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ABSTRACT

BIN KONG. Deep Structured Learning in Medical Image Analysis. (Under the
direction of DR. SHAOTING ZHANG)

Deep learning-based techniques have been widely employed in solving various medi-
cal image analytical problems. Currently, most of these methods directly employ deep
architectures from natural image scenarios without considering the specific structures
in the input/output variables, resulting in a suboptimal solution. In this dissertation,
we systematically discuss deep structured learning in medical image analysis (MIA).
Particularly, this dissertation is organized by answering the following questions: 1)
how to model complex dependencies among the input/output variables with deep
neural networks, 2) how to enforce prior structural knowledge in deep structured
learning, and 3) how to model certain special structures in MIA problems. More
specifically, we first introduce a formal formulation of structured learning in MIA and
present a general deep structured learning framework to address this problem. Sec-
ond, we enforce the prior structural knowledge in the loss function to further improve
the analytical performance. Third, as an example of special structures in medical
imaging, we introduce how to model the tree structures in coronary arteries with
tree-structured convolutional long short-term memory. Finally, we further introduce
a special structured learning problem in medical imaging which involves sequential
decision making. Accordingly, a deep reinforcement learning-based solution is pro-
posed. To put our discussion in the context of MIA, we evaluated our approaches on
several MIA tasks, i.e., cardiac recognizing from MRI sequences, metastasis detection
in whole-slide images (WSIs), coronary artery segmentation from 3D computed to-
mography angiography (CTA) volumes, and axon tracing. The superior performance

demonstrates the effectiveness.
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in which each node is dependent on the others.

FIGURE 2.1: Block diagram of a typical CNN model which consists of
two convolution, two pooling, and fully-connected layers. This model
is used to classify the histopathological images into two categories:
tumor or normal.

FIGURE 2.2: Block diagram of an LSTM unit. At each timestep ¢, the
LSTM unit maintains a memory ¢;. It takes as input the previous
hidden state h; and the current input x;. The input, output, and
forget gates are used to control the information flow inside the unit.

FIGURE 2.3: Modeling structures in the output with multiple compo-
nents using deep learning. Left: a standard CNN. It takes an image
as input and only outputs an output. Right: deep structured mod-
els. It takes multiple images as input and outputs multiple output
variables. Note that the input/output variables are dependent on
each other.

FIGURE 3.1: With deep learning-based methods quickly becoming a
methodology of choice, MIA tasks such as mitosis detection [5], X-ray
image retrieval 6], cancer metastasis detection [7], skin cancer clas-
sification [8], fetus segmentation [9], and glaucoma assessment [10]
have reached the state-of-the-art performance.
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FIGURE 3.2: We propose a general and less task-specific framework for
structured learning in MIA. The general framework is independent
of particular tasks or deep learning architectures. As a result, it
is applicable to a wide range of MIA tasks (e.g., fetus segmentation,
glaucoma assessment, and invasive cancer detection) and readily com-
bined with the well-established neural network architectures.

FIGURE 3.3: An overview of the proposed structured learning frame-
work. In our network, we model the structural information in a
unified neural network, which can be trained end-to-end. It has two
key modules: deep feature extractor, structural feature learner. The
deep feature extractor extracts discriminative features from the in-
put. The structural feature learner models the complex interactions
in the input/output variables and generates the final predictions.

FIGURE 3.4: We illustrate this idea with a simple MIA task: classifying
the pathology image patches into two categories, i.e., tumor/normal.
From the perspective of manifold learning, the tumor (red triangles)
and normal (black circles) images are mixed together in the input
embedding manifold. After feature extraction with the proposed deep
feature extractor, the tumor and normal images are separated apart.

FIGURE 3.5: We further illustrate this idea with a simple task: predicting
the label (tumor/normal) of the pathology image patch indicated by
red rectangle. Purely judging by the features extracted by the deep
feature extractor can easily lead to misclassification as its appear-
ance/texture is very similar to the green tumor patch (red triangle
in the feature embedding manifold). However, considering the inter-
correlation between this patch and its neighbors effectively address
this problem and remap the feature to separate the tumor and black
normal image patches (indicated by black circles in the embedding
manifolds).

FIGURE 3.6: The outline of the TempReg-Net. It consists of two key com-
ponents: spatial feature encoding and temporal decoder, which cor-
respond to the deep feature extractor and structural feature learner
respectively in our deep structured learning framework. The deep
feature learner extracts discriminative features from the input and
the structural feature learner is responsible for discovering the struc-
tures lying behind. A fully connected layer in the structural feature
learner generates the final predicted values. Finally, the ES, as well
as ED frames, are recognized, based on the predictions.
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FIGURE 3.7: A schematic overview of the proposed Spatio-Net. For each
image patch, we consider its neighboring patches. The spatio-Net
generates the probability map. The metastases are located by in-
terpreting these maps. The top and bottom row show the whole
pipeline and the detailed structure of Spatio-Net respectively. The
CNNs (deep feature extractor) extract features from each patch and
its neighbors. 2D LSTM layers (structural feature learner) considers
the inter-patch dependencies. A fully connected layer in the struc-
tural feature learner predicts a malignancy probability for each patch.

FIGURE 4.1: Different from chapter 3 which only use the task-specific loss
Liqs1 to update the deep structured learning framework, we also em-
ploy the prior structural loss £, to complement the training. More
specifically, at each iteration, predictions of the structured learning
framework are compared with the ground truth labels to compute
the task-specific loss Lisx. This loss term is used to generate the
gradients azg&sk and 3‘5’;;;’“ to update the deep feature extractor ¢y
and the structural feature learner vy respectively. This loss only
consider one output component as a time and doesn’t consider the
dependencies in them. To integrate this higher-level prior structural

information, we further compute the prior structural loss £,,;,, and

. oL rior oL rioT 3
compute gradients =2z as well as =22~ for ¢y and ¢y respectively

to update their parameters.

FIGURE 4.2: Three predicted results by the proposed TempReg-Net. The
ground truth annotations are illustrated in the top left corner of the
corresponding frames. Green and yellow frames are the predicted ES
and ED frames, respectively.

FIGURE 4.3: Comparison of the predicted values of a cardiac MRI se-
quence generated by the state-of-the-art method without temporal
structured constraint (TSC) and the proposed structured learning
framework.

FIGURE 4.4: Predicted probability maps of WSIs with cancer metastases
(top row) and without cancer metastasis (bottom row). The first,
second, and third columns show the original WSIs, ground truth
annotations, and the probability maps generated by Spatio-Net.

FIGURE 4.5: FROC curves of different methods on the testing set.
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FIGURE 5.1: From left to right: a 3D CCTA volume, the corresponding

coronary artery segmentation, and three longitudinal views of the

coronary artery. The coronary artery segmentation is denoted in
red.

FIGURE 5.2: From left to right: sequential ConvLSTM [11]| and the pro-

posed tree-structured ConvGRU. In ConvLSTM, the information,
including the input A}, previous hidden state H; 1, and previous
memory C;_i, is passed sequentially (from ¢ — 1 to ¢ and then to
t +1). As with tree-structured ConvGRU, there is no memory cell.
The information is passed from all the children nodes to the parent
node. For instance, node j in this figure incorporates the information
(hidden state H;, and H,;, from both its children /; and [y and the
current input &;) to produce the current hidden state H;. Node k
incorporates the information (hidden state H; from its child j and
its input X}) to produce the current hidden state H;. Note that al-
though we only show one or two child nodes for the tree-structured
ConvGRU model, it is capable of handling more than two child nodes.

FIGURE 5.3: An overview of the proposed tree-structured segmentation

network. The input of the system is a input tree V, i.e., images
organized as a tree structure. The output P is also organized as a
tree structure. The tree-structured segmentation network consists
of two components: an FCN backbone with an encoder ¢ for dis-
criminative feature learning and a decoder ¢ for prediction, and a
tree-structured ConvGRU layer ¢ for anatomical structure model-
ing. The FCN backbone and tree-structured ConvGRU layer are
shared by all tree nodes. The detailed information is illustrated in
Fig. 5.4.

FIGURE 5.4: Details of the proposed tree-structured segmentation net-

work. Both the encoder and decoder consist of multiple convolutional
layers (each is followed by a ReLU layer, which is ignored for sim-
plicity). For the input image x; associated with node j, it is passed
into several convolutional layers and progressively downsampled by
the pooling layers in the encoder, generating the feature map AXj.
The tree-structured ConvGRU layer takes input X; and produces
the hidden state H;. In the decoder, H; from the tree-structured
ConvGRU layer is progressively upsampled to the original dimension
and at the same time incorporates the information passed from the
encoder, yielding the final prediction P;.
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FIGURE 5.5: Qualitative coronary artery segmentation result of 3D U- 58
Net, 3D U-Net with post-processing, and the proposed method. From
left right shows: the input 3D CCTA volumes, segmentation results of
3D U-Net based method [12], segmentation results of 3D U-Net with
post-processing, segmentation results of the proposed tree-structured
segmentation network, and the ground truth.

FIGURE 6.1: The environment of the axon tracing problem. The squares 64
denote the positions of the actor at different timesteps. The actor
begins at the start position pg. p; denotes the position of the actor’s
state at timestep t. The red and purple squares denote two possible
terminal states. The red one means that the axon is successfully
traced and the purple denotes that the actor fails to trace the full
axon.

FIGURE 6.2: The state space in the axon tracing problem. At each 65
timestep t, a three-channel image is generated from the image for
both the actor and critic networks. Specifically, a actor-centric view
of size 11 x 11 pixels (green square in the left) is extracted from the
original image. Afterward, a larger view of size 21 x 21 pixels (yellow
square in the left) is extracted and downsampled to 11 x 11 pixels.
This technique is used to aid the actor to consider the scale variance.
At the same time, the historical path containing all the previous
positions of the actor is recorded in a separate image (right). From
this image, a 11 x 11 pixels (red square) is extracted from this image.
These three images are concatenated together to form a three-channel
state s;.

FIGURE 6.3: Tllustration of two scenarios of reward function calculation. 67
Left: when the actor is too far away from the axon, the goal is to
pull the actor back to the axon. Right: when the actor is close the
axon, the reward is simple.

FIGURE 6.4: Illustration of the procedure of actor-critic learning algo- 68

rithm. At each timestep ¢, a state s; is sampled from the environment,
which is fed into both the policy and value function networks. The
policy network estimates the probability of each action based on state
s¢. The value function, on the other hand, estimates the value func-
tion of the state s; regarding each action a;. After selecting action
a;, the next state s;11 is sampled. The above procedure is repeated
until the end of each episode.



FIGURE 6.5: Three axon tracing results. The leftmost shows the axon
images. Column 2 to column 6 show the agent’s positions (denoted
by green squares) during the tracing procedure. Red circles indicate
the ending points in the axon images.

FIGURE 7.1: The segmentation network can be trained to consider the
domain shift problem by forcing the source and target features to lie
in the same distribution with adversarial training. Note that labels
are not required for the target images.

FIGURE 7.2: Top: In the standard machine learning pipeline, a large
deep model is trained and then deployed into a server with high-
performance computing resources. Bottom: In the MIA setting,
the reasonable processing time is required to apply CAD algorithms
in the clinical setting. It is more desirable that the trained model can
be deployed into a small device without high-performance computing
resources, e.g., in vitro diagnostic devices.
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CHAPTER 1: INTRODUCTION

Deep learning is emerging as a powerful tool with hierarchical architectures for mod-
eling high-level abstractions of the data. It consists of layers of non-linear transforma-
tions. To date, numerous variants of deep learning frameworks [13, 14, 15, 16, 17, 18,
19] have been proposed to address problems in various fields of study such as computer
vision [20, 21, 22, 23], natural language processing |24, 25, 26, 27|, and speech recogni-
tion |28, 29]. Recent progresses in deep learning have enabled a lot of breakthroughs
in medical image analysis (MIA) tasks, ranging from classification [30, 31, 32, 8, 7, 33],
detection (34, 35, 36, 37|, segmentation [38, 39, 40, 41, 42|, registration [43, 44, 45],
image synthesis [46, 47|, to diagnostic report generation [48, 49|.

While deep learning is driving the rapid growth of modern MIA, the common prac-
tice is to directly use the well-established deep learning models [14, 50, 51| from the
computer vision community for MIA problems, without considering specific struc-
tures, or dependencies among the input/output variables, resulting in a suboptimal

solution.

Figure 1.1: A typical cardiac MRI sequence (red, green, and yellow rectangles indicate
the left ventricles, ES frame, and ED frame, respectively). Most regions do not have
noticeable changes except that the left ventricle slightly changes over time.

However, structures are ubiquitous and of great importance in numerous MIA tasks.

For instance, Fig. 1.1 shows a typical cardiac MRI sequence. With the contraction and
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relaxation of the heart, the left ventricle (red rectangles) volume gradually diminishes
and expands. The maximum and minimum left ventricular volumes correspond to the
end-diastole (ED) and end-systole (ES), respectively. In a cardiac MRI sequence, most
regions do not have noticeable changes except that the left ventricle slightly changes
over time. The subtle differences between neighboring frames make it extremely
challenging to accurately locate the ED and ES frames. Fortunately, there exist
certain structures in the sequence that we can leverage to effectively guide their
localization: the left ventricle volume keeps decreasing during a systole phase and

increasing during a diastole phase, as is also demonstrated by Bogaert et al. [52].

100,000

-

Figure 1.2: Left: a gigabyte (e.g., 150,000 x 100,000 pixels) WSI. Right: illustration
of the spatial correlations among neighboring image patches. The top left patch
indicated by the green square is labeled as normal. This image region is sampled
from the left WSI. The label of the center patch (red) is likely to correlate with its
neighbors. The nuclei denoted by green dots also highlight similar spatial structures
underlying in the center as well as its neighboring tumor patches.

Another example is cancer metastasis detection from gigabyte (e.g., 150,000 x
100,000 pixels) whole slide images (WSIs), as is shown in the left of Fig 1.2. Ex-
isting machine learning algorithms cannot directly handle these massive images. A
common solution is to divide them into small patches and tackle them individually.
However, this technique doesn’t consider spatial dependencies among these patches.
As demonstrated in [32, 53], structural knowledge about the neighboring patches can

be leveraged to boost the detection accuracy. In summary, exploiting this structural



information can be extremely important for many MIA applications.

