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ABSTRACT

ZACHARY CHAPMAN. Integrating wavelet entropy and binarized statistical image
features to improve fingerprint interoperability. (Under the direction of DR.

BOJAN CUKIC)

Biometric systems are widely deployed in governmental, military and civilian ap-

plications. There are a multitude of sensors and matching algorithms available from

different vendors. This creates a competitive market for these products, which is good

for the consumers but emphasizes the importance of interoperability. Interoperability

in fingerprint recognition is the ability of a system to work with multiple fingerprint

scanning devices. Assuming that the same sensor or vendor will always be avail-

able during the lifetime of an automatic fingerprint recognition system is unrealistic.

Typical variations induced by fingerprint sensor diversity include image resolution,

scanning area, gray levels, etc. Such variations can impact (i) the quality of the

extracted features and (ii) cross-device matching performance. In order to enhance

interoperability, previous research has proposed a variety of fingerprint feature rep-

resentations as well as a classification scheme to improve match rates across devices;

however, implemented systems are not good enough to be operative. In this work,

we propose a learning-based compensation scheme based on features derived from the

discrete wavelet transform (DWT) and binarized statistical image features (BSIF) of

captured fingerprint images. In particular we are interested in DWT for its capability

to preserve spatial information of an image when performing frequency analysis while

BSIF has shown to be effective in texture recognition tasks as a local descriptor.

Experiments are carried out on a data set consisting of fingerprints obtained from

494 users acquired using four different optical devices. Results show reduced error

rates compared to the baseline as well as improved performance compared to previous

research.



iv

ACKNOWLEDGEMENTS

Thank you to my committee chair, Dr. Bojan Cukic, who has served as a mentor to

me not only as my thesis advisor, but also in my role as his teaching assistant through-

out my Master’s program. He has motivated me to complete this work, something I

never envisioned being a part of coming into the program.

I would like to also acknowledge Dr. Richard Souvenir and Dr. Min Shin whose

classes in Machine Learning and Digital Image Processing pushed me academically

and inspired me to enroll in this project. Additionally, I would like to acknowledge

Dr. Mohsen Dorodchi who encouraged me to take on a thesis project to finish my

program.

I am incredibly grateful toward Dr. Emanuela Marasco who taught me an incredible

amount about biometrics and fingerprints in such a short time span. Her guidance

was instrumental to completing this work.



v

DEDICATION

I would like to dedicate this thesis to my wife, Norma Chapman, who has been

fully supportive of my efforts to return to higher education. Without her enduring

the burdens she has, I do not believe I would have been able to perform to my fullest

potential in this Master’s program.



vi

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF ABBREVIATIONS 1

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Contribution 2

1.3. Organization 3

CHAPTER 2: RELATED WORK 4

2.1. Fingerprint Interoperability 4

CHAPTER 3: THE PROPOSED APPROACH 6

3.1. Image Pre Processing 6

3.2. Feature Extraction 7

CHAPTER 4: EXPERIMENTATION 21

4.1. Data Set 21

4.2. Classification 22

4.3. Results 23

CHAPTER 5: CONCLUSIONS 27

5.1. Feature Importance 27

5.2. Future Work 28

REFERENCES 30



vii

LIST OF FIGURES

FIGURE 1.1: Fingerprints captured on different devices. 1

FIGURE 1.2: Traditional match score performance. 2

FIGURE 3.1: Proposed architecture. 7

FIGURE 3.2: Image before and after preprocessing. 8

FIGURE 3.3: Debauchies db8 analysis filters. 9

FIGURE 3.4: Single level decomposition of a fingerprint image. 10

FIGURE 3.5: Difference of Shannon Entropy between fingerprint pairs. 11

FIGURE 3.6: Difference of Log Energy Entropy between fingerprint pairs. 12

FIGURE 3.7: BSIF filter responses. 13

FIGURE 3.8: BSIF feature values between image pairs. 14

FIGURE 3.9: Image quality scores across devices. 16

FIGURE 3.10: Minutiae counts across devices. 17

FIGURE 3.11: Alignment parameters extracted from image pairs 17

FIGURE 3.12: Pattern noise difference between fingerprint pairs. 18

FIGURE 3.13: Gradient difference between fingerprint pairs. 19

FIGURE 3.14: Gray level statistic differences between fingerprint pairs. 20

FIGURE 4.1: Results compared to baseline. 25

FIGURE 4.2: Results compared to previous work. 26

FIGURE 5.1: Evaluation of proposed features. 28



viii

LIST OF TABLES

TABLE 4.1: Fingerprint sensor characteristics 21

TABLE 4.2: Data set details 22

TABLE 4.3: Classifier parameter tuning 24

TABLE 4.4: Comparison of methods at an equal FMR 25

TABLE 5.1: Ablation study at an equal FMR 27



CHAPTER 1: INTRODUCTION

1.1 Motivation

Methods of authentication based on fingerprint recognition are widely used across

