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ABSTRACT

CHANGLIN LI. Object detection in aerial image. (Under the direction of
DR.CHEN CHEN)

Object detection in high-resolution aerial images is a challenging task because of

1) the large variation in object size, and 2) non-uniform distribution of objects. A

common solution is to divide the large aerial image into small (uniform) crops and

then apply object detection on each small crop. In this paper, we investigate the image

cropping strategy to address these challenges. Specifically, we propose a Density-Map

guided object detection Network (DMNet), which is inspired from the observation

that the object density map of an image presents how objects distribute in terms of

the pixel intensity of the map. As pixel intensity varies, it is able to tell whether

a region has objects or not, which in turn provides guidance for cropping images

statistically. DMNet has three key components: a density map generation module,

an image cropping module and an object detector. DMNet generates a density map

and learns scale information based on density intensities to form cropping regions.

Extensive experiments show that DMNet achieves state-of-the-art performance on

two popular aerial image datasets, i.eVisionDrone [1] and UAVDT [2].
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Object detection is a fundamental problem in computer vision, which is critical for

surveillance applications, e.g , face detection and pedestrian detection. Deep learning

based architectures have now become the standard pipelines for general object detec-

tion (e.g , Faster RCNN [4], RetinaNet [5], SSD [6]). Although these methods achieve

good performance on natural image datasets (e.g , MS COCO dataset [7] and Pascal

VOC [8] dataset), they are not able to generate satisfactory results on specialized

images, e.g , aerial and medical images.

Due to the special view point and large field of view, aerial image has become an im-

portant source for practical applications, e.g , surveillance. Aerial images are usually

collected by drones, airplane or satellite from top view [9], therefore their visual ap-

pearance can be significantly different from natural images like ImageNet [10]. These

characteristics give rise to several special challenges for aerial image object detection:

(1) Due to variation of the photoing angle, object scale variance exists in aerial image

dataset. (2) The number of objects is highly imbalanced across different categories

in most of the cases. (3) Occlusion (between objects) and truncation (objects appear

on the boundary) are common in aerial images. (4) Small objects account for a larger

percentage compared with natural image datasets. Exploratory data analysis results

from VisionDrone 2018 training set [1] confirms the occurrence of those challenges.

Please check Fig. 1.2 for further reference.
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Uniform Cropping

Density Cropping

Figure 1.1: Visualization of density cropping vs. uniform cropping. Top row provides
an example of uniform cropping. Bottom row gives a comparable example of density
cropping. Uniform crops have more background pixels and fail to accommodate the
bounding box resolution of different categories compared with density crops. The
first column shows the input aerial image. The second column shows the proposal
regions for cropping. The third column shows the cropping results. Blue and red
rectangles indicate candidate regions for cropping.
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Early works [11, 12] on aerial image object detection simply leverage the general

object detection architecture and focus on improving the detection of small objects.

[11] introduces the upsampling module after feature extraction to increase spatial

resolution. [12] generates fine-grained feature representations to help map small ob-

jects to its larger correspondences. The improved small object detection may achieve

reasonable results on popular datasets [1, 13, 9], they are far from satisfactory for

practical applications.

To address the scale variation problem, another promising research direction is to

crop the original image into small crops/chips before applying the object detection,

such as uniform cropping [14] and random cropping.

For most of the cases, these simple cropping strategies help improve the detection

accuracy of small objects, since the resolutions of small crops become higher when

they are resized to the size of the original image. However, they are not able to

leverage the semantic information for cropping, thus resulting in a majority of crops

with only background. In addition, large objects may be cut into two or more different

crops by these strategies.

Following the idea of image cropping, how to find reasonable crops turn out to be

critical for aerial image object detection. Apparently, cropping based on the distri-

bution of objects would generate better crops than uniform or random strategy. And

how to generate the distribution of objects has been studied in a similar task [15],

crowd counting, which shares the same challenge of scale and viewpoint variation. In

dense crowd scenes, bounding box based detection may not be applicable for small

objects. Recent state-of-the-art methods leverage the power of density map for esti-

mating the distribution of people in the scene, and achieve promising performance.

