [4]

After this design that showed that an approximate left handed material was cre-

ated, many more metamaterial structures have been created. Most of these three

dimensional structures were designed to create a negative refractive index, as shown

possible in [21]. Applications using this technology for cloaking purposes is a widely

researched topic, as the negative refractive index could be combined with materials

that are characterized by a positive refractive index to create a cloaked region. The

drawbacks of using three dimensional materials for applications such as this become

more apparent now, including the overall bulkiness of three dimensional materials. A

combination of a multitude of elements must be placed in a large array to exhibit the

desired response, and this consumes considerable space and resources to create the

total structure. The physical size of each of the components that make up the larger

total structure become extremely small as the operating frequency increases, as each

of the elements must have a size that is sufficiently subwavelength. The extremely

small wavelength of high frequency signals necessitates the very small filaments and

precise unit cell elements, which can be near impossible to fabricate accurately. A

solution to this problem is to create two dimensional metamaterials, which are known
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as metasurfaces. These metasurfaces have a thickness which are sufficiently subwave-

length, so they approximate to a sudden boundary in space with respect to an incident

wave. Since these materials are essentially just boundaries, the effective permittivity

and permeability are not useful. Instead, the boundaries’ impedance, transmission,

and reflection are studied to affect incoming waves in a desirable manner.

2.2.2 Metasurfaces

Electromagnetic metasurfaces have several advantages when compared to three

dimensional metamaterials. The two dimensional surfaces have negligible loss since

they are of a subwavelength thickness compared to the incoming wave, as opposed to

a bulky three dimensional material where the losses within the material are a concern.

Another advantage is the overall size of the strucutre, as a planar metasurface takes up

less space than a whole metamaterial structure. The lessened size allows metasurfaces

to be more cost effective to fabricate when compared to conventional metamaterial

structures. Metasurfaces also deal with the reflection, transmission, and impedance

at the boundary as opposed to controlling the refractive index of a material directly.

This different approach to design presents its own challenges and design techniques

when compared to other metamaterials.

There are several separate theories on how metasurfaces are designed, with two

seperate theories being the main topic of discussion for transmitarray metasurfaces.

Transmitarray metasurfaces are defined as metasurfaces that deal with the trans-

mission of a desired incoming wave, as opposed to a reflectarray metasurface which

focuses on controlling the reflections off of its surface. The first theory deals with

transforming the incoming wave using a Local Transmission Line model. Each com-

ponenet in the metasurface is treated as a parallel section on a transmission line model

of the whole structure. With this model of the local system, the transmission and

reflection of a wave at the input of the system can be tailored to whatever is desired

at the output of the model using standard transmission line analysis. The second
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method of design for these metasurfaces deals with using the incoming wave as a ex-

citation for the metasurface itself, which re-radiates additional fields on either side of

the surface. These types of surfaces are known as Huygens’ surfaces, after Christiaan

Huygens, who created the foundations of this theory. This technique involves treat-

ing the surface as a combination of dipole sources which radiate independently from

each other due to the incoming wave. By designing the dipoles carefully, a desired

outgoing wave can be achieved.

This thesis will start with a basic background of electromagnetic radiation and

characteristics, including the general theories needed to fully test and characterize

the metasurfaces. After that, the theory and design of a metasurface designed with

the local transmission line model theory will be discussed along with its results. Then

a metasurface created using the Huygens’ surface theory will be derived and tested.

Finally, the two theories will be compared to show the advantages and disadvantages

in each theory with respect to each other and the application of a beam steering

effect.



CHAPTER 3: Useful Design Concepts

3.1 Impedance

Metasurface designs typically use the concept of impedance to create wave control

effects. In circuit analysis, impedance is defined as the opposition of a circuit element

to the flowing current present when a voltage is applied across said element. This

opposition impedes the progression of current as energy flows, with generally higher

currents corresponding to lower impedances. These impedances can have complex

values, with the conventional representation of a complex impedance given below in

Eq. 3.1.

Z = R + jX (3.1)

In this equation, Z is the complex impedance, R is the real component of the

impedance, known as the resistance, and X is the imaginary component of the

impedance, known as the reactance. In general, the resistance of a component stays

constant as the frequency of the voltage changes but the reactance tends to change.

At lower frequencies and with direct current, the reactance tends to disappear for con-

ventional circuitry components. As frequency rises, the reactance tends to become

more prominent compared to the resistance. In electromagnetic waves the concept

of impedance is also used, but with some slightly different connotation. In electro-

magnetics, the concept is known as wave impedance and is a ratio of the electric

and magnetic fields tangent to the direction of propagation. Similarly to circuitry

impedance, wave impedance can also be complex. This wave impedance for an arbi-

trary material is defined below in Eq. 3.2
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Z =

√
jωµrµ0

σ + jωεrε0
(3.2)

In this equation, Z is the wave impedance, ω is the angular frequency of the

propagating wave, µr is the relative permeability of the material, µ0 is the vacuum

permeability, σ is the electric conductivity of the material, εr is the relative permit-

tivity of the material, and ε0 is the vacuum permittivity. In the case of nonconductive

materials, that is to say materials which do not conduct electric currents well, σ can

be assumed to be 0. As such, the wave impedance can be reduced to the form shown

in Eq. 3.3.

Z =

√
µrµ0

εrε0
(3.3)

This value can be used to find the speed at which the wave travels through a ma-

terial, as well as the angle of refraction between materials, among several other uses.

As such, these two concepts of impedance will be useful for creating metasurfaces.

3.2 Floquet Theory

Metasurfaces are constructed using many distinct components, which when com-

posed together, create some desirable effect. In order to test these components, called

unit cells, some method of analysis must be completed on said unit cells. For meta-

surface unit cell design, Floquet analysis is used as it allows for studying of individual

geometries that lay on a periodic surface.

Consider an infinite, linear, one dimensional periodic system situated along the x

axis, given as a function Q(x) such that Q(x) = Q(x+ nP ) where P is the period of

the structure and n is any integer. Now introduce a propagating wave that intersects

with the periodic structure with wave number k =
√
k2x + k2y + k2z . The resulting

scattered wave can be defined in terms of several periods of the repeating structure

with a form as such.
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E(x2) = E(x1 + x2) = E(x1 + nPx) = E(x1)e
−jkxnP (3.4)

In this situation, the wave is defined only in terms of the wave number with respect

to the the x direction as the periodic structure is defined as only being periodic in

the x direction. Eq. 3.4 can be manipulated into the following form for any general

position along the x axis.

E(x) = En(x)e−jkx (3.5)

Where En(x) = E(x+ nPx) along any position in the x axis. As can be seen from

this, the field along the periodic structure is the same for any integer multiple of n.

Due to the uniqueness theory from the differential equation of the incoming wave,

each of the points along the periodic structure that are excited a distance of nP from

each other have valid and true solutions. The only difference between the fields at

the different positions along the periodic structure is the phase at each of the unique

positions, as can be seen in Eq. 3.4. Due to validity of each of the unique positions

along the structure, the periodic function En(x) can be expressed as a Fourier Series.

