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ABSTRACT 

YIKE LI. Optimal Weather Station Selection for Electric Load Forecasting.  
(Under the direction of DR. TAO HONG)  

Weather factors are playing key impacts on electricity load consumption. The 

proper selection of weather stations will contribute to the final electric load forecasting 

accuracy. How to efficiently select the stations among a good number of candidates within 

the territory of interest remains a pressing issue. This thesis proposes several 

comprehensive weather station selection (WSS) frameworks along with different statistical 

tests to determine the stations to be used for electric load forecasting. We demonstrate 

comprehensive implementation and effectiveness of these methods based on the Global 

Energy Forecasting Competition 2012 (GEFCom2012) data and Global Energy 

Forecasting Competition 2014 (GEFCom2014) data are evaluated by comparing to the 

selection results obtained from the WSS framework introduced in (Hong et al., 2015). We 

introduce theoretical optimum (TO) selection to unveil what the best WSS looks like given 

we have access to the future load and from which, we gain further insights on why some 

WSS frameworks outperform the others. Additionally, we extend our discussion on several 

practical data fitting issues on the WSS subject and suggest several actionable rules of 

thumb that load forecasting practitioners can follow. Our experimental results show that 

the forecasting accuracy can be significantly improved by several proposed selection 

frameworks. Meanwhile, several heuristic methods have been applied to cut down the 

computational cost. 
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CHAPTER 1: INTRODUCTION 

Electricity load forecasting processes have been integrated into the modern power 

systems among the utility industry during the past few decades. Unlike other utilities such 

as water and natural gas, electricity cannot be stored in bulk as efficiently and economically. 

Thus, actions need to be taken to ensure real-time balancing between the supply and 

demand, such that the stability and reliability of the grid can be maintained. Load forecasts 

help business stakeholders understand the electricity consumption behavior and make 

informed decisions on the generation, load balancing, grid planning, operations, energy 

trading strategies, revenue projection, and rate design. Load forecasts have been served as 

input to other industries, including regulatory commissions, industrial and big commercial 

companies, banks, trading firms, and insurance companies (Hong & Fan, 2016).  

The calendar has been an important driving factor for load demand. Among all the 

calendar variables contributed to the load forecasting models, the day type, time of day, 

and month of the year are known to have rooted impacts on electricity usage. People can 

have disparate schedules on a weekday compared to a weekend day, therefore leads to 

different electricity usage patterns. Between the two different weekdays or weekend days, 

the load pattern could differ as well. For instance, people might stay up late on Fridays 

compared to the other weekdays; the wake-up time on Sunday may be different for people 

who need to get up earlier for church ceremonies. For a holiday, the load pattern can be 

unique no matter if it’s falling under a weekday or a weekend day. Meanwhile, human 

being’s activities vary at different time of a day, thus result in different load patterns – for 

a person who has a regular day job, on a workday, he/she will wake up in the morning and 
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go out for work, get home by the evening, and go to bed during the night. The impacts of 

human activities on the load patterns can also be realized by the month of a year. Months 

are sometimes grouped into seasons to present the annual seasonality of the load 

consumption (Hong, 2010).  

Since human beings react to weather and climate events, both can have 

influential impacts on electricity usage. Weather refers to the short-term (hourly, daily, 

weekly) atmospheric variations within a region, which can be factors such as temperature, 

humidity, wind speed and direction, rainfall, etc. Climate describes the weather 

observations in a particular region over longer periods of time, which can cover insightful 

information such as normal temperature during winter, average seasonal precipitation, 

extreme weather days to expect, etc. 

Temperature is known to have a strong correlation with electricity usage patterns. 

Since part of the load consumption is used to maintain ambient temperature and humidity 

to fulfill human’s comfort needs, dry bulb temperature and adjusted temperature variables 

(e.g., wet bulb temperature, dew point temperature, etc.), along with their variants 

(polynomials, temperature of preceding hours, etc.), have been the used extensively in the 

load forecasting models.  

Besides temperature, other weather variables such as humidity, wind speed, solar 

irradiance, and precipitation can impact electricity usage. Since the combination of heat 

and high humidity causes discomfort, humidity is usually included in the form of heat index 

(HI), discomfort index (Senjyu et al., 2005) or relative humidity with interaction to the 

coincident hour and temperature (Xie et al., 2018). The speed of wind increases the rate of 

evaporation of perspiration from human body and gives a cooling effect. Therefore during 
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a windy summer day, the load consumption could be lower since fewer cooling appliances 

will be used (Fahad & Arbab, 2014). Solar irradiance heats the surfaces of premises or 

buildings, leading to disruption of the inside temperature and in turn, plays a part in 

influencing the load for cooling or heating needs. Heavy rain or snow (precipitation) can 

make people stay home more which impacts their electricity usage, and meanwhile, it can 

cause the temperature to drop and thus lead to a positive or negative impact on load 

consumption (Fahad & Arbab, 2014).  

Weather stations normally report these weather readings on an hourly or sub-hourly 

basis. The winning entries in GEFCom2012 and GEFcom2014 have shown that the load 

pattern under a certain region can better be represented and predicted by combining 

weather readings reported by multiple weather stations rather than a single station (Hong 

et al., 2014) (Xie & Hong, 2016). This is likely because of the electricity demand usually 

aggregates consumption from different geographical regions where there is typically 

available data from more than one weather station (Moreno-Carbonell et al., 2019). For 

instance, when the goal is to forecast the load of North Carolina, the weather readings 

reported at each city could be candidate input variables to the load forecasting model.  

Although tens or even hundreds of weather stations are available for some US 

utilities within their service territories, only a small fraction of weather stations have been 

considered in their load forecasting systems (Hong et al., 2015). It is normally impractical 

to customize the weather station selection (WSS) and manually link the best weather 

station(s) to each zone based on investigations of their geographical location, topography 

information or atmospheric circulation condition. Even though the station(s) could be 

picked based on domain knowledge and experience, the forecasting performance with 
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under the station(s) could not be guaranteed, since the forecasting accuracy can be affected 

by the forecasting model we choose, the data history we use to train the model, and the 

data quality at the station(s).  

Aiming at resolving this practical issue, two recent representative literature 

reported the endeavor of finding the best subset of weather stations for a territory of interest 

based on data-driven approaches. (Hong et al., 2015) proposed a WSS framework with 

simplicity and transparency based on a greedy search algorithm. This framework is 

currently being used by many power companies, such as North Carolina Electric 

Membership Corporation, which has been used as one of the case studies in the original 

paper (Y. Wang et al., 2019); (Moreno-Carbonell et al., 2019) proposed a GA-based 

(genetic algorithm) method to select the best set of stations which led to better accuracy. 

However, due to the stochastic nature of GA along with its complexity of setting up an 

adaptive GA framework for a specific WSS problem, without mentioning the significantly 

larger computational resources it would require given the size of its search space, the 

feasibility from a GA-based method may be limited in certain circumstances. With that 

being said, in the recent literature, there has not been any significant effort to both explore 

heuristic approaches with simplicity and transparency to improve the WSS and, in the 

meantime, unveil how close our selection is approaching the “optimal” selection (i.e., the 

selection by exhaustive search). 

To bridge the aforementioned gap, in this thesis, we extend the case studies based 

on (Hong et al., 2015) using the load forecasting data from GEFCom2012 published by 

(Hong et al., 2014) and from GEFCom2014 published by (Hong et al., 2016). We propose 

several comprehensive WSS frameworks for electric load forecasting and present 
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transparent and reproducible implementations. In practice, unlike temperature, which can 

normally be forecasted quite accurately within four or five days ahead, other weather 

variables such as humidity, wind speed, and solar irradiance, are not as predictable. 

Although the Tao’s Vanilla benchmark model (from now on, Vanilla) we used in this thesis 

includes temperature as the only weather variable, our proposed frameworks are not limited 

to the load forecasting models being used and other weather variables can be included upon 

availability. Note that the proposed frameworks are not intended to apply to weather-

insensitive loads, i.e., industrial loads. 

We introduce theoretical optimum (from now on, TO) selection by using two years 

of data before the test set for parameter estimation and locate the best subset of stations 

based on the forecasting performance on the test set. This not only unveils what the best 

subset looks like given we have access to the future load, but it also provides us insights 

on why some WSS frameworks outperform the others. 

This thesis makes the following significant contributions to the WSS in the load 

forecasting literature: (1) this is the first time that the exhaustive search method has been 

explored and its effectiveness has been evaluated; (2) this is the first time that the 

theoretical optimum (TO) selection is introduced to unveil important insight on the 

effectiveness of WSS techniques; (3) this is the first time that a group of heuristic methods 

are implemented and compared on their selection behavior with transparency; (4) it covers 

the first formal comparison and extensive discussion among the model selection methods 

and leads to several actionable rules of thumb; (5) publicly available data in our case study 

and transparent implementations allow future researchers to reproduce our results. 
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The rest of this thesis is organized as follows:  Chapter 2 introduces the literature 

review of this area; Chapter 3 introduces the background of the study, including the Vanilla 

model, the forecast evaluation metrics, and the high-level introduction of the proposed 

frameworks along with a few model selection methods; Chapter 4 introduces the detailed 

implementation steps of the proposed selection frameworks; Chapter 5 presents 

exploratory analysis on the case study data, illustrates experiment results and discusses the 

issues and findings. The thesis concludes in Chapter 6.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Electric Load Forecasting 

The electric load forecasting literature gains a growing trend in recent decades. 

Industry researchers have been categorizing the load forecasting (LF) types based on the 

range of the forecast. There has not been a commonly accepted rule among the industries 

to define LF categories based on various forecasting horizons. Tao and Fan have classified 

LF into 4 different categories: very short term load forecasting (VSTLF), short term load 

forecasting (STLF), medium-term load forecasting (MTLF), and long term load forecasting 

(LTLF) with cut-off horizons as 1 day, 2 weeks, and 3 years, respectively (Hong & Fan, 

2016).  

VSTLF and STLF aim at bridging the gap between forecasting and decision making 

in demand response programs, hour-ahead scheduling, day-ahead scheduling, unit 

commitment, and day-ahead energy trading, whereas VSTLF is often viewed as a sub-

problem of STLF since both can take weather forecasts as the inputs for the forecasting 

period (Luo et al., 2018). As of VSTLF, (Senjyu et al., 2002) leveraged similar day data as 

input to the neural network model (NN) for one-hour-ahead electricity load forecasting 

using the load data from Okinawa Electric Power Company in Japan. The NN outputs a 

forecasting correction instead of the forecasted load and thus reduced the NN structure and 

learning time.  (Islam et al., 2017) conducted one-hour-ahead electricity load forecasting 

in a deregulated power grid. The paper proposed using a modified backpropagation neural 

network model (BPNN) while the initial parameters of the model were tuned by chaos-

search genetic algorithm and optimized using a simulated annealing algorithm. The case 

study was performed using small load demand data from a small power utility and large-
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sized grid data from New South Wales in Australia. The model was tested at four seasons 

to validate its adaptivity within the highly fluctuating situations. Since the lagged load was 

often used in the VSTLF models, whereas the load value collected in the most recent hour 

is very likely to be inaccurate, (Luo et al., 2018) presented a model-based anomaly 

detection method with adaptive threshold to cleanse the corrupted load data.  

There is a rich literature in the field of STLF and it is worth mentioning that (Hong, 

2010) set the foundation of applying multiple linear regression (MLR) models for one-

week-ahead hourly load forecasting. This dissertation constructed a base model based on 

observing the relationship among the load consumption, temperature, calendar variables, 

and a linear trend. The extensions of the base model have been discussed to accommodate 

different scenarios (VSTLF with preceding hour load, MTLF/LTLF with econometric 

factors) and a few customizations including recency effect, weekend effect, holiday effect, 

and exponentially weighted least squares have been explored to further enhance the 

predicting power of the base model. Due to the transparency, computational simplicity and 

forecasting accuracy, the base model has been widely known as Tao’s Vanilla Benchmark 

model and studied in many research papers. The model has also been used as a benchmark 

model in the recent global energy forecasting competitions, including GEFCom2012, 2014 

and 2017. 

For power companies, MTLF and LTLF can be used to determine their long-term 

infrastructure commitment, system planning and forging energy policies with regulatory 

commissions. Rather than STLF that emphasizes fitting models to datasets and 

extrapolating from the past pattern, MTLF and LTLF tend to require more understanding 

towards how power system and electricity market work, as well as taking into account of 
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economy impacts (Khuntia et al., 2016). Some state of the art forecasting techniques for 

mid and long-term horizons in power systems were covered in (Khuntia et al., 2016). The 

paper stressed the importance of probabilistic load forecasting even though most utilities 

are still developing and making decisions using point forecasts. The MTLF and LTLF tend 

to generate multiple scenarios while each scenario would answer a what-if question in the 

future. (Ghedamsi et al., 2016) proposed a bottom-up model to forecast electricity load for 

Algeria residential buildings for the next 30 years. The authors leveraged GIS (Geographic 

Information System) to create and present the cartography of each climatic zone and then 

divided Algerian territory into 7 different zones based on the annual cost of energy 

consumption on cooling and heating per year responding to local climate, under residential 

category. The major energy consumers under each residential category were identified 

while HDD (heating degree days) and CDD (cooling degree days) were served as input to 

the degree-days method to produce the final forecast. 

During recent years, many valuable forecasting techniques and models were being 

tested and implemented in the industries. These techniques can be roughly classified into 

three categories, namely the statistical models, the artificial intelligence (AI) based models, 

and the hybrid models which incorporate decomposition, clustering, optimization, and 

aggregation rules to further enhance the forecasting performance from the individual 

approaches (Ghalehkhondabi et al., 2017).  

Within the family of statistical models, the univariate models, such as ARMA 

(auto-regressive and moving average) models (Weron, 2006) and exponential smoothing 

(Taylor, 2008) do not rely on explanatory variables, meaning it has lower data requirements 

than other widely used techniques such as MLR and artificial neural network (ANN) (Hong 



 
10 

 

& Fan, 2016). Due to their dependency on lagged load data, their forecasting performance 

can be good within a few steps ahead; while the forecast horizon gets longer, their 

forecasting accuracy could drop dramatically.  

The regression model is established under the assumption that the model itself is a 

reasonable approximation to reality (Hyndman and Athanasopoulos, 2019). It can be 

powerful in providing accurate forecasts without the limitation of the forecast horizon, 

while the model itself as well as the parameter estimation process is more interpretable 

than some “black-box” models. One of the earliest implementation of a regression-based 

approach on STLF was proposed in (Papalexopoulos & Hesterberg, 1990), in which the 

authors employed a MLR model with temperature being modeled by heating and cooling 

degree functions, holidays being modeled by binary variables, and model parameters being 

estimated by weighted least squares. This approach was used to produce 24 hour ahead 

peak and hourly forecast on Pacific Gas and Electric Company’s (PG&E) data and was 

concluded to make more accurate prediction than the existing approach at PG&E. More 

recently, (Hong, 2010) applied MLR models for one-week-ahead hourly load forecasting 

and the proposed base model has been used as a benchmark in many competitions and 

research papers. Aiming to further enhance the model forecasting performance, (P. Wang 

et al., 2016) explored lagged hourly temperature and moving average temperature variables 

in addition to the base model to form a family of “recency” models. 

