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ABSTRACT

SUMANTA BHATTACHARYYA. Efficient Attention guided GAN architecture for
unsupervised depth estimation. (Under the direction of DR. CHEN CHEN)

Single image depth estimation has always been a key interest in computer vision

community. Although depth estimation from a single monocular image still is an

ill-posed problem, stereo images are in rescue. Deep-learning based approaches to

depth estimation are rapidly advancing, offering better performance over traditional

computer vision approaches across many domains. However, for many critical ap-

plications, cutting-edge deep-learning based approaches require too much compu-

tational overhead to be operationally feasible. This is especially true for depth-

estimations methods that leverage adversarial learning, such as Generative Adver-

sarial Networks(GANs). I propose a computationally efficient GAN for unsupervised

monocular depth estimation using factorized convolutions and an attention mecha-

nism. Specifically, I leverage the Extremely Efficient Spatial Pyramid of Depth-wise

Dilated Separable Convolutions(EESP) module of ESPNetv2 inside the network, lead-

ing to a total reduction of 25.6%, 33.82% and 31% in the number of model parameters,

FLOPs and inference time respectively, as compared to the previous unsupervised

GAN approach. Finally, I propose a context-aware attention architecture to generate

detail-oriented depth images. I demonstrate the performance of our proposed model

on two benchmark datasets, KITTI and Cityscapes.



iii

ACKNOWLEDGEMENTS

I would like to present my gratitude to my advisor Dr. Chen Chen. He taught me

how to do research, how to write a good thesis, and how to give a great presentation.

He shoId extraordinary tolerance to my organized technical writing and he gave the

greatest support he could to my study. I would also like to acknowledge Dr. Arindam

Mukherjee of Electrical and Computer engineering Department at UNC, Charlotte

and Stephen Welch of Computer Science Department at UNC, Charlotte as my co-

advisor and I am gratefully indebted to there help and valuable comments on this

thesis. My life in UNCC is enjoyable and fruitful because of you. Finally, I would

like to thank my former advisor Dr. Andrew Willis, who invoked my interest into

research and academics on my early days at UNCC.



iv

TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS 1

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Objective 2

1.3. Contribution 2

1.4. Organization 3

CHAPTER 2: LITERATURE SURVEY and METHODOLOGIES 4

2.1. Literature Survey 4

2.2. GAN Architecture 6

2.3. Stereo Matching 7

2.4. Convolution Operation 9

2.5. Convolution in neural network 10

2.6. Analysis of Computational Cost and Factorized Convolution 11

2.7. GAN generator and discriminator architecture 12

CHAPTER 3: EXPERIMENTS 15

3.1. Method 15

3.2. Network Architecture 15

3.3. EESP Module 18

3.4. Attention Layer 18



v

3.5. Dataset 20

CHAPTER 4: RESULTS 21

4.1. Implementation Details 21

4.2. Experimental Setup 21

4.3. Evaluation 22

4.4. Experiments 23

4.5. Ablation Study 23

4.6. More Visual Comparison 27

CHAPTER 5: CONCLUSION and FUTURE WORK 28

5.1. Conclusion 28

5.2. Future Work 28

REFERENCES 29



vi

LIST OF TABLES

TABLE 2.1: Comparison of different convolution operations considering
a 3 × 3 kernel size, M input channels, N output channels, groups,
general kernel size (for 3 × 3) for various dilation rate is dk = ((3 −
1)× d+ 1), d is the dilation rate.

12

TABLE 4.1: Efficiency comparison between two networks. Our network
achieves a significant reduction of computational complexity as com-
pared to the original GAN approach [1].

21

TABLE 4.2: Total inference time using a single NVIDIA-GTX 1080Ti
GPU on the KITTI dataset. It shows our approach outperforms the
baseline model [1].

22

TABLE 4.3: Quantitative evaluation of different modification of the net-
work on KITTI dataset as ablation study. I can clearly observe that
the attention mechanism is able to improve the performance as com-
pared to using EESP module alone. Red indicates the best result
and blue is the second best.

22

TABLE 4.4: Quantitative Comparison with the state of the art methods
trained and tested on KITTI dataset. Supervised and unsupervised
methods are labelled as "Y" and "N". Results are obtained on Eigen
split dataset. I train the Pilzer [1] method using the Full-Cycle+D
method. Red indicates the best result and blue is the second best.
Our approach outperforms the state of the art on 5 out of 7 evaluation
metrics.

24

TABLE 4.5: Quantitative Comparison on Cityscapes dataset. Supervised
and unsupervised methods are labeled as "Y" and "N". I train Pilzer
[1]’s network using the Full-Cycle+D method. Red indicates the best
result and blue is the second best. Our approach outperforms existing
state of the art approaches on 4 out of 7 evaluation metrics. Note
that we directly apply our model trained on KITTI dataset without
any specific tuning.

24

TABLE 4.6: The components in our proposed model for ablation study. 24



vii

LIST OF FIGURES

FIGURE 2.1: Sample stereo image pair, left side is left image and right
side is right image.

8

FIGURE 2.2: disparity map 8

FIGURE 2.3: Basic CNN architecture. 10

FIGURE 2.4: Residual block (i) normal (ii) Bottleneck 13

FIGURE 2.5: Resnet architecture 13

FIGURE 3.1: Unsupervised monocular depth estimation framework using
Cycle-GAN.