a variety of governmental, military and commercial applications. Over the life of any

such system, it is possible that the fingerprint acquisition device will change from the

one originally implemented. With many vendors and different products on the market,

the need to ensure interoperability in the system is important. Interoperability in

fingerprint recognition is the ability of a system to integrate different acquisition

devices without a significant degradation in matching performance.

Even among devices that make use of the same sensing technology (e.g., optical,

capacitive), variations are introduced that create differences in raw data for the same

user. Figure 1.1 shows the variations between fingerprint images obtained using

different devices for a single individual. The first four devices (D0-D3) use optical

sensors for fingerprint acquisition while the fifth (D4) is the scan of an ink-based ten

print card.

Figure 1.1: The same fingerprint captured across five different devices (four optical,
one ink-based), from [1].
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(a) (b)

Figure 1.2: Performance of traditional match score in both the intra and inter-device
scenarios, from [1]: (a) Matching performance where gallery and probe images are
obtained with the same device; (b) Matching performance where gallery and probe
images are obtained with different devices.

Fingerprint matching requires two image samples. The first is a gallery image taken

when a user enrolls into the system. The second is a probe image taken when a user

attempts to access the system. An automated algorithm produces a score for the two

fingerprints and compares the score to a set threshold that determines whether the

fingerprints are a match or not. When the device used to acquire gallery and probe

images is the same, matching algorithms perform with high accuracy. However, in

the cases where gallery and probe devices are different, we see a greater overlap in

genuine and impostor scores, leading to more questionable matches. Figure 1.2 shows

the distribution of genuine and impostor scores in these two scenarios. In this study,

we propose a model that mitigates errors as a result of inter-device matching.

1.2 Contribution

The main contribution in this work is the exploration of new features in order to

improve interoperability in systems that make use of multiple fingerprint scanning de-

vices. In particular we investigate features based on the discrete wavelet transform for

its capability in maintaining spatial information while performing frequency analysis.

We also evaluate the use of binarized statistical image features, a robust local image

descriptor that has shown success in texture and face recognition tasks, on captured

fingerprints. To our knowledge, neither of these image processing methods have been
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leveraged in the area of fingerprint matching. These new features are incorporated

with previously proven measures of quality and match scores into a proposed scheme

that is shown to be more effective in improving fingerprint matching with images

acquired through diverse sensors than using match score alone.

1.3 Organization

The rest of this work is organized as follows. Chapter 2 presents a review of

previous research in fingerprint interoperability. Chapter 3 contains an overview of the

architecture and features that comprise our approach in improving interoperability.

Chapter 4 describes our method of experimentation and the results. Chapter 5 serves

as a conclusion of this work and considers future direction in improving fingerprint

system interoperability.



CHAPTER 2: RELATED WORK

2.1 Fingerprint Interoperability

In 2004, Jain and Ross explored the subject of fingerprint interoperability by com-

paring the match capabilities of optical sensors and capacitive solid-state sensors in

both the intra-device and inter-device scenarios [2]. Both devices capture fingerprint

images at a resolution of 500 dpi, but feature different scanning areas. Cross-sensor

performance reported an Equal Error Rate (EER) of 23.13%, a significant decrease in

performance from the intra-sensor results of 6.14% for the optical device and 10.39%

for the capacitive one. In 2006, Alonso-Fernandez et al. noted that minutiae-based

matchers outperform ridge-based matchers on the same data sets, but that both ex-

perience a large decrease in performance when matching between fingerprints taken

with different sensing technologies [3]. Human interaction with fingerprint sensors

has also been noted to affect matching performance, especially in systems that make

use of different sensing devices [4] [5].

In 2006, Ross and Nadgir developed a non-linear calibration scheme based on Thin-

Plate Splines to compensate for sensor diversity [6] . Relative distortions are modelled

using manually selected control points. Although not fully automated, this approach

showed a significant improvement in inter-sensor matching performance. In 2010,

Poh et al. modelled a Bayesian Belief Network (BBN) in order to mitigate the effect

of device acquisition mismatch when comparison is being performed with no a priori

knowledge about the device a biometric sample is taken from [7, 8]. In their ex-

periments, acquisition device is inferred from quality measures extracted from query

images. Furthermore, the proposed BBN modelled how quality measures effect per-

formance in determining thresholds for match score classifications.
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In 2013 Lugini et al. performed a large scale statistical analysis of how match

score changes across different optical devices [9]. Kendall’s rank correlation test re-

sults point to a significant difference between sensor pairs and that change between

devices is not symmetric. Most recently, Marasco et al. proposed an architecture

for fusing fingerprint match scores with features extracted specifically to improve

interoperability and using a machine learning algorithm for genuine and impostor

classification [1].