The AI-based models reach to another hype in recent years’ load forecasting 

literature due to the rise of modern high-performance computing power on personal 

computers. Artificial Neural Network (ANN) models are the iconic AI-based models that 

learn tasks mimicking the behavior of the human brain. ANN models have the well-known 
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advantages of being able to approximate nonlinear functions and solve problems where the 

input-output relationship is neither well defined nor easily computable. (Hippert et al., 2001) 

gave a comprehensive review of ANN application to STLF. As one needs to define the 

appropriate model complexity and choose the right input variables, (Y. Chen et al., 2010) 

proposed a wavelet neural network model for 24-hour ahead electric load forecasting, while 

the similar day’s load in the history were selected as input. The similar days were found by 

correlation analysis, which was to pick the same weekday index and similar weather to the 

forecast day and apply the day-of-a-year index within a neighborhood of that forecast day. 

In the recent load forecasting literature, the hybrid models which incorporate 

decomposition, clustering, optimization, and aggregation rules were emerged to maximize 

the forecasting performance. (Zheng et al., 2017) proposed a long short-term memory 

(LSTM) neural networks to conduct 24-hour ahead load forecasting, where the empirical 

mode decomposition (EMD) was applied to decompose the singular values into intrinsic 

mode functions (IMF). Subsequently, each IMF was fed into an LSTM neural network and 

the outputs were combined to form the forecast after series reconstruction. As the model 

selection process is crucial before producing the final forecast, the evolutionary algorithms 

(EA) have been known as one of these heuristic-based approaches by mimicking the 

parameter selection process to a process of natural selection. (Li et al., 2014) proposed a 

hybrid quantized Elman neural network (HQENN) with the fewest quantized inputs to 

conduct 24-hour ahead load forecasting. The genetic algorithm (GA) was implemented to 

locate the optimal number of neurons in the quantum-map-layer and the hidden-layer in 

the HQENN to enhance the load forecasting performance. 
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Besides the load forecasting models mentioned above, other representative 

techniques among the literature include support vector machines (B. J. Chen et al., 2004); 

semi-parametric additive models (Fan & Hyndman, 2012); a gradient boosting model (Ben 

Taieb & Hyndman, 2014), and fuzzy regression (Hong & Wang, 2014).  

In the load forecasting models, weather variables are frequently used to capture 

salient features of historical load curves. Temperature has been the most prevalent one, due 

to its strong correlation to the demand of weather-sensitive load and the fact that it can 

normally be forecasted quite accurately within four or five days ahead. To model the v-

shaped load-temperature relationship (illustrated in FIGURE 9), (Fan et al., 2009) used 

piecewise linear functions with the cut-off temperature at 59 °F. (Ziel & Liu, 2016) used 

piecewise linear functions as well with the cut-off temperature at 50 °F and 60 °F. As the 

cut-off temperature of piecewise linear functions may not be the same at different service 

territories, (Hong, 2010) extended the use of 3rd ordered polynomials of the temperature in 

the model. While the load can be affected by the temperatures of the preceding hours, the 

lagged temperature and 24-hour average temperature were introduced into the model (P. 

Wang et al., 2016) to further enhance its forecasting accuracy.  

Other weather variables such as humidity, wind speed, and precipitation, although 

not as predictable as temperature, also play a part in the load forecasting models per data 

availability. In load forecasting models, humidity can be included in the form of heat index 

(HI), temperature-humidity index (Senjyu et al., 2005), or relative humidity with 

interaction to coincident hour and temperature (Xie et al., 2018). Wind speed variables can 

be included in the form of the Wind Chill Index (WCI), wind speed adjusted temperature 

or wind speed with interaction to the coincident hour and temperature (Xie & Hong, 2017). 
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As precipitation could have a direct or indirect effect to load demand, (Senjyu et al., 2005) 

introduced binary values (rain: -1, no rain: 1) in the membership function for the 

precipitation variable to correct the neural network output before the next day forecasted 

load can be obtained. 

Calendar has a rooted impact on electricity usage and introducing calendar 

variables helps explain seasonal behavior and some time-dependent information in the 

historical load curves. To model the combined effect from the day type and time of day, 

(Hong, 2010) applied an interaction effect in the MLR model between two class variables 

– weekday and hour. Since the 7 days of a week can be modeled by qualitative variable 

with multiple different classes (e.g., 2 classes: weekdays and weekends, 3 classes: 

weekdays and two separate weekend classes), (Xie et al., 2015) modified the days of year 

and combined Tuesday, Wednesday and Thursday together to reduce the degree of freedom 

of the model.  

To model annual seasonality, (Hong, 2010) added a class variable – month, into the 

model to classify load patterns throughout the year. Some other literature also reported 

using season in the load forecasting model, where the season can be formed by combining 

pre-defined months (Charlton & Singleton, 2014) or days (K. Chen et al., 2019). Other than 

using the Gregorian calendar, (Xie & Hong, 2018) proposed using 24 solar terms from 

ancient China to classify the load patterns.  

For a holiday, the load pattern can be unique. For the ten US federal holidays, six 

of them fall into fixed weekdays. In some cases, the holidays can be treated as a weekend 

day (Xie et al., 2015). Modeling load patterns on holidays can a challenging task due to the 
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lack of holiday data, the unique impact that a holiday may bring to the electricity usage, 

and its impact on the load pattern of the surrounding days (Hong, 2010). 

Due to the high penetration of renewable energy resources (solar/wind farm, 

electric vehicles, etc.) and intensive market competitions, the probabilistic load forecasting 

(PLF) which captures the forecast uncertainty, has become a crucial input for decision 

making in the energy system planning and operation procedures. (Hong & Fan, 2016) 

provided a comprehensive review of PLF, including the notable techniques, evaluation 

methods, and common misunderstandings. Popular techniques to generate probabilistic 

load forecast include using quantile regression from point forecast (Liu et al., 2017)(Ben 

Taieb et al., 2016), residual simulation (Xie et al., 2017), Monte Carlo simulation (Laković 

et al., 2017), temperature scenario simulation (Gaillard et al., 2016) and hybrid methods 

combining the former approaches (Haben & Giasemidis, 2016). (Hong et al., 2016) 

summarized the recent research in this field and the techniques used by top entries on the 

PLF track of GEFCom2014. Meanwhile, the paper envisioned the development trend in 

the probabilistic forecasting field in the next 10 years. 

As the era of smart grid has come since the 2000s and a massive number of smart 

meters being deployed in the field during the past decade, the meter readings give the power 

companies more insights towards their end-users. This huge amount of readings data has 

been leveraged to analyze customer usage patterns, which can lead to an extensive study 

on demand-side management (Andersen et al., 2017) and generates more study cases for 

an emerging subject called hierarchical load forecasting (HLF). HLF studies enable the 

industry to forecast electricity consumption at various levels at different forecasting 



 
15 

 

horizons, from the most granular level, a single household, to a major service territory 

across the country; from one-day ahead to several years ahead (Hong & Fan, 2016).  

The literature on HLF is showing a growing trend in the recent decade. (Fan et al., 

2009) established a multi-region load forecasting system to predict the aggregated 

electricity demand for a US Midwest utility company. The study introduced optimal region 

partitions of the sub-areas to minimize the forecast load at the aggregated level. (Lai & 

Hong, 2013) explored several methods of regional load grouping and averaging of weather 

stations under the hierarchical load forecasting settings based on the ISO New England 

data. (Zhang et al., 2015) proposed a 5-step hierarchical load forecasting framework using 

terabyte (TB) amount of AMI (advanced metering infrastructure) data. A hierarchical 

clustering technique based on normalized Euclidean distance is used to identify load 

patterns at bottom levels and prediction of load consumption under system level is the 

aggregation of individual load’s forecasting results, as shown in FIGURE 1. The Global 

Energy Forecasting Competition 2012 (GEFCom2012) organized by the IEEE Working 

Group on Energy Forecasting (WGEF), with a hierarchical load forecasting track, was the 

first formal competition and attracted worldwide forecasters on solving a 2-level 

hierarchical load forecasting problem: to backcast and forecast hourly loads for a US utility 

at both zonal level (20 series) and at system level (sum of the 20 zonal level series) using 

temperature information from 11 weather stations. (Hong et al., 2014) summarized the 

methodologies used by 11 entries in the hierarchical load forecasting track and four of the 

winning teams have published their methods to the International Journal of Forecasting 

(Ben Taieb & Hyndman, 2014)(Charlton & Singleton, 2014)(Lloyd, 2014)(Nedellec et al., 

2014). 
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FIGURE 1: Load Forecasting Aggregation Topology 

The Global Energy Forecasting Competition 2017 (GEFCom2017) brought 

together state-of-the-art techniques and methodologies under the hierarchical load 

forecasting theme by having a probabilistic load forecasting problem with multiple sizes 

of the hierarchy: to forecast the zonal and total loads of ISO New England in the qualifying 

match (3 levels), and forecast the load for hundreds of delivery point meters of a US utility 

(4 levels). (Hong et al., 2019) summarized the methodologies used by the top teams while 

found a modest usage of the hierarchy information among the winning teams. The authors 

attributed this cause to 3 reasons, namely the immaturity of hierarchical probabilistic 

forecasting in the literature, the intensity of the competition schedule, and the benefit of 

incorporating hierarchy information comparing to the extra complexity it brings.  

Although forecasting loads at the aggregated level has been a relatively matured 

area, due to the increasing need for highly accurate load forecasting, (Y. Wang et al., 2019) 

summarized four rising topics that are gaining attention from academic researchers and 

industry practitioners. The first one is to integrate the forecast errors obtained from a pool 
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of major forecast evaluation methods into the decision-making process. The second one is 

to leverage smart meter information and data-driven approaches to detect load transfers. 

The third one is to leverage the emerging data sources and study the impacts on the 

traditional load profiles from the disruption of distributed energy resources, energy storage, 

and smart home devices. The fourth topic relates to what this thesis focuses on, which is to 

fully utilize zonal, regional load and local weather data through WSS to improve load 

forecast accuracy under the context of HLF. 

2.2. Weather Station Selection 

Since weather factors have been playing key impacts to the electricity load 

consumption at different hierarchies, weather readings such as temperature, humidity, wind 

speed, and cloud cover, are widely used as input variables in load forecasting models. As 

it is impractical to customize the WSS and manually link the best weather station(s) to each 

zone based on the investigation of their geographical location, topography information or 

atmospheric circulation condition, a few literature in the field were published to find the 

best subset of weather stations for a territory of interest.  

Among the 4 winning entries in GEFCom2012, (Charlton & Singleton, 2014) drew 

a baseline model selecting one weather station per calendar group based on the goodness-

of-fit of a multiple linear regression model using singular value decomposition (SVD) for 

computation of the coefficients, and the final forecast was combined from 5-best fitted 

weather stations. (Nedellec et al., 2014) selected one station for each zone using a step-

wise procedure based on minimizing a V-fold cross-validation criterion. (Ben Taieb & 

Hyndman, 2014) selected one station for each zone based on the forecasting performance 
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on a test week. (Lloyd, 2014) uses temperature series from all weather stations. The 

benchmark method selected one station for each zone based on the best-fit model.  

As the decision-making processes in the energy industry rely further on the 

probabilistic load forecasts to better capture the uncertainties in the modern grid, the Global 

Energy Forecasting Competition 2014 (GEFCom2014), under the theme of probabilistic 

load forecasting, was held including a track on electric load forecasting, with a WSS 

problem similar to the setup of the hierarchical load forecasting track in GEFCom2012. 

The competition problem under the electric load forecasting track was to forecast the 

quantiles of hourly loads for a US utility using temperature information from 25 weather 

stations. (Hong et al., 2016) summarized the methodologies used by 7 teams in the electric 

load forecasting track. Six of the winning teams published their methods to the 

International Journal of Forecasting (Gaillard et al., 2016)(Ziel & Liu, 2016)(Xie & Hong, 

2016)(Dordonnat et al., 2016)(Haben & Giasemidis, 2016)(Mangalova & Shesterneva, 

2016). Among the 7 winning teams in GEFCom2014, team Tololo ranked in the first place 

and fitted each weather station to a generalized additive model (Gaillard et al., 2016). Four 

stations were selected based on their performance under the generalized cross-validation 

(GCV) criterion. Team Adada who ranked in the second, selected seven stations based on 

GCV initially and refined the selection using an exponentially weighted average (EWA) 

algorithm (Dordonnat et al., 2016). The method ended up selecting three stations. Team 

Jingrui Xie ranked in the third and selected 11 weather stations using the selection 

framework from (Hong et al., 2015) (Xie & Hong, 2016). Team Ziel Florian who took the 

second place in GEFCom2014-L, selected two weather stations based on the goodness of 
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fit to a cubic regression of the load against the temperature (Ziel & Liu, 2016). Other 

reported winning teams used the average of temperature series from 25 weather stations.  

In the GEFCom2017, 28 anonymous weather stations data including temperature 

and relative humidity were provided. (Hong et al., 2019) reported that only two out of eight 

top entries reported their WSS methods: team GeertScholma used goodness-of-fit of a 

polynomial temperature model to select one weather station for each meter; team 

QUINKAN first applied hierarchical clustering to categorize 28 stations into 11 clusters, 

then assigned the best cluster to each meter series based on the performance of a GBM 

(generalized boosting method) (Kanda & Veguillas, 2019). 

Some of the aforementioned methods followed a practice of first subjectively 

selecting a fixed number of weather stations for each zone, then identifying the best 

weather station(s) under the constraint of the fixed number(s). (Hong et al., 2015) 

suggested this was a counter-intuitive process due to the aspects of geographic diversity, 

demographic diversity, and the end-use diversity for each zone. Other methods subjectively 

selected a number of weather stations based on the goodness of fit to a pre-defined 

forecasting model. The process of determining how many stations to be included relied 

heavily on the user’s empirical experience to the forecasting model itself and the results 

were not convincing enough since they have not been compared with other alternatives 

under the same method.  

Given the aforementioned situation related to WSS and to solve the issue of how 

many stations should be used and which station(s) to be used, (Hong et al., 2015) proposed 

a WSS framework by removing the constraint on the fixed number of weather stations. The 

framework was based on a greedy approach – a heuristic approach to reach a good result 
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within an affordable amount of computation time. (Moreno-Carbonell et al., 2019) pointed 

out that this approach, despite its simplicity and reproducibility, has a major drawback of 

not allowing to remove useless variables with its incremental nature and thus, can lead to 

an over-parameterized combination of stations. They instead proposed a WSS approach 

based on GA (genetic algorithm), which allowed selecting the best set of weather stations 

for each value of 𝐾 (𝐾=number of stations being selected). The optimal 𝐾 was chosen 

based on the cross-validation error rate of each trial and the one-standard-error rule was 

used to locate the most parsimonious combination of the stations. However, due to the 

stochastic nature of GA such as the randomness of initial search point, along with its 

complexity to tune the parameters and form up an appropriate GA framework which is 

adaptive to a specific WSS problem, without mentioning the considerably larger computing 

resources it would require given the size of the search space, the feasibility and business 

value from the GA-based method may be limited in certain circumstances. 