16

FIGURE 3.2: Decomposition of the generator part in Figure 3.1. Our
method implements context-aware attention block in the decoder
part of generator along with EESP unit for efficiency and accuracy.
I apply the attention mechanism in the early stages of the decoder
to better extract medium to high level features.

16

FIGURE 3.3: Convolution factorization block (a) Schematic diagram of
a single EESP unit (b) A bottleneck building block [2] using EESP
(N = output dimension).

18

FIGURE 3.4: The context-aware attention architecture. Increasing recep-
tive field of kernels (with dilation rate (d) = 3 and group (g) = 2)
and their corresponding global feature context helps to obtain con-
text aware attention features. The dilation rate and group number
are fixed in the architecture for the factorized convolution. Interme-
diate decoded feature map is the input to the architecture as shown in
Figure 3.2. In our case, hierarchical fusion of different layer features
provides the best result.

19

FIGURE 4.1: Qualitative measurements on KITTI dataset [3]. Due to the
attention layer, our approach generates the subtle structural details
of the image compared to the other state of the art unsupervised
methods. The ground truth depth maps are interpolated from sparse
LIDAR points for visualization purpose only.

25

FIGURE 4.2: Qualitative comparison on the Cityscapes dataset. Our
model is trained on KITTI dataset and evaluated on Cityscapes with-
out any specific tuning.

25



viii

FIGURE 4.3: I investigate the impact of context aware attention learning
for depth prediction. Our proposed context-aware attention mecha-
nism provides effective learning and captures refined image details in
the early stage of learning. For example, it learns the structure of
the far-away car in epoch 1 for both images.

26

FIGURE 4.4: This visualization contains input image (1st row), our result
(2nd row), Pilzer approach [1] (3rd row) and ground truth depth
maps (4th row). The ground truth depth maps are interpolated from
sparse LIDAR points for visualization purposes only.

27



1

CHAPTER 1: INTRODUCTION

Depth estimation is not an easy task for computational model like human. Human

can exploit monocular signs such as texture, perspective, occlusion and object sizes.

These cues are extremely important for a scene understanding problem. Recovering

depth from an image without any prior information like optical flow or stereo images

is very essential.

1.1 Motivation

Image-based depth estimation is a key problem in computer vision, with a wide

range of applications from robotic navigation and virtual reality. Early applications

of deep learning to depth estimation relied on supervised learning, directly regressing

a depth estimate of each pixel, and training models using ground-truth depth maps.

Eigen [4] demonstrated good performance using a multi-scale convolution neural net-

work (CNN) to predict depth from single images. Probabilistic graphical models such

as Conditional Random Field [5] have increased the performance when they are used

in neural networks for optimization. In order to learn the pixel-wise transformation,

supervised approaches require ground truth depth data for training. However, ob-

taining the ground truth depth data is non-trivial, and model performance may be

limited by the amount of quality ground truth data that can be collected.

Unsupervised approaches estimate disparity maps from two different image views

(rectified left and right image) of calibrated stereo camera. Remarkably, making

ground truth depth data not required for training. This makes the unsupervised

approaches more attractive and practical in practice. Godard [6] proposed a left-

right cycle consistency loss as a constraint on this unsupervised approach. Pilzer

[1] applied the left-right consistency in an adversarial learning approach in order

to improve the generated images. Although adversarial learning-based unsupervised

methods achieved excellent performance in depth estimation, these methods rely on
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the complex generative adversarial network (GAN) architecture which is generally

computationally heavy. As a result, they are not able to run on real-time in resource

constrained edge devices for practical applications, autonomous driving, flying car.

1.2 Objective

Single image depth estimation mostly considered as a pixel level continuous regres-

sion problem. Generally It requires to learn a non linear mapping between raw image

pixels and their corresponding depth maps from an artificial neural network perspec-

tive. The only disadvantage of this learning is it demands a massive amount of ground

truth depth values. Exploiting epipolar constraints [6], can give us an indirect way of

depth map learning without any ground truth supervision. In a traditional computer

vision method, for a calibrated stereo camera, depth map D can be estimated by

D = b×f
d
, where b is the distance between the two cameras f is the focal length and d

is the disparity map. As an unsupervised learning approach estimating disparity map

from a pair of calibrated stereo images through image synthesis is an indirect way to

learn depth without requiring ground truth. Adversarial learning is useful when it

comes to image generation task but its only constraint is it’s heavy architecture. I

found convolution factorization and attention mechanism is a key to the solution.

1.3 Contribution

To address this challenge, I propose a computationally efficient model for depth

estimation given stereo image pairs, based on the unsupervised GAN framework [1].

A context-aware attention mechanism is also introduced to improve depth estimation,

yielding more accurate overall depth prediction. In summary, the main contributions

of this thesis are:

1. I adopt the EESP module [7] inside a GAN architecture to significantly improve

the computation efficiency, while concurrently reducing RMSE by 7% compared

to the baseline model [1].
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2. I introduce a context aware attention layer in the generator to get accurate

depth images. To the best of our knowledge, our work is the first to explore the

attention mechanism in the unsupervised depth estimation approach.

