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ABSTRACT

USHMA SUNIL BHARUCHA. Scalable Hardware Accelerator Design for FPGA
Platforms. (Under the direction of DR. HAMED TABKHIVAYGHAN)

Deep Learning revolutionized the field of computer vision when convolutional neural

networks (CNNs) solved complex computer vision problems with promising develop-

ments in the areas of research in artificial intelligence (AI). The progress in AI has

attracted the hardware community to accommodate the growing demand of computa-

tionally expensive state-of-the-art Deep CNNs, coupled with diminishing performance

gains of general-purpose architectures, which has fueled the need for specialized and

scalable hardware accelerator designs and architectures for Deep CNNs. Moreover,

Deep Separable Convolutional Neural Networks (DSCNNs) has become an emerging

paradigm in the field of computer vision by offering modular networks with structural

sparsity to achieve higher accuracy with relatively lower operations and parameters.

However, there is a lack of customized architectures that can provide flexible solutions

that fit the sparsity of the DSCNNs. The purpose of the domain-specific accelerators

is to satisfy two requirements: (1) execution of DSCNN models with low latency, high

throughput, and high efficiency, and (2) flexibility to accommodate evolving state-of-

the-art models like EfficientNet families without costly silicon updates. On this note,

the state-of-the-art GPUs tend to be too power-hungry and ASICs are too inflexible.

This is where FPGA shines due to its architectural reconfigurability, ability to ac-

commodate custom datatypes, and process irregular parallelism, power efficiency, and

low latency which extends its usability in real-time. This work proposes DeepDive,

which is a fully-functional, vertical hardware-software co-design architecture for the

power-efficient implementation of DSCNNs on both edge and cloud FPGA platforms.

With two different architectural principles applied for DeepDive’s implementation on

edge and cloud, the architecture for the former demonstrates latency-orient design
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whereas the architecture for the later demonstrates a throughput-orient design each

of which is designed to fully support DSCNNs with various convolutional operators

interconnected with structural sparsity. The accelerator design for both introduces

parameterized, configurable, and scalable compute units that can be configured based

on the user-specific requirement depending on the hardware it is implemented on, the

degree of parallelism required, and the family of DSCNN chosen for inference. This

accelerator design was implemented using Xilinx Vitis HLS 2019.2 tool. The execution

results for DeepDive - Edge accelerator on Xilinx ZCU102 Edge FPGA demonstrates

233.3 FPS/Watt for a compact version of EfficientNet the state-of-the-art DSCNN.

These comparisons showcase how this edge design improves FPS/Watt by 2.2× and

1.51× over Jetson Nano high and low power modes, respectively. Whereas, DeepDive

- Cloud accelerator achieves 87 FPS on Xilinx Alveo U50 with a power efficiency of

7.25 FPS/Watt for the baseline version of EfficientNet.
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CHAPTER 1: INTRODUCTION

With the recent advances in the study of deep convolutional neural networks, deep

learning has boosted the already rapidly developing field of computer vision. This

has brought about the introduction of non-traditional and efficient solutions to sev-

eral problems that had long remained unsolved and are now becoming parts of our

everyday lives. These include image classification Fig:1.1, object detection Fig.1.2,

semantic segmentation Fig:1.3, machine vision in self-driving cars and many more.

Deep learning methods are achieving state-of-the-art results on these applications.

This impressive performance comes at the cost of increased workload and bulkier

networks with a compute-intensive structure. Today’s age of artificial intelligence

(AI) has attracted the hardware community to develop customized hardware of nu-

merous deep learning applications. Out of the currently available accelerator engines,

GPUs tend to be too power-intensive, fail in the test of real-time processing and archi-

tectural flexibility. On the other hand, ASICs are faster than GPUs because they run

on bare-metal but due to poor architectural flexibility are ranked lower. This is where

FPGAs wins the price with their architectural flexibility in terms of reconfigurability,

which has attracted hardware developers to consider FPGA as one of the top choices

for developing deep learning applications. Moreover, to achieve better accuracy and

accommodate the growing computer vision demand, the CNNs have become compu-

tationally intensive and bulkier. Deep Separable CNNs (DSCNNs) has emerged as

an innovative algorithmic solution to achieve higher accuracy with relatively lower

parameters and operations. State-of-the-art deep separable CNNs, e.g., MobileNet

family and EfficientNet family, offer modular networks with structural sparsity over

various convolutional operators like group, depthwise, and, pointwise convolution.
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Apart from this, FPGA platforms scale from edge to cloud, however, recently intro-

duced hardware accelerators are designed to be generic, one-size-fits-all architectures.

But due to platform-specific requirements, there was a need for separate design for

edge and cloud platforms. This thesis presents DeepDive a fully functional framework

for an agile, power-efficient execution of DSCNNs for both edge and cloud platforms.

Figure 1.1: Classification

Figure 1.2: Object Detection

1.1 Motivation

If we take edge devices into consideration, we find some distinguishing characteris-

tics which include data proximity, real-time interaction, and energy-efficient design.

By pushing the data processing to the edge devices, a large amount of raw senor or

camera data can be processed locally in order to produce compact and rich infor-

mation. This reduces the data transfer time and thus allows a faster response time.

Edge devices promote real-time inference and supplements users with data privacy

which is one of the major concerns as AI grows. The power consumption dramat-

ically reduces as we move to edge devices and thus, making it possible to achieve
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Figure 1.3: Semantic Segmentation

the power-efficient design. Keeping in mind these characteristics of edge devices, it

is necessary to have a latency-oriented accelerator design for edge devices. However,

when we talk about cloud devices, we see that cloud platforms are blessed with an

abundance of resources which makes them capable enough to process any quantity

of workload. Hardware scalability and reconfigurability make it possible to design

an accelerator with demonstrates high performance when compared to other avail-

able hardware accelerators. Cloud devices are expected to process larger workloads

for single run supplementing higher throughput per query. Hence, it is necessary to

have a throughput-oriented design for cloud devices that executes in SIMD fashion,

meaning, higher data-level parallelism to achieve higher throughput.

