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ABSTRACT 
 
 

JASON DOUGLAS WRIGHT.  Modeling, analysis, and control of a radial 
electrodynamic wheel vehicle and analysis of an axial electrodynamic wheel.  (Under the 

direction of DR. JONATHAN Z. BIRD) 
 
 

Maglev, the concept of using magnetic forces to levitate a vehicle above a guideway 

for frictionless motion, has received renewed interest as of late due to several high profile 

projects, including the proposed next-generation transit system Hyperloop, and 

imaginative gadgets such as the Lexus Slide and Hendo Hoverboard, both of which allow 

the user to levitate off of a surface using magnetic fields.  One emerging technology, the 

Electrodynamic Wheel (EDW) offers the integration of lift, thrust, and braking which can 

all be generated from a single device.  This is accomplished by rotating a magnetic rotor 

above a passive conductive surface (typically referred to as the “track”).  The time-varying 

field intercepting the track induces eddy currents in the conductive material, causing the 

track to generate its own magnetic fields which interact with the rotor’s field.  Depending 

on the motion of the rotor, this can generate the aforementioned lift, thrust, and/or braking 

forces.  

 This dissertation focuses on applying a computationally efficient analytic solution 

for calculating the forces from an EDW to build and simulate multi-EDW vehicle models.  

The force model allows for the quick calculation of each EDW’s stiffness and damping 

coefficients.  These terms are analyzed from a vehicle dynamics perspective by identifying 

which values carry the potential to destabilize the system, and how various motions of the 

vehicle could drive these terms towards increasing instability.  The terms are then used to 

develop a 4 degrees of freedom (DOF) model of a 4-rotor/EDW prototype vehicle that has 
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also been replicated experimentally.  Using reasonable assumptions about the vehicle’s 

run-time parameters, the differential equations are simplified and decoupled into a simple 

state-space system.  Various controls are applied to the 4-DOF system, emphasizing that 

the analytical force model’s stiffness and damping terms have now greatly reduced the 

complexity required to control and EDW vehicle system, and the rapid re-calculation time 

of these terms even allows the controller’s estimation of the system to be updated at run-

time.  An alternate topology of rotor called an axial EDW is also explored using finite 

element models, an analytic model, and an experimental prototype. 
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CHAPTER 1:   INTRODUCTION AND LITERATURE REVIEW 
 

This chapter serves to provide a review of relevant literature in magnetic levitation 

and magnetic levitation controls, as well as background knowledge pertaining to 

magnetic levitation and magnetic linear propulsion. 

Equation Chapter (Next) Section 1 

1.1 INTRODUCTION 
 
 

Magnetic Levitation, or Maglev, is a mode of transportation whereby a vehicle is 

suspended above or below a track using the interaction of magnetic fields to achieve 

attraction and/or repulsion for both lift and thrust.  This accomplishes reduced friction for 

the potential of increased efficiency, lower noise, vibration, and harshness (NVH).  Maglev 

offers the potential for higher speeds than conventional rail and reduced wear and 

maintenance items due to a lack on contact between the vehicle and the track [8].  The 

primary disadvantages of maglev systems are their significantly higher initial capital cost 

and increased guideway complexity compared to conventional iron-rail systems.  Despite 

drawbacks, it remains a candidate for future generations of environmentally conscious, low 

maintenance, reliable, fast, and safe mass transportation. 

 

In section 1.2, different maglev suspension technologies are reviewed.  In section 1.3, 

a review of electrodynamic suspension dynamic modeling techniques are discussed.  

Common controller designs and implementations are also covered in 1.3.  Finally, in 

section 1.4, the main levitation technology explored by this dissertation, electrodynamic 

wheel maglev, is reviewed. 
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1.2 SUSPENSION TECHNOLOGIES 
 

Electromagnetic Suspension (EMS) systems make use of a set of electromagnetic coils 

along the length of the vehicle which are attracted to a flat iron track and are actively 

controlled in order to maintain an airgap between the track and carriage.  This concept is 

shown in Fig. 1.  

 

 

 

(a)                                         (b) 

Fig. 1:  (a) EMS maglev system uses magnetic attraction to provide lift  (b) EMS system used on 

Transrapid train to provide lift, thrust, and guidance [8] 

 
 

An inherent problem with EMS systems is that there is reduced lift performance at 

higher speeds when using a solid iron/steel guideway [17].  The inherent instability makes 

it difficult to maintain a precise and uniform airgap at higher speeds [55].  In addition, the 

cost and added complexity of using laminated steel for the entire length of the guideway 

must be considered when attempting to increase high speed performance.   

 

Du and Ohsaki explored the effects of higher speeds on attractive levitation EMS 

systems that use solid steel guideways rather than laminations [17].  As the electromagnetic 

levitation coils travel over a solid iron guideway at higher speeds, eddy currents flow within 
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the iron which produce a magnetic field that disrupts low-speed model calculations.  Du et 

al. also found that while the location of the eddy current peak does not change with 

velocity, the eddy current density does increase with velocity.  This causes the distribution 

of airgap flux density to be distorted, with higher velocity leading to a smaller average 

airgap flux density, in turn causing reduced levitation force [17].  Therefore, for speeds 

above 200 km/h, a laminated track is required. 

 

High speed EMS systems have been marketed and built (Transrapid), but are very 

expensive due to the cost of installing a linear synchronous motor in the guideway.  In 

general, the cost of the guideway/track makes up the bulk of the initial expense [43].   

 

While EMS uses attraction forces, Electrodynamic Suspension (EDS) systems utilize 

repulsive forces for levitation.  Either superconducting or neodymium iron boron (NdFeB) 

magnets on a carriage induce currents in the conductive coils or conductive plates along 

the track as the vehicle travels.  A model of the superconducting null-flux coil design 

proposed by Powell and Danby [23] and used by Post et al. is shown in Fig. 2 [10].  The 

translational motion of the superconducting vehicle coils relative to stationary guideway 

coils induces currents in the null-flux coils.  This allows the coils’ magnetic fields to 

levitate the vehicle as they interact with the superconducting coils on the carriage.  

Depending on configuration, some degrees of freedom, such as the lift axis, are inherently 

stable [55]. 
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Fig. 2:  (a) Superconducting (SC) Maglev uses a “Figure 8 Loop” on the side of the guideway for lateral 

stability and another “Figure 8 (null-flux) Loop” on the bottom of the guideway for levitation and vertical 

stability as it interacts with the superconducting magnets on the carriage. [10] 

 

The superconducting null-flux type maglev system can operate with a large airgap and 

can operate with a relatively large lift-to-drag ratio during high speed operation [18], 

however it also suffers from high initial capital cost due to the guideway null-flux coils 

needed for lift and the linear synchronous motor (LSM) required for propulsion [20], as 

well as the cost of the superconducting magnets or coils.   

 

An example of an EDS levitation setup that uses NdFeB magnets is shown in Fig. 3.  

This EDS system is called Inductrack.  It uses a passive track for levitation and an LSM 

for propulsion, with the passive track being composed of either copper coils or sheets of 

aluminum and copper.  The underside of the carriage has a Halbach array of magnets which 

induces eddy currents in the stationary guideway coils as the carriage moves over the track.  

As with the superconducting EDS system, the induced eddy currents in the passive track 

produce their own magnetic field which levitates the carriage.  The Halbach array is a 

configuration of magnets which focuses virtually all of the magnetic field sinusoidally on 

one side thereby effectively eliminating the field from the opposite side.   
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Fig. 3:  Inductrack principle, showing Halbach arrays’ interaction with passive copper coils [14] 

 

Ideally, the Halbach array would consist of magnets whose field varies continuously 

along its length, as shown in Fig. 4.  Practically, this is difficult to produce, so arrays are 

constructed according to Fig. 3 and Fig. 5.  Han, et al., used the non-ideal magnet array’s 

harmonics and developed a strategy to optimize the arrays’ geometry in order to maximize 

the square of the flux per unit weight of magnet material for use in a maglev system 

[39][40].  A layout of the magnets on a carriage is shown in Fig.  6.   Unfortunately, despite 

the advantage of an inherently Lyapunov stable levitation geometries [15][65], a byproduct 

of lift is a drag force [17] that must be overcome with additional energy input from the 

linear motor which provides thrust.  The relationship between lift and drag force was 

explored by Chen, Zhang, Bird, Paul, and Zhang when they derived a 3-D analytical 

solution of a null-flux electrodynamic system.  This relationship is shown in Fig. 7. 

 

 



6 
 

 

Fig. 4: Ideal Halback array magnet orientation [39] 

 

 
Fig. 5: Practical Halbach array magnet orientation [39] 

 

 

 

Fig.  6: Inductrack levitation model showing levitation and guidance arrays [14] 

 

 
Fig. 7:  Plot of levitation and drag forces for an EDS system using 3-D analytical solution [16][17] 
 
 

Lee et al. made comparisons between EMS, EDS, and conventional iron wheel-on-

rail systems [55].  According to Lee, some notable advantages of maglev over conventional 
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rail systems are better weight-load distribution on the guideway, leading to reduced 

construction costs, steeper achievable grades and smaller radius curves, faster acceleration 

and deceleration, reduced susceptibility to weather conditions, and elimination of gears, 

couplings, bearings etc.  Conversely, due to increased power requirements to levitate more 

weight, freight duties may not be well suited to Maglev.  Additionally, switching and 

branching of the train carriages introduces an extra level of complexity, as does the 

magnetic shielding required to prevent strong fields from entering the passenger 

compartment [55]. 

 

A newer maglev methodology which is still in a research and development phase is 

called electrodynamic wheel (EDW) maglev [21][22][24][30][31][34][35].  The EDW 

produces a lift force similar to EDS, whereby currents are induced in a conductive track to 

form an opposing magnetic field for levitation [21].  However, since magnets are wrapped 

around a rotor, the magnets are able to rotate above the surface of the track without the 

vehicle moving.  In addition, while the vehicle is underway, the rotors can rotate so that 

the rotor surface velocity is greater than the train speed.  Thus, the typical drag force 

associated with EDS can then be used instead as thrust.  A radial EDW topology is shown 

in Fig. 8, and an axial topology, shown in Fig. 9, has also been studied by Fujii et al. 

[51][52][53], and is the source of levitation in the Arx Pax Hendo hoverboard [44].  The 

axial topology, while being able to produce lift with no translational speed, cannot be used 

for thrust if the rotor’s axis is orthogonal to the track. 
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Fig. 8: Finite element model of single radial electrodynamic wheel, where vx is the translational velocity of 

the EDW and vr is the surface velocity of the wheel with respect the track [30] 

 

 
Fig. 9: Axial EDW topology used by Fujii et al. [53] 
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1.3 ELECTRODYNAMIC SUSPENSION MODELING 
 
 
The dynamic motion of mechanical devices subjected to 3-D eddy current forces can 

be difficult to model, particularly when there is more than one mechanical degree of 

freedom.  Experimental pendulum-type eddy current setups have been shown to be 

particularly useful when trying to understand the complex electromechanical dynamic 

interactions associated with eddy current forces with a varying airgap. Yamada studied 

eddy current dynamics by utilizing an experimental pendulum setup comprising of a 

magnet array supported by a string that was free to oscillate next to an aluminum sheet 

guideway wheel [25]. Moon, Chen and Zhu studied eddy current damping by affixing 

magnets to cantilever beams and then measuring the resultant oscillations when a rotating 

aluminum sheet wheel was placed below the magnets [26][27][28][38]. Although these 

experimental models were extremely useful for understanding damping and stiffness 

characteristics (the change of force with respect to position and velocity, respectively), the 

authors did not accurately compare the dynamic experimental results with calculations. 

 

Davey [12], Post [8][10], and Boeij [13][14][15] used coupled lumped parameter 

circuit modeling techniques to model the voltage and currents in an EDS maglev vehicle 

system that used a track consisting of conductive wires.  They used the models to arrive at 

a set of algebraic equations that model the forces without using finite element model (FEM) 

methods, which are compute-intensive.  Since no numerical solution is required, these 

equations can be used in real-time control of an EDS system [14][15].   
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Davey describes the core principle of maglev suspension used by the Japanese 

superconducting maglev systems at Yamanashi [12].  The electromagnetic coil designs are 

shown in Fig. 2 and Fig. 10. 

 

 

Fig. 10: Levitation coils described by Davey [12] 

 

The voltages and currents induced in the coils can be approximately modelled by 

representing the magnets using equivalent surface currents [42].  The lift force can be 

calculated based on the derivative of the co-energy of the coil system: 

                                                       
1 1

a a a aF I I M
 

 
m n

k j
j k kj     (1.1) 

where bold signifies a matrix, such that Ma
kj  is m coils by n magnets matrix of the 

mutual coupling of the jth magnet to the kth coil, I
a
j  is the surface current of the jth magnet, 

and I
a
k  is the kth coil current.  Note that the “a” superscript is used to signify variables that 

apply only to this equation, so that other definitions of F, I, and M can be used later. 

 

This lumped parameter approach neglects the skin effect. Using this type of lumped 

parameter equivalent circuit based approach cannot be used when using conductive sheets 

[12].  Equivalent magnetic circuit models are also frequently used to roughly model the 

forces in a maglev system, but these methods yield only an approximation and often lead 
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to poor matchup between FEA, analytical models, and experimental models [48].  A 

simulation example by Davey showing the lift mass and currents generated when 6 coils 

move over the a set of magnets is shown in Fig. 11. 

 

 
(a) 

 

 
(b) 

Fig. 11: Davey’s simulation results using Runge Kutta technique for EDS system [10] (a) Coil Current  (b) 

Lift mass [12] 

 

Post and Ryutov also describe the Inductrack EDS system dynamics using a very basic 

lumped parameter circuit theory approach [10].  The null-flux coil system used by J. de 

Boeij, et al. [13], is shown in Fig. 12. 
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Fig. 12: Layout of magnet passing over null-flux coil [13] 
 
 
The flux linking the upper and lower portion of the figure-8 coil (null flux coil), can 

be defined as the area that the magnet and coil overlap multiplied by a constant magnetic 

field density.  Then, by subtracting the flux linking the lower portion of the coil from the 

flux linking the upper portion of the coil, the net flux linking the coil can be calculated 

[13]-[15].  A sketch of the experimental setup used by De Boeij to validate his model is 

shown in Fig. 13. 

 

 

Fig. 13: De Boeij null-flux coil experimental setup sketch [13] 
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Results of the forces modeled by de Boeij, et al., are shown in Fig. 14, showing that 

the analytical techniques roughly match the experimental results. 

 

 

 

Fig. 14:  De Boeij experimental results compared to models [15] 

 

Dumont et al. showed another use for maglev technology in a new type of 

electrodynamic contactless centering bearing based on interactions between a short 

circuited winding in which currents are induced, and permanent magnets which are used 

to generate excitation, similar in principle to EDS maglev vehicle levitation [19].  The 

general construction of such a bearing is shown in Fig. 15.  When the rotor is centered, the 
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magnetic field has no homopolar component and there is no electromotive force (EMF).  

However, an induced EMF is produced when the rotor is off-center because a time-

dependent magnetic flux is being intercepted by the rotor.  This creates a centering Lorentz 

force between the permanent magnet field and the winding.  Through analysis of the 

magnetic flux, Dumont devised a set of guidelines for designing a null-flux electrodynamic 

bearing [19]. 

 

 

Fig. 15: Diagram of EDS bearings and forces (a) EDS bearing with internal rotor  (b) EDS bearing with 

external rotor [19] 

 

Borowy and Kang studied the General Atomics Urban Maglev design to come up with 

a system model using the system identification technique [41].  They used an iterative 

process using experimental data to arrive at a linear discrete time-invariant system for a six 

degree-of-freedom maglev system.  Their method to formulate and validate the model is 

shown in Fig. 16. 
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Fig. 16: System identification technique used to identify General Atomics Urban Maglev System [41] 
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1.3.1  DYNAMIC CONTROL OF MAGLEV SYSTEMS 

In this section, a sampling of different control methodologies commonly used for 

maglev are discussed.  These concepts will be built upon in later chapters to develop more 

advanced controllers for a 4 rotor EDW maglev vehicle. 

Beltran-Carbajal et al. showed that a simplified 1 degree of freedom EMS maglev 

system could be adequately controlled using feedback control to track a reference signal 

[62].  This was based on the fact that the system exhibited the principle of differential 

flatness, so that a set of independent outputs completely parameterizes every state variable 

and control input [61].  The model used by Beltran-Carbajal is shown in Fig. 17, and a 

resulting simulation of the control technique is shown in Fig. 18. 

Fig. 17: Single degree-of-freedom maglev model, where i is coil current, R is coil resistance, L is coil 

inductance, m is the sprung mass, k is the spring constant, c is the damper constant, lo is the airgap, y is 

vertical displacement (for this example only), and fem is the levitation force [62] 

y 
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Fig. 18: Tracking of reference trajectory, y*, with noise contamination and actuator saturation for Beltran-

Carbajal’s model and feedback controller [62] 

 
 
 

Pradhan et al. and El Hajjaji et al. used an input-output feedback linearization 

approach to stabilize a ferrous ball suspended below an actively controlled coil [64][72].  

Feedback linearization in an approach that uses a change of variables and special control 

input to transform a nonlinear system into linear system.  This can be accomplished when 

the system is well understood and modeled [63].  A block diagram of feedback linearization 

system is shown in Fig. 19.  El Hajjaji makes an important note that while maglev systems 

are highly nonlinear, most researchers tend to use linear techniques and/or linear 

approximations that are only accurate within a small operating region [64]. 
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Fig. 19: Block diagram for feedback linearization, where the nonlinear model is described by ẋ, f is a 

function describing the system response to the states, g is a function describing the plant response to the 

input, the output is described by y, which is a function, h, of the states, u is the plant input, α is the plant 

feedback, v is the system input, and β is the input transformation function [81] 

 

A comparison between classical proportional integral differential (PID) control and 

feedback linearization, denoted by “NLC” (nonlinear control), is shown in Fig. 20.  The 

poor tracking and steady-state error of the PID control technique highlight the drawback 

of requiring a linear model that accurately describes a nonlinear system, which is not 

always possible, while feedback linearization proved to me more robust for this simulation 

[72].  
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Fig. 20: Pradhan’s comparison between feedback linearization control (NLC), and PID control [72] 
 

 

Songqi et al. used an adaptive model reference control method for controlling an EMS 

system [18].  A model reference controller uses the output of a reference model designed 

to meet performance requirements to drive an error signal that is passed to the controller, 

as shown in Fig. 21. The controller is designed to stabilize the EMS system when the track 

has varying height according to the model in Fig. 22.  
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Fig. 21: Model reference controller, where Ym is the reference model output, Ys is the plant output, e is the 

error signal, and r is the input [18] 

 

 

 

Fig. 22: Vehicle-track model [18], fe(t) is the electromagnetic force, m1 and m2 are the masses of the 

vehicle carriage and electromagnets, respectively, k3 is the secondary suspension stiffness, c3 is the 

secondary suspension damping, x is the vehicle lateral displacement, L is the tracks’ lateral length, z1(t) is 

the distance from the reference frame to the vehicle’s suspension, z2(t) is the distance from the reference 

frame to the vehicle body, d(t) is the airgap, and h(x,t) is the vertical displacement of the track.   

 

Without being able to measure the time and displacement dependent term h(x,t) 

directly, it has the effect of an external disturbance on the vehicle.  An adaptive controller 

using both feedforward and feedback was used to obtain stable dynamics when the track 

was vibrated.  This is shown in Fig. 23. 



21 
 

   
   

 
   

  V
el

oc
it

y 
(m

/s
) 

   
   

   
   

   
   

D
is

pl
ac

em
en

t (
m

) 

 

 Time (s) 

Fig. 23: Songqi’s simulation results showing vehicle displacement at a constant speed of v0 [18] 

 

De Boeij et al. used a lumped parameter force model to create a state-space model of 

an EDS sled on a passive track, and applied sliding mode feedback control to the 

system [15], in which a discontinuous control signal causes the system to move towards 

the desired state until the state is passed, at which point the control signal switches to return 

the system back towards the desired state.  This type of control is characterized by feedback 

control laws and a decision rule, implemented as a switching function [60].  While the 

dynamic behavior of the system can be directly tailored by the switching function for 

desired performance, the switching frequency must necessarily be infinite to achieve 

uncertainty rejection [60].   Fig. 24 and Fig. 25  show the system layout used by De Boeij 

with 6 magnets and 10 coils. 
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Fig. 24:  Dimensional definitions for De Boeij’s 5-DOF system, where solid black squares represent 

permanent magnets [14] 

 

 

Fig. 25:  Six magnet and ten coil EDS system, where z-axis is through the page and y-axis is perpendicular 

to x-axis parallel to page [14] 

 

The first order sliding mode controller successfully tracks all three degrees of freedom 

and guarantees global asymptotic stability.  Simulation results are shown in Fig. 26 [15]. 
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Fig. 26: De Boeij’s sliding mode controller performance results [15] 

                                         

Model predictive control (MPC) works on the basis of applying an optimal control 

trajectory for a finite receding horizon in discrete-time.  MPC allows the use of various 

optimal control techniques on linear and non-linear systems, while also enforcing 

constraints, or a set of maximum and minimum allowable values for the control and state 

variables of a system.   At each time step, the optimal control sequence is computed, then 

the first step of the control trajectory is implemented.  This process is repeated at each time 

step, thereby achieving closed loop behavior [56].   
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If the model in linear, the cost is described by a quadratic function, and there are no 

constraints, then a simpler approach such as a linear quadratic regulator (LQR) as described 

by Kirk is appropriate [58].  If the dynamics are linear, the cost is quadratic, and the system 

must operate within an affine constraint set, then linear MPC (LMPC) using quadratic 

programming (QP) to calculate the optimal control trajectory is appropriate.  QP problems 

can be solved using a variety of methods including interior point methods, active set 

methods, and the simplex algorithm, covered in detail by Papalambros et al. [57].   

 

For more complex problems involving nonlinear model dynamics, a non-quadratic 

cost function, and/or nonlinear constraints, nonlinear MPC (NMPC) is suitable [56].  The 

control sequence for NMPC is often calculated using either sequential quadratic 

programming (SQP) or dynamic programming (DP).  SQP is a generalization of Newton’s 

method that divides the problem into QP sub-problems where the quadratic model of the 

problem is minimized for each step.  SQP is robust and can be used for a large variety of 

problems, but only guarantees optimal trajectory to a local minimum or maximum [57].  

Dynamic programming (DP) can guarantee convergence to a global minimum/maximum, 

but requires quantization of all of the states and control variables, leading to the potential 

for quantization errors.  DP relies on calculating all of the stage costs of going from each 

state to the next, and calculating the minimum of the sum of the stage costs for each 

sequence, according to Bellman’s principle of optimality [58]. 

 

Similar to El Hajjaji, Bächle et al. claims that linear approximations and control 

strategies are only suitable for small operating regions for electromagnetic levitation 
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systems [66].  Conversely, while MPC is well suited for maglev control, it is often too slow 

to be used for on-line applications unless approximations are made to reduce computational 

load.  Bächle used a gradient descent method to obtain the optimal input [66].  A 

polynomial fit of 3 gradient iteration points is used to approximate the solution of step size, 

significantly speeding up the MPC algorithm.  It was shown that linear MPC could lead to 

poor performance and instability, while non-linear MPC using the step size approximation 

converged towards the desired set-point [66].  A simulation of the controller performance 

is shown in Fig. 27. 

 

Fig. 27: Bächle’s Nonlinear MPC transition simulation under the effect of model error and measurement 
noise [66] 

 
 
 
Periyasamy et al. developed an MPC model for a 1-DOF maglev system using a neural 

network to develop a plant model and a particle storm optimization for calculate the 

optimal trajectory [67].  The plant and neural plant model were fed identical inputs and the 
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difference between the two models’ outputs is analyzed by a learning algorithm to adjust 

the weights of the network.  The particle swarm optimization iteratively moved candidate 

solution “particles” within the search-space to find the best solution.  Rather than using the 

gradient, the particles moved according to their own best known position and the other 

particles’ (swarm’s) best known position, thereby providing the advantage of not requiring 

the optimization problem to be differentiable. 

 

Qin et al., claimed that capturing the non-linearities of a maglev system is an obstacle, 

and used a State-dependent AutoRegressive with eXogenous input (SD-ARX) model to 

represent the dynamic behavior between coil current and the position of a levitated ferrous 

ball [68].  The coefficients of the model were approximated by a Gaussian radial basis 

function (RBF) neural network to further refine the behavior [68].  The plant model could 

therefore be generated without relying on a physical or electrodynamic model.  A 

comparison of PID and MPC control for the model is shown in Fig. 28. 
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Fig. 28:  Qin’s comparison between a PID controller, MPC using the ARX model, and MPC using the 

RBF-ARX model, for a 2.2mm jump command [68] 
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1.3.2   INDUCTRACK DYNAMICS AND CONTROL 

Kim, et al. studied the dynamics of the Inductrack proof-of-concept vehicle studied at 

Lawrence Livermoore National Laboratory [45].  They first used a lumped parameter 

approach to numerically simulate only the lift force, then expanded the system to include 

2-DOF, height and longitudinal position, and finally a 4-DOF system which included 

lateral motion and roll [45].  A cross section of the vehicle is shown in Fig. 29.  

Fig. 29:  Cross-section of maglev carriage studied at Lawrence Livermoore National Laboratory, where y is 

the vertical vehicle displacement, z is the lateral vehicle displacement, x is the vehicle’s longitudinal 

position on the track, and θ is the vehicle roll angle about the x-axis [45] 

Sepe, et al., taking into account the General Atomics current control architecture, 

developed a novel position sensing approach which does not use mechanical or optical 

measuring devices.  The method is similar to existing quadrature based approaches, but 

uses a dual-phase demodulator and mechanical observer to determine speed [46]. 

Gurol, et al., described the status of the General Atomics Urban Maglev prototype 

vehicle with 120m of track and a 25mm airgap [47], as shown in Fig. 30. 
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Fig. 30:  General Atomics full scale maglev test track [47] 
 

Ko, et al. developed a set of dynamic equations that describe an Inductrack vehicle 

and a controller for the vehicle [11][37].  We will go into some detail since the linearization 

and modelling concepts will be useful in other sections of this document.  A simulation 

showing the field from a Halbach array is shown in Fig. 31.   

 

Fig. 31:  Simulation showing Halbach array’s magnetic field [9] 
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The force equations that were derived by Post and Ryutov were expanded in a Taylor 

series to account for small perturbations in displacement variables [10]: 

                                        ( ) ( ) ( )

o

y
y y o o

y y

F
F y F y y y

y



  


  (1.2) 

where 

                                                        ( )  i
oyF y m g  (1.3) 

is an equilibrium point, ܨ௬ሺݕሻ is the force in the y direction (lift), mi is the mass of the 

vehicle, and g is the acceleration due to Earth’s gravitational field, and y is the airgap 

between the vehicle and the track.  Note that the i superscript in the equations in this section 

are used simply to differentiate this set of equations from those from other sections.  

 
Ko linearized (1.2) to arrive at [11]: 

                                                     0( ) ( )(1 2 )  iF y F y k y   (1.4) 

where δy is the change in y position, 
 
                                                                0  y y y  (1.5) 

and 
                                                                 2 / i ik                 (1.6) 
 
where λi is the geometric wavelength of the Halbach array, shown in Fig. 32. 
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Fig. 32: Definition of Halbach geometry wavelength, λe 

 
From the 2nd law of motion: 

                                                    0( )2i im y F y k y   (1.7) 

Substituting (1.3) into (1.7) gives: 
 

                                                         2i i im y m g k y    (1.8) 
 
A similar process was applied to the lateral dynamics [11].  The forces for a set of 

Halbach arrays (both levitation and guidance arrays) are summed in the body reference 

frame to arrive at a set of equations for the forces and moments in 5-DOF.  The simplified 

vehicle dynamics are described by: 

                                                               0M iRB RBa      (1.9) 

where, 
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                                                0        
Ti

x y za z y  (1.11) 

λe 
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                                                   
T

RB K M Nz yF F M M M   (1.12)  

Note that δy is the vehicle displacement from equilibrium in the levitation direction 

and δz is the vehicle displacement from equilibrium in the lateral direction,	ܨ௬ is the force 

in the y direction, ܨ௭  is the force in the z direction, ܫ௫௫ ௬௬ܫ , , and ܫ௭௭ are the moment of 

inertia in the x, y, and z axes, respectively, and MK, MM, MN are the moments in the x, y, 

and z axes, respectively.  

 

With this system, two control methodologies were explored by Ko et al. [11].  The 

first is simple damping control whereby the Lagrange multiplier optimization method was 

used to solve for a set of damping control factors.  Improved stability and performance 

were observed using damping control, but further improvement was made using a Linear 

Quadratic Regulator (LQR) controller.  Note the general form for a state space system: 

                                                           x A x B u   (1.13) 

                                                           C x Du y  (1.14) 

As to not confuse this system with later systems, unique notation is given: 

                                                     x A x B u  i i i i i
  (1.15) 

and a performance index defined by [9]: 

                                                
0

( )x Q x u u


 i i i i i i iJ R dt  (1.16) 

where ̅ݔ௜  represents the systems’ states, ݑത௜  represents the input, Ai is the system 

matrix, Bi is the input matrix, Qi is the cost weighting matrix, Ri is a positive scalar that 

weights the inputs.  When the time horizon is infinite, the control input can obey a simple 

feedback law with a constant gain matrix [58], Ki, so that the control input vector is: 
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                                                        ( ) (t)u K xi i i
t    (1.17) 

Solving for the positive definite solution, ࡼ௜ ൌ ௜ࡼ
், of the algebraic Riccati equation [9]: 

                                          
1 0A P P A P B P B P Q   i i i i i

i i i i i  (1.18) 

The control gains can then be found: 

                                                       
1( )K B Pi i i

iR    (1.19) 

The LQR controlled system used by Ko showed better tracking and disturbance 

rejection than open loop, as shown in Fig. 33. 



34 
 

 

(a) 

 

(b) 

Fig. 33: Ko’s results: (a) Uncontrolled vehicle height vs time  (b)  LQR controlled vehicle 

height vs. time [11] 
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1.4 ELECTRODYNAMIC WHEEL 
 
 
Another methodology of EDS is using electrodynamics wheels (EDW), as proposed 

by Bird et. al [21] and much earlier by Davis et. al [29].  An EDW can be thought of as a 

linear Halbach array that has been wrapped around into a circular shape to form a rotor, 

allowing the axially or radially oriented magnets to be mechanically rotated above a 

conductive track, as in Fig. 34.  The induced currents in the track can then be used to 

provide simultaneous lift and thrust [21][22].  This provides many advantages, including 

the ability to generate lift force at zero translational velocity, therefore not necessitating 

low-speed mechanical drive systems, as well as eliminating and repurposing the drag forces 

associated with lift generation on a traditional EDS system. The cost of an EDW system 

could be low as the track can be a passive conductive sheet.  However, an EDW maglev 

vehicle will need to have an on-board power source or power will need to be transferred to 

the vehicle. 

 

Fig. 34: Drawing of Halbach rotor [21] 

 

d0 
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Bird used FEA to compute the optimal ratio of rotor inner to outer radii that maximizes 

the lift to weight ratio for a Halbach rotor.  For a 4 pole-pair rotor, this was calculated to 

be 0.68 [21].  This value was then confirmed using a 2D steady-state current sheet 

model [22]. 

 

The lift and thrust forces from an EDW are derived from a slip velocity, s, defined as: 

                                                                  c xs v v  (1.20) 

where vx is the translational velocity of the rotor and vr is the circumferential velocity of 

the rotor: 

                                                                  r m orv   (1.21) 

where ωm is the rotor’s mechanical rotational velocity, and ro is the rotor’s outer 

radius.  A 2D steady state FEA model was used to plot the forces generated from various 

slip and translational velocities, as shown in Fig. 35 and Fig. 36.  Later, Bird developed 3-

D FEA models and experimentally validated the simulations [34].   
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Fig. 35:  Bird’s calculated lift force vs. slip and translational velocity using 2D steady-state current 

model [21][22] 

 

 

Fig. 36:  Bird’s calculated thrust force vs. slip and translational velocity using 2D steady-state current 

model [21][22] 

 
Paudel developed a 2-D analytic model  of an EDW and experimentally showed that 

if velocity and position changes are dynamically accounted for within the steady-state eddy 
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current force equations then an accurate mechanical model can be created [30][31].  Using 

the steady-state eddy current forces greatly reduces the complexity.  More recently, Paul 

derived 3-D eddy current models of the EDW [31], as well as 3-D stiffness and damping 

eddy current terms, defined as the change in force with respect to position and velocity, 

respectively [35]. 
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1.5 CONCLUSION 
 
 
A number of important concepts were reviewed in this chapter which lay a foundation 

for the development of EDW maglev vehicle model and control, and development of an 

axial EDW topology which can be modeled analytically.  Current models based on lumped 

parameters are not accurate enough to simulate multi-wheeled EDW systems and their 

respective controllers, which will necessitate using an SOVP approach. 
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CHAPTER 2:   ELECTRODYNAMIC WHEEL VEHICLE 
 
 
In this section, a prototype EDW vehicle is presented and the axes and motion 

coordinate system is defined.  The 3-D eddy current damping and stiffness terms which 

will be used later to describe the equations of motion are also derived and explored. 

Equation Chapter (Next) Section 1 

2.1 VEHICLE DEFINITIONS 
 
 
The exact steady-state stiffness and damping terms derived in [35] for a conductive 

plate guideway are incorporated into a state-space system representation in order to model 

the dynamics of an experimental sub-scale electrodynamic wheel vehicle (EWV) in 

section CHAPTER 3:.  A prototype EDW is shown in Fig. 37, and a vehicle rendering is 

shown in Fig. 38. 