This inspires us to explore the power of object density map in generating crops for

aerial image object detection.
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1.2 Methodology

In this paper, we propose a density map based aerial image detection framework –

DMNet. It utilizes object density map to indicate the presence of objects as well as

the object density within a region. The distribution of objects enables our cropping

module to generate better image crops for further object detection as shown in Fig.

1.1. For example, a proper density threshold can filter out most of the background

area and reduce the number of objects in each crop, which makes it possible to

recognize extremely small objects by upsampling the image crops.

Fig. 1.3 shows the framework of the proposed DMNet. First, we introduce a density

map generation network to generate the density map for each aerial image. Second,

we assign a window with average object scale and slide the window over the density

map without overlapping. The density map intensity indicates the probability of

object presence in one position. Therefore, at each window position, the sum of all

(density) pixel intensities within the window is computed, which can be considered

as the likelihood of objects in this window. Then, a density threshold is applied

to filter out windows with low overall intensity values. That is we assign “0" to

the window whose intensity sum value is below the threshold (i.e, the pixels in this

window all have 0 value), and “1" to the opposite. Third, we merge the candidate

windows assigned with “1" into regions via connected component to generate image

crops. Variations of pixel intensity in different regions implicitly provide the context

information (e.g , background between neighboring objects) to generate valid crops

accordingly. Finally, we use the cropped images to train the object detector.

Compared with existing approaches, DMNet has the following advantages: (1) It

offers a simple design to crop image based on the distribution of objects with the help

of object density map. (2) It is able to alleviate object truncation and preserve more

contextual information than the uniform cropping strategy. (3) Compared with [3],

which also develops a non-uniform cropping scheme, DMNet only needs to train a
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simple density generation network instead of training two sub-networks (i.ea cluster

proposal sub-network (CPNet) and a scale estimation sub-network (ScaleNet)).

1.3 Contribution

In summary, the DMNet has the following contributions.

• We are the first to introduce density map into aerial image object detection,

where density map based cropping method is proposed to utilize spatial and

context information between objects for improved detection performance.

• We propose an effective algorithm to generate image crops without the need of

training additional deep neural networks, as an alternative to [3].

• Extensive experiments suggest that the proposed method achieves the state-of-

the-art performance on representative aerial image datasets, including Vision-

Drone [1] and UAVDT [2].

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 discusses related work for

object detection. Chapter 3 presents the methodology in detail. Chapter 4 provides

experimental results on two datasets and extensive ablation studies. Finally, Chapter

5 concludes the thesis.
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CHAPTER 2: LITERATURE REVIEW

2.1 General object detection

General object detection targets primarily on natural images. Proposal-based de-

tectors introduce the concept of anchors with two stages. Fast R-CNN [16] generates

proposals using selective search and then extracts features and classifies objects ac-

cordingly based on those proposals. Faster R-CNN [4] achieves similar functionality

by introducing the region proposal network (RPN), which significantly accelerates

the inference speed. Mask R-CNN [17] extends Faster R-CNN to perform detection

and instance segmentation tasks simultaneously with innovations of ROI align layers.

On the other hand, YOLO3 [18], SSD [6] and RetinaNet [5] are examples of single

stage detectors. Single stage detectors skip proposal stage and detect directly on the

sampled feature map. They improve detection speed at the cost of accuracy drop.

Some object detection tasks may suffer from the data imbalance issue. To solve the

issue, RetinaNet [5] introduces focal loss, which is a variation of cross entropy loss. It

places more weights on hard examples than easy examples to guide detector to pay

more attention to hard-to-learn objects.

Recently, anchor-free detectors receives attention for its ability to achieve state-of-

art detection performance, while skipping the step to manually find suitable anchors

for customer dataset. Some of the examples for anchor-free detectors are CornerNet

[19] and CenterNet [20].