En(x) =
∞∑

m=−∞

En
me

j 2πxm
P (3.6)

The coefficient En
m can also be found as follows.

En
m =

1

P

∫ P

0

En(x)ej
2πxm
P dx (3.7)

By substituting Eq. 3.6 into Eq. 3.5, the scattered field can be seen to be a sum-

mation of all of the scattered fields along the periodic structure. This is shown in

Eq. 3.8
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E(x) =
∞∑

m=−∞

En
me
−jx(kx− 2πm

P ) (3.8)

The final direction of propagation for each of the propagating waves along the

periodic structure can be defined using the wave number of the sum of the scattering

waves in Eq. 3.8. This resulting wave number is defined as k′x = kx − 2πm
P

for the x

direction. This wave number defines the direction of propagation for the scattered

waves, both transmitted and reflected.

This concept of one direction periodicity can be expanded upon for two and three

dimentions, depending on the application. For the use of metasurfaces, the two

dimension expansion is more useful, while for conventional metamaterials the three

dimension expansion is more useful. In this derivation the two dimentional expansion

is the only one fully explained as this is the property that will be used in the design.

To start the two dimensional Floquet analysis, first consider an infinite, linear,

periodic, two dimensional plane normal to the z axis. This periodic structure can be

represented as a funtion Q(x, y) such that Q(x, y) = Q(x+ nPx, y +mPy), where Px

and Py are the periods for both the x and y directions of the periodic structure. Now

suppose that a wave that is dependent on x, y, and z intersects with this periodic

structure, the resulting summation of the resulting fields can be expressed as such is

Eq. 3.9.

E(x, y, z) = En(x, y, z)e−j(kx+ky) (3.9)

Similarly to the one dimentional case for the periodic structure, each of the positions

on the structure has a valid wave present with a varying phase. This varying phase

ultimately results in different directions of propagation for the incoming wave, as

represented by the wavenumber. As a consequence of all of the unique and valid

waves, the periodic function En(x, y, z) can be expressed as the Fourier Series in
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Eq. 3.10.

En(x, y, x) =
∞∑

m=−∞

∞∑
q=−∞

En
mqe

j
(

2πxm
Px

+ 2πyq
Py

)
(3.10)

The coefficient of this Fourier Series can be derived as such:

En
mq(z) =

1

PxPy

∫ Px

0

∫ Py

0

En(x, y, z)e
j
(

2πxm
Px

+ 2πxq
Py

)
dxdy (3.11)

By substituting Eq. 3.10 into Eq. 3.9, the form of the scattered wave with consid-

erations to the periodic structure can be found. This is shown in Eq. 3.12

E(x, y, z) =
∞∑

m=−∞

∞∑
q=−∞

En
mq(z)e

−j
[
xk
′
x+yk

′
y)
]

(3.12)

This final equation shows two wave numbers for the x and y directions of propaga-

tion, as shown below.

k
′

x = kx −
2πm

Px
(3.13)

k
′

y = ky −
2πq

Py
(3.14)

For this periodic electric field be propagate as a wave, it needs to satisfy a wave

equation to show it varies both in spatially and temporally. A general form of the

wave equation for the electric field can be below in Eq. 3.15

∇2E − 1

c2
d

dt
E = 0 (3.15)

Assuming that the electric field is separable with respect to its spatially varying

components and its time varying components, this wave equation can be simplified

to the Helmholtz equation, shown in Eq. 3.16



23

(∇2 + k2)E = 0 (3.16)

In order to prove that this field can propagate as a wave, the formula for the electric

field in Eq. 3.12 must be inserted into Eq. 3.16. By simplifying this resulting equation

down, the resulting relations in Eq. 3.17 and Eq. 3.18 can be found.

∞∑
m=−∞

∞∑
q=−∞

(
d2

dz2
En
mq(z) + k2zmq

)
(3.17)

k
′2
z = k2 − k′2x − k

′2
y (3.18)

By using the relation being summed in Eq. 3.17, the following statement can be

extracted. In this relation, En
mq0(z) is a constant by which the resulting wave is

propagating in the Z direction.

En
mq(z) = En

mq0(z)e−jkzmqz (3.19)

This final constant can be plugged back into Eq. 3.12 to find the final form of the

electric field with respect to the periodically repeating 2 dimensional structure. In

this equation shown in Eq. 3.20, m and q dictate the mode of the periodic Floquet

structure, which in essence is the position along the structure where the wave is

incident

E(x, y, z) =
∞∑

m=−∞

∞∑
q=−∞

En
mq0(z)e

−j
[
xk
′
x+yk

′
y+zk

′
z)
]

(3.20)



CHAPTER 4: Huygens-Fresnel Principle

In 1690, the Dutch physicist Christiaan Huygens published his book “Treatise on

Light” [22] which elaborated on his theory of light as a wave. Within this text, he

proposed that at every point at which light intersects with a disturbance, a unique

spherically propagating wave is generated. From the summation of each of these

separate wavefronts, the total wavefront that characterizes the reflection on the dis-

turbance is constructed. Later on in 1818 Augustin-Jean Fresnel expanded upon

Huygens’ original theory by combining the original principle with his own concept of

interference [23]. Fresnel’s concept of interference states that when waves of different

phase interact with one another, they can interact to construct a new wave that may

be larger, smaller, or equal in magnitude to the original waves. By applying the

concept of superposition to the sources proposed by Huygens along with Fresnel’s

interference theory, Fresnel formulated that the resulting wave front generated by a

wave intersecting with a disturbance can be seen as a summation of the individual

waves generated by each of the point sources.

Huygens’ derivation of this wavefront due to reflections failed to consider the cases

where a wave may intersect with an aperture or corner, where diffraction occurs. This

is due to Huygen’s assumption that each point at which a wave comes into contact

with a disturbance, a spherical monopole is approximately generated. This concept

was amended in 1991 by David Miller [24] when Miller proposed that the wavefront

sources were instead better approximated as dipole sources. This change in source

type allowed for the concept of diffraction to be resolved within Huygens’ original

theory.

This theory holds true for any propagating wave front, but can be reformulated for
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electromagnetics to create a resulting wavefront from surface currents. This concept

is known as the surface equivalence principle [25]. This principle approximates fields

generated by known currents inside of an arbitrary closed surface to be equivalent to

electric and magnetic surface currents flowing on the outside of the closed surface.