1.2 Contribution

DeepDive is a fully functional, end-to-end vertical framework that is agile and

demonstrates power-efficient execution of DSCNNs on both edge and cloud FPGA

platforms. DeepDive offers a novel architecture for efficient execution of DSCNNs,

combined with a vertical algorithm/architecture optimization and synthesis on dif-

ferent FPGA platforms. At the frontend, DeepDive receives a network description

model (e.g., Pytorch, Onyx, etc.) and optimizes the model based on the FPGA-aware
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training and online quantization. This includes algorithm-specific fusing of batch

normalization and convolutional operators along with extreme low-bit per-channel-

quantization across all separable convolution layers. The output of the front-end will

be QNet, which contains all of the meta-data regarding the FPGA-aware trained as

well as the quantized network model. Frontend is unified implementation and inde-

pendent of different FPGA platforms be it edge or cloud. At the backend for the

edge, the Network SoC compiler creates a customized memory path and synthesiz-

able model of the entire hardware accelerator based on the pre-designed CUs and

provided convolutional operators such as group, depthwise, and pointwise convolu-

tions. The network SoC compiler is also responsible for generating the host CPU

code running on ARM cores for synchronization and scheduling. As opposed to the

edge, the backend for cloud platform consists of multiple instances of a homogeneous

compute unit comprising of heterogeneous processing elements, each of which has

convolutional operators with either direct convolution or GEMM-based algorithms.

All the compute units are instantiated in the Super Logic Region (SLR) of cloud

FPGA with each compute unit interacting with the processor via its individual High

Memory Bandwidth (HBM) Channel. Below are the DeepDive specifications followed

by my contributions. DeepDive Specifications:

• Scalable framework enabling optimized execution of the DSCNNs on different

FPGA platforms

• Parameterized, configurable, and highly optimized convolutional operators with

flexible compute core for accommodating user required parallelism

• First scalable solution with the support of recently introduced EfficientNet

DSCNN families

• The vertical integration and library-based operation mapping enables true com-

prehensive design space exploration on FPGAs
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My Contributions:

• DeepDive - Cloud:

– Designed and developed cloud specific homogeneous compute unit design

– Introduced GEMM based convolutional operators for processing elements

– Separated architecture source code and configuration via cmake integration

– Integrated the backend of DeepDive with hlslib extensions

• DeepDive - Edge:

– As a part of collaborative effort helped in developing synthesizable compute

units : Head, Body, Tail, Classifier

– Extended support for EfficientNet in the backend for DeepDive on edge.

– Contribute to the overall design flow of DeepDive for edge

1.3 Thesis Outline

The thesis is further organized in the following manner. Chapter 2 will discuss

related works that have hardware accelerator implementations along with background

about hlslib and newly introduced DSCNN family EfficientNet with some of the

techniques used to reduce computation complexity in CNNs. Chapter 3 talks about

the DeepDive cloud implementation and the execution dataflow of the accelerator and

convolutional operators implemented in processing elements. Chapter 4 highlights

DeepDive frontend and backend implementation on the edge which describes the

working of Network SoC Compiler and elaborates on the four basic compute units.

Chapter 5 discusses the experimental setup and results on both edge and cloud. The

experimental results compare single vs multiple compute unit implementation on

cloud FPGA and later compare the execution of DSCNNs on embedded GPU and

FPGA. Chapter 6 concludes the thesis along with some prospective future work.



CHAPTER 2: RELATED WORKS AND BACKGROUND

2.1 Related work

Developing for FPGA is an arduous and time-consuming task because of its com-

plexity and the infinite number of solutions. Although the advances of HLS reduces

the design complexity and improve the productivity, DNN hardware realization for

FPGA still needs a large amount of engineering effort. Hao et al. [1] proposed a

framework, consists of Auto-DNN, and Auto-HLS, for design exploration of DNN.

They introduced predefined CNN blocks, called CNN bundle, to shrink the space ex-

ploration. This decision helps them to analyze the impact of final hardware solutions

on overall DNN performance and vice-versa; however, it costs them the inability of

the state-of-the-art deep CNN implementation.

Modern CNN accelerators can be divided into two main categories: single compute

engine [2, 3, 4, 5, 6, 7], and multiple streaming compute engines [8, 9, 10, 11, 12, 4].

Single compute-engine accelerators are typically a systolic array of processing ele-

ments (PEs). These kinds of accelerators execute the target CNN layer-by-layer

sequentially. They have a versatile solution to support different CNNs with the cost

of some execution deficiencies. This architecture design has a high amount of memory

transactions. In contrast, streaming architectures consist of multiple dedicated hard-

ware blocks, customized for the target CNN’s layers running in producer/consumer

fashion. While achieving relatively higher efficiency, they have less scalability to

support different networks [13, 14].

Many recent frameworks have proposed a vertical design flow from algorithm to

the hardware [2, 8, 4, 10, 15]. However, the primary focus is on optimizing classical

CNNs with dense operation with regular memory access, such as YOLO and ResNet
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network family. One notable example of single-engine architecture is DNNWeaver

[2]. It offers customizable, hand-optimized RTL templates capable of shrinking or

expanding the architecture based on the target CNN workload and target device

hardware constraints. The templates support common CNN layer operations such

as standard convolution, pooling, and batch normalization. However, the design-

flow is not autonomous as it requires the user to define the network topology and

layer structure. Wei et al. [6] designed a novel 2D systolic array that localizes

data shifting to between neighboring PEs. This removes the need for multiplexers

and simplifies the routing complexity, allowing for higher throughput. They also

employ a custom C-based front-end, which, similar to [2], requires user interaction

to define the nested convolutional loop using custom pragmas in C++. The custom

frontend makes it more challenging to integrate with existing high-level DNN libraries

(PyTorch, TensorFlow, Caffe, etc).

VTA is another recently introduced approach, which presents a versatile hardware

solution to support different dense CNNs. Fig.2.1 shows the block diagram of the

VTA. VTA enjoys the generality by adapting instruction-based scheduling and flexible

systolic array. However, this generality leads to more power dissipation. Another

aspect that should be considered is that solutions based on versatile systolic arrays

intrinsically do not support depthwise convolutions due to introduced sparsity in these

types of convolutions; thus, users need to convert the depthwise convolutions to group

convolution to execute a DSCNN on designs similar to VTA. All these succumb to

more power dissipation and memory transactions, which lead to having an inefficient

hardware solution for DSCNNs.