 

Fig. 37: Prototype electrodynamic wheel consisting of an axial Halbach rotor and an aluminum track 
 

Halbach rotor 

Aluminum track 
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Fig. 38: Experimental EDW Maglev vehicle rendering and axis definitions 

 
 
By rotating the EDWs over a conductive plate, an eddy current lift force, Fy, and thrust 

force, Fx, is created. The experimental setup being used in this study is shown in Fig. 39 

and Fig. 40.  Table 1 shows the experimental setup parameters.  The aluminum guideway 

wheel consists of two tracks each 77mm wide 1.2m in diameter.  The top of the track is 

visible in Fig. 40.  As the radius of the guideway is large relative to the EDW radius the 

rotational motion of the guideway wheel is modeled as a translational velocity term, vx.   

Each EDW is individually controlled by a brushless DC (BLDC) motor.  Four laser 

displacement sensors at each corner of the vehicle are used to measure the air-gap heights 

y1, y2, y3 and y4.   
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Fig. 39:  Guideway wheel setup with an in-line gear reducer and DC braking motor [22]  

 

 

 

Fig. 40: EDW vehicle setup consisting of 4 EDWs and brushless DC drive motors. Four laser displacement 

sensors were used to accurately measure air-gap dynamics 
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Table 1. Rotor, guideway, and vehicle parameters for the radial experimental setup 
Parameter    Value Unit 

Rotor 

Outer radius, ro 26 ± 0.58 mm 
Inner radius, ri 9.6 mm 
Width of rotor, wo 52 mm 
Residual flux density, Brem 1.42 T 
relative permeability, μr 1.108 - 
Pole-pairs, P 2 - 

Guideway 

Outer radius, rg 600 ± 0.73 mm 
Guideway width, wg 77 mm 
Thickness, h 6.3 mm 
Conductivity, σ (Al, 6061-T06) 2.459x10-7  Sm-1 

Vehicle 

Total mass, m 10.315 kg 
Length, 2l 0.173 m 
Width, 2w 0.3254 m 
z-axis rotational Inertia, Izz 0.08821 kgm2 
x-axis rotational Inertia, Ixx 0.1977 kgm2 
y-axis rotational inertia, Iyy 0.259 kgm2 

BLDC motors 
(Scorpion SII-
4035-
250KV)[74] 

Winding inductance, La 4.7×10-6 H H 
Winding resistance, Ra 0.037  Ω 
Back-emf constant, Ke 0.036  Vs/rad 
Torque constant, Kt 0.0295  Nm/s 
rotational inertia, J 0.00386  kgm2 
Viscous damping coefficient, b 2.295×10-6 Nmꞏs/rad 

 
 
The definitions used for each vehicle axis and motion are shown in Fig. 41 through 

Fig. 44.  Note that in these figures, ω1 – ω4 represent the rotational velocities, Fy1 – Fy4 

represent vertical forces, and Fx1 – Fx4 represent translational forces, and y1 – y4 represent 

rotor heights, on rotors 1 through 4, respectively. 

 

 
 

Fig. 41: 2-D sketch of vehicle pitch forces (x-y plane) 
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Fig. 42:  2-D sketch of vehicle roll forces (y-z plane) 
 

 

 
 

Fig. 43:  2-D sketch of pitch x-axis force induced pitching moment (x-y plane) 
 

 
 

Fig. 44:  2-D sketch of yawed vehicle from above (x-z plane)  

z 
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2.2 DAMPING AND STIFFNESS TERM DEFINITIONS 

The source field of the EDW can be modelled using a fictitious magnetic charge 

distribution, ρms, while the reflected eddy current plate field can be modeled using the 

magnetic scalar potential, ϕr [35].  The energy, Um, associated with the interaction of the 

surface charge distribution with the reflected field will be [35] 

*1

2
r

m ms

S

U dSr f= ò (2.1) 

where the star superscript denotes complex conjugation.  The force within the 

magnetostatic air region is defined as 

F
constantms

m p
U

=
= -  (2.2) 

where the force vector is composed of the 3 axial components of force: 

F ˆ ˆ ˆx y zF x F y F z= + + (2.3) 

Holding the surface charge distribution constant, the force in the magnetostatic region is 

F *1

2
r

ms

S

dSr f= - ò (2.4) 

Note that the magnetic scalar potential can be related to flux density by 

Br r
om f= -   (2.5) 

where μo is the vacuum permeability constant.  The force can then be rewritten as [69][70] 

F B*
1

2
r

ms
o S

dSr
m

= ò (2.6) 

The magnetic source field can be modeled using a fictitious magnetic charge sheet at 

a distance of yg above the a finite thickness conductive plate [32][33].  The plate width, wp, 
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and length, lp, are selected to be large enough that the field source and reflected eddy 

current field are zero at the edges.  Therefore, the model requires that the plate is infinitely 

wide and long.  The magnetic charge distribution must be related to the normal component 

of the source field at height yg, according to [33] 

                                               ( , ) 2 ( , , )s
ms y gx z B x y zr =  (2.7) 

Substituting (2.7) into (2.6) produces Maxwell stress tensor force on the conductive 

plate [35] 

                               
F B

/2 /2
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The force can be computed using a double Fourier approach in which case 

           ,( , , ) ( , , ) * ( , , )p p s r
g y mn g mn g

o m n

w l
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m

¥ ¥

=-¥ =-¥
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The source field located at y=yg must therefore be in Fourier harmonic form in order 

to achieve term-by-term mode matching of the source field with the conductive plate 

reflected eddy current field.  The Fourier harmonic field components at an airgap y is [35] 

                          , ( , , , )
mn gm n m
y yj x jk z jP ts

y mn mnB x y z t S e e e ekx w- -=  (2.10) 
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The Halbach source term in (2.8) was modeled by Paul et al [33][34].  The By 

component of the source field of a Halbach rotor in 3-D is 

               

w
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0

0

/22
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r ojP t jP
so r o
y c o o o o

B r e e
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             2 2 2( cos ) ( sin ) ( )c o o c o o c oR x x r y y r z z zq q= - - + - - + - -  (2.14) 

                                                           m mtq w=  (2.15) 

The steady-state reflected eddy-current field Fourier harmonic components, 
r
mnB , 

created above the conductive plate is given by [31][33] 
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where the reflection coefficient, Rmn, is given by 

                               coth2
0

2 2 2 ( )
mn

m n mn

mn

mn mn mnk h
R

x g

m st

k b b++ +
=

 (2.17) 

and where the following variable definitions apply 

     2 /m pm lx p=  (2.18) 

       2 /n pk n wp=  (2.19) 

 2 2 2
mn mnb l g= +  (2.20) 
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           00.5 yvl m s= -  (2.21) 

        2 2
0 ( )m m x n zmn mn Pw kj v vg k m s x += - +  (2.22) 

                     2 2 2
mn m nkk x= +  (2.23) 

         ( )mn mn y m m x n zv j Pw v k vt k x= + + +  (2.24) 

Note that the rotor is rotating with a rotational velocity of ωm and ( , , ) ( , , )c c cx y z x y z=  

is the position of the center of the rotor.  The steady-state field rotation of the rotor is 

modeled using the complex exponential term in (2.12).  Table 1 provides parameter 

definitions required by (2.17) - (2.24) and the standard values used for simulations in this 

chapter, where applicable.  The track length and width are modeled as lp = 250mm and 

wp = 150mm.  As the rotor diameter and width are 52mm, this ensures the field is zero at 

the model boundary edges. 

 

The eddy current forces generated for an EDW rotating above a finite thickness, 

conductive, non-magnetic, plate of infinite extent along the x-z plane, is obtained by 

substituting (2.10) and (2.16) into (2.9).  This yields [35] 

                 
F ˆ ˆ ˆRe s m n

p p mn mn
mn mnm n

j jk
w l B R x y z

x
k k

¥ ¥

=-¥ =-¥

ì üï ïé ùï ïï ïê ú= - +í ýê úï ïï ïë ûï ïî þ
å å  (2.25) 

The Smn term is defined in (2.10).  By a similar process, the eddy-current torque acting 

on the EDW can be calculated to be [35]: 

                            
Re s

em p p mn mn
mnm n

j
T w l P B R

k

¥ ¥

=-¥ =-¥

ì üï ï-ï ïï ï= í ýï ïï ïï ïî þ
å å  (2.26) 
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Note that (2.26) can also be written in terms of the imaginary component of the 

product of the source and reflected fields: 

                            Im
s
mn mn

em p p
mnm n

B R
T w l P

k

¥ ¥

=-¥ =-¥

ì üï ïï ïï ï= í ýï ïï ïï ïî þ
å å  (2.27) 

The change in eddy-current forces and torque is given by [35]: 
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q
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q

q

é ù¶ ¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ ¶ê úé ù ê ú¶ ¶ ¶ ¶ê ú ê úê ú ê ú¶ ¶ ¶ ¶ê ú ê ú= =ê ú ê ú¶ ¶ ¶ ¶ê ú ê úê ú ê ú¶ ¶ ¶ ¶ê ú ê úë û ê ú¶ ¶ ¶ ¶ê ú
ê ú¶ ¶ ¶ ¶ê úë û

 (2.28) 

Note the symmetry of the eddy-current stiffness matrix.  Note that the kni notation 

denotes the eddy current stiffness in the n axis with respect to i-axis displacement, where i 

can be x, y, z, or θm. 

 

We can note from (2.8) that the force will depend on the product of the source and 

reflected field.  In addition, the source field is delineated by axis components in (2.10).  

The change in force with respect to movement in any axis will depend on the partial 

derivative of (2.9).  Equation (2.9) must be used to evaluate the terms in (2.28) because 

after multiplying the reflected and source fields the dependence on (x,y,z) is eliminated due 

to the conjugation of the complex exponential terms.  We can view how each stiffness 

value will relate to (2.25) and (2.26) by taking the partial derivative of XX whilst holding 

the Fourier harmonic field in each axis: 
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                                                     mjx
x

¶
=

¶  (2.29) 

                                                     mny
k

¶
= -

¶      (2.30) 

                                                     njkz

¶
=

¶  (2.31) 

                                                     
r

jP
q
¶

=-
¶  (2.32) 

For the off-diagonal terms of the k matrix in (2.28): 

 Re sx
xy p p m mn mn

m n

F
k w l j B R

y
x

¥ ¥

=-¥ =-¥

ì üï ï¶ ï ïï ï= = í ýï ï¶ ï ïï ïî þ
å å  (2.33) 

   Rey sz
yz zy p p n mn mn

m n

FF
k k w l jk B R

y z

¥ ¥

=-¥ =-¥

ì üï ï¶¶ ï ïï ï= = = = - í ýï ï¶ ¶ ï ïï ïî þ
å å  (2.34) 

 Re sx z m n
xz zx p p mn mn

mnm n

F F k
k k w l B R

z x

x
k

¥ ¥

=-¥ =-¥

ì üï ï¶ ¶ ï ïï ï= = = = í ýï ï¶ ¶ ï ïï ïî þ
å å  (2.35) 

 Rer sx m
x x p p mn mn

r mnm n

FF
k k w l P B R

x

q
q

x
q k

¥ ¥

=-¥ =-¥

ì ü¶ ï ï¶ ï ïï ï= = = = - í ýï ï¶ ¶ ï ïï ïî þ
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 Rery s
y y p p mn mn

r m n

FF
k k w l P jB R

y

q
qq

¥ ¥

=-¥ =-¥

ì ü¶ ï ï¶ ï ïï ï= = = = í ýï ï¶ ¶ ï ïï ïî þ
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 Rer sz n
z z p p mn mn

r mnm n

FF k
k k w l P B R

z

q
qq k

¥ ¥

=-¥ =-¥

ì ü¶ ï ï¶ ï ïï ï= = = = - í ýï ï¶ ¶ ï ïï ïî þ
å å  (2.38) 

The diagonal terms of (2.28) are: 

      

2

Re sx m
xx p p mn mn

mnm n

F
k w l B R

x

x
k

¥ ¥

=-¥ =-¥

ì üï ï¶ ï ïï ï= = í ýï ï¶ ï ïï ïî þ
å å  (2.39) 
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2 1
Re sem

p p mn mn
r mnm n

T
k w l P B Rqq k

¥ ¥

=-¥ =-¥

ì üï ï¶ ï ïï ï= = í ýï ï¶ ï ïï ïî þ
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The eddy current damping terms can also be represented as a matrix: 
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 (2.43) 

 where ݀௡௜ represents the damping change in force in the n axis for a given change in 

the velocity of the i dimension.  Again, note that some of the terms have unique notation 

that will be used later in the chapter.  The reflection term (2.17) depends on velocity.  

Starting with the force/torque equations, (2.25) and (2.26)/(2.27), and multiplying by a 

term that accounts for the partial derivative of velocity in each axis, Mmn, we can arrive at 

a succinct representation of the damping terms [35]: 

                                     D M[ ] Re
s
mn

p p mn
mnm n

B
w l

k

¥ ¥

=-¥ =-¥

é ù= ë ûå å  (2.44) 

where 
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                            M =[ ]
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mn mn mn mn mn
mn

n x y z m
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R R R R
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 (2.45) 

The reflection coefficient derivative terms in (2.45) are 
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where  
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2.3 DAMPING AND STIFFNESS RELATIONSHIPS 
 
 
 The section serves to document the behavior of the rotor forces for a reasonable subset 

of operating conditions.   Surface and contour plots show how the stiffness and damping 

terms change with respect varying rotor speeds and translational movements.  The 

simulation operating parameters are as defined in Table 1. 

 

 Note that on the 4 EDW vehicle model, the rotor angular rotational velocity directions 

are as shown in Fig. 38.  The vehicle is assumed to be operating around a stationary 

operating point (vx is zero at t = 0) since the rotors on the front and back of the vehicle are 

pulling in opposite directions.  While a stationary vehicle is trivial for practical 

applications, it serves as good way to validate the model.  Once a satisfactory model is 

achieved, the addition of an x-velocity is a simple modification.  In fact, just applying a 

negative rotational velocity to one set of rotors (either front of back) will result in all rotors 

rotating in the same direction, applying a thrust to move the vehicle down the length of the 

track.  For section 2.3, in order to characterize the expected forces acting on each rotor, we 

simply consider a single rotor with rotational velocity ωm.   

 

 In the following sections, the stiffness and damping relationship with respect to the 

trust, Fx, and lift force, Fy, are investigated with respect to x, y, vx, vy, and ωm changes.  Slip, 

a variable relating ωm and vx can be defined: 

                                                  c m xs r vw= -  (2.52) 

We can also express the rotor’s rotational velocity as the linear surface velocity of the rotor: 
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                                                      r c mv r w=  (2.53) 

 

 Note that for the 2-D plots, a ωm of 3673rpm is often used because it adds a convenient 

10 m/s of slip, and because this is sufficient to levitate the prototype vehicle for our low 

speed tests.  The equivalence of 3673rpm rotor speed and 10 m/s of rotor slip is due to: 

                                     
10m / s

3673rpm
0.026mm

c

s

r
w = = =  (2.54) 

 The influence of Fz and vz, and z motion is neglected because the prototype vehicle is 

physically constrained in the z-axis.  When analyzing how the damping and stiffness terms 

are affected by s, vx, and vy, it is also beneficial to envision how the vehicle would typically 

operate.  Starting from a standstill, s = vx = vy = 0, slip increases until the vehicle levitated.  

Translational speed, vx, then begins to catch up to slip, until it reaches steady-state, at which 

point vx lags behind slip by a consistent amount.  Upon braking, slip lags behind vx by an 

amount dependent on the amount of braking force desired.  This is shown in Fig. 45, noting 

that this is the generalized behavior and the actual regions would vary based on operating 

conditions.   
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Fig. 45:  Approximate vehicle operating regions 
 

 

2.3.1 TRANSLATIONAL THRUST STIFFNESS 
 
 
 In the following section Fig. 46 shows how the translational force, Fx, varies with slip, 

for various values of translational velocity, vx.  Again, note that the prototype vehicle is not 

meant to be run at any significant translational speed, so vx is chosen to only vary from -20 

m/s to 20 m/s.  Additionally, keeping the slip magnitude below 20 m/s prevents the hand-

built prototype EDWs from exceeding their mechanical limitations. 

 

Steady-State
Acceleration
Braking
Heavy Braking
s = v

x
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Fig. 46: Thrust/translational force, Fx, vs. slip for various values of translational velocity, vx, y = 10mm and 

all other positions and velocities zero 

 

 Fig. 47 and Fig. 48 show how the translational stiffness in the x-direction, kxx, is 

affected by slip and vx.  The definition of kxx is 

                                               
x

xx x y m

F
k v v

x
( , , )w

¶
=

¶  (2.55) 

 The symmetry about the s-vx line, despite being offset by rotor velocity, implies that 

the stiffness is affected similarly by both slip and x velocity.  This is expected from (2.52)

, since slip is related to both vx and ωm.  As kxx is always less than zero under these operating 

conditions (note that vy is zero here), it is a stabilizing force in the x-axis.  When either vx 

or slip increases in magnitude, the stabilizing force becomes greater.  Fig. 49 better shows 

the behavior when rotor speed is held constant (ωr = 3673 rpm, or vr = 10 m/s).  It is clearly 

evident that the stiffness term decreases as the rotor moves faster relative to the track.  A 

minimum stiffness is achieved when the x velocity is offset by the rotor velocity such that 

                                                             x mv row=  (2.56) 
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 In steady-state operation, kxx is less stabilizing, and becomes more stabilizing as the 

vehicle accelerates and decelerates significantly.  Light braking that moves the system 

towards equation (2.56) can minimize the stabilization. 

 

Fig. 47:  Surface plot of kxx vs. slip vs. vx, (vy = 0) , y = 10mm, and all other positions and velocities zero 
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Fig. 48:  Contour plot of kxx vs. slip vs. vx, (vy = 0), y = 10mm, and all other positions and velocities zero 

 
 
 

 

Fig. 49:  Plot of kxx and Fx vs. vx  when (vy,vr) = (0,10) m/s, y = 10mm and all other 

positions and velocities zero 
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 In order to evaluate how vy affects kxx, we can first observe how the force is affected 

by a range of expected heave values, shown in Fig. 50.  Note that any non-zero heave is 

considered transient, and is expected to be small, so we chose to evaluate only from 

vy = 5 m/s to vy = 5 m/s. 

 

Fig. 50:  Trust/translational force, Fx vs. slip for various values of vy, y = 10mm and all 

other positions and velocities zero 

 
 
 The surface and contour plots in Fig. 51 and Fig. 52 show the translational stiffness 

changes as slip and vy vary when vx = 0 m/s .  The plotting area was chosen to show the 

expected behavior in the operating region.  We can see that in the expected operating 

region, slices of kxx changes fairly linearly when slip is constant.  This helps bolster the 

argument for linearizing this dynamic for control purposes.  While kxx is negative and 

therefore stabilizing for a majority of the operating region, kxx becomes positive and 

therefore destabilizing when the vertical velocity is strongly positive and the slip speed is 

small.  While this must be considered for transient behavior, during cruise, the vehicle 

would have significant slip and very little vertical velocity.  Increasing slip magnitude, on 

the other hand, is a stabilizing action on kxx with respect to vy, since increasing slip 
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magnitude drives the stiffness down.  Fig. 53 shows that when rotor speed is held constant 

at (vx, vr) = (0,10) m/s , kxx increases nearly linearly with vy.  Notice that when the rotor 

speed is 3673 rpm, kxx is negative and therefore stabilizing. 

 

 

Fig. 51:  Surface plot of kxx vs. slip vs. vy, y = 10mm, and all other positions and 

velocities zero (note vx = 0, so slip is analogous to ωm) 
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Fig. 52:  Contour plot of kxx vs. slip vs. vy, y = 10mm, and all other positions and 

velocities zero (note vx = 0, so slip is analogous to ωm) 

 

 

Fig. 53:  Plot of kxx and Fx, vs. vy when (vx, vr) = (0,10) m/s, y = 10mm and all other 

positions and velocities zero 
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2.3.2 TRANSLATIONAL HEAVE STIFFNESS 
 

The definition of the heave translational force, kxy, is the partial derivative of thrust 

force with respect to vertical position: 

                                               
x

xy x y m

F
k v v

y
( , , )w

¶
=

¶  (2.57) 

Note that due to symmetry of the stiffness matrix defined in equation (2.28), kxy can 

also be defined as the partial derivative of lift force with respect to horizontal position: 

                                               
y

xy x y m

F
k v v

x
( , , )w

¶
=

¶  (2.58) 

Therefore, due to this off-diagonal equivalence in (2.28), the lift force will be affected 

by δx the same way that thrust force is affected by δy.   

 

Fig. 54 and Fig. 55 show the relationship of kxy with slip and vx.  The plots show 

symmetrical behavior as expected from equation (2.52).  Note that despite the nonlinear 

behavior, there exists a general trend of a positive, destabilizing stiffness for larger slip and 

translational velocities, and a negative, stabilizing stiffness for smaller slip and 

translational velocities.  The line s = vx is the cutoff between stabilizing and destabilizing 

kxy contribution.  In addition, we can observe that as slip or translational velocity become 

very large, kxy values plateau and weakly decrease in magnitude.   

 

From Fig. 45, we can see that this dynamic would be strongly stable during 

acceleration, weakly stable during steady-state operation, and less stable as more braking 
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force is applied.  Note that stability while braking is only possible when a small braking 

force is applied that does not cross the s = vx threshold. 

 

Fig. 54:  Surface plot of kxy vs. slip vs. vx, (vy = 0), y = 10mm, and all other positions and velocities zero 
 
 

 

Fig. 55:  Contour plot of kxy vs. slip vs. vx, (vy = 0), y = 10mm, and all other positions and velocities zero 
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Fig. 56 shows how kxy changes as vx changes while (vy, vr) = (0,10) m/s.  The non-

linear, non-quadratic behavior can have an adverse impact on the application of control if 

we chose to use a linear system representation, necessitating updating the model during 

run-time to reflect the actual kxy value.  Large forward translational speeds (an expected 

operating condition) lead to instability. 

 

Fig. 56:  Plot of kxy and Fx vs. vx when (vy, vr) = (0,10) m/s, y = 10mm and all other 

positions and velocities zero 

 
 

Fig. 57 and Fig. 58 show how kxy varies with slip and vy.  Slices of kxy vs. s when vy is 

held constant show that kxy becomes more stabilizing with increased slip, while slices of 

kxy vs. vy when s is held constant show that kxy is more stabilizing with increasing vertical 

velocity when slip is positive and more destabilizing with increased vertical velocity when 

slip is negative.  Due to the symmetry of the stiffness matrix from equation (2.28), k, we 

can also infer the same stabilizing/destabilizing action in the x-axis.  A slice of kxy vs vy 
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constant rotor velocity, which is a reasonable assumption for a vehicle travelling at a 

constant velocity.  This term therefore lends itself well to linear modeling in this mode. 

 

Fig. 57:  Surface plot of kxy vs. slip vs. vy, y = 10mm, and all other positions and 

velocities zero (note vx = 0, so slip is analogous to ωm) 
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Fig. 58:  Contour plot of kxy vs. slip vs. vy, y = 10mm, and all other positions and 

velocities zero (note vx = 0, so slip is analogous to ωm) 

 
 

 

Fig. 59:  Plot of  kxy and Fx vs. vy when (vx, vr) = (0,10) m/s, y = 10mm and all other 

positions and velocities zero 
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Observing Fig. 54 and Fig. 57 or Fig. 55 and Fig. 58, a possible detrimental synergistic 

effect can be noticed.  If the system is operating in an unstable braking region, then the 

braking force will be increased, leading to a larger change in x.  This larger change in x, 

from (2.57), will lead to larger changes in Fy and therefore y, which, because of (2.58), will 

lead to larger changes in Fx and therefore x, thus indicating a positive feedback loop. 

 

2.3.3 VERTICAL HEAVE STIFFNESS 
 

The heave vertical stiffness, kyy, is defined as the partial derivative in vertical force 

with respect to variations in the vertical position: 

                                                  
y

yy x y m

F
k v v

y
( , , )w

¶
=

¶  (2.59) 

The vertical lift force, Fy, is always positive when vy = 0 and generally tends to 

increase when the quantity s - vx increases, as shown in Fig. 60. 

 

Fig. 60: Fy vs. slip for various values of vx, y = 10mm, and all other positions and velocities zero 
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The surface and contour plots in Fig. 61 and Fig. 62 show the relationship of kyy with 

slip and vx.  Again we obtain near symmetry about s = vx  due to (2.52).  The negative 

values suggest kyy with respect to slip and vx is always stabilizing in the y-axis under the 

expected operating conditions.  Additionally, the magnitude gets larger for larger slip and 

vx values (further from the s - vx line), applying more restorative force.  The magnitude of 

kyy at extreme slip and translational velocities is also larger than other stiffness terms, so 

kyy has a very pronounced open loop stabilizing effect.  The strongly negative kyy value is 

why past researchers have stated that electrodynamic levitation is stable [55].  Fig. 63 

shows a slice of kyy vs. vx, showing a nonlinear characteristic when (vy, vr) = (0,10) m/s.  

Note that for mild braking in the vicinity of s = vx, there is a reduction in the stabilizing 

force, but during more pronounced transient operation (accelerating or braking), kyy 

increases.   

 

 

Fig. 61:  Surface plot of kyy vs. slip vs. vx, (vy = 0), y = 10mm, and all other positions and velocities zero 
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Fig. 62:  Contour plot of kyy vs. slip vs. vx, (vy = 0), y = 10mm, and all other positions and velocities zero 

 
 

 

Fig. 63:  Plot of kyy and Fx vs. vx when (vy, vr) = (0,10) m/s, y = 10mm and all other 

positions and velocities zero 
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The variation of vertical force with respect to vertical velocity is shown in Fig. 64. 

 

Fig. 64:  Fy vs. slip for various values of vy, y = 10mm, and all other positions and velocities zero 
 

 
The surface and contour plots in Fig. 65 and Fig. 66 show how kyy is affected by slip 

and vy.  kyy and vy are positively correlated, implying that increasing vy reduces stabilizing 

action.  More stability is observed as the slip magnitude increases.  This is a fortunate 

dynamic, since one would expect a significant slip in order to maintain an airgap and 

provide thrust.  Fig. 67 shows this strong linearity when rotational velocity is held such 

that (vx, vr) = (0,10) m/s.  This can be exploited to simplify run-time re-calculations of kyy 

in a state-space system. 
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Fig. 65:  Surface plot of kyy vs. slip vs. vy, y = 10mm, and all other positions and 

velocities zero (note vx = 0, so slip is analogous to ωm) 

 

 

Fig. 66:  Contour of kyy vs. slip vs. vy, y = 10mm, and all other positions and velocities 

zero (note vx = 0, so slip is analogous to ωm) 
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Fig. 67:  Plot of kyy  and Fx vs. vy when (vx, vr) = (0,10) m/s, y = 10mm and all other 

positions and velocities zero 

 
 
 

2.3.4 TRANSVERSE STIFFNESS 
 

The transverse stiffness, kzz, is defined by the partial derivative of Fz with respect to 

the transverse z-axis position. 

                                               ( , , ) z
zz x y m

F
k v v

z
w

¶
=

¶  (2.60) 

The transverse stiffness is almost always destabilizing. Fig. 68 and Fig. 69 are surface 

and contour plots that show how it changes with slip and translational velocity and Fig. 70 

and Fig. 71 are surface and contour plots that show how it changes with slip and vertical 

velocity, vy.  For the case when the vehicle’s z-axis position is centered on the track (δz = 

0), and vertical velocity is zero (vy = 0), depicted by Fig. 68 and Fig. 69, the transverse 

force, Fz, is zero, and will become positive with any movement along the z-axis, since kzz 
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will be positive.  In fact, it is evident from the plots in the section that under most operating 

conditions, kzz will be positive.  A positive kzz is deleterious to an EDW vehicle, as it causes 

the vehicle to move towards the side of the track, where the eddy currents will be influenced 

by edge effects, and finally the vehicle will catastrophically fall off the track. 

 

Increases in slip are positively correlated with increasing kzz.  Interestingly increasing 

vy tends to cause kzz to decrease and can be a stabilizing influence.  This means that the 

vehicle will experience a brief increase in transverse stability during an increase in the 

airgap (as when lifting off from a standstill), but conversely destabilization occurs when 

the heave velocity is in the direction that reduces the airgap.   

 

 

Fig. 68: Surface plot of the transverse stiffness, kzz, as a function of slip, s, and 

translational velocity when (x,y,z) = (0,10,0) mm and (vy,vz) = (0, 0) m/s 
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Fig. 69: Contour plot of the transverse stiffness, kzz, as a function of slip, s, and 

translational velocity when (x,y,z) = (0,10,0) mm and (vy,vz) = (0, 0) m/s 

 

 

Fig. 70: Surface plot of the transverse stiffness kzz vs. slip and heave, vy when 

(x,y,z) = (0,10,0) mm and (vx,vz) = (0, 0) m/s 
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Fig. 71: Contour plot of the transverse stiffness kzz vs. slip and heave, vy when 

(x,y,z) = (0,10,0) mm and (vx,vz) = (0, 0) m/s 

 

 
 

2.3.5 TRANSVERSE THRUST STIFFNESS 
 

The transverse thrust stiffness, kzx, is defined by the partial derivative of transverse 

force with respect to horizontal position: 

                                               ( , , ) z
zx x y m

F
k v v

x
w

¶
=

¶  (2.61) 

Both Fz and kzx are zero when the rotor is centered above the track with no z-axis 

velocity.  A transverse force and its partial derivatives appear when the rotor experiences 

a disturbance in the z direction.  To illustrate how kzx is affected by motion along x-axis, it 

is plotted versus slip and translational velocity in Fig. 72 and Fig. 73 for the case when the 

rotor is disturbed in the z-axis by allowing z = 5mm and vz = 5m/s.  It is most important to 

observe the behavior of kzx as vx varies, since it is expected that the vehicle will have a large 
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forward velocity that varies greatly during operation.  The plot reveals that in the typical 

acceleration and cruising conditions, kzx produces a restorative force, but during braking 

the contribution from kzx will be destabilizing.   

 

Fig. 72: Surface plot of the transverse thrust stiffness kzx vs. slip and translational 

velocity, vx when (x,y,z) = (0, 10, 5) mm and (vy, vz) = (0, 5) m/s 
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Fig. 73: Contour plot of the transverse thrust stiffness kzx vs. slip and translational 

velocity, vx when (x,y,z) = (0, 10, 5) mm and (vy, vz) = (0, 5) m/s 

 
 
 

2.3.6 TRANSVERSE HEAVE STIFFNESS 
 

The transverse heave stiffness, kzy, is defined by the partial derivative of Fz with 

respect to the vertical y-axis position: 

                                               ( , , ) z
zy x y m

F
k v v

y
w

¶
=

¶  (2.62) 

Similar to the transverse thrust stiffness, kzy is zero for a rotor in which (z,vz) = (0,0).  

Again, to observe the behavior as vx changes, we simulate a rotor which has been disturbed 

in the z-axis such that (z,vz) = (5 mm, 5 m/s), then plot the results versus slip and vertical 

velocity, shown in Fig. 74 and Fig. 75.  The plot shows that the contribution from kzy is 

always destabilizing in the z-axis but is particularly large roughly when vx = 2s.  Slip that 

is much larger than vx tends to decrease kzy, suggesting that lighter, more efficient vehicles 
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which don’t require a large differential between forward velocity and slip will be more 

severely affected by transverse heave stiffness.  A heavy vehicle with more drag will 

require more slip to levitate and overcome drag, thereby forcing kzy closer to zero.  It’s also 

important to note that the destabilizing contribution of kzy becomes significantly more 

pronounced in the braking region of operation. 

 

 

Fig. 74: Surface plot of the transverse heave stiffness kzy vs. slip and translational 

velocity, vx when vy = 0, vz = 5 m/s and (x,y,z) = (0,10,5) mm and (vy, vz) = (0, 5) m/s 
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Fig. 75: Contour plot of the transverse heave stiffness kzy vs. slip and translational 

velocity, vx when vy = 0, vz = 5 m/s and (x,y,z) = (0,10,5) mm and (vy, vz) = (0, 5) m/s 

 
 

2.3.7 THRUST TRANSLATIONAL DAMPING 
 

Thrust translational damping is defined as the partial derivative of translational force 

with respect to translational velocity: 

                                               
x

xx x y m
x

F
d v v

v
( , , )w

¶
=

¶  (2.63) 

The surface and contour plots in Fig. 76 and Fig. 77 show how dxx varies with slip and 

vx.  Stabilizing damping is observed near s = vx.  The damping increases nonlinearly as the 

system moves away from this line, plateauing near zero for large magnitude slip and vx 

values.  Fig. 78 shows the behavior of dxx as vx varies and (vy, vr) = (0,10) m/s.  When the 

rotor’s surface velocity matches the x velocity, the damping is minimized to produce more 

stable dynamics.  The non-linear behavior means a more compute-intensive algorithm (ie. 
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the SOVP model) is required for re-calculating dxx during run-time, rather than a linear 

interpolation.  Steady-state cruising and mild to moderate braking will keep the EDW in 

the stable region.  Heavy acceleration and emergency braking will push dxx towards 

instability. 

 

Fig. 76:  Surface plot of dxx vs. slip vs. vx, (vy = 0), all other positions and velocities zero 
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Fig. 77:  Contour plot of dxx vs. slip vs. vx, (vy = 0), all other positions and velocities zero 

 
 

 

Fig. 78:  Plot of dxx and Fx vs. vx when (vy, vr) = (0,10) m/s, all other positions and velocities zero 
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The surface and contour plots in Fig. 79 and Fig. 80 show the relationship of dxx with 

respect to slip and vy.  While slices with respect to slip are non-linear, slices with respect 

to vy are only weakly non-linear and for control purposes may be approximated as linear.  