3. I conduct extensive experiments on the publicly available datasets KITTI and

CityScapes. The results demonstrate both the efficiency and effectiveness of the

proposed method. A detailed ablation study is also carried out to identify the

relative contributions of the individual components.

1.4 Organization

In the following chapters, I discussed extensively on methodologies, various archi-

tectures, experimental setup, the result I achieved along with the quantitative and

qualitative comparison with the state of the art methods.
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CHAPTER 2: LITERATURE SURVEY and METHODOLOGIES

2.1 Literature Survey

Depth estimation helps to understand the 3D structure of a 2D image scene. In

traditional computer vision, depth estimation algorithms rely on point correspon-

dences between stereo image pairs [8, 9] and triangulation. Saxena [10] showed us

how depth can be learned from handcrafted features using monocular cues of a single

2D image. Over a period of time, a lot of approaches have evolved using handcrafted

feature representations [11, 12, 13, 14]. Although, with the rapid development of deep

learning algorithms, we are no longer required to select handcrafted features, instead

I can build end to end model for depth estimation which learn the mapping from raw

pixel values. Here I evaluated models that take single input image and predicts the

depth of the image.

Supervised Depth Estimation: Supervised learning relies on the ground truth

depth data to achieve promising performance for image depth estimation. Indoor

datasets like NYU [15] and outdoor datasets like KITTI [3] and Cityscapes [16] con-

tribute to the evolution of supervised monocular depth estimation approaches. Eigen

[4] proposed to have a two scale network to generate dense depth map trained on

ground truth values. Probabilistic graphical models (MRF, CRF) also contributed

in association with deep networks to boost accuracy [17]. Xu [5] offered a structured

attention mechanism using CRF to combine multi-scale information obtained from

the CNN layers. Although supervised Depth estimation task has been formulated as

a regression problem, Cao first proposed [18] to accomplish this task as a pixelwise

classification problem. Recent architectures have shown a promising development for

multi-task learning strategies [19, 20] along with depth estimation. Although these

approaches turn out to be very sophisticated, they highly rely on ground truth depth

for training. Unlike earlier methods, our depth estimation does not require ground
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truth depth value while training.

Unsupervised Depth Estimation: Recently unsupervised depth estimation al-

gorithms [21, 22] have emerged, given the advantage of not requiring ground truth

depth data. Garg [23] proposed an unsupervised approach using stereo image pair.

However, They perform Taylor approximation for linearization of loss as their model

is not fully differentiable, it turns out to be hard to optimize. Succeeding works show

how this can be solved using bilinear warping [24]. In a recent work, Godard [6]

proposed a new left right cycle consistency loss along with image reconstruction loss

for a better quality depth estimation. This new training loss for depth estimation

has also been used in GAN architecture by Pilzer [1], a Cycle-GAN approach for

unsupervised depth estimation based on stereo disparity estimation. In our work, I

take this architecture as our baseline to implement further works. Recent efforts also

show how joint learning strategy can be applied to unsupervised fashion [25, 26]. Un-

like lightweght network, it is difficult for GAN [27] architectures to achieve real-time

output on resource constrained embedded devices. Our work attempts to make it

efficient and accurate than the existing approaches. To the best of our knowledge, I

are the first one to explore the ideas of GAN efficiency.

Adversarial learning: Adversarial learning has been proven to be efficient in

the image generation task. Recent works have demonstrated how various GAN ar-

chitectures [27] can be utilized in dense depth map generation. Recent approach

by Kundu [28] shoId how domain adaptation strategy for depth estimation can be

utilized in adversarial learning fashion. Various GAN architectures like Conditional

GAN framework [29], CycleGAN [30] also have been explored for depth estimation

task [14]. Efforts on joint learning strategy [31, 32] in GANs also demonstrated depth

estimation of high quality. In our work, I focused on building cost effective GAN

architecture, which is significantly different than the previous works.

Attention: Attention models are very useful in computer vision for improving the
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performance in pixel-level prediction tasks as Ill as in the context of monocular depth

prediction. A depth map has to to be accurate and detail oriented, so preserving

details through attention layers will be helpful for 3D reconstruction as Ill. There

are very few works in the literature enlightening the benefits of attention layer but

only limited to supervised depth estimation approaches. Hao [33] demonstrated how

attention mechanism can focus on the most informative part of the input image based

on the context. Recent work also shoId attention as aggregation of image and pixel

level information [14]. The approach I present in this thesis is different from the

prior works. First, ours is the first work to explore the attention mechanism in the

unsupervised depth estimation problem. In addition, I leverage the advantage of

multiscale feature fusion (local and global) to obtain attention aware features.

2.2 GAN Architecture

Generative adversarial network [27] is a deep learning architecture for adversarial

learning process containing two neural network, generator and discriminator. Gen-

erator generates new data instances and discriminator determines their validity un-

til generator fools the discriminator (minimax game). Generator architecture is an

encoder-decoder network and discriminator architecture is a single CNN network.

Training of a GAN is very notorious as two networks must posses similar skill level.

