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ABSTRACT 

HAMIDREZA ARYAN.  Performance and specification of optical components with mid-spatial frequency 
surface errors.  (Under the direction of DR. THOMAS J. SULESKI) 

 

The advent of sub-aperture computer-numerically controlled (CNC) manufacturing 

techniques has enabled new opportunities for high-performance optical components and 

systems. Freeform and other challenging designs are now possible like never before. 

However, such manufacturing techniques also introduce significant challenges. Mid-

spatial frequency (MSF) surface errors are inherent side-effects from sub-aperture 

manufacturing methods that create prominent constraints on optical design, fabrication, 

metrology, and performance. Existing methods for specification and measurement of MSF 

errors in optical systems typically assume isotropic error distributions, which give 

misleading results for the anisotropic, structured MSF errors that are common with CNC 

machining.  

This dissertation investigates MSF errors from three perspectives: (i) Optimization of 

manufacturing parameters to balance the impacts of MSF errors with manufacturing costs; 

(ii) Understanding effects of MSF errors on optical performance and creating analysis tools 

to capture these impacts; and (iii) Development of specification methods for surfaces with 

MSF errors. Results are addressed through three articles. The first article presents 

predictive models that provide a means to optimize manufacturing parameters for diamond-

machined optics based on their targeted performance. The second article introduces a new, 

practical tool to characterize the impacts of MSF errors on performance through a novel 

analysis of the modulation transfer function. The third article presents a novel surface 

specification method for MSF errors that can be used by designers for optical tolerancing 

and by manufacturers for acceptance testing. The approaches introduced in the second and 
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the third articles provide a closed-loop for specification, testing, and tolerancing of optical 

surfaces with MSF errors. 
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CHAPTER 1: INTRODUCTION 
 

 

1.1 Mid-Spatial Frequency surface errors 

Mid-Spatial Frequency (MSF) surface errors are residual structures inherent to sub-

aperture manufacturing techniques [1-7]. These errors are difficult to remove by polishing 

methods, and available polishing techniques can result in additional MSF errors and are 

not applicable to all situations. As it comes from their name, MSF errors cover the spatial 

frequency region between Low-Spatial Frequency (LSF) and High-Spatial Frequency 

(HSF) errors, as illustrated in Fig. 1-1 [8]. 

 

 

Figure 1-1: Different spatial frequency regions and their impact on the image quality [8]. 

 

The exact definition of spatial region of these errors can vary based on the application and 

their impact on optical performance. LSF ‘figure’ errors broaden the main peak of the Point 

Spread Function (PSF) of an optical system, and can be described for example, by the first 

37 Standard Zernike polynomials [9]. HSF errors impact the performance by scattering the 

incident light at high angles, and traditionally have been treated by scattering theory [8]. 
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The lower limit of HSF errors (which is the upper limit of MSF errors) has been suggested 

to be where the Fresnel length of the ripples is less than 1/10th of the optical path distance 

from a given surface to the image plane [9]. In contrast, MSF errors, which are the primary 

focus of this dissertation, scatter light out of the main PSF peak but at angles small enough 

to illuminate the focal plane [10]. Therefore, these errors lead to different image artifacts 

and degrade optical performance [10-13]. Also, the anisotropic structure of these errors re-

shape the illumination pattern and, if large enough, could result in additional impacts on 

performance. Figure 1-2 shows several examples of interferometrically measured MSF 

errors. Notice the structured and anisotropic nature of MSF errors in these examples. 

 

 
Figure 1-2: Different types of MSF errors on surfaces made through different processes; 
measured by (a, b) THALES. (c, d) UNC Charlotte. 

 

The study of MSF errors can be divided into three categories. First, studies related to 

the impact of MSF errors on optical performance. The impact of the tool signature can be 

categorized into those of a random distribution and those with a structured component [13]. 

Assuming isotropy, Youngworth and Stone have developed simple methods that could be 

used for estimating the effect of MSF errors on optical performance [9, 14]. Another 

instance, for isotropic surfaces, is the approach through scattering theory and the BRDF of 

a part, which mainly aims to connect the BRDF to the Power Spectral Density (PSD) of 

surface errors [15-20]. Much of the theory for scattering from optical surfaces is based on 
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works from the early 1960’s [21]. Early studies on the impact of sub-aperture fabrication 

tool errors date back to evaluation of surface quality of diamond turned optics by Church 

and Zavada in 1975 [22]. However, their statistical approach requires that perturbations are 

small, and errors are random with no structured spatial frequencies in the PSD [23]. 

Marioge and Slansky considered the impacts of structured rotationally periodic waviness 

on image quality in 1983 [24]. More recently, Tamkin [11-13] considered impacts of 

structured MSF errors on the PSF and MTF. The errors in these studies are considered to 

be structured so their symmetric or directional effects on performance could be predicted. 

Most recently, a new perturbation approximation approach was utilized to estimate the 

impact of well-structured MSF errors on the optical performance metrics like Strehl ratio 

and MTF [25, 26]. In this dissertation, we consider MSF errors to be quasi-structured, 

meaning the errors contain structured characteristics but with some variations and 

anisotropy like those seen in real measurements. 

The second category includes studies related to specification of MSF errors. Additional 

recent works consider the linear structure function [27-29] and the area structure function 

[30-32]. While the linear structure function does not reflect the level of isotropy of surface 

errors, the shapes of these errors are reflected within the area structure function. Studies on 

how to extract the isotropy information from an area structure function could be a topic of 

future research. Most recently Zernike polynomials [33-35] and Q-type Forbes 

polynomials [2, 36] have been utilized for specification and impact of MSF errors. The 

orthogonal properties of Zernike polynomials along with linear systems theory of MTF 

provide a tool to separate performance degradation caused by different MSF errors. 

However, in cases where a large number of Zernike polynomials are needed to specify an 
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MSF error, numerical limitations could undermine this orthogonality. Thus, Zernike 

polynomials could play an essential role on tolerancing the impact of MSF errors on 

freeform surfaces, which are most often designed using Zernike polynomials. In this case, 

the low PV and semi-random surface residuals after a good Zernike fit need to be treated 

separately by scattering theory and statistical approaches. 

The third main category related to MSF studies is concerned with mitigation strategies 

[37-39]. For instance, studies show that random tool path generation can lead to more 

isotropic surfaces [37]. The effort to randomize machine tool paths has been primarily 

limited to the most demanding applications, such as lithography. While randomizing the 

tool path and the tool tip itself may be needed for some applications, finding a balance 

between fabrication costs and required surface quality are important. 

 

1.2 Approach and organization of this document 

It is valuable to develop mitigation strategies to minimize MSF errors during the 

fabrication process while not dramatically increasing costs by over-specifying the surface. 

In article one [40] (Chapter 2), performance-driven predictive models are developed to help 

manufacturers determine nominal fabrication parameters for diamond machined optics 

based on a targeted optical performance. These models can estimate the impact of diamond 

tool signatures on the optical performance of a part. The results of this semi-empirical study 

agree very closely with results predicted by perturbation approximation methods [25]. 

To truly understand the impacts of MSF errors on optical performance, it is important 

to use a performance metric that can capture the impacts of the structured and anisotropic 

nature of these errors on both illumination and spatial resolution, independent of 
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orientation. The MTF in its complete 2D form contains this information, but the 

conventional 1D format does not. Historically, optical systems have been primarily 

symmetrical, and thus how to utilize the information within a complex and asymmetric 2D 

MTF has not been deeply considered. In article two [41] (Chapter 3), we propose a new 

MTF analysis approach that captures key information within a 2D MTF and summarizes it 

in the more familiar 1D format in a practical and user-friendly way. This outcome 

facilitates effective characterization of the impacts of anisotropic MSF errors on optical 

performance. 

To effectively quantify MSF errors on a part, a surface specification should capture 

magnitude, spatial frequency and a measure of the surface anisotropy. This is important to 

enable the testing process. Widely used surface specification methods, such as Power 

Spectral Density (PSD), Linear Structure Function, bandlimited RMS, and RMS slope are 

discussed below. Experience indicates various situations where a part specified with these 

methods have met the required specifications but have not had the expected optical 

performance. Therefore, in article three [42] (Chapter 4), a new specification method is 

introduced which is able to capture the magnitude and anisotropy of MSF errors at the same 

time. This new surface specification builds on the approach developed in article two and 

has a strong connection with MTF as an optical performance metric. Tools for 

characterization of the impact on anisotropic MSF errors on optical performance (article 

two) plus an effective surface specification for MSF errors (article three) are key 

requirements to enable testing and tolerancing these errors. 

In the following, we summarize key optical performance and surface metrology 

definitions that are needed to place the results of the three articles in the proper context. 
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1.3 Optical performance metrics 

1.3.1 Point Spread Function (PSF) 

The point spread function (PSF) of an optical system is the image of a point source. The 

coherent PSF of a linear and shift invariant coherent imaging system is the Fraunhofer 

diffraction [43, 44] integral of the pupil function P(ξ,η): 

 

   (1.1) 

 

For incoherent imaging, fields at any two points in the object are completely 

uncorrelated, and therefore each imaged point adds in intensity rather than amplitude. Thus, 

the incoherent point spread function is the squared modulus of the coherent point spread 

function [44]. 