Inspired by recent ideas for enforcing the structural information in deep MIA frame-
works [54], we present a general deep structured learning framework for MIA tasks.
Specifically, we observe two types of common structures in MIA tasks: the statistical
inter-correlations among the input/output variables and the prior structural knowl-
edge. In order to effectively model these structures, we introduce two key components
into our structured learning framework: deep feature extractor and structural feature
learner. Regarding deep feature extractor, we employ the commonly used convolu-
tional neural networks (CNNs) such as Resnet [14] and ZFNet [15], which is shown
extremely successful for automatically learning the most discriminative features from
the data. This greatly facilitates subsequent analyzing steps. Additionally, the di-
mension of the input feature is reduced by the pooling layers to avoid the curse of
dimensionality. Regarding the structural feature learner, it is capable of modeling
the complex interactions in the input/output variables. Additionally, it has been
shown that incorporating prior structural knowledge into medical image analytical
algorithms is essential for obtaining more accurate results |55, 54] in situations like
corruption and artifacts in medical images. The incorporation of prior structural
knowledge into deep learning frameworks is not obvious. In this dissertation, we in-
corporate it into the training procedure as an additional regularisation loss term to
further boost the performance.

Although the proposed method is motivated by recent work on enforcing structural
coherence into deep learning frameworks, our framework is more general and less task-
specific. More specifically, the proposed framework is independent of particular tasks
or deep learning architectures. As a result, it is applicable to a wide range of MIA
tasks and readily combined with well-established neural network architectures. The-
oretically, deep neural networks are able to capture structural information without

the specification of a priori. Nevertheless, this comes at the cost of a requirement of
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a large-scale labeled high-quality training data, which is extremely expensive and dif-
ficult to collect in MIA. In this regard, enforcing the structural information into deep
learning algorithms brings an additional benefit: alleviating the need for a significant

amount of labeled data.
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Figure 1.3: Coronary artery tree tracing in CCTA volumes. Left: the CCTA vol-
ume. Right: the traced coronary artery tree. The tracing procedure involves the
anatomical structure of the coronary artery in which each node is dependent on the
others.

Finally, we observe that accurately tracing object geometry /topology is crucial for
a lot of applications in MIA [56], especially for the diagnosis of vascular diseases from
medical images. A common practice in the analysis of these images is to build an
anatomical organ structure. As an example, the coronary artery tree tracing in 3D
coronary computed tomography angiography (CCTA) involves building an anatomical
structure of the coronary artery in which each node is dependent on the other nodes,
as is shown in Fig. 1.3. A tremendous amount of efforts [57, 58, 59| have been devoted
to this line of research. In this dissertation, we provide an additional perspective on
this problem. Specifically, we formulate this task as a sequential decision-making
problem and approach it with deep reinforcement learning (DRL), i.e., actor-critic
network, a sophisticated DRL framework. Defining an effective reward function is
essential for the training of the agent. In this dissertation, we show that we are able
to effectively train an axon tracing agent which achieves promising results with a

carefully designed reward function and a refined training procedure.
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To summarize, our work for deep structured learning in MIA consists of the fol-

lowing contributions, which will be discussed in detail in each chapter:

1. We introduce a general structured framework for modeling the structures in
MIA. In this way, the dependencies among the input /output variables are explic-
itly considered in hierarchical deep learning architectures. Such a deep learning
architecture guides the network to learn structurally reasonable features from
the training data. This framework is ignorant of specific applications and net-

work architectures and can be used in a wide range of MIA problem settings.

2. To incorporate prior structural knowledge into deep learning frameworks, we
propose to constrain the training process of the framework by introducing an
additional regularisation term into the loss function. This provides us an op-
portunity to incorporate a prior about the structures in medical images into the

training process.

3. In addition to the evaluation the proposed method on two MIA tasks, e.g.,
cardiac MRI recognizing and cancer metastasis detection in WSIs, we consider a
more challenging structured learning problem, i.e., tree-structured learning. To
approach this problem, we present tree-structured convolutional gated recurrent

unit (GRU) to model the complex interactions between the tree nodes.

4. Finally, we observe that some MIA problems can be easily formulated as a
sequential decision-making problem and introduce a sophisticated DRL frame-
work to address this issue. Particularly, with a carefully designed reward func-
tion and a refined training procedure, we are able to effectively train an axon

tracing agent to achieve promising results.

We organize the rest of the dissertation as follows. First, we give a brief intro-

duction to the related deep learning architectures and review the related works in
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chapter 2. Then, we elaborate on the formal formulation of structured learning and
present a general framework to model the input/output variables’ dependencies in
chapter 3. We also introduce the details of incorporating prior structural knowledge
into the loss function in chapter 4. As an example of special structures in the medical
images, we detailedly discuss a special structure-tree structure in the coronary artery
and demonstrate how to use tree-structured convolutional GRU layer to explicitly
model this structure in chapter 5. Furthermore, we discuss anatomical structure re-
construction, a special structured learning problem, in MIA. We formulate this task
as a sequential decision-making problem and approach this problem with DRL in
chapter 6. Finally, we summarize this dissertation and provide insights for possible

future directions in chapter 7.



CHAPTER 2: RELATED WORK

In this chapter, we first briefly introduce related deep learning preliminaries. Then,
we review previous studies of structured learning, especially in MIA. Finally, we
elaborate on recent developments on embedding structures in deep learning, followed

by the discussion of differences between our methods and the proposed approach.
2.1 A Brief Introduction to Deep Learning

Work on deep learning has been done since the late seventies [60]. The use of
deep learning has not until recently gathered momentum since the contribution of
Krizhevsky et al. [16] to the ImageNet challenge [61] in 2012. We have also seen
many new ideas regarding CNN architectures, such as Inception [17], ResNet [14],
and U-Net [38]. In this chapter, we only introduce the basics of deep learning.

The multilayer perceptron (MLP) is a basic deep learning architecture, which con-
sists of L layers of neurons. Every neuron in the MLP represents a non-linear trans-
formation g = o(w?x + b), where  and ¢ are the input and output respectively.
w and b are the learnable weights and bias respectively. Together, these neurons
define a complex non-linear function, o(wlo(w? _|...) +br). At each iteration of the
training stage, the output of MLP is compared with the ground truth to compute
an error per parameter, which is then used to adjust the parameter. Note that there
are no preexisting assumptions about the particular task or dataset and the training
is purely guided by the dataset. In the following, we elaborate on several types of
neural network architectures used in this dissertation: convolutional neural network
(CNN), recurrent neural network (RNN), and deep reinforcement learning (DRL).

Compared with MLP, CNN is designed to better utilize local spatial correlations
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in images. As is illustrated in Fig. 2.1, three types of layers are often used in CNN:
convolution, pooling, and fully-connected. CNN leverages three techniques to reduce
the complexity of deep models: weights sharing, downsampling, and local receptive
field. The convolution layer is designed to detect local patterns in the input feature
maps. The pooling layer usually follows the convolution layer to reduce the dimension

of the feature map.

"7 Tumor
i} Normal

Convolution Pooling Convolution Pooling  Fully-connected

Figure 2.1: Block diagram of a typical CNN model which consists of two convo-
lution, two pooling, and fully-connected layers. This model is used to classify the
histopathological images into two categories: tumor or normal.

Recurrent Neural Network (RNN) exploits sequential patterns in sequentially for-
matted data. Usually, the long short-term memory (LSTM) [62] is preferred over the
vanilla RNN model [63] as it significantly alleviates the notorious exploding/vanishing
gradient problem. As is shown in Fig. 2.2, the LSTM contains a memory block ¢, at
each step t to store the history memory of the input data. It leverages three gates,
i.e., input gate i;, output gate o;, and forget gate f;, to regulate the information flow

and update the memory:

iy = o(Wyizy + Whyihy_1), (2.1)
fi =o(Wyrxy + Wirhy_1), (2.2)
0r = 0(Waows + Whohs—1), (2.3)
¢ = fi ® ¢_1 + iy © tanh(Wopnxy + Winihy 1), (2.4)

hy = 0y © @(cy), (2.5)
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where o(z) = (1+ e *)"! and ® denote sigmoid function and element-wise prod-
uct respectively. Wo;, Wi, Wop, Wiy, Wao, Whe, Wap, and Wy, are the learnable

weights?.

Figure 2.2: Block diagram of an LSTM unit. At each timestep ¢, the LSTM unit
maintains a memory ¢;. It takes as input the previous hidden state h; and the current
input x;. The input, output, and forget gates are used to control the information flow
inside the unit.

Reinforcement learning (RL) is a separate branch of machine learning, which aims
to train an artificial agent to optimally make a sequence of decisions [64]. Formally,
in the standard RL setting, an agent in RL inhabits an environment £ and interacts
with it until the terminal state is reached. More specifically, a state s; is received by
the agent from £ at each time step t. Then, the agent samples an action a; € A based
on s; and its policy m, where A is the action space with all the possible actions the
agent can take. Then, the environment £ returns a reward r; to the agent and the
agent samples the next state s;,; from the environment. This process is repeated until

the terminal state is reached. In RL, the objective function is the total accumulated

INote that all the bias terms are ignored here and all the rest RNN models in this dissertation
for simplicity.
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return R;:

Ry = Zzé“;o’ykmk, (2.6)

where v € (0, 1] denotes the discount factor to trade off the influence of the immediate

and later rewards. The goal of RL algorithms is to maximize R; from each state s;.
2.2 Traditional Approaches for Enforcing Structural Information

The aim of MIA is to extract key underlying information from medical images.
Due to the existence of low contrast, extremely complex structures, noise which are
commonly associated with medical images, achieving satisfactory results is challenging
in clinical applications. Incorporating structural information has long been deemed as
a useful approach for obtaining more plausible as well as accurate results, especially
in these situations. This is because unlike the individual pixel /voxel values, structural
information such as object shape and topological properties is less subjected to the
influence of image corruptions, occlusions, and artifacts. Additionally, incorporating
structural information in MIA could be potentially even more important compared
to its adoption in natural image analysis as the anatomical structure of the objects
are more distinct regarding the location and shape [54].

In standard machine learning problems, a model takes an image as input and only
outputs a single output. In structured learning, the input/output contains multiple
inter-dependent components. A tremendous amount of effort has been devoted to
incorporating structural information into traditional MIA approaches. For instance,
the structured support vector machine (structured SVM) [65] generalizes the classic
SVM classifier [66] to take into account of the non-overlapping constraint of the cells.
Graphical models (e.g., hidden Markov models [67] and conditional random fields [68])
have also been very popular in modeling the structured output. These methods can

capture the interdependencies among the input/output units by explicitly modeling
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the correlations. Different types of structural information can be leveraged to improve

MIA algorithms. We briefly introduce the following commonly used approaches [55]:

1. User interaction: Incorporating user’s input into MIA pipelines is an intuitive
way to better assist the computer-aided diagnosis (CAD) systems in achieving
desired goals. In an interactive MIA system, the user is required to pass some
input with certain important high-level prior structural knowledge. This prior
high-level knowledge is considered to be unknown or extremely difficult to learn
for computer algorithms. By passing the high-level prior structural knowledge
into the interactive algorithm, the user does not need to worry about the low-
level details of the MIA algorithms. The structural prior can take many specific
forms such as object boundary specification, which requires the end-user to
roughly draw a contour around an object [69, 70, 71| in a 2D image. Another
convenient user input that was commonly used in algorithms such as grab-
cut [72] and geodesic active contours [73] is the sub-region specification which
requires a user to specify a bounding box around an object. These approaches

have also been extended for 3D MIA [74, 75].

2. Edge/boundary information: Edge/boundary is powerful structural infor-
mation of the objects in medical images. To effectively model this structural in-
formation, the drastic intensity/color change around the object edge/boundary
is often leveraged. As an edge/boundary usually lies between pixels/voxels with
different labels, this prior can be easily incorporated into the regularization term
to decrease the penalties around the edges to allow for the discontinuities of la-
bel |76, 77|. In this way, it serves as a regulariser that confines the model to a
more plausible model space. Nevertheless, these methods do not consider the
direction of the intensity or color transition. To address this issue, different
approaches have been proposed. For instance, Nosrati et al. [55] incorporate

boundary polarity into the segmentation framework.
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3. Shape prior: Shape semantically describes the objects in medical images.
The shape of the object (e.g., the ellipse shape of a cell) is often known as a
priori. One simple approach to incorporate shape prior to MIA algorithms is
to penalize any deviation of the prediction from the shape model [78]. More
advanced algorithms also consider modeling the shape of non-rigid objects, e.g.,

a heart, the shape of which gradually changes over time. For instance, the shape
probability model was proposed in |79, 80] to capture the intra- and inter-subject

variations.

4. Topological Specification: In order to obtain more accurate MIA results, the
topological structure has to be preserved in many applications. There exist two
common specifications of the topology: connectivity, and genus. They are often
leveraged to ensure that the result is more topologically plausible. For instance,
Han et al. [81] enforce topological preservation when conducting the level set-
based segmentation. More specifically, the topology of the object contour is
checked at each round of iteration to ensure that the genus keeps the same as
before. In [82], Vicente et al. integrate the topological specification into an

interactive paradigm by enforcing the connectivity.