The design proposed in [16] presents a framework to minimize the complexity and

the model size of dense CNN by mapping normal convolution to depthwise separable

convolution. Similarly, TuRF [17] replaces standard convolution layers with depthwise

separable convolution and applies layer fusion to enhance the performance of dense
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Figure 2.1: VTA (Vresatile Tensor Processing Unit)

networks. The design presented by [18] is another hardware accelerator based on

matrix multiplication and customized adder-tree to support MobileNet-V2. However,

their fixed design platform is not scalable to support fast-growing and forthcoming

DSCNNs. A parallel acceleration scheme proposed in [19], demonstrates comput-

ing reusability with design reconfigurability. However, the accelerator suffers from

massive data movements due to frequent reads and writebacks to the DDR because

of the lack of fused layer execution. Moreover, the design-flow is not autonomous

and requires the user to define the layer structure. A MobileNet-V2 based hardware

accelerator on FP32 computation is presented in [20].

DPU [21] is another solution to support MobileNet-V2 based on an optimized RTL

hardware model with a dedicated operator for depthwise; however, it cannot be con-

sidered as a versatile solution to support DSCNNs due to lake of support for swish

activation function and pointwise multiplication. Fig:2.2 show the basic block dia-

gram of the DPU. It also has a instruction based scheduler with a core engine for

normal and pointwise convolution and a separate engine for depthwise convolution.

DPU does not support elementwise multiplication, which makes it incompatible with

the EfficientNet model. To the best of our knowledge, none of the above approaches
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Figure 2.2: DPU (Deep Neural Processing Unit)

present a fully vertical framework to implement the-state-of-the-art DSCNN archi-

tectures, e.g., EfficientNet family.

2.2 Background

Here we go through some background information regarding some libraries, basic

building block of convolution. Then we go present an overview of the HLS tools and

pragmas which enabled us to develop DeepDive framework with translated source

source code to desired hardware design.

2.2.1 Hlslib

HLS tools have encouraged FPGA development by allowing programmers to de-

sign architectures using familiar languages such as C++ and OpenCL. However, the

additional layer of abstraction added by HLS, makes it difficult to track problems in

the final architecture which is quite frustrating since it is nearly impossible to debug
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HLS code which makes debugging and optimization degenerating into a trial-and-

error process. Hence, we used hlslib [22] which is an open-source collection of tools,

modules, and scripts that helps in improving the quality of life of HLS developers.

Hlslib improves the HLS workflow by introducing the following functionalities.

2.2.1.1 CMake Integration

CMake tool is generally used to configure and build C/C++ projects. We can set

project parameters during configuration, as compilation is performed out-of-source,

and dependencies are automatically located on the host system in a portable fashion

without the need to explicitly setting the host processor environment. hlslib pro-

vides supports for FPGA projects in CMake which allows separation of source code

and configuration through CMake scripts. Users can explicitly design their run-time

based on the compiler flags, headers and libraries included with CMake configuration.

Also, with constant updates in the workflow development and run-time platforms by

vendors, using CMake offloads the responsibility of setting up the HLS environment

to hlslib making project robust to setup changes by vendors.

2.2.1.2 Software Simulation of Hardware

HLS provides numerous pragmas to pipeline and parallelizes the processing ele-

ments (PEs) execution in hardware. Accurately emulating the semantics of such

multiple concurrent PEs executing in hardware is really important in the testing pro-

cess such that the design is correctly interpreted in hardware by HLS in order to

achieve high performance. PEs typically communicate via blocking channels, imply-

ing synchronization points between them. Emulating concurrent PEs thus requires

a multi-threaded environment with thread-safe constructs. Hlslib makes it possible

to debug in HLS by providing a set of thin wrapper macros that interprets these

concurrent PEs as concurrent threads at run-time while running software emulation

which is inherently a thread-safe design.
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2.2.1.3 Thread-safe Streams

Streams are used as communication primitives between PEs or as buffers with FIFO

semantics. Hlslib interprets these HLS streams as thread-safe streams which mimic

the inter-PE communication between multiple PE during the simulation. Further-

more, streams are bounded by default, like the hardware implement they represent.

Additionally, hlslib will implement streams in the resource suggested by the user if

explicitly mentioned in an optional template argument.

2.2.1.4 Wide Data Buses and Vectorization

Instantiating wide data paths in HLS is necessary to exploit memory bandwidth,

and to achieve parallel architectures through vectorization. hlslib provides the tem-

plated DataPack class for Vitis HLS, which exposes a versatile interface for imple-

menting wide buses, registers, memory interfaces, and computations that consist of

multiple data elements.

2.2.2 Gemm Hls

Data movement is the dominating factor affecting performance and energy in mod-

ern computing systems. GEMM being a data redundant approach it is necessary

to design a matrix multiplication approach that has minimized the number of I/O

operations and maximized performance for the off-chip necessary data movement.

GEMM_HLS presents an optimized matrix multiplication for FPGA platforms, si-

multaneously targeting maximum performance and minimum off-chip data movement,

within constraints set by the hardware. The GEMM is configurable based on the tar-

geted platform, degree of parallelism, and is designed with hlslib extensions. The

proposed method presents optimum memory bandwidth utilization for data transfer

from the processor to FPGA.
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2.2.3 EfficientNet

As mentioned earlier, depthwise convolution minimizes computation by removing

reduction along the input channels; thus, it is not able to capture the channel-wise

information. In the same fashion, pointwise convolution reduces the computation

complexity by removing spatial filtering, while it has a full reduction in channel

depth. Depthwise separable convolution, used in EfficientNet, is an integrated opera-

tor composed of a depthwise convolution, followed by pointwise convolution, in order

to capture information in both spatial and channel domains, respectively. However,

there is still information loss as features move along the network depth and are em-

bedded into lower-dimensional space. EfficientNet has inverted residual connections,

further reducing both multiply-add operations, and model size, without sacrificing the

network accuracy. The idea of residual connections was inspired by the ResNet [23]

architecture to minimize information loss and speed up the training phase. Fig. 2.3

shows the structure of the Inverted Residual Block (IRB) for EfficientNet. IRB con-

sists of a pointwise (expansion) convolution, followed by a depthwise convolution,

followed by squeeze and excitation (SE) block which is followed by another point-

wise (projection) convolution, to embed the features in a lower dimension. The SE

block consists of a squeeze operation that captures the global spatial features, followed

by an excitation operation that uses a gating function to allow important features

to be captured while ignoring the rest. Traditionally, the normal sigmoid is used as

the gating function for the SE block but is replaced with the hard sigmoid to further

reduce computation complexity. The hard sigmoid is a non-smooth approximation of

the sigmoid function.