When the discriminator is trained, generator value will be constant, and When the

generator is trained, discriminator value will be constant. Objective function for

adversarial learning is following:

LGAN = 1
m

∑m
i=1 log(D(xi)) + log(1−D(G(zi)) (2.1)

z is noise vector, G(zi) is generator’s output, x is training sample, D(xi) is discrimina-

tor’s output for real training sample, D(G(zi)) is discriminator’s output for generated

training sample.
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Each network should train when the other is static. It gives generator a better

understanding of the gradient it should learn. Each network of GAN can outperform

the other one, if the generator is good enough than the discriminator, it can exploit

the fakeness of the discriminator resulting in false negatives, in reverse, if the dis-

criminator is strong enough, generator will not be able to understand the gradient

carefully. These inconsistencies will lead to Convergence issues, i.e., mode collapse

(generator collapses and fails to produce diverse variety of samples as in training

dataset), oscillating gradient .

Spectral normalization [34] is an unique weight normalization process for stable

training of GAN discriminator (prevents mode collapse). It controls the Lipschitz

constant of the convolutional filters in discriminator network by constraining the

spectral norm of each layer.

In order to get rid of slow learning and oscillating gradient, two-time-update-

rule (TTUR) where generator and discriminator learns in two different learning

rates. generally discriminator learns with around four times faster learning rate than

generator, as generator needs to learn the gradient slowly and fool the discriminator.

2.3 Stereo Matching

Stereo Matching is an important subclass of computer vision involves corresponding

pixels finding in rectified stereo images. Stereo images involve two cameras with little

distance between them in order to capture two different viewpoints of the same scene,

this setup is equivalent to human eyes in order to perceive depth.

As shown in Figure 2.1, rectified stereo images work by finding corresponding pixels

in both images along with the same epipolar plane. The epipolar lines coincide with

the horizontal scanlines if the cameras are parallel, the corresponding points in the two

images should hence lie on the same horizontal scanline. Such stereo arrangements

decrease the search for correspondences from 2D to 1D.

Disparity refers to the distance between two corresponding pixels. While perform-
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Figure 2.1: Sample stereo image pair, left side is left image and right side is right
image.

Figure 2.2: disparity map

ing this matching process for every pixel in the left hand image with the right hand

image, computing distance between them end up with an image containing distance

values of each pixel in the left image (Figure 2.2). Depth estimation can directly be

done from this disparity map (d) by using calibrated camera parameters (baseline(b),

focal length(f)), depth map D = b×f
d
.
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2.4 Convolution Operation

In mathematical terminology, convolution is calculated from two given functions

through integration which expresses how the shape of one function is modified by the

other function in 1 dimension convolution.

(f ∗ g)(t) =
∫ ∞
−∞

f(τ) ∗ g(t− τ)dτ (2.2)

The 2D convolution is a simple operation as well. It involves a kernel, denotes noth-

ing but a small matrix of weights. This kernel slides over the 2 dimensional input

data(generally image), executing an element-wise multiplication with the part of the

input it is currently on, resulting in summing up the output into a single pixel. It

repeats for every location it slides over, resulting a two dimensional matrix (features)

into another two dimensional matrix (convolution output). These features are the

weighted sums of the input features.

Convolution has multiple benefits-

Function smoothing: Instead of smoothing by the observed distribution of data

points for a given function, it involves general approach, allowing to smooth the given

function as it takes kernel function and at each point in the integral it puts a copy of

kernel function multiplied by the value of function at that point.

Localized information aggregation: Convolutions can be interpreted as comput-

ing a weighted sum of the values of function in a way where the contribution from

each data point is determined by its distance between the data point and output

point.

Pattern matchers: Discrete convolution is a dot product between the filter weights

and the values of the filter. Dot products indicate similarity of two vectors. Output-

centered convolution involves a vector of weights along with a vector of input values

multiplying and summing aligning entries equivalent to dot product calculation. It
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is true that one can enhance the value of a dot product by increasing the magnitude

of vectors, but for a constant magnitude, the maximal value of the dot product is

achieved when the vectors are directing towards a single direction.

2.5 Convolution in neural network

The discovery of deep learning frameworks has made it possible to implement con-

volution layers into a deep learning model in a very convenient way. Convolution

Neural Network (CNN) has been a great example for that. As shown in Figure 2.3,

a basic CNN architecture has been discussed. It consists of convolution (along with

padding and stride), max pooling, fully connected layer, activation function etc.

Convolution: As I discussed earlier in 2D convolution, a filter slides over the image

(two dimensional) resulting in output feature map. This has certain parameters to

tune like padding and stride.

Padding: It adds on the the edges with extra pixels of values 0 (zero padding). So,

while sliding it allows the original edge pixels to be at its center, extending into the

extra pixels beyond the edge, yielding an output with same size as input.

Figure 2.3: Basic CNN architecture.

Stride: The idea of the stride is to jump some of the slide locations of the kernel. A

stride of n denotes pick slides n pixel apart, so stride 1 is a standard convolution. A

stride of 2 downsizes the output by a factor of 2 and so on.
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Maxpooling opearation: Max pooling can be interpreted as sample-based dis-

cretization process. The purpose is to down-sample an input representation, reduction

of dimensionality. This helps in over-fitting due to an abstract form of the represen-

tation. It provides reduction of parameter and translation invariance to the internal

representation.

Fully connected layer: The output from the convolutional layers is a representa-

tion of high-level features in the data. Fully-connected layer introduces non-linearity

in the learning.