In terms of ways to combine temperature series from the chosen weather stations, 

the simple average has been the most common way. A study in (Lai & Hong, 2013) has 

shown that the simple average can outperform the weighted average based on the ISO New 

England data set, in which the weights were driven by load size and economic output under 

each region. (Sobhani et al., 2019) tested out seven combination methods with simple 

averaging as the benchmark using data from GEFCom2012. Results have shown that 

averaging the forecasts from the seven methods could outperform the majority of the 

individual methods. (Moreno-Carbonell et al., 2019) leveraged Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm to update weights of chosen weather stations based 
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on training results of the Vanilla model. Results have shown that the proposed combination 

method outperformed the simple average method.   
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CHAPTER 3: THEORETICAL BACKGROUND 

3.1. Multiple Linear Regression 

Multiple linear regression is a classical statistical technique, attempting to model 

the relationship between the response variable and two or more independent variables. 

Each independent variable, sometimes called predictor or regressor, is associated with a 

coefficient, which measures its marginal effect among the independent variables to the 

response variable. Comparing to other black box approaches like neural networks, the 

model is easy to interpret. The model can have the following form: 

 𝑌௜ = 𝛽଴ + 𝛽ଵ𝑋ଵ,௜ + 𝛽ଶ𝑋ଶ,௜ + ⋯ + 𝛽௞𝑋௞,௜ + 𝜀௜  
(1) – Linear Regression Model  

where y is the response variable, namely the variable we want to forecast. 𝑋ଵ, … , 𝑋௞ are the 

k predictors and 𝛽ଵ, … , 𝛽௞  are the associated coefficients. 𝛽଴ is called the intercept and 

measures the mean of response variable when all the independent variables are 0. The 

response function can be written as: 

 𝐸[𝑌] = 𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽௞𝑋௞ 
(2) – Response Function of the Regression Model  

The multiple linear regression resides on the following key assumptions: 

 The model is a reasonable approximation to reality – meaning the relationship 

between the response and independent variables satisfies the linear equation 

(Hyndman, R.J. and Athanasopoulos, 2018).  

 The error terms, 𝜀ଵ, … 𝜀௜, are assumed to be caused by independent measurements 

and describe the deviance between the data samples and the true values along the 
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regression line. The error term 𝜀௜  is assumed to be independent, normally 

distributed variable 𝑁(0, 𝜎ଶ) with constant variance. 

 In the ideal situation, the error terms should be unrelated to the predictors. 

 The independent variables shouldn’t be highly correlated with each other. 

The coefficients can be estimated by fulfilling the least sum of error square 

condition, which can be defined as follows: 

 
 

൫𝛽መ଴, 𝛽መଵ, … , 𝛽መ௞൯ = 𝑎𝑟𝑔𝑚𝑖𝑛
(ఉబ,ఉభ,…,ఉೖ)

෍(𝑦௜ − 𝛽଴ − 𝛽ଵ𝑋ଵ,௜ − ⋯ − 𝛽௞𝑋௞,௜)
ଶ

ே

௜ୀଵ

 

(3) – Parameter Estimation Problem Formulation 
 

where 𝑁  is the number of observations. This equation can have closed-form solutions 

through the matrix inverse: 

 
 𝛽መ = (𝑋்𝑋)ିଵ𝑋்𝑦 

(4) – Parameter Estimation in Matrix Form  

For large datasets which involves a huge amount of computation, or the inverse of 

𝑋்𝑋 does not exist, the coefficients can be estimated by gradient descent approaches.  

A predictor can either be quantitative or qualitative. To predict a weather-

responsive load, a quantitative predictor can be the outside temperature in Fahrenheit. An 

example qualitative predictor can be the month of the year with 12 classes (January, 

February, …, December), indicating various load levels at different months.  Under which 

scenario, this qualitative predictor will be represented by 11 indicator variables, sometimes 

called the dummy variables (with values 0 and 1) as follows: 
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⎩
⎪⎪
⎨

⎪⎪
⎧

𝑋ଵ = 1, 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ 𝑖𝑠 𝐽𝑎𝑛𝑢𝑎𝑟𝑦
𝑋ଵ = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑋ଶ = 1, 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ 𝑖𝑠 𝐹𝑒𝑏𝑟𝑢𝑎𝑟𝑦
𝑋ଶ = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

…
𝑋ଵଵ = 1, 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑜𝑛𝑡ℎ 𝑖𝑠 𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟
𝑋ଵଵ = 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(5) – Dummy Coding of Month Variables 

 

And the response function of the regression model with the month of the year as 

the predictor variable is: 

 𝐸[𝑌] = 𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽ଵଵ𝑋ଵଵ 
(6) – Response Function of Regression Model with Month Variables  

When the effects of one predictor variable depend on the level(s) of some other 

predictor variable(s), interaction effects can be included in the regression model (Hong et 

al., 2011). To predict a weather-responsive load, the temperature (quantitative variable) 

can interact with the month (qualitative variable) since the coincident temperature is not 

independent of the month of the year.  

3.2. Base Model 

While it is worth noting that the use of one load forecasting model or the other can 

lead to different “fitness” of each station and we cannot conclude which set of weather 

station is the best one in general terms (Moreno-Carbonell et al., 2019), our goal is to find 

the best WSS based on the Vanilla model. This model was first proposed by (Hong, 2010) 

and then used in GEFCom2012 as the benchmark for the hierarchical load forecasting track 

(Hong et al., 2014). This model produces relatively good forecasts with computational 

simplicity. The model is specified as follows: 
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 𝐿𝑜𝑎𝑑 = 𝛽଴ + 𝛽ଵ ∙ 𝑇𝑟𝑒𝑛𝑑 + 𝛽ଶ ∙ 𝐻𝑜𝑢𝑟 + 𝛽ଷ ∙ 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 + 𝛽ସ ∙ 𝑀𝑜𝑛𝑡ℎ
+ 𝛽ହ ∙ 𝑇 + 𝛽଺ ∙ 𝑇ଶ + 𝛽଻ ∙ 𝑇ଷ + 𝛽଼ ∙ 𝐻𝑜𝑢𝑟 ∙ 𝑊𝑒𝑒𝑘𝑑𝑎𝑦 + 𝛽ଽ

∙ 𝑇 ∙ 𝐻𝑜𝑢𝑟 + 𝛽ଵ଴ ∙ 𝑇ଶ ∙ 𝐻𝑜𝑢𝑟 + 𝛽ଵଵ ∙ 𝑇ଷ ∙ 𝐻𝑜𝑢𝑟 + 𝛽ଵଶ ∙ 𝑇
∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽ଵଷ ∙ 𝑇ଶ ∙ 𝑀𝑜𝑛𝑡ℎ + 𝛽ଵସ ∙ 𝑇ଷ ∙ 𝑀𝑜𝑛𝑡ℎ 

(7) – Vanilla Model 

 

Load is the coincident response variable that will be forecasted by the predictor 

variables on the right side. The standalone predictors includes a Trend variable (an 

increasing natural number) to represent a linear trend of the load along with the data history; 

a 24 classes qualitative variable, Hour, to represent load level shift at 24 hours of a day; a 

7 classes qualitative variable, Weekday, to represent load level shift at seven days of a 

week; a 12 classes qualitative variable, Month to represent load level shift at 12 months of 

a year; quantitative variables, 𝑇, 𝑇ଶ  and 𝑇ଷ , to represent the relationship between the 

temperature (combined from the weather station(s)) polynomials and the load. The 

temperature polynomials are interacting with the hour of the day and the month of the year. 

The hour of the day is interacting with the day of the week. Further details about this 

benchmark model can be found in (Hong et al., 2011). 

For the weather station combination, (Sobhani et al., 2019) has shown many ways 

can be used to combine temperature series. To make a direct comparison to the results in 

(Hong et al., 2015), we use simple averages to combine temperature series and create 

virtual weather stations in this thesis.  

3.3. The Model Evaluation Metrics 

There are various model evaluation metrics in the load forecasting field to inform 

the forecasting accuracy of a model. Since there are not many loads close to zero in the 

data history and to establish a direct comparison to the results in (Hong et al., 2015), we 
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use MAPE (mean absolute percentage error) as the error measure to evaluate the forecast 

performance:  

 
𝑀𝐴𝑃𝐸 =

1

𝑁
෍

|𝑦௜ − 𝑦పෝ|

𝑦௜

ே

௜ୀଵ

 

(8) – The Error Measure, MAPE 
 

where 𝑁 is the number of observations in the test period, 𝑦௜ and 𝑦పෝ  are the actual 

values and predicted values, respectively. 

3.4. WSS Frameworks 

In this section, we will give out some high-level introduction on four major WSS 

frameworks we are going to present in the later chapters, namely the exhaustive search 

framework and three heuristic frameworks – forward selection framework, backward 

selection framework, and greedy selection framework. Three types of statistical tests are 

considered under each framework: the in-sample fit, post-sample fit, and out-of-sample 

cross validation test. These tests vary on the way of error estimation and thus lead to 

different WSSs. We will cover more details about these three statistical tests in Section 3.5. 

To avoid verbose illustration, for the four major frameworks, we denote the exhaustive 

search framework as ES, the forward selection framework as FS, the backward selection 

framework as BS and the greedy selection framework as GS. We denote the in-sample fit 

methods as IS, the post-sample methods as PS and the out-of-sample cross validation 

methods as CV. 

In this thesis, we denote 𝑁 to be the number of weather station candidates to choose 

from, where 𝑁 = 11 for the GEFCom2012 case study and 𝑁 = 25 for the GEFCom2014 

case study. 
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The exhaustive search method, sometimes called the best subset selection method, 

is a type of searching method to locate the global optimum by going through a finite number 

of possibilities sequentially. In the context of weather station selection for load forecasting, 

it is to go through and test out every possible WSS and use the best-performed selection 

from the history to forecast the future load. We label each weather station as 𝑖 , where 𝑖 =

1, … , 𝑁. The set of available weather stations, 𝑆, is denoted as:  

 
 𝑆 = {1, … , 𝑁} 

(9) – The Set of Weather Stations  

 
It’s power set, denoted as 𝑃(𝑆) or 2ௌ , represents the set containing all possible 

subsets of 𝑆 as its elements:  

 𝑃(𝑆) = {∅, {1}, … , {𝑁}, {1,2}, … , {𝑁 − 1, 𝑁}, … } 
(10) – The Power Set of Weather Station Subsets  

 
The cardinality of the power set 𝑃(𝑆) is equal to 2ே, which includes the empty set 

∅. Since at least one weather station will be selected, the number of weather station subset 

𝑇, is equal to 2ே − 1. In which case, for ES-IS and ES-PS, the WSS process requires 2ே −

1 iterations to evaluate the Vanilla model. For ES-CV, it requires 3(2ே − 1). The number 

of possible WSSs for the two case studies are listed in TABLE 1 and TABLE 2. The 

implementation details of the ES framework are elaborated in Section 4.1.  
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TABLE 1: No. of Possible WSSs under Each Group Size (GEFCom2012) 
No. of stations 

selected 
No. of 

possibilities 
1 11 
2 55 
3 165 
4 330 
5 462 
6 462 
7 330 
8 165 
9 55 

10 11 
11 1 

Total: 2047 
 

TABLE 2: No. of Possible WSSs under Each Group Size (GEFCom2014) 
No. of stations 

selected 
No. of possibilities 

1 25 
2 300 
3 2300 
4 12650 
5 53130 
6 177100 
7 480700 
8 1081575 
9 2042975 

10 3268760 
11 4457400 
12 5200300 
13 5200300 
14 4457400 
15 3268760 
16 2042975 
17 1081575 
18 480700 
19 177100 
20 53130 
21 12650 
22 2300 
23 300 
24 25 
25 1 

Total: 33,554,431 
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Forward and backward selections both belong to the family of stepwise regression 

methods and have been widely used as the heuristic methods in the other fields, aiming at 

achieving good results with a less computational cost. FS begins with an empty set and 

adds in variables one at a time to the incumbent group (a group containing all selected 

variable(s)). In the context of WSS for load forecasting, instead of going through every 

possible WSS, forward steps begin with an empty group with no weather stations being 

selected and add one station at a time that gives the largest error measure improvement. 

This process will stop at a group of weather station(s) when no further improvement can 

be achieved by adding one more weather station to the incumbent group, or there’s no more 

weather stations we can add.  

BS begins with a full house of variables and the selection process is to eliminate 

one variable at a time from the incumbent group. In the context of WSS for load forecasting, 

the backward steps begin with all the weather stations being selected, eliminate weather 

station one at a time while recording down the selection which gives the largest error 

measure improvement. The selection process stops at a group of weather station(s) when 

no further improvement can be achieved by eliminating one more weather station from the 

incumbent group.  

The general implementation processes of FS and BS are visualized in FIGURE 2 

and FIGURE 3. The implementation details of FS and BS for WSS are elaborated in 

Section 4.2 and Section 4.3. The FS and BS implementations with IS or PS require at most 

𝑁 + (𝑁 − 1) + ⋯ + 1 =
ே(ேାଵ)

ଶ
 iterations to evaluate the Vanilla model and locate the 

WSS. The FS and BS implementations with CV require at most 3(𝑁 + (𝑁 − 1) + ⋯ +

1) =
ଷே(ேାଵ)

ଶ
 iterations given the use of 3-fold CV. Under the GEFCom2012 case study, 
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FS and BS along with IS or PS require at most 55 iterations when 𝑁 = 11. When 𝑁 = 25 

for the GEFCom2014 case study, FS and BS along with IS and PS require at most 300 

iterations. 

Fit model M with Wi and 
Predict 

Start: I = {Ø}

Calculate error and Sort 
in ascending order

Select weather station and 
add to I

Fit model M with I and 
rest Wi one at a time

Best error improves?

Calculate error and Sort 
in ascending order

Add selected weather 
station to I

Y

End: I = {weather 
station(s) selected}

N

 
FIGURE 2: FS Implementation Process 
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Fit model M with 
averaged Wi in I and 

Predict

Start: I = {ALL 
weather stations}

Calculate error

Remove one weather 
station at a time from I

Fit model M with 
remaining Wi in I and 

Predict

Best error improves?

Calculate error and Sort 
in ascending order

Remove selected weather 
station from I

Y

End: I = {weather 
station(s) selected}

N

 
FIGURE 3: BS Implementation Process 

A greedy selection method with the post-sample fit (GS-PS) has been illustrated in 

(Hong et al., 2015). In this thesis, we implement the greedy selection framework for WSS 

based on the in-sample fit and cross-validation errors. The general implementation process 

for the greedy selection methods is visualized in FIGURE 4. The implementation details 

of GS-PS and GS-CV for WSS are elaborated in Section 4.4. The benchmark and GS-PS 

both require 𝑁 + 𝑁 = 2𝑁 iterations to evaluate the Vanilla model and locate the WSS. GS-

CV requires  𝑁 + 3𝑁 = 4𝑁  iterations given the 3-fold CV implementation. Under the 
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GEFCom2012 case study, the benchmark and GS-PS require exact 22 iterations when 𝑁 =

11. While 𝑁 = 25 for the GEFCom2014 case study, the benchmark and GS-PS require 

exact 50 iterations. 