CHAPTER 3: THE PROPOSED APPROACH

The goal of the system we propose is to determine if two fingerprints belong to

the same identity by exploiting features that compensate for variations in the im-

ages related to acquisition device. Figure 3.1 illustrates the architecture we propose.

Matching is performed on pairs of fingerprints, one of which represents the gallery

and another which represents the probe. Preprocessing is performed on images that

enhances ridge regions and normalizes images so that these regions have zero mean

and unit standard deviation. Features are extracted from preprocessed images that

make use of the spatial and frequency information provided through discrete wavelet

transforms and binarized statistical image features and combined with traditional

quality and match features obtained from raw images. Our combined feature set is

used as input to train a binary classifier through supervised learning to generate a

classification between a pair of fingerprints as either a genuine match or an impostor.

3.1 Image Pre Processing

All fingerprint images go through a series of preprocessing steps before feature

extraction. First, images are normalized to have a mean of zero and unit standard

deviation. Ridge regions are then detected by breaking each image into 16x16 blocks

and comparing the standard deviation of the each block to a threshold value of 0.1.

Blocks above the threshold are considered to be part of the fingerprint. Images are

cropped around the detected ridge region and normalized once again to have a mean

of zero and unit standard deviation. Figure 3.2 shows an example of a fingerprint

image before and after preprocessing. Code for ridge detection and normalization was

obtained from [10].
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Figure 3.1: Proposed architecture in which interoperability features are extracted
from pre-processed images and fused with quality features and match score from raw
images. A classifier is trained with the resulting feature set to distinguish between
genuine matches and impostors.

3.2 Feature Extraction

Wavelet Entropy. The discrete wavelet transform (DWT) in signal processing is

used in many applications including compression, object recognition and numerical

analysis [11]. Wavelet Transforms are of interest in this study for several reasons.

First, its good time-frequency location abilities allows for analysis of non-stationary

signals (including natural images) without losing spatial information related to dis-

continuities and edges. Secondly, it allows for representation of resolution at different

scales, offering a hierarchical view of information. Lastly, is is easily realizable using

a filter bank based on a mother wavelet and scaling function.

Wavelet decomposition via DWT for images is performed by passing an input image
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(a) (b)

Figure 3.2: Image Preprocessing: (a) Raw image obtained from D0; (b) Image after
preprocessing.

through a low-pass and a high-pass filter and down-sampling, first along rows and then

columns. This produces an approximation of the original image as well as horizontal,

vertical and diagonal signal details. Decomposition can be performed at multiple

resolutions by passing the approximation image at each level through another set of

filters to produce the next level of approximation and detail. Approximations and

detail signals are coefficients that represent how closely the wavelet is correlated with

each specific section of the image.

Entropy measures the uncertainty associated with a random variable [12]. The

random variables we are interested in represent the average amount of information

generated by the distributions of the wavelet coefficients related to the approximation

and details at different decomposition levels. Wavelet entropy measures represent the

complexity of the signal in both the time and frequency domains [13]. In this study,

we investigate the Shannon Entropy (SE) as well as the Log Energy Entropy (LEE)

of the wavelet coefficients C produced by DWT at 6 levels of decomposition using

the Debauchies db8 mother wavelet. Figure 3.3 illustrates the db8 mother wavelet

along with the associated low- and high-pass filters. Figure 3.4 shows the first level

of decomposition of a fingerprint image.

Entropy calculations are performed as follows, where i and j index C, the wavelet
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(a) (b) (c)

Figure 3.3: Debauchies db8 analysis filters: (a) low-pass filter and (b) high-pass filter
create the transformation performed in this study. The filters are designed for 16
coefficients. X axis indicates the coefficient number, while the Y axis indicates the
corresponding value for that specific coefficient number. These filters are associated
to the Debauchies wavelet function shown in Figure (c), the mother wavelet selected
in this work.

coefficient matrix:

Shannon Entropy of C

SE(C) = −
∑
i,j

Ci,jlog2(Ci,j + ε) (3.1)

Log Energy Entropy of C

LEE(C) =
∑
i,j

(log2(Ci,j)) (3.2)

In our final feature set, entropy calculations between fingerprint pairs for each

coefficient matrix at each level are represented as unsigned differences. Figure 3.5

shows the SE value difference distributions across genuine and impostor pairs acquired

from the level one decomposition and Figure 3.6 shows the LEE value difference

distributions. Using entropy measures beyond the first level of resolution did not

show any improvement in the separation of genuine and impostor pairs. By focusing

on the first level of the DWT, the proposed system requires less processing time for

feature calculation.