 

   (1.2) 

 

1.3.2 Strehl Ratio (SR) 

The Strehl ratio (SR) is a commonly used, single-number performance metric. SR is 

defined as the ratio of on-axis intensity at the image plane for an aberrated system to that 

of a diffraction limited system [45]. For small wavefront aberrations and therefore small 

wavefront variances (sf2), the SR can be calculated using the Maréchal approximation 

[46]: 

 
   (1.3) 
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where: 

   (1.4) 

 

Where s2 is the variance of the surface error taken over the clear aperture, σ is the RMS 

surface error, λ is the wavelength, and Dn is the difference between the refractive indices 

of the surface and the surrounding medium [14]. This approximation provides a means of 

estimating a system’s performance based solely on the wavefront variance [47] and thus of 

the surface RMS error. Since by definition the wavefront variance and surface RMS error 

are not sensitive to the shape of distribution of data over their spatial frequency content, 

the SR is not able to distinguish between two wavefront variances with the same values but 

different shapes [48]. 

 

1.3.3 Encircled Energy 

The energy distribution on the focal plane is given by: 

   (1.5) 
 
 
which is the convolution of the point spread function and the geometric image of the 

object. Thus, the encircled energy (EE) can be obtained from: 

 

   (1.6) 
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where r is the distance in the focal plane from the optical axis [49]. In another format, the 

encircled energy radius (EER) could be defined as the radius of a circle in the focal plane 

from the optical axis that contains certain amount of energy (e.g. 83% of PSF energy). 

Similar to Strehl ratio, EE or EER are single numbers that do not reflect the impact of 

anisotropy on optical performance. 

 

1.3.4 Modulation Transfer Function (MTF) 

The modulation transfer function (MTF) is the magnitude response of the optical system 

to sinusoids of different spatial frequencies [45]. In Fourier optics [43], MTF can be 

defined as the magnitude of the Fourier transform of the point spread function (PSF): 

 

   (1.7) 

 
 
Where fx and fy denote the spatial frequencies associated with the x and y spatial variables 

[43]. 

Since a 2D MTF is complex and less convenient as a practical tool, MTF specifications 

are generally given to manufacturers based on the conventional 1D-MTF representation, 

which plots a specific cross-section or cross-sections of the 2D MTF. However, a cross 

section is an incomplete specification if the performance of a system is not rotationally 

symmetric, or if the MTF is not a separable function of x and y spatial frequencies. An 

easy-to-use means to specify performance that guarantees that the required performance is 

met regardless of the orientation of spatial frequencies in the image is very desirable. To 

this end, in this dissertation (article two) we propose a performance specification approach 
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that captures key information from the 2D MTF and presents it in the more familiar 1D 

format [41, 50]. 

 

1.4 Surface specification methods 

1.4.1 Power Spectral Density (PSD) 

Power spectral density (PSD) is a powerful method for surface specification. In optics, 

PSD has been used for specifying high-frequency surface errors to predict scattering 

properties of a surface [51-55], and more recently has been applied to quantify the full 

spectrum of surface errors [56, 57]. The PSD provides an effective tool to filter 

measurement data based on the spatial frequency range of interest. This approach has been 

utilized within commercial surface metrology software packages [58]. 

The PSD is computed from the amplitude of spatial frequency components present in 

the Fourier spectrum of the surface height of an optical component, and is intrinsically a 

two-dimensional function. For any real-world case, the Fourier transformation is 

approximated as a discrete transform. In summary, the two-dimensional discrete PSD 

expression can be written as: 

 

   (1.8)

   (1.9) 

 
 

Where H(u,v) is the discrete Fourier transform of a surface height map h(x,y), x and y are 

the surface position variables, nx and ny are the total number of sample points in each 

domain respectively, u and v are the corresponding spatial frequency variables, and the  
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symbol in Eq. (1.5) represents a two-dimensional fast Fourier transform (FFT) routine [59, 

60]. As we can see from Eq. (1.6), the PSD has units of (length)2(length)2, which for 

example would be (nm)2(mm)2 if we choose the height units in nm and the lateral units in 

mm. The ISO 10110-8 specification provides drawings based on 1D PSD specification 

[61]. The 1D PSD could be a cross section of 2D PSD or an average. 

 

1.4.2 Bandlimited RMS 

The bandlimited root-mean-square (RMS) of surface error heights is widely used within 

the metrology, manufacturing, and optical design communities [14, 61]. It is typical to 

utilize the PSD to compute the RMS error for given spatial frequency bands. The 

bandlimited RMS error is the volume underneath the 2D-PSD surface within the given 

band, and can be computed through Eq. (1.10) for discreet sets of data: 

  

   (1.10) 

 

Where nu and nv denote the index of frequency arrays in the u and v directions, respectively. 

Another way to calculate a bandlimited RMS for a surface is to first apply a spatial filter 

on the surface data and then simply calculate the root mean square of the errors on the 

surface. Note that the RMS calculation is not sensitive to the shape of distribution of errors 

on the surface. This could result in underestimating the impact of anisotropic surface errors 

on optical performance. The ISO 10110 specification (Optics and photonics – Preparation 

of drawings for optical elements and systems) provides drawings based on RMS waviness 

specification [61]. 
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1.4.3 Surface Slope 

Most optical element drawings and specifications control the amplitude of the surface 

form error (the optical surface figure error) by setting a maximum limit on the peak to 

valley (PV) or RMS departure of the surface from the mathematically perfect form. The 

rate of change of that surface figure error can also be an important parameter that the optical 

designer should be concerned with in order to ensure that the final performance of the 

system meets requirements. Unfortunately, there seems to be an absence of any widely 

distributed and accepted standard for specifying surface slope errors [62]. 

Despite the choice of algorithm for slope calculation, the slope magnitude is a single 

number, overall magnitude of slope X added to slope Y: 

 

   (1.11) 
 
 
and thus, may not be able to distinguish between surfaces with different anisotropy.  

 

1.5 Other considerations 

The following three articles [40-42], covering Chapter 2-4, are fruits of a broader 

research effort. The impacts of surface errors on optical performance were studied and 

evaluated by incorporating surface topography data and creating custom codes in 

MATLAB. In Chapter 2 [40], predictive models are developed by a semi-empirical 

approach that relies on these simulation capabilities to study the impact of MSF errors. 

To find a practical way to characterize the impact of MSF errors on the optical 

performance, the Modulation Transfer Function (MTF), average MTF drop, Strehl ratio, 

encircled energy, and Point Spread Function (PSF) were analyzed as optical performance 

,Slope mag Slope X Slope Y= +
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metrics for various optical systems. The 2D MTF was shown to be the most promising 

metric for observing the impact of MSF errors; in Chapter 3 [41] we develop means to 

extract the key information from a 2D MTF for performance characterization purposes.  

Zygo’s Mx software was used to analyze measurement data and MATLAB was used 

for data processing/conversions. Different commonly used surface specification methods, 

such as PSD, RMS, Slope, Linear structure function, were studied and applied to different 

surfaces to see what is lacking and to better understand the root of problems in MSF 

specification. ISO 10110-8 was also investigated [48] to understand the specification trend 

for MSF errors before developing a new surface specification in Chapter 4 [42].  
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CHAPTER 2: PREDICTIVE MODELS FOR THE STREHL RATIO OF DIAMOND-
MACHINED OPTICS [40] 

 
 

2.1 Abstract 

This paper provides a practical connection between the Strehl ratio as an optical 

performance metric and manufacturing parameters for diamond machined optics. The 

choice of fabrication parameters impacts residual mid-spatial frequency groove structures 

over the part’s surface, which reduce optical performance. Connections between the Strehl 

ratio and the fabrication parameters are studied using rigorous Rayleigh-Sommerfeld 

simulations for a sample optical system. The connections are generalized by incorporating 

the shape of diamond-machined groove structures and the effects of optical path 

differences for both transmissive and reflective optics. This work validates the analytical 

representation of the Strehl ratio as a Fourier transform of a probability density that relates 

to surface errors. The result is a practical tool that can be used to guide the choice of 

machining parameters to achieve a targeted optical performance. 

 

2.2 Introduction 

The development of computer-controlled sub-aperture fabrication techniques has 

opened new perspectives to the future of optics as well as new challenges [1-2]. Aspheric 

and freeform surfaces fabricated with such deterministic turning, milling, grinding, and 

polishing methods leave structured mid-spatial frequency (MSF) surface errors with 

‘signatures’ that can be identified with the specific fabrication processes [3-4]. Studies 

show that MSF errors can cause image artifacts and otherwise degrade optical performance 
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[5-8]. In this paper, we address surface errors resulting from diamond machining processes, 

which appear primarily as cusp-shaped grating-like patterns as shown in Fig. 2-1. 

 

 

Figure 2-1: Primary MSF residuals resulting from (a) diamond turning, (b) diamond raster 
milling, (c) Cross section of the assumed MSF residuals. Λ represents the spacing between 
groove structures, R is radius of the diamond tool tip, and PV is the peak to valley of the 
residual surface structure. 

 
The specification of MSF errors on optical surfaces is sometimes overlooked by optical 

designers. This is partially due to limitations of commonly-used surface specs for these 

types of errors [9], and partially because the impacts of MSF errors on optical performance 

are often underestimated or not well understood. Such errors can cause confusion between 

designers and manufacturers when a part does not perform as expected, even though it 

meets the requested surface specifications [10]. Therefore, to avoid poor performance, 

optical surfaces are often over-specified, which unnecessarily adds to manufacturing cycle 

times and costs. This motivates the present work, which uses a semi-empirical approach to 

connect the Strehl ratio (SR) directly to fabrication parameters for well-structured MSF 

errors from diamond machining processes. 