These traditional approaches demonstrate the importance of incorporating the
structural information into MIA for more plausible as well as accurate results. How-
ever, they face two major challenges. First, the structures need to be manually de-
signed, which requires domain-specific knowledge and extensive tuning. As a result,
a significant amount of time is required to tune the corresponding systems. Addition-
ally, some underlying cues are usually difficult to be discovered, resulting in inferior
results. Second, due to the high computational cost, these methods are limited to low

dimensional circumstances and incapable of handling complex structured problems.
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2.3 Explicit Structural Information Enforcement in Deep Learning

Deep learning, which automatically learns to capture discriminative features purely
from data, has become a methodology of choice for analyzing big data since it gained
popularity in 2012 [16]|. Although deep neural networks (DNNs) are theoretically able
to capture the structural information without the explicit specification of structural
information, it comes at the cost of a requirement for a large-scale labeled high-
quality training data, which is extremely expensive and difficult to collect in MIA.
In this regard, enforcing structural information in deep learning algorithms brings
an additional benefit: alleviating the need for a significant amount of labeled data.
Early work on incorporating structural information to deep learning concentrated on
enforcing sparse pixel connectivity through deep Boltzmann Machines (DBMs) [83].
Inspired by this line of work, Chen et al. [84] and Eslami et al. [85] employed DBM
for the segmentation of vehicles and other objects. However, the fully connected
formulation of DBM results in a complex model with a large number of parameters,
easily leading to over-fitting. To address this limitation, Wu et al. [86] presented deep

belief networks with convolutional layers to enforce the shape prior.

Y2 Va
/ D“Nz\ / DNN4\
Y1 Y3 Ys

y
DNN DNN, DNN; DNN;
Standard DNN Deep structured models

Figure 2.3: Modeling structures in the output with multiple components using deep
learning. Left: a standard CNN. It takes an image as input and only outputs an
output. Right: deep structured models. It takes multiple images as input and out-
puts multiple output variables. Note that the input/output variables are dependent
on each other.

In the context deep learning and MIA, enforcing structural constraints in deep
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learning has been adopted in many applications but has not been discussed in depth.
Fig. 2.3 illustrates the difference between a standard DNN and deep structured mod-
els. A standard DNN takes an image as input and only outputs a single output. In
deep structured models, the input/output contains multiple inter-dependent compo-
nents. Existing deep structured learning for MIA can be briefly classified into two
categories: modeling structural information with DNN architectures and enforcing
prior structural knowledge in loss functions. Oftentimes, the input/output contains
multiple inter-dependent components, as is illustrated in Fig. 2.3. Modeling the corre-
lations in the input/output is usually achieved by explicitly designing certain network
structures to consider the underlying structures in the input/output variables. For
instance, in [87], an LSTM layer is used to capture the temporal cardiac dynamics in
cardiac MRI sequences. There exist a considerable amount of applications with mul-
tiple interdependent input/output variables in MIA, which are briefly summarized as

follows:

1. Applications naturally requiring multiple inputs/output: For many
real-world applications, the input/output naturally contains multiple compo-
nents (e.g., image sequences). For example, Moeskops et al. [88] feed different
image modalities into several CNNs. Afterward, all feature maps from these
CNNs are combined to segment certain image components. Zhang et al. [49]
generate reports for medical images, in which the outputs are sequences of
words. Shin et al. [89] employ CNN to extract compact feature vectors from
the corresponding medical images. Afterward, the feature vectors are fed into an
RNN to generate sequential outputs. One classical MIA application that may
need to explicitly consider structural information in the output is segmenta-
tion (e.g., cells, glands, and organs), where fully convolutional neural networks
(FCNN) [90] have been widely used. Every neuron in an FCNN is locally con-

nected to the previous layer. With a series of convolutional layers, every output
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unit is able to interact with other units. In this way, the correlations among
the output units are considered. However, the resolution of the output degrades
with the use of pooling layers. In order to address this issue, a multi-resolution
approach is proposed in [91, 92|: the feature maps from different layers are
concatenated together to jointly determine the final result. In this way, the
low-level high-frequency information is recovered. Subsequently, Ronneberger
et al. [38] expand on this idea one step further and introduced the so-called
U-net. Stollenga et al. [93] alternatively choose to use the RNN to refine the

results.

. The input/output needs to be separated: The input/output sometimes
needs to be separated into multiple parts so that different operations can be ap-
plied to each of them. One common reason is that many MIA problems involve
handling images of extremely large size or higher dimensions. When dealing
with these images, the sheer amount of data quickly saturate the GPU memo-
ries and the high computational requirement renders it infeasible to directly use
the deep learning models on these images. A common practice is to divide the
image data into multiple components. In this case, the result relies on all these
input components. While features need to be extracted from all the individual
components, the relationship among them should also be considered. For in-
stance, Kong et al. [87] used LSTM to learn the correlations among images in
a cardiac MRI sequence. Another reason is that by separating different com-
ponents, individual operations can be applied to each of them. For instance,
in [94], multiple ROIs of slit-lamp images are concatenated together, and the
resulting fused feature map is further fed into a CNN to grade nuclear cataract.
Chen et al. [91, 92| generate segmentation results from the gland images and
then extracted gland boundaries. Afterward, the boundaries are used to refine

the segmentation results.
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Besides, prior structural knowledge regarding specific problems can be enforced in
the loss function. For instance, Ronneberger et al. [38] assign the boundary pixels
higher weights in the loss function to separate the overlapping cells. Kong et al. [87]
model temporal constraints in the loss function to learn to detect ES and ED frames
in cardiac MRI sequences. However, most of these discussed approaches are proposed
(sometimes with brutal force) just for certain specific structured learning problems
and only concentrate on solving specific problems at hand. In this dissertation, on
the other hand, we investigate the general structured learning problem in MIA. We
expand on the ideas in [32, 87| by presenting a general deep learning framework for

structured learning in MIA.



CHAPTER 3: A GENERAL STRUCTURED LEARNING FRAMEWORK FOR
MEDICAL IMAGE ANALYSIS

3.1  Motivation

MIA is the process of extracting clinically relevant information from medical im-
ages for the diagnosis, prognosis, as well as treatment planning. It involves handling
images of various modalities such as positron emission tomography (PET), mammog-
raphy, magnetic resonance (MR), computed tomography (CT). For the last decades,
it has been demonstrated to be essential for the early diagnosis, detection, as well
as treatment planning of different types of diseases [95]. When applying machine
learning algorithms to MIA, the most important step is to design meaningful fea-
tures for medical images. Traditionally, meaningful task-specific image features were
designed by domain experts according to a specific task/dataset. As a result, it’s
extremely difficult to generalize to other tasks/datasets. Deep learning [96], on the
other hand, integrates the feature engineering step into the whole machine learning
pipeline. Specifically, instead of hand-designing image features, deep learning au-
tomatically extracts discriminative image features in a self-taught manner [97, 98].
This enables non-experts in machine learning to utilize modern deep learning tools
for their specific MIA applications at hand. Recently, with the wide adoption of deep
learning, many MIA tasks such as mitosis detection [5], X-ray image retrieval 6],
cancer metastasis detection |7], skin cancer classification [§8|, fetus segmentation |9,
and glaucoma assessment [10] have reached state-of-the-art performance, as is shown
in Fig. 3.1.

Typically, in these applications, a standard DNN takes an image as input and only

outputs a single output. However, the input/output in many MIA applications often-
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Figure 3.1: With deep learning-based methods quickly becoming a methodology of
choice, MIA tasks such as mitosis detection [5], X-ray image retrieval [6], cancer
metastasis detection [7], skin cancer classification [8], fetus segmentation [9], and
glaucoma assessment [10] have reached the state-of-the-art performance.

times contains multiple interdependent components. A simple solution is to divide
them into multiple components and analyze them individually. But the structural in-
formation, which is of great importance in these tasks, is ignored. A more advanced
approach is to use simple postprocessing steps to consider simple interactions among
different input/output variables. However, these techniques cannot model complex
interdependencies in the input/output variables. Theoretically, deep neural networks
are able to capture the structural information without the specification of a priori.
Nevertheless, this comes at the cost of a requirement for a large-scale labeled high-
quality training dataset, which is extremely expensive and difficult to collect in MIA.
Although recent works have been proposed for deep structured learning in MIA, they
are tailored for a specific application/dataset. In this dissertation, instead, we aim
to propose a general and less task-specific framework for deep structured learning
in MIA. The general framework is independent of particular tasks or deep learning
architectures. As a result, it is applicable to a wide range of MIA tasks (e.g., fetus

segmentation, glaucoma assessment, and invasive cancer detection) and readily com-
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Figure 3.2: We propose a general and less task-specific framework for structured
learning in MIA. The general framework is independent of particular tasks or deep
learning architectures. As a result, it is applicable to a wide range of MIA tasks (e.g.,
fetus segmentation, glaucoma assessment, and invasive cancer detection) and readily
combined with the well-established neural network architectures.

7
\

bined with well-established neural network architectures, as is illustrated in Fig. 3.2.
3.2 Methodology
3.2.1  Overview

Fig. 3.3 presents an overview of the proposed deep structured learning framework.
In this framework, we model the structural information in a unified neural network,
which can be trained end-to-end. It has two key modules: deep feature extractor and
structural feature learner. The intuition behind our framework is simple: the features
in the input can be classified into two categories: features that can be extracted
from individual input components and features that hold vital information about the
complex interactions in the input /output variables. Thus, we leverage different neural
network modules to model them respectively.

The deep feature extractor extracts discriminative features from each input compo-
nent. The structural feature learner models the complex interactions and generates
the final predictions. In the following, we first formally formulate the problem to

be solved in section 3.2.2. Then, these two modules are expanded in section 3.2.3
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Figure 3.3: An overview of the proposed structured learning framework. In our
network, we model the structural information in a unified neural network, which can
be trained end-to-end. It has two key modules: deep feature extractor, structural
feature learner. The deep feature extractor extracts discriminative features from
the input. The structural feature learner models the complex interactions in the
input /output variables and generates the final predictions.

and 3.2.4. Afterward, we present the objective function to optimize the network in
section 3.2.5. Finally, two real-world applications are presented to further illustrate

the proposed framework in in section 3.3.
3.2.2  Mathematical Formulation

Given the input x and let y be the output we aim to predict. The goal is to
leverage the available structural information in the training data to train a strong
model for the unseen testing data. In the structured learning setting, the input and
output are composed of M (M > 1) and N (N > 1) inter-correlated components
respectively. In other words, x and y can be decomposed into multiple components:
x = (21,29 --xpy) and y = (y1,¥2---yn). The model we are interested in learning
can be denoted by a complex function 7y parametrized by V', i.e., y = ny(x). In this
dissertation, we aim to formulate a fully differentiable deep learning framework for
various structured learning tasks in MIA, so that it can be trained in an end-to-end

manner.
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3.2.3  Deep Feature Extractor

One key aspect of deep structured learning to extract features from each input
component. Extracting discriminative features for the input images is vital as the
subsequent structural feature learner is able to focus on modeling complex structural
information. In the proposed deep structured learning framework, we use CNNs as
the deep feature extractor to automatically learn to extract discriminative features
f= (f1, fa- - fu) from the input x, as is demonstrated in Fig. 3.3. It can be denoted
by a differentiable function ¢y parameterized by U. We further illustrate this idea
in Fig. 3.4 with a simple MIA task: classifying the pathology image patches into
two categories, i.e., tumor/normal. From the perspective of manifold learning, the
tumor (red triangles) and normal (black circles) images are mixed together in the
input manifold. After feature extraction using the proposed deep feature extractor,

the tumor and normal images are separated apart.

Input Embedding Manifold Deep Feature Extractor Feature Embedding Manifold

Figure 3.4: We illustrate this idea with a simple MIA task: classifying the pathol-
ogy image patches into two categories, i.e., tumor/normal. From the perspective of
manifold learning, the tumor (red triangles) and normal (black circles) images are
mixed together in the input embedding manifold. After feature extraction with the
proposed deep feature extractor, the tumor and normal images are separated apart.

Apart from extracting discriminative features from the input, the dimension of the
input data is significantly reduced by the pooling layers in the deep feature extractor
to avoid the curse of dimensionality. Commonly, x1, x5 - - -z, are of the same shape,

e.g., the frames in a cardiac MRI sequence. In this case, all these CNNs can share
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weights to avoid overfitting. Similar architectures have also been used for deep struc-
tured learning in previous works in MIA. For example, a CNN is employed to extract
discriminative features in [87] from each frame of a cardiac sequence, which are then
fed into an LSTM layer to generate the final predictions. We can also interpret this
from the perspective of multi-task learning [88]. Specifically, deep feature extractor
is responsible for extracting different types of features from each individual input
component. As a result, these auxiliary tasks introduce an inductive bias to help the

model to explain multiple tasks and thus helps it to generalize better.
3.2.4  Structural Feature Learner

After extracting features from each input component, the structural feature learner
considers the inter-correlations in them. From a complementary perspective, the
structural feature learner complements the standard deep neural network with a mod-
ule for modeling key structural information. Similar to the deep feature extractor, we
also use a fully differentiable deep neural network to model the complex interactions
and generate the final prediction. Specially, structural feature learner 1y, (parame-
terized by W) takes as input the extracted features f = (f1, fo--- far) and produces
the final prediction y = (91,92 - - - yn). We further illustrate this idea in Fig. 3.5 with
a simple task: predicting the label (tumor/normal) of the pathology image patch
indicated by the red rectangle. This is a hard example. Purely judging by the fea-
tures extracted by the deep feature extractor can easily lead to misclassification as
its appearance/texture is very similar to the green tumor patch (red triangles in the
embedding manifolds). However, considering the inter-correlation between this patch
and its neighbors (black normal patches, indicated by black circles in the embedding
manifolds) effectively addresses this problem. By carefully designing the structural
learner, the features extracted from the hard example can be remapped to separate
it from the normal image patches.

While different methods can be used to model the complex interactions, we rec-
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Figure 3.5: We further illustrate this idea with a simple task: predicting the label
(tumor /normal) of the pathology image patch indicated by red rectangle. Purely
judging by the features extracted by the deep feature extractor can easily lead to
misclassification as its appearance/texture is very similar to the green tumor patch
(red triangle in the feature embedding manifold). However, considering the inter-
correlation between this patch and its neighbors effectively address this problem and
remap the feature to separate the tumor and black normal image patches (indicated
by black circles in the embedding manifolds).

ommend designing an aggregator module that can better leverage the underlying
structures in the individual features. As two examples for designing effective struc-
tural feature learner, we will present two MIA applications to show how to adopt the
proposed framework for regression and classification tasks in section 3.3. In these
two tasks, we demonstrate how to use LSTM to model the sequential dynamics in
section 3.3.1 and how to employ 2D LSTM layers to model the spatial correlations of

pathology image patches in WSIs in section 3.3.2.
3.2.5  Optimization

Together, the deep feature extractor ¢y and structural feature learner 1y, define
a fully differentiable neural network 7y, where ny(x) = (¢u o Yw)(x) and V =
(U,W). In MIA applications, the training set D = {(x/,y7)}7_, (here, J = |D|

is the number of data examples in D) is associated with a repository of medical

images X = {x’}/_,, and the corresponding labels Y = {y’}/_,. After introducing
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Algorithm 1  The whole training pipeline of the proposed structured learning
framework 7y with parameter V.