Fit model M with Wi and 
Predict 

Start

Sort weather stations in 
ascending order

Combine top k weather 
stations

Fit model M with virtual 
weather stations

Calculate error and Sort 
in ascending order

End

 
FIGURE 4: GS Implementation Process 

3.5. Statistical Tests for Model Selection 

Various statistical tests can be used to evaluate the forecasting performance of a 

model. Each framework we’ve introduced in Section 3.4 comes along with three types of 

statistical tests, namely the in-sample (IS) fit, post-sample (PS) fit, and out-of-sample cross 

validation (CV) test.  

From the data history, when we use the same group of samples to estimate model 

parameters and evaluate the forecasting performance of the model, we call it the IS fit 
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method. When we evaluate the forecasting performance using a group of samples that were 

collected after the date on which the model parameters were estimated, we call it the PS fit 

method. FIGURE 5 gives an example of the in-sample fit and post-sample fit method 

implemented within the GEFCom2012 case study. 

2004
Training

2005
Training

2006
Validation

2007
Test+

2004
Training

2005
Training

2007
Test+ 2006

Training+

 
FIGURE 5: Example of In-Sample Fit (up) and Post-Sample Fit (down) Method in GEFCom2012 

Case Study 

CV, also called the V-fold cross validation (VFCV), is another type of model 

evaluation technique, where we divide the data into V subsets and each time we hold out 

one subset to evaluate forecasting performance, while the remaining subsets are used for 

model parameter estimation. This process will repeat V times then the average error across 

V trials is computed. FIGURE 6 gives an example of CV implemented within the 

GEFCom2012 case study. 
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2004
Training

2005
Training

2006
Validation+

2004
Training

2006
Training

2005
Validation

2007
Test+

2005
Training

2006
Training

2004
Validation+

 

FIGURE 6: Example of CV in GEFCom2012 Case Study 

In this thesis, we denote the number of years in the training and validation period 

by 𝐿௧௥௔௜௡  and 𝐿௩௔௟  respectively. We let 𝐿௧௥௔௜௡ = 2  and 𝐿௩௔௟ = 1  for post-sample fit 

methods and we conduct WSS based on the forecasting error on the validation period. For 

in-sample fit methods, we let 𝐿௧௥௔௜௡ = 3 and 𝐿௩௔௟ = 0 since we do not need validation data, 

while we conduct WSS based on the in-sample fit error. The CV methods will follow the 

3-fold cross validation process, namely for each trial, one-year worth of data will be held 

out from the 3 years data history for validation and the WSS will be conducted based on 

the average error across the three validation periods. 
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CHAPTER 4: PROPOSED METHODOLOGY 

4.1. Exhaustive Search Framework (ES) 

In this section, we elaborate on the implementation details of ES. The ES comes 

along with three statistical tests and we denote them as ES-IS, ES-PS, and ES-CV. The 

exhaustive search framework with the in-sample fit (ES-IS) is implemented in the 

following steps: 

(1) Denote the temperature series from each weather station as 𝑊௜ , 𝑖 = 1, … , 𝑁 . 

Combine the temperature series of the weather stations to create a new temperature 

series 𝐶𝑊௞ , 𝑘 = 1, … , 𝑇, and 𝑇 = 2ே − 1. Following (Hong et al., 2015), a simple 

combination with averaging temperature of the selected stations has been used. 

(2) Fit a predefined model M with the load data and the temperature data 𝐶𝑊௞ in the 

training period. We let 𝐿௧௥௔௜௡ = 3  and 𝐿௩௔௟ = 0  to conduct the in-sample fit. 

Calculate the in-sample fit error, 𝑀𝐴𝑃𝐸௞, under 𝐶𝑊௞. 

(3) Sort the resulting error measures in ascending order and record the combined 

temperature series that leads to the smallest error measure. 

(4) Use the selected combined temperature series over the last two years in the training 

period to fit the model M and forecast the load of the test period. In the 

GEFCom2012 case study, the training period for this step is 2005-2006 and the test 

period is 2007; in the GEFCom2014 case study, the training periods for this step 

are 2006-2007, 2007-2008 and 2008-2009 for the test years 2008, 2009 and 2010, 

respectively.  

Like the implementation of ES-IS, we conduct ES-PS by letting 𝐿௧௥௔௜௡ = 2 and 

𝐿௩௔௟ = 1. For the GEFCom2012 case study, we use the first two years of data (2004-2005) 
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to estimate the parameters of the model and predict the load in the third year (2006). The 

WSS resulting in the smallest error measure in the third year (2006) will be chosen to 

forecast the load of the test period (2007). For the GEFCom2014 case study, we use the 

first two years of data (2005-2006) to estimate the parameters of the model and predict the 

load in the third year (2007). The WSS leading to the smallest error measure in the third 

year (2007) will be chosen to forecast the load of the test period (2008). We repeat the 

same implementation and apply the rolling process until we complete the forecasts for all 

three years (2008-2010). 

Like the implementation of ES-PS, for the GEFCom2012 case study, we implement 

the ES-CV by conducting a 3-fold cross validation technique in the training period (2004-

2006). We divide the data into three segments nearly equally based on the calendar year. 

One of the three segments is used as validation data and the rest two segments are used for 

training. The performance of a WSS is evaluated based on its average error measure across 

all three segments. The WSS leading to the smallest error measure will be used to forecast 

the load of the test period (2007) with parameter estimation based on the year of 2005-

2006. For the GEFCom2014 case study, we implement the ES-CV by conducting a 3-fold 

cross validation technique in the training period (2005-2007). We repeat the same 

implementation and apply the rolling process until we complete the forecasts for all three 

years (2008-2010). 

4.2. Forward Selection Framework (FS) 

In this section, we elaborate on the implementation details of FS. The FS comes 

along with three statistical tests and we denote them as FS-IS, FS-PS, and FS-CV. The 
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implementation steps of the forward selection framework with the in-sample fit (FS-IS) are 

listed as below: 

(1) Denote the set of selected weather stations as 𝐼 and at the starting point, 𝐼 = {∅}. 

(2) For the temperature series from each weather station, 𝑊௜ , 𝑖 = 1, … , 𝑁 , fit a 

predefined model M with the load data and the temperature data 𝑊௜ in the training 

period. We let 𝐿௧௥௔௜௡ = 3 and 𝐿௩௔௟ = 0 for the in-sample fit method. 

(3) Calculate the in-sample fit error, 𝑀𝐴𝑃𝐸(ଵ),௜, under 𝑊௜. The subscript 1 indicates 

only one weather station is considered to the combined temperature series at this 

time. 

(4) Sort the resulting error measures in ascending order. Record the temperature series 

resulting in the smallest error measure and add it to 𝐼. 

(5) Combine each temperature series of the remaining weather stations with the 

station(s) in 𝐼 to create a new temperature series. 

(6) Fit the model M using the selected combined temperature series over the training 

period and calculate the in-sample fit error. 

(7) Sort the resulting error measures in ascending order, record the combined 

temperature series resulting in the smallest error measure and compare the error 

measure with the selection in 𝐼. 

(8) If the error measure obtained in (7) is improved, repeat (5) - (7) until there is no 

weather station remains to be added or no further improvement can be achieved by 

adding one more weather station to the incumbent selection 𝐼. In other words, if the 

record obtained in (7) has a larger error measure than the selection in 𝐼, the station(s) 

in 𝐼 will be selected. 
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(9) Use the selected combined temperature series over the last two years in the training 

period to fit the model M and forecast the load of the test period. Under the 

GEFCom2012 case study, the training period is 2005-2006 for this step and the test 

period is 2007; Under the GEFCom2014 case study, the training periods are 2006-

2007, 2007-2008 and 2008-2009 for the test periods 2008, 2009 and 2010, 

respectively. 

Like the steps of implementing FS-IS, we implement the FS-PS by letting 𝐿௧௥௔௜௡ =

2 and 𝐿௩௔௟ = 1. For the GEFCom2012 case study, we use the first two years of data (2004-

2005) to estimate the parameters of the model and predict the load in the third year (2006). 

The error measure will be evaluated based on the third year (2006) for each combined 

temperature series in order to determine whether one more weather station will be added 

and which to be added to the incumbent group. The WSS leading to the smallest error 

measure in the third year (2006) will be used to forecast the load of the test period (2007). 

For the GEFCom2014 case study, we use the first two years of data (2005-2006) to estimate 

the parameters of the model and predict the load in the third year (2007). The error measure 

will be evaluated based on the third year (2007) for each combined temperature series in 

order to determine whether one more weather station will be added and which to be added 

to the incumbent group. The WSS leading to the smallest error measure in the third year 

(2007) will be used to forecast the load of the test period (2008). We repeat the same 

implementation and apply the rolling process until we complete the forecasts for all three 

years (2008-2010). 

Like the implementation of FS-PS, for the GEFCom2012 case study, we implement 

the FS-CV by conducting a 3-fold cross validation technique in the training period (2004-
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2006). We divide the data into three segments nearly equally based on the calendar year. 

One of the three segments is used as validation data and the rest two segments are used for 

training. The performance of a WSS is evaluated based on its average error measure across 

all three segments. If adding a station can result in a lower cross-validation error, the 

selection process will continue; otherwise, the selection process will stop and the 

incumbent selection will be used to forecast the load of the test period (2007) with 

parameter estimation on the year of 2005-2006. For the GEFCom2014 case study, we 

implement the FS-CV by conducting a 3-fold cross validation technique in the training 

period (2005-2007). We repeat the same implementation and apply the rolling process until 

we complete the forecasts for all three years (2008-2010). 

4.3. Backward Selection Framework (BS) 

In this section, we elaborate on the implementation details of BS. The BS will come 

along with three statistical tests and we denote them as BS-IS, BS-PS, and BS-CV. The 

implementation steps of the backward selection framework with the in-sample fit (BS-IS) 

are listed as below: 

(1) Denote the set of selected weather stations as 𝐼 , and at the starting point, 𝐼 =

{1, … , 𝑁}. 

(2) Combine the temperature series from the stations in 𝐼 , denoted as 𝐶𝑊(ே) . The 

subscript 𝑁  denotes there are 𝑁  weather stations included in the combined 

temperature series. 

(3) Fit a predefined model M with the load data and the temperature series 𝐶𝑊(ே) in 

the training period. We let 𝐿௧௥௔௜௡ = 3 and 𝐿௩௔௟ = 0 for the in-sample fit methods. 

(4) Calculate the in-sample fit error, 𝑀𝐴𝑃𝐸(ே), under 𝐶𝑊(ே). 
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(5) Eliminate one station from 𝐼 and combine temperature series of the remaining 𝑁 −

1 weather stations to create a new temperature series, 𝐶𝑊(ேିଵ),௞ , 𝑘 = 1, … , 𝑁 − 1. 

The subscript 𝑁 − 1  denotes there are 𝑁 − 1  weather stations included in the 

combined temperature series. 

(6) Fit the model M with the combined temperature series 𝐶𝑊(ேିଵ),௞ over the training 

period. 

(7) Calculate the in-sample fit error measure, 𝑀𝐴𝑃𝐸(ேିଵ),௞ under 𝐶𝑊(ேିଵ),௞ and sort 

the resulting error measures in ascending order. Record the combined temperature 

series resulting in the smallest error measure and compare the error measure with 

the 𝑀𝐴𝑃𝐸(ே) in (4). 

(8) If the error measure is improved, eliminate the weather station selected in (7) from 𝐼 

and repeat (5)-(7) until there is no weather station remains can be eliminated, or 

there is no further improvement by eliminating one more weather station from the 

incumbent selection 𝐼. In other words, if the record obtained in (7) has a larger error 

measure than the selection in 𝐼, the station(s) in 𝐼 will be selected.  

(9) Use the selected combined temperature series over the last two years in the training 

period to fit the model M and forecast the load of the test period. Under the 

GEFCom2012 case study, the training period is 2005-2006 for this step and the test 

period is 2007; in the GEFCom2014 case study, the training periods are 2006-2007, 

2007-2008 and 2008-2009 for the test periods 2008, 2009 and 2010, respectively.  

Like the BS-IS implementation, we conduct BS-PS by letting 𝐿௧௥௔௜௡ = 2  and 

𝐿௩௔௟ = 1. For the GEFCom2012 case study, we use the first two years of data (2004-2005) 

to estimate the parameters of the model and predict the load in the third year (2006). The 
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error measure will be evaluated based on the third year (2006) for each combined 

temperature series in order to determine whether one more weather station will be 

eliminated and which to be removed from the incumbent group. The WSS leading to the 

smallest error measure in the third year (2006) will be used to forecast the load of the test 

period (2007). For the GEFCom2014 case study, we use the first two years of data (2005-

2006) to estimate the parameters of the model and predict the load in the third year (2007). 

The error measure will be evaluated based on the third year (2007) for each combined 

temperature series in order to determine whether one more weather station will be 

eliminated and which to be removed from the incumbent group. The WSS leading to the 

smallest error measure in the third year (2007) will be used to forecast the load of the test 

period (2008). We repeat the same implementation and apply the rolling process until we 

complete the forecasts for all three years (2008-2010). 

Like the implementation of BS-PS, for the GEFCom2012 case study, we implement 

the BS-CV by conducting a 3-fold cross validation technique in the training period (2004-

2006). We divide the data into three segments nearly equally based on the calendar year. 

One of the three segments is used as validation data and the rest two segments are used for 

training. The performance of a WSS is evaluated based on its average error measure across 

all three segments. If removing a station can result in a lower cross-validation error, the 

selection process will continue; otherwise, the selection process will stop and the 

incumbent selection will be used to forecast the load of the test period (2007) with 

parameter estimation on the year of 2005-2006. For the GEFCom2014 case study, we 

implement the BS-CV by conducting a 3-fold cross validation technique in the training 
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period (2005-2007). We repeat the same implementation and apply the rolling process until 

we complete the forecasts for all three years (2008-2010). 

4.4. Greedy Selection Framework (GS) 

In this section, we elaborate on the implementation details of GS. The GS will come 

along with three statistical tests and we denote them as GS-IS, GS-PS, and GS-CV. The 

GS-PS is the benchmark method and the implementation details can be found in (Hong et 

al., 2015). The implementation steps of the greedy selection framework with the in-sample 

fit (GS-IS) are listed as below: 

(1) Denote the temperature series from each weather station as 𝑊௜ , 𝑖 = 1, … , 𝑁. Fit a 

predefined model M with the load data and the temperature data 𝑊௞ in the training 

period. We let 𝐿௧௥௔௜௡ = 3 and 𝐿௩௔௟ = 0 for the in-sample fit methods. 

(2) Calculate the in-sample fit error, 𝑀𝐴𝑃𝐸௜  under 𝑊௜  and sort the resulting error 

measures in ascending order. 

(3) Combine the temperature series of the top k weather stations to create a new 

temperature   series 𝐶𝑊௞ , 𝑘 = 1, … , 𝑁. Here, the average temperature of the top k 

weather stations is calculated. 

(4) Use the selected combined temperature series over the last two years in the training 

period to fit the model M and forecast the load of the test period. Under our 

GEFCom2012 case study, the training period is 2005-2006 in this step and the test 

period is 2007; under our GEFCom2014 case study, the training periods are 2006-

2007, 2007-2008 and 2008-2009 for the test periods of 2008, 2009 and 2010, 

respectively.  