Reduced slip magnitude and larger vertical velocities affect the stabilization on dxx.  During 

operation one would expect slip to be moderately large, which would lead to a near zero 

contribution on the x-axis dynamics from dxx.  Reduced slip during braking would cause 

dxx
 to apply restorative force to the system.   Fig. 81 confirms that while dxx vs. vy is not 

exactly linear, it could be approximated as linear within a subset of the operating region. 

 

Fig. 79:  Surface plot of dxx vs. slip vs. vy, all other positions and velocities zero 

(note vx = 0, so slip is analogous to ωm) 
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Fig. 80:  Contour plot of dxx vs. slip vs. vy, all other positions and velocities zero 

(note vx = 0, so slip is analogous to ωm) 

 

 

Fig. 81:  Plots of dxx and Fx vs. vy when (vx, vr) = (0,10) m/s, all other positions and velocities zero 
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2.3.8 TRANSLATIONAL HEAVE DAMPING 
 

The translational heave damping term is defined as the partial derivate of translational 

force with respect to vertical velocity: 

                                               
x

xy x y m
y

F
d v v

v
( , , )w

¶
=

¶  (2.64) 

The surface and contour plots Fig. 82 and Fig. 83 show that dxy varies with vx and slip 

non-linearly.  The largest and smallest values of dxy lie in the heavy braking operating 

region.  Note that for negative values of the quantity vx - s, the translational heave damping 

is stabilizing, while for positive values of vx - s, it is destabilizing.  The non-linearity 

complicates the linear modeling and control of the system, and will require updating the 

dxy term using the analytic model during run-time to achieve high accuracy. A near-zero 

damping is observed when s = vx.  Fig. 84 shows one slice of dxy vs. vx when (vy, vr) = (0,10) 

m/s, again showing nonlinearity and the fact that faster translational velocity leads to 

instability in dxy. 

 

As the vehicle accelerates from a standstill, the thrust translational damping is pushed 

into the negative region.  As vx increases up to steady-state, the damping magnitude is 

decreased, but remains negative.  Beyond mild braking (s - vx < 0) the damping becomes 

positive and destabilizing. 
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Fig. 82:  Surface plot of dxy vs. slip vs. vx, (vy = 0), all other positions and velocities zero 

 

 

Fig. 83:  Contour plot of dxy vs. slip vs. vx, (vy = 0), all other positions and velocities zero 
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Fig. 84:  Plot of dxy and Fx vs. vx when (vy, vr) = (0,10) m/s, all other positions and velocities zero 

 
 

The surface and contour plots in Fig. 85 and Fig. 86 show how dxy varies with slip and 

vy.  Within the reasonable operating region plotted, vy does not have a large effect on dxy.  

This is convenient for an accurate linearization around an operating point in this region.  

The nonlinear behavior with respect to slip shows that dxy is negative in the expected 

steady-state cruising region as well as during acceleration and normal braking (where slip 

is positive) and is therefore stabilizing.  Fig. 87 shows the approximately quadratic shape 

of dxy with respect to vy.  To reduce compute time, dxy could be approximated by a quadratic 

function during run-time.  Note the stabilizing effect of dxy when the when 
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Fig. 85:  Surface plot of dxy vs. slip vs. vy, all other positions and velocities zero 

(note vx = 0, so slip is analogous to ωm) 

 

 

Fig. 86:  Contour plot of dxy vs. slip vs. vy, all other positions and velocities zero 

(note vx = 0, so slip is analogous to ωm) 
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Fig. 87:  Plot of dxy  and Fx vs. slip vs. vy when (vx, vr) = (0,10) m/s, all other positions and velocities zero 

 
 
 

2.4 CONCLUSION  
 

In this chapter, an exact 3-D eddy current based stiffness and damping model has been 

used to study the static stability of a 4-DOF EDW maglev system.  The most significant 

damping and stiffness terms have been plotted in sections 2.3.1 through 2.3.8.    Although 

many of the damping and stiffness terms are highly nonlinear, one can make general notes 

about the stability contribution of these terms in the operating region from s = -20m/s to 

20m/s, vx = -20m/s to 20 m/s, and vy = -5m/s to 5m/s.   

 

This chapter also serves as a possible reference for real-world controller design outside 

of the forgiving realm of simulation-space.  As discussed later in Chapter CHAPTER 5:, 
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important as the vehicle moves away from its starting operating conditions.  The SOVP 

calculation time is not trivial, and with the constraints of finite computing power, knowing 

which terms strongly contribute destabilizing forces on the system allows a controller 

designer to prioritize which terms are updated first and/or more frequently.   

 

The stability of the selected damping and stiffness terms in relation to vx when 

(s, vy) = (0, 0) is shown in Table 2.  Note that kxy and dxy are unstable when vx is positive, 

and dxx becomes unstable if the magnitude of vx becomes large enough.  Another positive 

feedback loop exists between kxx and dxy for positive vx values, since kxx can exert more 

effect on Fx (and therefore vx) with larger δy, and dxy becomes increasingly unstable with 

larger vx.  The value of kzz is infinitesimal as translational velocity moves towards zero, but 

grows large as the magnitude of vx increases. 

     
    Table 2: Stability of damping and stiffness terms when s = 0, vy = 0, and vx varies 

Term 
vx (m/s) 

-20               -10                0               10               20 
Legend 

kxx  

 

kxy  
kyy  
kzz  
dxx  
dxy   

 

The stability in relation to vy when (s, vx) = (0, 0) is shown in Table 3, which indicates 

that kxx and kyy are unstable when vy is positive, and that vy does not have a strong influence 

on kxy and dxy at this operating point.  At vy = 0, kzz is zero, but becomes increasingly 

unstable with increasing vertical velocity and increasingly stable with decreasing vertical 

velocity. 

 

UNSTABLE 

STABLE 
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    Table 3: Stability of damping and stiffness terms when s = 0, vx = 0, and vy varies 

Term 
vy (m/s) 

-5               -2.5                0               2.5               2.5 
Legend 

kxx  

 

kxy  
kyy  
kzz  
dxx  
dxy  

 

Finally, the stability in relation to s when (vx, vy) = (0, 0) is shown in Table 4.  In this 

case, kxy and dxy are unstable when s is negative and dxx becomes weakly unstable when the 

magnitude of s becomes large.  kzz is always positive and tends to become further unstable 

as slip increases in magnitude.  The synergistic effect, or a positive feedback loop, when 

kxy and dxy are both positive, is also present with the slip dynamic as it was with vx. 

 

    Table 4: Stability of damping and stiffness terms when vy = 0, vx = 0, and s varies 

Term 
s (m/s) 

-20               -10                0               10               20 
Legend 

kxx  

 

kxy  
kyy  
kzz  
dxx  
dxy  

 

It is worth noting that the damping exhibited by the EDW system is rather small in 

comparison to the stiffness.  Using a simple mass-spring-damper system as an analogous 

example, where the system’s equation of motion is: 

                                                    
2

2
0  

d x dx
m c kx

dt dt
 (2.65) 

where c is the damping coefficient and k is the stiffness coefficient.  As an illustrative 

example, consider the 1-dimensional EDW system in the x-axis, such that  

UNSTABLE 

STABLE 

UNSTABLE 

STABLE 
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                                                                xxc d  (2.66) 

                                                                xxk k  (2.67) 

The critical damping ratio, 

                                                           2cc km  (2.68) 

would be quite large for a vehicle operating at cruise.  For a cruising point of vx = 10 m/s,  

vy = 0 m/s, and s = 16 m/s, and parameters defined by Table 1,  

                                                    201.03cc  [N/m/s]  (2.69) 

                                                      2.143c  [N/m/s]  (2.70) 

The damping ratio is therefore 

                                                       0.0107  
c

c

c
 (2.71) 

Although the system is stable, it is quite underdamped.  This behavior is observed for 

other axes as well.  Weak damping is one of the reasons that the EDW system necessitates 

an active control method. 
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CHAPTER 3:   MAGLEV VEHICLE DYNAMIC MODEL 
 

In this Chapter, equations of motion are derived for the prototype maglev vehicle in 4 

degrees of freedom.  These equations will be used later to represent the system in state-

space form.  Section 3.1 defines the vehicle motion about each axis, section 3.2 defines the 

forces generated by each EDW, and sections 3.3, 3.4, 3.5, and 3.6 define the vehicle’s 

height, roll, pitch, and yaw motion, respectively.  The equations of motion are written in 

terms of EDW rotational velocities, but will be expanded to include motor dynamics in 

chapter CHAPTER 4:.  Note that while not explicitly notated in the equations, all of the 

vehicle’s motions and forces are varying in time. 

Equation Chapter (Next) Section 1 

3.1 AXIS MOTION DEFINITIONS 
 

The 2nd law of motion in an inertial system is: 

                                          mF v  (3.1) 

where F is the net force vector, m is the mass of the vehicle, v is the net velocity vector, 

and 

                            x y zF F F  F x y z
  

   (3.2) 

                              x y zv v v  v x y z
  

    (3.3) 

where Fx, Fy, Fz and vx, vy, vz are the forces and velocities, respectively, acting in a reference 

frame x̑, y̑, z̑.  The reference frame used for controlling the maglev vehicle is 

                          
1 0 0

0 1 0

0 0 1

x y z

 
   
  

   T  (3.4) 
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as described by Fig. 38 and Fig. 41 - Fig. 44, although the equations are left more general 

until necessary.  The rotation in an inertial system is governed by 

                                     M H     (3.5) 

The moment vector M can be written as 

                                x y zM M M  M x y z
  

   [Nm] (3.6) 

where Mx, My, and Mz are the moments acting in the aforementioned reference frame and 

H is the angular moment: 

                                  TH Iω     (3.7) 

Note that the superscript T denotes transposition and 

                                       x y z    ω x y z
  

   [rad/s] (3.8) 

where ωx, ωy, and ωz denote the vehicles rotation in the x̑, y̑, z̑ reference frame and the 

inertia matrix is 

                                       
xx xy xz

yx yy yz

zx zy zz

I I I

I I I

I I I

 
 

  
 
 

I    [kgm2] (3.9) 

The inertia components written in the form Ipq can be interpreted as the inertia in the 

pth axis when the vehicle rotates about the qth axis.  Assuming our coordinate system is 

located at the principal axis of inertia then 

                                         

0 0

0 0

0 0

xx

yy

zz

I

I

I

 
 

  
 
 

I     (3.10) 

Equations (3.1) and (3.5) are only valid in an inertial frame [36].  If a body fixed frame is 

rotating with rotation vector ω then for any vector u the time derivative of u is given by  
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                                             I B
  u u ω u      (3.11) 

where subscripts I and B denote inertial and body fixed reference frame, respectively. 

Therefore, utilizing (3.11) equations (3.1) and (3.5) become:  

                                   B
m m  F v ω v     (3.12) 

                              
B

  M H ω H     (3.13) 

Expanding out (3.12) one obtains 

                      
x x

y y x y z

z z x y z

F v

F m v m

F v v v v

  
   
   

    
   
   

x y z
  





    (3.14) 

Evaluating (3.14) gives 

                       
x y z z yx

y y x z z x

z z x y y x

v v vF

F m v v v

F v v v

 

 

 

   
  

    
       






    (3.15) 

Substituting (3.7) into (3.13) gives 

                                   M H ω Iω   T

B
 (3.16) 

Substituting (3.10) and (3.8) into (3.16) yields 

      

0 0

0 0

0 0

x x xx x

y y yy y

z z zz z

M H I

M H I

M H I






       
       

         
       
       

ω





    (3.17) 

Substituting (3.8) and (3.10) into (3.7), the first term in (3.17) is: 

                             

0 0

0 0

0 0

H

 
 

 

     
     

      
     
     

 
  

 

xx x xx x

yy y yy y

zz z zz z

I I

I I

I I

 (3.18) 
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Evaluating the cross product term in (3.17) and substituting (3.18) into (3.17) gives 

                           
xx x y z zz z y yyx

y yy y x z zz z x xx

z zz z x y yy y x xx

I I IM

M I I I

M I I I

    

    

    

   
  

    
       






    (3.19) 

Rearranging (3.15) and (3.19) yields a set of 6 first order differential equations 

                         x
x y z z y

F
v v v

m
 (3.20) 

                            y
y x z z x

F
v v v

m
    (3.21) 

                     z
z x y y x

F
v v v

m
 (3.22) 

                          [ ] /x x y z zz z y yy xxM I I I           (3.23) 

                 [ ] /y y x z zz z x xx yyM I I I           (3.24) 

                          [ ] /z z x y yy y x xx zzM I I I           (3.25)  
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3.2 FOUR DEGREES OF FREEDOM MODEL 
 

The EWV, shown in Fig. 37, is constrained to move dynamically only in the vertical, 

or y-direction.  Therefore it is assumed that 

 0x   (3.26)                 

  0z    (3.27)  

  0xv      (3.28)  

  0zv          (3.29) 

Note that although the vehicle’s center of mass does not vary in the x or z direction, it 

is free to rotate about any axis.  In order to model the EWV in this way, a 4-degree-of-

freedom model is required.  The variable definitions for the model are shown in Fig. 41 

through Fig. 44 and the EDW numbering is shown in Fig. 38.  The heights, y1, y2, y3, y4 are 

the airgaps between each EDW and the aluminum guideway. The average vehicle airgap 

height is: 

 1 2 3 4( ) / 4   y y y y y            (3.30) 

Defining: 

 1 2
12 2

y y
y


  (3.31) 

 3 4
34 2

y y
y


   (3.32) 

     34 12sin( )
2

 
x

y y

w
  (3.33) 

Substituting (3.31) and (3.32) into (3.33) yields 

     4 3 2 1sin( )
4

   
x

y y y y

w
  (3.34) 
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Equation (3.34) can be approximated using the small angle approximation of sine from the 

air-gap heights of each rotor: 

 3 4 1 2

4
   

x
y y y y

w
                       (3.35) 

and the vehicle pitch angle, θz, can be similarly approximated:  

  3 2 1 4

4z
y y y y

l
   

                   (3.36) 

This is a practical method of measuring the angles as the rotor heights are measured 

using laser sensors. Using a small angle approximation is reasonable since the EWV is 

assumed to always operate with a small angle offset.  The vehicles roll and pitch angular 

velocity are defined as  

   x x   (3.37)             

  z z                                        (3.38) 

The vehicles average vertical velocity is defined as  

   yy v                               (3.39)  

while the vertical velocity associated with each EDW air-gap will be 

       n yny v                                                (3.40) 

where subscript n denotes the corner number (n = 1, 2, 3, 4) as shown in Fig. 38. Assuming 

that the lateral force is zero  

 0zF                                                   (3.41) 

and with (3.26)-(3.29) equations (3.20)-(3.25) simplify down to  

     0 x z yF v   (3.42) 

     /y yv F m     (3.43)  
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     0 [ ] /   x y y xv v m  (3.44) 

   [ ] /x x y z zz z y yy xxM I I I           (3.45) 

    [ ] /y y x z zz z x xx yyM I I I        (3.46)  

    [ ] /z z x y yy y x xx zzM I I I           (3.47) 

Note that as it is assumed that ωx, ωy, ωz, and vy are all small (and less than 1), then, 

when linearized, the products ωzvy, ωxvy, ωyvx, ωyωz, ωxωz, ωxωy will be very small.  This 

makes (3.42) and (3.44) close enough to zero to be trivial, and components of (3.45)-(3.47) 

will also be approximately zero.  The result is a set of four simplified second order 

differential equations 

    /y yv F m                       (3.48) 

    /  x x xxM I                            (3.49) 

    /  y y yyM I   (3.50)  

         /  z z zzM I                               (3.51) 

The vehicle is prevented from moving along the x and z axes.  The eddy current force 

created by each EDW is a function of the height, velocity and angular velocity. The force 

is calculated using the force terms given by Paul [31][35] in equation (2.25). The directions 

of the EDW forces are shown in Fig. 41 through Fig. 44.  The total vertical force will be 

    
1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

( , , ) ( , , )

( , , ) ( , , )

 

 

 

  

y y
y y m y m

y y
y m y m

F F y v F y v

F y v F y v mg
 (3.52) 

where ܨ௡
௬  represents the vertical force on the nth rotor.  Note that sometimes force 

components are written using a subscript only notation rather than a subscript and 

superscript notation which is often used to shorten equations.  These are used 
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interchangeably and can be thought of as equivalent, so that an arbitrary force ܨ௡௠  is 

equivalent to ܨ௠௡. Referring to Fig. 42 the moment vector around the x-axis will be 

   
3 2 2 2 4 3 3 3

1 4 4 4 2 1 1 1

[ ( , , ) ( , , )

( , , ) ( , , )]

 

 

 

 

y y
x y m y m

y y
y m y m

M F y v F y v

F y v F y v w
 (3.53) 

Referring to Fig. 44, the moment vector around the y-axis will be 

       
1 2 2 2 2 3 3 3

3 4 4 4 4 1 1 1

[ ( , , ) ( , , )

( , , ) ( , , )]

 

 

 

 

x x
y y m y m

x x
y m y m

M F y v F y v

F y v F y v w
   (3.54) 

where Fn
x represents the x-axis force on the nth rotor.  Referring Fig. 43, the moment 

vector around the z-axis will be 

2 1 1 1 3 2 2 2 1 3 3 3 4 4 4 4

1 2 2 2 4 3 3 3 2 4 4 4 3 1 1 1

[ ( , , ) ( , , ) ( , , ) ( , , )]

[ ( , , ) ( , , ) ( , , ) ( , , )]

   

   

   

    

y y y y
z y m y m y m y m

x x x x
y m y m y m y m s

M F y v F y v F y v F y v l

F y v F y v F y v F y v d
   (3.55) 

where the moment caused by the x-axis forces are due to the vehicle’s center of gravity 

being offset from the bottom of the rotors by a distance of ds: 

                                                    sin( )sd d  (3.56) 

Substituting (3.52) - (3.55) into  (3.48) – (3.51)  gives: 

 
1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

[ ( , , ) ( , , )

1
( , , ) ( , , )]

 

 

 

  

 y y
y y m y m

y y
y m y m

v F y v F y v

F y v F y v g
m

  (3.57) 

  
3 2 2 2 4 3 3 3

1 4 4 4 2 1 1 1

[ ( , , ) ( , , )

( , , ) ( , , )]

  

 

 

 

 y y
x y m y m

y y
y m y m

xx

F y v F y v

w
F y v F y v

I

      (3.58)                         

2 3 3 3 4 1 1 1

1 2 2 2 3 4 4 4

[ ( , , ) ( , , )

( , , ) ( , , )]

  

 

 

 

 x x
y y m y m

x x
y m y m

yy

F y v F y v

w
F y v F y v

I

   (3.59)  
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2 2 2 2 3 3 3 3

1 1 1 1 4 4 4 4

1 2 2 2 4 3 3 3

2 4 4 4 3 1 1 1

[ ( , , ) ( , , )

( , , ) ( , , )]

[ ( , , ) ( , , )

( , , ) ( , , )]

  

 

 

 

 

 

 

 

 y y
z y m y m

y y
y m y m

zz

x x
y m y m

x x s
y m y m

zz

F y v F y v

l
F y v F y v

I

F y v F y v

d
F y v F y v

I

 (3.60) 

Assuming that each EDW is at a constant translational velocity vx = vx0, the lift force 

terms can be linearized around the equilibrium point. Note that motion in the x direction is 

of no concern for this 4-DOF model (because the vehicle can’t fall off the track in the x-

direction), as is the motion in the z direction, which is assumed to be constrained by track 

design.  Although we expect the vehicle to maintain a level attitude during operation, the 

equations in this chapter are kept general so that the equilibrium point for each EDW can 

be different, as would be the case if the vehicle was required to maintain an angle for 

cornering maneuvers or to ascend/descend grades.  Also note that even if the vehicle is 

level, the equilibrium velocity and force of each rotor can be different if the vehicle’s mass 

were not uniform.  The equilibrium operating point for each of the n=1 - 4 EDWs is 

                                  ( , , , ) ( , ,0, )e e e
n xn yn mn n xn mny v v y v                   (3.61) 

where ωmn is the angular rotational velocity of the nth EDW rotor and superscript e denotes 

equilibrium and subscript n denotes corner that the EDW belongs to.  The equilibrium 

operating point for the vehicle is assumed to be 

             ( , , , , , , , , , ) (0, ,0, , , ,0,0,0,0)      e e e e
x z xn yn zn x z x z xx y z v v v y v          (3.62) 

The change in height from the equilibrium position for each EDW is defined as: 

                                                 e
n n ny y y                                          (3.63) 

and change in vertical velocity from the equilibrium is 
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                                                 e
yn yn nv v v                                          (3.64) 

From (3.30), (3.35), and (3.36), the average equilibrium, height and angular position is 

given by  

  1 2 3 4( ) / 4e e e e ey y y y y                                        (3.65) 

  3 4 1 2[ ] / (4 )    e e e e e
x y y y y w                           (3.66) 

 3 2 1 4[ ] / (4 )    e e e e e
z y y y y l                              (3.67) 

and referring to Fig. 41 and Fig. 42, the heights for each individual EDW are related to the 

angular positions by:  

             1 x zy y w l     (3.68) 

      2 x zy y w l     (3.69) 

                     3 x zy y w l     (3.70) 

                   4 x zy y w l     (3.71) 

Similarly, the equilibrium heights are defined as: 

 1    e e e e
x zy y w l                                         (3.72) 

 2    e e e e
x zy y w l                                       (3.73) 

 3    e e e e
x zy y w l                                        (3.74) 

 4    e e e e
x zy y w l                                        (3.75)         

This can be confirmed by substituting (3.72)-(3.75) into (3.30)-(3.36).  Substituting n = 1 

in (3.63) and substituting (3.68) into (3.63) gives 

 1 1     e
x zy y y w l           (3.76) 
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Similarly, for EDW n = 2 – 4: 

 2 2     e
x zy y y w l                                (3.77) 

 3 3     e
x zy y y w l                                  (3.78) 

 4 4     e
x zy y y w l                                    (3.79) 

Substituting (3.72) into (3.76) rearranging gives 

      1 [ ]         e e e
x z x zy y y w l w l  (3.80) 

Simplifying (3.80): 

 1 ( ) ( ) ( )         e e
e x x z zy y y w l  (3.81) 

Defining the change in the vehicles average height as 

                                                      ey y y                                           (3.82) 

and the angular position difference is defined as 

                e
x x x                            (3.83) 

              e
z z z                         (3.84) 

Then (3.76) reduces down to an equation for the height position of the 1st rotor 

                      1     x zy y w l                                        (3.85) 

Similarly, substituting (3.73)-(3.75) into (3.77)-(3.79) and utilizing (3.82), (3.83), and 

(3.84), we can obtain the heights of the other rotors 

            2     x zy y w l                 (3.86) 

                        3     x zy y w l                                           (3.87) 

                      4     x zy y w l                                      (3.88)                         
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Noting that e
yv = 0. The time derivative of (3.85)-(3.88) gives the vertical velocities for 

each rotor 

     1     y y x zv v w l                                       (3.89)   

         2     y y x zv v w l                                (3.90)  

         3     y y x zv v w l                                   (3.91)  

             4     y y x zv v w l                                     (3.92)  

where 

                              e
y y yv v v                                                  (3.93)  

                                     e
x x x    (3.94) 

                              e
z z z       (3.95) 

The EDW lift force is linearized around the operating point defined by (3.61)  for all 

four EDWs.  Linearizing, the EDW lift force is approximated by using a first order Taylor 

series.  Note that vx terms are not included since the relatively large lift force will be 

negligibly affected by small movements about the x-axis (recall the vehicle is operating 

around a stationary point). 

                 ( , , ) ( ) ( )       y ye e e
n n yn n n yyn n n yyn yn y n n nF y v F k y y d v d           (3.96) 

where the “n” notation is taken to mean “of the nth rotor”. 

 ( , 0, )ye y e e
n n n nF F y                                 (3.97) 

 
( ,0, )






 e
n

y e
n n

yyn
y y

F y
k

y
                                       (3.98) 
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0

( , , )





 y

y e e
n n y n

yyn
vy

F y v
d

v
                                  (3.99) 

 
( ,0, )


 


 




 e
n n

y e
n n n

y n
n

F y
d                         (3.100) 

where ωn is angular rotational velocity of the nth rotor.  The rotational direction is defined 

in Fig. 38.  y
nF  is the force on the nth rotor to maintain position at the operating point. 

Linearizing the EDW thrust forces around a stable operating point gives: 

          
( , , x , , ) ( )

( ) ( v ) ( )



 

   

     

x xe e
n n yn n xn n n xyn n n xyn yn

e e e
xxn n n yxn xn xn x n n n

F y v v F k y y d v

k x x d v d
 (3.101) 

where x
nF is the force on the nth rotor that is needed to maintain position at the operating 

point.  

        ( , , , )xe x e e e e e
n n n yn n xn nF F y v x v                                 (3.102) 

  
( , , , )






 e
n

x e e e e
n yn n xn n

xxn
y y

F y v x v
k

y
                          (3.103) 

                  
0

( , , , )





 y

x e e e e
n n y n xn n

xyn
vy

F y v x v
d

v
                         (3.104) 

          
0

( , , , )





 n

x e e e e
n n yn n xn n

xxn
xn

F y v x v
k

x
  (3.105) 

         
0

( , , , , )





 x

x e e e e
n n y n n n

yxn
vxn

F y v x v
d

v
 (3.106) 

          
( , , , )


 


 




 e
n n

x e e e e
n n yn n xn n

x n
n

F y v x v
d                     (3.107) 

Defining: 
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              e
n n nx x x    (3.108) 

                       e
xn xn xnv v v    (3.109) 

                                e
n n n     (3.110) 

and utilizing (3.63) and (3.64) enables (3.96) and (3.101) to be written as 

                        ( , , )       y y
n n yn n n yyn n yyn yn y n nF y v F k y d v d                         (3.111) 

       ( , , )           x xe
n n yn n n xyn n xyn yn xxn n xxn xn x n nF y v F k y d v k x d v d  (3.112) 
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3.3 HEAVE DYNAMIC EQUATIONS 
 

Recall the vehicle model’s definition of vertical forces according to Fig. 41 and Fig. 42: 

 

Fig. 41: 2-D sketch of vehicle pitch forces (x-y plane) 

 

 

Fig. 42:  2-D sketch of vehicle roll forces (y-z plane) 

 

Linearizing (3.57) by utilizing definition  (3.93) gives 

                          
1 1 1 1 2 2 2 2

3 3 3 3 4 4 4 4

( , , ) ( , , )

( , , ) ( , , ) -

  

 

 y y
y y m y m

y y
y m y m

m v F y v w F y v w

F y v w F y v w mg
 (3.113) 

Substituting (3.111) into (3.113) yields: 
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1 2 3 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

[ ]

[ ]

[ ]   



   

   

   

    

   

   

   

 ye ye ye ye
y

yy yy yy yy

yy y yy y yy y yy y

y y y y

m v F F F F mg

k y k y k y k y

d v d v d v d v

d d d d

                 (3.114) 

Noting that 

                                          1 2 3 4
ye ye ye yeF F F F mg                           (3.115) 

Substituting (3.115) into (3.114): 

                           

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

[ ]

[ ]

[ ]   

    

   

   

   

   

   

y yy yy yy yy

yy y yy y yy y yy y

y y y y

m v k y k y k y k y

d v d v d v d v

d d d d

   (3.116) 

Substituting (3.85)-(3.88) and (3.89)-(3.92) into (3.116) gives 

                 

1 2

3 4

1 2

3 4

1 1 2 2 3 3 4 4

[ ( ) ( )

( ) ( )]

[ ( ) ( )

( ) ( )]

[ ]   

      

     

     

     

   

     

     

     

     

   

y yy x z yy x z

yy x z yy x z

yy y x z yy y x z

yy y x z yy y x z

y y y y

m v k y w l k y w l

k y w l k y w l

d v w l d v w l

d v w l d v w l

d d d d

   (3.117) 

Rearranging (3.117) yields 

    

1 2 3 4 3 4 1 2

2 3 1 4 1 2 3 4

3 4 1 2 2 3 1 4

1 1 2 2 3 3 4 4

( ) ( )

( ) ( )

( ) ( )

[ ]   

  

 

 

   

       

       

       

   

y yy yy yy yy x yy yy yy yy

z yy yy yy yy y yy yy yy yy

x yy yy yy yy z yy yy yy yy

y y y y

m v y w

l v

w l

k k k k k k k k

k k k k d d d d

d d d d d d d d

d d d d

 (3.118) 

The vehicles total eddy current vertical stiffness and damping term can be defined as  

 1 2 3 44    yy yy yy yy yyk k k k k                           (3.119) 

 1 2 3 44    yy yy yy yy yyd d d d d    (3.120) 
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The vehicle’s average eddy current vertical pitch angular stiffness and damping is defined 

as: 

 2 3 1 4   p
yy yy yy yy yyk k k k k  (3.121) 

 2 3 1 4   p
yy yy yy yy yyd d d d d  (3.122) 

and the vehicle’s average eddy current vertical roll angular stiffness and damping can be 

defined as: 

 3 4 1 2   r
yy yy yy yy yyk k k k k  (3.123) 

   3 4 1 2   r
yy yy yy yy yyd d d d d           (3.124) 

Utilizing definitions (3.119) - (3.122) allows (3.118) to be succinctly written as 

          
1 1 2 2 3 3 4 4

4 4 [ ] [ ]

[ ]   

      

   

     

   

 r r p p
y yy y yy x yy x yy z yy z yy

y y y y

m v yk v d wk d w k d l

d d d d
 (3.125)  
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3.4 ROLL DYNAMIC EQUATIONS 
 

Referring again to the definition of roll motion for the EWV in Fig. 42: 

 

Fig. 42:  2-D sketch of vehicle roll forces (y-z plane) 

Linearizing (3.60) and utilizing definition (3.94) gives 

    1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4[ ( , , ) ( , , ) ( , , ) ( , , )]         y y y y
xx x y y y yI F y v F y v F y v F y v w  (3.126) 

Equation (3.126) is written in terms of the individual EDW force dynamics.  Recall 

equation (3.111): 

                       ( , , )       y y
n n yn n n yyn n yyn yn y n nF y v F k y d v d  (3.111) 

Substituting (3.111) into (3.126) yields: 

                           

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4

[ ( )

( )

]









   

  

  

  

    

   

   

   

 ye
xx x yy yy y y

ye
yy yy y y

ye
yy yy y y

ye
yy yy y y

I F k y d v d

F k y d v d

F k y d v d

F k y d v d w

 (3.127)

Equation (3.127) expresses the roll dynamics in terms of the EWV motion dynamics.  