Input: D = training set
Input: ¢y = deep feature extractor with parameter U
Input: ¢y = structural feature learner with parameter W
Input: p = learning rate
while not converged
g+ 0
for every training example in the sampled mini batch (x7,y’) € D do
extract deep features with: ¥ < ¢ (x;)

model the structural information and generate final prediction: 7 « by (£7)

OL+otal (}A’J 7yj )

accumulate gradients: g <— g + o

end for
V—V—-pug

end while

return parameters V'

according to equation 3.1

the proposed framework, the next step is to define the loss function and train our

network with the training set:

Liotar (v (X),Y) = Z Liasi (1 (x7),37) + 0Lreg(V), (3.1)

1
LreoV) = 5IIVI (32)

where Liqs:(nyv(x?),y’) is the task-specific loss. For instance, cross-entropy loss can
be used for classification problems. L,., denotes the regularization term. It ensures
sparse weights to avoid overfitting. The hyper-parameters « is cross-validated during
the training process.

As the whole framework is fully differentiable, it can be trained end-to-end. and
training the proposed deep structured learning framework is equivalent to the follow-

ing optimization problem. The detailed training procedure is shown in Algorithm 1.

V= arg‘fninﬁtoml(nv(X), Y). (3.3)
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3.3  Applications of Structured Learning in MIA

In this section, we employ the proposed structured learning framework in two MIA
tasks to thoroughly elucidate our approach: recognizing ED and ES frames from

cardiac MRI sequences and metastasis detection in whole-slide images (WSIs).
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Figure 3.6: The outline of the TempReg-Net. It consists of two key components:
spatial feature encoding and temporal decoder, which correspond to the deep feature
extractor and structural feature learner respectively in our deep structured learning
framework. The deep feature learner extracts discriminative features from the input
and the structural feature learner is responsible for discovering the structures lying
behind. A fully connected layer in the structural feature learner generates the final
predicted values. Finally, the ES; as well as ED frames, are recognized, based on the
predictions.

3.3.1  Cardiac MRI Recognizing

Recognizing ED and ES frames from cardiac MRI is the first step for many cardiac
image analysis applications. Traditional methods [1, 99, 100| for this problem are
based on “hand-crafted” features. Nevertheless, the results are error-prone. Applying
deep learning algorithms to this task is extremely challenging, considering the almost

unnoticeable changes in the cardiac image frames (see Fig. 1.1). In this chapter, based
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on the deep structured learning framework, we introduce temporal regression network
(TempReg-Net) to tackle this problem. Its outline is presented in Fig. 3.6. It consists
of two key components: spatial feature encoding and temporal decoder, which are
correspond to the deep feature extractor and structural feature learner respectively
in our deep structured learning framework.

In this network, the deep feature extractor ¢y consists of M CNNs for extracting the
spatial features from the M frames of the cardiac sequence (M is the total number of
frames in the cardiac sequence), yielding the encoded features for the cardiac frames.
The LSTM layer in the structural feature learner vy, is responsible for modeling
temporal dynamics. Finally, a fully connected layer in the structural feature learner
generates M predictions for the cardiac sequence (we generate a prediction for each
frame, so M = N in this application).

More specifically, the whole framework consists of three steps. Firstly, M CNNs
are trained to extract spatial patterns from the input frames, generating M compact
features vectors. Afterward, these features are fed into an LSTM model to explore
the temporal correlation in the sequence. Then, the final predictions are produced by
a fully-connected layer. Finally, the ED and ES frames are detected by locating the
maximum and minimum predictions respectively. Note that the network is trained
to regress a continuous numeric value for each frame in the cardiac sequence, where
each value represents the left ventricular volume in the frame. It is noted that the
weights of M CNNs are shared for all frames to avoid over-fitting.

Given the training set D = {(x?,y/)}/_,, our goal is to optimize the following loss

function:

J M
Lot =SS My, = 2+ A Lrey, (3.4)
j=1 m=1
1 2
Lreg = 5(IVIR), (3.5)



27
where ¥/ = ny(x?) is the prediction. y/ = (yl, 4] 93\4) is the synthetic ground
truth, which will be discussed later. L,., regularizes our system by controlling the
complexity of TempReg-Net, i.e., the sparsity of the learned weights V. « is the
hyper-parameter, which is cross-validated during the training phase.

In this application, zJ:l %1 |32, — 9. ||* corresponds to the task-specific loss in equa-
=1 m=

tion 3.1. To model the dynamics of left ventricle volume [1], the ground truth label

y) is synthesized according to the following equation:

5

, B=les | qf Negg <m < N

Ym = (3.6)
, otherwise

where N, and N4 denote the corresponding ES and ED frame indices in the cardiac
MRI sequence x?. The hyper-parameters ¢ and v control the shape of the ventricle

volume curve. They are cross-validated during the training phase.
3.3.2  Cancer Metastasis Detection in WSIs

WSIs are the golden standard in clinical diagnosis, which provide histopathological
information for accurate analysis. As WSIs are massive (e.g., 150,000 x 150,000
pixels), current practice [3] simply divides the WSIs into small patches and employs
CNNs to assign a prediction value to each patch for the final diagnosis decisions.
However, it does not consider the structural information in WSIs, as illustrated in
Fig. 1.2. The structural information in pathology images was proven to be vital for
cancer diagnosis in [101]| even before the widely adoption of deep learning in MIA.

We now present our Spatio-Net for detecting cancer metastasis in WSIs. It is
based on the deep structured learning framework proposed in section 3.2 to model the
structural information among the image patches. The top row of Fig. 3.7 provides an
overview of the cancer metastasis detection pipeline. Firstly, each WSI is divided into

small image patches with fixed-size. Secondly, the Spatio-Net produces a probability
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map for each WSI, indicating the malignancy probability of each image patch, through

which the metastases are located.

Detected metastases

Detected metastases in a
probability map

| Input |[ Conv | [Conv| [Conv| [Conv| | FullyConnected |
n- /@ P(tumor)
Neighboring patches CNN Fixed-lengthed features 2D LSTM

Figure 3.7: A schematic overview of the proposed Spatio-Net. For each image patch,
we consider its neighboring patches. The spatio-Net generates the probability map.
The metastases are located by interpreting these maps. The top and bottom row show
the whole pipeline and the detailed structure of Spatio-Net respectively. The CNNs
(deep feature extractor) extract features from each patch and its neighbors. 2D LSTM
layers (structural feature learner) considers the inter-patch dependencies. A fully
connected layer in the structural feature learner predicts a malignancy probability for
each patch.

The bottom row of Fig. 3.7 shows the detailed structure of Spatio-Net. The CNN
and 2D LSTM layer correspond to the deep feature extractor and structural feature
learner in our deep structured learning framework respectively. The deep feature
extractor ¢y consists of M deep residual network [102] for extracting discriminative
features from each patch and its surrounding 8 patches (i.e., M = 9). Note that these
networks share the same weights. The structural feature learner ¢y, is composed of
four 2D LSTM layers for aggregating the features extracted from the patches and a
fully connected layer for the final prediction. Thanks to the capability of 2D LSTM

layer for modeling spatial patterns, spatial information in these feature vectors can
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be naturally modeled by the proposed Spatio-Net. The fully connected layer followed
by a sigmoid function generates M predictions for the M patches (we generate a
prediction for each frame, so N=M =9 in this application).

Given the training set D, we need to estimate the optimal weights for the CNN
and 2D LSTM layers. We define the total loss function for the whole framework as

follows:

£total = ﬁcls + O-/'C’rega (37)
1
Lreg = §(||V||§), (3.8)
Ecls = - Z log(nV(l‘*))a (39)
€D

where L is the total cross-entropy loss. L., regularizes our system by controlling
the complexity of Spatio-Net, as discussed previously. « controls the weights of three
loss terms, which is cross-validated during the training stage. V' is all the learnable
weights in Spatio-Net.

In this application, L., corresponds to the task-specific loss in equation 3.1. Fol-
lowing [3], two post-processing steps are employed to locate the metastases from the
probability map. First, a binary mask image is generated by thresholding the proba-
bility map. Then, connected component analysis is used to label each region, with the
center of each region being the predicted metastasis location and the mean probability

of the region being the final score.
3.4 Summary

In this chapter, a novel deep learning framework is proposed to tackle the struc-
tured learning problems in MIA. More specifically, our framework comprises of two
major components: 1) deep feature extractor, which extracts features from each in-
put component, 2) structural feature learner, which precisely models the structural

information and generates the final predictions. By employing these approaches, our



30
method can handle structured learning problems with a unified framework. We elu-
cidate the proposed method on two MIA tasks: cardiac MRI recognizing and cancer
metastasis detection in WSIs. As the proposed framework is independent of particu-
lar tasks or deep learning architectures it is applicable to a wide range of MIA tasks

and readily combined with well-established neural network architectures.



CHAPTER 4: EMBEDDING PRIOR STRUCTURAL KNOWLEDGE IN LOSS
FUNCTIONS

4.1 Motivation

In the last chapter, we demonstrated the importance of structural information in
MIA and defined a general deep structured learning framework for modeling structural
information in MIA systems. However, there also exist some prior structural infor-
mation that can hardly be enforced in deep learning frameworks. Compared with
other types of structural information, they often contain high-level understandings
of human experts, which is extremely difficult for deep neural networks to capture.
Therefore, solely relying on deep learning to model these high-level structured prior
knowledge is not enough for producing satisfactory results. The important role of
embedding structured prior in MIA systems is also highlighted in many previous
research works. For instance, Ronneberger et al. [38| stress the boundary pixels by
giving them higher weights so that touching cells can be separated. Chen et al. [91, 92]
also demonstrate that giving higher weights to gland boundaries proves to be ben-
eficial for separating overlapping glands. To address this issue, we complement the
proposed deep structured learning framework with a novel training strategy by incor-
porating an additional structured loss term in the loss function. It enables the model
to follow the prior structural knowledge on the solution space, thereby generating
more anatomically reasonable and accurate results.

In this chapter, we demonstrate how to embed prior structural knowledge in loss
functions and further illustrate our idea with more concrete examples in section 4.2.
To show that incorporating this prior knowledge is indeed beneficial for the final

accuracy, we conduct experiments in section 4.4 to evaluate the proposed approaches.
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4.2 Methodology
4.2.1  Embedding Prior Structural Knowledge in Loss Functions

Solely relying on deep neural networks to model structural information is not
enough in many MIA problems. To further enforce the high-level prior structural
knowledge into the proposed deep structured learning framework, we choose to in-
corporate this information in the training procedure by adding an additional term
in the loss function (equation 3.3). Figure 4.1 shows the training strategy of the
proposed structured learning framework. Different from chapter 3, which only use
the task-specific loss L4 to update the parameters in the deep structured learning
framework, we also employ the prior structural loss £, to complement the training.

More specifically, at each iteration, predictions of the structured learning framework
are compared with the ground truth labels to compute the task-specific loss L;usk.
This loss term is used to generate the gradients ‘%f’”’“ and 85*‘”’“ to update the deep
feature extractor ¢y and the structural feature learner w1y respectively. This loss
only consider one output component as a time and doesn’t consider the dependencies
in them, as illustrated in Figure 4.1.

To integrate this higher-level prior structural information, we further compute the

L

przor

> —~ to update

prior structural loss L, and compute gradlents as well as 2
the parameters of ¢y and vy respectively. In summary, the updated total loss for

training the deep structured learning framework can be expressed as follows:

Etotal(UV Z ‘Ctask 77\/ X] j) + aﬁreg + Bﬁpriom (41)

Lo =3IVIE (12)

where L, is the task-specific loss, e.g., cross-entropy loss for classification problems.

L,y denotes the regularization term. It ensures sparse weights after training to avoid



33

Input w/ multiple Deep feature
components extractor

® O
®
6O

a‘cprior
ou

Structured Prior

Figure 4.1: Different from chapter 3 which only use the task-specific loss L5 to up-
date the deep structured learning framework, we also employ the prior structural loss
Lyrior to complement the training. More specifically, at each iteration, predictions
of the structured learning framework are compared with the ground truth labels to
compute the task-specific loss L;,s,. This loss term is used to generate the gradients
Matgs’“ and 85@‘{;’“ to update the deep feature extractor ¢y and the structural feature
learner 1y respectively. This loss only consider one output component as a time
and doesn’t consider the dependencies in them. To integrate this higher-level prior

structural information, we further compute the prior structural loss L, and com-

prior

pute gradients MT as well as % for ¢y and Yy respectively to update their
parameters.

overfitting. L, enforces the prior structural knowledge in the loss function. The
hyper-parameters, a and [ , are cross-validated during the training process. As
the whole framework is fully differentiable, it can be trained end-to-end with back-

propagation. The whole training procedure is also illustrated in Algorithm 2.
4.2.2  Tllustration with Two MIA Applications

We further illustrate our idea with two more concrete examples. As a simple exam-
ple, a typical cardiac MRI sequence in illustrated in Fig. 1.1. With the contraction
and relaxation of the heart, the left ventricle (red rectangles) volume gradually di-

minishes and expands in these cardiac image frames. The maximum and minimum
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Algorithm 2 Incorporating the structured prior knowledge into the training proce-
dure by adding an additional loss term into the loss function. The structured learning
framework is denoted by 7y with parameter V.