EfficientNet is known for its compound scaling method. In order to achieve better

accuracy and efficiency, it is critical to balance all dimensions of network width, depth,

and resolution 2.4 which can be achieved by scaling each of these knobs with a constant

ratio. Intuitively, the compound scaling method makes sense because if the input
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Figure 2.3: Inverted Residual Block: EfficientNet. The illustration of Batch Normal-
ization and Activation layers repeated after each convolution are ignored.

image is bigger, then the network needs more layers to increase the receptive field

and more channels to capture more fine-grained patterns on the bigger image. While

bigger and bulkier networks are ideal for cloud devices it was necessary to identify

networks that would take into consideration the resource constraints introduced while

using edge devices. In separate research in our lab, we identified that it was possible

to scale down EfficientNet so as to achieve compressed models of EfficientNet without

sacrificing the accuracy by a huge margin which would be an idea for edge devices.

Table 2.1 shows a comparison of two different EfficientNet model configurations, out

of which one is BC4 which is the compressed version of EfficientNet vs the baseline

version of EfficientNet. Looking at the model size and the number of Ops required

for the EfficientNet BC4 model makes it a suitable candidate for inference on edge

devices and EfficientNet B0 which is the baseline model is inferred on cloud FPGA.

Figure 2.4: Compound Scaling of depth, width and resolution.
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Table 2.1: EfficientNet Configurations Comparison

EfficientNet Configuration BC4 B0

Input Size 128 224
Parameter (Mb) 7.81 31.74
#Ops (M) 4.91 390
Top1 (%) 55.02 77.1

2.2.4 Xilinx Vitis HLS

HLS is an automated design process that interprets an algorithmic description of

the desired behavior and creates digital hardware that implements that behavior on

FPGA. By targeting an FPGA as the execution fabric, Vitis HLS enables a software

engineer to optimize code for throughout, power, and latency without the need to

address the performance bottleneck of single memory space and limited computational

resources. It is developed to simplify the use of C/C++ functions for implementation

as hardware kernels in Vitis application acceleration development flow for developing

RTL IP for FPGA designs. HLS also provides support for any arbitrary bit-width

data type. It also provides us with a streaming interface for data structures that

are designed to obtain the best performance and area. Xilinx has provided us with

compiler directives or optimization pragmas. These pragmas can be used to optimize

the design, reduce latency, improve throughput performance, and reduce area and

device resource usage of the resulting RTL code. Below are some example of the

pragmas that are used in the current design

2.2.4.1 pragma HLS DATAFLOW

The Dataflow pragma enables task-level pipelining allowing functions and loops

to overlap their execution which increases the concurrency of the RTL design. In

order to use dataflow pragma, the functions must be executing in producer-consumer

fashion communicating via HLS streams. Dataflow forbids concurrent access on the
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same array, either the array needs to have multiple ports such that each function

in dataflow can have independent access to the given variable or allocate separate

resources altogether.

2.2.4.2 pragma HLS PIPELINE

The pipeline pragma reduces the initiation interval by allowing the concurrent

execution of the operations. In default, pragma is trying to make the computation

run in a single cycle. However, loop carry dependencies prevent pipelining. Hence, we

need to make sure that HLS understands that there is no loop carried dependencies.

2.2.4.3 pragma HLS ARRAY PARTITION

An array when declared in hardware is allocated in BRAM depending on the size

of the array and the size of the BRAM of targeted hardware. By default, each BRAM

has 2 ports. If we want to access the same resource multiple times simultaneously, it

is necessary to partition the array such that HLS would allocate separate hardware

for each access such that all the resources can be accessed simultaneously due to the

limited BRAM ports.



CHAPTER 3: DEEPDIVE CLOUD

3.1 Backend

DeepDive’s backend for cloud platform offers a novel micro-architectural approach,

and design flow, customized for efficient execution of DSCNNs. Fig. 3.1 presents the

DeepDive Cloud backend design flow. The processor and the FPGA communicate via

Peripheral Component Interconnect Express (PCIe) bus. The image data, network

weight, biases, and quantization parameters are loaded by the host CPU to device

memory (HBM stack) via PCIe interface, and AXI interfaces are used by the com-

pute unit to read the master interface to fetch these data for the processing elements

(PEs). The compute units are part of the SLR region in FPGA fabric. The number

of compute units can be configured based on the resource availability of the targeted

FPGA and user required parallelism. The backend of cloud FPGA demonstrates a

throughput orient design flow wherein there are many homogeneous compute units

instantiated simultaneously processing on different data which is similar to the SIMD

style approach we see in GPUs but each compute unit has a customized datapath

designed to optimize performance from the processing elements within each com-

pute unit. Because of this design, DeepDive for cloud is better able to address the

irregularities in the DSCNN structure introduced by different convolutional layers.

Each compute unit has is own dedicated HBM channel to interact with the HBM

stack and the network parameters for each compute unit are read and written via

individual AXI interface to the HBM stack. Each compute unit has on-chip buffers

which are used to store intermediate activation features, network weights, biases,

and quantization parameters from the device memory. Each compute unit needs

concurrent access to these buffers in order to execute concurrently as a result each



17

Host
x86

Compute UnitCompute Unit

H
B

M
 C

o
n

tro
lle

r

DeepDive Accelerator

AXI Interfaces

Processor

Body PE Tail PELoad Unit Store Unit

On-Chip Buffers

4
G

B
 H

B
M

 
Sta

ck
 1

SLRx

4
G

B
 H

B
M

 
Sta

ck
 2

PCIe Exp

Reconfigurable Fabric

FPGA Cloud

Figure 3.1: DeepDive - Cloud: Backend.

compute unit maintains a copy of these buffers.

3.2 DeepDive Execution Dataflow

The host-level scheduling of compute units is handled by the processor. The

host is designed in OpenCL fashion. Since the hardware is composed of multi-

ple compute units, the host needs to instantiate multiple concurrent commands to

the compute units. It is only possible if the OpenCL command queues are set in

out_of_order_execution mode. If this mode is not set, then each compute unit will

wait for its previous instance for completion and would wait for unnecessary cycles

even after the completion of its task. In the out_of_order_execution mode, the

scheduler can dispatch commands from the command queue in any order and the

user must explicitly set up event dependencies for synchronization if necessary. On

the first instance of scheduling each of the compute units, the image data, weights,

biases, quantization parameters along with compute unit configuration parameters

are supplemented to the compute units. Upon each subsequent call, just the network

configuration parameters are passed to the compute units while scheduling the com-

pute units. This is because the entire memory footprint of the network is contained

in the compute units during processing time. Upon completing the classification of
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the given image, the output of the classifier is copied back to the scheduler just once.