 
43 

 

Like the implementation of the benchmark method (GS-PS), we implement the GS-

CV by conducting a 3-fold cross validation technique in the training period (2004-2006) 

for the GEFCom2012 case study. Each weather station will be sorted based on the in-

sample fit error in all three training years (2004-2006). We then divide the data into three 

segments nearly equally based on the calendar year. One of the three segments is used as 

validation data and the rest two segments are used for training. The top k weather stations 

will be used to create virtue stations and the performance of each is evaluated based on the 

average error across all three validation segments. The virtue station resulting in the lowest 

error will be used to forecast the load of the test period (2007) with parameter estimation 

based on the year of 2005-2006. For the GEFCom2014 case study, we implement the GS-

CV by conducting a 3-fold cross validation technique in the training period (2005-2007) 

before forecasting year 2008. We repeat the same implementation and apply the rolling 

process until we complete the forecasts for all three years (2008-2010). 
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 CHAPTER 5: CASE STUDY & DISCUSSION  

5.1. GEFCom2012 Case Study 

To make a fair comparison with the results in (Hong et al., 2015), we extend the 

case study with the data from the hierarchical load forecasting track of GEFCom2012. 

Using this public dataset allows our results to be reproduced and conveniently compared 

for future studies by other researchers.  

The entire data set consists of hourly load data of 20 zones from the 1st hour of 

1/1/2004 to the 6th hour of 6/30/2008, with hourly temperature history from 11 anonymous 

weather stations (𝑊ଵ − 𝑊ଵଵ).  

To model the daily seasonality of hourly load, the coincident hour has been used to 

categorize the load patterns throughout the day. FIGURE 7 presents the scatterplots of load 

– temperature relationship at each hour from the aggregated zone and the average 

temperature from the 11 stations.  

To model the annual seasonality, the categorical variables – month, have been 

included to categorize load patterns throughout the year. FIGURE 8 gives the scatterplots 

of load – temperature relationship at each month of a year from the aggregated zone and 

the average temperature from the 11 stations in this case study. The correlation between 

the load and temperature during the winter months (Month=12, 1, 2, 3) and summer months 

(Month=6, 7, 8, 9) is stronger than the remaining months, largely due to during these 6 

months, load tends to increase when the weather (temperature here) gets extreme. In the 

remaining 4 months (Month=4, 5, 10, 11), the relationship between the two is weak.  
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FIGURE 7: Load-temperature Scatterplots for 24 Hours (GEFCom2012) 
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FIGURE 8: Load-temperature Scatterplots for 12 Months (GEFCom2012) 

Temperature is known to have a strong correlation with electricity usage patterns. 

FIGURE 9 shows the scatterplot of load – temperature relationship using three years of 

data (2004-2006) from the aggregated zone and the average temperature from the 11 

stations. The graph shows a strong correlation (the typical “hockey stick” shape) between 

the load and temperature. On the left arm, the load goes up for heating needs during the 

winter when the temperature drops below a certain point. On the right arm, the load goes 

up for cooling needs during the summer when the temperature increases. This scatterplot 

shows that there is a cutoff point at around 60 Fahrenheit. 
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FIGURE 9: Load-temperature Scatterplot (GEFCom2012) 

Four years (2004-2007) of hourly load and temperature data from all 11 weather 

stations are used in this case study, with three years being partitioned as the training period 

(2004-2006) and one year being held out as the test period (2007). 

 
FIGURE 10: Time Series Plot of Hourly Load and Temperature (Zone 21, GEFCOM2012, 2004-

2006) 

Three years (2004-2006) of the hourly load plot at the aggregated load zone - 𝑍ଶଵ 

and hourly temperature plot obtained from the average of 11 temperature series, are given 
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in FIGURE 10. For GEFCom2012 data, we have 11 weather stations data available and 

TABLE 3 shows the statistics (mean, standard deviation, minimum and maximum) of 

temperature recorded at each station. It can be seen the temperature values vary a wide 

range, particularly for the minimum temperature. A random day – 1/20/2005 – is also 

picked out to demonstrate the variance of hourly temperature reported at different weather 

stations. As shown in FIGURE 11 boxplots, the recorded temperature at 4 AM could range 

from ~20 to ~35 Fahrenheit among the weather stations.  

 
FIGURE 11: Line Plot (up) and Boxplots (down) of Reported Temperature at Each Weather 

Station for Zone 21 at 1/20/2005 (GEFCom2012) 
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TABLE 3: Statistics of Temperature (in Fahrenheit) Reported at Each Weather Station 
(GEFCom2012) 

Station Mean Std. Minimum Maximum 
1 59.78 16.79 12 103 
2 54.94 17.44 0 95 
3 56.20 17.65 8 98 
4 60.25 17.42 11 103 
5 56.87 17.65 6 99 
6 58.85 17.09 7 103 
7 58.98 18.04 8 104 
8 59.33 17.78 6 103 
9 56.81 18.00 5 100 

10 58.93 17.43 5 102 
11 55.11 17.97 0 98 

Range 54.94 - 60.25 16.79 - 18.04 0 - 12 95 - 104 
 

The proposed framework in (Hong et al., 2015), namely the GS-PS in this thesis, is 

used as the benchmark to justify the effectiveness of other approaches, and results are listed 

in TABLE 4 through TABLE 7. The green highlighted MAPE values represent proposed 

approaches resulting in superior performance in specific zones compared to the benchmark 

method. The grey highlighted MAPE values represent proposed approaches with worse 

performance in specific zones compared to the benchmark. The buckets neither highlighted 

in green nor gray represent the proposed approaches leading to the same selection as the 

benchmark method.  

A “Theoretical Optimum” column has been introduced, by going through each 

possible WSS and locate the selection resulting in the smallest error measure on the test 

year (2007) using two years (2005-2006) of data to estimate the parameters of the model. 

The “Dist. (%)” column is created and serves as another error metrics besides MAPE, 

which demonstrates the percentage difference between the MAPE of a proposed selection 

approach and the TO selection. At each zone, a forecast leading to a shorter distance (i.e., 

a smaller percentage difference) to the TO selection, is a selection closer to the TO. A 
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forecast resulting in zero distance to the TO selection indicates the method achieves the 

TO. For instance, the GS-IS shown in TABLE 4 achieves the TO under zone 1 and 2.  

The “No.” column gives the number of stations selected under each load zone. The 

“Average (regular zones)” row gives the average number of stations being selected, the 

average MAPE (%) and the average Dist. (%) among the regular zones.  

Among the 20 zones at the bottom level, 𝑍ସ experienced a major outage and 𝑍ଽ is 

an industrial customer. In order for a meaningful comparison to (Hong et al., 2015), the 

forecasting MAPE results of 𝑍ସ and 𝑍ଽ have been moved to the bottom of the tables, within 

the section of “Excluded Zones”, and they are not in our scope of comparison. 

TABLE 4: Experimental Results of TO and GS Methods (GEFCom2012) 
  Theoretical 

Optimum 
GS-PS (Benchmark) GS-CV GS-IS 

 Zone No. 
MAPE 

(%) 
No. 

MAPE 
(%) 

Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

 21 3 4.854 11 5.221 7.559 11 5.221 7.562 8 5.029 3.612 

Regular 
Zones 

1 2 6.947 3 7.008 0.880 3 7.008 0.879 3 7.008 0.879 
2 3 5.453 6 5.616 2.985 6 5.616 2.994 6 5.616 2.994 
3 3 5.453 6 5.616 2.985 6 5.616 2.994 6 5.616 2.994 
5 1 9.006 3 9.881 9.720 8 10.334 14.753 3 9.881 9.722 
6 3 5.398 7 5.553 2.873 6 5.559 2.989 6 5.559 2.989 
7 3 5.453 6 5.616 2.985 6 5.616 2.994 6 5.616 2.994 
8 3 7.235 4 7.500 3.660 4 7.500 3.664 3 7.478 3.357 

10 2 6.371 6 6.696 5.108 4 6.509 2.178 4 6.509 2.178 
11 4 7.596 4 7.699 1.358 4 7.699 1.356 3 7.813 2.856 
12 1 6.739 4 6.781 0.621 4 6.781 0.620 3 6.741 0.035 
13 1 7.279 4 7.391 1.543 3 7.294 0.211 3 7.294 0.211 
14 2 9.242 5 9.381 1.502 5 9.381 1.505 2 9.242 0.000 
15 1 7.425 2 7.438 0.173 2 7.438 0.177 1 7.425 0.000 
16 4 7.961 7 8.124 2.047 7 8.124 2.049 7 8.124 2.049 
17 8 5.233 6 5.262 0.551 6 5.262 0.553 6 5.262 0.553 
18 4 6.389 1 6.724 5.245 1 6.724 5.247 3 6.674 4.467 
19 4 7.873 3 7.900 0.340 3 7.900 0.346 3 7.900 0.346 
20 3 5.495 6 5.745 4.549 5 5.697 3.667 4 5.643 2.700 

 
Average 
(regular 
zones) 

2.9  6.808 4.6  6.996 2.729 4.6 7.003 2.732 4.0  6.967 2.296 

Excluded 
Zones 

4 2 15.559 2 16.075 3.316 2.000 16.075 3.316 2 16.075 3.316 
9 2 136.649 9 139.133 1.818 9.000 139.133 1.817 7 138.384 1.269 
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TABLE 5: Experimental Results of ES Methods (GEFCom2012) 
  ES-PS ES-CV ES-IS 

 Zone  No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

 21 3 5.166 6.425 5 5.027 3.556 4 4.968 2.357 

Regular 
Zones 

1 2 6.947 0.000 2 6.947 0.000 3 7.008 0.879 
2 4 5.688 4.308 5 5.611 2.890 5 5.498 0.814 
3 4 5.688 4.309 5 5.611 2.890 5 5.498 0.814 
5 3 11.156 23.874 5 10.501 16.609 5 10.170 12.928 
6 3 5.739 6.311 5 5.590 3.550 5 5.436 0.699 
7 4 5.688 4.309 5 5.611 2.890 5 5.498 0.814 
8 3 7.385 2.073 3 7.385 2.073 3 7.478 3.357 

10 3 6.535 2.582 3 6.451 1.267 5 6.621 3.934 
11 3 7.791 2.569 4 7.699 1.356 3 7.813 2.856 
12 3 6.896 2.322 4 6.781 0.620 3 6.741 0.035 
13 5 7.595 4.347 4 7.392 1.554 3 7.294 0.211 
14 3 9.319 0.833 3 9.319 0.833 3 9.319 0.833 
15 3 7.551 1.695 3 7.551 1.695 1 7.425 0.000 
16 2 8.366 5.084 4 8.060 1.248 5 7.995 0.424 
17 4 5.291 1.112 5 5.241 0.157 3 5.299 1.256 
18 4 6.744 5.558 4 6.783 6.171 3 6.700 4.865 
19 4 8.112 3.036 3 7.900 0.346 3 7.900 0.346 
20 5 5.640 2.634 4 5.622 2.306 4 5.622 2.306 

 
Average 
(regular 
zones) 

3.4 7.118 4.275 3.9 7.003 2.692 3.7 6.962 2.076 

Excluded 
Zones 

4 4 16.153 3.820 4 16.153 3.820 4 15.928 2.373 
9 3 139.087 1.784 4 140.373 2.725 4 138.975 1.702 

 
  



 
52 

 

TABLE 6: Experimental Results of FS Methods (GEFCom2012) 
  FS-PS FS-CV FS-IS 

 Zone No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

 21 3 5.166 6.425 5 5.072 4.495 6 4.975 2.493 

Regular 
Zones 

1 2 6.947 0.000 2 6.947 0.000 3 7.008 0.879 
2 4 5.688 4.308 5 5.611 2.890 5 5.498 0.814 
3 4 5.688 4.309 5 5.611 2.890 5 5.498 0.814 
5 3 11.156 23.874 4 10.346 14.881 5 10.170 12.928 
6 4 5.660 4.856 5 5.590 3.550 5 5.436 0.699 
7 4 5.688 4.309 5 5.611 2.890 5 5.498 0.814 
8 3 7.385 2.073 3 7.385 2.073 3 7.478 3.357 

10 3 6.451 1.267 3 6.451 1.267 5 6.621 3.934 
11 3 7.791 2.569 4 7.699 1.356 3 7.813 2.856 
12 3 6.896 2.322 4 6.781 0.620 3 6.741 0.035 
13 3 7.562 3.888 4 7.392 1.554 3 7.294 0.211 
14 3 9.319 0.833 3 9.319 0.833 3 9.319 0.833 
15 3 7.551 1.695 3 7.551 1.695 1 7.425 0.000 
16 2 8.366 5.084 2 8.366 5.084 3 8.330 4.633 
17 4 5.291 1.112 5 5.241 0.157 3 5.299 1.256 
18 3 6.902 8.030 2 6.886 7.781 3 6.700 4.865 
19 4 8.112 3.036 3 7.900 0.346 3 7.900 0.346 
20 5 5.640 2.634 4 5.622 2.306 4 5.622 2.306 

 
Average 
(regular 
zones) 

3.3 7.116 4.233 3.7 7.017 2.899 3.6 6.980 2.310 

Excluded 
Zones 

4 4 16.153 3.820 4 16.153 3.820 2 16.075 3.316 
9 3 139.087 1.784 4 140.373 2.725 4 139.450 2.050 
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TABLE 7: Experimental Results of BS Methods (GEFCom2012) 
  BS-PS BS-CV BS-IS 

 Zone No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

 21 6 4.924 1.434 6 4.924 1.434 7 4.945 1.871 

Regular 
Zones 

1 7 7.473 7.578 7 7.473 7.578 4 7.245 4.293 
2 10 5.880 7.824 10 5.880 7.824 5 5.497 0.812 
3 10 5.880 7.824 10 5.880 7.824 5 5.497 0.812 
5 6 11.024 22.410 6 11.024 22.410 5 10.243 13.740 
6 10 5.856 8.485 10 5.856 8.485 5 5.517 2.210 
7 10 5.880 7.824 10 5.880 7.824 5 5.497 0.812 
8 7 7.601 5.051 10 8.068 11.506 5 7.687 6.249 

10 9 7.139 12.066 10 7.275 14.191 5 6.912 8.500 
11 10 8.792 15.753 8 8.774 15.515 5 8.151 7.309 
12 7 7.915 17.454 9 7.750 14.996 7 7.667 13.770 
13 8 8.023 10.221 8 7.802 7.196 6 7.476 2.711 
14 9 9.972 7.899 10 9.968 7.851 9 9.689 4.839 
15 9 7.919 6.648 10 7.984 7.526 9 7.773 4.690 
16 8 8.802 10.563 10 8.521 7.033 10 8.723 9.566 
17 7 5.374 2.687 10 5.396 3.120 5 5.410 3.372 
18 6 6.841 7.080 10 6.728 5.307 5 6.732 5.368 
19 6 8.424 6.996 10 8.294 5.348 7 8.105 2.950 
20 10 5.968 8.615 11 5.929 7.892 7 5.709 3.894 

 
Average 
(regular 
zones) 

8.3 7.487 9.610 9.4 7.471 9.413 6.1 7.196 5.328 

Excluded 
Zones 

4 5 16.483 5.938 5 16.483 5.938 10 15.666 0.685 
9 8 138.921 1.663 9 139.496 2.083 9 135.648 -0.733 

 

The ranking of MAPE (%) along with the number of selected stations is illustrated 

in TABLE 8. The performance of the benchmark are highlighted in dark green and the 

performance of TO selection are highlighted in pink. In general, the GS-IS, ES-IS, and FS-

IS lead to better MAPE (%) compared to the benchmark method at both the top level (𝑍ଶଵ) 

and the bottom level (average of the 18 regular zones). Among the 12 methods including 

the benchmark, the ES-IS results in the lowest average MAPE among the 18 regular zones 

and ranks 3rd at the top level (𝑍ଶଵ); the GS-IS ranks 2nd on the average of the 18 regular 

zones and 6th at the top level (𝑍ଶଵ); the FS-IS ranks 3rd on the average of the 18 regular 

zones and 4th at the top level (𝑍ଶଵ).  
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At the top level (𝑍ଶଵ) , except for GS-CV which owns the same WSS as the 

benchmark, all the other proposed approaches select fewer weather stations and lead to 

lower MAPEs compared to the benchmark. 