Input: D = training set
Input: ¢y = deep feature extractor with parameter U
Input: ¢y = structural feature learner with parameter W
Input: ;= learning rate
while not converged
g+ 0
for every training example in the sampled mini batch (x7,y’) € D do
extract deep features with: f < ¢p(x;)
model the structural information and generate final prediction: 7 « by (£7)
accumulate gradients: g < g + W
end for
V+—V—pug
end while
return parameters V'

according to equation 4.1

left ventricular volumes correspond to the end-diastole (ED) and end-systole (ES),
respectively. In chapter 3, we leverage the proposed deep structured learning frame-
work to model temporal structures underlying in cardiac sequences. However, an
important high-level aspect of the prior structural information regarding to the pre-
dictions is difficult to be captured solely by deep neural networks: the left ventricular
volume only increase in diastole and decrease in systole phases [52]. Simply employ-
ing TempReg-Net (see Fig. 3.6) is difficult to capture this high-level knowledge. To
address this issue, we complement the proposed deep structured learning framework
with a generic training strategy by incorporating a new loss term in section 4.3.1.
This strategy encourages the deep network to follow the prior structural knowledge
on the solution space. As will be demonstrated in section 4.4.1, this significantly
improves the prediction by smoothing out the results.

As another example, consider an image region in a WSI in Fig. 1.2, which includes
9 patches. In this image region, we are interested in predicting the malignancy of the

center red patch. Except for the top left green patch, all the other surrounding patches
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are tumorous. Without other available information, it is reasonable to infer that the
center patch (red) is likely to be tumorous. This reasoning process reflects our prior
knowledge about the spatial constraint or structure of image patches underlying in
the WSIs. The prior knowledge about the nuclei distribution has also been leveraged

for cancer diagnosis in [103].
4.2.3  Distinction with Maximum a Posteriori

This framework can be interpreted from the perspective of maximum a posteriori
(MAP). Specifically, when estimating the parameters of the deep structured learning
framework, we are essentially estimating the conditional probability P(Y|X;V), i.e.,
we are interested in predicting Y given X. X and Y are the input collection and target
collection in training set D respectively. Without considering £,.4, equation 4.1 is

equivalent to the following objective function:
Vire = argmaxP(Y|X; V), (4.3)
1%

which is standard maximum likelihood estimation (MLE). Usually, equation 4.3 can

be decomposed as follows, assuming that data examples in D are i.i.d.:

log P(y’|x7; V). (4.4)

J
=1

Vyvipe = arg max
v

J

In contrast, MAP works on the Bayesian posterior distribution, which can be de-
composed as a prior and likelihood. Similar to equation 4.3 and 4.4, by incorporating

a prior distribution, we get the following objective function:

Viap = argmaxP(Y|X; V)P(V), (4.5)
v

= arg maxlog P(Y|X; V) +log P(V), (4.6)
v



J
= arg maxlogHP(yj|xj; V) +log P(V), (4.7)
v ,
7=1
J
= arg maxz log P(y’|x7; V) +log P(V). (4.8)
v
7j=1

Comparing equation 4.8 with equation 3.3 and 4.1, we can draw the conclusion that
Liasi and Ly,;0, are corresponding to the first term in equation 4.8, which are guided
by the labeled training data. L, ;. corresponds to the second term in equation 4.8. It
encompasses our prior understanding of the system. In our case, we assume that the
system should not be too complex. By incorporating this term, the trained system
is less likely to overfit the training dataset. Note the difference between the prior
distribution in MAP and the prior structural knowledge in equation 4.1: the prior

structural loss in equation 4.1 is guided by training examples.
4.3  Applications in MIA

In this section, we further consider incorporating prior structural knowledge into

the training procedure of the MIA systems discussed in section 3.3.
4.3.1  Cardiac MRI Recognizing

As is mentioned in section 4.2.2, the prior knowledge about the left ventricular
volume (i.e., it does not decrease in a diastole stage and increase in a systole stage)
can be leveraged to improve the predictions. Essentially, TempReg-Net defines a
regressor 7y based on the cardiac MRI sequence x/ with M frames, where V is all the
learnable weights in the deep feature extractor and structural feature learner. Ideally,
the predicted value 3’ = ny(x’) conform with the prior knowledge: the prediction of
the m'™ frame ¢7, (m = 1,2,...M) should be larger than or equal to 7/ _, if there are

in the diastole phase (i.e., 7, ; < 4/.), and vice versa. We model this constraint in
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the loss function by adding an additional term, temporal structured loss Lyep,:

1
Etemp = §(£znc + ‘Cdec)v (49)
1 < :
Einc - M Z IL(ym > ym—l) maX(O, gan—l - gin)a (41())
m=2
1 & :
Liee = i Z 1(Ym < Ym—1) max (0,97, — 47, _1), (4.11)
m=2

where L;,. and L4 penalize the false predictions. More specifically, they are 0 if the
predictions conform with the rules mentioned above. L;,. is positive if the predictions
decrease, but the corresponding frames are in a diastole phase. L4 is positive if the
predictions increase, but the corresponding frames are in a systole phase. 1(-) denotes
the indicator function.

After the definition of temporal structured loss, we further explore the loss function.
Given the training set D = {(x/,y7)}7_,, our goal is to optimize the following loss

function:

J M
:fotal = Z Z ||yan - gan||2 + a‘CTGQ + Bﬁtem;m (412)
7j=1 m=1
1 2
Lreg = 5(IVI12), (4.13)

where 7 = ny(x7) is the prediction. y/ = (y], 4}, ...,},) is the synthetic ground
truth. L,., regularizes our system by controlling the complexity of TempReg-Net,
i.e., the sparsity of the learned weights V. o and 8 are the hyper-parameters of our

system. They are cross-validated during the training phase.
4.3.2  Cancer Metastasis Detection in WSIs

Additionally, we further propose a new loss function Lg,4, to enforce the prior
structural knowledge in the training procedure of Spatio-Net. It is termed as spatially

structured loss. Spatio-Net defines a classifier y¥ = (gjgi),gjg), ,g}zj) = ny(x®).
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Specifically, we penalize two situations: 1) ]yy) — yy(,?] is small but gji) = y,(ﬁ), which
is corresponding to L;,q in the following, 2) |y£ ym | is large but y* 7é ym , which
is corresponding to L4 in the following. We enforce this prior structural knowledge

in the loss function:

1

‘Cspatio = §<£md - ﬁdif); (414>
j 1 meN;

Laiy = Z Z {1(y. D ?/l ) | - y1(71,)| 2 (4.16)
] 1 meN.

where 1(+) denotes the indicator function.
Given the training set D, we need to estimate the optimal weights for the CNN

and 2D LSTM layers. It can be achieved by optimizing the following loss function:

:ﬁotal = ‘CCZS + O-/'Creg + B»Cspatz‘oa (417)
1
Lieg = —(||V||§)a (4.18)
cls — Z log I* (419)
z« €D

where L is the total cross-entropy loss. L., regularizes our system by controlling
the complexity of Spatio-Net, as discussed previously. a and [ control the weights of
three loss terms, and they are cross-validated during the training stage. V' is all the

learnable weights in Spatio-Net.
4.4  Experiments
4.4.1  Cardiac MRI Recognizing

Dataset: the cardiac MRI dataset was collected from our collaborative hospital
and labeled by board-certified experts. More specifically, we gathered the cardiac

sequences from four views (i.e., long-axis, short-axis, four-chamber, and two-chamber)
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from 420 patients, which contain around 113, 000 frames. Every cardiac MRI sequence
contains 20 frames (256 x 256 pixels) and each patient has around 18 sequences (about
15 short-axis, a long-axis, a four-chamber, and a two-chamber view). ES and ED
frames are carefully labeled by the experts in the hospital. The results are generated
by performing four-fold cross-validation on this dataset.

Evaluation metrics: to quantify the accuracy of the predictions, the average
frame difference (aFD) is employed, following the convention of [100, 104]. Formally,
aF'D is defined as:

ID|
1 .
aFD = —Y"|N; — N, (4.20)
=1

o] 2

where N; and Nl are the ground truth frame index and predicted value of i*" cardiac
MRI sequence in the testing dataset. |D| denotes the total number of evaluated
cardiac MRI sequences.

Implementation details: TempReg-Net uses the Zeiler-Fergus (ZF) model [15]
as the deep feature extractor, as it makes an excellent trade-off between the perfor-
mance and the computational cost. Each gray-scale frame is squashed to the range
of [0,255] and replicated two times, resulting in a three-channel image. In order to
avoid overfitting, we fine-tune the pre-trained LRCN network [105] (originally trained
on ImageNet [61]) on our dataset. The learning rate of the last fully-connected layer
(the layer that follows the LSTM model) is set to be 10 times larger than the learning
rates of the rest layers. We initialize all the parameters in the LSTM in the range
of [=0.01,0.01]. The hyper-parameters are cross-validated during the training stage.
We randomly crop the resized cardiac frames in order to artificially augment our
datasets.

Quantitative Results: We first compare the proposed framework with the state-

of-the-art (Reg-based: CNN-Reg): a similar regression-based method. This method
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differs from our method only in two aspects: 1) it does not use an LSTM layer (struc-
tural feature learner) to model the inter-frame dependencies, 2) the prior knowledge
regarding the predicted values is not enforced in the loss function. The results are
shown in Table 4.1. According to Table 4.1, our TempReg-Net can achieve com-
petitive results (i.e., 0.47 for identifying ED and 0.52 for locating ES, respectively)
even without enforcing the prior knowledge in the loss (i.e., temporal structured loss
Liemp). After adding Liemy, the performance improves significantly, i.e., 0.44 for ES
and 0.38 for ED, increasing the accuracy by around 15%. The result demonstrates
the effectiveness of the proposed structured learning framework. In terms of the com-
putational cost, only 1.4 seconds is required for TempReg-Net to process a cardiac
MRI sequence. Due to its efficiency, TempReg-Net can potentially be integrated with

cardiac analysis platforms.

Table 4.1: Quantitative comparisons of the proposed TempReg-Net with the state-
of-the-art (Reg-based: CNN-+Reg), segmentation based methods (level set [1] and
graph cut [2]), and TempReg-Net without temporal structured loss Liemy.

Seg-based: Seg-based: Reg-based: TempReg-Net
Methods | 1 1 Set [1]  Graph Cut [2] CNN4Reg  (w/o Lopp) LCmPREENeL
WFD ED 1.54 2.27 1.30 0.47 0.38
ES 1.24 1.65 1.97 0.52 0.44
STD ED 1.93 2.89 1.77 0.49 0.39
ES 1.64 1.96 2.42 0.53 0.46
Time (s) 2.9 3.5 1.5 1.4 1.4

Additionally, we compare the proposed framework with other related methods. For
example in [106], the left ventricle is first segmented from each frame. Then, the ES
and ED frames are identified by comparing the areas of these regions. A similar
method is developed in this dissertation to segment the left ventricle, employing vari-
ations of graph cut [2|, a method proposed recently that can accurately achieve the
task of myocardium segmentation with level set [1]. This type of method is very
intuitive, therefore being widely used. Nevertheless, there exist several limitations

in these approaches; e.g., high computational cost, significant segmentation errors,
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Figure 4.2: Three predicted results by the proposed TempReg-Net. The ground truth
annotations are illustrated in the top left corner of the corresponding frames. Green
and yellow frames are the predicted ES and ED frames, respectively.

and requirements of human interactions. In the experiments, 3.5 and 2.9 seconds
are required to segment the left ventricle from the frames in a cardiac MRI sequence
employing graph cut and level set, respectively. In other words, this system is signif-
icantly slower than the proposed method, assuming the fact that the time of human
interactions for initializing the segmentation (e.g., the background and/or foreground
has to be manually defined in the graph cut based approach) is not counted.

Regarding the accuracy, the aF'D is 1.24 and 1.54 for ES and ED respectively, when
level set is employed. When graph cut is employed, the aF'D is 1.65 and 2.27 for ES
and ED respectively. In comparison, the proposed method achieves much better
performance. The reason resides in the segmentation procedure: these segmentation
algorithms are not able to generate perfect segmentation results, while even a small
segmentation error substantially reduce the final result due to the subtle differences
among adjacent frames.

Evaluation of the Temporal Structured Constraint: In order to obtain a
deeper understanding of the influence the structured constraint has on the results,

we randomly selected a cardiac MRI sequence from the testing data and compare the
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results of the proposed methods with the state-of-the-art (Reg-based: CNN-Reg),
which does not consider the temporal structured constraint (TSC). In this sequence,
the ED and ES frames are the 8th and 1st frame, respectively. Fig. 4.3 shows the
visual comparison results. The result of TempReg-Net is consistent with our prior
knowledge. On the other hand, the predictions of the method without TSC fluctu-
ate at several places (2", 5" 9" and 12! frames). Because of these fluctuations,
the predicted ED and ES will differ from the ground truth by one and two frames,
respectively. The visual comparisons provide additional evidence for the superiority

of our method.
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Figure 4.3: Comparison of the predicted values of a cardiac MRI sequence generated
by the state-of-the-art method without temporal structured constraint (T'SC) and the
proposed structured learning framework.

4.4.2  Cancer Metastasis Detection in WSIs

Dataset & Evaluation metrics: in the CAMELYON16! dataset, the training
set includes 110 tumor WSIs and 160 normal WSIs. All these images are carefully
annotated by pathologists. The testing set is composed of 130 WSIs. To maximally
leverage image information, all experiments are carried out on the 40x magnification.
The detection performance is evaluated by average FROC (Ave. FROC) [107]. A
higher average FROC value suggests better detection performance.

Implementation details: To effectively extract image features, residual neural

network [102] (ResNet101) was used for feature extraction. Four 2D LSTM layers

Thttps://camelyon16.grand-challenge.org/
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are employed to model the dependencies in the neighboring image patches. For fair
comparison, we follow Wang et al. [3] to sample the training image patches and train

the neural networks. In the testing stage, the stride of sliding window is set as 64.
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Figure 4.4: Predicted probability maps of WSIs with cancer metastases (top row) and
without cancer metastasis (bottom row). The first, second, and third columns show
the original WSIs, ground truth annotations, and the probability maps generated by
Spatio-Net.