Each compute unit works on a different image which is why we call this single call

multiple data execution.

3.3 Convolutional Operators

DSCNNs comprise of two types of operations namely 1© Matrix-Matrix Multipli-

cation (MMM) or GEMM and 2© Vector-Matrix Multiplication (VMM) or Direct

Convolution (DC). Different layers in DSCNNs mimic either of the above behaviors.

In order to best understand which layers should be mapped to MMM and VMM, we

performed an experiment wherein we implemented the 1st layer of DSCNNs which

ideally tends to be Normal Convolution which comprises of MMM operations with

GEMM-based algorithm and DC-based algorithm. Table 3.1 shows the execution

time and ops performed by both the algorithms. We could clearly see that layers that

mimic MMM type of operations would give better results when implemented using a

GEMM-based algorithm. This experiment leads to the foundation of the processing

elements inside each CU for DeepDive Cloud. As a result, the PEs comprises of het-

erogeneous convolution operator design where each layer is mapped to the algorithm

which obtained the best parallelism and least execution time.

Table 3.1: GEMM vs DC for input size 128 x 128 x 3

GEMM DC

Execution Time (ms) 1.557 3.33
GOPs (Mb) 9.83 4.29

3.3.1 General Matrix Multiplication

As discussed above, the MMM operations are mapped to GEMM. Among the

different layers of DSCNNs the layers mapped to GEMM for DeepDive Cloud back-

end include: 1© Normal Convolution, 2© Pointwise Expansion Convolution and 3©
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Pointwise Projection Convolution. Each of these layers demonstrates MMM type of

operations. The GEMM presented here is an extension of GEMM_HLS which apart

from matrix multiplication performs convolution operation and it is integrated into

the processing element of the compute unit so as to work in fused fashion with other

DSCNN layers. Fig. 3.2 represents the micro-architecture of GEMM convolutional

operator. GEMM is capable of processing two types of inputs, either from on-chip

buffers or streams, depending upon the position at which it is executed in the pro-

cessing element. If it is the first layer to be running in the PE then on-chip buffers act

as input to the GEMM and if the layer is executing as a part of the fused operation in

the PE then the input is taken from the stream written by the previous layer in the

fused pipeline. This decision is made at synthesis time by the HLS. Weights and net-

work parameters are always read from the on-chip buffers into the streams. GEMM

demonstrates such a boost in performance is because of the fact that we sort of im-

plement data prefetching in this pipelined architecture of GEMM wherein, the data

fetching granularity is different as compared to the compute granularity. This sort

of double buffering approach helps us to concurrently execute the load and compute

operations in GEMM.

The heart of GEMM is the compute core. The number of compute cores and the

degree of parallelism which user can have in their design are configurable at compile

time. All the compute cores run concurrently and demonstrate pipelined architecture

internally. Finally, the output is written back to the output stream or the output

on-chip buffers depending on the position at which GEMM is being executed.

3.3.2 Depthwise Convolution

The Depthwise convolution uses a 3D line buffer and 3D window to perform direct

convolution. The input feature is streamed into a line buffer and then copied into a

window buffer with parallel read access, as shown in Fig. 3.3. Once the computation

is finished, the data in the computation core will be flushed and reloaded with the new
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Figure 3.2: GEMM Convolutional operator.

one from the line buffer. The hardware design ensures the data movement involved in

this process is fully pipelined, and the initiation interval is limited to a single cycle.

Computation starts as soon as the required amount of data is streamed from the main

memory. For the current design, the max achievable parallelism is limited to the K

and N .

Fig. 3.4 presents the micro-architecture of depthwise convolution operator. As

depicted in Fig. 3.4, the selected input is read in streaming fashion into the 3D

line buffer and then copied into the sliding window. The weights are burst read

into the weight scratchpad. The Sliding Window and the Weight scratchpad have

multiple read ports. Every channel of the input is processed by the direct convolution

compute core. The direct convolution compute core has a parallel multiplier and a

pipelined adder tree, together which carryout the MAC operation, followed by the
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Approximator and Clip unit. This unit truncates, or rounds, the results and then

clips them to [0, 2BW − 1] based on the quantization parameters extracted at the

front-end for this operator. Therefore, this unit also acts as the ReLU6 activation

layer defined EfficientNet. The depthwise convolution is more sparse and has the

least amount of data reuse. The maximum parallel operations are calculated as the

following:

ParallelOps = Kdw
max ×Kdw

max ×Ndw
max, (3.1)

In Eq. 3.1, Kdw
max, and Ndw

max are the maximum kernel size and maximum input-channel

across all the depthwise convolutions in the network, respectively.

3.3.3 Pointwise Convolution

The Pointwise convolution for Squeeze and Excite layers for EfficientNet demon-

strates VMM operations hence are mapped to direct convolution. We see this be-

havior because the Average pool layer vectorizes output which is then processed by

the pointwise squeeze and excite layers. Due to the dense operation of pointwise, the

design of this operator can be similar to the design of a systolic array implementa-
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Figure 3.4: Schematic block diagram of Depthwise Convolution.

tion. With maximum data reuse, this operator can leverage maximum parallelism. It

has both fewer algorithmic and fewer data movement complexity, which makes it the

best fit for a high amount of parallelism. Fig. 3.5 shows the structure of pointwise

convolution operator. The required input is directly read into the input scratchpad

from the read buffer. The weights are burst read into the weight scratchpad. The

input buffer and the weight scratchpad have multiple read ports for parallel data

access. The single-cycle parallel multiplier and the adder tree take advantage of the
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multiple ports to perform the MAC operations in a parallel fashion. The amount of

parallelism for our design is across the input channels

ParallelOps = NPWtype
max , (3.2)

where N
PWtype
max is the maximum input channel size across all the specific type of

pointwise convolutions mapped to specific compute unit.
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Figure 3.5: Schematic block diagram of Pointwise Convolution.
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3.4 Cloud Compute Unit

Fig. 3.6 shows the schematic for DeepDive - Cloud compute unit. Each compute

unit comprise of four modules: 1© Load Unit, 2© Body Processing Element, 3© Tail

Processing Element, 4© Store Unit. These modules are scheduled at run-time by

the scheduler depending upon the structure of the chosen DSCNN. The load unit

and store unit are scheduled once during the entire execution of DSCNN. During the

initial scheduling of the compute unit the load unit is instantiated for all the compute

units. It is responsible to copy the data from the device memory to the on-chip

buffers. These on-chip buffers are then used by the PEs for their fused execution of

multiple layers. The body PE is composed of: 1© Normal or Pointwise Expansion,

2© Depthwise, 3© Average pool, 4© Pointwise Squeeze, 5© Pointwise Excite and 6©

Pointwise Projection layers, all running concurrently in fused fashion within the body

PE. This pattern is chosen for the body PE because it is responsible for executing

the majority of DSCNNs blocks iteratively. This is because the IRB block which is

the most repetitive block of EfficientNet is entirely mapped to body PE. Fig. 3.6

also highlights which of the layers are running the GEMM-based algorithm vs which

layers are executing a DC-based algorithm. Thus, we describe this DeepDive - Cloud

backend design as having homogeneous compute units with heterogeneous processing

elements.