Further re-arranging (3.127): 
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1 2 3 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

( )

[ ]

[ ]

[ ]   



   

   

   

    

    

    

    

 ye ye ye yexx
x

yy yy yy yy

yy y yy y yy y yy y

y y y y

I
F F F F

w
k y k y k y k y

d v d v d v d v

d d d d

  (3.128) 

Substituting (3.85)-(3.88) and (3.89)-(3.92) into (3.128) gives 

                          

1 2 3 4

1 2

3 4

1 2

3 4

1

( )

[ ( ) ( )

( ) ( )]

[ ( ) ( )

( ) ( )]

[ 



     

     

     

     

    

      

     

      

     

 

 ye ye ye yexx
x

yy yy x z

yy x z yy x z

yy y x z yy y x z

yy y x z yy y x z

y

x z

I
F F F F

w

y w l y w l

y w l y w l

v w l v w l

v w l v w l

k k

k k

d d

d d

d 1 2 2 3 3 4 4]       y y yd d d

 (3.129) 

Rearranging further 

     

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1 1

( )

( ) ( )

( ) ( )

( ) ( )

[  



 

 

 



    

        

        

       

  

 ye ye ye yexx
x

yy yy yy yy x yy yy yy yy

z yy yy yy yy y yy yy yy yy

x yy yy yy yy z yy yy yy yy

y y

I
F F F F

w

y k k k k w k k k k

l k k k k v d d d d

w d d d d l d d d d

d d 2 2 3 3 4 4 ]    y yd d

 (3.130) 

Defining average vertical yaw stiffness and damping terms as: 

          1 3 2 4   y
yy yy yy yy yyk k k k k  (3.131) 

           1 3 2 4   y
yy yy yy yy yyd d d d d  (3.132) 

And utilizing definitions (3.119)-(3.122) and (3.131) and (3.132) allows (3.130) to be 

written as 
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1 2 3 4

3 3 4 4 1 1 2 2

( )

[ ]   



     

   

    

     

   

 ye ye ye yexx
x

r r y y
yy x yy y yy x yy z yy z yy

y y y y

I
F F F F

w

yk k w v d d w l k l d

d d d d

 (3.133) 

The roll torque equilibrium is defined as  

         3 4 1 2( )e ye ye ye ye
rT F F F F w     (3.134) 

Substituting (3.134) into (3.133) gives 

      
3 3 4 4 1 1 2 2

[ 4 4

]   

      

   

      

   

 e r r y y
xx x r yy x yy y yy x yy z yy z yy

y y y y

I T yk k w v d d w l k l d

d d d d w
 (3.135) 
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3.5 PITCH DYNAMIC EQUATIONS 
 

Referring again to the EWV pitch angle definition as shown in Fig. 41: 

 
Fig. 41: 2-D sketch of vehicle pitch forces (x-y plane)  

 

Linearizing (3.60) by utilizing definition (3.95) gives  

  
2 2 2 2 3 3 3 3 1 1 1 1 4 4 4 4

2 2 2 2 3 3 3 3 1 4 4 4 4 1 1 1

[ ( , , ) ( , , ) ( , , ) ( , , )]

[ ( , , ) ( , , ) ( , , ) ( , , )]

    

   

   

   

 y y y y
zz z y y y y

x x x x
y y y y s

I F y v F y v F y v F y v l

F y v F y v F y v F y v d
 (3.136) 

where ds is the vertical (the y-axis of the vehicle’s body reference frame) distance between 

the rotor centers (their rotational axis) and the vehicle center of mass, which acts as the 

lever arm applying pitch torque from force components in the x-axis.  Defining pitch 

equilibrium torque as: 

                   2 3 1 4 2 3 1 4( ) ( )       e ye ye ye ye xe xe xe xe
p sT F F F F l F F F F d  (3.137) 

and substituting (3.101) and (3.111) into (3.136), yields: 
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2 2 2 3 3 3

1 1 1 4 4 4

2 2 2 3 3 3

1 1 1 4 4 4

2 2 2 3

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) (  

 


 

 

 



   
  
     

   
 
     

 


 yy s xy yy s xye
zz z p

yy s xy yy s xy

yy s xy y yy s xy y

yy s xy y yy s xy y

y s x y

lk d k y lk d k y
I T

lk d k y lk d k y

ld d d v ld d d v

ld d d v ld d d v

ld d d ld 3 3

1 1 1 4 4 4

)

( ) ( )



   



 

 
 
     

s x

y s x y s x

d d

ld d d ld d d

 (3.138) 

Note that the horizontal position and velocity terms, δxn and δvxn, n = 1-4, are omitted since 

they will cancel out due to the front and rear rotors rotating in opposite directions.  Then 

substituting (3.85)-(3.88) and (3.89)-(3.92) into (3.138) gives  

2 2 3 3

1 1 4 4

2 2 3 3

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

(



     

     

     



       
 
         

      




 e
zz z p

yy s xy x z yy s xy x z

yy s xy x z yy s xy x z

yy s xy y x z yy s xy y x z

y

I T

lk d k y w l lk d k y w l

lk d k y w l lk d k y w l

ld d d v w l ld d d v w l

ld 1 1 4 4

2 2 2 3 3 3

1 1 1 4 4 4

)( ) ( )( )

( ) ( )

( ) ( )

   

   

     

 

 

 
 
        
   
 
     

y s xy y x z yy s xy y x z

y s x y s x

y s x y s x

d d v w l ld d d v w l

ld d d ld d d

ld d d ld d d

 (3.139) 

Rearranging (3.139) gives  
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2 3 1 4 1 3 2 4

1 2 3 4

2 3 1 4 1 3 2 4

1 2 3 4

2 3

( ) ( )

( )

( ) ( )

( )

(

 




 





       
  
     

       
 
     

 


 yy yy yy yy x yy yy yy yye
zz z p

z yy yy yy yy

xy xy xy xy x yy yy yy yy
s

z xy xy xy xy

y yy yy yy

y k k k k w k k k k
I T l

l k k k k

y k k k k w k k k k
d

l k k k k

v d d d 1 4 1 3 2 4

1 2 3 4

2 3 1 4 1 3 2 4

1 2 3 4

2 2 3 3 4 4 1 1

2 2

) ( )

( )

( ) ( )

( )

   







 



   



     
 
     
       
 
     
     



yy x yy yy yy yy

z yy yy yy yy

y xy xy xy xy x yy yy yy yy
s

z xy xy xy xy

y y y y

x

d w d d d d
l

l d d d d

v d d d d w d d d d
d

l d d d d

d d d d l

d 3 3 4 4 1 1        x x x sd d d d

 (3.140) 

Further rearrangement on (3.140) yields 

            

2 3 1 4 2 3 1 4

2 3 1 4 2 3 1 4

1 3 2 4 1 3 2 4

1 3 2 4

( ) ( )

( ) ( )

( ) ( )

( ) (

 





          
         
         

    

 e
zz z p yy yy yy yy xy xy xy xy s

yy yy yy yy xy xy xy xy s y

yy yy yy yy yy yy yy yy s x

yy yy yy yy y

I T k k k k l k k k k d y

d d d d l d d d d d v

k k k k l k k k k d w

d d d d l d 1 3 2 4

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

2 2 3 3 4 4 1 1

2 2 3 3 4 4

)

( ) ( )

( )] ( )

   

  







   

  

    
         
         
     

   

y yy yy yy s x

yy yy yy yy xy xy xy xy s z

yy yy yy yy xy xy xy xy s z

y y y y

x x x

d d d d w

k k k k l k k k k d

d d d d l d d d d d

d d d d l

d d d d 1 1   x sd

 (3.141) 

Defining the total eddy current horizontal stiffness and damping terms as  

     1 2 3 44    xy xy xy xy xyk k k k k  (3.142) 

   1 2 3 44    xy xy xy xy xyd d d d d   (3.143) 

the total eddy current horizontal pitch stiffness and damping terms as 

             2 3 1 4   p
xy xy xy xy xyk k k k k     (3.144) 
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              2 3 1 4   p
xy xy xy xy xyd d d d d   (3.145) 

and the average eddy-current horizontal yaw stiffness and damping terms as  

                 1 3 2 4   y
xy xy xy xy xyk k k k k   (3.146) 

        1 3 2 4   y
xy xy xy xy xyd d d d d   (3.147) 

and making use of the vertical stiffness and damping definitions from (3.119) - (3.122), 

(3.131), and (3.132), equation (3.141) can be simplified down to 

                       

2 2 3 3 4 4 4 1

2 2 3 3 4 4

4

4

4

4

   

   

   

  

  

  

   

  

     
    
    
    
     

   

 e p y
zz z p yy x yy z yy

p y
yy x xy z xy s

p y
y yy x yy z yy

p y
y xy x xy z xy s

y y y y

x x x x

I T yk w k l k l

yk w k l k d

v d w d l d l

v d w d l d d

d d d d l

d d d d 1 1 sd

 (3.148) 
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3.6 YAW DYNAMIC EQUATIONS 
 

Referring again to the yaw angle definition for the EWV shown in Fig. 44: 

 

Fig. 44:  2-D sketch of yawed vehicle from above (x-z plane)  

We can define the change in yaw velocity as follows: 

                                                           e
y y y     (3.149)  

Linearizing (3.59) by using (3.149) gives 

                                      
2

2 4 1 32
[ ]y x x x x

yy

d
I F F F F w

dt


          (3.150) 

Substituting (3.112) into (3.150) 

                 

1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4

[

( )

( )]









 







     

     

     

     

 xe
yy y xx xy y x xx xx x

xe
xx xy y x xx xx x

xe
xx xy y x xx xx x

xe
xx xy y x xx xx x

I k y d v d k x d v F

k y d v d k x d v F

k y d v d k x d v F

k y d v d k x d v F w

   (3.151) 

Linearizing and rearranging (3.151): 
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2 4 1 3

2 2 4 4 1 1 3 3

2 2 4 4 1 1 3 3

2 2 4 4 1 1 3 3

2 4 1 3

2 2 4 4 1 1 3 3

[( )

( )

(

( )

( )]

)

   

    

   

   

   

   

   

 





   

 

 

  

  

 



x x x x

y xx xx xx xx
yy

xy y xy y xy y xy y

xx xx xx xx

xx xx xx xx

x x x x

w
I

v v v v

k y k y k y k y

d v d v d v d v

k x k x k x k x

d d d d

d d d d

 (3.152) 

Substituting equations (3.85) - (3.92) into (3.152) gives 

 

2 4

1 3

2 4

1 3

2 2 4 4 1 1 3

[( ( ) ( )

( ) ( ))

( ( ) ( )

( ) ( ))

(

      

     

     

     

   

     

     

     

     

   

y xx x z xx x z
yy

xx x z xx x z

xy y x z xy y x z

xy y x z xy y x z

xx xx xx xx

w
k y w l k y w l

I

k y w l k y w l

d v w l d v w l

d v w l d v w l

k x k x k x k 3

2 2 4 4 1 1 3 3

2 2 4 4 1 1 3 3

)

( )

( )]   

   

      

   

  
xx x xx x xx x xx x

x x x x

x

v v v vd d d d

d d d d

 (3.153) 

Rewriting (3.153), 

         

2 4 1 3 1 4 2 3

1 2 3 4 2 4 1 3

1 4 2 3 1 2 3 4

2 2 4 4 1 1 3 3

2

[ ( ) ( )

( ) ( )

( ) ( )

( )

(

  

 

 

   


       

       

       





  

 y xy xy xy xy xy xy xy xy
yy

y y y y
z yxy xy xy xy

x zxy xy xy xy xy xy xy xy

xx xx xx xx

xx

w
y k k k k w k k k kxI

l k k k k v p p p p

w d d d d l d d d d

k x k x k x k x

d v

2 2 4 4 1 1 3 3

2 4 4 1 1 3 3)

]         

  
  

  

x x x x

x xx x xx x xx x

d d d d

d v d v d v

  (3.154) 

Utilizing  (3.144) - (3.147) , and defining the average eddy current horizontal roll 

stiffness and damping terms as: 

     1 2 3 4   r
xy xy xy xy xyk k k k k     (3.155) 

            2 3 1 4   r
xy xy xy xy xyd d d d d   (3.156) 
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Substituting (3.121), (3.124), (3.132), (3.145), (3.147), and (3.156) into (3.154): 

            2 2 4 4 1 1 3 3

2 2 4 4 1 1 3 3

2 2 4 4 1 1 3 3

[

( )

( )

]   

      

   
   
   

      

   

   

   

 y p r y p r
y xy xy x xy z yy y yy x yy z

yy

xx xx xx xx

xx x xx x xx x xx x

x x x x

w
k y wk lk d v wd ld

I

k x k x k x k x

d v d v d v d v

d d d d

 (3.157) 
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3.7 CONCLUSION 
 
 

The prototype 4 rotor vehicle motions have been defined in this chapter.  The 

definitions of the 4 degrees of freedom of interest are defined, along with the geometric 

identities necessary for the vehicle model.  The motion of the vehicle is related to the forces 

generated at each rotor, which are then modeled as functions of various damping and 

stiffness terms.  Finally, differential equations for each degree of freedom are derived, 

which are functions of vehicle states and the damping and stiffness values calculated using 

the SOVP model.  These equations will be formulated into a system of dependent equations 

to model the system as a whole. 
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CHAPTER 4:   FULL SYSTEM MODEL 
 

In this chapter, we use the equations for heave (y), roll (θx), pitch (θz), and yaw (θy) to 

form a full 4-DOF model that can be used to analyze and apply control to a prototype model 

vehicle.  Beginning with the 4 differential equations derived in Chapter CHAPTER 3:, 

reasonable simplifications are made to arrive at a set of simpler equations in section 4.1.  

Then, unwanted x-position variables are converted into angles in section 4.2, which allows 

the system to be written in a state-space form in section 4.3.  The system is broken down 

into smaller sub-systems by decoupling in section 4.4.  Rather than treating rotor speeds as 

native inputs, section 4.5 adds motor dynamic equations to obtain a more practical input of 

voltage to each motor.  Finally, in section 4.6, the model is compared to a real-time 

simulation to validate the analytic equations. 

Equation Chapter (Next) Section 1 

4.1 FULL SYSTEM MODEL EQUATIONS 
 

Thus far, four equations, (3.125), (3.135), (3.148), and (3.157) describe the 4-DOF 

system have been derived.  For vertical motion, we have: 

 
1 1 2 2 3 3 4 4

4 4 [ ] [ ]

[ ]   

      

   

     

   

 r r p p
y yy y yy x yy x yy z yy z yy

y y y y

m v yk v d wk d w k d l

d d d d
 (3.125) 

For roll, we have: 

   
3 3 4 4 1 1 2 2

[ 4 4

]   

      

   

      

   

 e r r y y
xx x r yy x yy y yy x yy z yy z yy

y y y y

I T yk k w v d d w l k l d

d d d d w
 (3.135) 

For pitch, we have: 
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2 2 3 3 4 4 4 1

2 2 3 3 4 4

4

4

4

4

   

   

   

  

  

  

   

  

     
    
    
    
     

   

 e p y
zz z p yy x yy z yy

p y
yy x xy z xy s

p y
y yy x yy z yy

p y
y xy x xy z xy s

y y y y

x x x x

I T yk w k l k l

yk w k l k d

v d w d l d l

v d w d l d d

d d d d l

d d d d 1 1 sd

 (3.148) 

and for yaw, we have: 

            2 2 4 4 1 1 3 3

2 2 4 4 1 1 3 3

2 2 4 4 1 1 3 3

[

( )

( )

]   

      

   
   
   

      

   

   

   

 y p r y p r
y xy xy x xy z yy y yy x yy z

yy

xx xx xx xx

xx x xx x xx x xx x

x x x x

w
k y wk lk d v wd ld

I

k x k x k x k x

d v d v d v d v

d d d d

 (3.157) 

We can make a very important assumption that allows the equations to be reduced to 

a smaller form: the vehicle is operating near a level equilibrium point.  This is essential, 

since there would be no purpose in developing a linear control model of the vehicle if the 

vehicle is expected to move away from the equilibrium point.  In other words, when using 

these equations to develop a control law, this assumption is necessary for a non-trivial 

solution.  This assumption means that the linearization is to take place at the equilibrium 

point.   

 

As a corollary to the previous assumption, and also making the basic assumption that 

the track is flat, the vehicle will be operating at a neutral or nearly neutral attitude (roll, 

pitch, and yaw angles near zero).  Again, the model would not make sense if this 

assumption were omitted, as the vehicle is meant to travel smoothly down the track without 

subjecting the payload to any abnormal forces.  The eddy current forces become very small 
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as the airgap becomes large, so the physics of the system actually enforce this assumption, 

as the vehicle is incapable of operating with excessive angles.   

 

Finally, we can assume that the vehicle is designed to have a (nearly) symmetrical 

weight distribution, so that each corner requires equal forces around the equilibrium.  As 

the designers of the vehicle, we can easily ensure this is true, especially as it makes design 

and construction more straightforward.  This means the EDWs will all be operating at the 

same height above the track, and at the same rotational and translational speed at the 

equilibrium point.  It then follows that each rotor has the same stiffness and damping terms 

at the equilibrium/linearization point.  Therefore in this case the terms in (3.121) - (3.124)

, (3.131), (3.132), (3.144), (3.145), (3.155), and (3.156) will cancel out: 

           0     r p y r p y
xy xy xy xy xy xyk k k d d d  (4.1) 

             0     r p y r p y
yy yy yy yy yy yyk k k d d d  (4.2) 

                                                           0e
rT  (4.3) 

We can also expect the horizontal yaw eddy current stiffness and damping terms to be 

similar enough such that 

                        1 2 3 4   xx xx xx xx xxk k k k k    (4.4) 

               1 2 3 4   xx xx xx xx xxd d d d d  (4.5) 

and the vertical and horizontal damping terms will be approximately equal such that 

                  1 2 3 4       y y y y yd d d d d     (4.6) 

                1 2 3 4       x x x x xd d d d d   (4.7) 

By utilizing  (4.2) and (4.6), the heave dynamic equation (3.125) can now be written as: 
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                       1 2 3 4

4 4             yy yy y
y y

k d d
v y v

m m m
  (4.8) 

and using (3.39), the accompanying height dynamic equation is 

   yy v      (4.9)                          

The roll velocity dynamic equation (3.135) can be simplified by using (4.2) and (4.6) 

            
2 2

1 2 3 4

4 4
( )             yy yy y

x x x
xx xx xx

k w d w d w

I I I
 (4.10) 

Using (3.37), the accompanying roll angle dynamic equation is 

                   x x  (4.11) 

Given (4.1) - (4.7), the pitch velocity dynamic equation (3.148) simplifies to 

                      
2 2

1 2 3 4

4 4        


       yy yy y s x
z z z

zz zz zz

k l d l ld d d

I I I
 (4.12) 

and utilizing (3.38), the accompanying pitch angle dynamic equation is 

                     z z  (4.13) 

And with (4.1) - (4.7), equation (3.157) simplifies down to a new yaw velocity dynamic 

equation 

         
   

2 4 1 3

2 4 1 3 2 4 1 3

      


       

   
          

 x x x x
y

xx xx xx xx xx x xx x xx x xx xyy

d d d dw

k x k x k x k x d v d v d v d vI
 (4.14) 

The accompanying yaw angle dynamic equation is defined as 

                      y y  (4.15) 
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4.2 CONVERSION OF X-AXIS MOVEMENTS TO ANGLES 
 

With our four simplified equations of motion, we now need to develop an expression 

for the horizontal position and velocity variables in terms of our intended states in order to 

develop a state-space model in matrix form.  Note that although the vehicle in this model 

does not experience a net change in horizontal position or velocity, the yawing motion of 

the vehicle can cause small perturbations for each wheel along the x-axis.  The angle is 

necessarily small (otherwise the vehicle would fall off the track), so the z-axis displacement 

is negligible.  Referring once again to Fig. 44, we can start by first defining the x-position 

displacement of one of the rotors, arbitrarily selected.  For rotor 2: 

                                                  2 sin( )yl x r       (4.16) 

 
Fig. 44:  2-D sketch of yawed vehicle from above (x-z plane) 

 

Since we expect θy to be small, we can linearize the sine function around ψ, such that 

(4.16) can be rewritten: 

                                      2 [sin( ) cos( )( )]yl x r         (4.17) 
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We can note that at the equilibrium position, 

                       sin( )l r   (4.18) 

therefore, we can substitute (4.18) into (4.17), then linearize the result to obtain 

                    2 cos( ) yx r    (4.19) 

We can similarly define the x-axis velocity due to yaw velocity: 

                           2 cos( )x yv r    (4.20) 

Utilizing the same process used to obtain (4.19) and (4.20), we can define similar equations 

for the other 3 rotors: 

                            1 cos( ) yx r     (4.21) 

                           3 cos( ) yx r     (4.22) 

                            4 cos( ) yx r    (4.23) 

                         1 cos( )x yv r     (4.24) 

                           3 cos( )x yv r     (4.25) 

                                 4 cos( )x yv r    (4.26) 

Substituting (4.19) - (4.26) into the yaw velocity dynamic equation, (4.14): 

          
 

2 4 1 3

4cos( ) cos( ) cos( )

cos( ) cos( ) cos( ) cos( )

      

       

       

    
     
 
     


x x x x

y xx y xx xx y xx y
yy

xx y xx y xx y xx y

d d d d
w

k r k x k r k r
I

d r d r d r d r

 (4.27) 

We will define a shorthand variable, a, as 

              cos( )a r    (4.28) 
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Substituting (4.28) into (4.27) and simplifying, we obtain a new equation which describes 

yaw motion using the desired states (and eliminating the variables which denote variations 

in the x-position): 

            2 4 1 4[4 4 ]               y xx y xx y x x x x
yy

w
ak ad d d d d

I
 (4.29) 

 
4.3 4-DOF STATE SPACE MODEL 

 

Combining (4.8), (4.9), (4.10), (4.11), (4.12), (4.13), (4.15), and (4.29)  together 

yields a complete set of equations describing the vehicle motion in 4-DOF: 

                yy v    (4.9) 

                              x x  (4.11) 

                          z z  (4.13)         

                              y y  (4.15) 

                   1 2 3 4

4 4             yy yy y
y y

k d d
v y v

m m m
 (4.8)           

             
2 2

1 2 3 4

4 4
( )             yy yy y

x x x
xx xx xx

k w d w d w

I I I
  (4.10)      

                   
2 2

1 2 3 4

4 4        


       yy yy y s x
z z z

zz zz zz

k l d l ld d d

I I I
  (4.12)                         

           2 4 1 4[4 4 ]               y xx y xx y x x x x
yy

w
ak ad d d d d

I
 (4.30)            

The system can be described in linear state space form, where a single matrix equation is 

used to represent the entire set of state equations: 
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                                x Ax Bu  (4.31)       

                              y Cx Du   (4.32)                         

where x is a ps×1 column of state variables, where ps is the number of states, y is a po×1 

column of output variables, where po is the number of outputs, u is a pi×1 column of input 

variables, where pi is the number of inputs, A is a ps×ps state matrix of coefficients that 

describe each states’ contribution to each differential equation, B is a ps×pi column of 

coefficients that describe how each input affects the differential equations, C is a po×ps 

matrix of coefficients describing each states’ contribution to the output, and D is a po×pi 

feedforward matrix with coefficients describing each inputs’ contribution to the output. 

The state-space system for (4.9) - (4.12) and (4.30) is given by following subscripts to 

differentiate it from state space systems in future chapters: 

                              e e e e ex A x B u  (4.33) 

                             e e e e y C x D u  (4.34) 

where xe is the state vector, Ae is the system matrix, Be is the input matrix, ue is the input 

vector, y is the output vector, Ce is the output matrix, and De is the feedforward matrix for 

the 8 state prototype system.  Note that it is implied that states, inputs, and outputs are time-

varying values, despite the lack of explicitly writing each in terms of time variable t.  This 

applies to all state-space and vehicle equations in this document.  Defining the state vector: 

                       [ ]x           T
e x z y y x z yy v   (4.35) 

The input vector is defined as: 

                                        1 2 3 4[ ] T
e    u  (4.36) 

The system matrix is: 
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       2 2

2 2

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

4 4
0 0 0 0 0 0

4 4
0 0 0 0 0 0

4 4
0 0 0 0 0 0

4 4
0 0 0 0 0 0

A

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

yy yy

e
yy yy

xx xx

yy yy

zz zz

xx xx

yy yy

k d

m m

k w d w

I I

k l d l

I I

k a d a

I I

 (4.37) 

  The input matrix is: 

             

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

    

   

0

 

B

   

   

       

   

 

 



 
 
 
 
 
 
 
 
 
 
 
     
 
 
   

y y y y

e y y y y

xx xx xx xx

y s x y s x y s x y s x

zz zz zz zz

x x x x

yy yy yy yy

m m

w w w w

m m
w w w w

I I I I

d d d d

d d d d

ld d d ld d d ld d d ld d d

I I I I

d d d d

I I I I

  (4.38) 

The output matrix is generated to output the 4 position states, y-position, roll, pitch, and 

yaw: 
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1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C

 
 
 
 
 
   
 
 
 
 
  

e  (4.39) 

Note that the feedforward matrix is null. 
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4.4 DECOUPLING OUTPUTS 
 
 

An 8th order coupled system is difficult to develop a simple controller for.  Instead, it 

is beneficial, if possible, to break the system down in to 2nd order linear time invariant 

(LTI) single input single output (SISO) systems.  These 2nd order systems are easier to 

analyze than an 8th order system, and each can have its own optimized controller.  The 

inputs to the smaller systems are y-axis linear acceleration, ay, and the rotational 

accelerations about the y-axis, αy, x-axis, αx, and z-axis, αz.  The state flow diagram shown 

in Fig. 88 conveniently separates the coupled system dynamics described by (4.33) from 

the coupled inputs to arrive at 4 simple 2nd order LTI SISO systems.   

The input into each of the four 2nd order systems can be determined by summing the 

effect of each rotor on each of the 4 degrees of freedom.  Extracting this information from 

the input matrix (4.38), we can define the input into each DOF using the coupling matrix: 

   

1

2

3

4

   

   

       

   

 
 
 






 
 
 
       
           

  
    
 
 
  

y y y y

y y y yy

xx xx xx xxx

y s x y s x y s x y s xz

zz zz zz zzy

x x x x

yy yy yy yy

d d d d

m m m m
d w d w d w d wa

I I I I

ld d d ld d d ld d d ld d d

I I I I

wd wd wd wd

I I I I






 


    (4.40)               

Any combination of motions to the 4 wheels can now be directly translated into 

changes in accelerations in each degree of freedom.  The workings of this coupling matrix 

on the overall system can also be shown graphically in Fig. 88: 
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Fig. 88:  4-DOF radial EDW vehicle system decoupled state flow diagram 
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There are only four input vectors that are used to control the heave, pitch, roll, and 

yaw.  The height input vector is  

                        Ω









 
 
 

  
 
 
 

h

h

h h

h

       (4.41) 

where h  is the change in EDW speeds to enact the desired rate of change of heave. 

The roll vector is 

                    Ω









 
 
 

  
 
  

x

x

x x

x

                      (4.42) 

where  x  is the change in EDW speeds to enact the desired roll acceleration. 

The pitch vector is 

                Ω









 
 
 

  
 
  

z

z

z z

z

       (4.43) 

where  z  is the change in EDW speeds to enact the desired pitch acceleration. 

 

The yaw vector is 
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                              Ω









 
 
 

  
 
 
 

y

y

y y

y

  (4.44) 

where  y  is the change in EDW speeds to enact the desired yaw acceleration. 

 

By using one of these input vectors, inputs can be decoupled to control height, roll, 

pitch, or yaw separately.  For example, to enact a height change only, substitute (4.41) into 

(4.40): 

       

   

   

       

   











 
 
 
  

   
          

  
   
 
 
  

y y y y

y y y yy

xx xx xx xxx
h

y s x y s x y s x y s xz

zz zz zz zzy

x x x x

yy yy yy yy

d d d d

m m m m
d w d w d w d wa

I I I I

ld d d ld d d ld d d ld d d

I I I I

wd wd wd wd

I I I I

 (4.45) 

Multiplying through to solve, the resulting height acceleration change would be: 

                                                    
4   y h

y

d
a

m
  (4.46) 

while the other accelerations,  x ,  z  and  y , are zero.   

To change roll acceleration only, substitute (4.42) into (4.40): 
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   

   

       

   











 
 
 
  

   
          

  
   
 
 
  

y y y y

y y y yy

xx xx xx xxx
x

y s x y s x y s x y s xz

zz zz zz zzy

x x x x

yy yy yy yy

d d d d

m m m m
d w d w d w d wa

I I I I

ld d d ld d d ld d d ld d d

I I I I

wd wd wd wd

I I I I

 (4.47) 

Multiplying through, the resulting roll acceleration change would be: 

                                             
4 4  


 y s x x

z
zz

ld d d

I
  (4.48) 

while the other accelerations,  ya ,  x  and  y , are zero.   

To change pitch acceleration only, substitute (4.43) into (4.40): 

 

            

   

   

       

   











 
 
 
  

   
          

  
   
 
 
  

y y y y

y y y yy

xx xx xx xxx
z

y s x y s x y s x y s xz

zz zz zz zzy

x x x x

yy yy yy yy

d d d d

m m m m
d w d w d w d wa

I I I I

ld d d ld d d ld d d ld d d

I I I I

wd wd wd wd

I I I I

 (4.49) 

Multiplying through, the resulting pitch acceleration change would be: 

                                                 
4   y z

x
xx

d w

I
  (4.50) 

while the other accelerations  ya ,  z  and  y , are zero.   

To change yaw acceleration only, substitute (4.44) into (4.40): 
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   

   

       

   











 
 
 
  

   
          

  
   
 
 
  

y y y y

y y y yy

xx xx xx xxx
y

y s x y s x y s x y s xz

zz zz zz zzy

x x x x

yy yy yy yy

d d d d

m m m m
d w d w d w d wa

I I I I

ld d d ld d d ld d d ld d d

I I I I

wd wd wd wd

I I I I

 (4.51) 

Multiplying through, the resulting yaw acceleration change would be: 

                                                   
4   yx

y
yy

wd

I
  (4.52) 

while the other acceleration values,  ya ,  z  and  x , are zero.   

We can use equations (4.46), (4.50), (4.48), and (4.52) to solve for h ,  x ,  z , and 

 y , respectively: 

                                                 
4 

 h
y

y

m
a

d
  (4.53) 

                                                 
4 

 x xx
x

y

I

d w
  (4.54) 

                                                 
4 4 

 


z zz
z

y s x

I

ld d d
  (4.55) 

                                                 
4 

  yyy
y

x

I

wd
  (4.56) 

Then, the contribution from each of the EDW velocity terms h ,  x ,  z , and  y  

must be summed to arrive at the desired EDW speed to enact the desired change in system 

input: 
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1

2

3

4

Ω Ω Ω Ω






 
 
     
 
 
 

h x z y   (4.57) 

 

Ideally, we would like to command a desired y-acceleration, Dy, desired yaw 

acceleration, D∠y, desired roll acceleration, D∠x, and desired pitch acceleration, D∠z.  In 

order to accomplish this, we can run our desired inputs through an input decoupling block, 

which cancels out the input coupling block: 

 

   

1

2

3

4

   

   

       

   












 
 
 
         
        
             
    

y y y y

yxx xx xx xx

y y y y x

zz zz zz zz z

y s x y s x y s x y s x y

yy yy yy yy

x x x x

m m m m

d d d d

DI I I I

wd wd wd wd D

I I I I D

ld d d ld d d ld d d ld d d D

I I I I

wd wd wd wd







 (4.58) 

 

A graphical representation of the decoupling block is shown in Fig. 89. 
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Fig. 89:  State flow diagram of input decoupling block 
 
 

To further simplify, we can separate the system dynamics block shown in Fig. 88 into 4 

simpler LTI SISO blocks, as shown in Fig. 90: 
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Fig. 90:  Separated dynamics systems of prototype radial EDW vehicle linearized model 
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Fig. 91 shows the entire decoupled and axis-separated system block diagram: 

 

 

 

Fig. 91:  Decoupled system state flow diagram 
 

By applying inputs through the input decoupling block, we achieve the following 

equivalences that allow accelerations to be commanded as if inputs were being directly 

applied to the dynamics blocks: 

                   y yD a  (4.59) 

                            x xD  (4.60) 

                                     z zD  (4.61) 

                                  y yD  (4.62) 

These 2nd order system blocks can be represented in state space form,  

                                x A x B u 
d d d d d  (4.63) 

                    C x D u d d d d dy  (4.64) 

where Ad is the plant state matrix Bd is the plant input matrix, Cd is the output matrix, Dd 

is the feedthrough matrix, xd is the state vector, ud is the input vector, and yd is the output.  

Input 
Decoupling

Input 
Coupling

Height 
Dynamics

Roll 
Dynamics

Pitch 
Dynamics

Yaw 
Dynamics

yD

xD

zD

yD

1

2

3

4

ya

y

  z
x

y

x

z

y

Linear System 
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This form is useful for simple controller design as well as analyzing each DOF’s dynamics 

separately.  The height dynamics are: 

       
0 1

0

1

 
 

                     


 yyy yy

y y

y y
Dk d

v v
m m

  (4.65) 

The roll dynamics are: 

           2 2

0 1
0

1


 

 
                    




xx

xyy yy
xx

xx xx

Dk w d w

I I

  (4.66) 

The pitch dynamics are: 

        2 2

0 1
0

1


 

 
                    




zz

zyy yy
zz

zz zz

Dk l d l

I I

 (4.67) 

The yaw dynamics are: 

                  

0 1
0

4 4
1


 

 
                     




yy

xx xx y
yy

yy yy

k a d a D

I I
 (4.68) 

For these systems, we can assume that the output matrix will be formulated to output 

position and feedthrough matrix will be empty: 

                                     1 0C d  (4.69) 

                                      0D d  (4.70) 
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4.5 INCLUSION OF MOTOR DYNAMICS 
 

The EDWs rotational angular velocity, ωn for the nth rotor is controlled by varying the 

stator voltage of that rotor. The dynamics of the nth brushless brushless DC (BLDC) motor 

is given by 

     a t n
n n n

a a a

R k V
u u

L L L
 (4.71)               

 
1

   t
n n n n

k b
u T

J J J
   (4.72)   

where Vn = stator voltage of nth rotor, un = stator current of nth rotor, Ra = winding 

resistance, La = stator inductance, ke = back-emf constant, J = rotor inertia, b = motor 

viscous force constant, kt = motor torque constant.  Performing a linearization on the 

current and angular velocity equations from (4.71) and (4.72): 

       0       a t n
n n n n

a a a

R k V
u u u

L L L
 (4.73) 

                0 1         t
n n n n n

k b
u T

J J J
 (4.74) 

where 

                  0  n n nV V V  (4.75) 

                             0    n n nu u u  (4.76) 

                            0     n n n  (4.77) 

where 0
nV , 0

nu  and 0n  denote the motor voltage, motor current, and rotor angular velocity 

at the linearization point. 
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This allows the current and angular velocity dynamic equations to be written as linear 

around the operating point: 

 
      a t n

n n n
a a a

R k V
u u

L L L
 (4.78) 

                   
1      t

n n n n

k b
u T

J J J
 (4.79) 

The load torque, Tn on the nth rotor is caused by the eddy current forces. This load 

torque can be modeled using approach given in [11].  The torque equation is defined by 

equation (2.27).  Assuming that each EDW is at the average height point defined in (3.61) 

then linearizing the eddy current torque on the nth rotor yields 

          ( , , , , )               e
n n n n n n yn n yn n xn n xn n n n nT y y x x k y d y k x d x d T   (4.80) 

where 

 ( , 0, , , ) e e e e e
n n n n n nT T y x x                (4.81)                         

 
( ,0, , , )









e
n n

e e e
n n n n n

yn
y yn

T y x x
k

y
                    (4.82)                         

  
0

( , , , , )

n

e e e e
n n n n n n

yn
yn

T y y x x
d

y







 

 


      (4.83)       

       
( ,0, , , )









e
n n

e e e
n n n n n

xn
x xn

T y x x
k

x
                             (4.84)   

       
0

( , , , )

n

e e e e
n n n n n n

xn
xn

T y y x x
d

x







 

 


    (4.85) 

 
( ,0, , , )


 


 







e
n n

e e e
n n n n n

n
n

T y x x
d                              (4.86)                       
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Note that the z-axis movement is not included in the torque equation because the 

vehicle’s center of gravity is physically constrained around z = 0. To eliminate the weak 

non-linearity, we use the linearization of torque to describe the behavior around the 

operating point: 

                                       ( , , , , )    e
n n n n n n n nT T y y x x T  (4.87) 

Substituting (4.80) into (4.87): 

              ( , , , , )              n n n n n n yn n yn n xn n xn n n nT y y x x k y d y k x d x d  (4.88) 

Substituting the torque equation (4.88) into the rotor velocity equation (4.79): 

                        yn ynn t xn xn n
n n n n n n n

k dd k k d db
i y y x x

dt J J J J J J J
 (4.89) 

Substituting the δyn and δẏn terms from (3.85) - (3.92) into (4.89) allows each rotors’ 

vertical motion to be represented as a function of average vehicle height, roll, and pitch 

angles.  Also, substituting (4.19) - (4.26) into (4.89) allows each rotors’ translational 

movement, δxn and δẋn, to be expressed in terms of the vehicle yaw movements.  This gives 

a set of state equations for the rotors’ angular velocities: 
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The state space system from (4.33) can be augmented to include these additional states.  