CornerNet [19] saves the trouble to design suitable anchors by replacing anchor de-

tection mechanism with object pairs (left-top and right-bottom). Two sub-networks

are designed to regress the coordination of those object pairs. CornerNet also Intro-

duces corner pooling to help extract feature of corner information.
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CenterNet [20] improves CornerNet by adding information of object center to de-

tector, which reduce the false positive rate of detection. Instead of use two key points,

three key points (upper-left, center and lower-bottom) are introduced to better local-

ize the objects.

Foveabox [21] introduces feature pyramid network as backbone for feature extrac-

tion purpose. It simulates “Fovea” of human eyes, where the center of vision field

shares highest visual activities. FoveaBox detects targets by their scale and divides

scale into multiple bins for different levels of feature map. Focal loss is implemented

to solve the imbalance of positive-negative samples.

2.2 Object detection in aerial images

Aerial image object detection addresses more challenges compared with general

object detection task. And many research works have been developed to address

these challenges.

• Small objects account for a higher percentage in aerial image dataset, which

requires detectors to pay more attention on small objects [1].

• The object scale varies per image, per category due to the change of camera

viewpoint.

• Data imbalance issue exists in aerial image dataset since some categories (such

as tricycle and awning-tricycle in VisionDrone [1] dataset) rarely show in real

world.

• Aerial images may have object occlusion issue during photoing.

[14] suggests that tiling helps improve detection performance of small objects. [22]

modifies yolo3 detector to make it suitable for aerial image detection. To counter

the scale variation caused by the change of viewpoint, in [23], a detection network is

proposed to increase the receptive field for high-level semantic features and to refine
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spatial information for multi-scale object detection. [3] proposes a cluster network

to crop regions of dense objects and leverages a scale network to adjust generated

shape of crops. The final detection result is fused from both cropped images and the

original image to improve overall performance. [24] pays attention to learn regions

with low scores from a detector and gains performance by better scoring those low

score regions. To solve data imbalance issue, [24] introduces IOU-sampling method

and a balanced L1 loss, which shares the similar design with [25]. Moreover, [26, 27]

discusses challenges and insights for object detection in Very High Resolution (VHR)

remote sensing imagery.

2.3 Density map estimation

Density map is commonly used in crowd counting literature. Crowd counting

requires to estimate the head counts for a given scene where a large number of crowds

present. Due to the high density of objects, general object detectors fail to detect

and count the number of crowds correctly.

In this section density map related literature will be reviewed. Since density map

can reflect the head locations and offer spatial distribution, it turns out to be a better

solution as an integral of density map can approximate head counts. Such method

provides higher accuracy and thus is widely used in counting tasks.

To improve the performance of density map based counting, [28] proposes geometry

adaptive and fixed kernels with Gaussian convolution to generate density map. [29]

further improves the quality of density map by introducing a VGG16-based dilated

convolutional neural network. [30] observes that the large difference in object scales

leads to a great variation in density map. A scale preservation and adaption network

is thus introduced to balance the pixel difference in generated density maps for robust

counting performance. [31] captures the pixel-level similarity in original images and

implements the locally linear embedding algorithm to estimate density maps while

persevering the geometry property. [32] further improves the quality of generated
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density maps by introducing a sparsity constraint which is motivated by manifold

learning.

2.4 Data imbalance in detection

Data imbalance turns out to be a general issue in object detection. And aerial

image detection also suffers from this. Many attempts have been made to mitigate

the negative effect of data imbalance in object detection.

1st solution of OpenImage 2019 [33] implements expert model to solve the issues for

data imbalance. To summarize, the dataset can be further divided into two groups,

with limited and abundant samples. So we can train two detectors to detect different

categories and merge them together. As the samples in each categories are not so

imbalanced, detectors can learn better and thus are able to generalize well.

Copy-paste argumentation [34] solves data imbalance issues by directly copy objects

of minor classes to new images and thus upsamples the amount of bounding boxes of

minor classes. The edges of copied objects are smoothed with filters to ensure that

share edges will not interrupt training process.

Yolov4 [35] introduces mosaic argumentation, which can be treated as a variation

of copy-paste argumentation. Mosaic argumentation generates new training data

by utilizing available images and bounding boxes, based on contextual information.