These imaginary surface currents generate the electric and magnetic fields that would

be generated by the enclosed sources. This concept also holds true in the reverse

case, where there are currents outside of the enclosed surface. The fields these outside

sources create can then be approximated on the inside of the enclosed surface using

equivalent surface currents that run along the surface of the enclosed contour. By

holding both of these cases as true, a generalized formula for surface currents can be

created for any arbitrary fields on either side of the surface. These arbitrary surface

currents can be found by comparing the difference between the tangential components

of the fields on either side of the surface, as seen in Eq. 4.1 and Eq. 4.2 and defined

in Fig. 4.1

Js = ân ×
(
H2 −H1

)
(4.1)

M s = −ân ×
(
E2 − E1

)
(4.2)
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Figure 4.1: Surface Equivalence Principle for an arbitrary close surface

In Eq. 4.1 and Eq. 4.2, Js is the electric surface current,M s is the magnetic surface

current, ân is the unit vector which is normal to the surface, E1 andH1 are the electric

and magnetic fields in the first region, and E2 and H2 are the electric and magnetic

fields in the second region. This general approximation for a arbitrary closed surface

can be further expanded for the case of an infinite sheet. This sheet can have electric

and magnetic surface currents that run along it in such a way as to approximate the

field distributions on either side of the surface. These surface currents are generated

in the same manner as in Eq. 4.1 and Eq. 4.2, but with a constant value for ân across

the entire surface. This simplifies the calculation of the surface currents down to what

is shown in Eq. 4.3 and Eq. 4.4 for the surface shown in Fig. 4.2.
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Js = âz ×
(
H2 −H1

)
(4.3)

M s = −âz ×
(
E2 − E1

)
(4.4)

Figure 4.2: Surface Equivalence Principle for an infinitely long surface

Using this novel method of analyzing fields in space with respect to surface currents,

a method to create a specific surface current in space which generates fields by itself

was proposed by Eleftheriades in [26]. In this paper, he proposed using one of two

methods to create these independent surface currents, either by using an array of

discreet electric and magnetic dipoles, or by creating impedance and admittance

surfaces. Using the electric and magnetic dipoles would create the dipole radiation

that was corrected in Huygens’ original theory as an incident wave came into contact

with the dipoles. These dipoles would need to be made subwavelength so that the

propagating waves treat the dipoles as an instantaneous surface current. These dipoles

would be excited by the incoming wave, and this excitation would generate effective

surface currents across the length of the dipole array. The surface currents generate

fields on either side of the surface, as can be seen from the simplified version of the

surface equivalence principle in Fig. 4.2. There would also be some reflected fields

on the incident side of the surface, which contributes to the fields in this space. In
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total on the incident side of the surface, there are the incident waves, the reflected

waves, and the surface current generated waves. On the output side of the surface,

there is only the transmitted incident wave as well as the surface current generated

wave. Eleftheriades theorized that the dipole array would be constructed in such a

way so as to have the generated waves in the incident space destructively interfere

with the incident and reflected fields. The generated waves on the output end could

also create a wave such that the transmitted incident wave was canceled out while

still having a propagating wave.

The second approach to this concept is to create several subwavelength admittance

and impedance metasurfaces which can approximate the surface current generation of

the earlier mentioned dipole array. These surfaces can either be created of capacitive

or inductive elements, depending on the desired output wave. Both of the mentioned

methods for creating one of these Huygens’ surfaces start the same way, with approx-

imating the required total admittance and impedance needed to create the desired

output wave. This can be done by evaluating the time averaged tangential compo-

nents of the desired input and output waves at the surface with respect to the surface

current equations given in Eq. 4.3 and Eq. 4.4. The general method for evaluating

the time averaged fields on the surface is outlined in [27, 28, 29, 30]. The resulting

formulation is shown below in Eq. 4.5 and Eq. 4.6.

Et,av|S =
1

jωαES
Js − kEM

(
ân ×M s

)
(4.5)

H t,av|S =
1

jωαMS

M s − kEM
(
ân × Js

)
(4.6)

In Eq. 4.5 and Eq. 4.6, Et,av|S is the time averaged electric field at the surface,

H t,av|S is the time averaged magnetic field at the surface, αES is the electric polariz-

ability, αMS is the magnetic polarizability, and kEM is the magnetoelectric coupling
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constant. In these equations the surface is assumed to be a two dimensional plane,

which is not realistically possible. In order to use these equations for designing the

dipole array or admittance and impedance surfaces, the total width of the elements

in both cases must be subwavelength so that the incoming wave interacts with the

surface as a two dimensional plane. It can also be seen that the surface currents are

also tensoral, so they both vary differently in either direction that the surface occu-

pies. This is due to the electric and magnetic polarizabilities, αES and αMS, and the

magnetoelectric coupling kEM , being tensoral as well. In order to simplify the design

process of the metasurface, the polarizabilities are assumed to be isometric across the

surface. From this point, the admittance and impedance values needed to generate

the desired surface currents can be defined as Y ES = jωαES and ZMS = jωαMS.

With these definitions, Eq. 4.5 and Eq. 4.6 can be simplified to the forms given in

Eq. 4.7 and Eq. 4.8.

Et,av|S = ZESJs − kEM
(
âz ×M s

)
(4.7)

H t,av|S = Y ESM s − kEM
(
âz × Js

)
(4.8)

These two equations are both depend on the time averaged, tangential fields at the

surface, where ZES is the surface impedance which is responsible for manipulating

the magnetic filed, and where Y MS is the surface admittance which is responsible for

manipulating the magnetic field. The time averaged electric and magnetic fields can

be defined as such, assuming that the surface is situated in the xy-plane.

Et,av|S =
1

2

(
E1 + E2

)
|z=0 (4.9)

H t,av|S =
1

2

(
H1 +H2

)
|z=0 (4.10)
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From here the equations in Eq. 4.3 and Eq. 4.4 can be used with Eq. 4.7 and Eq. 4.8

to find an equation for the the surface impedance and admittance.

ZES =
Et,av|S + kEM

(
âz × Js

)
âz ×

(
H2 −H1

) (4.11)

Y MS =
H t,av|S + kEM

(
âz ×M s

)
âz ×

(
E2 − E1

) (4.12)

Since the impedance and admittance values were defined before to be purely imag-

inary, as well as the magnetoelectric coupling being purely real, < [ZES] = < [YMS] =

= [kEM ] = 0, simplified versions of the impedance and admittance on the surface can

be found. From here the desired input and output waves must be defined, and the

incident wave is set to be normal to the surface while the output wave is directed by

an arbitrary steering angle. As such, the input and output waves are defined below

in Eq. 4.13, Eq. 4.14 and Eq. 4.15, Eq. 4.16 respectively.