From an operational aspect,

1. Convolution and pooling mechanism breaks the image into features and analyzes

them.

2. Fully connected layer utilizes the output of convolution/pooling to predict the

image label.

2.6 Analysis of Computational Cost and Factorized Convolution

Although convolution plays a great role in feature extraction, It is a memory con-

suming process and ended up dealing with a lot of parameters. In order to speed

up this process factorization of convolution is necessary. Here, I will discuss different

types of convolution factorization.

Dilated convolution: It introduces the dilation rate parameter to convolutional

layers, involves spacing between the values in a kernel. A 3x3 kernel with a dilation

rate of 2 will have the same field of view as a 5x5 kernel, while only using 9 param-

eters. This delivers a wider field of view without any extra computation. Real-time

segmentation architectures generally take advantage of it .

Depthwise separable convolution: It breaks the convolution in two ways (i) depth

wise convolution- a spatial convolution performed independently over each channel

of an input. (ii) pointwise convolution- a 1 × 1 convolution, projecting the channels
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output by the depthwise convolution onto a new channel space. Architectures like

Xception and Mobilenet utilize this kind of convolution.

Group convolution: Group convolution was first introduced in the AlexNet paper

[35]. it allows the network training in a resource constrained environment. Here, the

filters are separated into different groups. Each group is responsible for a conventional

2D convolutions with certain depth.

Following table is a comparison in terms of parameters and receptive field of kernel.

Table 2.1: Comparison of different convolution operations considering a 3× 3 kernel
size, M input channels, N output channels, groups, general kernel size (for 3× 3) for
various dilation rate is dk = ((3− 1)× d+ 1), d is the dilation rate.

Convolution Types Parameters Receptive field size
Standard convolution type 3× 3×M ×N 3× 3

Group convolution 3×3×M×N
groups

3× 3

Dilated convolution 3× 3×M ×N dk × dk
Depth-wise Dilated Separable Convolution 32 ×M +M ×N dk × dk

2.7 GAN generator and discriminator architecture

I used Resnet as a generator (encoder-decoder) architecture and CNN (as shown

in Figure 2.3) as discriminator architecture.

Inception of Resnet:

Problem- When deeper networks starts converging, a new problem arises. As net-

work depth increases, accuracy gets saturated and then goes down rapidly.

During backpropagation, when partial derivative of the error function with respect

to the current weight in each iteration of training, this has the effect on computing

gradients of the front layers in a multi-layer network. When the network is deep and

gradients keep on getting multiplied in the reverse direction, it will become zero if

the gradient is small by the time it reaches the end branch. (vanished). When the
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network is deep, and multiplying gradients of large numbers, it will become too large

(exploded).

Figure 2.4: Residual block (i) normal (ii) Bottleneck

Solution- Instead of learning a direct mapping of x→ y with a function H(x) (stacked

non-linear layers), it defines the residual function (skip connection) using F (x) =

H(x)x, which can be reframed into H(x) = F (x) + x, where F (x) and x represents

the stacked non-linear layers and the identity function(input=output) respectively.

Figure 2.5: Resnet architecture

Variant of Resnet: Bottleneck architecture

The normal residual block is perfect for Resnet 18 or 34 but as many more layers

added to the network for resnet50 and beyond, it is not possible to waste so much

of resources on those expensive convolution operation, so I use BottleNeck blocks. A
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BottleNeck block is very similar to a normal one. All it does is use a 1x1 convolution

to reduce the channels of the input before performing the expensive 3x3 convolution,

then using another 1x1 to project it back into the original shape.
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CHAPTER 3: EXPERIMENTS

3.1 Method

This section describes our proposed method. I first introduce an efficient GAN

model along with the EESP module and the proposed attention layer. I then demon-

strate its accuracy over existing state of the art approaches.

3.2 Network Architecture

I follow Pilzer ’s [1] work on Cycle-GAN architecture for depth estimation as the

baseline of our approach. As shown in Figure 3.1, this architecture uses calibrated

stereo camera images (pairwise) as input to estimate disparity map (dm) through

image synthesis. The generator network consists of two sub-networks. The upper

sub-network generates a right disparity map (Rd) with the input Il and synthesizes

a right image view (I ′r) through the warping operation (pixel to pixel matching) w,

I ′r = w(Rd, Il). Similarly, the loIr sub-network generates a left image view, I ′l =

w(Ld, Ir). The reconstruction loss (Lr) is implemented between the synthesized and

input images in order to optimize the generator networks:

Lr = ‖Ir −w(Rd, Il)‖+ ‖Il −w(Ld, I
′
r)‖. (3.1)

The discriminator, D1, D2, is used to discriminate if the synthesized image, I ′l , I ′r,

is fake or not, thus the adversarial loss can be formulated as

LGAN = EIr∼P (Ir)[logD1(Ir)]

+EIl∼P (Il)[log(1−D1(w(Rd, Il)))]

+EIl∼P (Il)[logD2(Il)]

+EIr∼P (Ir)[log(1−D2(w(Rd, Ld)))].

(3.2)
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Figure 3.1: Unsupervised monocular depth estimation framework using Cycle-GAN.
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Figure 3.2: Decomposition of the generator part in Figure 3.1. Our method im-
plements context-aware attention block in the decoder part of generator along with
EESP unit for efficiency and accuracy. I apply the attention mechanism in the early
stages of the decoder to better extract medium to high level features.