Quantitative Results: We carried out multiple experiments to evaluate Spatio-
Net. Firstly, we compare Spatio-Net with the baseline [3], the state-of-the-art archi-
tecture. The difference between the baseline and our framework is two-fold: 1) no
extra 2D-LSTM layers is used to model the inter-patch dependencies, and 2) spatially
structured loss Lgpatio is not considered in the loss function. Smoothing is often used
as a simple approach to consider the correlation of neighboring predictions. Thus, we
further compare our method with baseline + smoothing for postprocessing. Fig. 4.4
shows some generated probability maps.

The final results of the above methods are summarized in Fig. 4.5 and Table 4.2.

According to Table 4.2, our approach, Spatio-Net significantly outperforms [3| (more
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Figure 4.5: FROC curves of different methods on the testing set.

than 5%), demonstrating the effectiveness of the proposed structured learning frame-
work. Furthermore, Spatio-Net also outperforms Baseline-+post-processing by more
than 4%. This is because although post-processing bring certain benefits, it is not
fully integrated into our structured learning framework. In contrast, our approach

models the structural information in a systematic way.

Table 4.2: Quantitative comparisons of the proposed methods and the baselines:
Wang et al. [3] and Wang et al. [3]+Postprocessing.

Methods | Wang et al. [3] Wang et al. [3|+PostPro Spatio-Net
Ave. FROC | 0.7125 0.7203 0.7658

Finally, we conduct an additional experiment to test if the proposed structured
learning framework is able to benefit different types of CNN architectures. Specifi-
cally, three types of CNN models are tested: ResNet101 [102], GoogleNet [17], and
ZFNet [15]. For all these models, we evaluate their performance with or without
enforcing structured learning. Their performances are summarized in Table 4.3. Two
key conclusions can be drawn. First, stronger CNN architecture has higher detec-

tion performance. More specifically, the detection accuracy improves from ZFNet to
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GoogleNet and ResNet101. We guess this is because we have enough training data
to train a high capacity CNN network. In this case, higher capacity network means
better generalization. Second, structured learning consistently helps these CNN mod-
els to boost the detection accuracy. Note that the Ave. FROC increased by 4.9% in

average when structured learning is enforced in these CNN models.

Table 4.3: Detection results of different methods: CNN models only or CNN models
with structured learning (SL).

Methods | ZFNet ZFNet (with SL) | GoogleNet  GoogleNet (with SL) | ResNet101  ResNet-101 (with SL)
Ave. FROC | 0.6938 0.7354 | 0.7026 0.7543 | 07125 0.7658

4.5  Summary

For many MIA applications, prior structural knowledge about a specific task is
also extremely important for obtaining more accurate results. Apart from propos-
ing a general structured learning framework for MIA, we enforce the prior structural
knowledge in loss functions to regularize the training of the deep structured learning
framework in this chapter. We extensively evaluate the proposed structured learn-
ing approach with two MIA tasks: cardiac MRI recognizing and cancer metastasis
detection in WSIs. The superior performance demonstrates the effectiveness of the

proposed method.



CHAPTER 5: MODELING TREE STRUCTURES WITH TREE-STRUCTURED
CONVOLUTIONAL GRU

In chapter 3, we demonstrated two use cases of the proposed deep structured learn-
ing framework: cardiac MRI recognizing and cancer metastasis detection in WSIs.
In this chapter, we consider a more challenging structured learning problem: tree-

structured learning and its application in coronary artery segmentation.
5.1  Motivation

Over the past two decades, coronary artery segmentation has drawn greater and
greater attention because it not only greatly facilitates the reviewing process but also
provides quantitative function analysis [108]. Unfortunately, the segmentation proce-
dure still heavily relies on semi-automatic approaches, which are still time-consuming
and error-prone. This is because fully-automatic approaches cannot produce suffi-
ciently accurate results, as the coronary arteries exhibit extremely complex struc-
tures. Therefore, it is essential to accurately as well as efficiently segment coronary
arteries.

Currently, it is a standard procedure to evaluate coronary artery diseases with
computed tomography angiography (CTA) as it provides high-resolution 3D imaging
with non-invasiveness. The focus of this chapter is accurate segmentation of the
coronary artery in 3D coronary computed tomography angiography (CCTA) volumes,
as illustrated in Fig. 5.1. Multiple reasons account for the difficulty of coronary
artery segmentation. First, the boundaries between the artery and background are
often highly fuzzy, as is shown in Fig. 5.1 (a). Second, the tubular structure of the

coronary artery is extremely complex: the cross-section area changes gradually along
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the artery and there exist a large number of bifurcations (see Fig. 5.1 (b)). Third,
the appearance and geometry of the coronary artery may vary considerably from
one patient to another. Plus, the buildup of the plaque or calcification (extremely
high-intensity regions in Fig. 5.1 (c)) inside the coronary artery wall may further
cause the variability from one patient to another [108]. Finally, the image acquisition
process may further introduce inherent image noise and artifacts [109], making the

segmentation even more challenging.

(b)

(©)

3D CCTA volume Coronary artery segmentation

Figure 5.1: From left to right: a 3D CCTA volume, the corresponding coronary artery
segmentation, and three longitudinal views of the coronary artery. The coronary
artery segmentation is denoted in red.

A substantial body of research has been devoted to the segmentation of the coro-
nary arteries. Most of them [110, 111] are only based on domain knowledge about the
voxel intensity distributions, which suffer from multiple issues, e.g., holes and noisy
contours. Additionally, they often fail to build a global tree structure as they only
rely on local intensity information. To address this issue, geometry and topology
prior have been employed to generate more anatomically reasonable segmentation
result [112]. Nevertheless, introducing these priors requires domain-specific exper-
tise. Recently, deep learning has been introduced to the segmentation of tree-like ob-
jects [113, 114, 115]. Compared with traditional methods for MIA [116, 117, 118, 119],
deep learning-based approaches achieve better performance and at the same time ob-

viate hand-crafting features, as the hierarchical neural networks automatically learn
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the most discriminative features for the coronary artery purely from the training data.
However, these methods either ignore the underlying anatomical structure in the coro-
nary artery [113] or simply use traditional methods to post-process the segmentation
results [114], which requires domain-specific knowledge and extensive tuning.

Inspired by the proposed deep structured learning framework in chapter 3, we
propose to explicitly model the anatomical structure of the coronary artery with a
unified network. It consists of a fully convolutional network (FCN) model to extract
discriminative features from CCTA dataset and a tree-structured ConvGRU layer to
model the anatomical structure of the coronary arteries. We summarize the essential

contributions as follows:

e A novel convolutional recurrent neural network (ConvRNN) layer, tree-structured
convolutional gated recurrent unit (ConvGRU), is proposed to explicitly model

the topological structure of the coronary artery.

e Accordingly, an end-to-end deep learning-based framework, consisting of a tree-
structured ConvGRU layer and an FCN, is presented to accurately segment

coronary arteries from 3D CCTA data.

e Four large-scale CCTA datasets are employed to extensively evaluate the perfor-
mance of the proposed framework. The results demonstrate that the proposed

framework outperforms other baseline methods.

5.2 Methodology
5.2.1  Convolutional RNN Models

Vessels with tubular structures and bifurcations gradually change geometry and
elongation from proximal to the distal end. In this chapter, we strive to use deep learn-
ing to model this special anatomical structure. Recurrent neural networks (RNNs)

are great candidates for modeling long-term dependence [36, 32]. Until now, most of



49
the past studies have used long short-term memory (LSTM) to deal with the noto-
rious issue of vanishing or exploding gradients [120], which is a significant problem
when training the vanilla RNN models. By incorporating several sophisticated gating
functions, LSTM alleviates this issue. Nevertheless, the input-to-state and state-
to-state changes are based on fully-connected layers in LSTM, which neglects local
spatial correlations in input data. It is therefore not appropriate for the analysis of
image sequences. The recently proposed convolutional LSTM (ConvLSTM) replaces
the vector multiplication in LSTM with convolutional operations by preserving the
spatial topology of the input while introducing sparsity and locality to the LSTM
to reduce over-parameterization and overfitting. Unfortunately, vessels with highly
branching and tubular structures are extremely complex, and ConvLSTM, which is
originally designed for image sequence analysis, cannot deal with such complicated
tree structures. While the tree-structured LSTM [121] is proposed for the analysis of
tree-structured data (specifically, natural language processing), the vector multipli-
cation used in the tree-structured LSTM unit is not appropriate for image analysis.
In contrast, our tree-structured ConvGRU design addresses both issues, i.e., a lack of
consideration of complex tree structures and the local spatial correlation in the input
data.

The input-to-state as well as the state-to-state transitions are conducted by vector
multiplications in the standard LSTM. It ignores the local spatial correlations in
the input by vectorizing the input feature map. Therefore, it is not suitable for
image sequence analysis. To address this issue, the vector multiplications are replaced
by convolutions in ConvLSTM [11], to maintain the local correlations in the image

sequence data. It defines a new mechanism to update the input-to-state as well as



Conv LSTM

Tree-structured ConvGRU

Figure 5.2: From left to right: sequential ConvLSTM [11] and the proposed tree-
structured ConvGRU. In ConvLLSTM, the information, including the input X}, previ-
ous hidden state H;_1, and previous memory C;_1, is passed sequentially (from t—1 to
t and then to t+1). As with tree-structured ConvGRU, there is no memory cell. The
information is passed from all the children nodes to the parent node. For instance,
node j in this figure incorporates the information (hidden state H;, and #,;, from
both its children /; and Iy and the current input X;) to produce the current hidden
state ;. Node k incorporates the information (hidden state H; from its child j and
its input X}) to produce the current hidden state Hj;. Note that although we only
show one or two child nodes for the tree-structured ConvGRU model, it is capable of
handling more than two child nodes.

state-to-state transition:

i =0 (Wix X, + U+ Hy 1) (5.1)
fi=oWrx X, +UpxHq), (5.2)
op=0Wox X+ U, x Hi_1), (5.3)
M, = tanh (W,,, * X, + U, * Hy_1), (5.4)
Ci=fi®Cio1 +it © My, (5.5)
H; = oy © tanh(C;), (5.6)

where x indicates convolution, X; is the current input image at time step ¢. The

memory cell and hidden state are denoted by C; and H;, respectively.
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5.2.2  Tree-structured ConvGRU

Sequential ConvRNNs [122] can not handle tree-structured data. For this reason,
we propose a novel tree-structured ConvRNN network for extracting tree-structured
anatomical information, in which the parent node selectively aggregates features from
all its child nodes. Desirably, this tree-structured ConvRNN model is capable of au-
tomatically learning to emphasize important information in the data. For instance,
it is desirable to emphasize the geometry and direction of the main artery when there
exists a much thinner artery merging with the main branch artery. In this chapter,
we mainly focus on the extension of GRU, considering its lower computational re-
quirement [123] than LSTM. Also, the experimental results demonstrate its superior
performance than the LSTM extension on our datasets. Unlike LSTM, there is no
memory cell or forget gate in GRU. Rather, for each node j in the tree, the memory
cell is integrated into the hidden state H; and the reset gate r; controls the updating
of the previous memory. As one unit may have multiple child nodes, we use a distinct
rest gate 7, for each child node to remove unimportant past information from each

individual child node’s memory. The whole procedure is detailed as follows:

W= M, (5.7)

ke

uj = o(W, x X; + U, x ), (5.8)

rik = o(W, x X; + U, * Hy,), (5.9)

H,; :tanh(z rik © U x Hy + W x X)), (5.10)
keN;

Hi=(1—u;) ©H;+u; ©H, (5.11)

where W, U,, W,., U., W, and U are the learnable parameters.
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5.2.3  Artery Centerline Extraction

First, we extract the coronary artery centerline from the CCTA data, which cap-
tures the anatomical structure of the coronary artery. We use our earlier published
approach [124] for centerline extraction. It is a deep learning-based method, which
is able to produce accurate (the error is within a single voxel) centerlines. The brief

pipeline is summarized here. We refer the readers to [124] for more details.

e We pre-segmented coronary arteries with 3D U-Net [39]. The anatomical struc-
ture is captured by pre-segmentation. Nevertheless, there exists a lot of erro-
neous predictions (see Fig. 5.5 for more details). As the proposed tree-structured
segmentation framework is comparatively resistant to imperfect segmentation,

precise pre-segmentation is not needed.

e The endpoints and distance map of the centerline are simultaneously predicted

by a trained multi-task FCN network.

e The ultimate artery centerline is generated by minimal path algorithm. The
generated centerline can be defined by a tree structure G = (V, £), where the
nodes (representing the centerline points) and adjacency matrix (representing

connections among the centerline points) are denoted by V and &, respectively.

5.2.4  Tree-structured Segmentation Network Architecture

In this chapter, the coronary artery segmentation is formulated as a tree-structured
segmentation problem, in which the training set is a collection of coronary artery
trees and the predictions are also organized as a tree structure. The input tree is
produced as follows. For each node j in the artery tree G, a cross-sectional view
is cropped from the CCTA volume in the centerline’s perpendicular direction. We
further normalize this small patch with the aorta intensity and calcification threshold

respectively to highlight both of these important regions. Finally, the normalized
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Figure 5.3: An overview of the proposed tree-structured segmentation network. The
input of the system is a input tree V), i.e., images organized as a tree structure. The
output P is also organized as a tree structure. The tree-structured segmentation
network consists of two components: an FCN backbone with an encoder ¢ for dis-
criminative feature learning and a decoder ¢ for prediction, and a tree-structured
ConvGRU layer 1 for anatomical structure modeling. The FCN backbone and tree-
structured ConvGRU layer are shared by all tree nodes. The detailed information is
illustrated in Fig. 5.4.

patches are concatenated with the original patch. The result is a three-channel im-
age x; associated with node j. Formally, the goal is to learn a non-linear function,
(Hi, ..., Hy) = ow(xq,...,X7), to map the tree-structured input to the tree-structured
output, where J and W represent the number of nodes in the tree and the parameters
to be learned.