Since the compute unit is a homogeneous block, it also provides support for tail

PE which is repeated only once per DSCNN implementation and is scheduled at run-

time. Tail PE is composed of the last pointwise convolution followed by the average

pool and finally the classifier. Similar to the load unit, the store unit is scheduled

once per the DSCNN execution cycle. The output of the classifier is written by the

store unit to the device memory from the on-chip buffers which are then read by the

processor to depict the inference results to the user. Each compute unit is scheduled

similarly by the processor and we get inference for N inputs simultaneously due to
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the out_of_order_execution of multiple compute units on the cloud.



CHAPTER 4: DEEPDIVE EDGE

The DeepDive - Edge architecture presents a framework which is composed of

Frontend and Backend.

4.1 DeepDive - Edge: Frontend

This section illustrates the Front End of the DeepDive. This is mainly responsible

for bringing hardware-awareness into training DSCNNs. Fig 4.1 gives a brief under-

standing of the frontend and its corresponding output. A pre-trained floating-point

network is an input to the deep dive system. To reduce the computation complexity

we try to fuse the batch normalization into the convolution. So the final network will

not have any computation related to the batch normalization. This reduces the oper-

ation by a small amount. The other feature of the front end is to perform the online

channel-wise low bit quantization. The quantization can be performed for arbitrary

bit precision (3, 6, 8 bit). This post-training linear quantization also fuses the ReLU6

into the convolution operators.

4.2 DeepDive - Edge: Backend

Fig. 4.2 presents the DeepDive - Edge backend design flow. The heart of Deep-

Dive’s backend is the Network SoC Compiler. It receives the design properties from

DeepDive’s front-end and generates a full design of the system for both hardware (as

synthesizable C++ models mapped to FPGAs fabric), software codes, and system

configurations. To generate the optimized hardware for DSCNNs, the Network SoC

Compiler uses pre-designed highly-optimized RTL micro-architectural blocks or syn-

thesizable C++ model for depthwise, pointwise, and normal convolution operators.

In simple words, the Network SoC Compiler generates a network graph containing
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Figure 4.1: DeepDive: Frontend.

the network layout and data dependencies. It then creates key heterogeneous CUs,

called QNet Accelerators, with respect to DeepDive’s system architecture.

4.2.1 Convolutional Operators

The convolutional operators for DeepDive edge are similar to that of the once we

discussed for DeepDive - Cloud with the major difference being that edge doesn’t sup-

port GEMM. The convolutional operators purely perform direct convolution. When

comparing cloud and edge convolutional operator implementation we see that for the

edge, the normal and depthwise convolutions are implemented using the 3D line buffer

and 3D windowing approach, whereas the pointwise convolutions are implemented in

the similar systolic style direct convolution like we observed for the cloud. The par-

allelism in normal convolution is across kernel size and input channels — described

as:

ParallelOps = Knc
max ×Knc

max ×Nnc
max, (4.1)

where Nnc
MaxSize is the maximum input channel size, and Knc

max is the maximum kernel

size, assigned from all normal convolution. Normal convolution has slightly more data
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movements compared to the depthwise convolution due to the pipelined adder tree

implemented at the end of direct convolution core.

4.3 Network SoC compiler

The Network SoC Compiler observes the network graph, the targeted hardware

device, and existing pre-designed synthesizable C++ IPs for convolution, and then

translates the network graph by grouping the convolutional operators into customized

QNet CUs with respect to system architecture. It tweaks the hardware architectural

knobs to maximize parallelism, fusing as many convolutional operators as possible to

reduce the number of shared memory transactions, and increase the overlap between

computation and memory latency. Based on the repetitive pattern, it wraps the

convolution operators in four different heterogeneous CUs: 1© The Head CU generally
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consists of normal convolution followed by a special case of IRB which is only called

once; 2© The Body CU invokes IRB since it has maximum repetitions based on the

DSCNNs architectures; 3© The Tail CU usually consists of pointwise convolution

followed by Average Pooling to embed the features and make them ready in respect

of size and shape for the classifier; 4© Finally, the mapping of Tail CU output to

k−classes is accomplished by Classifier CU.

4.3.1 QNet Heterogeneous CUs

In this subsection, we will explain the heterogeneous CUs, and the available archi-

tecture knobs that can be tweaked based on hardware and performance constraints.

As mentioned earlier, Network SoC Compiler creates four unique CUs for each DSC-

NNs. The CUs are completely parameterizable, and customizable, for scalability

and flexibility. The following section describes each CU in detail. We also provide

illustrative figures for the example of heterogeneous compute units for EfficientNet.

Figure 4.3: EfficientNet Head Computing Unit.

Head CU: DSCNNs tend to start with a particular pattern, which comprises of a

fixed set of layers that are not recurrent in any other part of the network. The Head

CU has its dedicated internal memory for buffers. The data transactions occur in

memory-to-memory mode and the intermediate data streams between convolutional



30

Figure 4.4: EfficientNet Body Computing Unit.

Figure 4.5: EfficientNet Tail Computing Unit.

layers within the head CU. As an example, Fig. 4.3 demonstrates the Head CU for

EfficientNet model, which is composed of normal convolution followed by depthwise,

average pool, pointwise squeeze and excite convolution and lastly, pointwise projec-

tion, all fused by FIFO stream. This CU is scheduled once during the course of any

DSCNN implementation. After running the head of CU, the repeatable pattern will

be merged and mapped to the Body CU explained in the next part.

Body CU: The Body CU is the most important CU within DeepDive’s system

architecture. It is responsible for executing majority of DSCNNs blocks iteratively.