It not only can upsample bounding boxes of minor classes, but also can argument

background images with bounding boxes of different categories, which combines the

advantages of both image-level upsampling and bounding boxes level upsampling.

Patch level argumentation [36] borrows similar idea from copy-paste argumentation

[34] to address data imbalance issue. To summarize, random sampling is introduced

to sample bounding boxes for each category. Then those sampled bounding boxes will

be pasted to each aerial image to balance the distribution of dataset. The performance

of the proposed algorithm ranks top 3 in Visiondrone 2019 challenge [37].

RRNet [38] also attempts to copy bounding boxes to solve data imbalance issue.
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The position to paste is carefully selected to make sure the resulting images will not

conflict with real world scenario. To achieve this, pre-train segmentation model is

applied to segment out road, sky, building and etc. Then objects will be pasted

accordingly.



CHAPTER 3: DENSITY MAP GUIDED DETECTION NETWORK

3.1 Overview

As shown in Fig. 1.3, DMNet consists of three components, which are density map

generation module, image cropping module and fusion detection module. In detail,

we first train a density map generation network to predict density map for each aerial

image. Afterwards, we apply a sliding window on the generated density map to gather

the sum of pixels in terms of intensities and compare its value with a density threshold

to form a density mask. We connect the windows whose pixel intensities are above

the density threshold to generate image crops. The final detection result will be fused

based on detection from both the image crops and the original image.

3.2 Density map generation network

Density map is of great significance in the context of crowd counting. [28] proposes

the Multi-column convolutional neural network (MCNN) to learn density map for

crowd counting task. Due to the variation of head size per image, single column with

fixed receptive field may not capture enough features. Therefore three columns are

introduced to enhance feature extraction. In aerial image object detection, the general

categories can be broadly divided to three sub-categories by scale (small, medium and

large). To capture the balanced feature patterns in all scales, we adopt MCNN [28]

in our approach to generate object density map for image cropping.

The loss function for training density map generation network is based on the

pixel-wise mean square error, which is given as below:

L(Θ) =
1

2N
∗

N∑
i=1

‖D(Xi; Θ)−Di‖2. (3.1)
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where Θ is the parameters of density map generation module. N is the total number

of images in the training set. Xi is the input image and Di is the ground truth

density map for image Xi. D(Xi; Θ) stands for the generated density map by the

density generation network.

As MCNN [28] introduces two pooling layers, the output feature map will shrink

by 4× for both height and width. To preserve the original resolution, we upsample

the generated density map by 4× with cubic interpolation to restore the original

resolution. For the case where the image height or width is not the multiplier of four,

we directly resize the image to its original resolution.

For DMNet we need to ensure same resolution for both aerial image and generated

density map. As reported in [39], it is also a working solution to add the same num-

ber of upsampling layers to restore the resolution. However, only a slight difference

(approximately 0.02 in terms of mean absolute error in evaluation) is observed when

compare this method with its alternative (Namely, not add upsampling layers, which

is proposed). However, the size of feature maps is greatly increased during training,

which may cause memory issue for images with large resolution. Therefore, we do

not introduce upsampling layers in our density map generation network.

3.3 Ground truth object density map

To generate the ground truth object density maps for aerial images in the training

stage, we follow the similar idea as proposed in [28] and [29] for crowd counting,

where two methods, geometry-adaptive and geometry-fixed kernel, are developed.

Both methods follow the similar concepts.

We use Gaussian kernel (normalized to 1 in general) to blur each object annotation

to generate ground truth density maps. The key to distinguish adaptive kernel from

fixed kernel is the spread parameter σ. It is a constant value in fixed kernel but

is computed by the K-Nearest-Neighbor (KNN) method for adaptive kernel. The
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formula for geometry-adaptive kernel is defined in Eq. 3.2 [28],

F (x) =
N∑
i=1

δ(x− xi)×Gσi(x), with σi = βd̄i, (3.2)

where xi is the target of interest. Gσi(x) is the Gaussian kernel, which convolves

with δ(x− xi) to generate ground truth density map. d̄i is the average distance of K

nearest targets.