Ein = E0âze
−jkz (4.13)

H in =
E0

η0
âye
−jkz (4.14)

Eout = E0âze
−jk(cos(θr)z+sin(θr)y) (4.15)

Hout =
E0cos(θr)

η0
âye
−jk(cos(θr)z+sin(θr)y) (4.16)

For Eq. 4.13, Eq. 4.14, Eq. 4.15, and Eq. 4.16, k is the incoming wave’s wave num-

ber, E0 is the magnitude of the incoming electric field, η0 is the free space impedance,

and θr is the outgoing steering angle. Using these defined input and output waves, the
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total surface impedance and admittance can be solved for. These resulting equations

can be seen in Eq. 4.17 and Eq. 4.18

ZSE =
−j
2
=
[
Eout + Ein

Hout −H in

]
− jkEM=

[
Eout − Ein

Hout −H in

]
(4.17)

Y SE =
−j
2
=
[
Hout +H in

Eout − Ein

]
+ jkEM=

[
Hout −H in

Eout − Ein

]
(4.18)

kEM =
<
[
EoutH

∗
in − EinH

∗
out

]
2<
[(
Eout − Ein

) (
Hout −H in

)∗] (4.19)

Using these two equations, the equivalent surface admittance and impedance ap-

proach to Huygen’s surfaces can be used, but in order to use discreet electric and

magnetic dipoles for the surface, the scattering parameters must be obtained. To do

so, it is useful to first define the surface’s impedance matrix. The general form for an

impedance matrix is given in Eq. 4.20

Eout
Ein

 =

Z11 Z12

Z21 Z22


Hout

Hin

 (4.20)

By equating Eq. 4.20 to Eq. 4.11 and Eq. 4.12, each component of the Z matrix

can be found. These resulting values can be seen below.

Z11 = ZES +
(1 + 2kEM)2

4YMS

(4.21)

Z22 = ZES +
(1− 2kEM)2

4YMS

(4.22)

Z12 = Z21 = ZES +
(1 + 2kEM) (1− 2kEM)

4YMS

(4.23)
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Using these impedance parameters of the system as a whole, the scattering pa-

rameters can be found using the conversions derived in [31]. These conversions take

into account the normalized impedances on each side of the surface, shown as Z01

and Z02. The final conversion between the impedance parameters and the scattering

parameters can be seen below.

Z01 = η, Z02 =
η

cos(θr)
(4.24)

Z11n =
Z11

Z01

, Z22n =
Z22

Z02

(4.25)

Z12n =
Z12√
Z01Z02

, Z21n =
Z21√
Z01Z02

(4.26)

S11 =

(
Z11n − Z∗01

Z01

)
(Z22n+1)− Z12nZ21n

(Z11n+1)(Z22n+1)− Z12nZ21n

(4.27)

S12 =
2Z21n

√
R01R02

Z01Z02

(Z11n+1)(Z22n+1)− Z12nZ21n

(4.28)

S21 =
2Z12n

√
R01R02

Z01Z02

(Z11n+1)(Z22n+1)− Z12nZ21n

(4.29)

S22 =

(
Z22n − Z∗02

Z02

)
(Z11n+1)− Z12nZ21n

(Z11n+1)(Z22n+1)− Z12nZ21n

(4.30)

In Eq. 4.24, η is the intrinsic impedance of each material, and in Eq. 4.28 and

Eq. 4.29, R01 and R02 are the real portions of the intrinsic impedance in each re-

gion. For this design to work, the magnitude of the reflection coefficient (S11) must

be essentially 0 so that there are no total reflected fields. The magnitude of the
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transmission coefficient (S12) must be close to 1, and the phase of the transmission

coefficient can vary. This varying phase is the property by which the screen steers

the incoming beam.

From this point, testing to find appropriate unit cell designs for the structure can

be done. This process is done by applying Floquet analysis to each individual unit

cell in a program such as HFSS. This Floquet analysis takes the structure shown in

Fig. 4.3 and periodically repeats it across an infinite plane. This process is done so

that the unit cells can be tested with a coupling effect of similarly shaped neighbors,

which ultimately gives the effective transmission and reflection properties of the tested

unit cell. Different permutations on the size, shape, and position of each of the dipole

elements need to be simulated in order to build a database upon which the appropriate

geometries may be selected for their appropriate placement in the total structure.

Figure 4.3: Unit cell testing simulation’s geometry for a Huygens’ metasurface.

As can be seen in Fig. 4.3, the entire unit cell structure, including the dielectric slab

that connects the electric and magnetic dipoles, is placed between two large regions

of vacuum. These vacuum regions are relatively large so that no coupling effects may

occur from the input port, while the phase is de-embedded to the unit cell to allow for

accurate measurements of the scattering parameters. These unit cells ere sampled by
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taking various measurements across the required data. For Huygens-Fresnel surfaces

local periodicity does not need to be maintained for valid operation for the entire

structure, so individual unit cells can vary in design. This is due to the absolute

transmission and reflection being used in the design, which does not rely on a gradual

of geometry to create the desired response. As such, different geometries can be

used next to each other in order to create the desired steering outcome. The only

limitations on this design is the fact that these unit cell designs need to operate as

dipoles, either electric or magnetic, so that the desired creation behaviour is created.

Several examples of this behaviour can be seen in [6, 30, 32, 33, 34]. All of these

sources use various geometries of dipole structures in order to create the desired field

generation on either side of the surface, creating effects from steering the incident

energy to focusing the outgoing beam. As a point of comparison with the local

transmission line design, a huygens’ surface that is designed for beam steering is used.

This design is used so as to draw direct comparisons between the two methods, as

well as weight the advantages and disadvantages against each other. To compare the

local transmission line modelled metasurface, the design in [6] will be used. Several

important differences between the two designs are the operational frequencies of each

surface as well as the desired angle of refraction. For the Huygens’ designed surface,

the operational frequency is 20GHz and has a desired steering angle of 71.8◦ compared

to the local transmission line modelled surface which has an operational frequency of

5GHz and a steering angle of either 20◦ or 30◦.

An important distinction between the two design approaches is in the orientation

and design of the individual unit cells. The Huygens’ designed surface requires unit

cell geometries that are oriented normal to the direction of the incident electric fields.

As such, the unit cells for an incoming wave that is polarized to have the electric field

purely in the x-direction must be oriented in the y-z plane, and an incoming electric

field that is polarized in the y-direction must have unit cells that are normal to the
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x-z plane. An example of this unit cell orientation can be seen in Fig. 4.4, where the

square in the x-z plane is a generic unit cell for a y-polarized electric field.

Figure 4.4: Orientation of a generic unit cell geometry for a y-polarized electric field
of an incoming wave.

As such, TE and TM polarized waves are required to have separate geometries

in order to create a steering effect in each direction. The metasurfaces in [6] were

designed for each of these conditions in mind, with a TE and TM polarized surface

being shown in Fig. 4.5

(a) (b)

Figure 4.5: Two different Huygens’ metasurfaces used in [6] for a) a TE polarized
wave and b) a TM polarized wave

The individual unit cells were chosen using the theory discussed earlier in this sec-

tion, starting with applying Eq. 4.17, Eq. 4.18, and Eq. 4.19 with a desired refraction

angle of 71.8◦ and a normally incident plane wave. The resulting surface impedance,

admittance, and electromagnetic coupling can be seen in Fig. 4.6, Fig. 4.7, and Fig. 4.8

respectively.
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Figure 4.6: Surface Impedance across the surface of the metasurface.
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Figure 4.7: Surface Admittance across the surface of the metasurface.
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Figure 4.8: Electrocmagnetic coupling coefficient across the surface of the metasur-
face.