Writing out the complete set of states and inputs: 

     States: 1 2 3 4 1 2 3 4, , , , , , , , , , , , ,              
y x x z zy v u u u u  

     Inputs: 1 2 3 4, , ,   V V V V  

The new state space system is defined by: 

                                                   x A x B u  c c c c c  (4.94) 

The new state vector is: 

                  1 2 31 2 43 4[ ]x x         T
c e u u u u        (4.95)      

Recall that xe is defined by: 

                      [ ]x           T
e x z y y x z yy v  (4.35) 

The new input vector is: 

                                       1 2 3 4[ ]u     T
c V V V V  (4.96)    

The new state and input matrices are           
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              4,10
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          (4.98)         

Note that Ac is composed of a set of other matrices.  Recall that Ae and Be are the state 

and input matrices from (4.33) that describes how the vehicle’s movement affects the states 

and are defined by (4.37) and (4.38).  Am and Bd describe rotor angular velocities’ effect 

on the states.  The last row and column in (4.97) describe the effect of rotor current on the 

states, where In×q is an n×q identity matrix .  Am and Bd are described by: 
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                          (4.100)            

Note that if the vehicle is evenly loaded and operating near a level operating point, then 

                        1 2 3 4  y y y yk k k k  (4.101) 

         1 2 3 4  y y y yd d d d  (4.102) 

          1 2 3 4  x x x xk k k k  (4.103) 

 1 2 3 4  x x x xd d d d  (4.104) 
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       1 2 3 4     d d d d  (4.105) 

Representing the vehicle in linear state-space form is ideal due to the wide selection 

of effective control strategies that are easily applied to such systems, some of which are 

explored in chapter CHAPTER 5:.  This is also a milestone for EDWmaglev, since it is 

now possible to quickly analyze the system’s behavior without having to resort to either 

compute-intensive numerical methods which can take days or weeks to simulate, or 

inaccurate lumped parameter approaches.  If the system remains close to the operating 

point for which the damping and stiffness terms were calculated for, then the behavior of 

the highly nonlinear EDW system will be qualitatively the same as the linear system 

derived above [80].   

 

If the system undergoes a large change in operating point, or if a linear system is 

undesireable, the stiffness and damping terms can instead be replaced with functions to 

form a nonlinear model using the the SOVP analytical solution.  The nonlinear system can 

then be thought of as being approximated by a series of first order Taylor expansions such 

that it can be called piecewise linear.  Smaller linearization error occurs as the piecewise 

system becomes more segmented, which is possible with an analytical force model that is 

orders of magnitude faster than previous models [71].  The suitability for the analytical 

solution to be used in a piecewise linear model is discussed in further detail at the end of 

chapter CHAPTER 5:.  
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4.6 MODEL VALIDATION 
 

The system was simulated by using the values given in Table 1. The simulation was 

around the steady-state equilibrium point:  

   ( , , , , , , , , , ) (9.29mm, 0, 0, 0, 0, 0, 0, 0, 3937rpm,12V)       y x y z x y z n ny v V  (4.106)                  

where n=1 - 4.  Equation (4.94) was used to simulate the dynamics. At t = 0 the EWV was 

disturbed by applying a δVn=12V change to all of the rotors. The resulting simulation and 

experimental results are shown in Fig. 92 through Fig. 95 and the prolonged oscillations 

seen in the simulation results indicate that the system is underdamaped.  Note that yaw was 

not simulated because on the prototype testbed, the vehicle was constrained in the y 

rotational axis. Because of the phase differences between each corner of the vehicle, the 

average vehicle height, y, fails to provide the expected result.  These phase differences are 

due to the vehicle’s weight not being uniformly distributed and each motor/rotor having 

slightly different physical parameters, and provide a natural averaging/filtering of the rotor 

heights.   Therefore, the oscillation that the vehicle exibits is damped significantly faster 

than predicted by the model.  Note that the pitch angle has more damping than the roll 

angle due to the physical vehicle restrains that prevent it from leaving the ideal location on 

the track. 
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Table 5: Radial EDW vehicle state-space simulation parameters 
Parameter Value Unit 
kxx -1832.6 N/m 
dxx 1.174 Ns/m 
kxy -6009.1 Ns/m 
dxy -5.106 Ns/m 
kyy

 -2113.1 N/m 
dyy

 -5.21 Ns/m 
dxθ 0.0221 Ns/m 
dyθ -0.1087 Ns/m 
ky -48.71 N/m 
dy 0.0221 Ns/m 
kx 0 N/m 
dx 0 Ns/m 
dθ 0.000316 Ns/rad 

 
 

A
ve

ra
ge

 h
ei

gh
t δ

y 
[m

m
] 

 
 Time [s] 

Fig. 92: Vehicle average height vs. time using Table 5 and δVn=12V 
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Fig. 93: Zoomed-in view of height vs. time using Table 5 and δVn=12V 
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Fig. 94:  Vehicle roll angle vs. time using Table 5 and δVn=12V 
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Fig. 95: Vehicle pitch angle vs. time using Table 5 and δVn=12V 

 

Fig.  96 and Fig. 97 show the height change only on rotor 3.  The simulation model 

still predicts less damping than actually exists, and the predicted overshoot of 85.1% is 

actually only 56.4%.  However, the state-space model accurately predicts that oscillations, 

which are at 5.8Hz.  It is also apparent that the vehicle has some steady-state oscillation 

that the model does not predict.  The stead-state oscillations are likely caused by 

irregularities in the guideway height. The track irregularities are measured to be up to ±0.71 

mm, as shown in Fig. 98.  
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Fig.  96:  Air-gap height of rotor 3 vs. time using Table 5 and δVn=12V 

 
 

A
ir

-g
ap

 h
ei

gh
t, 
δy

3 
[m

m
] 

 
 Time [s] 

Fig. 97: Zoomed-in view of air-gap height of rotor 3 vs. time using Table 5 and δVn=12V 
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Fig. 98.  Height irregularities in the left and right side of the guideway track 
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4.7 CONCLUSION 
 
 

This chapter has used the linear differential equations from Chapter CHAPTER 3: to 

formulate a 4-DOF state-space system.  Model complexity has been reduced by making 

reasonable assumptions about the vehicle operating parallel (or near parallel) to the track 

surface, so that many of the damping and stiffness expressions cancel each other out.  In 

addition, x coordinates are converted into yaw, as yaw is a desired state while x-position is 

not.  It was shown that a decoupling block could be used to directly apply inputs to each of 

the 4 individual subsystems (degrees of freedom).  A simulation was compared to 

experimental results which showed that the model could predict the general behavior of the 

system, although the model was significantly more damped than the experimental system.  

The reason for this discrepancy is perhaps due to a combination of track variances as well 

as the EDW’s being out-of-phase with each other due to manufacturing tolerances and 

uneven weights.  This model will be used to develop a control strategy for the prototype 

system. 
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CHAPTER 5:   CONTROL OF PROTOTYPE 4-DOF SYSTEM 
 

In this chapter, classical control methods are applied to the prototype 4-DOF system 

to achieve a set of desired performance objectives.  The purpose of modeling a controller 

for this system is to show that the SOVP damping and stiffness terms can be used to create 

an effective controller that: (a) can be tuned for performance a-priori, rather than tuning 

from experimental trials, and (b) does not necessitate compute-intensive dynamic force 

calculations (from an FEA model, for example).  In Chapter CHAPTER 4:, it was shown 

that the EDWs could be modeled with driving motors such that the input to each wheel is 

voltage.  With the knowledge that an EDW maglev system model based on damping and 

stiffness terms can be easily augmented with motor dynamics, we can then focus solely on 

the maglev dynamics in this chapter.   

Equation Chapter (Next) Section 1 

5.1 TRANSFER FUNCTIONS 
 
 

We can write the transfer function to each of the 2nd order LTI systems from (4.65) - 

(4.68) to gain an understanding of how our system parameters affect the system’s response. 

Writing the differential equations for heave from equation (4.65): 

                                           
4 4

     yy yy
y

k d
y y y D

m m
 (5.1) 

Taking the Laplace Transform of (5.1): 

                 2 4 4
( ) (0) (0) ( ) ( ) ( )        yy yy

y

k d
s y s s y y y s s y s D s

m m
 (5.2) 

Noting that 

                                                       (0) 0 y  (5.3) 
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then simplifying and rearranging (5.2), the heave transfer function is formed: 
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Using the same method, the transfer function for the roll system is determined to be: 
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Similarly for the pitch system: 
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Again using the same method for the yaw system: 

              2
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We can define the transfer function in terms of the eigenvalues as well.  For the height 

dynamics: 
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Using the quadratic equation to solve for the eigenvalues yields: 
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Since stability requires all eigenvalues of a system to have negative real parts, it is evident 

from (5.9) that the stability criteria for the height system are: 

                                       0yk  (5.11) 
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                                        0yd  (5.12) 

Damping and stiffness values from Table 6 are used to simulate the vehicle hovering 

with a 9.29 mm airgap on all rotors, with each rotor centered over the track.  These values 

are used to form a Bode plot for the height system as shown in Fig. 99. 

Table 6: Radial EDW vehicle simulation damping and stiffness terms 
Parameter Value Unit 
kxx

 -1832.6 N/m 
dxx

 1.17 Ns/m 
kyy

 -6009.1 Ns/m 
dxy

 -5.106 Ns/m 

 

Fig. 99: Height system open-loop Bode plot, using parameters from Table 6 
 

The Bode plot shows infinite gain margin and phase margin, implying strong stability for 

the height system.  It also shows a resonant frequency at 7.34 Hz. 

For the roll dynamics, the transfer function is: 
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Where the quadratic equation once again is used to find the eigenvalues: 
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Despite having different eigenvalues, the stability criterion for the roll system is the 

same as the height system, shown in equations (5.11) and (5.12).  The Bode plot for the 

roll system using parameters from Table 6 is shown in Fig. 100.  Similarly to the height 

system, the gain and phase margin are infinite, guaranteeing stability.  The resonant 

frequency occurs at 25.1 Hz. 
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Fig. 100:  Roll system open-loop Bode plot, using parameters from Table 6 
 

For the pitch dynamics, the transfer function is: 
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Where the eigenvalues are: 
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Again, the stability criteria are defined by (5.11) and (5.12).  Fig. 101 shows a Bode 

plot for the system using Table 6.  Stability in the pitch axis is guaranteed due to the 

infinite gain and phase margins.  A resonant frequency occurs at 24.4 Hz. 

 

Fig. 101:  Pitch system open-loop Bode plot, using parameters from Table 6 
 

For the yaw dynamics, the transfer function is: 
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With the eigenvalues calculated from: 
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The stability criteria for the yaw dynamic system are: 

                                               0xp  (5.22) 

                                               0xc  (5.23) 

Fig. 102 shows a Bode plot for the yaw system simulated using parameters from Table 

6.  Unlike the other degrees of freedom, the phase plot does not approach -180 degrees as 

frequency approaches infinity.  In fact, increases to approach +180 degrees and is positive 

for all frequencies.  This system is unstable, and will have an unstable oscillation at the 

resonant frequency of 21.8 Hz. 

 

Fig. 102:  Yaw system open-loop Bode plot, using parameters from Table 6 
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We should note that while the vehicle’s physical dimensional and mass distribution 

terms such as w, l, a, m, Ixx, Iyy, Izz cannot be altered, we can affect the system’s response 

by selecting the damping and stiffness values.  This is accomplished by choosing an 

effective operating point at which these values are calculated for.  In other words, the 

system’s open loop dynamics are determined by the chosen operating point. 
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5.2 LINEAR CONTROL OF SYSTEM DYNAMICS BLOCKS 
 

The four decoupled 2nd order LTI systems derived in Section 4.4 in equations (4.65) - 

(4.68) can be simulated and compared with a set of systems that employ linear quadratic 

regulators (LQR).  Each system must satisfy a cost function of the general form [58]: 

                               
0

( 2 )x Q x x N


   T T T
d d d d d d d d d dJ u R u u dt  (5.24) 

where Jd is the cost, Qd, Rd, and Nd are matrices carrying the relative cost weights.  Note 

that the “d” nomenclature is to signify that these variables will come from the 4 LTI 

dynamic systems, and will be replaced with y, θx, θz, or θy, which represent height, roll, 

pitch, and yaw, respectively.  To simplify the controller, we will make the reasonable 

assumption that we have a strong motor driver that can supply any reasonable amount of 

current and voltage without overheating, so that 

                                              0dR  (5.25) 

                                            0N d  (5.26) 

This allows us to penalize the state error exclusively, which is of most importance.  

Another factor that allows this assumption to be realistic will be the realistic choice of Qd, 

which will not allow the vehicle to undergo excessive changes in velocity, which will 

naturally limit the drive current to the motors. 

 

Maintaining close proximity to desired displacement is critical for the vehicle to 

remain contactless with the track, while keeping velocities error small, though still 

important to minimize mechanical stresses, is less critical.  As such, a Qd matrix that places 

displacement error an order of magnitude larger than velocity error is appropriate. 
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This cost function is implemented by applying a control signal determined by a feedback 

gain, Kd, and the states of the selected system, xd [58]: 

                                                     K x d d d du r  (5.28) 

where rd is the reference signal (the system’s external input). 

Recall the general form of a state-space system in matrix form: 

                                                   x A x B 
d d d d du  (5.29) 

Substituting (5.28) into (5.29) and rearranging [75]: 

                                             x A B K x B  
d d d d d d dr  (5.30) 

This input closes the plant loop, such that the new system has the same state space form, 

with the new A, or state matrix of the state-space system being [58]: 

                                                  ,A A B K d cl d d b  (5.31) 

where “cl” nomenclature denotes closed loop.  The gain, when assuming an infinite control 

horizon, is calculated from [58]: 

                                             1( )K B P N T T
d d d d dR  (5.32) 

where the algebraic Riccati equation [58]: 

                   1( ) ( ) 0A P + P A P B + N B P + N Q  T T T
d d d d d d d d d d d dR  (5.33) 

is used to solve for Pd in (5.32) [75].  The systems with LQR control will take on the form 

shown by Fig. 103. 
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Fig. 103:  Block diagram of dynamic system with LQR control 

 
 

An operating point allowing the vehicle to levitate at a steady state height of 9.29mm 

and roll, pitch, and yaw angles of zero is chosen, with parameters defined in Table 1 and 

the damping and stiffness values shown in Table 6. 

 
Table 1:  Rotor, Guideway, and Vehicle Parameters for the Experimental Setup 
Parameter    Value Unit 

Rotor 

Outer radius, ro 26 ± 0.58 mm 
Inner radius, ri 9.6 mm 
Width of rotor, wo 52 mm 
Residual flux density, Brem 1.42 T 
relative permeability, μr 1.108 - 
Pole-pairs, P 2 - 

Guideway 

Outer radius, rg 600 ± 0.73 mm 
Guideway width, wg 77 mm 
Thickness, h 6.3 mm 
Conductivity, σ (Al, 6061-T06) 2.459x10-7  Sm-1 

Vehicle 

Total mass, m 10.315 kg 
Length, 2l 0.173 m 
Width, 2w 0.3254 m 
z-axis rotational Inertia, Izz 0.08821 kgm2 
x-axis rotational Inertia, Ixx 0.1977 kgm2 
y-axis rotational inertia, Iyy 0.259 kgm2 

BLDC motors 
(Scorpion SII-
4035-250KV) 

Winding inductance, La 4.7×10-6 H H 
Winding resistance, Ra 0.037  Ω 
Back-emf constant, Ke 0.036  Vs/rad 
Torque constant, Kt 0.0295  Nm/s 
rotational inertia, J 0.00386  kgm2 
Viscous damping coefficient, b 2.295×10-6 Nmꞏs/rad 
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Table 6:  
Parameter Value Unit 
kxx

 -1832.6 N/m 
dxx

 1.17 Ns/m 
kyy

 -6009.1 Ns/m 
dxy

 -5.106 Ns/m 
 

Table 7: Radial EDW vehicle simulation step disturbance 
State Value Unit 
δy 0 m 
δvy 1 m/s 
δθx 0 radians 
δωx 1 rad/s 
δθz 0 radians 
δωz -0.7 rad/s 
δθy 0 radians 
δωy 0.5 rad/s 

 

Fig. 104 and Fig. 105 show the simulated height and heave behavior when the 

disturbance defined in Table 7 is applied at t = 1 seconds.  The value of Ky calculated 

from (5.32) is: 

                                              599.62 317.67K y  (5.34) 

The open loop system is stable, but is slow to reject the disturbance, with the height 

still oscillating with an amplitude of 34.7% of the first oscillation magnitude 5 seconds 

after the disturbance is applied.  The LQR controller quickly recovered from the 

disturbance within with a settling time of less than 0.3 seconds for the height dynamic.  

We will define the settling time error band to be 2%. 
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Fig. 104:  Height dynamics open loop vs LQR control (parameters from Table 1, Table 6, and Table 7) 
 
 

 

Fig. 105:  Heave dynamics open loop vs LQR control (parameters from Table 1, Table 6, and Table 7) 
 
 

The roll angle and roll velocity simulation results are shown in Fig. 106 and Fig. 107.  The 

gain value was calculated to be: 

                                              79.36 311.25K x  (5.35) 

Again, the LQR recovers from the disturbance much quicker with fewer oscillations, 

settling in roughly 0.6 seconds, while the open loop takes roughly 2.6 seconds. 
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Fig. 106:  Roll dynamics: open loop vs LQR control (parameters from Table 1, Table 6, and Table 7) 
 

 

Fig. 107:  Roll Velocity dynamics: open loop vs LQR control 

(parameters from Table 1, Table 6, and Table 7) 

 
 
The pitch dynamics simulation results, shown in Fig. 108 and Fig. 109, show a very similar 

performance to the roll dynamics.  The gain was calculated to be: 

                                              83.94 311.55K z  (5.36) 

The pitch angle with the LQR system has fewer oscillations and a settling time of less than 

0.6 seconds, while the open loop system takes about 2.6 seconds to settle. 
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Fig. 108:  Pitch dynamics: open loop vs LQR control (parameters from Table 1, Table 6, and Table 7) 
 

 

Fig. 109:  Pitch velocity dynamics: open loop vs LQR control 

(parameters from Table 1, Table 6, and Table 7) 

 
 
For the yaw simulation, the gain value was calculated to be: 

                                              26.67 328.32K y  (5.37) 

Calculating the eigenvalues of the state matrix for the yaw dynamic system and observing 

the positive real parts shows that the system is unstable: 

                                           5.892 136.76  y j  (5.38) 

The controllability matrix for this system is: 

                                       
0 1

1 11.78
M

 
     

 
y y y yB A B  (5.39) 
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The full rank of 2 of the controllability matrix in (5.39) ensures that the system is 

controllable.  Fig. 110 and Fig. 111 confirm that the system is open loop unstable but is 

stabilized by the LQR controller.  The LQR system has a settling time of approximately 

0.57 seconds. 

 

Fig. 110:  Yaw dynamics: open loop vs LQR control (parameters from Table 1, Table 6, and Table 7) 
 

 

Fig. 111:  Yaw velocity dynamics: open loop vs LQR control 

(parameters from Table 1, Table 6, and Table 7) 

 

Fig. 112 shows each rotors’ rotational velocity over the course of the 4-DOF 

simulation of the open loop system.  Instability in the y rotational axis is the dominant 

contributor the rotor speeds, as evidenced by the oscillations that increase with time which 

have the same frequency as the yaw position and yaw velocity from Fig. 110 and Fig. 111.  
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The change in rotor rotational velocities causes the torque and y force from each rotor to 

vary, as shown in Fig. 113.  Both the y forces and the torques exhibit similar oscillation 

frequency as yaw.  These rotational speeds, torques, and forces are unrealistic for the 

prototype system, since we have estimated the maximum rotational speed to 5000 rpm for 

safety, the motor manufacturer stated maximum torque is 2.48 Nm [74], and the 4-40 

hardware securing the rotors will begin to yield if a force of more than 951 N is applied 

[73].  Note that after t = 1.125 seconds, the oscillations cross zero, implying that the rotors 

are changing directions very rapidly which is yet again unrealistic due to rotor inertia. 

 

The rotor rotational velocities for the closed loop system are shown in Fig. 114.  Each 

rotors’ unique velocity profile can be determined by summing the effect of each degree of 

freedom as shown in equation (4.57).   

                                             

1

2

3

4

Ω Ω Ω Ω






 
 
     
 
 
 

h x z y  (4.57) 

The closed loop system ensures that the rotor speeds stay positive and within 

reasonable speeds, never deviating from the initial operating point by more than 1000 rpm, 

and eventually settling back to the initial speeds of 3691 rpm.  The torques and vertical 

forces exerted by the rotors are also kept within reasonable mechanical limits, as evidenced 

in Fig. 115.  The vehicle is stabilized while maintaining a peak force less than 56.4 N and 

peak torque less than 1.51 Nm and a deviation of torque less than 0.55 Nm. 
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Fig. 112:  Individual rotor rotational velocities for open loop system simulation 

(parameters from Table 1, Table 6, and Table 7) 
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Fig. 113:  Individual rotor torque and force plots for open loop system simulation 

(parameters from Table 1, Table 6, and Table 7) 
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Fig. 114:  Individual rotor rotational velocities for closed loop LQR system simulation 

(parameters from Table 1, Table 6, and Table 7) 
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Fig. 115:  Individual rotor torque and force plots for closed loop LQR system simulation 

(parameters from Table 1, Table 6, and Table 7) 

 
 
  

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Time (s)

1

1.2

1.4

40

50

60

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Time (s)

1

1.2

1.4

30

40

50

60

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Time (s)

1

1.2

1.4

40

50

60

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Time (s)

1

1.2

1.4

30

40

50

60



175 
 

5.3 SETPOINT TRACKING 
 

In this section, we will discuss and simulate two methods of obtaining steady-state 

setpoint tracking for the LTI systems; pre-compensation and linear quadratic integral 

control. 

 

5.3.1 LINEAR QUADRATIC REGULATOR WITH PRE-COMPENSATED 
REFERENCE 

 

The LTI systems simulated in section 5.2 do not achieve steady-state tracking of a 

reference signal because the error signal is derived from the difference between the 

reference signal and the states, rather than the reference signal and the output [58].  This 

can be remedied with careful selection of a pre-compensation value, ഥܰௗ, which scales the 

reference signal, denoted by r in the generalized block diagram in Fig. 116. 

 

 
Fig. 116:  Generalized LQR controller with pre-compensator to achieve steady-state tracking 

 

Pre-compensation adjusts the reference signal so that the when states reach steady-

state, the output matches the reference signal.  The input matrix of the state-space system 

is modified [58]: 
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                                                    ,B B Nd ss d d  (5.40) 

where Bd,ss is the input matrix which drives steady-state error to zero.  For illustrative 

purposes, the height dynamic system was simulated using a pre-compensator block and the 

parameters from Table 1, Table 6, and Table 8.  The pre-compensator value is: 

                                                    1133.67yN  (5.41) 

The reference signal in this case is the desired height of the vehicle.  The results are 

shown in Fig. 117.  From steady state (level at y = 9.29mm), the system is given a reference 

signal of r = 0.01029m at t = 1s (i.e.: commanded to move 1mm up).  The system reaches 

steady state 0.282 seconds after the command is sent.  Note that previous simulations had 

a reference signal of 

                                                           0dr  (5.42) 

and were only tested for disturbance rejection because the reference signal was 

meaningless.  Without the pre-compensator, the resulting δy as t→∞ is 1133.67 times 

smaller (the value of ഥܰௗ) and is not useful to plot in comparison as it appears as a horizontal 

line at this scale. 
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Fig. 117:  Height dynamics simulation with LQR and pre-compensation controller 

(parameters from Table 1, Table 6, and Table 7) 

 

5.3.2 LINEAR QUADRATIC INTEGRAL CONTROL 
 

While a pre-compensator method works to achieve desired steady-state response, the 

pre-compensator values rely on a very accurate model.  Uncertainties in the model, noise, 

and discretization error will lead to nonzero steady-state error.  To add robustness to the 

system, an error integrator is preferred.  This creates a Linear Quadratic Integral (LQI) 

controller as shown in Fig. 118.   

 
Fig. 118:  Generalized block diagram of LQI controller, where ed is the error signal, xdi is the 

integrator state, Kd is the LQR (feedback) gain matrix, and Kdi is the integrator gain 
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The plant model, 

                                                  x A x B u d d d d d  (5.43) 

is augmented to include a new state, xdi, which is the integral of the error, ed, between the 

reference signal, rd, and the output [58]: 

                                                  x C x  d di d de  (5.44) 

For convenience in relating xdi to its derivative, the ẋdi notation will be used rather than ed. 

The resulting system in state-space form can be written as [75]: 

                                          
0

0 0

A B
z z

C

   
       

 d d
d d d

d

u  (5.45) 

where the new state vector that is augmented to include error is 

                                                     
x

z
 

  
 

d
d

dix
 (5.46) 

Note that the subscript “d” nomenclature again signifies that state-space matrices from 

the degree-of-freedom dynamics being simulated will replace those written in (5.45), 

(5.46), and in the following equations in this chapter. 

 

Choosing a controller gain matrix using either pole placement or the Algebraic Riccati 

Equation on the augmented system, the input is described by [75]: 

                                               K d d di du K z  (5.47) 

where the linear quadratic gain matrix is Kd, and the integrator gain is Kdi. Substituting 

(5.47) into (5.45), we arrive at the closed loop system representation [75]: 

                                
0

0 1

A B K B
z z

C

    
       

 d d d d di
d d d

d

K
r  (5.48) 
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                                            C D zd d d di dy K  (5.49) 

Note that since Dd is zero, (5.49) is simplified to 

                                               0C zd d dy  (5.50) 

and the linear quadratic (LQ) gain matrix is 

                                              1 2K d d dK K  (5.51) 

Using the LQI equation (5.48), the height dynamic LQI system is: 

                    1 2

0 1 0
0

0

1
1 0 0

 
  
 

 
      
               
            





yy yy
y y y yi y des

yi yi

y y
k d

v K K K v y
m m

x x

  (5.52) 

where the error state, xyi, is the difference between the height and the commanded height, 

ydes: 

                                                    yi desx y y  (5.53) 

The LQI roll dynamics are described by: 

                   
2 2

1 2 ,

0 1 0
0

0

1
1 0 0

  

 

 
  

 
      
               
              






x x
yy yy

x x x xi x x des
xx xx

xi xi

k w d w
K K K

I I
x x

  (5.54) 

where the error state, xθxi, is the difference between roll angle and the commanded roll, 

θx,des: 

                                                   ,   xi x x desx  (5.55) 

The LQI pitch dynamics are described by: 
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2 2

1 2 ,

0 1 0
0

0

1
1 0 0

  

 

 
  

 
      
               
              






z z
yy yy

z z z zi z z des
zz zz

zi zi

k l d l
K K K

I I
x x

  (5.56) 

where the error state, eθz, is the difference between pitch angle and the commanded pitch 

angle, θz,des: 

                                                   ,   z z z dese  (5.57) 

The LQI yaw dynamics are described by: 

                  1 2 ,

0 1 0
0

4 4
0

1
1 0 0

  

 

 
  

 
      
               
             






y y

xx xx
y y y yi y y des

yy yy
yi yi

k a d a
K K K

I I
x x

  (5.58) 

where the error state, xθyi, is the difference between yaw angle and the commanded yaw, 

θy,des: 

                                                   ,   yi y y desx  (5.59) 

Again using the simulation parameters from Table 1 and Table 6 and reference signal 

commands shown in Table 8, which are applied from equilibrium at t = 1s. 

Table 8: Radial EDW vehicle simulation position command (reference signals) 
Parameter Value Unit 
ry 10.29 mm 
rθx 4 deg 
rθz -3 deg 
rθy 2 deg 

 

The LQI cost function weights defined as 

                                   

1 0 0

0 1 0

0 0 1000
  

 
       
  

d y x z yQ Q Q Q Q  (5.60) 
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                                         61
10

30  
    d y x z yR R R R R  (5.61) 

The costs are chosen to minimize error between the output and reference signals.  Note 

that the very small input cost weights are necessary since the state signals are small (on the 

order of hundredths and thousandths), and we must make sure the input costs are small by 

comparison.  Also note that the input cost weight for the yaw dynamic is 30 times larger 

than the other axes in order to slow down yaw movement, since it is not as critical as roll 

or pitch (yaw will not cause the rotor to come into contact with the track surface), and since 

yaw has the largest moment of inertia.  Using the cost weights from (5.60) and (5.61), the 

feedback values were calculated by solving for the Algebraic Riccati Equation: 

                        
1

2

7528.5

1007.1

31622.8

   
      
     

y

y
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K

K

K

 (5.62) 
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2
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      

x

x
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K

K

K

 (5.63) 
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 (5.64) 
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   
      
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y

y

yi

K

K

K

 (5.65) 

 

The simulation results, shown in Fig. 119, Fig. 120, Fig. 121, and Fig. 122, show that 

the LQI controller yields a stable system with zero steady-state error, and a settling time of 
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less than 1.2 seconds for the height system, less than 1.0 seconds for the roll and pitch 

systems, and less than 1.4 seconds for the yaw system. 

 

Fig. 119:  Vertical displacement simulation with LQI control 

(parameters from Table 1, Table 6, and Table 8) 

 

 

Fig. 120:  Roll simulation with LQI control (parameters from Table 1, Table 6, and Table 8) 
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Fig. 121:  Pitch simulation with LQI control (parameters from Table 1, Table 6, and Table 8) 
 

 

Fig. 122: Yaw simulation with LQI control (parameters from Table 1, Table 6, and Table 8) 
 

Fig. 123 shows the rotor rotational velocities for the LQI simulation.  The change in 

rotational velocities required to move to the reference signal is relatively small to achieve 

a reasonable settling times of 1 to 1.4 seconds, the largest being rotor 3 with a maximum 

deviation of 480 rpm.  Note that rotors 2 and 3 experienced increased rotational velocity 

while rotors 1 and 4 experienced reduced rotational velocity. 



184 
 

 

Fig. 123:  Individual rotor rotational velocity plots for closed loop LQI system simulation 

(parameters from Table 1, Table 6, and Table 8) 

 
 

Fig. 124 shows the rotor torques and vertical forces for the LQI simulation.  Clearly 
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reflected by the torques and forces.  Instead, we see increased torque on only rotor 2 due 

to it being pushed closer to the track by both roll and pitch angles.  While the total 

cumulative vertical force is increased, rotor 3 experiences reduced force as roll and pitch 

move it further from the track. 

 

Fig. 124:  Individual rotor torque and force plots for closed loop LQI system simulation 

(parameters from Table 1, Table 6, and Table 8) 

 
 
  

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Time (s)

1.1

1.2

1.3

1.4

46.5

47

47.5

48

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Time (s)

1.4

1.5

1.6

1.7

46

48

50

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Time (s)

1.45

1.46

1.47

1.48

45.5

46

46.5

47

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Time (s)

0.8

1

1.2

1.4

46

48

50

52



186 
 

5.4 OBSERVER-BASED CONTROL 
 

On the prototype vehicle, it is easy to measure height, the pitch, and the roll angles 

using laser displacement sensors, but vehicle velocities are more challenging to measure in 

real-time without delay.  A state observer on each 1-DOF subsystem can be used to estimate 

these unknown quantities so that state control methods can be used.  