A recent theoretical approach [11-12] expressed the SR and the Optical Transfer 

Function (OTF) in terms of the Fourier transform of a probability density that is related to 

the statistics of the MSF structures. For the cases of diamond turned or milled surfaces, the 
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circular cusps typically left behind are approximated as parabolic segments in order to 

attain an analytic expression for the SR, which can be written as: 

  

   (2.1) 

 
Here ∅ is the maximum optical phase difference resulting from the groove structures, and 

erf is the error function. This analytic expression is useful for further theoretical analysis; 

the goal in these prior works was to provide intuition on the behavior of the SR. In contrast, 

in this paper we provide prescriptive rules of thumb for optical manufacturers to optimize 

fabrication parameters based on SR. The semi-empirical approach proposed here also 

demonstrates a useful method to establish connections for additional surface error types 

that are difficult to describe analytically, providing a baseline for further work in this area. 

We now discuss a semi-empirical approach for connecting the SR to fabrication parameters 

for diamond machined optics. 

 

2.3 Model and Approach 

As a first step towards understanding behavioral changes in the SR with respect to 

fabrication parameters, we solve the problem for a case-specific situation. We developed a 

MATLAB™ toolbox with three main operations: (1) Synthesizing a lens model with 

desired form; (2) synthesizing a MSF texture (from either turning or milling) based on the 

input fabrication parameters and adding it to the surface of the lens; and (3) calculating the 

Point Spread Function (PSF), OTF, and the SR of the resulting composite structure using 

rigorous Rayleigh-Sommerfeld simulations (RSS), The SR is defined as [13]: 
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   (2.2) 

 
 

Toolbox calculations were tested and compared to Rayleigh-Sommerfeld-based 

simulations within VirtualLab™ with excellent agreement. Standardized results are 

obtained by evaluating the performance of a diffraction-limited optic (prior to adding MSF 

errors) located at the aperture stop, similar to performance evaluation assumptions within 

Zygo’s Mx™ software. 

This toolbox enables us to assess changes in optical performance with respect to 

fabrication parameters. Our goal is to find general connections for reflective or 

transmissive optics for any wavelength or material without the need for more rigorous 

simulations. To this end, we first explore a specific case and then generalize the results. 

In the case study, we assume a 4 mm diameter f/25 PMMA (n = 1.4934) lens at the pupil 

with plane wave illumination at λ = 532 nm. The diamond tool’s tip radius, R, is set to 1 

mm in this example. The machining feed per revolution (for diamond turning) or step-over 

(for diamond raster milling), collectively represented as 𝛬, is kept variable. A pixel size of 

dx = 0.3 µm was used for the RSS to enable SR values accurate to three decimal points. 

Fig. 2-2 compares the simulation results of the SR versus 𝛬 for both diamond-milled and 

diamond-turned surfaces. As we will discuss later in the paper, the difference between the 

performance of diamond-milled and diamond-turned surfaces are not reflected in SR 

simulations. 
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Figure 2-2: The impact of diamond machined MSF errors on the SR with respect to groove 
spacing for the specific case study. Simulation results indicate similar SR values for 
diamond-milled and diamond-turned optics (RMSE=0.000172). 

 
 
From a manufacturing perspective, increasing 𝛬 is desirable as doing so reduces the 

required manufacturing time and cost. However, as expected, Figure 2-2 shows that 

increasing 𝛬 leads to a lower SR. In practice, 𝛬 is normally chosen to be small enough to 

meet a required root mean square (RMS) surface deviation that guarantees the smooth 

surface requirements. 

We now generalize our results. Surface imperfections create wavefront distortions since an 

unwanted surface height leads to an undesired optical phase difference. An optical path difference 

of one wavelength, l results in a phase difference of 2p. Therefore, for a surface height of h(x,y), 

the optical phase difference f(x,y) equals: 

 

   (2.3) 
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where k=2p/l,  A = ns-n0 (in transmission) or 2n0 (in reflection), with ns being the refractive 

index of a transmissive material, and n0 the ambient refractive index.  

For diamond machined surfaces, it is straightforward to determine the relationship between the 

peak-to-valley (PV) of the residuals and the machining parameters: 

 

   (2.4) 

 

where the approximation using the Taylor series expansion is valid for R >> L. It is obvious 

that an increase in groove spacing results in a surface error with larger PV, which imparts a larger 

optical phase difference on the incident wavefront and lowers the SR, as seen in Fig. 2-2. By 

substituting PV, in Eq. (2.4), for h = PV/cosqi, where qi is the incident angle, we calculate the 

maximum optical phase difference imparted on the wavefront to be: 

  

   (2.5) 

 

Equation (5), although conceptually intuitive, is an important outcome that enables a connection 

between the manufacturing parameters and optical performance. We note that the coordinate-

dependent height function, h(x,y), has been replaced with a constant PV. This is justified since the 

diamond cusp surface shape is implicitly contained within the optical performance simulations 

shown in Fig. 2-2. 
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Next, we substitute the application parameters used in the case-specific example of Fig. 2-2 into 

Eq. (2.5), with no approximation, and perform a Gaussian fit [14] over the new data set to obtain 

Eq. (2.6), which gives a general relation between the SR and f for diamond-machined surfaces: 

 

  

   (2.6) 

 

We note from Fig. 2-3 that the fit is excellent for f < 4.7 rad with a Root Mean Square 

Error (RMSE) of 0.0036. We assert that this limit is sufficient for practical purposes since 

larger errors correspond to rough surfaces which fail basic RMS surface requirements and 

SR < 0.125. However, higher-order polynomial fits can be performed for larger values of 

f if required. Figure 2-3 shows the resulting plot of the SR vs f . 

 

Figure 2-3: SR versus optical phase difference f. The red curve represents Eq. (2.6). 

To provide a predictive tool we must invert Eq. (2.6): 
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   (2.7) 

 

This expression presents f as a function of 𝑆𝑅. Equation (2.7) provides a useful predictive tool 

for designers to quantify required surface specifications and for manufacturers to guide the choice 

of machining parameters based on the target SR.  

We now present three example applications of the semi-empirical models. We note that SR 

values are given to several decimal places only to enable comparison of the model results. 

Example 1: Predicting the SR from machining parameters for a lens. Consider a 5 mm 

diameter f/10 focusing element made of Germanium (n = 4.0242) for use at λ = 4µm. The 

lens is diamond-turned with 𝛬 = 50µm and R = 1.5 mm. Table 2-1 compares the on-axis 

prediction with simulation results. 

 

Table 2-1. Predicted SR versus Simulated SR for Example 1. 

𝛬	(µm) R (mm) f (rad) SR Predicted SR RSS D 

50 1.5 0.990 0.910 0.914 0.004 

 

As you can see from table 1, after simulating the performance (dx = 0.3 µm) and calculating the 

SR, D = |SRRSS - SRPredicted| is negligible. Therefore, Eq. (2.6) predicts SR without the need for more 

rigorous simulations.  

 

Example 2: Predicting the SR from machining parameters for a mirror. Assume a 3mm 

diameter f/15 focusing mirror operating at λ = 480 nm. The mirror is diamond-milled with 𝛬 = 25 

3.24 log ( ) .e SRf » -
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µm and R = 1 mm. In Table 2-2, we compare the predicted SR with the Rayleigh-Sommerfeld 

simulated SR (dx = 0.3 µm) for three different field angles. 

 

Table 2-2. Predicted SR vs simulated SR for different field angles. 

 qi (degrees) f (rad) SR Predicted SR RSS ∆ 

0 2.05 0.670 0.669 0.001 

21 2.19 0.633 0.630 0.003 

30 2.36 0.588 0.583 0.005 

 

In Table 2-2, predicted results are in excellent agreement with more rigorous, time consuming 

simulations for all field angles with negligible differences.  

 

Example 3: Determination of machining parameters for a required SR value. Consider an 8mm 

diameter f/5 diamond-turned PMMA (n = 1.4883) lens working at l = 650 nm. Assuming a 

diamond tool with R = 0.5 mm, we would like to find the maximum groove spacing 𝛬 that results 

in an optic with on-axis SR = 0.9. Solving Eq. (2.7) for SR=0.9 gives the maximum permitted 

optical phase difference of f  = 1.05 rad. Substituting this value into Eq. (2.5) predicts L ~ 29.82 

µm. To facilitate the performance simulation of this optic within MATLAB™, we slightly modify 

L to 29.85 µm to generate an integer number of cusp errors per aperture and reduced the simulation 

resolution from dx = 0.3 µm to dx = 0.6 µm overcome computational challenges. PSF and SR 

simulations confirm the accuracy of the semi-empirical model with simulated SR = 0.899 ~ 0.9. In 

practice, the groove spacing could be rounded downward slightly (for example, to 29 µm) to 

provide additional performance margin and to simplify manufacturing setup.  
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2.4 Discussion 

The presented models can be used as tools to guide both the quantification of MSF surface 

specifications by optical designers and the choice of diamond machining parameters by 

manufacturers. As discussed previously, determination of the maximum groove spacing 𝛬 for a 

given tool radius R that will still provide the required optical performance is desirable, as doing so 

reduces required manufacturing cycle time and cost.  