Each half generates disparities of different views, Rd, Ld. To enforce a view constraint,

a consistency loss is formulated,

Lc = ‖Ld −w(Ld, Rd)‖ . (3.3)
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I consider structural similarity loss (LSSIM) along with the adversarial loss for better

full-cycle optimization.

LSSIM =
(2× µx × µy + C1)× (2× σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (3.4)

where µx and µy denote local sample means of x and y respectively. σx and σy denote

local sample standard deviations of x and y respectively. σxy denotes local sample

correlation coefficient between x and y. C1 and C2 are constants for stabilization if

denominator is too small. The total loss for the full cycle optimization is:

Loss = αLr + βLGAN + γLc + δLSSIM . (3.5)

α, β, γ and δ are the corresponding weights for different losses. The output disparity

map is obtained by

D = (Ld +w(Ld, Rd))/2. (3.6)

As shown in Figure 3.2, I modified the generator and discriminator parts in the origi-

nal network by replacing the standard convolutions with EESP convolution factoriza-

tion and implemented our proposed context aware attention layer in the decoder part

of generator network. As proposed by Zhang [36], attention mechanism works best

on middle to high level feature maps as it receives more evidence to choose the condi-

tions. I apply our attention layer on the first two layers of decoder since they contain

the high level feature maps of the generated image. In order to stabilize learning, I

use spectral normalization [34] in the discriminator network, as it is critical for the

generator to learn the multi-modal structure of the target distribution by controlling

the performance of a discriminator. Spectral normalization puts constrains on the

Lipschitz constant of the discriminator network without any extra hyper-parameter

tuning [34] to improve GAN training stability.
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3.3 EESP Module

The EESP module is empowered by group convolution and parallel branches of

depth-wise dilated separable convolution. As shown in Figure 3(a), this technique

reduces the high dimensional input features into a low dimensional space using group

convolution. Then it learns the low dimensional feature representation in parallel

branches using depth-wise dilated separable convolution with different dilation rates

(larger dilation rate corresponds to larger size of receptive field) followed by hierar-

chical addition in order to remove the gridding artifacts. As proposed by Mehta [7]

depth-wise dilated separable convolutions and group convolutions are more efficient.

Depthwise Dilated 
Convolution

Group 
Convolution

Depthwise Dilated 
Convolution

Depthwise Dilated 
Convolution

Depthwise Dilated 
Convolution

Depthwise Dilated 
Convolution

+

+

+

+

Concatenate

Group 
Convolution +

EESP ),11( N

),33( NEESP

EESP )4,11( N

ReLu

ReLu

ReLu

Figure 3.3: Convolution factorization block (a) Schematic diagram of a single EESP
unit (b) A bottleneck building block [2] using EESP (N = output dimension).

3.4 Attention Layer

Convolution layers process images in a local neighborhood of the image. Con-

volution layers alone do not capture long range dependencies. These long range

dependencies are useful in generative networks like GAN to enhance the synthesized

images. In this section, I will discuss about our context aware lightweight attention

mechanism, as shown in Figure 3.4. This attention module is able to capture the

detailed context information to enhance the estimated depth image. Our attention
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mechanism exploits multi-scale features fusion [37] for each layer with increasing re-

ceptive field of kernels. I also use factorized convolution (EESP module) for feature

extraction. These features are concatenated with their corresponding global context

features. Specifically, the global context features are obtained through global average

pooling (channel wise attention) across the whole feature map for each layer. Finally,

the multi-scale outputs are hierarchically fused to generate the final output feature

map. Global average pooling outputs a 1D context vector which is replicated to the

Unpooling
+
L2 normalization

Unpooling
+
L2 normalization

Global average pooling

Global average pooling

Global average pooling

Unpooling
+
L2 normalization

L2 normalization

L2 normalization

L2 normalization

C

convolution+ ReLu11

EESP55

C concatenation

Summation

EESP 55
(d=3, g=2)

EESP77
(d=3, g=2)

EESP99
(d=3, g=2)

(d=3, g=2)

Decoded feature map

Figure 3.4: The context-aware attention architecture. Increasing receptive field of
kernels (with dilation rate (d) = 3 and group (g) = 2) and their corresponding global
feature context helps to obtain context aware attention features. The dilation rate
and group number are fixed in the architecture for the factorized convolution. Inter-
mediate decoded feature map is the input to the architecture as shown in Figure 3.2.
In our case, hierarchical fusion of different layer features provides the best result.

same size of the feature maps to merge. Merging two features for each scale is not

efficient enough to produce a good result because (i) different scales of the two feature

maps and (ii) the unpooled global feature vector is not as dominant as large multi-

scale feature maps, so plain concatenation may be futile. Although during training
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the weght might get adjusted, it requires heavy parameter tuning. So I apply per-

pixel L2 normalization to both features to be merged along with a learnable scale

parameter for each channel. For an n-dimensional input X after L2 normalization I

obtain X1 = ζ ∗ X
‖X‖2

, where ‖X‖2 is
√∑d

n=1 |Xn|2 and ζ is a scaling parameter.