Now that the impedance and admittance values at the metasurface have been calcu-
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lated, their values can be inserted into Eqs. 4.21, 4.22, and 4.23 to find the impedance

parameters of the surface. Using these impedance parameters, the transmission pa-

rameters can be found using Eq. 4.28. This transmission coefficient is then plotted

across the metasurface to ensure that there is perfect transmission and a phase gradi-

ent. The magnitude and phase of the transmission coefficient can be seen in Figs. 4.9

and 4.10 respectively.
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Figure 4.9: Magnitude of the transmission coefficient across the surface.
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Figure 4.10: Phase of the transmission coefficient across the surface.

One period of the structure is chosen based on the phase distribution, so that only

one single cycle of the phase is repeated. For this application, one period of the

structure was found to be approximately 1.05λ. This period is discreetized into 10

distinct points of phase, which are summarized in Table 4.1, and which results in
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10 distinct unit cells that each have a size of 0.105λ. The unit cells located at the

distances mentioned on this table must have their corresponding phases in order for

the metasurface to operate correctly.

Table 4.1: Positions of unit cells on metasurface and their required phase.

Position (λ) Phase Angle
-0.1694 161◦

-0.0642 126◦

0.0410 89◦

0.1462 53◦

0.2514 17◦

0.3567 -18◦

0.4619 -55◦

0.5671 -90◦

0.6723 -126◦

0.7775 -162◦

The testing for unit cell geometries was done by [6], and a unit cell design for each

of the locations was found. The last step in this process was simply to place the unit

cells next to each other and verify the surface’s operation. This was done in HFSS

and tested with the same setup that the local transmission line theory metasurface

was tested over. The resulting field structure can be seen in Fig. 4.11. It can be

seen that there are some meaningful reflections at the input of the metasurface, as

well a nonideal refraction at the output of the surface. The resulting wave ends up

propagating at an angle of 62◦, which is 9.8◦ less than the desired steering angle. This

discrepancy was due to the physical size of the surface. Since the surface is no infinite

in nature, the limitations on the number of unit cells limits the total steering angle

of the resulting wave.
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(a) (b)

Figure 4.11: Near field radiation for the metasurfaces proposed in [6] for a) a TE
polarized wave and b) a TM polarized wave

Metasurfaces designed through this method have various problems and difficulties

in their design approach. Since this theory relies on the fact that the incident wave

is nullified by the fields generated by the surface, any discrepancies in the generated

field may result in noticeable reflections at the input. Due to this, accurate field

generation at the output of the metasurface is difficult to achieve in general. Long

amounts of time tend to be required to find appropriate unit cell structures that can

satisfy the transmission magnitude and phase requirements, which is another major

drawback to this theory. However, extreme steering angle and exotic wave behaviour

is possible using this theory if accurate components are created for its operation.



CHAPTER 5: Transmission Line Model

This section deals with the derivation and design of a multi-directional metasurface

based on an approximate transmission line model. This model is used to create a

different impedance profile for each desired direction of phase control, which in this

project involves a surface with two independent phase shifts. Each of these different

directions of phase shift can have different shifts from one another, allowing for a

dynamic response in the behaviour of the metasurface without changing the physical

shape of the screen.

5.1 Derivation

To start approximating the metasurface as a transmission line, first the generalized

Snell’s Law must be used. This law states that the permittivity and phase of the

first region with a phase shift relates to the permittivity and phase of the second

region. This is shown in equation 5.1 [35], assuming that the phase discontinuity at

the interface between the two regions varies in the x direction.

√
εr1sin(θi) +

1

k

∂Φ

∂x
=
√
εr2sin(θr) (5.1)

In Eq. 5.1, εr1 and εr2 are the relative permittivities in region 1 and 2, θ1 and θ2

are the steering angles of the fields in each region with relation to the normal vector

of the boundary between the two regions, k is the wave number of the propagating

wave, and Φ is the distribution of a phase discontinuity along the boundary. Using

the holographic principle on the desired phase discontinuity in the generalized Snell’s

Law, the phase of the outgoing wave can be written as such. In this derivation the

phase discontinuity with respect to the x direction is used.
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Φsurface = 6 Ex − kXsin(θ) (5.2)

From this equation it can be seen that the phase changes along the physical x axis,

causing a gradient of the phase in that direction, assuming that 6 Ex is the phase of

the electric field in the direction, θ is the desired steering angle, and X is the position

on the boundary in the x direction. This gradient of the phase is the driving force

behind the phase control effect exhibited by the screen.

Using this principle, a three layer metasurface was chosen to be designed, the layers

of the metasurface being the three interfaces between the air and the dielectric the

surface is printed on, between the two dielectric layers, and between the dielectric

and air. The screen was desired to have perfect transmission, no reflections, and be

reciprocal. Due to the constraint of the screen to be reciprocal, the inner and outer

layers of the metascreen were chosen to have the same admittance value, as the three

layer design with identical outside layers have sufficient degrees of freedom to allow

for these design constraints to be met [36].

From these assumptions, the entire screen can be approximated as a transmis-

sion line as shown in Fig. 5.1. This method of creating a beam steering effect with

metasurfaces has been shown to be effective with high rates of transmission and low

reflections [37, 38] In this model, kz0 is the wavenumber of the wave in air, kz1 is

the wave number of the wave in the dielectric, Y1 is the admittance of the outer lay-

ers of the metasurface, Y2 is the admittance of the inner layers, Z0 is the free space

impedance for the exciting wave, and Z1 is the impedance of the dielectric for the

exciting wave.
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Figure 5.1: Approximate transmission line model for the metasurface

In this application kz0 and kz1 are the wave numbers of the propagating wave in air

and in the dielectric, and are defined as such. k0 is also the free space wave number

of the propagating wave.

kz0 = k0
√

1− sin2(θi) (5.3)

kz1 = k0
√
εr − sin2(θi) (5.4)

In this application, the incoming wave is assumed to incident normal to the meta-

surface so θi is assumes to be 0. Due to this, the wave numbers can be rewritten as

such.

kz0 = k0 (5.5)

kz1 = k0
√
εr (5.6)

Using these wavenumbers and the defined admittances and impedances, the scat-

tering parameters of the entire transmission line can be found. To achieve this, the
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ABCD matrix are defined below. The ABCD matrix for the dielectric material is

given as such, assuming the dielectric materials as portions of a transmission line [7].

ABCDd =

 cos(kz1d) jZ1sin(kz1d)

j 1
Z1
sin(kz1d) cos(kz1d)

 (5.7)

In this equation, d is given as the thickness of the dielectric layer. The ABCD

matrix for an admittance load on a transmission line is given as follows. This equation

can be used for any admittance load so it is used for both the Y1 and Y2 values.

ABCDYn =

 1 0

Yn 1

 (5.8)

Combining each component on the transmission line involves cascading several of

these ABCD matrices together, which creates the equation shown below.