As an example, the IRB, which is the most repetitive block of EfficientNet, is en-
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Figure 4.6: EfficientNet Classifier Computing Unit.

tirely mapped to the Body CU. The IRB consists of pointwise (expansion), depthwise

followed by average pool, pointwise squeeze and excite layers and finally pointwise

(projection) layers, all running concurrently in a fused fashion within the Body CU.

Fig. 4.4 shows the structure of this CU for EfficientNet. Upon examining the network

graph of DSCNNs, we see that occasionally, the IRB needs to perform residual connec-

tions. Depending upon the network graph, DeepDive facilitates residual connections

implementation within or outside the PL targeted device resources. The Body CU

is parameterized so as to support both memory-bound IRBs, which ideally are ear-

lier blocks of DSCNNs, and compute-bound IRBs, which tend to be later blocks of

DSCNNs. Therefore, the network SoC compiler configures the Body CU with maxi-

mum buffer size needed by memory-bound IRBs, and maximum level of parallelism

to meet the demand imposed by compute-bound IRBs. At the same time, the Body

CU supports convolution operations with variable stride over different IRBs. These

features increase the framework inclusiveness by supporting multiple IRB scenarios

within the same DSCNN.

Tail CU: The Tail CU consists of the last layers of DSCNNs. The task of this

CU is to make the embedded feature size ready for the dense layer implemented in

the Classifier CU. Fig. 4.5 represents the structure of Tail CU in EfficientNet. This
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CU is comprised of a single pointwise convolution operator, followed by an average

pool. As intermediate feature maps are streamed from layer to layer in a channel-wise

fashion, the reshape block reorders the memory layout of the feature map in a column-

wise mode. Therefore, the average pooling can accumulate the input on-the-fly and

stream out.

Classifier CU: The last Compute Unit is the Classifier CU, which concludes the

DSCNN implementation. Fig. 4.6 represents the EfficientNet Classifier CU. Similar

to others, this CU is parameterized such that the parallelism across the computing

core can be adjusted based on the available hardware resources. Classifier CU com-

prises compute-bound operations and has a similar configuration to the pointwise

convolutional operators.



CHAPTER 5: EXPERIMENTAL RESULTS

5.1 DeepDive Cloud

The procedure starts from a PyTorch model of EfficientNet, pre-trained on Ima-

geNet. At DeepDive’s front-end, we configured the FPGA-aware training for different

BW based on the channel-wise asymmetric ranged linear quantization if the infer-

ence is to be performed for an arbitrary bit width. The frontend also gives us 8bit

quantized inference parameters which we can use if needed.

Moving to the DeepDive cloud backend, we have chosen Xilinx Alveo U50 cloud

FPGA to demonstrate the capabilities of DeepDive cloud implementation. The host

x86 processor is running at 3.9 GHz. We also have Vitis HLS 2019.2 tool to synthe-

size the network models compiled by DeepDive. The FPS and power consumption

reported for DeepDive cloud backend are based on the QNet accelerator running at

500MHz. We targeted Efficient baseline implementation for Alveo U50. The Top-1

accuracy reported in this section is based on training and evaluating the network on

the ImageNet dataset.

5.1.1 DeepDive - Cloud Backend: Mapping

DeepDive’s backend for cloud identifies the mapping between the convolutional

operators and CUs. Fig. 5.1 reveals the mapping of EfficientNet to multiple homoge-

neous CUs. We can see that each compute unit is scheduled multiple times depending

upon the structure of DSCNNs with all N compute units running in parallel.

5.1.2 Design Exploration of EfficientNet B0 on Alveo U50

To show the boost in the performance for the throughput oriented design for cloud

FPGAs, we compare the implementation of single compute unit vs multiple compute
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Figure 5.1: EfficientNet mapped to DeepDive - Cloud CUs.

units on Alveo U50 for the baseline EfficientNet configuration. In the multiple com-

pute unit design, there are 17 instances of compute units processing multiple data in

parallel. As discussed before, the design is synthesized to run at 500MHz on Alveo

U50. We also compare the run-time power consumption by both the designs along

with the comparison of their resource utilization. The table 5.1, demonstrates the

comparison for single CU implementation vs multiple CUs implementation of the

baseline EfficientNet model on Alveo U50.

We see that for single compute unit implementation on Alveo U50 we get a speed

of 9 FPS. This speed is nothing for the cloud FPGA also the resources consumed by

this design are way insignificant for the cloud and there is a lot of scope for increasing

the throughput. Hence when we instantiate multiple instances of a single compute

unit on the FPGA we see a dramatic boost in the performance with the same inherent

design but scaled enough to get higher throughput. For the design with multiple CU

configuration, we see a dramatic increase in resource utilization which is expected.

However, run-time power consumption is justifiably increased. Overall, with multiple

CU configuration, we observe 8.38× improvement in FPS. The power reported in the

below table is the inference time power consumption, which is obtained using xbutil

APIs provided by Xilinx XRT runtime by querying Alveo U50 stats while it is running

the inference.
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Table 5.1: EfficientNet B0 on Alveo U50

Single CU Multiple CUs

FPS Power(W) DSP(%) LUTs(%) BRAM(%) FPS Power(W) DSP(%) LUTs(%) BRAM(%)

9.27 5 4.03 2.09 0.25 87 12 68.51 35.53 4.25

5.2 DeepDive Edge

The experimental setup for the edge, we have chosen the Xilinx Zynq UltraScale+

MPSoC ZCU102 evaluation board, which has XCZU9EG chip, to demonstrate the

capabilities of DeepDive on edge. The ARM processors host Ubuntu 16.04, running

at 1.2GHz; the OS can program the FPGA fabric at run-time. We also use Vivado

HLS 2018.3 to synthesize the network models compiled by DeepDive. The FPS and

power consumption reported for DeepDive are based on QNet accelerator running

at 200MHz. We targeted EfficientNet DSCNNs as a case study to demonstrate the

performance of DeepDive edge accelerator design. The Top-1 accuracy reported in

this section is based on training and evaluating the network on the ImageNet dataset.

5.2.1 EfficientNet mapped to DeepDive - Edge CUs

Based on the network graph generated by Network Compiler, DeepDive’s backend

identifies the mapping between the convolutional operators and heterogeneous CUs.

Fig. 5.2 reveals the mapping of EfficientNet to heterogeneous CUs. The Head, Tail,

and Classifier CU are scheduled only once, but the Body is scheduled 9 times. Because

of this, DeepDive allocates maximum resources to the Body CU to gain maximum

performance. It makes the body CU support both memory-bound and compute-

bound operations.