3.5 Dataset

KITTI dataset [3] contains several outdoor scenes from LIDAR sensor and car-

mounted cameras while driving. I use the data split as suggested by Eigen [4] for both

training and testing. It contains 22600 training image pairs and 697 test image pairs.

The input images have been down sampled to 512×256 resolution image with respect

to original resolution of 1224 × 368. Random data augmentation has been done by

flipping of images during training. Cityscapes dataset [16] consists of 22,973 training

stereo pairs captured across various German cities. It gives higher resolution image

quality and variety compared to KITTI. Both of these datasets are highly recognized

for various computer vision tasks, segmentation, classification, depth prediction .
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CHAPTER 4: RESULTS

In this section, I evaluated the proposed model in terms of efficiency along with

qualitative and quantitative demonstrations using KITTI [3] and Cityscapes [16]

datasets in order to show the effectiveness of the proposed model.

4.1 Implementation Details

In our experiments, I set the dilation rate d in EESP module proportional to the

number of branches in the EESP (for our experiments, I used 5 parallel branches,

dilation rates from 20 to 24, with number of groups 2). The effective receptive field of

the EESP unit grows with the number of branches, as shown in Figure 3(a). As shown

in Figure 3.2, the generator networks use a Resnet-50 network for the encoder and

the decoder contains five deconvolutional layers with ReLU operations. For the first

two layers in the decoder, I integrate the attention layer in order to process the large

feature maps for context information. Skip connections are used to pass information

from encoder to decoder in order to aggregate efficient feature representation. All

the convolution operations in the generator part are replaced by the factorized EESP

module. D1 and D2 each has five consecutive EESP operations. I use the bilinear

sampler for the warping operation by following [6].

4.2 Experimental Setup

The proposed model is implemented using TensorFlow [38] and takes 21 hours to

train using a single NVIDIA-GTX 1080Ti GPU. The batch size is set to 8. The

Table 4.1: Efficiency comparison between two networks. Our network achieves a
significant reduction of computational complexity as compared to the original GAN
approach [1].

Network Arch. FLOPs (bil.) Param (mil.)
Original GAN [1] GAN 8993 125
Ours GAN 5833 96.5
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Table 4.2: Total inference time using a single NVIDIA-GTX 1080Ti GPU on the
KITTI dataset. It shows our approach outperforms the baseline model [1].

Network Architecture Inf. time (sec.)
Original GAN [1] GAN 0.190
Ours GAN 0.130

initial learning rate is 10−6 and is reduced by half at [40k, 70k] steps. I use ADAM

[39] optimizer with β1 = 0.5, β2 = 0.9 and Weight decay = 0.006 to train the model

with 100 epochs.

Table 4.3: Quantitative evaluation of different modification of the network on KITTI
dataset as ablation study. I can clearly observe that the attention mechanism is able
to improve the performance as compared to using EESP module alone. Red indicates
the best result and blue is the second best.

Method Sup Abs.Rel
↓

Sq.Rel
↓

RMSE
↓

RMSE(log)
↓

δ <
1.25↑

δ <
1.252↑

δ <
1.253↑

Baseline [1] N 0.198 1.990 6.655 0.292 0.721 0.884 0.949
Ours (EESP) N 0.195 1.76 6.09 0.292 0.758 0.905 0.958
Ours (attention) N 0.138 0.915 4.571 0.247 0.831 0.919 0.964
Ours
(EESP+attention)

N 0.1196 0.889 4.329 0.192 0.865 0.943 0.989

4.3 Evaluation

As per the previous works [4], I evaluate our depth estimation using the following

evaluation metrics. Considering di and dgi are the estimated depth and ground truth

depth value for pixel i. T is the total number of valid pixels in the test set.

Abs.Rel =
1

T

∑
i

di − dgi
dgi

(4.1)

Sq.Rel =
1

T

∑
i

|di − dgi|2

dgi
(4.2)

log RMSE =

√
1

T

∑
i

‖log (di)− log (dgi)||2 (4.3)
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RMSE =

√
1

T

∑
i

‖di − dgi||2 (4.4)

The accuracy with threshold t so that δ =max(dgi
di
, di
dgi

)<t, where t=1.25, 1.252,

1.253.

I compare the proposed model with the state of the art supervised and unsuper-

vised depth estimation methods for both datasets. Tables 4.4 to 4.5 and Figures 5

to 6 are the respective quantitative and qualitative analysis of our method and other

approaches on KITTI and Cityscapes. Compare with the supervised approaches, I

have achieved very similar results to the best performing method Xu [40]. From the

unsupervised approaches, our approach significantly outperforms Godard [6], which

represents the state of the art among unsupervised approaches to this task. Finally,

I also compare with Pilzer ’s [1] full-cycle+D training and ours yields better results.

4.4 Experiments

In this section, we evaluated our proposed model extensively using KITTI [3] and

Cityscapes [16] datasets. We present quantitative and qualitative results to demon-

strate the effectiveness of the proposed model.