ABCDtotal =

 1 0

Y1 1


 cos(kz1d) jZ1sin(kz1d)

j 1
Z1
sin(kz1d) cos(kz1d)


 1 0

Y2 1

 · · ·
 cos(kz1d) jZ1sin(kz1d)

j 1
Z1
sin(kz1d) cos(kz1d)


 1 0

Y1 1

 (5.9)

This equation simplifies down to a total ABCD matrix for the entire transmis-

sion line structure. This ABCD matrix can then be transformed into its equivalent

scattering parameter matrix. Due to the desire assumption that the screen will be

reciprocal, the reflection coefficients, S11 and S22, can be assumed to be equal, as well

as the transmission coefficients, S12 and S21. From this we can define the scattering

parameters as shown below.
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S11 =
A+B/Z0 − CZ0 −D
A+B/Z0 + CZ0 +D

(5.10)

S12 =
2(AD −BC)

A+B/Z0 + CZ0 +D
(5.11)

In Eq. 5.10 and Eq. 5.11, A, B, C, and D are all the components of the ABCD

matrix given in Eq. 5.9. Since it is desired to have a metasurface that has perfect

transmission and no reflections, with a phase shift imposed by the screen, the scat-

tering parameters can be defined S11 = 0 and S12 = ejθ. From these definitions of

the scattering parameters, Eq. 5.10 and Eq. 5.11 can be solved to find the equivalent

admittance values for each of the surfaces in the overall structure. These resulting

equations can be seen below, where θ is the desired steering angle after the metasur-

face.

Y1 =
j

Z1 tan (kz1d)
+

j

Z1 tan (θ/2)
(5.12)

Y2 =
j [Z0 sin (θ/2) + Z0 sin (3θ/2) + 2Z1 sin (2kz1d) cos (θ/2)]

2Z2
1 cos (θ/2) sin2 (kz1d)

(5.13)

These two equations create the ideal admittance gradients needed to steer the

incoming wave in the correct direction. This data will be used to match the future

unit cell designs to so as to create the same effect with the actual design as in the

theoretical design. In order to create the desired effect of dual polarization beam

steering, these two equations need to be applied for each polarization with their

respective steering angles. The difference between two such admittance profiles can

be seen in Fig. 5.2 and Fig. 5.3 for the X and Y polarizations with a steering of 20◦

and 30◦ respectively.
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Figure 5.2: Ideal Admittance profiles for a 20◦ shift in the x-polarization and 30◦ in
the y-polarization for Y1
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Figure 5.3: Ideal Admittance profiles for a 20◦ shift in the x-polarization and 30◦ in
the y-polarization for Y2

As it can be seen between from these two figures, the admittance profiles need to

be unique for each polarization. This presents a tricky problem where a unit cell

needs to be able to have a tensoral admittance that varies across the surface while

still maintaining high transmission and low reflections. The unit cells must also cover

the full range of phase that is needed for transmission so that proper transmission

and wave controlling effects may occur [39] This hurdle was overcome by the physical
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design of the unit cells, as discussed in the following section.

5.2 Design

In order to construct an actual, physically realizable metasurface, the admittance

profile values as outlined in the above derivation must be constrained to a finite length

that can be discreetized into individual unit cell geometries. To calculate the required

size of the surface, the wave length of the incoming wave is scaled by a length factor

that is related to the desired resulting phase shift. The total length of a single period

of the metasurface can be derived from the following equation.

length =
λ

sin (θ)
(5.14)

In Eq. 5.14, λ is the wavelength of the propagating wave, and θ is the desired

steering angle. Equation 5.14 keeps the total length of the screen to a size such that

the phase of the admittance varies from 0 to 2π, which allows the entire incoming

wave to interact with the surface. From here the entire length of the surface is split up

into separate unit cells of the same size to allow for physical geometries to be place in

their position. Each of these geometries must approximate an appropriate admittance

value at each of the locations in such a fashion as to recreate the originally calculated

admittance profile. To achieve this, the calculated admittance profile was sampled at

the center point of each unit cell location. This correlated admittance and location

data will be used to choose an appropriate unit cell structure that matches the data.

An example of one of these admittance profile for an X-polarized wave steered at 20◦

can be seen in Fig. 5.4 for the Y1 admittance, and it Fig. 5.5 for the Y2 admittance.
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Figure 5.4: Ideal Admittance profile for Y1
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Figure 5.5: Ideal Admittance profile for Y2

When designing the unit cell geometries, several design considerations were taking

into account. First, the principle of local periodicity was taken into account. This

principle states that geometries which are in close proximity to the observed geometry

will have essentially the same response if the difference between the geometries is

minuscule. Using this principle, the unit cells can be designed with the same basic

unit cell structure and have a single part of the geometry that changes to create the
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required admittance gradient. This single varying geometric parameter must change

gradually across the surface for local periodicity to hold true. As a result, surfaces

that have a more gradual change in the geometric parameter will most accurately

model the ideal admittance profile they are designed to match.

Another design consideration taken into account is the multiple polarization steer-

ing angles that are needed to be designed for. For each polarization, there is a different

admittance profile that needs to be matched to. This means that there needs to be

a separate geometric parameter for each polarization that changes each admittance

within the same unit cell structure. To keep local periodicity, the structure must be

symmetrical across each of the polarizations while maintaining the independence of

each admittance profile.

From these design considerations, the design of appropriate unit cell geometries can

be started. This testing was done in ANSYS’ High Frequency Structure Simulator

(HFSS) using the Driven Modal simulation. This type of simulation allows for Floquet

analysis to be performed on the specified geometry within HFSS. This analysis creates

an infinitely period structure of the unit cell geometry that is excited from the specified

input port. This simulation type is useful when simulating unit cells assuming local

periodicity of geometries, as the periodic structure of the same geometry generates the

same response as the slowly changing geometries of the proposed metasurface. There

were two separate simulations that were done on each proposed cell geometry, one

simulation where the geometry was placed between air and the dielectric material,

and one where the same geometry was placed between two slabs of the dielectric

material. These two separate simulations were done to find geometries that could

work for either the outside profile or the inside profile. The scattering parameters were

extracted from the simulations and put through the following equations to extract

the equivalent admittances of the geometry.
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Z = Z0,TE/TM
1 + S11

1− S11

(5.15)

Y
MTs,TE/TM
1 =

1

Z
− Y1,TE/TM (5.16)

In Eq. 5.15, S11 is the reflection coefficient of the unit cell being tested. These

two equations are valid for extracting the actual admittance values for the geome-

tries appropriate for the outer admittance profiles. For this situation, Z0,TE/TM and

Y1,TE/TM are defined below for the impedances and admittances for free space and

the dielectric relative to the polarization of the incoming wave.