5.2.2 Energy Efficiency

Table 5.2 summarizes the power consummation, FPS, and hardware utilization.

Power is measured using a power monitoring device. Measured power is the differ-

ence between the idle power dissipation of the board and the power consumed by
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Figure 5.2: EfficientNet mapped to CUs.

the DeepDive edge accelerator while running inference. This power is consumed by

MPSoC (ARM cores + FPGA fabric), memory hierarchies, and shared DDR memory

during inference. The below table shows DeepDive reaches to 35 FPS for a power con-

summation of 150mW. This model gives us the energy efficiency of 233.3 FPS/Watt.

Table 5.2: Compressed EfficientNet Algorithmic Specs and FPGA Resource Utiliza-
tion with fixed BW = 4, Frequency = 200 MHz

Algorithmic Parameters Hardware Parameters

H Parameters (Mb) #Ops (M) Top1 (%) FPS Power (mW) DSP (%) LUTs (%) BRAM (%)

128 7.81 4.914 55.02 35 150 90 80 68

5.2.3 DeepDive - Edge vs Jetson Nano

To showcase the energy efficiency of DeepDive edge accelerator design, we compare

its FPS/Watt against off-the-shelf Nvidia Jetson Nano IoT Edge Device. Similar to

the DeepDive, we calculate the power consumption only for inference time. We com-

pared the delay and power consumption between DeepDive and Jetson Nano in two

different power consumption modes: high power, and low power. It can be seen that

DeepDive consumes a lot less power when compared to Jetson Nano, as depicted in

Table 5.3. DeepDive can improve the FPS/Watt 8.6× and 6.7× against high and low
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power mode, respectively. DeepDive outperforms Nano because 1© DeepDive per-

forms extreme bit quantization as opposed to nano which uses FP16; 2© Although,

TensorRT optimized the network model to fuse convolutional operators, DeepDive

groups the convolutional operators in heterogeneous CUs at higher granularity. This

heterogeneity effectively reduces the shared memory transactions and overlaps both

computing and memory latency; 3© DeepDive provides a customized dataflow for

depthwise separable convolution as opposed to Jetson Nano which performs general

matrix multiplication for depthwise convolution due to fixed systolic array implemen-

tation. Also, for EfficientNet, based on the massively fused layers in Body CU, fewer

memory transactions translates to more energy-efficient hardware.

Table 5.3: Power Consumption and delay for Compressed EfficientNet

H
Power(W) Delay(mS)

Nano(H) Nano(L) DeepDive Nano(H) Nano(L) DeepDive

128 5.61 2.22 0.15 6.581 12.6 28.57

5.3 DeepDive Edge vs DeepDive Cloud

Finally, in this section, we summarize the above results by providing a holistic com-

parison between two different architectures of DeepDive proposed in this thesis for

edge and cloud FPGA platforms. The main purpose of providing this comparison is

to highlight the massive shift from latency-oriented design paradigm to throughput-

oriented design and how we shift the computational complexity of the network from

edge to cloud devices. Table 5.4 compares two different EfficientNet Configurations

implemented on edge and cloud platforms with a compressed version of EfficientNet

BC4 running on DeepDive - edge accelerator and the baseline model of EfficientNet

B0 running on DeepDive - cloud accelerator. The table accurately shows the massive

increase in the model size and the number of flops as we go from the compressed

EfficientNet model to its baseline model and we demonstrate that how well DeepDive



38

- cloud handles the massive workload while giving a tremendous performance of 87

FPS on Alveo U50. The table also provides absolute resource utilization for both

the hardware accelerators. We see that in the DeepDive - cloud accelerator imple-

mentation there are still a lot of resources available and we can further increase the

parallelism within each compute unit to further maximize the performance on the

cloud. Even-though the accuracy of the compressed version of EfficientNet is less

when compared to the baseline, if the task at hand for the edge device is to perform

image classification for just a couple of images, we don’t need a bulkier network like

the baseline, the compressed version of EfficientNet would easily suffice for such a

task.

Table 5.4: DeepDive Edge vs DeepDive Cloud

ZCU102 Alveo U50

Algorithmic Parameters EfficientNet Config BC4 B0
Input Size 128 224
Parameter (Mb) 7.81 31.74
#Ops (M) 4.91 390
Top1 (%) 55.02 77.1

Hardware Parameters FPS 35 87
Runtime Dynamic Power (W) 0.15 12
DSP 2265 4080
LUTs 220211 309599
BRAM 622 51



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

This thesis introduced DeepDive, as a fully functional framework for an agile,

power-efficient execution of DSCNNs on both cloud and edge FPGAs. DeepDive

offers a vertical algorithm/architecture optimization, starting from the network de-

scription model down to full system synthesis and implementation. At the front-end,

DeepDive performs high-level optimization such as BN fusing, and Online channel-

wise low-Bit quantization at extremely low-bit resolutions to bring FPGA-awareness

when training DSCNNs. At the backend, DeepDive provides support for both cloud

and edge platforms. DeepDive - Cloud backend presents a throughput oriented design

which comprises of multiple homogeneous compute units performing tasks in SIMD

fashion, wherein each compute unit comprise of heterogeneous processing elements.

On the other hand, DeepDive - Edge backend introduces Network SoC Compiler.

Which receives the design properties from DeepDive’s front-end and generates a full

design of the system for both hardware model and software host codes. To generate

the optimized hardware for DSCNNs, the Network SoC Compiler uses pre-designed

micro-architectural blocks for depthwise, pointwise, and normal convolution opera-

tors. For the results, we have synthesized, executed, and validated two state-of-the-art

DSCNN, EfficientNet on Xilinx’s Cloud FPGA Alveo U50, and Xilinx’s Edge ZCU102

FPGA board. The execution results demonstrated how DeepDive - cloud implemen-

tation can achieve the performance of 87 FPS for the baseline model of EfficientNet

and 233.3 FPS/Watt for a compact version of EfficientNeton edge FPGA. These com-

parisons showcased how DeepDive - edge implementation can improve the FPS/Watt

8.6× and 6.7× against high and low power mode, respectively for Jetson Nano.
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6.2 Future Work

As future work, we plan to improve the back-end of DeepDive - cloud implemen-

tation by increasing the parallelism within each compute unit. We plan on making

DeepDive more modularized such that it can support any of the upcoming DSCNN

families without much change in the accelerator architecture. We also plan to devise

a run-time scheduler for the accelerator so that the hardware doesn’t need to pass

the control to the processor at all.
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