 
 

5.4.1 STATE OBSERVER DERIVATION 
 

A state observer or estimator consists of a virtual plant model that is identical to the 

physical plant, which is fed measurable data (often the output), so that its states closely 

match the systems’ actual states.  These estimated states can then be used for control.  A 

block diagram of a control system utilizing an observer is shown in Fig. 125.  Similar to 

previous sections, feedforward is neglected for this section, so Dd = []. 
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Fig. 125:  General block diagram of system control using state observer, Dd = [] 
 

The general plant states are: 

                                 d d d d du= +x A x B  (5.66) 

                                 d d dy =C x  (5.67) 

where yd is the system output.  The estimator is governed by [58][75]: 

                                 ˆ ˆˆ ˆ ˆ( )d d d d d d d du y y= + + -x A x B L  (5.68) 

                                 ˆ ˆd̂ d dy =C x  (5.69) 

where the caret notation signifies estimation, ŷd is the estimator output, and Ld is the 

estimator feedback gain.  Note that the system matrices for the estimator are subject to 

modeling error and are estimated values as well.  Recall the full order estimated state 

equation, (5.68), while substituting in (5.69) and (5.78) - (5.80) : 
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                                 ˆ ˆ ˆ( )d d d d d d d d du y= + + -x A x B L C x  (5.70) 

  The control signal for the system is [75]: 

                                              ˆd d d d du N r= -K x  (5.71) 

Substituting (5.67), (5.69), and (5.71) into (5.68) yields: 

                   ( )d d d d d d d d d d d d dN rˆ ˆ ˆˆ ˆ ˆ( )= - + - +x A B K x L C x C x B  (5.72) 

Substituting (5.71) into (5.66): 

                                   ( )ˆd d d d d d d dN r -= +x A x B K x  (5.73) 

The state error dynamics can be described by a new state: 

                                   ˆx d d= -e x x  (5.74) 

A similar definition holds for the derivative of the error: 

                                ˆx d d= -  e x x  (5.75) 

Substituting (5.73) and (5.72) into (5.75):  

                

( )
( ) ( )

x d d d d d d d

d d d d d d d d d d d d

N r

N r

ˆ
ˆ ˆ ˆˆ ˆ

= + -

- - - - -

e Ax B K x

A B K x L C x C x B  (5.76) 

Grouping like terms in (5.76): 

             ( ) ( )x d d d d d d d d d d d d
ˆ ˆ ˆ ˆ= - - - - +e A LC x A B K LC B K x  (5.77) 

For the purposes of creating a simple linear system model, we can assume that the 

observer model is sufficiently close to the plant such that: 

                                ˆ
d d=A A  (5.78) 

                     ˆ
d d=B B  (5.79) 
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                             ˆ
d d=C C  (5.80) 

Substituting (5.78), (5.79), and (5.80) into (5.77) and rearranging: 

                                 x d d d d d d dˆ ˆ( ) ( )= - - -e A x x LC x x  (5.81) 

Finally, substituting (5.74) into (5.81) and factoring: 

                                              ( )x d d d x= -e A LC e  (5.82) 

The Ld gain is selected to drive the estimator to the system’s actual value by driving 

error to zero.  Since control is dependent on the observer states, it is important for the 

estimates to converge to the actual states quickly without amplifying noise.  Typically, it 

is desired to use poles of the estimator, Ad – LdCd, that are 2 to 5 times faster than the 

slowest pole of the controller, Ad – BdKd [77]. 

 

We can now define our plant state dynamics as functions of plant and error states.  By 

substituting (5.74) into (5.73), x̂d can be written in terms of xd and ed such that: 

                        ( )d d d d d d d d d d dN r= - + +x A B K x B K e B  (5.83) 

Equations (5.83) and (5.82) can now be combined into matrix form to form the observer 

system dynamic model [75]: 

                0 0
d d d d d d d d d

d
x d d d x

r
é ù é ù é ù é ù-ê ú ê ú ê ú ê ú= +ê ú ê ú ê ú ê ú-ê ú ê ú ê ú ê úë û ë û ë û ë û



x A B K B K x B N

e A LC e  (5.84) 

                                         0 d
d d

x

y
é ù
ê úé ù= ê ú ê úë û ê úë û

x
C

e  (5.85) 

Note that the system described by (5.84) and (5.85) observes the separation principle which 

states that designing the optimal feedback controller can be achieved by designing an 
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optimal observer [77].  It also follows that LQR methods (solving the Algebraic Riccati 

Equation) can be used to solve the feedback control gain matrix, Kd, completely separately 

from the pole placement methods which can be used to solve for the estimator gain matrix, 

Ld [77]. 

 

It can sometimes be useful to directly monitor the observer states of a system rather 

than the error.  The same system can be written as functions of plant and observer states by 

combining equations (5.73) and (5.72) in matrix form: 

               
d d d d d d d

d
d d dd d d d d d d d

r
ˆ

ˆ ˆ ˆˆ

é ùé ù é ù é ù-ê úê ú ê ú ê ú= +ê úê ú ê ú ê ú- - ê ú ê úê ú ê ú ë û ë ûë û ë û



x A B K x B N

x B Nx LC A LC B K  (5.86) 

 

 
5.4.2 REDUCED ORDER OBSERVER METHODS 

 

Even well designed state observers will have some error in their estimations, so if 

some of the states are measurable, it is preferable to use those measurements for those 

states instead of the observer.  For the prototype vehicle, the 2nd order LTI system for yaw 

requires a full observer since the prototype vehicle does not have provisions to measure 

horizontal motion.  However, the height, roll, and pitch systems can more accurately be 

modeled using a reduced order observer, since vertical displacement at each corner is 

measurable (while instantaneous real-time velocity data is not).  The reduced-order 

observer system can be derived without modifying a full observer system.  Starting with 

the standard state space system from equations (5.66) and (5.67), we can break down the 
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matrices into components that describe the states that are available to measure, xd,a, and 

states that are unmeasurable, xd,u [77]: 

                                              , ,

, ,

A A
A

A A

 
  
 

d aa d au
d

d ua d uu

 (5.87) 

                                              ,

,

B
B

B

 
  
 

d a
d

d u

 (5.88) 

                                               1 2C C Cd d d  (5.89) 

where the subscript notation a implies available to measure and u implies unavailable to 

measure (estimated state), and d denotes the system being analyzed.  Substituting (5.87) 

and (5.88) into (5.66), and (5.89) into (5.67), and writing breaking the state vector into its 

measureable and unmeasurable components, we can rewrite the state space system: 

                            , , , , ,

, , , , ,

( ) ( )
( )

( ) ( )

x A A x B

x A A x B

       
        

       




d a d aa d au d a d a
d

d u d ua d uu d u d u

t t
u t

t t
 (5.90) 

                                          ,
1 2

,

( )

( )

x
C C

x

 
  

 

d a
d d

d u

t
y

t
 (5.91) 

The measured state dynamic equation is: 

                                   , , , , , ,x A x A x B  
d a d aa d a d au d u d a du  (5.92) 

The unmeasured state dynamic equation is: 

                                    , , , , , ,x A x A x B  
d u d ua d a d uu d u d u du  (5.93) 

Re-arranging (5.92) yields: 

                                    , , , , , ,x A x B A x  
d a d aa d a d a d d au d uu  (5.94) 

We can take equations (5.93) and (5.94) and compare them to the standard state 

space form from (5.66) and (5.67).  The comparison is shown in Table 9. 
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Table 9: Cross-comparison of full-order and reduced order observer experssions [77] 

Full-order observer terms Reduced order observer terms 

xd  ,xd u  

Ad  ,Ad uu  

B ud d  , , ,A x B ud ua d a d u d  

dy  , , , ,x A x B 
d a d aa d a d a du  

Cd  ,Ad au  

Ld   1n  Ld   ( 1) 1 n  

 

Rewriting the observed state equation, (5.70): 

                                 ( )ˆ ˆd d d d d d d d du y= - + +x A LC x B L  (5.95) 

Since the system formed by (5.94) and (5.93) fits the standard state space form as 

shown by the equivalency in Table 9, we can form the reduced-order estimated state 

equation by substituting in the terms from the first column of Table 9 with the terms from 

the second column of Table 9 in equation (5.95): 

         
( )

( )
A A x

B u x A x B
, , , , , ,

, , , , ,

ˆ ˆd u d uu d d au d u d ua d a

d u d d d a d aa d a d a du

= - +

+ + - -




x A L x

L  (5.96) 

Grouping like-terms in (5.96): 

      
( ) ( )

( )
A A A x

x B B
, , , , , , ,

, , ,

ˆ ˆd u d uu d d au d u d ua d d aa d a

d d a d u d d a d

= - + -

+ + -




x A L x L

L L u  (5.97) 

By substituting (5.92) into (5.97), we obtain an expression for the estimated state: 

      
( ) ( )

( ) ( )
A A A x

A x A x B B B
, , , , , , ,

, , , , , , ,

ˆ ˆd u d uu d d au d u d ua d d aa d a

d d aa d a d au d u d a d d u d d a du

= - + -

+ + + + -

x A L x L

L L u  (5.98) 
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Defining the error of the unmeasurable state so that it can be minimized to allow the 

estimate to approach the real state: 

                                       , , ,ˆd u d u d u= -e x x  (5.99) 

The derivative of error is: 

                                   , , ,ˆd u d u d u= -  e x x  (5.100) 

Substituting (5.93) and (5.97) into (5.100): 

  
( ) ( )

( )

A x A x B

A A A x

x B B

, , , , , ,

, , , , , ,

, , ,

ˆ
d u d ua d a d uu d u d u d

d uu d d au d u d ua d d aa d a

d d a d u d d a d

u= + +

- - - -

- - -





e

A L x L

L L u
 (5.101) 

Substituting (5.92) into (5.101): 

  
( ) ( )

( ) ( )

A x A x B

A A A x

A x A x B B B

, , , , , ,

, , , , , ,

, , , , , , ,

ˆ
d u d ua d a d uu d u d u d

d uu d d au d u d ua d d aa d a

d d aa d a d au d u d a d d u d d a d

u

u

= + +

- - - -

- + + - -

e
A L x L

L L u
 (5.102) 

Simplifying (5.102): 

                   ( ) ( )A A x A A, , , , , , ,ˆd u d uu d d au d u d uu d d au d u= - - -e L L x  (5.103) 

Finally, substituting (5.99) into (5.103) [77]: 

                                     ( )A A e, , , ,d u d uu d d au d u= -e L  (5.104) 

Equations (5.83), the measured states, and (5.104), the observed states, can now be 

combined to form a state-space system in matrix form for the reduced-order observer: 

           
,

, , , ,0 0
d d d d d d u d d d

d
d u d uu d d au d u

r
é ù é ù é ù é ù-ê ú ê ú ê ú ê ú= +ê ú ê ú ê ú ê ú-ê ú ê ú ê ú ê úë û ë û ë û ë û



x A B K B K x B N

e A L A e  (5.105) 



194 
 

The reduced-order observer from (5.105) can also be represented as a block diagram as 

shown in Fig. 126. 

 

 

Fig. 126: Reduced-order observer general block diagram 
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Note that the observer error should decay to zero as long as the eigenvalues of 

, ,A L Ad uu d d au  have negative real parts.  We must also assume that the system’s 

observability matrix, 

                                                     
C

M
C A

 
  
 

d
d

d d

 (5.106) 

has a rank of n.  It is also necessary to ensure the system can be controlled by checking the 

controllability matrix for full rank: 

                                                  [ ]N B A Bd d d d  (5.107) 

We can apply gains to the input in order to control the system, again using the 

Algebraic Riccati Equation [77]: 

                                                
,

,

( )
( )

( )

x
K

x

 
   

 

d a
d

d u

t
u t

t
 (5.108) 

where 

                                                 , ,K    d d a d uK K  (5.109) 

and Kd,a and Kd,u are the feedback gains of the measured and observed states, respectively.  

Note that this notation facilitates the derivation of a reduced order observer, but for a 2nd 

order system, the notation of Kd from section 5.3 (equation (5.51))is synonymous: 

                                            , , 1 2   d a d u d dK K K K  (5.110)  

Note that the gains Ld and Kd can be chosen independently of each other to obtain desired 

system response.  The control law is then given by: 

                                            , , , ,
ˆK x K x  d d a d a d u d uu  (5.111) 

Grouping like-terms and substituting (5.111) into equation (5.98) yields: 
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( )
( )

B K A

A B K x A x
, , , , , ,

, , , , , ,

ˆ ˆd u d uu d u d u d d au d u

d ua d u d a d a d d au d u

= - -

+ - +

x A L x

L  (5.112) 
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5.4.3 OBSERVER EXAMPLES AND SIMULATIONS 
 

5.4.3.1 VERTICAL VELOCITY SYSTEM OBSERVER 
 

Checking the controllability, My, and observability, Oy, matrices for the height system: 

                                        

0 1

4
1

M
 
   
  

y yyd

m

 (5.113) 

                             
1 0

0 1
O

 
  
 

y  (5.114) 

We can see that the rank of both My and Oy is 2 (full), so the system is observable and 

controllable.  For the height-heave system, we can define the parameters: 

                                  , [0]y aaA  (5.115) 

                               , [1]y auA  (5.116) 

                                 ,

4 
  
 

yy
y ua

k
A

m
 (5.117) 

                                ,

4 
  
 

yy
y uu

d
A

m
 (5.118) 

                                      , 0y aB  (5.119) 

                                   , 1y uB v  (5.120) 

From (5.111), the control law for the reduced-order observer system is 

                                           , , ˆ    y y a y u yu K y K v  (5.121) 

where the estimated state is: 

                     , ,

4 4
ˆ ˆ   

   
        
   

 L Lyy yy
y y u y y y a y y

d k
v K v K y v

m m
 (5.122) 
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Evaluating terms in (5.105) with y = d by substituting (5.115) - (5.120) into (5.105) gives  

                              
, ,

0 1

4 4

 
     
  

A B Kd d d yy yy
y a y u

k d
K K

m m

 (5.123) 

                                               ,
,

0 
  
 

B Kd d u
y uK

 (5.124) 

                                     , ,

4
  A L A yy

d uu d d au y

d
L

m
 (5.125) 

                                                 
0 

  
 

B Nd d
yN

 (5.126) 

Substituting (5.123) - (5.126) into (5.105) the reduced-order observer state-space height 

system:  

               , , ,

0 1 0
0

4 4

0
4

0 0

 
 
 

 
 

      
               
              





yy yy
y y a y u y u y y y

y y
yy

y

y y
k d

v K K K v N r
m m

e e
d

L
m

 (5.127) 

It’s interesting to note that this system is a special case where the measured output is 

equal to the measured state, so the output is not directly dependent on the estimated state.  

Although the system is observable, the error will always be zero if it starts with zero error, 

since 

                                                           ˆ y y  (5.128) 

Therefore, Ly would have no effect on the system and it would behave similar to an 

LQR system.  This assumption breaks down if the system starts with error or if there are 

modeling errors, which is likely.  If error exists then the error will decay according to: 
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4

 
 

  
 

 yy
y y y

d
e L e

m
 (5.129) 

From (5.129), we can see that a negative damping term dyy will help drive the system 

error toward zero, but even if a system has a positive dyy, the observer will converge to the 

plant states as long as Ly is sufficiently large.   

 

Although a more accurate reduced order observer would be used on an actual vehicle, 

it further verifies the validity of using the SOVP model for modeling and control if we 

implement an observer which must actively correct for error using output feedback.  

Therefore, the full state observer is derived by evaluating the terms in (5.84) with d = y:  

                              
2 2

0 1

4 4

 
     
  

A B Kd d d yy yy
y y

k d
K K

m m

 (5.130) 

                                             
1 2

0 0 
  
 

B Kd d
y yK K

 (5.131) 

                                     

1

2

1

4 4

 
    
  

A LC
y

d d d yy yy
y

L

k d
L

m m

 (5.132) 

                                                 
0 

  
 

B Nd d
yN

 (5.133) 

Substituting (5.130) - (5.133) into (5.84) yields the height system full observer state space 

equation: 
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1 2 1 2

1

2

0 1 0 0
04 4

0 0 1 0

4 4 0
0 0

yy yy
y y y yy y y

des
y y y

vy yy yy vy
y

y yk d
K K K Kv v Nm m y

e L e

e k d e
L

m m

d d
d d

d
d d
d d

é ù
ê úé ù é ù é ùê úê ú ê ú ê úê úê ú - - ê ú ê úê úê ú ê ú ê úê ú= +ê ú ê ú ê úê úê ú ê ú ê úê úê ú ê ú ê úê úê ú ê ú ê úê úë û ë û ë û-ê úë û






 (5.134) 

Using simulation parameters from Table 1 and Table 6, choosing a level operating 

(starting) height of 9.29mm, and using a cost matrix that penalizes position error, 

                                              
100 0

0 1
Q

 
  
 

y  (5.135) 

 we can use the LQR method to obtain a controller gain: 

                              
9480.21

10000.50
K

 
  
 

y  (5.136) 
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Table 1. Rotor, guideway, and vehicle parameters for the radial experimental setup 
Parameter    Value Unit 

Rotor 

Outer radius, ro 26 ± 0.58 mm 
Inner radius, ri 9.6 mm 
Width of rotor, wo 52 mm 
Residual flux density, Brem 1.42 T 
relative permeability, μr 1.108 - 
Pole-pairs, P 2 - 

Guideway 

Outer radius, rg 600 ± 0.73 mm 
Guideway width, wg 77 mm 
Thickness, h 6.3 mm 
Conductivity,σ (Al, 6061-T06) 2.459x10-7  Sm-1 

Vehicle 

Total mass, m 10.315 kg 
Length, 2l 0.173 m 
Width, 2w 0.3254 m 
z-axis rotational Inertia, Izz 0.08821 kgm2 
x-axis rotational Inertia, Ixx 0.1977 kgm2 
y-axis rotational inertia, Iyy 0.259 kgm2 

BLDC motors 
(Scorpion SII-
4035-
250KV)[74] 

Winding inductance, La 4.7×10-6 H H 
Winding resistance, Ra 0.037  Ω 
Back-emf constant, Ke 0.036  Vs/rad 
Torque constant, Kt 0.0295  Nm/s 
rotational inertia, J 0.00386  kgm2 
Viscous damping coefficient, b 2.295×10-6 Nmꞏs/rad 

 
Table 6:  

Parameter Value Unit 
kxx

 -1832.6 N/m 
dxx

 1.17 Ns/m 
kyy

 -6009.1 Ns/m 
dxy

 -5.106 Ns/m 
 

The eigenvalues of the controller system Ay - ByKy are (noting that the superscript “cl” 

notation signifies the closed loop poles): 

                                 1 10.00  cl
y  (5.137) 

                                    2 10000  cl
y  (5.138) 

Choosing observer poles roughly 10 times faster than the slowest controller pole (note the 

superscript “o” signifies poles of the observer): 

                                    1 100 o
yp  (5.139) 
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                               2 101 o
yp  (5.140) 

From (5.82), the error dynamics of the observer system are derived from the poles of   

Ay - LyCy, so pole placement can be used to find the observer gain for the system: 

                                 
200.55

9475.77
L

 
  
 

y  (5.141) 

A simulation of the system is performed with a command at t = 0s according to Table 

7.  The system’s initial conditions are shown in Table 10.  Note that the observer begins 

with non-zero error (position offset by -0.5mm and velocity offset by -0.1m/s).  Results for 

the simulation are shown in Fig. 127. 

Table 7: Radial EDW vehicle simulation step disturbance 
State Value Unit 
δy 0 m 
δvy 1 m/s 
δθx 0 radians 
δωx 1 rad/s 
δθz 0 radians 
δωz -0.7 rad/s 
δθy 0 radians 
δωy 0.5 rad/s 

 

Table 10: Height observer system initial conditions 
Parameter Value Unit 
y(0) 9.29 mm 
vy(0) 0 m/s 
ŷ(0) 8.79 mm 
v̂y(0) -0.1 m/s 
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Fig. 127: Height dynamics observer simulation (parameters from Table 1, Table 6, Table 7, Table 10) 

 

Although the estimated system begins with error on both the position and velocity 

while a new position is commanded, the observer state converge to the plant states and the 

system settles to its desired state (±2%) in 0.4 seconds.  The error approaches zero after 0.1 

seconds. 

 
 
5.4.3.2 ROLL VELOCITY SYSTEM OBSERVER 
 

Checking the controllability, M∠x, and observability, O∠x, matrices for the roll system: 
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 (5.142) 
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1 0

0 1
O

 
  
 

x  (5.143)  

We can see that the rank of both M∠x and O∠x is 2 (full), so the system is observable and 

controllable.  Defining the observer system: 

                   , [0] x aaA  (5.144)  

                               , [1] x auA  (5.145) 

                              
2

,

4
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 
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yy
x ua

xx

k w
A

I
 (5.146) 

                           
2

,

4
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 
  
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yy
x uu

xx

d w
A

I
 (5.147) 

                                   , 0 x aB  (5.148) 

                                    , 1 x uB  (5.149) 

From (5.111) the control law for a reduced order observer system is 

                                         , ,
ˆ      x x a x x u xu K K  (5.150) 

where the estimated state is: 

              
2 2

, ,

4 4
ˆ ˆ      

   
           
   

 L Lyy yy
x x u x x x a x x x

xx xx

d w k w
K K

I I
 (5.151) 

Similarly to obtaining the equation for the height dynamics reduced-order observer 

system, substituting (5.144) - (5.149) into (5.105) yields the reduced-order observer state-

space roll system: 
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 (5.152) 

Also similarly to the height system, the reduced order observer for the roll system is 

trivial and behaves similarly to a standard LQR unless there is modeling error or the system 

begins with error.  The error will decay according to: 
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 (5.153) 

To further verify the validity of using the SOVP model for modeling and control, the 

full state observer is derived from (5.84), again using the same method as section 5.4.3.1: 
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 (5.154) 

As in section 5.4.3.1, we can use a cost weighting matrix and the Algebraic Riccati to 

obtain the controller gain: 

                             
100 0

0 1
Q

 
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 

x  (5.155) 
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93935.1

10004.1
K

 
  
 

x  (5.156) 

 The eigenvalues of Aθx - BθxKθx are: 

                             1 10.02  cl
x  (5.157) 

                                 2 9999.4  cl
x  (5.158) 

Observer poles are chosen to be: 

                                 1 100  o
xp  (5.159) 

                                      2 101  o
xp  (5.160) 

Using pole placement on Aθx - LθxCθx to obtain the observer gain: 

                         
195.72

2807.40
L

 
  
 

x  (5.161) 

A simulation of the system is performed with a disturbance at t = 0s specified by Table 

7 and initial conditions defined in Table 11.  Note that the observer begins with non-zero 

error (rotational position offset by 0.02 radians and rotational velocity offset by -0.01 

rad/s).  Results for the simulation are shown in Fig. 128. 

Table 11: Roll observer system initial conditions 
Parameter Value Unit 

x (0) 0 rad 

x (0) 0 rad/s 

ˆ
x  (0) 0.02 rad 

ˆ x (0) -0.01 rad/s 
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Fig. 128: Roll dynamics observer simulation (parameters from Table 1, Table 6, Table 7, Table 11) 

 
 
 

Similarly to the height system, the roll system settles to within 2% of its’ steady state 

value in 0.4 seconds, and observer approaches zero before 0.1 seconds.  In order for the 

observer to correct for positional error, velocity error (not shown since it’s not a state or an 

input to any system blocks) briefly becomes large, as is desired since positional error 

accrues more cost than velocity error.  

 

5.4.3.3 PITCH VELOCITY SYSTEM OBSERVER 
 

Checking the controllability, M∠z, and observability, O∠z, matrices for the pitch system: 
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1 0
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  
 

z  (5.163) 

We can see that the rank of both M∠z and O∠z is 2 (full), so the system is observable and 

controllable.  Defining the observer system: 

                  , [0] z aaA  (5.164)  

                     , [1] z auA  (5.165) 
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 (5.167) 

                                 , 0 z aB  (5.168) 

                                , 1 z uB  (5.169) 

From (5.111) the control law for the reduced order observer system is 

                                        , ,
ˆ      z z a z z u zu K K  (5.170) 

where the estimated state is: 
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 (5.171) 

Substituting (5.164) - (5.169) into (5.105) yields the reduced-order observer state-space 

pitch system: 
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 (5.172) 

Assuming the system either begins with error or has modeling errors, then the error will 

decay according to: 
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The full state observer is derived from (5.84) and (4.67): 
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 (5.174) 

Similarly to section 5.4.3.1 and 5.4.3.2, we can use a cost weighting matrix and the 

Algebraic Riccati to obtain the controller gain: 
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 The eigenvalues of Aθz - BθzKθz are: 

                                    1 10.01  cl
z  (5.177) 

                                     2 9999.41  cl
z  (5.178) 

Observer poles are chosen to be: 

                                    1 100  o
zp  (5.179) 

                              2 101  o
zp  (5.180) 

Using pole placement on Aθz - LθzCθz to obtain the observer gain: 

                                   
198.02

3401.28
L

 
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 

z  (5.181) 

A simulation of the system is performed with a disturbance at t = 0s specified by Table 

7 and initial conditions defined in Table 12.  Note that the observer begins with non-zero 

error (rotational position offset by 0.01 radians and rotational velocity offset by -0.07 

rad/s).  Results for the simulation are shown in Fig. 129. 

 
Table 12:  Pitch observer system initial conditions 

Parameter Value Unit 

z (0) 0 rad 

z (0) 0 rad/s 

ẑ  (0) 0.01 rad 

ˆ z (0) -0.07 rad/s 
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Fig. 129:  Pitch dynamics observer simulation (parameters from Table 1, Table 6, Table 7, Table 12) 

 
 

The pitch system settles within 2% of its’ steady state in 0.5 seconds.  Positional error, 

which is fed into the Lθz block, quickly settles to zero within 0.1 seconds.  We can observe 

a period of large velocity error from t = 0s to t = 0.05s, which allows the estimated position 

to quickly converge to the plant state. 

 

5.4.3.4 YAW SYSTEM FULL OBSERVER 
 

Checking the controllability, M∠y, and observability, O∠y, matrices for the roll system: 
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1 0

0 1
O

 
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 

y  (5.183) 

We can see that the rank of both M∠y and O∠y is 2 (full), so the system is observable 

and controllable.  A combination magnetometer – gyroscope device can be used to 

approximately detect yaw position, although these devices are orders of magnitude less 

accurate than the laser sensors used for the other degrees of freedom, especially at smaller 

time scales.  As such, it will be more important to trust the plant modeling and use slower 

estimator poles.  Although this will make the estimator slower to recover from error, the 

system will have more time to average yaw readings.  Alternatively, and discussed in a 

later section, a filter can be used on the measurements to reduce the noise. 

Defining the observer system: 

                                   , [0] y aaA  (5.184)  

                             , [1] y auA  (5.185) 
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 (5.187) 

                             , 0 y aB  (5.188) 

                             , 1 y uB  (5.189) 

From (5.111) the control law for the reduced order observer system is 

                                        , ,
ˆ      y y a y y u yu K K  (5.190) 

where the estimated state is: 
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Substituting (5.164) - (5.169) into (5.84) yields the reduced-order observer state-space 

pitch system: 
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Again, modeling uncertainties and initial error will cause error to follow the following 

dynamic equation: 
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The full state observer is derived from (5.84) and (4.67): 
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Similarly to section 5.4.3.1, 5.4.3.2, and 5.4.3.3, we can use a cost weighting matrix and 

the Algebraic Riccati to obtain the controller gain: 
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100 0

0 1
Q

 
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 

y  (5.195) 

                       
83003.1

10020.1
K
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y  (5.196) 

 The eigenvalues of Aθy - BθyKθy are: 

                        1 10.17  cl
y  (5.197) 

                      2 9998.13  cl
y  (5.198) 

Observer poles are chosen to be: 

                              1 100  o
yp  (5.199) 

                            2 101  o
yp  (5.200) 

Using pole placement on Aθy - LθyCθy to obtain the observer gain: 
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L

 
  
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y  (5.201) 

A simulation of the system is performed with a disturbance at t = 0s specified by Table 

7 and initial conditions defined in Table 13.  Note that the observer begins with non-zero 

error (rotational position offset by -0.05 radians and rotational velocity offset by 0.05 

rad/s).  Results for the simulation are shown in Fig. 130. 

 
Table 13:  Yaw observer system initial conditions 

Parameter Value Unit 

y (0) 0 rad 

y (0) 0 rad/s 

ˆ
y  (0) -0.05 rad 

ˆ y (0) 0.05 rad/s 
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Fig. 130:  Yaw dynamics observer simulation (parameters from Table 1, Table 6, Table 7, Table 13) 

 
 
 

The yaw state settles to within 2% of its steady state value in roughly 10 times faster 

than the other states, at 0.05 seconds.  When the simulation begins, yaw error is 

aggressively reduced using large observer velocities to force the estimation to approach the 

plant yaw state.  A closer inspection of the result plot is shown in Fig. 131. 
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Fig. 131:  First moments of yaw dynamics observer simulation 

(parameters from Table 1, Table 6, Table 7, Table 13) 

 
 
 

The zoomed plot shows that the large initial yaw error forces the velocity error to be 

large.  Only when the position error becomes small does the estimated velocity begin to 

approach the plant velocity.  The observer’s error actually causes the position to move 

away from the desired value (rather than begin from 0, the position drops to -0.045 radians 

before moving towards the desired 0.035 radians).  This simulation therefore shows that 

observer error can have a significant impact on overall system performance. 

 

Since the system is decoupled, the four independent simulations represent the 

movement of the entire 4-DOF system.  When they are all simulated simultaneously, we 
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can observe the individual rotor behavior that determines the vehicle’s movement.  Fig. 

132 shows the rotor rotational velocities, and Fig. 133 shows each rotors’ torque and 

vertical force.  Note that rotor 1 slows down dramatically and actually begins rotating in 

reverse, while rotor 3 experiences a much larger rotational speed than the rest. 

 

Fig. 132: Individual rotor rotational velocity during simulations from Fig. 127 to Fig. 131 
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Fig. 133: Individual rotor torque and vertical force during simulations from Fig. 127 to Fig. 131 
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5.5 NONLINEAR OBSERVER CONTROL 
 

In this section, the plant and observer dynamics are updated in run-time using state 

information to create a more accurate model.  First, the Linear Quadratic Gaussian Integral 

(LQGI) methodology is introduced, then the LQG system is aumented so that the governing 

equations become non-linear. 

 

5.5.1 LINEAR QUADRATIC GAUSSIAN INTEGRAL CONTROL 
 

An LQGI controller can be formed by combining a Linear Quadratic Estimator (LQE) 

with an LQR [78] and a PI (Proportional Integral) integrator.  The estimator employs a 

Kalman filter which estimates the plant’s states while they are subject to process noise and 

the output is subject to measurement noise.  The Kalman filter produces an optimal 

estimation of the states such that the mean value of the squared error is minimized.  We 

wish this system to achieve zero steady-state error without prescalars that are highly 

dependent on model accuracy, so the system is augmented with an integrator similar to that 

used in section 5.3.2. 

Suppose we want to minimize the following objective function: 

                  
0

( ) ( ) ( ) ( ) ( ) ( )x F x x Q x
 

    
 


T

T T T
d f d d f d d d d d dJ t t t u t R t u t dt  (5.202) 

where E is the expected value, T is the horizon length, tf is the final time, Fd scales the 

relative weight of the states at tf, Qd scales the weight of the states, and Rd scales the weight 

of the input.  If we take the horizon to be infinite, then the first part of the objective function 

becomes irrelevant.  The objective function is also scaled by T-1 so that it does not become 

infinite.  Rewriting (5.202) with the assumption of an infinite horizon: 
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                            
0

1
( ) ( ) ( ) ( )x Q x

 
   

 

T

T T
d d d d d dJ t u t R t u t dt

T
 (5.203) 

We should assume that a real world system will have some degree of random white 

noise acting on both the states and the output measurement.  The plant noise on the states 

(also known as process noise) is denoted by the vector: 

                                                      1

2

d
 

  
 

d
d

d

d

d
 (5.204) 

The process noise is scaled by a (typically diagonal) matrix Gd.  Referring to Fig. 134, 

the plant states with noise can be modeled by 

                                              x A x B G d  d d d d d d du  (5.205) 

The estimator states are 

                                              ˆ ˆˆ ˆx A x B L e  
d d d d d d du  (5.206) 

where once again the estimator error is 

                                                      ˆ d d de y y  (5.207) 

and the outputs to these systems are 

                                                 1 1C x I  d d d dy n  (5.208) 

                                                       ˆ ˆˆ C xd d dy  (5.209) 

Substituting (5.208) and (5.209) into (5.207) gives: 

                                            1 1
ˆ ˆC x C x I   d d d d d de n  (5.210) 

The integrator, which drives the steady-state error to zero, is defined by 

                                               1 1C x I   di d d d dx r n  (5.211) 

The estimated states drive a regulator that, along with the integrator, form the plant’s input: 
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                                                 ˆK x d di di dc du K x  (5.212) 

The system block diagram is shown in Fig. 134. 