Z0,TE =
η0k0
kz

(5.17)

Z0,TM =
η0kz
k0

(5.18)

Z1,TE =
1

Y1,TE
=
η1k1
kz1

(5.19)

Z1,TM =
1

Y1,TM
=
η1kz1
k1

(5.20)

In these equations, η0 and η1 are the the characteristic impedances of free space

and the dielectric, k0 and k1 are the wave numbers of the propagating wave in each

material, and kz and kz1 are the wave numbers of the propagating wave with respect

to the incident angle of the incoming wave. These values are defined below where

εr is the relative permittivity of the dielectric material and f is the frequency of the

incoming wave.
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η0 =

√
µ0

ε0
(5.21)

η1 =
1
√
εr

(5.22)

k0 =
2πf

c
(5.23)

k1 = k0
√
εr (5.24)

kz = k0

√
1− sin2 (θi) (5.25)

kz1 = k0

√
εr − sin2 (θi) (5.26)

In this project, the incidence that was considered was normal incidence, so k0 = kz.

With all of these equations in place for verifying the admittances of each layer, testing

can be done on actual geometries for the unit cells. There were several different designs

tested, with varying schemes for creating independence of the polarizations. Some

of the proposed geometries had an outer flange that changed in length to create an

varied admittance effect, while others used a changing length of the base design or

cross hatching design. In the end, a modification of the traditional Jerusalem cross

unit cell design was chosen for the inner and outer admittance sheets. This design

can be seen in Fig. 5.6. The geometry was implemented as a slot design, so that

the majority of the surface is a perfect electric conductor (PEC) and with periodic

cutouts in the shape of this unit cell. The length of the flanges were swept to vary the

admittance in each direction such that the admittance in the x-direction was effected
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by the length of Flanx and the admittance in the y-direction was effected by the

length of Flany.

Figure 5.6: Geometry of the chosen unit cell for the layers of the metasurface

After extensive testing, this geometry was chosen for its simplicity of design, as

well as its smooth admittance gradient behaviour with respect to the changing side

flanges. The admittance profile for this geometry can be seen in Fig. 5.7
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Figure 5.7: Admittance of the unit cell shown in Fig. 5.6 as the flange length is swept

It can be seen that the unit cell shows a very gradual change in the admittance as
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the flange length changes, as well as a smooth transition from negative admittance

to positive admittance. The gradual change is very useful considering the surface is

working under the assumption of local periodicity of unit cells. If the admittance

changed very suddenly with respect to the geometric parameter of the unit cell, the

assumption of local periodicity between elements would become less valid. This would

be due to the possibility of adjacent unit cells with similar admittance values hav-

ing vastly different physical dimensions. Many unit cells also had very discontinuous

values of the admittance when it got close to 0, as well as containing asymptotal

behaviour as well, so this geometry is very attractive as it has neither of those be-

haviours.

Using this database of admittance values per geometric parameter, and the ideal

admittance profile of the surfaces, individual unit cells can be matched to the ideal

profile. The results of this matching can be seen in Fig. 5.8 and Fig. 5.9 for the TE

polarization at 30◦ steering and in Fig. 5.10 and Fig. 5.11 for the TM polarization at

20◦ steering.
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Figure 5.8: Admittance of the unit cell compared to the ideal admittance profile of
the outside surface for the TE polarized wave steered at 30◦
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Figure 5.9: Admittance of the unit cell compared to the ideal admittance profile of
the inside surface for the TE polarized wave steered at 30◦
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Figure 5.10: Admittance of the unit cell compared to the ideal admittance profile of
the outside surface for the TM polarized wave steered at 20◦
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Figure 5.11: Admittance of the unit cell compared to the ideal admittance profile of
the inside surface for the TM polarized wave steered at 20◦

It can be seen that for most of the surfaces, the admittances match almost perfectly

between the ideal and simulated values. There are some discrepancies in the matching

for the outside layers, but this is mainly due to the nature of the ideal admittance

profiles. The ideal profiles for Y1 were derived using tangent functions, which naturally

have asymptotal points. As such, on either end of the admittance profile there are

asymptotes that show the admittance going to positive and negetive infinity. This

behaviour is masked due to the way that the profile was sampled for the unit cell

matching, but become apparent at the edges where the geometry cannot compensate

for an infinite admittance. This mismatch is not a large problem for the actual screen,

as the problem unit cells are at the edge of the surface. Since the surface is excited at

the center of its structure, only a small portion of the field that is low in magnitude

interacts with these mismatched unit cells. Due to this, the amount of error from this

discrepancy is minimal.

The total surface was constructed in Comsol’s Radio Frequency module in order

to simulate the response of the structure to an incident wave. For these simulations,

a Gaussian beam was used to excite the metasurface in order to see the full field

response across a single period of the structure. The surface was as tested with
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alternating perfect electric conductor (PEC) and perfect magnetic conductor (PMC)

boundaries in order to simulate the structure as inside of a parallel plate waveguide.

Simulating the structure in a waveguide was essential in order to align the electric

field in each polarization, ensuring that the surface encountered a purely TE or TM

incident wave. A parallel plate waveguide achieves this behaviour through by placing

the PEC boundaries on the boundaries normal to the direction of the electric field in

each polarization, and since electric fields tend to flow from one PEC boundary to

another PEC boundary the electric field is distributed evenly in the direction of the

electric field. The PMC boundaries achieve the same effect as the PEC boundaries,

but affect the magnetic field instead which further supports the polarization of the

incoming wave. This constructed structure can be seen in Fig. 5.12.

Figure 5.12: Close up on one period of the metasurface constructed in Comsol

This structure was constructed with an additional two periods of the full structure

on either side of the original structure so that the full Gaussian beam could interact

with the center period of the structure without the side walls of the structure interfer-

ing with said Gaussian beam. The repeated structure also allowed for the transmitted
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beam to be seen much more easily, as there was more space for the output beam to

propagate after transmitting through the screen. The near field distribution given by

these simulations can be seen in Fig. 5.13 for the TE polarization steered at 20◦ and

in Fig. 5.14 for the TM polarization steered at 30◦.

Figure 5.13: Near electric field response for the metasurface designed to steer 20◦

when excited with a TE Gaussian beam

Figure 5.14: Near electric field response for the metasurface designed to steer 30◦

when excited with a TM Gaussian beam

In these field distributions, there is a clear steering effect happening in both po-

larization excitations. There is some spreading of the output beam after it passes



57

through the structure, but since the beam exciting the structure is a Gaussian beam,

some spreading after the surface is to be expected. It can also be seen that the distri-

bution shown in Fig. 5.14 shows more spreading than the fields in Fig. 5.13. This is

due to the structure being less able to support steering angle of much higher angles

than 30◦ very accurately, and as a consequence there are more errors in the outgo-

ing beam. This behaviour can be gleaned by observing the structural period of the

metasurface as the transmitted angle changes. This can be seen in Eq. 5.14, where

it becomes apparent that the overall length of the metasurface decreases as the angle

increases. This decrease in length, coupled with the fact that the same size unit cells

are used for polarization in order to construct a single structure, leads to a decrease

in the overall number of unit cells that can populate the surface. In essence, the

decreased number of unit cells leads to a decreased number of points that can be used

to sample the admittance curves in order to create a continuous admittance profile.