For example, in diamond turning the groove spacing is determined by both the rotation rate of 

the machining spindle and the velocity (feed rate) of the diamond tool orthogonal to the axis of 

rotation. The resulting feed per revolution is then given by [4]: 

  

   (2.8) 

 

Table 2-3 illustrates a range of representative manufacturing parameters for diamond-turning 

the lens in Example 3 compared to a mirror with the same f/# and application parameters. The 

approximation in Eq. (2.5) helps to simplify these types of calculations. The differences in 

parameters for the lens and ‘equivalent’ mirror result from the optical phase differences between 

the transmissive and reflective cases. Note that we have rounded the groove spacing down to the 

nearest integer value, which simplifies manufacturing setup and provides additional performance 

margin. 
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Table 2-3. Sample manufacturing parameters for Example 3. 

 SR 
𝛬Lens  

(µm) 

𝛬Mirror 

(µm) 

R 

(mm) 

Spindle 

(rpm) 

FeedLens 

(mm/min) 

FeedMirror 

(mm/min) 

I 0.9 51 25 1.5 1500 76.5 37.5 

II 0.9 47 23 1.25 1750 82.25 40.25 

III 0.9 42 20 1 2000 84 40 

IV 0.9 29 14 0.5 1000 29 14 

V 0.9 29 14 0.5 2000 58 28 

 

We note that there are other sources of MSF errors that occur in diamond-machined optical 

surfaces besides the ‘cusp’ shapes that we have considered, including, for example, asynchronous 

error motions, external and self-induced vibration, thermal drift, materials effects, and so on. [4, 

15-18]. These additional error sources are also connected to the feed rate and spindle speed. With 

the guidance of the presented models, a manufacturer can use their expertise to select the best 

combination of tool radius, feed rate, and spindle speed that gives the required result at minimal 

time and cost while also minimizing other sources of error. 

The use and limitations of the SR as an optical performance metric for diamond machined optics 

is worthy of additional consideration. Fig. 2-2 suggests that the optical performance of diamond-

turned and diamond-milled components with equivalent groove spacing 𝛬 will be quite similar. 

While this is generally true for very high-quality optics, the performances of turned and milled 

components deviate as the groove spacing increases due to the difference in symmetry of the 

residual surface structures [10, 12]. For such cases, other performance measurements, such as a 2D 

Modulation Transfer Function (MTF), would represent optical performance more effectively than 
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the SR. Such relationships and performance metrics are currently being studied and will be 

considered in more detail in future publications. 

Figure 2-4 compares the semi-empirical model of Eq. (2.6) with the analytic model of Eq. (2.1) 

and a 5th order polynomial fit over the full range of f values. This figure shows that the semi-

empirical approach developed in this paper agrees very well with the analytic model based on prior 

work [11-12]. The close agreement supports the validity of both approaches. However, Eq. 

(2.6) is designed to be more succinct, user-friendly and invertible to Eq. (2.7) to enable a 

predictive model for both manufacturer and designer, which is not the case with Eq. (2.1). 

 

Figure 2-4: Comparison of the semi-empirical and analytic SR expressions, given by Eq. 
(2.6) and (2.1), respectively. For f  < 4.7 rad, the two models differ by a RMSE of 0.0058. 
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CHAPTER 3: THE MINIMUM MODULATION CURVE AS A TOOL FOR 
SPECIFYING OPTICAL PEROFRMANCE: APPLICATION TO SURFACES WITH 

MID-SPATIAL FREQUENCY ERRORS [41] 
 

3.1 Abstract 

There are a variety of common situations in which specification of a one-

dimensional modulation transfer function (MTF) or two orthogonal profiles of the 2D MTF 

are not adequate descriptions of the image quality performance of an optical system. These 

include systems with an asymmetric on-axis impulse response, systems with off-axis 

aberrations, systems with surfaces that include mid-spatial frequency errors, and freeform 

systems. In this paper, we develop the concept of the Minimum Modulation Curve (MMC). 

Starting with the two-dimensional MTF in polar form, the minimum MTF for any azimuth 

angle is plotted as a function of the radial spatial frequency. This can be presented in a 

familiar form similar to an MTF curve and is useful in the context of guaranteeing that a 

given MTF specification is met for any possible orientation of spatial frequencies in the 

image. In this way, an MMC may be of value in specifying the required performance of an 

optical system. We illustrate application of the MMC using profile data for surfaces with 

mid-spatial frequency errors. 

 
 
3.2 Introduction 

The MTF is a measure of system performance over its full spatial frequency range. The 

MTF provides an objective evaluation of a system’s imaging contrast and is expressed as 

the ratio of contrast in the image to contrast in the object as a function of spatial frequency 

[1]. MTF specifications given to manufacturers are often based conceptually on the 
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conventional 1D-MTF representation, which plots a particular cross section of the 2D 

MTF, since the 2D MTF is less convenient as a practical specification. However, plotting 

a cross section is an incomplete specification of performance if the system’s MTF is not 

rotationally symmetric or if the MTF is not a separable function of x and y spatial 

frequencies. A means to specify performance is desirable, which would guarantee that the 

desired performance is met regardless of the orientation of spatial frequencies in the image. 

In this paper, we propose a performance specification that captures key information from 

the 2D-MTF and presents it in the more familiar 1D format [2]. 

A 2D MTF can be defined as the magnitude of the Fourier transform of the 2D point 

spread function (PSF): 

 

   (3.1) 

 

where fx and fy denote the spatial frequencies associated with the x and y spatial variables. 

The 2D MTF can be conveniently described in polar coordinates by means of the change 

of variables r = (fx2 + fy2)1/2 and f = tan-1(fy/fx), yielding MTF(r, f). The radial spatial 

frequency r is represented as the radial distance from the center of the 2D polar plot and 

the azimuth angle f corresponds to the angle measured from the fx axis. 

Section 2 introduces the concept of the Minimum Modulation Curve and its relationship 

to the 2D MTF. Section 3 illustrates the MMC representation with some specific examples 

drawn from systems with mid-spatial frequency errors, and section 4 discusses the 

importance of this analysis approach and possible future investigations for systems with 
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inherently asymmetric performance. We note that in this paper we focus on the MTF of the 

optical components in the system and do not consider impacts of sensors or detectors [3].  

 

3.3 The Minimum Modulation Curve 

In developing a performance specification for an optical system, it is desirable to ensure 

that a certain minimum MTF is present at the spatial frequencies of interest as a pass/fail 

criterion. Thus, we choose to determine the minimum modulation values, independent of 

orientation, to conform with the normal practice of setting acceptance criteria for the MTF. 

Choosing the minimum modulation values may be pessimistic if the MTF requirement is 

needed only for a specific orientation with a well-defined axis, but this is not the case for 

applications for which the relative orientation of the object and optical components are not 

well known or can vary. 

Toward this end, we present the concept of the Minimum Modulation Curve (MMC), 

which conveniently summarizes the information contained within the 2D-MTF in the 

familiar form of a 1D plot, and which is suitable as a performance specification. Starting 

with the 2D MTF expressed in polar coordinates MTF(r, f), we evaluate the MTF for all 

values of the azimuth angle for a given value of radial spatial frequency. The minimum 

MTF value at that r for any value of f becomes the MMC value for that r: 

  

   (3.2) 

 

as schematically illustrated in Fig. 3-1. The anisotropic MTF arising from a sample 

ZEMAX design file for a Cooke triplet with 40-degree field, at a wavelength of λ=650 nm 
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and off-axis field angle of 20 degrees, is used as an example. The MMC for this case is 

shown in Fig. 3-2(a). 

 

 

Figure 3-1: Illustrating the methodology of extracting data for each spatial frequency from 
a general 2D-MTF. The minimum value around each circle is extracted to generate the 
MMC for a given value of radial spatial frequency r. 
 

It is also of interest to calculate the standard deviation of MTF values sMTF(r) 
for each value of r, assuming N values of azimuth angle f: 

 

   (3.3) 

 

resulting in the MTF standard deviation plot as illustrated in Fig. 3-2(b). The MMC plot 

thus shows the minimum MTF for each frequency, considering all possible azimuth 

directions. The 1D nature of the plot facilitates a convenient comparison of measured data 
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with a performance specification. In addition, the plot of MTF standard deviation sMTF(r) 

can be used to identify the spatial frequencies that are most sensitive to anisotropy. 

 

 

Fig. 3-2: With reference to the 2D MTF in Fig. 3-1, (a) the minimum modulation curve 
(dash dot red) and horizontal MTF cross section (blue), (b) MTF standard deviation at each 
radial spatial frequency. 
 

With the MMC and sMTF(r) thus defined, we now consider optical components with 

residual mid-spatial frequency surface errors to illustrate the application of this concept. 

 

3.4 Mid-Spatial Frequency Errors and Performance Specification 

Mid-spatial frequency (MSF) surface errors are common drawbacks of deterministic 

sub-aperture fabrication techniques [4-11]. The classic works for characterizing the impact 

of MSF errors on optical system performance generally assume that these errors are small 

and randomly distributed. Early studies on the impact of sub-aperture fabrication tool errors 

date back to evaluation of surface quality of diamond turned optics by Church and Zavada 

in 1975 [12]. However, their statistical approach requires that perturbations are small, and 

errors are random with no structured spatial frequencies in the Power Spectral Density 

(PSD) [13]. Marioge and Slansky considered the impacts of structured rotationally periodic 
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waviness on image quality in 1983 [14]. More recently, Tamkin [15, 16] has considered 

impacts of structured MSF errors on the Modulation Transfer Function (MTF). While high-

spatial-frequency errors are often random in distribution and scatter the light at large 

angles, mid-spatial-frequency errors are far more structured and diffract the light at angles 

small enough to directly illuminate the image plane [17]. The distribution of this 

illumination depends on the structure of the errors on the surface, which in turn depends 

on the choice of fabrication technique. Typical MSF errors resulting from sub-aperture 

fabrication methods are not symmetric over the aperture, providing a suitable illustration 

for the presented analysis tools. It is important to keep in mind that different light 

distributions outside the main peak of the PSF will in result in different image quality 

performance. To illustrate this point, we assume two MSF errors with the same surface 

root mean squared (RMS) error values (82 nm) but different anisotropies. Figure 3-3 shows 

two diamond machined surfaces (turned and milled) synthesized in MATLAB using the 

same fabrication parameters: a tool-tip radius of 1 mm and Λ=40 µm, where Λ represents 

feed/rev for turning and step-over for milling. A sinusoidal error of 1 cycle/mm with 150 

nm peak to valley was added to the resulting ‘cusp-shaped’ tool errors to approximate 

thermal drift effects from the tool chiller during manufacturing. 