Fig. 5.3 presents an overview of the proposed tree-structured segmentation frame-
work. In our network, we model the structured information in a unified neural net-
work, which can be trained end-to-end. It has three modules: an encoder, a tree-
structured ConvGRU, and a decoder. This architecture is motivated by the proposed
deep structured learning framework in chapter 3. The encoder corresponds the deep
feature extractor. The tree-structured ConvGRU and decoder correspond to the
structural feature learner. Specifically, the encoder ¢ extracts discriminative features
from the input data, yielding a multi-scale representation & for each node j. The
tree-structured ConvGRU module ¢ models the anatomical structure of the coronary
artery, generating a feature map H;, encoding the newly-extracted anatomically re-

lated features. Based on the feature map generated by the encoder and tree-structured
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ConvGRU, the decoder ¢ generates the final prediction P;.
5.2.5  Discriminative Feature Learning & Tree-structured Output Generation

Fig. 5.4 illustrates the backbone network for feature extraction and final prediction.
It’s based on the U-Net [38] architecture. The encoder ¢ and decoder ¢ divide the
whole segmentation procedure into three separate stages: discriminative feature learn-
ing, anatomical structure modeling, and tree-structured output generation. During
the discriminative feature learning stage, the image x; associated with each node j is
fed into the encoder, which includes several 3 x 3 convolutional layers (each is followed
by a ReLU layer). Two 2 x 2 layers are also used to downsample the feature map.
The encoder is able to extract discriminative features from the input X; = ¢(x;).
After the anatomical structure modeling stage, a hidden state H; is generated by the
tree-structured ConvGRU layer (will be detailed in Sec. 5.2.6), the decoder progres-
sively rescale the feature maps to the original dimension using deconvolution and at
the same time incorporate the information passed from the encoder, yielding the final
prediction P; = p(X;, H;) (see Eq. (17) to (21) for more details). The details of the

encoder and decoder are shown in Fig. 5.4.
5.2.6  Anatomical Structure Modeling

The introduction of the tree-structured ConvGRU 4 is motivated by the fact that
there exist inherent anatomical structures in the coronary artery tree. For instance,
tubular artery gradually changes from the proximal to the distal end, with the elonga-
tion and radius changes smoothly from node to node. Using tree-structured ConvGRU
in our system brings two benefits. First, by feeding the features extracted by the en-
coder to the tree-structured ConvGRU, the context information is propagated among
the tree nodes. As a result, the final encoder makes prediction not solely based by
the features of one node but considering the topological changes along the coronary

artery tree. Second, as mentioned in section 5.2.2, there may exist multiple branches



55

Upsampling, 2 /
Upsampling, 2 /

gTree ConvGRU, 1%

Decoder

Figure 5.4: Details of the proposed tree-structured segmentation network. Both the
encoder and decoder consist of multiple convolutional layers (each is followed by a
ReLU layer, which is ignored for simplicity). For the input image x; associated with
node 7, it is passed into several convolutional layers and progressively downsampled
by the pooling layers in the encoder, generating the feature map &;. The tree-
structured ConvGRU layer takes input & and produces the hidden state H;. In the
decoder, H; from the tree-structured ConvGRU layer is progressively upsampled to
the original dimension and at the same time incorporates the information passed from
the encoder, yielding the final prediction P;.

at each tree node. In these special locations, our system is capable of modeling these
transitions. The tree-structured ConvGRU layer takes input X; and produces the
hidden state H; = ¢(X}).

5.2.7  Loss Function

The forward pass of the proposed tree-structured segmentation network for one
input tree is illustrated in Algorithm 3. The proposed tree-structured segmentation
forms a differentiable system, which can be trained end-to-end. Dice loss is applied

node-wise and the final loss is the average dice loss, as defined as follows:

J
1 2|P; NG|
LP,G) ==Y —L T 5.12
9= 52+, 12
7=1
where the output tree and all the ground truth segmentation are represented by

P = (P1,....,Py) and G = (G, ...,G), respectively. P; and G; are the prediction and

ground truth for node j, respectively.
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Algorithm 3 The forward pass of the proposed tree-structured segmentation network
for one input tree.

Input: G = input tree (V,€)
Input: ¢ = encoder
Input: ¢ = tree-structured ConvGRU layer
Input: ¢ = decoder
P+—o
for j in [1, num_nodes| do
sample the input image x; associated with node j € V
extract features from x; with &; < ¢(x;)
generate the hidden state using H; < (X))
produce the final prediction using P; < p(X;, H,;)
Pljl < P;
end for
return P

5.3  Experiments
5.3.1  Dataset, Evaluation Metrics, and Implementation Details

We collected four large datasets (916 CT scans in total) from four hospitals. These
collaborating hospitals are selected from different areas to represent the diversity
of healthcare settings. 80%, 5%, and 15% scans were used for training, validation,
and testing, respectively. The data splitting was carried out on the patient level.
The ground truth was obtained by a semi-automatic approach. First, a vesselness
based approach combined with the dynamic programming algorithm was used to
obtain an initial entire coronary artery. Then, the generated masks were refined
by two medical image analysts, respectively. Finally, the better one was chosen as
the ground truth by a more experienced expert. To the best of our knowledge, this
dataset is largest available for evaluating coronary artery segmentation algorithms.
These datasets are dubbed CTA1, CTA2, CTA3, and CTA4 in this chapter and they
include 516, 546, 446, 324 scans, respectively. The details of these datasets are shown

in Table 5.1. To measure the performance of the segmentation methods, we use the
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average dice score of all the tree nodes. All the methods were trained and evaluated
on a workstation equipped with a Tesla P40 GPU. To train the neural networks,
the Adam optimizer [125] was used. The initial learning rate, weight decay, and
momentum are 0.001, 0.0005, and 0.9, respectively. Additionally, early-stopping was

used to combat over-fitting.

Table 5.1: Detailed information of our datasets (CTA1, CTA2, CTA3, and CTA4).
Apart from providing the number of training scans in each dataset, the average num-
ber of tree nodes and branches are also given.

Dataset Number of of scans Number of Nodes Number of Branches

CTA1 258 727 12.6
CTA2 273 806 11.1
CTA3 223 802 13.2
CTA4 162 694 12.9
Total 916 774 124

5.3.2  Main Results

First, the proposed approach is compared with a recently-introduced 3D object
segmentation framework, 3D volumetric convnet (DenseVox) [4]. For DenseVox, a
41 x 41 x 41 subvolume around each tree node is fed into the a DenseVox network.
Unlike our approach, DenseVox doesn’t consider long-range inter-node dependencies
in the artery tree or the tree structure underlying in the artery tree. According to
Table 5.2, the proposed tree-structured ConvGRU based segmentation framework
(TreeConvGRU) consistently surpasses DenseVox (1.24%, 0.98%, 1.12% and 1.01%,
and 1.01% on CTA1, CTA2, CTA3, and CTAA4 respectively), indicating the essential
role of modeling the long-range inter-node dependency and tree-structure in coronary
artery segmentation.

Next, TreeConvGRU is compared with its sequential version, sequential ConvGRU
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Figure 5.5: Qualitative coronary artery segmentation result of 3D U-Net, 3D U-Net
with post-processing, and the proposed method. From left right shows: the input 3D
CCTA volumes, segmentation results of 3D U-Net based method [12], segmentation
results of 3D U-Net with post-processing, segmentation results of the proposed tree-
structured segmentation network, and the ground truth.

(ConvGRU). Compared with TreeConvGRU, the tree structures are ignored by Con-
vGRU and the segmentation results are generated independently for each path in the
tree. The results once again suggest the superiority of the proposed method over
sequential models in modeling the inter-node dependency in tree structures: the av-
erage dice score of TreeConvGRU is better than ConvGRU by 0.95%, 0.76%, 1.09%,
and 0.46% on CTA1, CTA2, CTA3, and CTA4, respectively. Additionally, to test
the scalability of the proposed method, we evaluate the performance of the above
methods on the aggregated dataset of CTA1, CTA2, CTA3, and CTA4, which are
named Total. As is shown in Table 5.2, TreeConvGRU still consistently overperform
ConvGRU and DenseVox (0.69% and 1.65%, respectively). We also provide some
qualitative coronary artery segmentation results of our approach in Fig. 5.5.We com-

pare the qualitative results of our network with a 3D U-Net based network [12], i.e.,
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Table 5.2: Main comparison results. The proposed tree-structured segmentation net-
work (TreeConvGRU) is compared with the recently proposed 3D densely-connected
volumetric convnets (DenseVox) [4], sequential version of our tree-structured segmen-
tation network (ConvGRU). All these methods are evaluated by the average dice
loss.

Methods  DenseVox [4]  ConvGRU  TreeConvGRU

CTA1 0.8370 0.8399 0.8494
CTA2 0.8405 0.8427 0.8503
CTA3 0.8433 0.8436 0.8545
CTA4 0.8182 0.8237 0.8283
Total 0.8518 0.8614 0.8683

the pre-segmentation of the coronary artery. As the segmentation is applied on every
single voxel of the CCTA volume, the network is extremely sensitive to local pertur-
bations. Therefore, the results suffer from a significant amount of false positives and
false negatives. Even after post-processing (erosion, dilation, and connected compo-
nent analysis), the false predictions on the coronary artery cannot be corrected. On
the contrary, our network efficiently leverage the anatomical structure of coronary
artery to guide its segmentation, generating a much more accurate segmentation re-
sult.

Lastly, we also compare our method with another tree-structured extension of
ConvRNN model, tree-structured ConvLSTM (TreeConvLSTM). This approach is
different from our approach by substituting the GRU operations with LSTM. This
change slightly decreases (0.14% in average on all datasets) the performance of our
framework. This result matches the findings in [123] regarding the comparison of
non-convolution versions of LSTM and GRU. In this chapter, the information prop-
agation is conducted from the root to the leaf nodes. It’s possible to extend the
proposed method to conduct the propagation in both directions with the technique

in [126], i.e., from tree leaves to the root as well as from the root to leaves. However,
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the overall performance degraded by 0.04%. Here is one possible explanation for this
performance degradation: the anatomical structure can be sufficiently modeled by the
one-directional tree-structured ConvGRU, without needing to resort to more complex
RNN models. In contrast, a more complex system may render the learning process

even harder.
5.3.3  Comparisons on Bifurcation Nodes

Intuitively, it’s much more challenging for the segmentation framework to gen-
erate good prediction at bifurcation nodes, compared with non-bifurcation nodes.
This is because the dynamics around these nodes are much more complex. We con-
ducted an extra experiment on Total to verify this hypothesis. In this experiment, we
only evaluate the performance of the segmentation approaches on the nodes within 4
nodes’ distance from bifurcation nodes. According to Table 5.3, our method consis-
tently exceeds DenseVox and ConvGRU (7.31% and 3.14%, respectively). The results
demonstrate the importance of introducing the tree structure. DenseVox ignores the
inter-node dependencies in the artery tree while ConvGRU only considers the depen-
dencies along each vessel path. The proposed TreeConvGRU fully utilizes the tree

structures, thus yielding the best performance at the bifurcation location.

Table 5.3: Comparison of the segmentation accuracy around the bifurcation nodes
(within 4 nodes’ distance) on the testing set of the aggregated dataset (Total). The
compared methods are: DenseVox [4], ConvGRU, and TreeConvGRU.

Methods DenseVox ConvGRU TreeConvGRU
Average Dice  0.7806 0.8223 0.8537

5.4  Summary

Extensive studies of coronary artery segmentation have been spurred by the arising

concerns regarding cardiovascular diseases. However, owing to the complex nature
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of its anatomical structure, local image perturbations, and appearance or geometry
variability, it is still challenging to apply fully automatic algorithms in clinical prac-
tices. Inspired by the proposed deep structured learning framework in chapter 3, we
use the anatomical information of the coronary artery tree to guide its segmentation.
In this way, our network only needs to focus on the local artery segmentation. The
reconstructed tree is a collection of nodes, with each of them highly dependent on
others. Therefore, we propose tree-structured ConvGRU models to model the inter-
node dependency. Accordingly, a tree-structured segmentation network is presented.
Augmented with the tree-structured formulation to explicitly model the tree struc-
ture, our framework is able to achieve the state-of-the-art performance on four CCTA
datasets, demonstrating the effectiveness of the proposed method in the segmentation

of complex tree-structured objects.



CHAPTER 6: ANATOMICAL STRUCTURE TRACING WITH DEEP
REINFORCEMENT LEARNING

6.1  Motivation

From chapter 3 to 5, we discussed the proposed deep structured learning framework
in detail and extensively validated it on several MIA applications. In this chapter, we
discuss a special structured learning problem in MIA, anatomical structure tracing.
Accurate tracing anatomical structures is crucial for a lot of applications in MIA [56].
Although other preprocessing steps such as segmentation and detection are also com-
monly used in MIA, anatomical structure tracing provides other key structural infor-
mation, which is vital for a lot of MIA applications. Anatomical structure tracing is
especially useful when medical images lack structural visibility due to occlusion and
lack of contrast. Take the diagnosis of coronary artery diseases as an example. A
common first step is to build an anatomical structure for the coronary artery, as is
illustrated in Fig. 1.3. This greatly facilitates the subsequent analyzing steps such as
plaque identification and stenosis detection [57].

A tremendous amount of efforts [57, 58, 59| have been devoted to this line of
research. We briefly divide them into three categories. The first category [127, 128§]
involves computing a minimal cost path between the starting and ending points.
This approach results in a high overlap between the prediction and the ground truth
structures, but at the cost of potentially suffering from shortcuts [57]. Methods in the
second category use an object segmentation [129] or localization [130] to guide the
tracing procedure. However, a thorough analysis of the medical images is required,
which is extremely time-consuming. The third category consists of approaches that

iteratively delineate the anatomical structure [131]. These methods usually have lower
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computational overhead. However, they typically suffer from gaps and discontinuities
in the results.