At the bottom level, TABLE 8 shows a trend that the IS methods lead to superior 

results than the CV methods and PS methods lead to the worst. We make an extensive 

discussion on this topic in Section 5.3 – Section 5.5. 

Regarding the number of stations being selected, the TO selections suggest fewer 

stations can lead to better results. We see the trend that the BS methods tend to select the 

most stations. The FS methods tend to select the fewest while the GS methods tend to lay 

in the middle. We make an extensive discussion on their WSS behavior in Section 5.6.  

TABLE 8: Ranking under Average Regular Zones and Aggregated Zone (GEFCom2012) 
 Avg of 18 Regular Zones Aggregated Zone (Z21) 

Rank Avg MAPE (%) Avg No. 
No. 

MAPE (%) No. 
  TO 6.808 2.9 TO 4.854 3 
1 ES-IS 6.962 3.7 BS-CV 4.924 6 
2 GS-IS 6.967 4.0 BS-PS 4.924 6 
3 FS-IS 6.980 3.6 BS-IS 4.945 7 
4 GS-PS 6.996 4.6 ES-IS 4.968 4 
5 ES-CV 7.003 3.9 FS-IS 4.975 6 
6 GS-CV 7.003 4.6 ES-CV 5.027 5 
7 FS-CV 7.017 3.7 GS-IS 5.029 8 
8 FS-PS 7.116 3.3 FS-CV 5.072 5 
9 ES-PS 7.118 3.4 ES-PS 5.166 3 

10 BS-IS 7.196 6.1 FS-PS 5.166 3 
11 BS-CV 7.471 9.4 GS-CV 5.221 11 
12 BS-PS 7.487 8.3 GS-PS 5.221 11 
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5.2. GEFCom2014 Case Study 

In order to examine the generalization capability of the proposed approaches, we 

conduct another case study using the data from the load forecasting track of GEFCom2014. 

Using this public dataset allows our results to be reproduced and conveniently compared 

for future studies by other researchers.  

The probabilistic load forecasting track in GEFCom2014 involved a total of six 

years (2005-2010) of hourly load data and 10 years (2001-2010) of weather data. The 

weather data was formed by temperature series from 25 anonymous weather stations (𝑊ଵ −

𝑊ଶହ). Six years (2005-2010) of load and temperature data are used in this case study. 

TABLE 9 gives the statistics (mean, standard deviation, minimum and maximum) of 

temperature recorded at each station. It can be seen the temperature values vary a wide 

range, particularly for the minimum temperature. 

Sliding simulation is a widely used forecast evaluation technique while it mimics 

the forecasting operations in the real world. Specifically, the sliding simulation technique 

applies a rolling forecast using data from a pre-defined length of the historical window 

(e.g., three years) to predict a period (e.g., one year) (Tashman, 2000). Since we have six 

full years (2005-2010) in the load data history, we first use the data from 2005 to 2007 as 

the training data to forecast the year of 2008. Then we advance the forecast origin by one 

year to forecast the year 2009 using the data from 2006 to 2008 as the training data. We 

repeat the rolling process until we complete the forecasts for all three years (2008-2010). 

FIGURE 12 presents the sliding simulation in this case study. 
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TABLE 9: Statistics of temperature (in Fahrenheit) reported at each weather station 
(GEFCom2014) 

Station Mean Std. Minimum Maximum 
1 61.35 17.58 9 104 
2 61.25 17.24 9 104 
3 55.70 16.60 4 93 
4 61.32 16.80 11 103 
5 63.27 15.98 17 102 
6 61.39 16.53 15 101 
7 62.38 16.26 15 101 
8 63.21 16.43 12 104 
9 54.02 16.41 0 93 

10 62.45 16.94 12 104 
11 60.05 17.13 11 100 
12 60.93 16.98 9 102 
13 59.49 16.95 5 104 
14 63.34 14.60 21 94 
15 60.43 17.28 9 103 
16 63.77 15.81 14 101 
17 59.88 17.39 9 102 
18 63.73 14.94 16 98 
19 58.63 16.85 7 100 
20 62.78 16.11 12 100 
21 61.12 16.61 16 104 
22 62.02 17.06 9 102 
23 62.23 17.54 10 104 
24 61.43 17.39 11 104 
25 60.50 17.37 9 104 

Range 54.02 - 63.77 14.60 - 17.58 0 - 21 93 - 104 
 

2005
Training

2006
Training+ 2008

Test
2007

Training+

2006
Training

2007
Training+ 2008

Training+2005
2009
Test

2007
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2008
Training+ 2009

Training+2006
2010
Test

2005

 
FIGURE 12: Demonstration of sliding simulation in GEFCom2014 case study 

Like the GEFCom2012 case study, the WSS framework in (Hong et al., 2015) is 

used as the benchmark to justify the effectiveness of our proposed approaches and results 

are listed in TABLE 10 through TABLE 13. The green highlighted MAPE values represent 
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proposed approaches with better forecasting performance at a specific test year comparing 

to the benchmark method. The grayed out MAPE buckets indicate proposed approaches 

that are inferior to the benchmark method.  

Same to the GEFCom2012 case study, the “Theoretical Optimum” column has been 

introduced, by going through each possible WSS and locate the selection resulting in the 

smallest MAPE error on the test year (2008, 2009, 2010) using the corresponding two years 

(2006-2007, 2007-2008, 2008-2009) of data to estimate the parameters of the model. The 

“Dist. (%)” column is created and serves as another error metrics besides MAPE, which 

demonstrates the percentage difference between the MAPE of a proposed selection 

approach and the TO selection. At each specific test year under the proposed approaches, 

a forecast leading to a shorter distance (i.e., a smaller percentage difference) to the TO 

selection, is WSS closer to the TO.  

TABLE 10: Experimental Results of TO and GS Methods (GEFCom2014) 
Test 
Year 

Theoretical 
Optimum 

GS-PS (Benchmark) GS-CV GS-IS 

  No. 
MAPE 

(%) No. 
MAPE 

(%) 
Dist. 
(%) No. 

MAPE 
(%) 

Dist. 
(%) No. 

MAPE 
(%) 

Dist. 
(%) 

2008 9 5.199 12 5.455 4.935 14 5.435 4.544 14 5.435 4.544 
                    

2009 6 5.919 17 6.579 11.138 14 6.628 11.972 12 6.838 15.521 
                    

2010 8 5.247 11 5.798 10.512 10 5.790 10.360 10 5.790 10.360 
                    

Average 7.7 5.455 13.3 5.944 8.862 12.7 5.951 10.379 12.0 6.021 10.141 
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TABLE 11: Experimental Results of ES Methods (GEFCom2014) 
Test 
Year 

ES-PS ES-CV ES-IS 

  No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

2008 11 5.307 2.086 9 5.244 0.869 10 5.338 2.677 
                

2009 9 6.302 6.465 10 6.412 8.320 11 6.292 6.301 
                

2010 6 5.646 7.622 7 5.584 6.436 10 5.401 2.942 
                

Average   5.752 6.586   5.747 5.208   5.677 3.973 

TABLE 12: Experimental Results of FS Methods (GEFCom2014) 
Test 
Year 

FS-PS FS-CV FS-IS 

  No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

2008 11 5.309 2.120 10 5.233 0.663 10 5.338 2.677 
               

2009 9 6.302 6.465 8 6.836 15.492 11 6.292 6.301 
               

2010 6 5.646 7.622 7 5.584 6.431 10 5.401 2.942 
               

Average 8.7 5.752 5.402 8.3 5.884 5.613 10.3 5.677 3.973 

TABLE 13: Experimental Results of BS Methods (GEFCom2014) 
Test 
Year 

BS-PS BS-CV BS-IS 

  No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

2008 18 5.689 9.430 12 5.528 6.338 14 5.656 8.807 
               

2009 16 6.796 14.814 25 7.021 18.611 15 6.583 11.209 
               

2010 17 6.613 26.047 18 6.373 21.470 17 6.170 17.603 
               

Average 17.0 6.366 16.764 18.3 6.307 15.629 15.3 6.136 12.540 
 

Based on the average MAPE among the three test years, all the ES methods and FS 

methods perform better than the benchmark. The ranking of MAPE (%) and the number of 

stations being selected are listed in TABLE 14, with the benchmark selection highlighted 

in dark green and TO selection highlighted in pink.  
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Regarding the number of stations being selected, the TO selection suggests fewer 

stations can lead to better results. Like the GEFCom2012 case study, we see a strong trend 

that the BS methods tend to select the most stations. The FS methods tend to select the 

fewest while the GS methods tend to lay in the middle. We make an extensive discussion 

on their WSS behavior in Section 5.6. The ES-PS and FS-PS give very close results with 

ES-PS being marginally better (5.7518% vs. 5.7524%). Interestingly, the ES-IS and FS-IS 

in this case study result in the same WSSs among all three test years. Comparing to the 

benchmark method, they improve the MAPE by 4.49% (i.e., from 5.944% to 5.677%). 

TABLE 14: Ranking under Average Test Year (GEFCom2014) 
Rank Method MAPE (%) Avg No. 

  TO 5.455 7.7 
1 ES-IS 5.677 10.3 
1 FS-IS 5.677 10.3 
3 ES-CV 5.747 8.7 
4 ES-PS 5.752 8.7 
5 FS-PS 5.752 8.7 
6 FS-CV 5.884 8.3 
7 GS-PS 5.944 13.3 
8 GS-CV 5.951 12.7 
9 GS-IS 6.021 12.0 

10 BS-IS 6.136 15.3 
11 BS-CV 6.307 18.3 
12 BS-PS 6.366 17.0 
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5.3. An Overfitting Issue 

Training an algorithm and evaluate its statistical performance on the same data set 

could result in the data to be over-trained and cause the overfitting issue (Arlot & Celisse, 

2010). We first analyze the overfitting issue on the GEFCom2012 case study, in which we 

compare the results of ES-PS to the benchmark method (GS-PS). The ES-PS searches 

through each possible WSS, records the selection resulting in the smallest error measure in 

the validation period and uses it to forecast in the test year. Under the aggregated zone as 

well as the regular zones, it achieves WSSs leading to lower MAPEs than the benchmark 

method in the validation period. Nevertheless, the superior forecasting performance on the 

validation period does not guarantee the same advantage in the test period. As shown in 

TABLE 15, the ES-PS results in worse forecasting performance in 13 out of 18 regular 

zones under the test period. The average MAPE of the 18 regular zones under ES-PS is 

also higher than the one under GS-PS.  

The above illustrates a common overfitting issue on the validation data. The cross-

validation (CV) technique has been known and widely used to remediate this issue and 

improve the forecasting performance. In our GEFCom2012 case study, we adopt the V-

fold cross validation (VFCV) technique to the ES and compare the results to the ES-PS 

method. In TABLE 16, the bold MAPE values indicate a method is leading to superior 

forecasting performance than the other. Among the 18 regular zones, the ES-CV results in 

lower MAPEs in 13 zones. Under the ES and comparing to the traditional post-sample fit, 

the cross-validation technique reduces the forecasting error (MAPE) by 1.6% (i.e., from 

7.118% to 7.003%) on the average of 18 zones, and 2.7% (i.e., from 5.116% to 5.027%) 

under the aggregated zone (𝑍ଶଵ).  
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Note that from TABLE 8, the ES-CV outperforms the benchmark (GS-PS) at the 

aggregated zone but not on the average of regular zones, which may be due to some 

overfitting issue still exists after CV is implemented. 

TABLE 15: Results Comparison Between GS-PS and ES-PS (GEFCom2012) 
  GS-PS (Benchmark) ES-PS 

 Zone  No. 
Test 

MAPE 
(%) 

Dist. 
(%) 

Validation 
MAPE (%) 

No. 
Test 

MAPE 
(%) 

Dist. 
(%) 

Validation 
MAPE (%) 

 21 11 5.221 7.559 4.912 3 5.166 6.425 4.589 

Regular 
Zones 

1 3 7.008 0.880 6.662 2 6.947 0.000 6.661 
2 6 5.616 2.985 5.025 4 5.688 4.308 4.806 
3 6 5.616 2.985 5.025 4 5.688 4.309 4.806 
5 3 9.881 9.720 9.549 3 11.156 23.874 8.961 
6 7 5.553 2.873 5.153 3 5.739 6.311 4.883 
7 6 5.616 2.985 5.025 4 5.688 4.309 4.806 
8 4 7.500 3.660 6.115 3 7.385 2.073 5.984 

10 6 6.696 5.108 5.991 3 6.535 2.582 5.876 
11 4 7.699 1.358 6.244 3 7.791 2.569 6.211 
12 4 6.781 0.621 7.345 3 6.896 2.322 7.173 
13 4 7.391 1.543 7.659 5 7.595 4.347 7.596 
14 5 9.381 1.502 10.176 3 9.319 0.833 9.921 
15 2 7.438 0.173 7.977 3 7.551 1.695 7.756 
16 7 8.124 2.047 9.967 2 8.366 5.084 9.269 
17 6 5.262 0.551 5.153 4 5.291 1.112 5.091 
18 1 6.724 5.245 7.500 4 6.744 5.558 7.216 
19 3 7.900 0.340 8.389 4 8.112 3.036 8.325 
20 6 5.745 4.549 5.262 5 5.640 2.634 5.123 

 
Average 
(regular 
zones) 

  6.996 2.729 6.901   7.118 4.275 6.692 
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TABLE 16: Results Comparison Between ES-PS and ES-CV (GEFCom2012) 
  ES-PS ES-CV 

 Zone  No. 
Test 

MAPE (%) 
Dist. (%) No. 