Grating-like sinusoidal and cusp textures, such as those in Fig. 3-3, diffract the incident 

light which directly affects the system’s performance. We assume a 4-mm diameter f/25 

PMMA (n=1.4934) lens at the aperture stop at wavelength λ = 0.532 µm and perform a 

Rayleigh-Sommerfeld diffraction simulation to compare the impacts of these errors on 

performance. 
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Figure 3-3: Two diamond machined surfaces with the same fabrication parameters; 
Diamond tool cusp errors: a tool-tip radius of 1 mm and Λ=40 µm; Sinusoidal error of 1 
cycle/mm with peak to valley (PV) of 150 nm to represent thermal errors. (a) Diamond 
turned. (b) Diamond milled. 

 

Figure 3-4 compares the simulated PSFs for a perfect lens with no surface errors to 

lenses with the errors shown in Fig. 3-1. The PSF for the perfect lens has the typical Airy 

disk pattern. Diffraction from the rotationally symmetric grating pattern of the turned case 

appears as a symmetrical irradiance distribution in rings around the main peak, while the 

PSF corresponding to the milled case contains localized irradiance peaks in the horizontal 

direction. In other words, the turned pattern diffracts the light equally in all directions while 

the milled pattern diffracts in the horizontal direction, parallel to the grating vector.  

 

 
Figure 3-4: Rayleigh-Sommerfeld simulations of PSF for the above examples for the (a) 
perfect lens, (b) diamond turned lens, (c) diamond milled lens. 
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The impacts of anisotropic MSF errors on optical performance are not well-understood 

or well-quantified because standard characterization methods are not able to sufficiently 

capture these impacts. This has led to problems in surface specification and setting 

acceptance criteria for testing purposes as well. Any surface specification method should 

show connections to optical performance, and without the right performance 

characterization method this problem will not be solved. Therefore, it is necessary to 

address this issue. The Strehl ratio and encircled energy radius have previously been 

considered as optical performance metrics for surfaces with MSF errors. [8, 18, 19]. 

Therefore, we first briefly consider these two metrics with respect to anisotropic MSF 

errors before considering the MTF and the MMC. 

Strehl ratio (SR) is a commonly used single-number performance metric, defined as the 

ratio of on-axis intensity at the image plane for an aberrated system to that of a diffraction 

limited system [20]. For small wavefront variances, the Maréchal approximation [21] can 

be used to calculate the SR as:  

  

   (3.4) 
 

where k = 2p/l, Dn is the difference between refractive indices of the lens and the 

surrounding medium, and s is the surface RMS error. Since by definition the wavefront 

variance and surface RMS error are not sensitive to the shape of distribution of data over 

their spatial frequency content, the Strehl ratio is not able to distinguish between two 

wavefront variances with similar values but different shapes [8, 22]. Rayleigh-Sommerfeld 

simulations result in SR = 0.8 for both cases, which agrees with prediction based on Eq. 

2exp[ ( ) ],S k ns= - D
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(3.4), and illustrates the inability to distinguish between the different performance impacts 

of these two surface errors using Strehl ratio. 

Encircled energy radius (EER) is another common performance metric, defined as the 

radius of a circle with a certain amount of energy (typically 83%) centered on the PSF 

centroid [23]. Rayleigh-Sommerfeld simulations show an 83% encircled energy radius of 

~0.05 mm for both cases in Fig. 3-1. Thus, neither Strehl ratio nor encircled energy are 

sufficient to distinguish between the impacts of the two surface errors illustrated in Fig. 3-

1. 

We now make use of Eq. (3.1) to calculate the 2D MTF from the three PSFs shown in 

Fig. 3-4. Unlike the results discussed above for SR and EER, the impacts of the different 

MSF error symmetries from Fig. 3-1 are clearly shown by the 2D MTFs in Fig. 3-5. We 

note that the 2D MTF also contains the Strehl ratio information if one integrates the volume 

under the 2D MTF [1, 20]. Thus, the 2D MTF is a powerful tool to quantify the 

performance of an optical component with anisotropic performance characteristics. 

However, extracting key information from the 2D MTF and putting it in a one-dimensional 

form would make it more convenient as a means for performance specification. 

 

Figure 3-5: 2D-MTF simulations for the (a) perfect lens, (b) diamond turned lens, (c) 
diamond milled lens. Red color represents 1 and blue color represents 0 modulation in these 
figures. 
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It is common to plot 1D horizontal and/or vertical cross sections of the 2D-MTF to 

represent the system MTF. However, a standard cross section of MTF is not an accurate 

representation when the MTF lacks rotational symmetry. Figure 3-6 compares the 

horizontal and vertical cross section of the 2D MTF from Fig. 3-5(c). Notice that the 

horizontal cross section indicates many MTF oscillations while a vertical cross section is 

smooth and approximately diffraction limited. 

 

 

Figure 3-6: Comparing (a) horizontal and (b) vertical cross section of the 2D-MTF for the 
diamond milled case from Fig. 3-3(b). 

 

The high frequency oscillations in Fig. 3-6(a) are a result of the diamond ‘cusp’ errors 

on the surface [8, 11]. In practice these oscillations will be minimal with a small machining 

stepover and corresponding small PV of the surface cusp error. In this example, we 

intentionally synthesized surfaces with a large stepover and PV to illustrate their impact in 

the MMC calculation. 

We now apply the techniques described in Section 2 to determine the MMC and MTF 

standard deviation at each radial spatial frequency. The results are shown in Fig. 3-7. 
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Fig. 3-7. With reference to the 2D MTF in Fig. 3-5(c), (a) the minimum modulation curve 
(dash dot red) and horizontal MTF cross section (solid blue), (b) MTF standard deviation 
at each radial spatial frequency. 
 

We note that the MMC simplifies the oscillations on the 1D MTF in Fig. 3-7(a) by just 

presenting the minimum values, regardless of orientation. Also, the MTF standard 

deviation plot indicates that MTF varies more at low spatial frequencies, with an overall 

decline for higher frequencies. These tools may be useful to include in software packages 

for tolerancing purposes.  

Rotationally asymmetric MTFs are also common when dealing with measured surface 

errors. As a demonstration, we consider an experimental surface error of the form shown 

in Fig. 3-8(a) applied to the surface of a calcium fluoride (n = 1.5576) f/10 lens in the deep 

ultraviolet region (λ = 157 nm). Figure 3-8(b) illustrates the 2D MTF for this system. In 

Fig. 3-8(c), the MMC plot indicates that, due to the anisotropy of the surface error, the 

actual optical performance would be worse than predicted by standard 1D-MTF cross 

sections. The MTF standard deviation plot in Fig. 3-8(d) shows the maximum MTF 

variations occur at approximately one-third of the lens cutoff frequency.  
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Fig. 3-8. (a) Measured surface error with RMS of 44 nm over a 127 mm clear aperture. (b) 
Simulated on-axis 2D MTF for a lens with this surface error. (c) Comparing MMC (dash 
dot red) with horizontal cross section of MTF at f = 0⁰ (solid blue) and f = 90⁰ (dash green). 
(d) MTF standard deviation at each radial spatial frequency. 
 

3.5 Discussion and Conclusion 

We have presented a new analysis approach that identifies the minimum MTF value and 

its standard deviation at each radial spatial frequency, which is particularly useful for 

characterization and specification of system performance when PSFs and MTFs are not 

rotationally symmetric. In particular, the MMC presents information from the 2D MTF in 

an intuitive 1D format. It provides a straightforward way to represent the minimum MTF 

as a function of radial spatial frequency, considering all directions. 

While we demonstrated the MMC for optical surfaces with mid-spatial frequency errors, 

the concepts presented in this paper may also be useful in other situations. For instance, in 
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imaging applications, the final image is the weighted superposition of the system’s PSF, 

which varies as a function of field angle, and the MTFs for off-axis field angles are often 

anisotropic. This is of particular importance for many modern optical systems; for instance, 

end users are sensitive to asymmetric image quality in digital single lens reflex (DSLR) 

and mirrorless camera lenses, as well as cell phone cameras [24]. 