In our implementation, we prefer the fixed kernel as we consider the following

assumptions for geometry-adaptive kernel are violated. (1) The objects are neither in

single class nor evenly distributed per image, resulting in no guarantee for accurate

estimation of geometric distortion. (2) It is not reasonable to assume the object

size is related to the average distance of two neighboring objects, since objects in

aerial images are not so densely distributed as in crowd counting. Based on these

considerations, we choose geometry-fixed kernel accordingly.

3.4 Improving ground truth with class-wise kernel

In fixed kernel method, the standard deviation of Gaussian filters is constant for all

objects, regardless of the shape of the exact object. This leads to possible truncation

when cropping large objects (such as buses). One example is provided at the top-right

of Fig. 3.1.

To resolve the possible truncation issue, we propose the class-wise density map

ground truth generation method. To start, exploratory data analysis is performed

on the training set to analyze the average scale for each target category. Then we

compute σ by estimating the average scale for each object category. The statistics of

σ will be saved for further reference.

Assuming that the average height and width for a category is Hi and Wi, where i
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Fixed Kernel Class-wise Kernel

Figure 3.1: Visual comparison between fixed kernel and class-wise kernel. Left top is
the density map for fixed σ. Left bottom is its corresponding cropping results. As
can be observed, the bus is not fully covered by the light blue rectangle, which results
in truncation. To resolve this issue, we replace the fixed σ with the average scale of
bus category (right top). Then the light blue rectangle (right bottom) is able to fully
cover the bus. Light blue rectangle represents the candidate region to crop.

is the current object category, we estimate σ by applying Eq. 3.3:

σi =
1

2

√
H2
i +W 2

i . (3.3)

We record those σ values for each category and apply them to Eq. 3.2 to generate

density maps. In this case, we are able to accommodate the scale of medium and

large objects in a more suitable manner. A comparison between fixed kernel and our

proposed class-wise kernel for ground truth density map generation is provided in

Fig. 3.1.
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Threshold=0.01Threshold=0.001 Threshold=0.1

Figure 3.2: Visualization of density mask under different thresholds. As the threshold
increases, the yellow region shrinks and one large region breaks into disconnected sub-
regions. Yellow region is the candidate crop region and the light blue bounding box
indicates the full region to crop.

3.5 Density mask generation

The core of DMNet is to properly crop images from the contextual information

provided by density maps. As observed from the density mask provided in Fig. 1.1,

the regions with more objects (labeled in yellow color) have higher pixel intensities

compared with those with fewer objects. By placing a threshold within a region, we

can estimate the object counts and filter out pixels in the region with no or limited

objects accordingly.

We introduce a sliding window on a density map, where the size of the window

is the average size of the objects in the training set. We slide the window with the

step of window size (i.e, non-overlapping). Then we sum all pixel intensities in the

current window and compare the sum with the density threshold. If the sum is below

the threshold, then the pixels in this window will all have 0 value, and “1" for the

opposite case. This leads to a density mask with binary(Only 0 and 1) values. The

detailed implementation is illustrated in Algorithm 1.

The density threshold is introduced to control the noise from predicted density map.

In the meanwhile, it dynamically adjusts the number of objects finally collected per

density crop. By increasing the threshold, the boundary will be irregular and pixels

on the boundary will be more likely to be filtered out under a higher threshold.

This leads to more crops with some only have a few objects. Fig. 3.2 provides a
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visualization to graphically explain how different density thresholds may affect the

cropping boundary.

Algorithm 1 Density mask generation
Input: Aerial image Img. Density mapDen. Sliding window sizeWh,Ww. Density
threshold TH.
Output: Density mask M .
. Initialization.
Ih, Iw = Img.height, Img.width.
M = zeros (Ih, Iw)
. Generate density mask
for h in range(0, Ih,Wh) do

for w in range(0, Iw,Ww) do
S = sum (Den[h : h+Wh, w : w +Ww])
if S > TH then
M [h : h+Wh, width : width+Ww] = 1

end if
end for

end for
return M

3.6 Generating density crops from density mask

The generated density mask indicates the presence of objects. We generate image

crops based on the density mask. First, we select all the pixels whose corresponding

density mask value is “1”. Second, we merge the eight-neighbor connected pixels into a

large candidate region. Finally, we use the candidate region’s circumscribed rectangle

to crop the original image.