Test 
MAPE (%) 

Dist. (%) 

 21 3 5.166 6.425 5 5.027 3.556 

Regular 
Zones 

1 2 6.947 0.000 2 6.947 0.000 
2 4 5.688 4.308 5 5.611 2.890 
3 4 5.688 4.309 5 5.611 2.890 
5 3 11.156 23.874 5 10.501 16.609 
6 3 5.739 6.311 5 5.590 3.550 
7 4 5.688 4.309 5 5.611 2.890 
8 3 7.385 2.073 3 7.385 2.073 

10 3 6.535 2.582 3 6.451 1.267 
11 3 7.791 2.569 4 7.699 1.356 
12 3 6.896 2.322 4 6.781 0.620 
13 5 7.595 4.347 4 7.392 1.554 
14 3 9.319 0.833 3 9.319 0.833 
15 3 7.551 1.695 3 7.551 1.695 
16 2 8.366 5.084 4 8.060 1.248 
17 4 5.291 1.112 5 5.241 0.157 
18 4 6.744 5.558 4 6.783 6.171 
19 4 8.112 3.036 3 7.900 0.346 
20 5 5.640 2.634 4 5.622 2.306 

 
Average 
(regular 
zones) 

  7.118 4.275   7.003 2.692 

 

We extend the same experiment to the GEFCom2014 data (TABLE 17) and we have 

not noticed significant overfitting issue among the test years. 

TABLE 17: Results Comparison Between GS-PS and ES-PS (GEFCom2014) 
Test 
Year 

GS-PS (Benchmark) ES-PS 

 No. 
MAPE 

(%) 
Dist. 
(%) 

Validation 
MAPE (%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

Validation 
MAPE (%) 

2008 12 5.455 4.935 5.658 11 5.307 2.086 5.361 
         

2009 17 6.579 11.138 5.439 9 6.302 6.465 5.199 
         

2010 11 5.798 10.512 6.510 6 5.646 7.622 5.919 
         

Average  5.944 8.862 5.869  5.752 6.586 5.493 
 

We further employ the V-fold cross validation (VFCV) technique to ES and 

compare the results to the ES-PS method under the GEFCom2014 case study. In TABLE 
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18, the green highlights indicate the superior forecasting performance comparing to the 

benchmark, and the bold MAPE values represent a method (between ES-PS and ES-CV) 

with superior forecasting performance comparing to the other. Among the three test years, 

the ES-CV results in lower MAPEs in the years of 2008 and 2010. In this case, the average 

MAPE shows the cross-validation technique gives marginal forecasting error improvement 

by 0.08% (i.e., from 5.752% to 5.747%) compared to the traditional post-sample fit under 

the ES. 

TABLE 18: Results Comparison Between ES-PS and ES-CV (GEFCom2014) 
Test 
Year 

GS-PS (Benchmark) ES-PS ES-CV 

 No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

No. 
MAPE 

(%) 
Dist. 
(%) 

2008 12 5.455 4.935 11 5.307 2.086 9 5.244 0.869 
          

2009 17 6.579 11.138 9 6.302 6.465 10 6.412 8.320 
          

2010 11 5.798 10.512 6 5.646 7.622 7 5.584 6.436 
          

Average  5.944 8.862  5.752 6.586  5.747 5.208 
 

FIGURE 13 gives a visual inspection of MAPE (%) comparison between the CV 

and PS based methods. More detail level comparisons are presented in TABLE 19 and 

TABLE 20, while TABLE 19 includes the aggregated zone. In the majority of the load zones 

(GEFCom2012) and test years (GEFCom2014), the exceeding performance under the CV 

based methods provide proof that the CV methods could result in a more robust WSS than 

the PS methods. Nevertheless, one needs to be aware that CV methods can increase the 

computational cost substantially depending on the size of the holdout sample we choose. 

Besides, the CV methods show more advantages when the training process is highly likely 

to result in overfitting issues on a single validation period, like ES-PS. When we implement 

CV and PS methods under the heuristic frameworks (GS, FS, and BS), the superiority of 
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the CV methods is not that evident, especially in the GEFCom2014 case study (FIGURE 

13, right). 

 

FIGURE 13: Performance Comparison of CV and PS Based Methods: GEFCom2012 (left) and 
GEFCom2014 (right) 

TABLE 19: Comparison Summary Between CV and PS Based Methods (GEFCom2012) 

Framework No. of zones CV 
is better 

No. of zones PS 
is better 

No. of zones two 
methods lead to 

the same 
selection 

GS 3 2 14 
ES 14 1 4 
FS 13 0 6 
BS 8 4 7 

TABLE 20: Comparison Summary Between CV and PS Based Methods (GEFCom2014) 

Framework 
No. of years 
CV is better 

No. of years 
PS is better 

GS 2 1 
ES 2 1 
FS 2 1 
BS 2 1 

 

5.4. In-sample vs. Post-sample based selections 

It is widely known that a good in-sample fit does not necessarily lead to a good 

post-sample forecast. A prevailing issue of overfitting sometimes occurs when a complex 

model leading to very small in-sample fit errors generates a terrible forecast on the post-
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sample data. On the other side, the post-sample fit requires the history data to be divided 

into two parts, one of which is held out for validation/testing purposes and the rest is used 

as the training set. One advantage the post-sample fit can have is to avoid the overfitting 

issue on the training sample set. The downside is obvious – it is difficult to implement 

when we have a lack of data; it could also result in another overfitting issue on the 

validation data, as indicated in Section 5.3.  

For the GEFCom2012 case study, we compare the MAPE results from in-sample 

(IS) methods and the post-sample (PS) methods under the four frameworks presented in 

this thesis. In TABLE 21 and TABLE 22, the bold MAPE values represent the statistical test 

method (either IS or PS) leading to a superior forecasting performance comparing to the 

other under each framework. For all four frameworks, the IS methods result in lower 

average MAPE values among the 18 regular zones. The IS methods under GS, ES and FS 

also result in lower MAPE at the top level (𝑍ଶଵ). The summary of results comparison shown 

in TABLE 23 concludes the IS methods lead to superior forecasting accuracy than the PS 

methods among most of the regular zones.  
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TABLE 21: Results Comparison Between IS and PS under GS and ES (GEFCom2012) 
  GS-PS GS-IS ES-PS ES-IS 

 Zone  No. 
MAPE 

(%) No. 
MAPE 

(%) No. 
MAPE 

(%) No. 
MAPE 

(%) 
 21 11 5.221 8 5.029 3 5.166 4 4.968 

Regular 
Zones 

1 3 7.008 3 7.008 2 6.947 3 7.008 
2 6 5.616 6 5.616 4 5.688 5 5.498 
3 6 5.616 6 5.616 4 5.688 5 5.498 
5 3 9.881 3 9.881 3 11.156 5 10.170 
6 7 5.553 6 5.559 3 5.739 5 5.436 
7 6 5.616 6 5.616 4 5.688 5 5.498 
8 4 7.500 3 7.478 3 7.385 3 7.478 

10 6 6.696 4 6.509 3 6.535 5 6.621 
11 4 7.699 3 7.813 3 7.791 3 7.813 
12 4 6.781 3 6.741 3 6.896 3 6.741 
13 4 7.391 3 7.294 5 7.595 3 7.294 
14 5 9.381 2 9.242 3 9.319 3 9.319 
15 2 7.438 1 7.425 3 7.551 1 7.425 
16 7 8.124 7 8.124 2 8.366 5 7.995 
17 6 5.262 6 5.262 4 5.291 3 5.299 
18 1 6.724 3 6.674 4 6.744 3 6.700 
19 3 7.900 3 7.900 4 8.112 3 7.900 
20 6 5.745 4 5.643 5 5.640 4 5.622 

 
Average 
(regular 
zones) 

4.6  6.996 4.0  6.967 3.4  7.118 3.7  6.962 

 

TABLE 22: Results Comparison Between IS and PS Methods under FS and BS (GEFCom2012) 
  FS-PS FS-IS BS-PS BS-IS 

 Zone  No. MAPE 
(%) 

No. MAPE 
(%) 

No. MAPE 
(%) 

No. MAPE 
(%) 

 21 3 5.166 6 4.975 6 4.924 7 4.945 

Regular 
Zones 

1 2 6.947 3 7.008 7 7.473 4 7.245 
2 4 5.688 5 5.498 10 5.880 5 5.497 
3 4 5.688 5 5.498 10 5.880 5 5.497 
5 3 11.156 5 10.170 6 11.024 5 10.243 
6 4 5.660 5 5.436 10 5.856 5 5.517 
7 4 5.688 5 5.498 10 5.880 5 5.497 
8 3 7.385 3 7.478 7 7.601 5 7.687 

10 3 6.451 5 6.621 9 7.139 5 6.912 
11 3 7.791 3 7.813 10 8.792 5 8.151 
12 3 6.896 3 6.741 7 7.915 7 7.667 
13 3 7.562 3 7.294 8 8.023 6 7.476 
14 3 9.319 3 9.319 9 9.972 9 9.689 
15 3 7.551 1 7.425 9 7.919 9 7.773 
16 2 8.366 3 8.330 8 8.802 10 8.723 
17 4 5.291 3 5.299 7 5.374 5 5.410 
18 3 6.902 3 6.700 6 6.841 5 6.732 
19 4 8.112 3 7.900 6 8.424 7 8.105 
20 5 5.640 4 5.622 10 5.968 7 5.709 

 
Average 
(regular 
zones) 

3.3  7.116 3.6  6.980 8.3  7.487 6.1  7.196 
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TABLE 23: Comparison summary between IS and PS based methods (GEFCom2012) 

Framework 
No. of zones IS 

method is 
better 

No. of zones PS 
method is 

better 

No. of zones 
two methods 

lead to the 
same result 

GS 9 2 8 
ES 13 5 1 
FS 13 5 1 
BS 16 3 0 

 

We extend the comparison using the GEFCom2014 data. In TABLE 24 and TABLE 

25, the bold MAPE values represent the statistical test method (either IS or PS) leading 

towards a superior forecasting performance comparing to the other under the same 

framework. As of ES, FS, and BS, the IS methods result in lower MAPE values among the 

average of three test years. The summary of results comparison shown in TABLE 26 

concludes the IS methods lead to superior forecasting accuracy than the PS methods among 

the majority of the test years. 

TABLE 24: Results Comparison Between IS and PS Based Methods under GS and ES 
(GEFCom2014) 

Test 
Year 

GS-PS 
(Benchmark) 

GS-IS ES-PS ES-IS 

  No. 
MAPE 

(%) 
No. 

MAPE 
(%) 

No. 
MAPE 

(%) 
No. 

MAPE 
(%) 

2008 12 5.455 14 5.435 11 5.307 10 5.338 
            

2009 17 6.579 12 6.838 9 6.302 11 6.292 
            

2010 11 5.798 10 5.790 6 5.646 10 5.401 
              

Average 13.3  5.944 12.0  6.021 8.7  5.752 10.3  5.677 
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TABLE 25: Results Comparison Between IS and PS Based Methods under FS and BS 
(GEFCom2014) 

Test 
Year FS-PS FS-IS BS-PS BS-IS 

  No. 
MAPE 

(%) 
No. 

MAPE 
(%) 

No. 
MAPE 

(%) 
No. 

MAPE 
(%) 

2008 11 5.309 10 5.338 18 5.689 14 5.656 
             

2009 9 6.302 11 6.292 16 6.796 15 6.583 
             

2010 6 5.646 10 5.401 17 6.613 17 6.170 
             

Average  8.7 5.752 10.3  5.677 17.0  6.366 15.3 6.136 
 

TABLE 26: Comparison summary Between IS and PS Based methods (GEFCom2014) 

Framework No. of years 
IS is better 

No. of years 
PS is better 

GS 2 1 
ES 2 1 
FS 2 1 
BS 3 0 

 

FIGURE 14 gives a visual inspection of MAPE (%) comparison between the IS and 

PS based methods. Except for the GS-PS method in the GEFCom2014 case study, all the 

other methods indicate the performance superiority of IS methods. This can be explained 

in three-fold: 1) we use a relatively less complex model for the WSS and thus the IS fit is 

less likely to overfit the training data. 2) the PS methods require longer data history. Given 

our case study, we have three years of data in history to forecast a future year load. Using 

the PS fit requires us to hold out the most recent year in the data history for validation 

purposes. This gives us only 2 years for training and there may not be enough information 

to direct us to an optimal solution on the WSS. On the other hand, the IS fit is capable to 

incorporate the entire data history and come up with a proper WSS. 3) if the validation data 

we hold out could not well represent the behaviors in the test period, the PS fit could overfit 

on the validation period.  
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FIGURE 14: Performance Comparison of IS and PS Based Methods: GEFCom2012 (left) and 
GEFCom2014 (right) 

5.5. In-sample vs. CV based selections 

A natural extension of Section 5.3 and Section 5.4 would be to conduct a side-by-

side comparison between the IS and CV based methods. FIGURE 15 gives a visual 

inspection of MAPE (%) comparison between the IS and CV based methods. The graph 

indicates the superiority of IS based methods under almost all frameworks over the CV 

based methods. The only exception the GS framework under the GEFCom2014 data, where 

the MAPE difference between GS-IS and GS-CV is less than 0.07%. 

More detail level comparisons are presented in TABLE 27 and TABLE 28, while 

TABLE 27 includes the aggregated zone. The above discussions (Section 5.3 – Section 5.5) 

may suggest a rule of thumb that when we lack data history (e.g., ≤ 3-4 years given the 

forecasting horizon as one year), the IS methods can be a better option for WSS. If we want 

to hold out a period for validation purposes and inspect the forecasting error on the 

validation period(s), the CV methods can be considered on top of IS and PS methods, since 

IS based methods do not provide out-of-sample error metrics and the PS based approaches 

tend to overfit on the validation data.  
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FIGURE 15: Performance Comparison of IS and CV Based Methods: GEFCom2012 (left) and 
GEFCom2014 (right) 

TABLE 27: Comparison Summary Between IS and CV Based Methods (GEFCom2012) 

Framework No. of zones CV 
is better 

No. of zones PS 
is better 

No. of zones two 
methods lead to 

the same 
selection 

GS 8 1 10 
ES 11 5 3 
FS 11 5 3 
BS 15 4 0 

 

TABLE 28: Comparison Summary Between IS and CV Based Methods (GEFCom2014) 

Framework 
No. of years 
CV is better 

No. of years 
PS is better 

GS 2 1 
ES 2 1 
FS 2 1 
BS 2 1 

 

5.6. Forward and Backward selection 

Aiming at achieving good results while saving computational cost, both the forward 

and backward selection methods have been widely used as the heuristic methods in the 

fields. There hasn’t been a formal study in the literature on using these two heuristic 

methods in the subject of WSS.  
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From the experiment results in both case studies, we recognize the BS methods tend 

to select the most amount of weather stations among the frameworks presented while the 

FS methods tend to select the fewest. The benchmark tends to lay in the middle.  

For the GEFCom2012 case study, a boxplot of stations selected by each method 

among the regular zones is presented in FIGURE 16. The numbers of stations selected by 

each method under each load zone are gathered in TABLE 29, where the green highlights 

denote the selection is better than the benchmark method based on MAPE (%), while the 

grey buckets denote the selection is worse. The BS-PS and BS-CV select more weather 

stations among all 18 regular zones while all of which are inferior to the benchmark method. 

The BS-IS method selects more weather stations in 12 zones out of 18 regular zones and 

leads to worse MAPE comparing to the benchmark method in 13 out of 18 regular zones. 