This consequence leads to a more stepped profile of the admittance, with larger dif-

ferences between local unit cells, pushing the concept of local periodicity with respect

to admittance to its limits. This behaviour can be seen in Table 5.1, where the angle

of refraction, length of one structural period of the surface, and number of unit cells

is compared. This table is using the same quantities as the project, that is to say

that the surface is designed to operate at 4.5GHz and the unit cell size is set to λ
6
.

Table 5.1: Comparison of refraction angle to the total length of the metasurface and
the number of unit cells per structural period

Refraction
Angle

Length
of Surface

Number of
Unit Cells

10◦ 383.92mm 29
20◦ 194.92mm 15
30◦ 133.33mm 11
40◦ 103.72mm 8
50◦ 87.03mm 7



CHAPTER 6: Conclusions

Overall, there are several distinctions between the two theories which give each

approach certain advantages, but which ultimately show that the local transmission

line model theory is more applicable in general. The two theories distinguish them-

selves in their approach to handling the incoming wave. For the local transmission

line theory, the incoming wave is treated as a signal traveling through a transmission

line circuit. The incoming signal is shaped using transmission line analysis methods

to allow for the incoming wave to flow from the input port to the output port with

perfect transmission and an altered phase. This designed transmission line circuit

is then approximated as a two dimensional sheet in space which interacts with an

incoming wave. In essence, the local transmission line model focuses on transforming

the incoming wave into an altered version of itself at the output. In contrast to the

local transmission line theory, the Huygens-Fresnel theory primarily deals with utiliz-

ing the incoming wave as a source to generate a desired output field structure. This

generation of a new wave from the incoming wave is made possible by the inclusion

of the electric and magnetic dipoles in the unit cells. These dipoles are excited by

the incoming wave, and generate waves on either side of the surface. The generated

wave at the incoming side of the surface is used to destructively interfere with the

remaining portions of the incoming wave, so that no total reflections are noticed.

The fields generated by the dipoles on the output side of the surface manifest as the

resulting propagating wave, so there is an effective transmission of energy from input

to output.

The local transmission line modelled metasurface tends to have a simpler design

process, as transmission line circuits are widely used so the analysis methods used in
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this design approach are more approachable. The fact that the waves at the input

and output of the surface are essentially the same propagating field also assists with

calculations and conceptualization. Dividing the surface into three distinct layers also

allows for more ease of design, as a three layer approach to metasurfaces allows for

enough degrees of freedom in the design for perfect transmission to be viable alongside

an inserted phase shift. The three separate layers also allow for the unit cell structure

to be more forgiving in their design. By only evaluating each layer separately, the

layers can swapped out for another if a unit cell geometry with a different admittance

profile is desired. In comparison to the Huygens-Fresnel method, where the unit

cells each have to be specifically designed for at each position on the surface, which

may necessitate upwards of ten or more unique geometries compared to the three

geometries required by the transmission line theory. This fact allows for the local

transmission modelled theory to be more versatile than the Huygens-Fresnel theory

in its design. In addition, the local transmission line theory can also be theoretically

expanded upon into more than two distinct input polarizations. It is theoretically

possible to allow for three or more distinct polarizations to have separate steering

angles, as long as appropriate unit cell structures are designed.

A disadvantage to using the Local Transmission Line theory would be its variable

size with respect to the desired output steering angle. As the steering angle becomes

larger, the physical size of the surface’s period becomes smaller, with limitations on

how many unit cells can be fit into one period. If the steering angle becomes too large,

there may not be enough space for the chosen unit cells to fully replicate the desired

gradient of admittance in each layer. The transmission line modelled surface also

has possibilities for error within its design, if the distance between each admittance

layer is too large, then the angle of propagation between layers must be taken into

account. For this theory to be valid, the admittance layers are assumed to have

normal incidence within the layers, so the distance between layers is kept electrically
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small. However, the layers must not be too close to one another as the admittance

layers must be electrically separate from one another. Since the unit cell testing was

done such that each layer was analyzed distinctly, if the layers were too close then

unwanted coupling could occur. This coupling effect could change the admittance

of each layer such that the desired steering effect would be greatly reduced or even

disappear altogether.

The Huygens-Fresnel theory’s focus on re-radiation of the energy delivered by the

incoming wave has its own advantages and disadvantages. An advantage of this de-

sign technique is in its versatility. Since the structure is creating its own outgoing

propagating wave, the resulting wave can be tailored to different applications. These

applications include large steering angles, or even generating a wave that has a dif-

ferent polarization from the incoming wave.

Several disadvantages involved in the Huygens-Fresnel theory include the complex-

ities in generating several waves from the surface, as well as speed of design. The

Huygens’ surfaces must generate a wave at the input of the surface, which is an addi-

tional component that is needed to be designed for when compared to the transmission

line model. As such, it is generally more difficult to find proper unit cell structures

which adhere to these constraints. These unit cell structures are also time consum-

ing to test, as there needs to be a unique geometry for each position on the surface.

Each of these geometries must have different transmission phases, and as such, if the

surface is for example ten unit cells in length, there needs to be ten unique unit cell

geometries across the surface. In comparison to the local transmission line model

theory, which only requires one geometry for each of the three layers regardless of

the length of the metasurface, the Huygens-Fresnel theory takes a significantly higher

amount of time to choose unit cell geometries. Finally, the Huygens-Fresnel theory

requires that the dipole structures be normal to the incoming electric field, which

eliminates the possibility of creating a multi-polarization type structure as was seen
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in the transmission line modelled design.

Taking into account both theories with their advantages and disadvantages, the

local transmission line theory is a more versatile and general approach for designing

metasurfaces. If an application demands a less complex design, with the possibility

of steering multiple beams simultaneously, then the local transmission line modelled

theory is more desirable. This theory is also more desirable for use in printed circuit

board (PCB) designs, as the admittance sheets can be constructed completely using

existing PCB technology on the dielectrics it will be used with. However, more

specialized behaviour is not as realizable from the metasurface designed this way. As

such, if very large steering angles or arbitrary wave polarization control is desired,

then the Huygens-Fresnel theory has more of an advantage. However, the Huygens-

Fresnel approach requires a larger amount of time needed to be dedicated as the

creation process for the unit cells is much more complex. Since this theory demands

separated unit cells, traditional PCB construction is less practical. Since the unit cells

must be normal to the incident electric field, creating a metasurface which controls

several distinct polarizations is unachievable. As such, this method is recommended

for more complex and demanding applications, where exotic behaviour may be needed

and more time can be dedicated the design.

As can be seen, the local transmission line design methodology is more practical

for most commonplace metasurface applications. The ease of design as well as the

more approachable theory make this a more attractive option. The possibility for

controlling multiple polarizations in the same structure is also a unique advantage

to this specific design theory. In comparison to the Huygens-Fresnel metasurface

theory, which has a more complex and time consuming unit cell design process, more

opportunities for error in the unit cell designs, as well as the inflexibility for multiple

polarizations control, the local transmission line theory is more advantageous in most

metasurface applications.
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