We filter out the crops whose resolution is below the density threshold. The reasons

are: (1) Some of the predicted density maps are not in high quality and contain noise

that spreads over the whole map given a low density threshold. Thus, it is likely

to obtain some random single windows as the single crop. Keeping such crops are

not desired. (2) The performance of detector may drop on low resolution crops as

compared with higher resolution counterparts, as crops become really blurry after

resizing to the original input size.
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3.7 Object detection on density crops

After obtaining image crops from the density map, the next step is to detect objects

and fuse results from both density crops and the whole image. Any existing modern

detectors can be of the choice. We first run separate detection on original validation

set and density crops. Then we collect the predicted bounding boxes from density

crops detection and add them back to the detection results of original images to fuse

them together. Finally, we apply non maximum suppression (NMS) to all bounding

boxes and calculate the final results. The threshold of NMS is 0.5 which follows the

setting in [3].

Note that in our fusion design, we do not remove bounding boxes from original de-

tection result. From our visualization analysis, we observe that the original detection

results contain large objects that are correctly detected. Removing those detection

will result in a drop in APlarge, which does not fully show the performance of the

detector. Thus we keep those detected bounding boxes during evaluation.
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Figure 3.3: A visual example of the final detection result. The yellow rectangles rep-
resent regions of density crops. The blue rectangles represent ground-truth bounding
boxes. The bounding boxes from both density crops and the whole images in infer-
ence stage are kept and labeled on the plot, as well as their corresponding categories.
NMS is applied after obtaining the fusion bounding boxes. Thus we do not show it
in this figure.



CHAPTER 4: EXPERIMENTS

4.1 Implementation details

Our implementation is based on the MMDetection toolbox [40]. The MCNN [28] is

selected as the baseline network for density map generation. For object detector, we

use Faster R-CNN with Feature Pyramid Network (FPN). Unless specified, we use

the default configurations for all the experiments. We use ImageNet [10] pre-trained

weights to train the detector. The density threshold is set to 0.08 in both training and

testing phases for VisionDrone dataset and 0.03 for UAVDT dataset. The minimal

threshold for filtering bounding boxes is set to 70 × 70, which follows the similar

setting in [3].

The density map generation module is trained for 80 epochs using the SGD opti-

mizer. The initial learning rate is 10−6. The momentum is 0.95 and the weight decay

is 0.0005. We only use one GPU to train the density map generation network and no

data argumentation is used.

For the object detector, we set the input size to 600 × 1,000 on both datasets.

We follow the similar setup in [3] to train and test on the datasets. The detector is

trained for 42 epochs on 2 GPUs, each with a batch size of 2. The initial learning

rate is 0.005. We decay the learning rate by the factor of 10 at 25 and 35 epochs. The

threshold for non-max suppression in fusion detection is 0.7. The maximum allowed

number for bounding boxes after fusion detection is 500. Unless specified, we use

MCNN to generate density map and Faster R-CNN with FPN to detect objects for

all the experiments.
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4.2 Datasets

To show the effectiveness of the proposed method, we evaluate the performance of

DMNet on two popular aerial image datasets, VisionDrone dataset (year of 2018) [1]

and UAVDT dataset [2].

VisionDrone. VisionDrone is a widely used dataset for aerial image detection. It

includes 10,209 aerial images in total. In detail, there are 6,471 training images, 548

validation images and 3,190 testing images. Ten categories are provided for evaluation

purpose with abundant annotations. The image scale is about 2,000 × 1,500 pixels.

Due to the fact that we have no access to the test data and the evaluation server, we

cannot evaluate our method on the test set. As an alternative solution, we use the

validation set to evaluate the performance, which is also the choice of existing works

[3, 24].

UAVDT. UAVDT has a rich amount of images (23,258 training images and 15,069

test images) for aerial image object detection. It has three categories, namely car,

truck and bus. Those (except car) all have a larger size compared with categories in

VisionDrone. The resolution for UAVDT is about 1,024 × 540 pixels.