Freeform optical systems also provide additional examples of PSFs and MTFs that are 

not rotationally symmetric. Many freeform systems have no single plane of symmetry and 

the performance metrics can no longer be assumed to be rotationally symmetric for such 

systems. Therefore, the performance evaluation must be considered over a full range of 

field points in two dimensions. Additionally, in augmented reality and virtual reality 

systems, near-eye display technology is used. In these applications, locations of the 

displayed image will move in response to movement of the user’s head. In such situations, 

the user may be particularly sensitive to variations highlighted by sMTF. 
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CHAPTER 4: SIMPLE METHODS FOR ESTIMATING THE PERFORMANCE AND 
SPECIFICATION OF OPTICAL COMPONENTS WITH ANISOTROPIC MID-

SPATIAL FREQUENCY SURFACE ERRORS [42] 
 
 

4.1 Abstract 

Specification and tolerancing of surfaces with mid-spatial frequency (MSF) errors are 

challenging and require new tools to augment simple surface statistics to better represent 

the structured characteristics of these errors. A novel surface specification method is 

developed by considering the structured and anisotropic nature of MSF errors and their 

impact on the modulation transfer function (MTF). The result is an intuitive plot of 

bandlimited RMS error values in polar coordinates which contains the surface error 

anisotropy information and enables an easy to understand acceptance criterion. Methods, 

application examples, and the connection of this surface specification approach to the MTF 

are discussed. 

 

4.2 Introduction 

Mid-Spatial Frequency (MSF) surface errors are found between low-spatial frequency 

‘form’ errors, and high-spatial frequency ‘roughness’ errors generally modeled with 

scattering theory [1-3]. MSF errors are inherent to deterministic sub-aperture fabrication 

techniques [4-11] and can appear on the surface with different structured signatures (e.g. 

turned, milled, spiral) arising from the manufacturing method. Pseudo-random toolpaths 

[7] can provide a means to reduce the impacts of MSF errors. While ‘roughness’ errors are 

often random in distribution and scatter the light at large angles, MSF errors can be more 
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structured and diffract the light at angles small enough to directly illuminate the image 

plane [12].  

From an optical characterization perspective, early statistical approaches and models for 

studying the impact of MSF errors required small perturbations, and errors were assumed 

to be random with no structured spatial frequencies in the Power Spectral Density (PSD) 

[13]. Marioge and Slansky [14], and more recently Tamkin [15,16] considered the impacts 

of structured MSF errors on optical performance. We recently published on 

characterization of the impacts of anisotropic MSF errors on the 2D modulation transfer 

function (2D MTF) [17,18]. The impacts of structured MSF errors, as discussed in the 

literature, can be complex and difficult to implement, so simple methods for estimating 

these impacts are desirable and of use from an engineering perspective. Youngworth and 

Stone [1] previously developed simple estimates for the effects of MSF errors on image 

quality under the assumption that the errors are isotropic. We build upon their work in this 

paper to provide similar tools for estimating the impacts of anisotropic MSF surface errors. 

We note that, for isotropic surfaces, our results converge to the estimates provided in [1]. 

There are multiple surface specification methods, with the root mean square (RMS) of 

surface height errors and Power Spectral Density (PSD) as the most common. Bandlimited 

RMS of surface height errors is widely used within the metrology, manufacturing, and 

optical design communities for specification of optical surfaces [1,2,19]. Since the RMS 

calculation is not sensitive to the shape or distribution of data and MSF signatures may 

have different anisotropic characteristics, MSF errors may not be sufficiently specified by 

a surface RMS value; surfaces with the same RMS error but different manufacturing 

signatures can have different optical performance [20]. Surfaces that pass a required RMS 
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specification may not yield the expected optical performance, which leads to confusion 

between designer and manufacturer. To overcome this issue, surfaces are often over-

specified, which adds considerably to fabrication costs and cycle times. Hence, while RMS 

error is an effective specification for high-frequency errors [21], it is not a reliable method 

for MSF errors with anisotropic signatures.  

Power spectral density (PSD) is another powerful method of surface specification. In 

optics, PSD has been used for specifying high-frequency surface errors to predict scattering 

properties of a surface [21-25] and has been applied to quantify the full spectrum of surface 

errors [26, 27]. The details of the PSD calculations are outside the scope of this paper but 

are well covered in the literature (e.g. [28,29]). The 2D PSD retains information on surface 

anisotropy, but these data are not easily connected to an optical performance criterion. The 

more commonly used 1D PSD representation is typically averaged over an orientation (e.g. 

horizontal, vertical, azimuthal), which loses information on anisotropy. Therefore, current 

methods of PSD specification are not conducive for use with anisotropic MSF errors [20]. 

We note that there are other ways that we benefit from the PSD in this work. In particular, 

PSD bandpass filters can be effectively utilized to separate MSF errors from form and 

roughness, and to calculate bandlimited RMS values from the volume underneath the 2D 

PSD of the surface within a given band [30].  

In this paper, we propose a novel surface specification method for MSF errors to address 

the issues identified above. We quantify directional bandlimited RMS errors along 

different surface orientations in a polar representation and demonstrate connections to 

optical performance through the modulation transfer function (MTF) [31]. The proposed 

tool helps to facilitate a simple acceptance criterion to guarantee the performance of a 
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manufactured part, which is highly desirable but currently lacking for surfaces with 

anisotropic MSF errors. 

In section 2, we describe the calculation methodology for the proposed surface 

specification. In section 3, we discuss the connection between the proposed surface 

specification to the MTF as an optical performance metric. Section 4 discusses methods 

for designers to define acceptance criteria after tolerancing. In this paper we focus on the 

MTF of optical components in a system and do not consider impacts of sensors or detectors. 

 

4.3 Methodology of polar RMS specification 

 MTF is an effective optical performance metric for quantifying the impacts of MSF 

errors. In general, a surface RMS error leads to an optical phase difference from the perfect 

wavefront and reduces the average MTF of the system. 

In order to establish a practical specification method for anisotropic surfaces with 

connections to optical performance, we seek to capture the directional RMS values that 

cause the largest reduction in MTF. To this end, we first calculate the individual RMS 

errors over multiple linear cross-sections on the surface error map at a specific orientation 

q, as shown in Fig. 4-1. Note that this approach differs from taking the RMS over the entire 

error map at once. The directional calculations are repeated at different angles on the error 

map to capture the anisotropy. We choose to do this from 0 to 2π (rather than 0 to π) to 

generate a symmetric and more intuitive final plot in polar coordinates. We note that the 

calculation procedures must accommodate experimental data, which will normally be 

captured as rectangular grids through, for example, interferometric surface measurements. 

Processing and analyzing these data in a polar format will unavoidably require masking 
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and interpolation, which could introduce numerical artifacts. In particular, the analysis may 

be sensitive to local artifacts near the edge of the aperture where the data record is shorter. 

This issue could be mitigated, for example, by apodization, but such an approach also 

removes data and could introduce other numerical errors. 

 

 

Figure 4-1: Calculating directional RMS values on a surface. 

 

We then determine the maximum RMS value at a given orientation and plot this value 

as a function of q in polar coordinates. The resulting Polar RMS Plot (PRP) captures both 

RMS error and anisotropy information. The word ‘Polar’ is chosen because results are 

plotted from 0 to 2π and should not be confused with an azimuthal analysis over an error 

map. Calculation procedures and assumptions for the PRP are discussed in more detail in 

Appendix I. 

To demonstrate the PRP methodology, we consider two MSF errors with the same RMS 

error values (53 nm), but different signatures. Figure 4-2 shows two diamond-machined 

surfaces (turned and milled) synthesized in MATLAB using the same fabrication 

parameters: a tool-tip radius of 1 mm and Λ=5 µm, where Λ represents feed/rev for turning 
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and step-over for milling. A sinusoidal error with 150 nm peak to valley (PV) and 0.4 mm 

period was added to the resulting ‘cusp-shaped’ tool errors to approximate thermal drift 

effects from the tool chiller during manufacturing. A conventional RMS specification does 

not distinguish between the two surfaces, but their different anisotropy leads to different 

optical performance [18]. While the surface RMS values for both surfaces are equal, 

comparing the PRPs in Fig. 4-2(c) clearly shows differences between the two surfaces. We 

note that the directional periodic errors in Fig. 4-2(a) appear as distinctive peaks on the 

PRP in the same direction (in blue), while the PRP appears as a circle without any clear 

peaks (in solid red) for the rotationally symmetric errors in Fig. 4-2(b). We also note that 

for the turned texture (Fig. 4-2(b)) the incident light only sees a rotationally symmetric 

texture when on-axis; a directional texture is seen for off-axis field points or when the part 

is not positioned at the aperture stop. 

Based on the PRP algorithm, it is expected to see peaks on the plots in the directions of the 

surface error periodicities. These peaks will appear wider for lower spatial frequency errors 

because longer spatial periods extend over several rotation angles, while higher frequency 

errors appear as sharper peaks. Thus, a quick look at the PRP can provide useful 

information about problematic surface errors. 
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Fig. 4-2. (a) Raster-milled MSF error with RMS = 53 nm. (b) Turned MSF error with RMS 
= 53 nm. (c) Comparing PRPs for milled, turned, and isotropic surfaces with the same 
RMS.   

 

In the next section, we discuss connections between the PRP and the MTF by making 

use of prior work by Youngworth and Stone in estimating the impacts of isotropic MSF 

errors on optical performance [1], and our recent introduction of the concept of a Minimum 

Modulation Curve (MMC) [17,18]. 