However, the BS framework performs well at the top level (𝑍ଶଵ). As shown in TABLE 8, 

the three BS methods rank the top three among the 12 methods presented in this thesis 

while BS-CV and BS-PS result in the same WSS.  

 

FIGURE 16: Boxplot of Stations Selected by Each Method under Regular Zones (GEFCom2012) 

 



 
72 

 

On the other side, the FS framework selects fewer weather stations in the majority 

of the regular zones compared to the benchmark method. The FS-PS selects fewer stations 

than the benchmark method in 14 regular zones and FS-CV selects fewer stations in 11. 

FS-PS is inferior to benchmark in 13 out of the 18 regular zones and FS-CV shows some 

improvements on top of FS-PS. However, the average MAPE of FS-CV is slightly inferior 

to the benchmark (TABLE 8). The FS-IS method selects fewer weather stations than the 

benchmark in 14 regular zones out of the 18, while in 12 out of the 18 regular zones, FS-

IS leads to better forecasting performance. The FS-IS, in turn, results in better average 

MAPE among the 18 regular zones. At the top level (𝑍ଶଵ), FS-PS selects only three weather 

stations, FS-CV selects five and FS-IS selects six. All three FS methods lead to a lower 

MAPE than the benchmark, while their forecasting performance are not as good as the 

three BS methods. 

TABLE 29: No. of Stations Selected by the TO, GS-PS (benchmark), FS and BS Methods 
(GEFCom2012) 

 Zone 
Theoretical 
Optimum GS-PS FS-PS FS-CV FS-IS BS-PS BS-CV BS-IS 

 21 3 11 3 5 6 6 6 7 

Regular 
Zones 

1 2 3 2 2 3 7 7 4 
2 3 6 4 5 5 10 10 5 
3 3 6 4 5 5 10 10 5 
5 1 3 3 4 5 6 6 5 
6 3 7 4 5 5 10 10 5 
7 3 6 4 5 5 10 10 5 
8 3 4 3 3 3 7 10 5 

10 2 6 3 3 5 9 10 5 
11 4 4 3 4 3 10 8 5 
12 1 4 3 4 3 7 9 7 
13 1 4 3 4 3 8 8 6 
14 2 5 3 3 3 9 10 9 
15 1 2 3 3 1 9 10 9 
16 4 7 2 2 3 8 10 10 
17 8 6 4 5 3 7 10 5 
18 4 1 3 2 3 6 10 5 
19 4 3 4 3 3 6 10 7 
20 3 6 5 4 4 10 11 7 

 
Average 
(regular 
zones) 

2.9 4.6 3.3 3.7 3.6 8.3 9.4 6.1 
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The explanation for the findings above could be established from the “Theoretical 

Optimum” column in TABLE 29. At the top level, the load condition may be well 

represented by a smaller group of weather stations using the Vanilla model. (Moreno-

Carbonell et al., 2019) also indicated that some temperature series in both GEFCom2012 

and GEFCom2014 data are highly correlated and selecting highly correlated series can 

cause the over-parameterized combination of stations. In which case, The TO selects the 

most parsimonious combination which gives the lowest MAPE.  

The benchmark (GS-PS) selects all 11 stations, while the FS and BS both select 

fewer weather stations and thus lead to better forecasting accuracy. When comparing FS 

to BS, we can look closer into the specific stations being selected by each method in TABLE 

30. The BS-CV, BS-PS, BS-IS, and FS-IS lead to very close MAPE (%) and they all pick 

the station 5, which is part of the TO selection as well. Due to the overfitting issue on the 

validation period, the FS-PS fails to pick the station 5 and thus leads to a worse result. FS-

CV improves the selection with station 5 included, while it misses the station 9 compared 

to BS-CV and BS-PS, which is likely due to the lack of training data in our case study. 

At the bottom level, the TO selects fewer than 4 weather stations under the majority 

of the regular zones. Since the regular zones are the sub-regions of the aggregated zone, 

intuitively, the weather impacts on the load patterns cross these sub-regions can be well 

captured by smaller groups of weather stations. FS-IS tends to select fewer weather stations 

and thus leads to good forecasting accuracy among the regular zones. The FS-PS method 

selects fewer stations as well. Likely due to the overfitting issue on the validation period, 

the WSS out of FS-PS leads to worse forecasting performance than that of FS-IS. The FS-
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CV improves the selection on top of FS-PS, but still is not as good as FS-IS, which is likely 

due to the lack of training data in our case study.  

On the other side, both backward selection methods tend to select more weather 

stations among the regular zones and thus lead to worse results. 

The GEFCom2012 case study may suggest a rule of thumb that that under the 

context of hierarchical load forecasting, one may prefer to use BS methods to forecast the 

top-level loads and use FS or GS methods to forecast the bottom-level loads.  

TABLE 30: Weather stations selected for the aggregated zone (GEFCom2012) 
Method Station MAPE (%) 

TO {2, 5, 7} 4.854 
BS-CV {1, 2, 5, 6, 7, 9} 4.924 
BS-PS {1, 2, 5, 6, 7, 9} 4.924 
BS-IS {3, 5, 6, 7, 9, 10, 11} 4.945 
FS-IS {2, 3, 5, 6, 7, 9} 4.975 
FS-CV {1, 2, 5, 6, 7} 5.072 
FS-PS {1, 2, 7} 5.166 

GS-PS (Benchmark) {1 - 11} 5.221 
 

For the GEFCom2014, the average station number selected by each method among 

the three test years is presented in FIGURE 17. The bar chart is sorted in ascending MAPE 

values, indicating the FS methods result in the best forecasting accuracy among the test 

years, the BS methods lead to the worst, and the performance of the benchmark (GS-PS) 

sits in the middle. 

More details on the WSS are gathered in TABLE 31. The average MAPEs across 

the three test years among the three FS methods are all lower than the benchmark (green 

highlighted), while the average MAPEs among the three BS methods are all higher (filled 

in gray). Looking at the “Theoretical Optimum” column again, the TO selects the most 

parsimonious combination which gives the lowest MAPE. The FS methods tend to select 
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fewer weather stations and thus lead to better forecasting accuracy. The benchmark selects 

more stations while the BS methods tend to select the most and thus lead to worse results. 

 

FIGURE 17: Bar Chart of Average Station No. Selected by Each Method Among the Test Years 
(GEFCom2014) 

TABLE 31: No. of Stations Selected by TO, GS-PS (benchmark), FS and BS Methods 
(GEFCom2014) 

Test Year 
Theoretical 
Optimum GS-PS FS-PS FS-CV FS-IS BS-PS BS-CV BS-IS 

2008 9 12 11 10 10 18 12 14 
               

2009 6 17 9 8 11 16 25 15 
               

2010 8 11 6 7 10 17 18 17 
               

Average 7.7 13.3 8.7 8.3 10.3 17.0 18.3 15.3 
 

5.7. Comparison of Computational Cost 

All computational experiments in the GEFCom2012 case study are performed 

using SAS (9.4) software on a personal laptop equipped with Intel Core i7 2.30 GHz CPU, 

16GB usable RAM and Microsoft Windows 10 Professional. The computational 

experiments in the GEFCom2014 case study require much more computation resources 
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and are performed using SAS (9.4) software on a server with Intel Xeon E7 2.50 GHz CPU, 

1TB usable RAM and Microsoft Windows Server 2012 R2 Datacenter. 

The exhaustive search framework presented in this thesis goes through each 

possible WSS sequentially and records the selection based on the post-sample forecasting 

performance under the validation year (the PS method), across multiple validation years 

(the CV method), or based on the in-sample fit performance (the IS method). The IS and 

PS methods need about the same computational cost, while the CV methods could triple 

the cost given the implementation of 3-fold cross-validation in our case studies. TABLE 32 

reports the computation time under the ES methods. The computation time for each load 

zone is in minutes for the GEFCom2012 case study using a personal laptop, and in days 

for each test year in the GEFCom2014 case study using a Windows server. Noticeably, the 

ES framework is more applicable when we have a small amount of weather station 

candidates. As indicated in Section 3.4, one extra weather station candidate can almost 

double the computational cost of the selection process and as the number of station 

candidates grows, this framework tends to overburden the selection process. 

TABLE 32: Computational Time under the ES framework 
GEFCom2012 

(N=11, on the laptop) 
GEFCom2014 

(N=25, on Windows server) 
Method Minutes Method Days 

ES-IS 9 ES-IS 4 
ES-PS 9 ES-PS 4 
ES-CV 27 ES-CV 12 

 

Aside from the ES frameworks, the computation time required by the heuristic 

frameworks is much more manageable. Even under the case of 25 candidate stations, the 

selection processes can mostly be done within 4 mins using a personal laptop. 
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TABLE 33 and TABLE 34 give the iterations required to evaluate the Vanilla model 

within each framework in the two case studies, sorted by their forecasting MAPEs. The 

benchmark method (GS-PS) and GS-IS require the fewest iterations and achieve workable 

results. GS-CV requires slightly more iterations and reaches very close results to the 

benchmark. Methods under ES require the most computational cost than the remaining 

approaches. ES-IS and ES-CV almost guarantee good results, while ES-PS is not as good 

due to the overfitting issue we have covered in Section 5.3.  

TABLE 33: Computational Cost (in iterations) sorted by MAPE Ranking (GEFCom2012) 
 Average of 18 Regular Zones Aggregated Zone (Z21) 

Rank 
Average MAPE 

(%) 
Iterations (per zone) MAPE (%) Iterations 

1 ES-IS 6.962 2047 BS-CV 4.924 165 (max) 
2 GS-IS 6.967 22 BS-PS 4.924 55 (max) 
3 FS-IS 6.980 55 (max) BS-IS 4.945 55 (max) 
4 GS-PS 6.996 22 ES-IS 4.968 2047 
5 ES-CV 7.003 6141 FS-IS 4.975 55 (max) 
6 GS-CV 7.003 44 ES-CV 5.027 6141 
7 FS-CV 7.017 165 (max) GS-IS 5.029 22 
8 FS-PS 7.116 55 (max) FS-CV 5.072 165 (max) 
9 ES-PS 7.118 2047 ES-PS 5.166 2047 

10 BS-IS 7.196 55 (max) FS-PS 5.166 55 (max) 
11 BS-CV 7.471 165 (max) GS-CV 5.221 44 
12 BS-PS 7.487 55 (max) GS-PS 5.221 22 

TABLE 34: Computational Cost (in iterations) sorted by MAPE Ranking (GEFCom2014) 

Rank Framework 
MAPE 

(%) 
Iterations 

1 ES-IS 5.677 33,554,431 
1 FS-IS 5.677 300 (max) 
3 ES-CV 5.747 110,663,293 
4 ES-PS 5.752 33,554,431 
5 FS-PS 5.752 300 (max) 
6 FS-CV 5.884 900 (max) 
7 GS-PS 5.944 50 
8 GS-CV 5.951 100 
9 GS-IS 6.021 50 

10 BS-IS 6.136 300 (max) 
11 BS-CV 6.307 900 (max) 
12 BS-PS 6.366 300 (max) 
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For GEFCom2012 case study, the ES-IS ranks top on the average forecasting 

performance at the bottom level and the 4th place at the top level (𝑍ଶଵ). In the GEFCom2014 

case study, ES-IS ranks top again based on the average MAPE among test years. In which 

case, however, we have 25 candidate stations to choose from and it is unrealistic for a load 

forecaster to implement the ES framework because of the huge computational cost. 

It is worth noting that in both case studies, the FS-IS requires reasonable 

computational cost and achieves good forecasting accuracy. In the GEFCom2014 case 

study, the FS-IS method leads to results as good as the ES-IS with a tiny fractional 

computational cost.  

In summary, the above findings may suggest a rule of thumb that the ES-IS is 

approachable when we have fewer candidate stations; when dealing with more stations, the 

FS-IS stands out and should be considered for its computational simplicity. 
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CHAPTER 6: CONCLUSION 

Weather factors are playing key roles to impact electricity load consumption. The 

selection of weather stations determines the key input to the electric load forecasting 

models which are reliant on weather variables. This thesis presents a comprehensive 

exhaustive search framework and three heuristic frameworks – forward selection 

framework, backward selection framework, and greedy selection framework, to solve the 

WSS problem. Under each framework, three types of statistical tests are performed and 

compared, namely the in-sample fit, the post-sample fit, and the out-of-sample cross 

validation test. We conduct case studies using GEFCom2012 and GEFCom2014 data and 

compare the results based on the MAPE and the distance to the theoretical optimum. Our 

experimental results show that the forecasting accuracy can be significantly improved by 

several proposed selection frameworks. Meanwhile, several heuristic methods have been 

applied to cut down the computational cost. Finally, we extend our discussion on several 

practical data fitting issues on the WSS subject and suggest actionable rules of thumb that 

load forecasting practitioners can follow.  

The contribution made by this thesis to the WSS of electric load forecasting 

literature is obvious: (1) this is the first time that the exhaustive search method has been 

explored and its effectiveness has been evaluated; (2) this is the first time that the 

theoretical optimum selection is introduced to unveil important insight on why some WSS 

frameworks outperform the others; (3) this is the first time that a group of heuristic methods 

are implemented and compared on their selection behavior with transparency; (4) it covers 

the first formal comparison and extensive discussion on the model selection methods in 

terms of in-sample fit, post-sample fit and cross-validation on the WSS subject and leads 
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to actionable rules of thumb; (5) publicly available data in our case study and transparent 

implementations allow future researchers to reproduce our results. 

The below bullet points summarize the key takeaways from this thesis work: 

 Among the 12 methods presented in this thesis, the ES-IS and FS-IS show superior 

forecasting accuracy in both case studies comparing to the WSS benchmark. The 

ES-IS is approachable when we have fewer candidate stations; when dealing with 

more stations, the FS-IS stands out and should be considered for its computational 

simplicity.  

 Among the three types of statistical tests, PS methods may lead to overfitting issues 

on the validation data and results have shown the CV methods help to remediate 

the overfitting issue discovered under the ES and BS frameworks. Given limited 

data history, the IS based methods show better forecasting performance than the PS 

methods under the Vanilla model. Further comparison shows the IS based methods, 

in general, outperform the CV based methods.  

 An extensive discussion on the WSS outcome of FS and BS methods has been made 

and results may suggest that under the context of hierarchical load forecasting, one 

may prefer the BS methods for the prediction of the top-level loads, while FS and 

GS methods are recommended for the prediction of the bottom-level loads. 

 Regarding the computational cost, GS-PS and GS-IS require the least 

computational time and achieve workable forecasting accuracy. The FS-IS heuristic 

method requires reasonable computational cost and achieves fairly good 

forecasting performance. 
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This thesis uses simple averages to combine temperature series and create virtual 

weather stations. As extra weather station combination methods have been discussed in 

(Sobhani et al., 2019) and (Moreno-Carbonell et al., 2019), further research directions may 

combine WSS methods in this thesis along with the combination techniques to refine the 

multiple weather station solutions. Aside from the above direction, further research may 

also incorporate other factors such as anomaly detection of weather station data and 

location information into the selection method to improve the accuracy, transparency and 

interpretability of the WSS.   
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