4.3 Evaluation metric

For density map generation, pixel wise based evaluation metrics, such as mean

absolute error and mean square error, turns out to be the fair choices for general

evaluation purpose.

The equation for mean absolute error is defined in Eq. 4.1 and mean square error

is defined in Eq. 4.2

MAE =
1

N

N∑
i=1

|xi − x̂i| (4.1)

MSE =
1

N

√√√√ N∑
i=1

(xi − x̂i)2 (4.2)

Where xi is the ground truth of the pixel and x̂i is the predicted value of the
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Table 4.1: Quantitative result for UAVDT dataset.

Method Backbone #Image AP AP50 AP75 APsmall APmid APlarge

R-FCN [16] ResNet 50 15096 7.0 17.5 3.9 4.4 14.7 12.1
SSD [6] N/A 15096 9.3 21.4 6.7 7.1 17.1 12.0

RON [41] N/A 15096 5.0 15.9 1.7 2.9 12.7 11.2
FRCNN [4] VGG 15096 5.8 17.4 2.5 3.8 12.3 9.4

FRCNN [4]+FPN [42] ResNet 50 15096 11.0 23.4 8.4 8.1 20.2 26.5
ClusDet [3] ResNet 50 25427 13.7 26.5 12.5 9.1 25.1 31.2

DMNet ResNet 50 32764 14.7 24.6 16.3 9.3 26.2 35.2

corresponding pixels.

For object detection, We follow the same evaluation metric as proposed in MS

COCO [7]. Six evaluation metrics are employed, namely AP (average precision),

AP50, AP75, APsmall, APmedium and APlarge. The AP is the average precision under

multiple IoU thresholds, ranging from 0.50 to 0.95 with a step size of 0.05. Since AP

considers all thresholds, we use it as the primary metric to measure and compare the

performance between the proposed method and other competing approaches.

In the meanwhile, as the number of generated image crops will affect the inference

speed, we also record image counts in the table for a fair comparison. We denote

“#img" for the total number of images (including both original images and density

crops) we used in the validation set.

4.4 Quantitative result

In this section, we evaluate the proposed DMNet on VisionDrone and UAVDT

datasets. Table 4.2 shows the results on VisionDrone. We can see that DMNet con-

sistently outperforms ClusDet [3] by 1-2 points on three different backbone networks.

Specifically, DMNet achieves the state-of-the-art performance of 29.4 AP with the

ResNetXt101 backbone. This clearly exceeds all previous methods. Moreover, the

result of AP75 improves nearly 4 points compared with ClusDet [3], indicating the

robustness of DMNet at higher IoU thresholds. We also observe more than 2 points

improvements on APsmall under different backbones, which suggests that the proposed

density map crops significantly help the detection for small scale objects.
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Table 4.1 shows the results of different methods on UAVDT. It can be seen that

general object detectors fail to achieve a comparable result as discussed in Sec 1.

Similar to the results in VisionDrone, DMNet substantially outperforms ClusDet

and achieves the state-of-the-art performance of 14.7 AP on UAVDT. Particularly,

DMNet consistently improves the accuracy on small scale, medium scale and large

scale objects. This validates the effectiveness of our generated crops.

Inference speed. Here we report the inference speed for the proposed DMNet.

We conduct the experiment on one GTX 1080 Ti GPU per task. The inference speed

on three backbones (ResNet 50, ResNet 101 and ResNeXt 101) is 0.29 s/img, 0.36

s/img and 0.61 s/img, respectively.
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Table 4.3: Ablation study on VisionDrone Dataset.

Method AP APsmall APmid APlarge
FRCNN [4]+FPN [42] 21.4 11.7 33.9 54.7

DMNet without thresholding 22.6 11.8 37.5 58.5
Uniform cropping without fusion 24.5 19.1 31.9 22.4

DMNet without fusion 25.9 19.4 38.1 41.6
DMNet with all components 28.2 19.9 39.6 55.8

4.5 Ablation study

In this section, we design a series of ablation studies to analyze the contribution

of each component in the proposed DMNet. In all experiments, we use MCNN [28]

as the density generation backbone and Faster RCNN [4] as the detector. The input

image size is 600 × 1000.