 

4.4 Connecting the PRP with the MTF 

4.4.1 Estimates of the impact of isotropic MSF errors on optical performance  

Historically, MSF errors have been primarily treated as random and isotropic. Youngworth 

and Stone [1] adopted a ray-based model to predict the effects of MSF errors on imaging 

systems at or near the diffraction limit. Despite its name, a ray-based model can include 
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diffraction effects by tracing the rays from an object point to specific points in the exit 

pupil where a phase map of the wave front is constructed. The wavefront can then be used 

to calculate the point spread function (PSF), optical transfer function (OTF), and other 

performance measures. Additionally, they employed perturbation methods to estimate the 

additional path lengths of rays due to the presence of MSF errors, introduced concepts from 

statistical optics, and made multiple assumptions about the nature of the MSF errors to 

enable simple estimates of the impacts of these MSF errors on image quality. The end result 

enables the wavefront variance to be approximated for a desired object field point as: 

  

   (1.1) 

 

where σ is the RMS surface error over the clear aperture, λ is the wavelength, and Dn is the 

difference between the refractive indices of the surface and the surrounding medium [1]. 

Therefore, the impacts of MSF errors on Strehl ratio (SR) and MTF can be estimated for 

isotropic surfaces as: 

  

   (1.2) 

  

   (1.3) 

where  

   (1.4) 

 

and SRdiff (=1) and MTFdiff represent diffraction-limited performance for these two metrics.  
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We have introduced the idea of the PRP to better represent the impacts of anisotropic 

MSF errors on optical performance. In the following, we build on the work and 

assumptions of Youngworth and Stone [1] to demonstrate how substituting PRPmax (the 

amplitude of the largest PRP peak) instead of σ in Eqs. (4.1-4.4) connects the PRP to optical 

performance. Note that for an isotropic surface, PRPmax = σ and therefore our estimates 

converge to those from Youngworth and Stone. However, we must first briefly review key 

concepts of the Minimum Modulation Curve (MMC). 

 

4.4.2 The MMC and PRP for determining the impacts of anisotropic MSF errors 

We recently introduced a new approach for 2D MTF analysis through the Minimum 

Modulation Curve (MMC) [17,18]. The MMC is a practical tool that summarizes key 

information from a 2D MTF in a more familiar 1D format. The MMC is defined as: 

  

   (1.5) 

 

where MTF(r,f) is the MTF in polar coordinates, r is the radial spatial frequency, and f  is 

the azimuth angle measured from the horizontal. The minimum modulation values are 

chosen since MTF requirements are often given as the minimum acceptable modulation at 

specific spatial frequencies [16]. The MMC summarizes information from all orientations 

and is thus suitable for analyzing the impacts of anisotropic MSF structures. To illustrate 

the correlation between the MMC and the MTF estimated from the PRP, we substitute 

PRPmax in place of σ in Eqs. (4.3) and (4.4) to obtain: 
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   (1.6) 

 

As an example, we consider a 2 mm diameter f/5 PMMA (n = 1.4971) lens at wavelength 

l = 486.1 nm. We impose the MSF texture in Fig. 4-2(a) with σ = 53 nm on one side of 

this lens and simulate the PSF and MTF of the system via Fraunhofer diffraction theory 

[32]. Figure 4-3(a) compares the PRP of this surface (in solid blue) with the PRP of an 

isotropic surface (in dashed red) with the same RMS (σ = 53 nm). The blue PRP shows 

peaks up to PRPmax = 76 nm. As expected, the peaks are in the same direction as the 

periodicities of surface errors.  

MTF simulation results in Fig. 4-3(a) confirm that the lens is not performing as 

predicted by Eq. (4.3) but does match the predictions from Eq. (4.6) based on the PRP. 

This simple example illustrates how overlooking the anisotropic nature of MSF errors 

could lead to an inaccurate specification. Note that both the MMC and the sagittal MTF 

drop below the red dashed acceptance line predicted for an isotropic MSF error. In Fig. 4-

3(b), the PV of the sine error in Fig. 4-2(a) is reduced to 104 nm while keeping everything 

else the same. As a result, the PRP peak shrinks such that it just touches the dashed red 

circle representing an isotropic MSF surface error (so PRPmax = σ), and therefore the MMC 

and sagittal MTF of the lens are coincident with the MTF estimation lines. In Fig. 4-3(c), 

further reduction of the sine PV to 80 nm shrinks the PRP so that PRPmax < σ, which further 

improves the MTF. These results suggest that the PRP can serve as an intuitive, easy to 

understand tool for determining an acceptance criterion. 

 

( )max .PRP diffMTF Q PRP MTF=
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Figure 4-3: Comparison of PRP and MTF for simple lens with surface errors of the form 
in Fig. 4-1(a) with different amplitudes. (a) σ = 53 nm and PRPmax = 76 nm; (b) Effects of 
reducing the PV of the sinusoidal error to 104 nm (σ = 37 nm and PRPmax = 53 nm); and 
(c) Effects of reducing the PV of the sinusoidal error to 80 nm (σ = 28 nm and PRPmax = 
41 nm). 
 

The demonstrated relationship between PRP and MTF suggests that the PRP can provide 

a practical means to assign effective specifications and acceptance criteria for optical 
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surfaces with MSF errors. The following section presents additional examples and 

proposes a simple method for estimating a required PRPmax for an optical specification.  

 

4.5 PRPmax as a surface specification 

Optical designers are required to provide specifications on surface form, waviness (MSF 

errors), and roughness to manufacturers. In this section, we propose a method for 

calculating a PRPmax criterion for MSF errors after tolerancing a surface. 

 To this end, we again consider Eqs. (4.2) and (4.4) and note that the Strehl ratio in Eq. 

(4.2) equals the multiplicative factor Q(σ) in Eq. (4.4) since SRdiff  = 1. The SR is defined 

as the ratio of the central irradiance of an aberrated PSF to that of the unaberrated PSF. The 

SR can also be related to the Optical Transfer Function (OTF) [33]. For small aberrations 

(with negligible phase transfer functions), the OTF is equivalent to the MTF and we can 

write: 

  

   (1.7) 

 

which is the ratio of the volume under the surface of the 2D MTF of an aberrated system 

to the volume under the 2D MTF of a diffraction-limited system. Eq. (4.7) can be 

represented in polar coordinates as: 
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We propose to use Eq. (4.8) with Eq. (4.5) to calculate a new value SR¢ that is analogous 

to SR but based on the MMC instead of MTF. We emphasize that SR¢ is not the traditional 

Strehl ratio: 

  (1.9) 

 

The new performance parameter SR¢ is connected to the maximum wavefront variance and 

maximum RMS surface error (σmax), since the MMC indicates the lowest modulation at 

each spatial frequency. Comparing Eqs. (4.2), (4.4), (4.8), and (4.9) suggests that we can 

set: 

  

   (1.10) 

 

and thus:  

  (1.11) 

 

where Q¢ is a new multiplicative factor analogous to Eq. (4.4) and which, considering Eq. 

(4.6), suggests that σmax » PRPmax. Note that σmax is calculated via the MMC where 

modulation equals one at zero spatial frequency, while PRPmax is connected to a linear 

estimate of the MTF through Eq. (4.6). As discussed below, this can cause differences 

between the values of σmax and PRPmax, but the values are close empirically when the 

performance is close to diffraction-limited.  
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To better illustrate this point, we now consider several examples of MSF errors on the 

aforementioned lens used in Fig. 4-3 and compare the resulting MTF performances with 

predictions based on the methods discussed above. As shown in Fig. 4-4, Cases I and II 

correspond to simple sinusoidal signatures from raster milling and turning, respectively, 

while Cases III and IV contain multiple sinusoidal errors with different amplitudes and 

orientations. For each of these examples, we calculate the PRP from the MSF surface data 

and calculate the MMC following Eq. (4.5). We then calculate the acceptance line for MTF 

based on the isotropic assumptions of Youngworth and Stone [1] using Eq. (4.3), as well 

as MTF acceptance lines calculated based on PRPmax using Eq. (4.6), and based on σmax 

from Eq. (4.11) in place of PRPmax in Eq. (4.6). The PV, period (Λ), and direction (θ) of 

the sinusoidal errors on each of surfaces are listed in Table 4-1. The calculated surface 

specifications for each example are listed in Table 4-2, and the corresponding MSF 

surfaces, PRPs, and MTF comparisons are shown in Fig. 4-5. 

 

 

Fig. 4-4. Surface errors from Table (4-1): (a) Case I. (b) Case II. (c) Case III. (d) Case IV. 
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Table 4-1: List of sinusoidal errors for example surfaces in Fig. 4-4. 
 PV1 

(nm) 
G1 

(mm) 
θ1 

(deg) 
PV2 
(nm) 

G2 
(mm) 

θ2 
(deg) 

PV3 
(nm) 

G3 
(mm) 

θ3 
(deg) 

Case I 200 0.25 0 - - - - - - 
Case II 200 0.25 No - - - - - - 
Case III 150 0.25 90 130 0.5 0 - - - 
Case IV 100 0.25 90 75 0.5 0 150 0.4 60 

 
 

 
Table 4-2: Calculated specification for example surfaces in Fig. 4-4. 

 σ 
(nm) 

σmax 
(nm) 

PRPmax 
(nm) 

Q = SR Q¢ = SR¢ 

Case I 70 100 100 0.84 0.71 
Case II 70 70 74 0.84 0.84 
Case III 70 93 100 0.84 0.75 
Case IV 70 93 101 0.84 0.75 

 
  
 

We note that all four cases have the same σ, but do not have the same optical 

performance. For the rotationally symmetric example (Case II), the performance predicted 

by all methods is very close to that expected for an isotropic surface. However, the 

performance of surfaces with more anisotropy (Cases I, II, and IV) are consistently below 

the expectation for an isotropic surface. We also note that the MTF lines predicted via σmax 

and PRPmax are very close and track well with the MMC. 
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Figure 4-5: PRP and MTF simulations for (a) Case I, (b) Case II, (c) Case III, and (d) Case 
IV. 