4.5 Ablation Study

To validate the contribution of our context aware attention strategy and the con-

volution factorization to overall performance, I present an ablation study on KITTI

dataset, (i) replacing convolution operations with EESP (ii) implementation of at-

tention mechanism into baseline with convolution operations. Table 4.6 shows the

breakdown of various components involved in each experiments. These individual

experiments highlight the impact of particular components , EESP, attention layer

into the baseline model.
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Table 4.4: Quantitative Comparison with the state of the art methods trained and
tested on KITTI dataset. Supervised and unsupervised methods are labelled as "Y"
and "N". Results are obtained on Eigen split dataset. I train the Pilzer [1] method
using the Full-Cycle+D method. Red indicates the best result and blue is the second
best. Our approach outperforms the state of the art on 5 out of 7 evaluation metrics.

Method Sup Abs.Rel
↓

Sq.Rel
↓

RMSE
↓

RMSE(log)
↓

δ <
1.25↑

δ <
1.252↑

δ <
1.253↑

Eigen [4] Y 0.190 1.515 7.156 0.270 0.692 0.899 0.967
Liu [41] Y 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Xu [40] Y 0.132 0.911 − 0.162 0.804 0.945 0.981
Zhou [26] N 0.208 1.768 6.856 0.283 0.678 0.885 0.957
AdaDepth [28] N 0.203 1.734 6.251 0.284 0.687 0.899 0.958
Garg [23] N 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Godard [6] N 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Pilzer [1] N 0.198 1.990 6.655 0.292 0.721 0.884 0.949
Wang [22] N 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Ours
(EESP+attention)

N 0.1196 0.889 4.329 0.192 0.865 0.943 0.989

Table 4.5: Quantitative Comparison on Cityscapes dataset. Supervised and unsuper-
vised methods are labeled as "Y" and "N". I train Pilzer [1]’s network using the
Full-Cycle+D method. Red indicates the best result and blue is the second best. Our
approach outperforms existing state of the art approaches on 4 out of 7 evaluation
metrics. Note that we directly apply our model trained on KITTI dataset without
any specific tuning.

Method Sup Abs.Rel
↓

Sq.Rel
↓

RMSE
↓

RMSE(log)
↓

δ <
1.25↑

δ <
1.252↑

δ <
1.253↑

Pilzer [1] N 0.440 6.036 5.443 0.398 0.730 0.887 0.944
Wang [22] N 0.148 1.187 5.496 0.226 0.812 0.938 0.975
Godard [6] N 0.097 0.896 5.093 0.176 0.879 0.962 0.986
Zhou [26] N 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Ours
(EESP+attention)

N 0.090 0.813 4.633 0.193 0.832 0.974 0.978

Table 4.6: The components in our proposed model for ablation study.

Methods Convolution op-
eration

EESP
operation

Context aware attention
mechanism

Baseline [1] 3 7 7

Ours (EESP) 7 3 7

Ours (attention) 3 7 3

Ours
(EESP+attention)

7 3 3

As can be seen from Table 4.3, the model with only EESP operation performs

a little better than the baseline model. However, the factorization operation leads
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Figure 4.1: Qualitative measurements on KITTI dataset [3]. Due to the attention
layer, our approach generates the subtle structural details of the image compared to
the other state of the art unsupervised methods. The ground truth depth maps are
interpolated from sparse LIDAR points for visualization purpose only.
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Figure 4.2: Qualitative comparison on the Cityscapes dataset. Our model is trained
on KITTI dataset and evaluated on Cityscapes without any specific tuning.

to significant ease of computation. Then, I implement attention mechanism with

baseline which clearly generates enhanced depth map. This verifies our intuition of

integrating attention with EESP operation to improve the generated depth image.

As illustrated in Figure 4.3, I also qualitatively demonstrate the impact of context-

aware attention for model learning, by presenting the predicted depth maps from

initial training epochs. The evolution of these predicted depth maps reveal that our

context aware attention architecture is able to focus on the salient objects in the
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Figure 4.3: I investigate the impact of context aware attention learning for depth pre-
diction. Our proposed context-aware attention mechanism provides effective learning
and captures refined image details in the early stage of learning. For example, it
learns the structure of the far-away car in epoch 1 for both images.

image and captures the depth information in the early stage (e.g. the first epoch) of

training. Based on the comparison between our proposed method with the baseline

model at the early stages of learning, I believe that the attention mechanism improves

the network ability to learn fine image details quickly.
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4.6 More Visual Comparison

Figure 4.4: This visualization contains input image (1st row), our result (2nd row),
Pilzer approach [1] (3rd row) and ground truth depth maps (4th row). The ground
truth depth maps are interpolated from sparse LIDAR points for visualization pur-
poses only.
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CHAPTER 5: CONCLUSION and FUTURE WORK

5.1 Conclusion

We introduced an efficient approach to build a GAN architecture for unsupervised

depth estimation. Our network takes advantage of the convolution factorization for

learning richer image representation along with more efficient com- putation. Our pro-

posed attention mechanism also provides structured scene output. Our work shows

significant reduction of computation is possible for deep networks without compro-

mising performance. Experiments on publicly available datasets demonstrate the

efficiency of our approach and competitive performance compared to the state of the

art approaches.

5.2 Future Work

Depth estimation from Underwater image is a really growing field. Although, the

only thing human binocular vision is not able to perceive is underwater depth from

far, inside water it is very tough to distinguish how much far the object is. Due to

limitation of generalized dataset this field is not well explored, still work of Gupta et

al.[42] is fascinating.
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