In this chapter, we provide an additional perspective on this problem. Specifically,
we formulate this task as a sequential decision-making problem and approach it with
deep reinforcement learning (DRL), i.e., actor-critic network, a sophisticated DRL
framework. Integrating deep learning into reinforcement learning (RL) has been ex-
tremely popular since the successful adoption of reinforcement learning (RL) in the
past few years [132], including biomedical imaging [133, 134, 135, 136]. It combines
the power of feature learning in deep learning and a more sophisticated objective
function in sequential decision making. For instance, DRL has been used to detect
landmarks in [133, 134, 137, 138|, which requires finding a specific structure in an im-
age. It has also been used for image registration [135, 136] and view planning [139],
which requires the agent to align two images and locate optimal 2D views in 3D im-
ages respectively. Defining an effective reward function is essential for the training of
the agent. We show that we are able to effectively train an axon tracing agent which
achieves promising results with a carefully designed reward function and a refined
training procedure. Instead of using the average integral intensity [140], we show
that axon tracing accuracy can be significantly boosted by carefully designing the

reward function.
6.2  Methodology
6.2.1 Overview

We now take axon tracing as an example to illustrate how to use DRL to trace
anatomical structures in medical images. In this section, we first introduce the math-
ematical formulation of the axon tracing problem in section 6.2.2. Then, we discuss
the essential elements of our DRL system. More specifically, we first discuss the
environment and actor in section 6.2.3. Finally, we introduce the reward function

used in the axon tracing example and demonstrate how to train the DRL system in
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section 6.2.4.
6.2.2  Mathematical Formulation

Given a 2D image of axon image I and the ground truth axon centerline points
G = (90,91, ---, gn), the aim is to train a agent that traces the axon in the image. This
is a sequential decision-making problem. In this chapter, we use actor-critic algorithm
to solve this problem. Specifically, the agent interacts with the environment over a
period of time. At each timestep t, the agent receives a state s, from the environment
and selects an action a; based on a policy 7. Accordingly, a scalar reward r; is issued
by the environment to measure the accuracy of the action a;. The goal is to minimize

the total accumulated return R; = EZOZOVkka-

Figure 6.1: The environment of the axon tracing problem. The squares denote the
positions of the actor at different timesteps. The actor begins at the start position py.
p; denotes the position of the actor’s state at timestep t. The red and purple squares
denote two possible terminal states. The red one means that the axon is successfully
traced and the purple denotes that the actor fails to trace the full axon.

6.2.3  Environment, State Space, and Actor

Environment: As is illustrated in Fig. 6.1, the environment in the axon tracing
problem is a 2D greyscale image, as is discussed detailedly in section 6.3.1. Following

Dai et al. [140|, we choose the episode length as 200. It means that the episode
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is terminated after at most 200 timesteps. The squares denote the positions of the
actor at different timesteps. The actor begins at the start position py. p; denotes the
position of the actor’s state at timestep ¢. The red and purple squares denote two
possible terminal states. The red means that the axon is successfully traced and the
purple one denotes that the actor fails to trace the full axon. During the training
stage, after each terminal state, the environment is reset and a new axon image is

generated to train the DRL network.

8

Figure 6.2: The state space in the axon tracing problem. At each timestep t, a three-
channel image is generated from the image for both the actor and critic networks.
Specifically, a actor-centric view of size 11 x 11 pixels (green square in the left) is
extracted from the original image. Afterward, a larger view of size 21 x 21 pixels
(yellow square in the left) is extracted and downsampled to 11 x 11 pixels. This
technique is used to aid the actor to consider the scale variance. At the same time,
the historical path containing all the previous positions of the actor is recorded in a
separate image (right). From this image, a 11x 11 pixels (red square) is extracted from
this image. These three images are concatenated together to form a three-channel
state s;.

State Space: The state space in the axon tracing problem is illustrated in Fig. 6.2.
At each timestep t, a three-channel image is generated from the image for both the
actor and critic networks. Specifically, an actor-centric view of size 11 x 11 pixels
(green square in the left) is extracted from the original image. Afterward, a larger

view of size 21 x 21 pixels (yellow square in the left) is extracted and downsampled to
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11 x 11 pixels. This technique is used to aid the actor to consider the scale variance.
At the same time, the historical path containing all the previous positions of the actor
is recorded in a separate image (right). From this image, a 11 x 11 pixels (red square)
is extracted from this image. These three images are concatenated together to form
a three-channel state s;.

Policy and Critic Networks: In the actor-critic algorithms, the policy and
value function are modeled by two separate neural networks. In the axon tracing
task, the policy network estimates the actor’s movement at each timestep t. In our
case, the actor can move to one of its neighbors in the 8-neighbors setting. Thus, our
policy network outputs a distribution over the 8 possible positions with the last fully-
connected layer. Additionally, the policy network consists of two convolutional layers
with kernel size 5 x 5 before the fully-connected layer for feature extraction. The
critic network is used as a strong signal to guide the training of the policy network.
The critic network is also composed of two convolutional layers with kernel size 5 x 5.

Its final fully-connected layer generates a scalar value for each state s;.
6.2.4  Reward Function & Training

Reward function: As is illustrated in Fig. 6.3, we consider two scenarios when
calculating the reward: the actor is close or too far away from the axon. If the actor
is too far away from the axon (left of Fig. 6.3), we want to pull the actor back to the
ground truth centerline G. In this scenario, if the axon further moves away from the
axon, it receives a negative reward. Otherwise, it receives a positive reward. If the
actor is close to the axon (right of Fig. 6.3), the reward is simple: it’s the distance

the actor moves along the axon. In summary, the reward function is as follows:

d(g7pt) - d(g7pt+l)7 lf d(gapt) > T
r = (6.1)

d(G,pi) —d(G,pi1) + € - (pee1 — pi), otherwise
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-
Pt+1 — Pt

Figure 6.3: Illustration of two scenarios of reward function calculation. Left: when
the actor is too far away from the axon, the goal is to pull the actor back to the axon.
Right: when the actor is close the axon, the reward is simple.

where d(G, p;) represents the distance between p, and its closest point in G. T is a
predefined threshold, which is empirically chosen as 2.

The actor-critic learning algorithm combines both the power of policy gradient and
value function [64|. More specifically, the policy network learns to take the optimal
action for each state. While solely using policy gradient optimization can result in
high variance, the learned value function is leveraged to reduce the variance [141].
In summary, the actor-critic training procedure is illustrated in Fig. 6.4. At each
timestep ¢, a state s; is sampled from the environment, which is fed into both the
policy and value function networks. The policy network estimates the probability of
each action based on state s;. The value function, on the other hand, estimates the
value function of the state s; regarding each action a;. After selecting action a;, the
next state s,y is sampled. The above procedure is repeated until the end of each
episode. The detailed training procedure is also shown in Algorithm 4. The actor and
value function networks are both modeled by CNNs. This allows them to directly

extract features and make inference from images.
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Figure 6.4: Illustration of the procedure of actor-critic learning algorithm. At each
timestep t, a state s; is sampled from the environment, which is fed into both the
policy and value function networks. The policy network estimates the probability of
each action based on state s;. The value function, on the other hand, estimates the
value function of the state s; regarding each action a;. After selecting action a;, the
next state s;yq is sampled. The above procedure is repeated until the end of each
episode.

Algorithm 4 The actor-critic training algorithm for axon tracing.

Input: 7wy = policy network with parameter 6
Input: V, = value function network with parameter ¢
initialize both 7y and V,
while not converged
for ¢ in [1, batch _size] do
reset the environment
for t in [1, episode length] do
sample action a; = my(s;)
implement a; and sample the next state s;,; and the reward ry
store the transition (s, S¢y1,7¢)
end for
end for
update 7y according to equation 6.1
update V,,
end while
return my

6.3  Experiments
6.3.1 Datasets & Evaluation Metrics

Our algorithm is evaluated on a synthetic axon dataset, which is similar to [140].

More specifically, all the evaluated networks are trained on a training set with 32,000
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Figure 6.5: Three axon tracing results. The leftmost shows the axon images. Column
2 to column 6 show the agent’s positions (denoted by green squares) during the tracing
procedure. Red circles indicate the ending points in the axon images.

axon images and tested on a testing set with 1,000 axon images. Each of these
images are generated as follows. First, a starting point is randomly selected from the
border of the axon image. Afterward, a series of points are selected following the
starting point until touching the image border. In order to make the generated axons
more realistic, we fit a polynomial spline for these points and randomly added some
Gaussian noises to the image. The first column of Fig. 6.5 shows some examples of the
generated axon images. The tracing results are evaluated according to the distance
between the ground truth axon centerlines and the predictions, which is defined as

follows:

I~ .
D(gﬂ)):;z;}’ggHQi—PH (6.2)
i=1

Intuitively, the above equation defines the mean distance one has to travel from

each point of the ground truth centerline G to its closest point in the prediction P.
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6.3.2  Results

To train the policy network, we randomly select an axon image from the training
set and start tracing from the starting point (see section 6.3.1) and train the policy
and value function networks according to Algorithm 4. During the testing stage,
we also start from the selected starting points and set the initial state of the policy
network. We terminate the tracing procedure if the agent reaches the boundary of
the axon image or the agent stops moving.

The quantitative results are provided in Table 6.1. Our results significantly out-
perform the baselin [140]|, demonstrating the effectiveness of the proposed reward
function. We also provide some qualitative tracing results in Fig. 6.5. The leftmost
shows the axon images. Column 2 to column 6 show the agent’s positions (denoted by
green squares) during the tracing procedure. Red circles indicate the ending points
in the axon images. Obviously, our method significantly outperforms the baseline
approach [121]. This is because our method offers more stability with the new reward

function: the agent can be pulled back to the centerline if if deviates from it.

Table 6.1: Quantitative tracing result on the axon images. The results are evaluated
in terms of equation 6.2.

Methods Dai et al. [140]  Ours
D(G,P) 1.87 0.93

6.4  Summary

In this chapter, we elaborated on a special structured learning problem, i.e., anatom-
ical structure tracing. Instead of relying on previous approaches like minimal cost
path presegmentation, we propose an alternative approach using DRL. We show that
we are able to effectively train an axon tracing agent which achieves promising results

with a carefully designed reward function and a refined training procedure. Instead
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of using the average integral intensity [140], we show that axon tracing accuracy can

be significantly boosted by carefully designing the reward function.



CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTION

In this dissertation, a novel framework is proposed to tackle the structured learning
problems in MIA. More specifically, our framework comprises of two major compo-
nents: (1) deep feature extractor, which automatically extracts discriminative fea-
tures from the input image, (2) structural feature learner, which models the complex
interactions in the input/output variables. Additionally, the prior structural knowl-
edge can be enforced in loss functions to regularize the training to further improve
the performance. By employing these approaches, our method can handle structured
learning problems in a unified framework. We validated the proposed method on two
benchmarks. The superior results demonstrate its effectiveness. As our method is
general and ignorant of specific applications/datasets, we expect that it can benefit
many other structured MIA tasks. Finally, we observe that some MIA problems can
be easily formulated as a sequential decision-making problem and introduce a sophis-
ticated DRL framework to address this issue. Particularly, with a carefully designed
reward function and a refined training procedure, we are able to effectively train an
axon tracing agent to achieve promising results. There also exist several limitations
in this dissertation.

First, in the current setting, we implicitly assume that the training and testing
examples are drawn from the same distribution. However, in clinical practices, this
may not be the case. For instance, the retinal fundus images in the top and bottom
of Fig. 7.1 are acquired by different fundas cameras. As a result, the appearance of
these two datasets may vary significantly and the models trained on the first dataset
may not generalize to the second one, resulting in their poor performance. The

distribution shift between the training and testing data is formally referred to as the
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Figure 7.1: The segmentation network can be trained to consider the domain shift
problem by forcing the source and target features to lie in the same distribution with
adversarial training. Note that labels are not required for the target images.

domain shift. It would be greatly desirable for one model trained on one dataset
from one hospital to be generalizable to the datasets from other hospitals. In [142],
we have demonstrated that the segmentation network can be trained to consider the
domain shift problem by forcing the source and target features to lie in the same
distribution with adversarial training. In the future, we plan to explore using more
domain adaptation techniques [143, 144, 142] to address this problem.

Second, as hierarchically structured DNNs are extremely complex, they are usually
regarded as “black boxes” [145]. If provided with a sufficient amount of training data,
they can be trained to produce accurate enough predictions. However, in the field
of MIA, the reasoning process is also vitally important. This has led to a surge of
research in the direction of interpretability of DNNs [146, 147], including “Explainable
AT” launched by DARPA. There is also a second line of research that tries to make
DNNs more trustworthy by producing predictions as well as uncertainty estimates.
For instance, Bayesian deep learning [148, 149] integrates Bayesian inference with

deep learning to estimate uncertainty. Interestingly, in addition to generating un-
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certainty estimates, these approaches can also be used to defend against adversarial
attacks [149].

Inference

Training set New data

e [ ¥ o

Training — Model

[

. Small
&M — Training — Model Deploy

In vitro diagnostic
devices

New data

Figure 7.2: Top: In the standard machine learning pipeline, a large deep model is
trained and then deployed into a server with high-performance computing resources.
Bottom: In the MIA setting, the reasonable processing time is required to apply
CAD algorithms in the clinical setting. It is more desirable that the trained model
can be deployed into a small device without high-performance computing resources,
e.g., in vitro diagnostic devices.

Third, one challenge often encountered in MIA is dealing with very large images,
such as megabyte WSI [150] and 3D CT images. As is illustrated in Fig. 7.2, in
the standard machine learning pipeline (top), a large deep model is trained and then
deployed into a server with high-performance computing resources. However, in the
MIA setting, the reasonable processing time is required to apply CAD algorithms in
the clinical setting [151]. It is more desirable that the trained model can be deployed
into a small device without high-performance computing resources (bottom), e.g., in
vitro diagnostic devices. Therefore, reducing the processing time without losing accu-
racy is pivotal. How to maintain the prediction accuracy while at the same time make
the MIA systems significantly more efficient? We presented a preliminary framework
with two key techniques to answer this question in [33]. First, a significant amount

of speedup can be achieved by designing a compact network. Second, in order to
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maintain accuracy, a large-capacity network trained on the training set is employed
to supervise the training of the compact network. Together, these two approaches
ensure the efficiency of our network without too much loss of the performance. Re-
cently, neural architecture search [152| has become increasingly popular. It has been
widely used to search for small yet effective deep learning architectures. We expect

it to be even more popular in the upcoming years.
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