 

We now consider an additional example that demonstrates application to an 

experimental data set and also illustrates potential limitations of the proposed 

methodology. Figure 4-6(a) shows data from an experimental interferometric measurement 

of a surface created through a raster grinding process. It can be argued [2] that the low-
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spatial frequency sinusoidal errors in the vertical direction should be considered to be form 

errors, rather than MSF errors; thus, the measurement result can be thought of as a ‘non-

ideal’ surface with residual form errors after filtering the data. Figure 4-6(b) shows the PRP 

for this experimental surface, with large, wide peaks and large PV in the vertical direction 

corresponding to the low-spatial frequency errors. The measured RMS (σ) and PRPmax for 

this surface are 7 nm and 11 nm, respectively. 

For optical simulations, we impose this surface error onto a f/10 mirror with 0.418 mm 

clear aperture at a wavelength of λ = 157 nm. We note that Dn = 2n = 2 in Eq. (4.2) for the 

reflective case in air since light reflects back into the same medium. Use of Eqs. (4.9) and 

(11) results in σmax = 8.7 nm. The corresponding MTF simulations for this example are 

shown in Figure 4-6(c). 

 

Fig. 4-6. (a) Example of experimental surface error from raster grinding on a mirror 
surface, and corresponding (b) PRP, and (c) MTF calculations for system operating 
at λ = 157 nm. 
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Multiple useful observations can be made from the simulations in Fig. 4-6(c). The MTF 

prediction from the experimentally determined PRPmax value from Fig. 4-6(b) tracks well 

with the MMC; the connection between the measured PRP and the MMC holds true even 

with the presence of the low-spatial frequency errors in the experimental surface data. 

However, the MTF line resulting from the calculated σmax value shows a significant 

deviation from the MMC. This illustrates that the assumptions used in setting PRPmax » 

σmax are not valid in the presence of low-spatial frequency errors with PV values that are 

large in comparison to the MSF contributions. This makes sense, as such errors lead to 

drops in the MMC that introduce a bias in Eq. (4.9), resulting in σmax < PRPmax. This bias 

is also observable at a lesser level in Figs. 4-5(c) and 4-5(d). However, we note that the 

predictions using σmax still provides better estimates than values calculated via Eq. (4.3) for 

an isotropic surface. 

To conclude this section, we note that Eq. (4.11) provides a simple method for designers 

to estimate PRPmax as an acceptance criterion after tolerancing optical system performance 

based on the MMC, subject to the assumptions and limitations discussed above. For 

example, if the aforementioned lens in Fig. 4-3 is required to have an MMC above 80% of 

the diffraction limit at all spatial frequencies, then Q¢ = 0.8 For this value of Q¢, Eq. (4.11) 

can be used to estimate σmax » PRPmax = 73 nm. Even more simply, we assert that it would 

be reasonable for a designer who calculated a required value of σ (assuming an isotropic 

MSF error distribution) to provide that same numerical value as the PRPmax to the 

manufacturer as an acceptance criterion. 
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4.6 Discussion and Conclusion 

We have proposed a novel method for specification of optical surfaces with anisotropic 

MSF surface errors based on the maximum RMS surface error in a given direction. 

Presenting the resulting data in polar coordinates results in a Polar RMS Plot (PRP) that 

enables a simple, intuitive acceptance criterion for anisotropic MSF surface errors. We 

have demonstrated connections between the maximum PRP value and the minimum optical 

modulation (MMC). The proposed methods provide a means to specify and set acceptance 

criteria for surfaces with anisotropic MSF errors. We note that, in the case of isotropic MSF 

surface errors, the proposed methods simplify to previously reported results [1]. In 

summary: 

 

• The impacts of anisotropic distributions of MSF errors are captured by the MMC. The 

MMC can be estimated using Eq. (4.6) for a given PRPmax. 

• Designers can estimate an acceptable PRPmax value for a surface via Eq. (4.11) and provide 

this value to manufacturers as a specification for MSF surface errors. This is in contrast to 

methods that provide a surface RMS value assuming isotropic error distributions and give 

unexpected performance results when anisotropic MSF errors are present. 

• Manufacturers can use the PRP as a measurement tool and the PRPmax value as an 

acceptance criterion. 

 

The intuitive PRP could also provide insights to manufacturers for process refinement and 

improvement. Since the PRP provides visual information on the orientation of surface errors and 

the widths of the peaks in the PRP are related to the spatial frequencies of those errors, the PRP and 
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PRPmax may be useful in diagnosing processing issues that have the largest impacts on optical 

performance.  

 

4.7 Appendix I: Procedure for calculating the Polar RMS Plot (PRP)  

(1) Filter the desired mid-spatial frequency band using a PSD band-pass filter and save 

the new error map for processing. 

(2) Apply an aperture to the error map to select the analysis area. 

(3) Consider the surface height error map, H(i, j), to be an Nx x Ny matrix. Calculate the 

RMS of real and non-zero values for each column of this matrix according to Fig. 

4-1. Then pick the maximum RMS value between all columns. 

(4) Rotate the surface error map by a small angle (Dθ). In this paper, we chose one-

degree angular increments and the nearest-neighbor interpolation method using the 

imrotate.m function in MATLAB. 

(5) Repeat Steps 3 and 4 for each angle (θ) across the desired angular range. We chose 

to perform this calculation from 0 to 2π to enable an intuitive, symmetric final 

plot. 

(6) Plot the maximum RMS value captured at each rotation angle of the surface error 

map with respect to each angle in polar coordinates. 

 

Depending on the shape of incident beam footprint on the part, the user can apply a 

circular or rectangular aperture to the error map to select the analysis area. Although we 

have used a circular aperture in our calculations, the choice of aperture has not shown an 

impact on the overall PRP properties or its connection to optical performance. Choice of a 
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circular aperture is straightforward, but to apply a rectangular aperture, it is safer to crop 

down the surface area to N/Ö2 size, where N = min{Nx, Ny}. This is suggested to avoid any 

noise leakage from the edges into the PRP data caused by the required matrix rotations in 

step (4).  

The PRP resolution depends on the choice of angular increment (Dθ) in rotating the 

surface error map. Surface resolution and the accuracy of the interpolation method used for 

rotating the surface matrix are other limiting factors. Similar to other surface specification 

methods, it is a good practice to mask large localized amplitude spikes within measured 

data to avoid unnecessary over-specification. 

It is also important to remember that the position and diameter of the analysis on a 

measured part should be chosen based on the expected beam footprint within the design. It 

could be necessary to specify a part at different field angles. This helps to establish an 

effective specification connected to optical performance. 
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CHAPTER 5:  CONCLUSION 

5.1 Summary of Work 

Specification of optical surfaces with mid-spatial frequency (MSF) errors is a challenging 

task because of the demand for a simple solution to a complex problem. Commonly used 

surface specification methods are not able to capture many important characteristics of 

MSF errors.  

Diamond-machined MSF errors were investigated more specifically in article one [40]. 

Predictive models were developed for the Strehl ratio of these surfaces based on a targeted 

optical performance. These models could help determine manufacturing parameters for 

balancing the impact of diamond cusp errors with manufacturing costs. However, this 

works also illustrated that conventional performance metrics like the Strehl ratio and 

conventional surface specification metrics such as surface RMS are not adequate for 

surfaces with anisotropic MSF errors. 

An important step toward developing tolerancing strategies within a design is to first 

develop tools that are able to effectively characterize the impact of MSF errors on the 

optical performance. Multiple optical performance metrics were analyzed for various 

optical systems. In our study, 2D MTF was shown to be the most promising metric for 

observing the impact of MSF errors. Therefore, in article two [41], a non-directional 

analysis approach for 2D-MTF was proposed which is also useful for systems with 

rotationally asymmetric performance. This approach summarizes key information within a 

complex 2D-MTF and presents it in 1D familiar formats through the minimum modulation 

curve (MMC) and the standard deviation of the modulation 𝜎-./. 
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In article three [42], we developed a novel surface specification method in which 

quantifies the surface RMS and anisotropy distribution of errors at the same time. This 

method provides an intuitive specification plot which illustrates a strong connection to the 

optical performance of a part through the modulation transfer function (MTF). 

Thus, tools developed in article two [41] and three [42] provide a closed loop for true 

MSF specification and characterization of the impact which facilitates the long-term 

problem of MSF testing and tolerancing.  

 

5.2 Future work 

1. Experimental implementation of the predictive models in article one [40] for 

optimizing the diamond machining fabrication process. The performance of a 

fabricated part could be validated using an MTF/PSF bench. 

2. To date, the Polar RMS Plot method in article three [42] has been applied to several 

experimentally measured surface data sets. Also, the minimum modulation curve 

(MMC) has been applied to simulated optical performance models from these 

measured surface data. It is desirable that both tools be utilized experimentally and 

the connection between the two be illustrated and validated experimentally. 

3. The polar RMS plot, in article three [42], could be investigated further to extract 

more surface characteristics from the plots such as the spatial frequency and peak to 

valley (PV) of surface errors. 

4. The methodology of the MMC calculation [41] could be adapted to drive a new 

method for analyzing 2D PSD data. One possibility is to pick the maximum power 

for each spatial frequency in an azimuthal analysis approach. 
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5. Tolerancing surface errors with respect to the MMC [41], by using optical design 

codes such as Zemax or CODE V, to define surface acceptance criteria, could be 

another practical and useful research area. 
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