 
Fig. 134: LQG block diagram, where Kdc is the LQR controller gain and Gd defines how 

the noise is distributed across the states 

 

Substituting (5.212) into (5.205) and (5.206) gives 

             ˆx A x B B K x G d   
d d d d di di d dc d d dK x  (5.213) 

                 ˆ ˆ ˆˆ ˆ ˆx A x B B K x L e   
d d d d di di d dc d d dK x  (5.214) 

The estimator can be described in terms of its native states, ࢞ ,࢞ෝ, and ݔ௜ by substituting  

(5.208) and (5.209) into (5.207), then substituting the result into (5.214): 

           ˆ ˆˆ ˆˆ ˆ ˆ ˆx A x B B K x L C x L L C x     
d d d d di di d dc d d d d d d d d dK x n  (5.215) 

Equation (5.215) can be simplified to 
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                ˆ ˆ ˆ ˆx A x B K x + L C x C x    
d d d d di di dc d d d d d d dK x n  (5.216) 

In order to ensure that the principle of separation of estimation and control holds, and to 

form a convenient linear state-space system, a new augmented state can be defined [78]: 

                                                      ˆx x x d d d  (5.217) 

The plant input, (5.212), can then be redefined by substituting the augmented state, (5.217)

, into (5.212): 

                                          K x K x  d di di dc d dc du K x  (5.218) 

Substituting (5.217) and the new input from (5.218) into the plant and estimator state 

equations, (5.205) and (5.206), 

                            x A x B + K x K x G d   
d d d d di di dc d dc d d dK x  (5.219) 

        ˆ ˆˆx̂ A x x B K x K x L C x C x x        
d d d d d di di dc d dc d d d d d d d dK x n  (5.220) 

Noting that (5.217) also implies 

                                                      ˆx x x   
d d d  (5.221) 

Equations (5.219) and (5.220) can be substituted into (5.221) to obtain the state equation 

for the augmented state: 

                        

 
   

  
ˆ ˆ

ˆ

x A x B K x K x G d

A x x B + K x K x

L C x C x x

      
   
 
     


d d d d di di dc d dc d d d

d d d d di di dc d dc d

d d d d d d d

K x

K x

n

 (5.222) 

If we assume that the estimator model is sufficiently accurate such that 

                                       Â Ad d  (5.223) 

                                  B̂ Bd d  (5.224) 
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                            Ĉ Cd d  (5.225) 

Then common terms in (5.222) reduce down to 

                                     x A L C x G d L   
d d d d d d d d dn  (5.226) 

Equations (5.211), (5.219), and (5.226) form a new set of state equations that can fully 

describe the system.  They can be written in state space matrix form: 

           

0 0

0 0 0

0 0 1 0 1

x A B K B K B x G

x A L C x G L

x C x

        
                   
                






d d dc d dc d di d d

d d d d d d

i d i d

K r

d

n

 (5.227) 

The separation principle applies to the LQG system in (5.227), where the gains Kdc and Kdi 

can be selected similarly to section 5.3.2 by creating an augmented system defined by: 

                                           
0

0 0

A B
z z

C

   
       

 d d
d d d

d

u  (5.45) 

where 

                              
x

z
 

  
 

d
d

dix
 (5.46) 

The cost function state weighting matrix, Qd, is nz×nz, where nz is the number of states 

of zd.  Once this is chosen, along with Rd, a scalar representing the relative weight of the 

input in the cost function, LQR methods are used to calculate Kd, where 

                              
K

K
 

  
 

dc
d

diK
 (5.228) 

Since we are assuming that the system in question is an LTI system, the auto-

covariances of the estimated states and error pseudo-states are constant.  With no time-

varying matrices in the Algebraic Riccati Equation, the estimator can then be solved like 

an LQR problem through the use of a simple variable conversion [76][78]: 
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                                    A A T
d d  (5.229) 

                                   B C T
d d  (5.230) 

                                Q Wd d  (5.231) 

                               d dR V  (5.232) 

where Wd is the n×n auto-covariance matrix of the process noise (where n is the system 

order) and Vd is the output noise auto-covariance.  An LQGI simulation of each LTI system 

is performed using the command specified in Table 7 and initial conditions defined in Table 

14.  The LQR costs are chosen to reflect a heavy emphasis on integrator error so that the 

system will aggressively follow the reference signal.  The fixed state and output 

covariances are tuned to allow the estimator to closely follow the noisy plant while still 

rejecting much of the high frequency component of the noise. 
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Table 7: Radial EDW vehicle simulation step disturbance 
State Value Unit 
δy 0 m 
δvy 1 m/s 
δθx 0 radians 
δωx 1 rad/s 
δθz 0 radians 
δωz -0.7 rad/s 
δθy 0 radians 
δωy 0.5 rad/s 

 
Table 14: LQGI observer system initial conditions 

Parameter Value Unit 
y(0) 9.29 mm 
vy(0) 0 m/s 
ŷ(0) 8.79 mm 
v̂y(0) -0.1 m/s 

x (0) 0 rad 

x (0) 0 rad/s 

ˆ
x  (0) 0.02 rad 

ˆ x (0) -0.01 rad/s 

z (0) 0 rad 

z (0) 0 rad/s 

ẑ  (0) 0.01 rad 

ˆ z (0) -0.07 rad/s 

y (0) 0 rad 

y (0) 0 rad/s 

ˆ
y  (0) -0.05 rad 

ˆ y (0) 0.05 rad/s 

 

In the following simulations, for the height, roll, pitch, and yaw systems, the state cost and 

noise covariance weights are defined by: 

                                             
6

1 0 0

0 0.1 0

0 0 10

Q

 
   
  

a
d  (5.233) 
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3

7

10 0

0 10
W

 
  
 

d  (5.234) 

                                            0.01dV  (5.235) 

Note that in (5.233), (5.237) and future definitions of cost weight terms, the 

superscript “a” notation signifies the augmented system (including integrator state).  The 

process noise weighting matrix for the height system is: 

                                             
4

5

 
  
 

yG  (5.236) 

and the input cost weight for the height system is: 

                                             510a
yR  (5.237) 

The process noise, dy, is specified to be white Gaussian noise with a magnitude of dy 

= 2×10-3 and the measurement noise, ny, is white Gaussian noise with a magnitude of ny = 

8×10-3. The simulation results are shown in Fig. 135. 
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Fig. 135:  Height dynamics LQGI simulation for initial conditions (y,ŷ) = (9.29, 8.79) mm, (vy,v̂y) 

= (0, -0.1) m/s, and ry = 10.29 mm, (parameters from Table 1, Table 6, Table 7, Table 14) 

 

The simulation shows the height settling by 0.41 seconds, which is approximately 

when the estimation error, ey, between the observed state and the actual state becomes very 

small.  The system is able track a reference command and hold its position within ±0.5mm 

even while subjected to noise. 

  

For the roll system, the cost and covariance weights are defined by (5.233) - (5.235).  

The process noise weighting matrix is: 

                                     
10

1

 
  
 

xG  (5.238) 
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and the input cost weight is: 

                             0.0001 a
xR  (5.239) 

 

The process noise, xd , is specified to be white Gaussian noise with a magnitude of 

0.2 and the measurement noise, xn , is white Gaussian noise with a magnitude of 2×10-4.  

Note that the noise magnitudes are chosen arbitrarily to demonstrate the systems’ noise 

rejecting performance.  The roll system LQGI simulation is shown in Fig. 136. 

 

Fig. 136:  Roll dynamics LQGI simulation for initial conditions (ߠx,ߠ෠x) = (0, 0.02) rad, (߱x, ෝ߱x) = (0, -0.1) 

rad/s, and ry = 0.00698 rad, (parameters from Table 1, Table 6, Table 7, Table 14) 

 
The roll system, depending on the random noise, tended to achieve a settling time 

(within 2% of the reference) of 0.32 seconds.  The system recovers from the initial 
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estimation error such that the estimator error is negligible after 0.06 seconds.  The quick 

system response can be attributed to the small input cost.  A slower, smoother response 

could be achieved by placing heavier costs on the input as well as velocity. 

  

For the pitch system, the cost and covariance weights are defined by (5.233) - (5.235)

.  The process noise weighting matrix is: 

                                            
10

1

 
  
 

zG  (5.240) 

and the input cost weight is: 

                                   0.0001 a
zR  (5.241) 

The process noise, zd , is specified to be white Gaussian noise with a magnitude of 

0.2 and the measurement noise, zn , is white Gaussian noise with a magnitude of 2×10-4.  

The pitch system LQGI simulation is shown in Fig. 137. 
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Fig. 137:  Pitch dynamics LQGI simulation for initial conditions (ߠz,ߠ෠z) = (0, 0.01) rad, (߱z, ෝ߱z) = (0, -0.7) 

rad/s, and rz = -0.00524 rad, (parameters from Table 1, Table 6, Table 7, Table 14) 

 
The pitch system, on average, settles in 0.33 seconds.  This system recovers from the 

initial estimation error in roughly 0.06 seconds as well.  The noise has a larger effect on 

velocity than position, and this noise is well tracked by the estimator.  As such, the system 

damps the noise on position and the error caused by the velocity noise quite well, not 

varying by more than 2% after reaching the reference. 

 

For the yaw system, the cost and covariance weights are defined by (5.233) - (5.235).  

The process noise weighting matrix is: 

                                 
10
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and the input cost weight is: 

                                          0.0001 a
yR  (5.243) 

The process noise, yd , is specified to be white Gaussian noise with a magnitude of 

0.2 and the measurement noise, yn , is white Gaussian noise with a magnitude of 2×10-4.  

The yaw system LQGI simulation is shown in Fig. 138. 

 

Fig. 138:  Yaw dynamics LQGI simulation for initial conditions (ߠy,ߠ෠y) = (0, -0.05) rad, (߱y, ෝ߱y) = (0, 0.05) 

rad/s, and rθy = 0.0349 rad, (parameters from Table 1, Table 6, Table 7, Table 14) 

 
As yaw is not as mission critical as height, roll, and pitch, it is allowed to respond 

slower, settling in 0.59 seconds.  This is a natural byproduct of the additional inertial in 

this axis, as well as the smaller stiffness magnitude and unstable damping term compared 
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to roll and pitch.  As with the roll and pitch systems, the error between the estimated and 

plant states becomes negligible after 0.15 seconds, even with noise. 

 

We can also verify the performance of the LQGI system by comparing it to the simpler 

observer system described in section 0.  This comparison for the height system is shown in 

Fig. 139 and Fig. 140.  The simulation parameters, including plant LQR weighting 

matrices, noise vectors, and reference command are identical to height simulation from 

Fig. 135.  The poles of the observer system’s estimator are the same as those from the 

simulation in section 5.4.3.1, defined by (5.139) and (5.140). 

 

Fig. 139: Comparison of height dynamics using simple Observer control and LQGI 

(parameters from Table 1, Table 6, Table 7, Table 14) 
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Fig. 140: Zoomed view of Observer vs. LQGI control of height system for (a) Observer, (b) LQGI 
 

We can observe that the LQGI system settles close to the reference command, ry = 

10.29 mm, quicker than the simple observer system when it is subjected to noise (0.37 

seconds for the LQGI system and 0.59 seconds for the simple observer system).  The height 

state also exhibits less error due to noise than the previous model.  Also note that in the 

zoomed-in plots of height, from Fig. 140, the LQGI system’s estimator has been tuned to 

reject more high frequency noise than the simple observer. 

 

Fig. 141 shows each rotors’ rotational velocity during the simulations above.  Fig. 142 

show the torque and vertical force experienced by each rotor.  We can see that a large initial 

rotational velocity is necessary to accomplish the goal of raising the vehicle by 1mm.  To 

achieve the desired banking, each rotor has a unique steady-state value.  It’s interesting to 
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note that while noise is present and is actively damped by the controller, it is difficult to 

see the noise manifest in the rotor speeds, force, or torque plots. 

 

Fig. 141: Individual rotor rotational velocity during simulations from Fig. 135 to Fig. 138 
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Fig. 142: Individual rotor torque and vertical force during simulations from Fig. 135 to Fig. 138 
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5.5.2 NONLINEAR QUADRATIC GAUSSIAN INTEGRAL CONTROL 

 

Using the LQGI framework from section 5.5.1, we can create a Nonlinear Quadratic 

Gaussian Integral NQGI controller to more accurately model and control the system.  In 

essence, the linear equations can be updated to reflect the actual system states as they 

change with time.  The system can be changed from assuming a constant system matrix as 

in Fig. 134  to a more general representation that allows time-varying system parameters, 

represented by the general block diagram shown in Fig. 143. 

 

 

Fig. 143:  Generalized nonlinear system model incorporating regulator and Kalman estimator 
 

The nonlinear plant can be written as a general nonlinear function fd [76]: 

                                        ( ) ( ), ( ) ( )x x G d 
d d d d dt f t u t t  (5.244) 

Inside the estimator shown in Fig. 135, the predicted state, ࢞ෝௗ , is calculated using the 

corrected state, ࢞ෝௗ
௖ , such that: 

                 
ˆ ˆ( ) ( ) ( )x x L c

d d d dt t e t  (5.245) 

The predicted state is 
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                   ˆ ( ) ( ), ( )x x c
d d dt f t u t  (5.246) 

 

Equations (5.244) and (5.246) can be expanded by rewriting the linear equations 

(5.213), (5.216), and (5.211) as time-variant to form nonlinear plant, estimator, and 

integrator state equations: 

          ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x A x B B K x G d   d d d d di di d dc d d dt t t t K t x t t t t t  (5.247) 

       
 

ˆ ( ) ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

x L C x B

A B K L C x L

 

   


d d d d d di di

d d dc d d d d d

t t t t K t x t

t t t t t t n t
 (5.248) 

         ( ) ( ) ( ) ( )C x   di d d d dx t t r t n t  (5.249) 

Note that even though we wish to keep these equations as general as possible, the 

output equation is not going to change, and the noise distribution across the states will be 

constant, so both Cd and Gd are written as constants.  With the decoupling blocks which 

allow us to represent the EDW vehicle as a set of LTI systems, the Bd matrix will also be 

constant, but it is not written this way because it would very commonly change in other 

systems, or if it is desired to apply these methods to the non-decoupled system.   

Modifying (5.212), the input is also re-written as a nonlinear equation: 

                                       ˆ( ) ( ) ( ) ( ) ( )K x d di di dc du t K t x t t t  (5.250) 

There are two pathways in which this type of system can be simulated numerically: 

by using the linear systems framework to create a piecewise linear system that is fine 

grained enough to closely approximate nonlinear behavior (ie. very small time stepping is 

required), or by directly solving the system’s nonlinear differential equations, which can 

be accomplished by using either an Ordinary Differential Equation (ODE) solver, such as 

Matlab’s ODE45. 
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 For the first method, the set of equations described by (5.247) - (5.250) can be solved 

identically to LQGI systems described in the previous section by treating the system as an 

LTI system at each small time step.  The Ad, Bd, and Cd matrices are recalculated at each 

chosen time interval (although for our systems, only Ad will change), and the system is 

simulated in continuous-time between each interval.  The nonlinear system matrix is 

calculated from 
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 (5.251) 

This method of simulation can perform well if the time step is kept small, and it provides 

the advantage of simplicity, since it uses a linear systems framework.  

 

The second method is much more general as it does not use a linear or a state space 

representation, and requires less approximations and linearizations of the system. Instead, 

it solves the original differential equations governing the system, which for the 4-DOF 

EDW vehicle means solving for heave, roll, pitch, and yaw dynamics as a function of the 

force generated by each rotor: 
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  The force components can be solved by the SOVP model, the results of which can 

be input into an ODE solver.  Alternatively, the system can be discretized and 

programatically looped through the desired number of time steps, with the SOVP model 

updating the forces on each loop iteration.  For the simulations performed in this chapter, 

this was the chosen method, and a First-Order Hold was used between each time interval.  

Since the system is not built from the existing linear framework discussed in previous 

sections, the extra step of building a “dummy” LQGI model is needed each time the 

controller gains are to be updated.  This model is only used to calculate the gains that are 

subsequently fed into the nonlinear simulation’s controller and is not used for vehicle 

trajectory.  

 

The updating of controller and estimator gains, however, should not happen at every 

time step.  The result of such a simulation would be trivial, since it is not possible for a 

computer/controller to recalculate the system this rapidly during run-time.  The controller 

gains Kdc and Kdi in this section are calculated using LQR methods, and the Kalman filter 

gain, Ld, can be calculated using the auto-covariance of the predicted and corrected state 
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error.  If the initial predicted state auto-covariance is an arbitrary value (ie. The system 

makes a guess), then each following iteration, the corrected state error auto-covariance, 

ௗࡼ
௖ , can be calculated from 

                                          ( ) ( ) ( ) ( )P I L C P c p
d d dt t t t  (5.252) 

and the auto-covariance of the predicted state, ࡼௗ
௣, is calculated by solving the differential 

equation (this can also be solved using the same ODE numerical solver): 

                                    ( ) ( ) ( ) ( )P A P A G W G  c T T
p d d d d d dt t t t  (5.253) 

The Kalman gain at time t is 

                              
1

( ) ( ) ( ) ( ) ( )L P C C P C


   
p T p T

d d d d d d dt t t (t) t t V  (5.254) 

 

While it would be ideal to recalculate the gains at every instant in time, practically, 

this is not possible.  The SOVP calculation of damping and stiffness requires processor 

time.  Using the equations from Chapter 2.2, a Dell T5500 computer with an Intel Xeon 

E5620 running at 2.40GHz can calculate the damping and stiffness terms required for the 

2nd order LTI systems in an average of 0.47 seconds.  Note that while this time could be 

reduced by sacrificing some accuracy for speed by calculating the damping and stiffness 

using only the dominant harmonics, and by using a computer with greater arithmetic 

performance, this number is a good baseline for simulating system performance. 

 

To more realistically simulate an actual system, the controller’s updating of the Ad 

matrix and subsequent gains is only performed at reasonable time intervals that would be 

possible for a computer to achieve.  Note that the plant can still be recalculated at each 

small time step for accuracy, but we will assume that the estimator and therefore controller 
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will only get this information at much more infrequent intervals.  The pace at which the 

new information becomes available to the controller is based on the probability distribution 

histogram shown in Fig. 144, which was created by recording each SOVP calculation time 

for 5000 iterations on the E5620 machine. 

 

Fig. 144:  Probability distribution of time require to calculate SOVP damping and stiffness terms for 2nd 

order LTI systems (rotor parameters from Table 1) using Intel E5620 running at 2.4GHz 

 

The simulated system’s parameters are described in Table 15.  The system is assumed 

to start from rest (velocities are all zero).  The simulation starts from a lower height and 

uses larger reference commands compared to previous sections to show that this control 

methodology is well suited to transient control.  That is, when the operating point 

significantly changes, such as when banking heavily for a turn, accelerating towards a 
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cruising speed, or lifting off the track from a standstill, the NQGI model will provide better 

performance.   

Table 15:  Nonlinear radial EDW vehicle simulation parameters 
Parameter Value Unit 
Initial height, y0 0.00529  (5.29) m (mm) 
Initial roll angle, θx0 0 rad 
Initial pitch angle, θz0 0 rad 
Initial yaw angle, θy0 0 rad 
Initial height estimate, ŷ0 0.00479 m 
Initial heave estimate, v̂0 -0.1 m/s 
Initial roll estimate, ߠ෠௫ 0.02 rad 
Initial roll velocity estimate, ෝ߱௫ -0.01 rad/s 
Initial roll estimate, ߠ෠௭ 0.01 rad 
Initial roll velocity estimate, ෝ߱௭ -0.07 rad/s 
Initial roll estimate, ߠ෠௬ -0.05 rad 

Initial roll velocity estimate, ෝ߱௬ 0.05 rad/s 
Initial kyy

 -11645.68 N/m 
Initial dyy -10.81517 N/m/s 
Initial kxx -3711.923 N/m 
Initial dxx 3.043214 N/m/s 
Initial Kyc [3647.5     85.556]   
Initial Kyi -10000  
Initial Ly [105.39     553.12]  
Initial Kθxc [761.12     45.226]  
Initial Kθxi -10000  
Initial Lθx [10093.75     941931]  
Initial Kθzc [816.06     46.566]  
Initial Kθzi -10000  
Initial Lθz [385.68     24374.3]  
Initial Kθyc [209.78     51.260]  
Initial Kθyi -10000  
Initial Lθy [381.32     22701.6]  
Height command, ry 0.01129  (11.29) m (mm) 
Roll angle command, rθx 0.087267  (5) rad (deg) 
Pitch angle command, rθz -0.069813  (-4) rad (deg) 
Yaw angle command, rθy 0.12217  (7) rad (deg) 

 

The autocovariance values used to calculate estimator gains for the simulation are 

tuned to achieve a smooth motion on the estimator position states which converge to the 

plant’s states in less than 0.1 seconds: 
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The LQR cost weights are tuned to avoid large velocities and inputs compared to previous 

simulations, since the reference commands are large and we wish the system to have 

smooth transient performance.  The cost weights are defined as follows: 
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For comparison, an LQGI controller applied to a nonlinear system is modeled 

alongside the nonlinear system with a nonlinear controller.  The LQGI-controlled model 

still uses an differential equation solver to simulate a real time-varying plant, but the 

controller will not receive any communication/updates from the plant.  The controller for 

the LQGI system therefore is linear (the gains remain unchanged from t = 0).   Since section 

5.5.1 proved that a Kalman filter observer effectively controls the system subject to noise, 

we will omit noise from this simulation, knowing that this similar approach is also able to 

control a noisy system.  This allows the performance of the NQGI and LQGI controller to 

be compared without introducing random variables. 

 

The height system NQGI vs. LQGI system is shown in Fig. 145, and the variation in 

system gains, which will be shown as a percentage difference between the nonlinear and 

linear model, is shown in Fig. 146. 
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Fig. 145: NQGI vs. LQGI height dynamic system simulation (parameters from Table 1, and Table 15) 

 

 
Fig. 146: NQGI gain variation for height dynamic system (parameters from Table 1, and Table 15) 
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The nonlinear controller settles to the reference command in 0.45 seconds.  Despite 

the initial observer error, the height estimate converges in less than 0.04 seconds.  The 

heave estimate roughly follows the plant, but exhibits some oscillatory motion when heave 

is transient.  Observing at the gain variation plot in Fig. 146, the oscillatory motion has the 

same period as the gain steps, showing that the oscillation is due to gain steps. 

 

Changes to the gains can be seen as the system transitions from one operating point to 

another, approximately following the shape of the system’s height plot.  The change in 

gains is not extremely large; the peak magnitude change of any gain is 6%. Nonetheless, 

the NQGI controller implements these updated gains for increased accuracy.  Note that as 

the height approaches the reference command, the gain settles to a steady-state value.  

Hypothetically the system could revert to linear control (LQGI) once near steady-state is 

achieved (switching back to NQGI if the system leaves strays sufficiently from the 

operating point).   

 

The roll system NQGI vs. LQGI system is shown in Fig. 147, and the variation in the 

system gains is shown in Fig. 148. 
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Fig. 147: NQGI vs. LQGI roll dynamic system simulation (parameters from Table 1, and Table 15) 

 

 
Fig. 148: NQGI gain variation for roll dynamic system (parameters from Table 1, and Table 15) 
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The nonlinear controller settles the roll angle in 0.52 seconds with no overshoot.  The 

roll estimate quickly converges in less than 0.04 seconds, but lags behind the plant slightly 

during transition.  Roll velocity exhibits some oscillatory motion due to the stepped change 

in the controller gains, and the velocity variations are large enough to cause small (sub 

1mm) oscillations in height until steady-state is achieved. 

 

The gain variation plots highlight the importance of periodically updating the 

controller with new SOVP damping and stiffness terms and recalculating the gains.  The 

roll gain variations are significant at the start of the simulation when the system is 

undergoing large motions, again roughly following the shape of the height signal from Fig. 

145 and also the shape of the height gain variations from Fig. 146.  This is due to the 

stiffness and damping terms being very sensitive to height variation.  Since the system 

undergoes a large change in height, all of the LQR gains will display the effect of this 

dominant parameter. 

 

The pitch system NQGI vs. LQGI system is shown in Fig. 149, and the variation in 

the system gains is shown in Fig. 150. 
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Fig. 149: NQGI vs. LQGI pitch dynamic system simulation (parameters from Table 1, and Table 15) 

 

 
Fig. 150: NQGI gain variation for pitch dynamic system (parameters from Table 1, and Table 15) 
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Although it settles slightly faster at 0.47 seconds, the pitch NQGI system has very 

similar performance characteristics to the roll system, exhibiting a oscillatory behavior due 

to the gain steps.  With the chosen cost function and autocovariances, the estimated angle 

velocity of these systems is not accurate during transition, although the controller is robust 

enough to stabilize the system anyway. 

 

The gain variations shown in Fig. 150, similarly to the height and roll systems, display 

changes as the system transitions to a new operating point, and the shape of these changes 

roughly follows the height signal. 

 

The yaw system NQGI vs. LQGI system is shown in Fig. 151, and the variation in the 

system gains is shown in Fig. 152. 

 
Fig. 151: NQGI vs. LQGI yaw dynamic system simulation (parameters from Table 1, and Table 15) 
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Fig. 152: NQGI gain variation for yaw dynamic system (parameters from Table 1, and Table 15) 

 

The yaw position has a settling time of 0.84 seconds for using this nonlinear controller.  

During transition, the large step changes in gains drives large oscillations in yaw velocity 

and consequently in yaw position.  The positional variations are significant enough to cause 

the estimator to have an error of up to 21%. 

 

The gain variation plot shown in Fig. 152, despite having dynamics defined by 

different stiffness and damping terms than the height, roll, and pitch LTI systems, shows a 

familiar shape (to that of the height signal) and large variations while the system is 

transient. 

 

Note that in the simulations above, the LQGI controller is robust enough to stabilize 

the system despite the large command, so linear control would also be appropriate for 
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rejecting small disturbances and noise if they move the system only slightly from its 

operating point.  In addition, as suggested previously, for real-time control of a real system, 

any axis of motion that is currently relatively unvarying can have its control method 

switched to LQGI (disallow updates to SOVP model and gains) so that more processor 

time could be devoted to axes that are in flux, allowing them to update more quickly. 

 

The individual rotor speeds and forces can also be plotted for the simulations shown 

in Fig. 145 - Fig. 152.  The rotors’ rotational velocities are shown in Fig. 153 and the torque 

and vertical forces are shown in Fig. 154.  The rotor speeds change significantly throughout 

the simulation due to the more accurate model which factors in changes in the system plant 

as the vehicle moves.  Rotor speeds, torque, and forces undergo higher frequency changes 

whenever the controller updates its SOVP values. 



252 
 

 

Fig. 153: Individual rotor rotational velocities for simulations from Fig. 145 - Fig. 152 
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Fig. 154: Individual rotor torque and vertical force for simulations from Fig. 145 - Fig. 152 
 

To further prove the value of a NQGI over a linear controller during transition, another 

simulation is performed, again using the parameters from Table 15, but this time using a 

different set of cost function weighting terms: 
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The cost terms are chosen to enforce additional cost on heave.  Since this is simply an 

illustrative example concerning mainly the stability of the nonlinear vs. linear system, only 

the height system is be plotted.  Comparison of heights for a NQGI and LQGI system are 

shown in Fig. 155 and the gain variations are shown in Fig. 156. 

 

Fig. 155: Simulation comparing height system stability for NQGI and LQGI system 

(parameters from Table 1, and Table 15, using cost weights from (5.259) - (5.262)) 
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Fig. 156: Gain variation between stable NQGI and unstable LQGI height systems (parameters 

from Table 1, and Table 15, using cost weights from (5.259) - (5.262)) 

 

With more aggressive velocity cost, the LQGI system fails to stabilize the system.  

This is due to the time-varying plant undergoing enough change that the estimator is no 

longer able to predict the states.   By contrast, the NQGI controller is able to stabilize the 

system because the estimator is updated with new plant parameters.  The difference is gains 

further highlights the difference between the linear and nonlinear controller.  It is the 

difference in these gains which is ultimately the difference between stability and instability. 
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5.6 CONCLUSION 
 

In this chapter, using the LTI systems developed in Chapter CHAPTER 4:, a series of 

controllers of increasing complexity are presented.  As the controller strategies become 

more complex, they offer increased robustness and the possibility of increased 

performance.  Starting from a simple Linear Quadratic Regulator, an integrator was added 

to provide steady-state tracking.  Realizing that direct measurement of all states may not 

be possible, the system was then augmented with an estimator which provides approximate 

state information.  The estimator was then converted to a Kalman filter which excels at 

rejecting noise while providing an estimate of the plant.  For an EDW system, the plant 

undergoes significant changes during run-time when changing operating points, such as 

accelerating to a different speed, lifting off the track, or banking\yawing for a turn. Since 

linear modeling is not appropriate for a system whose plant is time-varying, a Nonlinear 

Quadratic Gaussian Integral controller is created with a realistic updating schedule.  

Although the system is simulated in continuous time, the estimator and controller are 

updated discrete intervals based on how long it takes to calculate a new plant estimate.  The 

NQGI controller is robust, even during transient periods, and is easily configurable to 

switch to linear control when the plant stays relatively constant. 

 
  



257 
 

CHAPTER 6:   AXIAL ELECTRODYNAMIC WHEEL 
 

This chapter explores the design and performance analysis of an axial EDW.  The new 

rotor type is introduced in section 6.1, then, in 6.2, an axial rotor is simulated using FEA.  

Section 6.3 validates the source field model against previous researchers’ models following 

a modification to the equations, while section 6.4 validates the field against FEA 

simulations.  With the analytic field, section 6.5 applies the SOVP force model to the axial 

rotor, and section 6.6 compares the analytic and FEA models to an experimental prototype. 

Equation Chapter (Next) Section 1 

6.1 INTRODUCTION 
 

An alternative to the radial EDW is the axial EDW, which orients a Halbach array 

radially in a disk, as shown in Fig. 157.  The axial EDW is formed by rotating this rotor 

above a conductive track as shown in Fig. 158.  This has the potential advantage of 

increased magnet mass usage, as more of the magnetic material is placed over the track in 

any given instant.  However, the rotation of the axial EDW with a constant airgap will not 

create any thrust force.  This chapter compares the SOVP model, FEA models, and an 

experimental prototype to both study the performance capabilities of the axial EDW, and 

to attempts to arrive at a computationally efficient analytical solution for the forces and 

torque generated from an axial EDW. 
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Fig. 157: An axial Halbach rotor, where ri is the inner radius, ro is the outer radius, d is the rotor 

thickness [71]  

 

 

Fig. 158: Axial EDW FEA model (4 pole, 4 segment-per-pole) 
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6.2 FINITE ELEMENT ANALYSIS MODEL 
 
 

In order to analyze the effectiveness and viability of this axial EDW, the field between 

the rotor and track surface must first be known.  A finite element model was created using 

JMAG, as shown in Fig. 158.  The simulations in this chapter are based on a prototype 

rotor with parameters defined in Table 16, and the coordinate axes are defined in Fig. 159. 

Table 16: Standard axial Halbach rotor field simulation parameters 
Parameter Value 
ro 70 mm 
ri 30 mm 
rc 48 mm 
rotor thickness, d 20 mm 
airgap, y 10 mm 
pole pairs, P 4 
μr 1.05 

 

 

Fig. 159: Axial EDW Cartesian coordinate axis definitions 
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The y-axis field is of particular importance for calculating torque and forces produced 

by the axial EDW.  The field at radius r = 50mm on the track surface (10mm airgap) is 

shown in Fig. 160. 

 

 

Fig. 160: Prototype axial EDW FEA calculated field at r = 50mm and y = 10mm 

(rotor parameters from Table 16) 
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6.3 ANALYTIC SOURCE FIELD VERIFICATION 
 

The By field for an axial Halbach rotor was recently derived by Li [71].  The solution 

is expressed in a single integral form such that: 


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where (r,θ,y) represents the cylindrical coordinates of the point where the field is being 

calculated, Mf is the fundamental of the magnetization vector, μr is the relative 

permeability, p is the number of pole pairs, θd is the rotation angle of the rotor, and 
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where (rA, θd, hs) are the cylindrical coordinates of the point on the surface of the rotor, 

and 

                                            2( , , , , ) ( , , ) ( )   c s c sR r r y h C r r y h ’ (6.4) 

where ϕ is the rotational position of the rotor in the y-axis. 

                                          
2 2( , , ) 2 cos( )C a b a b ab     (6.5) 
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Note that (6.5) is simply the Law of Cosines.  The integral in (6.1) can be solved 

numerically to arrive at an analytical solution for force.  The implementation chosen for 

numerical integration was Simpson’s Rule, which can be summarized by [79]:   
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where the continuous integral is divided into n equally spaced subdivisions.  The accuracy 

of the integral’s numerical solution is dependent on n, which is directly proportional to the 

solution’s calculation time.  For accuracy at the expense of computation time, n was chosen 

to be 3000.  Using a Dell T5500 computer with an Intel Xeon E5620 running at 2.40GHz, 

the calculation time averages 0.0581 seconds.   

 

Using the calculated field for the Halbach axial rotor with the parameters given in 

Table 16 is shown in Fig. 161.  The field is rotated by π/6 to show that the field rotation is 

correctly modeled by equation (6.1).  Fig. 162 shows the 3-D field using the polar equation 

(6.1) and parameters in Table 16. 
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Fig. 161: Axial magnetic flux density simulation at a r = 50mm when using (6.1) 

(rotor parameters from Table 16) 

 

Fig. 162: 3-D axial magnetic flux density using equation (6.1) (rotor parameters from Table 16) 
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We would like to reformulate the equations to give an output in Cartesian form while 

being able to be rotated to provide an imaginary field component which is out of phase 

with the real field.  This is needed becaues the SOVP model uses cartesian coordinates.  

The imaginary component arises from replacing the cosine term inside the integrals with 

an exponential term.  The reformulated equations are:   
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
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Where ϕ is the additional rotation angle that the rotor has been moved to, and 
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    2 2 2 2 2 2 2( , , , , , ) 2 cos( ) ( )       c d s c c d sR x y z r h x z r r x z y h  (6.10) 

    2 2 2 2 2( , , , ) 2 cos( )     A AC x z r x z r x z r  (6.11) 
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1tan     
 

z

x
 (6.12) 

Equation (6.1) will be refered to as the polar equation while (6.7) will be refered to as 

the Cartesian or exponential equation.  We can check that the real component of the field 

output is the same by plotting the field for the same rotor around a radius of 50mm from 

the centerline of the rotor, as shown in Fig. 163.  The small non-sinusoidal irregularities 

are due to a coarse numerical integration.  If calculation time is of no consequence, the 

integration can occur in smaller steps and the field result has fewer ripples.  We can also 

check that the field is the same at other radii by taking a longitudinal (x-axis) transection 

of the field at a couple of z lines, z = 0 and z = 30mm, as shown in Fig. 164 and Fig. 165.  

Note that the field is negligible near the edge of the track, so an infinite track SOVP model 

is valid. 
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Fig. 163: (a) Real y field using polar equation (6.1) and Table 16 at r = 50mm  (b) Real y field using 

Cartesian equation (6.7) and Table 16 at r = 50mm (rotor parameters from Table 16) 
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Fig. 164: (a) Real y field using polar equation (6.1) and Table 16 at z = 0mm  (b) Real y field using 

Cartesian equation (6.7) and Table 16 at z = 0mm (rotor parameters from Table 16) 

 

 
Fig. 165: a) Real y field using polar equation (6.1) and Table 16 at z = 30mm  (b) Real y field using 

Cartesian equation (6.7) and Table 16 at z = 30mm (rotor parameters from Table 16) 
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The Cartesian equation, (6.7), yields the same real field as the polar equation, (6.1).  

Whereas the polar equation simply yielded the real field, with the imaginary component 

being zero, the advantage of the Cartesian equation which will allow us to use an SOVP 

solution to calculate the eddy-current force stiffness and damping terms, is that it provides 

an imaginary field component, as shown in Fig. 166. 