Density threshold. The density threshold is an important factor as it controls

how to generate density crops. In this experiment, we remove thresholding by keeping

all windows whose pixel intensities are larger than 0. From Table 4.3 we can clearly

see that AP drops drastically without thresholding. From the post result analysis,

we examine the generated crops and find most of them are large and cover many

objects, which makes it difficult to generate small density crops. Since no threshold

is applied, more background pixels are reserved, which further affects the performance

of detector.

Comparison with uniform crops. As discussed in Chapter 1, aerial images

contain a majority of small scale objects. DMNet is able to effectively crop small

objects from the whole image and significantly improve APsmall as stated in Table

4.2. But one can also get small objects by uniform cropping with a very small window

size.

In this experiment, we replace our density crops with 3×4 uniform cropping, where

the size of each uniform crop is small to benefit small object detection. As shown in

Table 4.3, this method fails to beat DMNet, although it improves nearly 3 points on
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Table 4.4: Performance of DMNet with strong backbone.

Detector backbone AP
Foveabox [21] Res50 29.5
HRNet [43] Cascade R-CNN(HRNetV2p-W32) 32.3
HRNet [43] Cascade R-CNN(HRNetV2p-W40) 32.5

Libra-Rcnn [25] Res50 30.9
GCNet [44] Res101Xt 32.3

AP compared with the baseline.

The reason is that although small uniform crops are able to help small object

detection, they also increase the risk of cutting off large objects. We can see that

the APsmall is comparable with DMNet while there is a large drop in APmedium and

APlarge. This demonstrate the superiority of our DMNet since it is able to better

accommodate object scales and thus achieves better performance.

Contribution of density crop detection. Directly detecting objects on image

crops instead of the original image can give better performance as reported in [3].

However, how it contributes to the final fusion detection remains unclear. There-

fore, we additionally report performance of DMNet with only detection on image

crops (i.e, without fusing the results of detection on the original whole images). The

results are provided in Table 4.3. We can conclude that density crop detection pri-

marily contributes to APsmall and APmid as the large performance improvements have

been observed on those two categories. Meanwhile, detection on the original image

contributes more on the APlarge category, compared with density crop detection.

How much improvements can stronger detectors achieve. DMNet already

achieves state of art detection performance on aerial image dataset. However, as the

overall design is in a "plug-in manner", it is interesting to see how better will stronger

detectors bring. A series of experiments are conducted to provide insights for this

question.

As can be observed from the table 4.4, indeed the stronger model can contribute

to more performance boost. As the backbone becomes stronger or model becomes
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more sophisticated, the performance further goes up, which suggests the potential of

DMNet.



CHAPTER 5: CONCLUSION

5.1 Conclusion

In this paper, we propose the density map guided detection network (DMNet)

to address the challenges in aerial image object detection. Density map provides

spatial distribution and collects window-based pixel intensity to implicitly form the

boundary of a potential cropping region, which benefits the following image cropping

process. The proposed DMNet achieves state-of-the-art performance on two popular

aerial image detection datasets under different backbone networks. Extensive ablation

studies are conducted to analyze the contribution of each component in DMNet. Our

proposed density map based image cropping strategy provides a promising direction

to improve the detection accuracy in high resolution aerial images.

5.2 Future research direction

Although DMNet achieves great detection performance, it still has large room to

improve. And here I list some research directions for reference purpose.

• Replace Density map generation network with stronger backbone to see whether

performance boosts. Better performance should be observed as the quality of

density map greatly affects the performance of density crops, which in turn

affects the performance of detectors.

• Data imbalance issue in aerial image detection. As being discussed in [1][13], one

of the challenges is data imbalance issue in aerial image dataset. For DMNet,

it has not considered to solve this issue from algorithm level. So this should be

considered in future research.
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• Further optimization for DMNet from the perspective of network architecture.

It is highly desirable to combine density map generation and further detection

together.
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