 
Fig. 166: Comparison of real and imaginary normal field from axial EDW rotor using (6.7) at r = 50mm 

(rotor parameters from Table 16) 

 

The axial EDW 3-D source field from equation (6.7) is shown in Fig. 167.  The 

imaginary component is phase shifted from the real field. 
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Fig. 167: Comparison of real and imaginary 3-D field using (6.7) (rotor parameters from Table 16) 
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6.4 VALIDATION OF ANALYTIC FIELD MODEL 
 

Since it was required to modify the analytic field solution proposed by Li [71] and 

rewrite it in Matlab code, it must be verified that the new model implementation is correct.  

To do this, the analytic solution is compared to an FEA model. 

 

6.4.1 VERIFICATION OF FIELD USING LI’S ROTOR DIMENSIONS 
 
 

An axial Halbach rotor model was created in JMAG with the dimensions listed in  

Table 17.  An analytic model with the same dimensions was also made to verify that the 

FEA and SOVP field results match sufficiently.  The dimensions were chosen to compare 

to the matching field results shown by Li [71]. 

 

Table 17: Li’s axial Halbach rotor dimensions 
Dimension Value Units 
Outer radius, ro 100 mm 
Inner radius, ri 90 mm 
Thickness, d 10 mm 
Pole pairs 4  
Segments per pole 8  
Magnetization magnitude, M 1.28 A/m 
Fundamental magnetization vector, Mf 0.9745M A/m 

 

Some selected field plots are shown below.  Fig. 168 shows the field comparison at a 

radius of 90mm and airgap of 12mm, Fig. 169 shows the field comparison at a radius of 

98mm and airgap of 8mm, Fig. 170 shows the field comparison at a radius of 94mm and 

airgap of 3mm, and Fig. 171 shows the field comparison at a radius of 96mm and airgap 

of 1mm.  When the airgap is relatively large (e.g. 12mm), the fields match closely, but as 

the airgap becomes smaller, the segmentation causes the field to deviate from the ideal 

Halbach model due to higher order harmonics.  To compare the models, we plot the 
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fundamental of the JMAG FEA results which more closely matches the ideal case that the 

analytic model calculates. 

 

Fig. 168: Field comparison at r = 90mm, airgap y = 12mm, for Li’s rotor defined by Table 17 
 

 

Fig. 169: Field comparison at r = 98mm, airgap y = 8mm, for Li’s rotor defined by Table 17, including a 

reconstructed JMAG field using only the fundamental of the FFT 
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Fig. 170: Field comparison at r = 94mm, airgap y = 3mm, for Li’s rotor defined by Table 17, including a 

reconstructed JMAG field using only the fundamental of the FFT 

 
 

 

Fig. 171: Field comparison at r = 96mm, airgap y = 1mm, for Li’s rotor defined by Table 17, including a 

reconstructed JMAG field using only the fundamental of the FFT 
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Table 18 shows the comparison of the FEA field generated using JMAG and the 

analytic field generated using the SOVP model.  The table compares the peak field in each 

case as the radius and air gap vary.  For the JMAG results, only the fundamental is 

considered, which is achieved in MATLAB by taking the Discrete Fourier Transform 

(DFT) of the field, isolating the fundamental (by eliminating the higher order components), 

and taking the inverse DFT of the resulting spectrum.  This is consistent with the method 

used by Li. 

 

Table 18:  Comparison of FEA and analytic field results for Li’s axial Halbach rotor 
Radius r 
(mm) 

Air gap 
(mm) 

Peak Bz (T), 
JMAG 

Peak Bz (T), 
SOVP 

Discrepancy 
(%) 

Kang's Discrepancy 
(%) 

92 1 0.4809 0.4816 -0.15% -1.47% 
94 1 0.5201 0.5193 0.15% -1.50% 
96 1 0.5198 0.5179 0.37% -1.36% 
98 1 0.4811 0.4776 0.73% -1.01% 
92 3 0.3220 0.3214 0.19% -1.06% 
94 3 0.3692 0.3691 0.03% -1.29% 
96 3 0.3683 0.3673 0.27% -1.17% 
98 3 0.3193 0.3162 0.97% -0.73% 
92 12 0.1039 0.1032 0.67% -0.28% 
94 12 0.1094 0.1085 0.82% -0.36% 
96 12 0.1087 0.1077 0.92% -0.35% 
98 12 0.1020 0.1008 1.18% -0.14% 

 

The results have a maximum discrepancy of 1.18%, which is smaller than those 

published by Li. The FEA and analytic results co-validate each other with the closely 

matching results.  Note that for computational convenience, the FEA model element size 

was set to 4mm and the air region was set to 2.5 times the model length with an element 

size of 8mm.  Further improvements in accuracy would be possible with a finer model. 
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6.4.2 VALIDATION OF ANALYTIC FIELD SOLUTION FOR PROTOTYPE 
ROTOR 

 

In the previous section, 6.4.1, the axial Halbach analytic model code (written in Matlab 

code) was verified to produce a result which matched an equivalent JMAG FEA model, 

thereby confirming that our models match Li's models.  The section applies a similar 

process to validate that the analytic and FEA field match for the prototype rotor, first with 

8 segments per pole, then with 4 segments per pole. 

 

6.4.2.1 FIELD COMPARISON WITH 8 SEGMENTS PER POLE 
 
 

An FEA and analytic model are built according to dimensions shown in Table 19.  

This rotor is designed with 8 segments per pole, since this is the configuration that Li and 

other researchers have typically chosen in the past [71].  This is a precursor to validating 

the field with 4 segments per pole, providing that matching results are obtained in this 

section. 

 
Table 19: 8 Segment-per-pole prototype axial Halbach rotor dimensions 
Dimension Value Units 
Outer radius, ro 70 mm 
Inner radius, ri 30 mm 
Thickness, d 20 mm 
Pole pairs 4  
Segments per pole 8  
Magnetization magnitude, M 1.28 A/m 
Fundamental magnetization vector, Mf 0.9745M A/m 

 

A set of comparisons is shown in the plots below, which are chosen to show one at 

each radius (35mm, 50mm, and 65mm), and one at each arbitrary height (1mm, 3mm, and 

12mm).  Fig. 172, Fig. 173, and Fig. 174 show the field comparison at an airgap of 12mm 
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and radii of 35mm, 50mm, and 65mm, respectively.  Fig. 175 and Fig. 176 show the field 

comparison at a radius of 50mm and airgaps of 3mm and 1mm, respectively.  Similar to 

Li's rotor, when the airgap is relatively large (e.g. 12mm), the FEA field is approximately 

sinusoidal and closely matches the analytic field, but as the airgap becomes smaller, the 

non-ideal Halbach field shows higher order harmonics in the field due to magnet 

segmentation.  The fundamental of the field is derived from the signal, which is then used 

to compare to the analytic field. 

 
Fig. 172: Field comparison at r = 35mm, airgap y = 12mm, for prototype rotor defined by Table 19 
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Fig. 173: Field comparison at r = 50mm, airgap y = 12mm, for prototype rotor defined by Table 19 
 

 
Fig. 174: Field comparison at r = 65mm, airgap y = 12mm, for prototype rotor defined by Table 19 
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Fig. 175: Field comparison at r = 50mm, airgap y = 3mm, for prototype rotor defined by Table 19, 

including a reconstructed JMAG field using only the fundamental of the FFT 

 
 

 
Fig. 176: Field comparison at r = 50mm, airgap y = 1mm, for prototype rotor defined by Table 19, 

including a reconstructed JMAG field using only the fundamental of the FFT 
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Table 20 compares the discrepancies between the FEA and analytic field peaks at 

various radii and heights.  Since the fields (or fundamentals of the fields) are sinusoidal, 

comparing peaks is a reasonable way to approximate the degree to which the results are a 

match.  As in Section 6.4.1, only the fundamental is considered for the FEA results in Table 

20. 

Table 20: Comparison of FEA and analytic field results  
for 8-segment prototype axial Halbach rotor 

Radius r 
(mm) 

Air gap 
(mm) 

Peak Bz (T), JMAG Peak Bz (T), SOVP Discrepancy (%) 

35 1 0.9057 0.8989 0.75% 
50 1 0.9104 0.9032 0.79% 
65 1 0.7904 0.7801 1.30% 
35 3 0.682 0.6771 0.72% 
50 3 0.7645 0.7578 0.88% 
65 3 0.6345 0.6262 1.31% 
35 12 0.2213 0.2196 0.77% 
50 12 0.3374 0.3343 0.92% 
65 12 0.2718 0.2679 1.43% 

 

The results have a maximum discrepancy of 1.43% and a mean discrepancy of 

0.986%.  Given the fact that these values are calculated using a real-world approach of 

practical computation times which may degrade accuracy slightly, this discrepancy is small 

enough to claim that the FEA and analytic models are a close match.  The main FEA 

considerations that can reduce accuracy are the rotor element size of 2mm, air region 

element size of 3mm, and air region of 3 times the model length.  Smaller element sizes  

and larger model length to reduce edge-effects would improve the models' performance.  

Some of the discrepancy can also be attributed to arithmetic rounding error and small 

offsets in the analytical code that are used to prevent division-by-zero errors during run-

time. 
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6.4.2.2 MAGNETIZATION VECTOR CALCULATION OF 4 POLE PAIR AXIAL ROTOR 
 

The 4-magnet per pole Halbach array is only an approximation of an ideal Halbach 

array.  In order to model a rotor with 4 segments per pole, the magnetization vector must 

be calculated for this condition.  According to Li, the magnetizing distribution of the 

magnets can be described by a Fourier series consisting of the axial and azimuthal 

components of the field [71]: 

                                                       ( ) ( )M y   


yM M   (6.13) 

where M is the magnetization vector, My and Mθ are the axial and azimuthal components 

of the magnetization vector, and y


 and 

  are the unit vectors in the vertical and tangential 

angle directions.  Substituting in the magnitude components into (6.13): 
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where pI is the number of pole pairs.  The values of My and Mθ are plotted as functions of 

angular position in Fig. 177 and Fig. 178.  Note that in these figures: 

                           m

o

B
M


  (6.18) 

where M is the magnetization magnitude and Bm is the residual flux density of the magnet. 
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Fig. 177:  Magnitude of My vs. angular position for 4 segment-per-pole rotor 
 

 

Fig. 178:  Magnitude of Mθ vs. angular position for 4 segment-per-pole rotor 
 

Using Fig. 177, equation (6.15) can be rewritten: 

                 
2
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4
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 (6.19) 

Evaluating the integral in (6.19) yields: 
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Substituting the pole pair number (pI = 4), and further solving (6.20): 
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Similarly, using Fig. 178, equation (6.16) can be rewritten: 
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Solving the integral in (6.22) and simplifying yields: 
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Substituting (6.21) and (6.23) into (6.14): 
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When n = 1, then the absolute magnitude of the harmonics in (6.21) and (6.23) evaluate to: 

                         1 1

2 2
0.9003


  a b M M  (6.25) 

If we consider only the fundamental harmonic (when n = 1), then (6.18) becomes: 

                                    f fhM c M  (6.26) 

where 
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6.4.2.3 FIELD COMPARISON USING 4 SEGMENTS PER POLE 
 

A prototype rotor with 4 magnet segments per pole is modeled both analytically 

and using JMAG for FEA comparison.  Table 21 defines the rotor’s physical parameters. 

 
Table 21: 4 Segment-per-pole prototype axial Halbach rotor dimensions 
Dimension Value Units 
Outer radius, ro 70 mm 
Inner radius, ri 30 mm 
Thickness, d 20 mm 
Pole pairs 4  
Segments per pole 4  
Magnetization magnitude, M 1.42 A/m 
Fundamental magnetization vector, Mf 0.9003M A/m 

 

A selection of field comparisons at varying radial distance and airgap are plotted in 

the figures below.  Similarly to the previous rotors studied, the FEA field at a relatively 

large airgap of y = 12mm does not exhibit significant higher order harmonics, as shown in 

Fig. 179, It can thus be directly compared against the analytic field which only includes 

the fundamental component.  The fields shown in Fig. 180 and Fig. 181, at airgaps of y =  

3 mm and y = 1 mm, respectively, can be compared to the analytic soluion by examining 

their fundamental harmonic component.  Table 22 compares the peak fields from both 

models at 3 different radii and 3 different airgaps, and shows that the models match 

reasonably well, with the largest discrepancy being 4% at a 12 mm airgap and a radii of 

65mm.  The table also shows that the models tend to agree with each other more as the 

measurement radii decreases. 
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Fig. 179: Field comparison at r = 50mm, airgap y = 12mm, for 4-segment 
prototype rotor defined by Table 21 

 
 

 
Fig. 180: Field comparison at r = 65mm, airgap y = 3mm, for 4-segment prototype rotor defined by 

Table 21, including a reconstructed FEA field using only the fundamental of the DFT 
 

0 50 100 150 200 250 300 350 400
Anglular Position (deg)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

FEA
Analytic

0 50 100 150 200 250 300 350 400
Anglular Position (deg)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

FEA
FEA Reconstructed Fundamental
Analytic



285 
 

 
Fig. 181: Field comparison at r = 35mm, airgap y = 1mm, for 4-segment prototype rotor defined by 

Table 21, including a reconstructed FEA field using only the fundamental of the DFT 
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Table 22: Comparison of FEA and analytic field results for 
4-segment prototype axial Halbach rotor 

Radius r 
(mm) 

Air gap 
(mm) 

Peak Bz (T), JMAG Peak Bz (T), SOVP Discrepancy (%) 

35 1 0.8281 0.8145 1.64% 
50 1 0.837 0.8183 2.23% 
65 1 0.7341 0.7068 3.72% 
35 3 0.6225 0.6135 1.45% 
50 3 0.7021 0.6867 2.19% 
65 3 0.590 0.5674 3.83% 
35 12 0.2021 0.1989 1.58% 
50 12 0.3104 0.3029 2.42% 
65 12 0.2528 0.2427 4.00% 
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6.5 AXIAL ELECTRODYNAMIC WHEEL SOVP MODEL 
 

In this section, the SOVP model’s force results are compared to the FEA model. 

 

6.5.1 REVIEW OF PREVIOUS SOURCE FIELD 
 

The SOVP model that was derived and used in chapters CHAPTER 2:-CHAPTER 4: 

was designed to be used with a radial EDW. The section of code that generates the source 

field was isolated in the SOVP model. For illustrative purposes, the source field calculated 

inside the SOVP function code is shown below in Fig. 182 for a radial Halbach rotor with 

4 pole-pairs, with an outer radius of 26mm, rotor width of 52mm, track width (z-direction) 

of 77mm, track length (x- direction) of 160mm, and track thickness (y-direction of 10mm). 

 

Fig. 182: Original y-axis source field from radial Halbach rotor used in SOVP model 

(rotor parameters from Table 1 and above) 
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6.5.2 FORCE CALCULATION TIME 
 

FEA methods are compute intensive, and each FEA data point took between 52 and 

65 hours to calculate.  It would therefore not be possible to calculate force or it’s partial 

derivatives, stiffness and damping, during run-time with FEM, even with a powerful 

computer.  The SOVP calculation, by comparison, took only 234.94 seconds which is 

largely dominated by the source field calculation (when the source field grid is 64 × 64 and 

the numerical integration from (6.7) has 3000 subdivisions using Simpson’s Rule).  

Though much more efficient than FEM, this is still not suitable for run-time calculations 

for control purposes.  If the field calculation was being used in a run-time situation, the 

time could be reduced by using a coarser grid or by reducing the integration subdivisions.  

Table 23 summarizes the inverse relationship between accuracy and computation time, 

where percent error is calculated to be the difference in y-force relative to the original 

parameters (64 × 64 grid and 3000 integration points), which provide the most accurate 

integral calculation.  The comparison is made at (x, y, z) = (0, 14.7mm, 0) and (vx, vy, vz, 

ωm) = (4 m/s, 0, 0, 400 rpm).  Note that calculation time can be greatly reduced to less than 

one second if the controller is sufficiently robust to perform well with force modeling error 

of 8.75%. 
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Table 23: Summary of axial Halbach field computation time vs. accuracy of field model 
Field Grid Integration 

Subdivisions 
Percent Error (%) Calculation Time (s) 

64 × 64 3000 N/A 234.94 
64 × 64 300 0.002 23.49 
64 × 64 100 2.43 8.22 
32 × 32 3000 2.19 59.05 
32 × 32 300 2.20 6.154 
32 × 32 100 4.56 2.26 
16 × 16 3000 6.36 15.05 
16 × 16 300 6.37 1.74 
16 × 16 100 8.75 0.59 

 

 
6.5.3 SOVP RESULTS 

 

A 64 × 64 point field generated inside of the SOVP function code is shown in Fig. 

183.  The track dimensions are modified to 280mm by 280mm by 10mm. 

 

Fig. 183:  Axial Halbach source field for use in SOVP model (rotor parameters from Table 16) 
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The source field data is then input into the SOVP model’s force calculation block.  

These results were compared to an FEA model in which steady state values are obtained 

by simulating the rotor at each speed until the data settles to a constant plus some noise, 

which is filtered out.  The rotor is simulated using the rotor parameters given in Table 16 

and the track values given in Table 24. The rotor is held in the center of the track and 

rotational velocity is varied from ωm = 0 rad/s to ωm = 150 rad/s.  Vertical force, Fy is 

shown in Fig. 184, rotor torque, and Tem is shown Fig. 185, and power loss, Pl, is shown in 

Fig. 186. 

Table 24: Track parameters for axial EDW SOVP simulation 
Parameter Value 
length, l 105 mm 
width, w 105 mm 
Thickness, d 12.7 mm 
conductivity, σ 3.7665ൈ10-7 
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Fig. 184: Comparison of vertical force results from analytic solution and 

FEA when ωm varies and vy = vx = 0 
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Fig. 185: Comparison of translational force results from analytic and FEA 

solution when ωm varies and vy = vx = 0 

 

 

Fig. 186: Comparison of power loss results from analytic and FEA solution when ωm varies and vy = vx = 0 
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Although the general shapes of the results show consistency between the SOVP 

solution and the FEA solution (as well as hypothesized expectations based on experience 

with the radial EDW), note that the analytic results are scaled by a constant cf, which 

happens to be cf = 10 for the lift force, torque, and power loss plots.  When scaled, the 

torque and power loss results match quite well.  The analytic solution for lift force, 

however, while predicting a similar behavior as the FEA solution, appears to show the 

force shifted left on the x-axis by approximately 20 rad/s. 

 

Simulations were also performed for the case when the rotor is translated over the 

track with zero rotational velocity.  The simulations were performed with parameters from 

Table 16,  and results are summarized in Fig. 187, Fig. 188, and Fig.  189. 

 

Table 16: Standard axial Halbach rotor field simulation parameters 
Parameter Value 
ro 70 mm 
ri 30 mm 
rc 48 mm 
rotor thickness, d 20 mm 
airgap, y 10 mm 
pole pairs, P 4 
Mf 0.9745M 
μr 1.05 H/m 
Magnet Grade NMX-40CH 
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Fig. 187: Comparison of translationally induced lift force predicted by analytic 

and FEA models when vx varies and vy = ωm = 0 

 
Fig. 188: Comparison of translationally induced thrust force predicted by 

analytic and FEA models when vx varies and vy = ωm = 0 
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Fig.  189: Comparison of translationally induced power loss predicted by analytic 

and FEA models when vx varies and vy = ωm = 0 

 

Unfortunately, the results still exhibit large discrepancies, necessitating a scaling 

coefficient of cf = 11 for the lift force, thrust/braking force, and power loss, but once again 

the general behavior (ie. the shape of the plot) of both models match both each other and 

expectations based on our experience with the radial EDW.  Note that while the lift force 

results show a good match throughout the chosen range of vx, the thrust/braking force and 

power loss both match better near vx = 0 and the discrepancy between the analytic and FEA 

models grows larger as translational speed is increased.  More work is required to augment 

the derivation of the SOVP force model, as the suspected cause of the poor scaling with 

the FEA model is the manner in which the radial EDW’s rotation is defined, whereby 

rotation is akin to translation in the x-axis due to the relationship between ωm, vx, and slip, s. 



296 

6.6 AXIAL ELECTRODYNAMIC WHEEL EXPERIMENTAL 
RESULTS 

An experimental axial EDW with parameters defined by Table 25 was constructed 

using an aluminum housing with magnets glued in place.  The rotor is designed to run on 

a test stand which measures torque and rotational velocity.  If the torque matches the 

mathematical models, then it can be reasonably assumed that the other forces will also 

match.  

Table 25: Experimental axial Halbach rotor parameters
Parameter Value 
ro 70 mm 
ri 30 mm 
rotor thickness, d 20 mm 
pole pairs, P 4
Segments 16 
Magnet grade NMX-S45SH 
Housing material 6061 Aluminum 

Fig. 190 shows the rotor at various stages of assembly.  In picture (a), the rotor housing 

is prepped to receive the first magnet.  A Selective Laser Sintering (SLS) 3D printed fixture 

is used to ensure that the magnets are seated properly in the rotor housing.  The partially 

assembled rotor with 2 magnets glued in place with Loctite 392 structural adhesive cured 

with Loctite 7387 activator is shown in picture (b), and a further assembled rotor with 10 

magnets is shown in picture (c).  The tight tolerances on the inner and outer radii of the 

magnets and rotor housing required the magnets to be pressed and impacted into place, 

causing some scratches and gouges which are evident in the photos.  The assembly fixture 

was not stiff enough to hold the magnet tight against the adjacent magnet, so several 

additional clamps were needed to hold the magnet in place during curing, as shown in 

picture (d).  The rotor with all magnets installed, as in picture (e), was only achievable by 



297 

grinding away 4.6% of the final magnet (by volume) on its’ sides, due to the cumulative 

extra space between all other magnets.  Picture (f) shows the completed axial rotor with 

the shaft spacer press fit and 1” aluminum shaft press fit and keyed into place. 

Note that the aluminum housing was chosen for its mechanical properties and ready 

availability but it should be mentioned that a small error between the SOVP model and the 

experimental model is expected due to parasitic eddy currents.  As the rotor rotates the 

conductive aluminum rotor housing experiences a time-varying magnetic field from the 

eddy currents induced in the track.  This causes eddy currents to be induced in the rotor 

which can interact with the track and cause parasitic drag and other forces not accounted 

for by any previous models.  To verify that the error would not markedly affect results, an 

FEA model was constructed to include the housing, and it was found that the effect on 

torque was minimal, with a discrepancy of less than 1%.    
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(a) 

 
(b) 

 
(c) 

 

(d) 

(e) 
 

(f) 
Fig. 190: Axial EDW at various stages of assembly  (a) Bare rotor with assembly fixture bolted in place   

(b) Rotor during initial assembly with 2 magnets  (c) Roughly half assembled rotor with assembly fixture 

prepped for 11th magnet  (d) Clamping setup to ensure proper magnet placement (e) Rotor with all magnets 

installed  (f) Complete rotor with shaft and shaft spacer 
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Once completed, the rotor is mounted to the bearing assembly which consists of two 

316 stainless steel 1.5” thick endplates, each with a 1” bearing mounted at identical heights, 

and a square steel spacer to allow the endplates to be firmly bolted together.  The rotor 

shaft is then inserted into the bearings such that the bearings provide both lateral and thrust 

support.  The complete rotating assembly is shown in Fig. 191. 

 

 

Fig. 191: Experimental axial EDW rotating assembly 
 

Fig. 192 shows the prototype rotor mounted to the test bed.  The rotor induced eddy 

currents in a 0.5” thick plate of 6061 aluminum which is wide and long enough to negate 

edge effects, according the analytic model.  The rotor is driven by a Dayton 10hp, 4 pole 

induction motor through a Futek 605 torque transducer and encoder. 
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Fig. 192: Experimental axial EDW mounted to test bench 

 

The field from the prototype rotor was measured at various radii with an airgap of 

6.45mm, and the results are shown in Fig. 193.  The field is sinusoidal, with the strongest 

measured field found at the center of the magnets, at radius 50mm.  The measured field at 

r = 32.94 mm, r = 50 mm, and r = 62.71 mm is compared to the SOVP analytic model in 

Fig. 194, Fig. 195, and Fig. 196.  Near the inner rotor radius, at r = 32.94 mm, the 

experimental and analytic field match very well, but in the center, at r = 50 mm, and near 

the outer radius, at r = 62.71 mm, the analytic predicts a field magnitude 11.3% larger and 

9.6% larger, respectively.  A larger analytic field, is expected, and can be attributed to the 

higher order harmonics that tend to flatten the peaks of the signal. 
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Fig. 193: Prototype axial EDW field measurements at airgap = 5.7mm (parameters from Table 25) 

 

 
Fig. 194: Comparison of simulated analytic field and experimental field 

when y = 5.7mm and r = 32.94mm, (parameters from Table 25) 

 



302 
 

 
Fig. 195: Comparison of simulated analytic field and experimental field 

when y = 5.7mm and r = 50mm, (parameters from Table 25) 
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Fig. 196: Comparison of simulated analytic field and experimental field 

when y = 5.7mm and r = 62.71mm, (parameters from Table 25) 

 
 
 

Fig. 197 and Fig. 198 show the experimental, FEA calculated, and SOVP calculated 

torque results at airgaps of 14.7mm and 8.87mm, respectively.  By full motor speed (1800 

RPM), the experimental EDW has reached a plateau in which the smaller airgap produces 

a torque 2.49 times greater than the larger airgap.  The SOVP and FEA models showed a 

similar behavior for small rotational velocities, but as the speed increased, the torque began 

to become smaller.  Note that although the SOVP and FEA appear to agree with each other, 

the analytic results have been scaled by a scalar cf, such that only the general behavior of 

the results are a direct match.  Some sources of error in the experimental setup include 

fricitonal losses in the bearings and eddy current losses in the rotor housing that were not 
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properly accounted for by FEA analysis or the analytic model.  This is likely why the 

experimental shows a higher torque with no peak before max speed. 

 
Fig. 197: Prototype axial EDW experimental torque results at airgap of y = 14.7mm 

(parameters from Table 25) 
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Fig. 198: Prototype axial EDW experimental torque results at airgap of y = 8.87mm 

(parameters from Table 25)  
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6.7 CONCLUSION 
 
 

An axial EDW topology is introduced in this chapter as an alternative to the radial 

EDW.  The analytical field model is modified to allow Cartesian coordinates and an 

imaginary component.  The analytical field solution is verified by comparison to an FEA 

model.  The force, torque, and power loss calculated when the axial field is fed into the 

SOVP model does not currently agree with the FEA results or the available experimental 

results, but it appears to correctly predict the general expected trends.  More work on the 

SOVP model is required to accurately simulate the EDW performance analytically.  This 

will be required in order to explore more rotor geometries which have the greatest lift-to-

power ratio.  
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CHAPTER 7:   CONCLUSION AND FUTURE WORKS 
 

7.1 INTRODUCTION 
 

The goal of this research was to build an analytical EDW vehicle model to analyze the 

viability of such a system, and to explore a possible alternative to the radial EDW in an 

axial EDW.  Section 7.2 serves as an overall conclusion to the research from earlier 

chapters.  In section 7.3, the unique contributions that this research provides are discussed.  

Section 7.4 outlines the recommended direction for future research on the topic of EDW 

maglev. 

 

7.2 RESEARCH CONCLUSION 
 

In chapter CHAPTER 2:, the relevant damping and stiffness terms for a 4-DOF radial 

EDW vehicle were discussed.  For the radial EDW vehicle, many of the damping and 

stiffness dynamics are inherently stable or are of no consequence to vehicle stability.  For 

the damping and stiffness terms that do not contribute stability, their effect is often limited 

to one mode or axis.  The summary tables at the end of chapter 2.3 serve as a guide for 

which terms are problematic, and when they manifest as such.  Careful application of 

control and frequent updating of SOVP damping and stiffness terms is critical for the 

unstable terms. 

 

In chapter CHAPTER 3:, the height, roll, pitch, and yaw equations are derived using 

a linearized approach based on terms from the SOVP model and in chapter CHAPTER 4:, 

these equations are wrapped into a single state-space system.  Reasonable assumptions 
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were made to obtain a model that is both controllable and observable.  Although the model 

is framed as linear, it is assumed to be piecewise linear in a later section.  Also, if the 

damping and stiffness terms are thought of as functions, then the model becomes non-

linear.  Therefore, the model can be tailored to suit the desired level of refinement.  The 

model was compared to an experimental setup, and the two had matching elements for long 

time constants (although their high frequency components did exhibit some differences).  

Unfortunately, more experimental testing was not possible due to an equipment change-of-

custody. 

 

Several types of controls of increasing complexity are discussed in chapter CHAPTER 

5:, with the overarching intention of keeping the control methodology as simple as possible 

for the given situation rather than an unnecessary academic pursuit.  For systems which 

remain close to desired operating point, simple linear control (with or without an observer 

depending on the available sensors) is preferred and functions well as shown in the 

simulations.  When noise is introduced, LQGI control rejects noise and drives the EDW 

vehicle acceptably towards the desired reference.  For systems which require large changes 

to the operating point or for controlling the vehicle while one or more of its damping and 

stiffness terms are in a highly unstable region, NGQI control is recommended.  The 

piecewise linear observer/controller represents a very realistic control scenario since it is 

based on updating frequencies that match the SOVP calculation time. 

 

A different wheel topology is explored in chapter CHAPTER 6:: the axial EDW.  This 

arrangement of magnets directs a much larger percentage of the rotor’s field into the track, 
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thereby increasing magnet utlitzation, which becomes an important consideration for cost 

and weight.  It is thought that an axial EDW may offer increased efficiency when the pole 

pair count is kept low, but much more research is required.  A field model developed by Li 

[71] was augmented to include an imaginary field compenent to that the SOVP model could 

be used to calculate the forces developed by the rotor.  The SOVP model was accompanied 

by an FEA model as well, and an experimental prototype was built and tested on a 

rotational testbed.  The results of the three models did not agree, but it is suspected that 

future work could solve this issue to redefining the axial motion in the SOVP model. 

 

7.3 RESEARCH CONTRIBUTIONS 
 

This section highlights several key features of this research project which have 

expanded our knowledge base of EDW maglev. 

 

7.3.1 MAJOR CONTRIBUTIONS 
 

1. For the radial EDW topology, the SOVP damping and stiffness terms were analyzed 

from a vehicle dynamics perspective, and important or problematic terms were 

identified and their potential deleterious effects were categorized.  This has value 

to future to vehicle and track design, so that special considerations could be made 

to allow those modes to be more responsive to control efforts.  This information 

can also help tune a real-time controller with finite computational power so that it 

updates suspected unstable terms before the stable terms.   
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2. A 4-rotor EDW vehicle model using the SOVP force/torque model to calculate the 

damping and stiffness terms of the EDW as it rotates and translates above a 

conductive aluminum track was created which was simulated using Matlab.  Using 

the analytic solution for damping and stiffness values allows the terms to be updated 

at a rate greater than 20Hz (less 50ms is typically required for the SOVP 

calculation, see Fig. 144).  This model was compared to an experimental prototype 

(although there was limited access to equipment for extensive testing).   

3. Controls were applied to a radial EDW maglev vehicle model.  Despite the fact that 

some believe an EDW design is a poor candidate for maglev vehicles due to 

inherently difficult control paired with inherent instability, satisfactory control was 

achieved even with more rudimentary linear methods.  The reason this is possible 

(and novel) is because of the use of an analytical force model (SOVP), which allows 

the very complicated, nuanced, and nonlinear EDW dynamics to be expressed as a 

linear approximation which remains accurate for small-order deviations from the 

calculation point (often referred to as “operating point” in earlier chapters).   

4. By demonstrating that the piecewise linear NQGI controller is effective for a 

system which undergoes a large change in operating parameters (noting that plant 

was simulated nonlinearly and pseudo-continuously, and the controller was given 

realistic refresh rates), a major hurdle in the viability of EDW maglev vehicles has 

been mitigated considerably. 
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7.3.2 MINOR TECHNICAL CONTRIBUTIONS 
 

1. An FEA model of the radial EDW was created using JMAG.  To the author’s 

knowledge, this is the first independent validation of the radial EDW SOVP model. 

2. The radial SOVP model implementation in Matlab code was re-written and re-

organized to be portable and customizable, with more user defined parameters to 

suit a wider variety of possible geometries.  It has no function or toolbox 

dependencies. 

3. Li’s field model [71] was re-written in code (Matlab) and augmented to include an 

imaginary component for input into a modified version of the SOVP force model 

code. 

4. An FEA model of the axial EDW was created, and its field validated against Li’s 

field model [71] 

5. An axial EDW prototype was designed and contructed, and torque was measured 

as it was rotated over a conductive aluminum sheet. 

 

7.4 FUTURE WORK 
 

The following objectives for future work have been identified: 

1. With the experimental 4-rotor radial EDW vehicle setup currently residing at 

Portland State University, future work should be conducted to collect more 

experimental results to validate both the 4-DOF vehicle model from chapter 

CHAPTER 4:, as well as the controller simulations in chapter CHAPTER 5:.  

Further work could also expand the model to 6-DOF.  
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2. In order to obtain a computationally efficient solution for the forces from an axial 

EDW, an SOVP model will need to be derived using a different rotational axis 

(about the y axis). 

3. Further experimental results using the axial EDW would enable proper validation 

of an axial SOVP model.  A more complex setup which is able to measure lift and 

lateral force would be ideal. 

4. Providing that satisfactory efficiency results are obtained with an axial EDW, it 

may be worthwhile to model and/or experimentally evaluate the forces when the 

EDW is tilted off-axis.  A tilting mechanism would allow thrust, braking, and lateral 

forces to be achieved by an axial EDW. 
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