Binarized Statistical Image Features. Local image descriptors have become a

standard tool for providing image features in computer vision tasks such as object and
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Figure 3.4: Single level decomposition of a fingerprint image using a db8 mother
wavelet. In the top left is an approximation of the original image at a lower resolution
while the remaining images represent signals in the horizontal, vertical and diagonal
directions.

texture recognition. Methods of local description such as local binary pattern (LBP)

[14] and local phase quantization (LPQ) [15] calculate a binary code to represent each

pixel in an image. This code is a description of a pixel’s neighborhood obtained by

convolution with a set of manually predefined linear filters 1.

In 2012, Kannla and Rahtu introduced binarized statistical image features (BSIF)

as a method of local image description which uses linear filters learned from a training

set of natural images to produce a binary code for each pixel [16]. Contrasted to the

manually predefined filters used in LBP and LPQ, the filters in BSIF are learned

using Independent Component Analysis (ICA) in order to maximize statistical inde-

pendence of the the filter responses. Experiments have shown that BSIF performed

generally better than the previous methods at facial recognition and texture match-

ing tasks [16], as well as in detecting spoofed fingerprints [17]. While not designed

to counteract the effects of blur and rotation, BSIF proved to be comparably ro-
1http://www.ee.oulu.fi/ jkannala/bsif/bsif.html
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Figure 3.5: Shannon Entropy value differences acquired from the level one wavelet
decomposition coefficients: (a) SE from the approximation image; (b) SE from the
horizontal detail coefficients; (c) SE from the vertical detail coefficients; (d) SE from
the diagonal detail coefficients.
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Figure 3.6: Log Energy Entropy value differences acquired from the level one wavelet
decomposition coefficients: (a) LEE from the approximation image; (b) LEE from the
horizontal detail coefficients; (c) LEE from the vertical detail coefficients; (d) LEE
from the diagonal detail coefficients.
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Figure 3.7: Result of convolution with each filter in the pre-learned 5 bit 11x11 filter
set.

bust in both categories to previous methods specifically developed to mitigate such

variations.

The number of bits used to represent each pixel is determined by the number of

filters in the chosen set. The value of each bit, bi, is calculated as a binary response

of its associated filter, Wi, to the surrounding image region, X, at a threshold of zero.

si =
∑
u,v

Wi (u, v)X (u, v) (3.3)

The binarized feature bi = 1 when si >0, and bi = 0 otherwise. Figure 3.7 shows the

result of each filter in the provided 5 bit, 11x11 set on a single fingerprint image.

Resulting coded images are represented as a normalized histogram with a number

of bins equal to the number of possible values encoded by the number of bits at each

pixel. This can result in large feature vectors even when using as little as 5 bits, the

smallest pre-learned filter sets provided. For this reason we investigate more compact

representation of the histograms. We consider both the differences between statisti-

cal summaries of the histograms for each image as well as the Euclidean difference

between histograms as methods of comparison. Summary measures used include min-

imum and maximum frequency values and the standard deviation. Figure 3.8 shows

the distribution of these values across genuine and impostor pairs.

Features obtained from several filter sets (ranging from 5 bit, 3x3 to 9 bit, 15x15)

were evaluated with best results being obtained from the 5 bit, 11x11 filter set.

Image Quality. Measures of quality represent the suitability of a biometric sample
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Figure 3.8: Features that summarize BSIF histograms: (a) Maximum frequency of
BSIF histograms across devices ; (b) Minimum frequency of BSIF histograms across
devices ; (c) Standard deviation of BSIF histograms across devices ; (d) Euclidean
distance between image histograms.
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for automated matching. Grother and Tabassi formalize the concept that biometric

quality measures should predict matching performance [18]. These measures should

not be based on human perception which is subjective and may not agree with an

automated matching system.

For this work, we assess fingerprint image quality using the NIST Fingerprint Image

Quality algorithm (NFIQ) [19], an open source tool provided in the NIST Biometric

Image Software (NBIS) distribution 2. The NFIQ score is calculated for each image

(gallery and probe) separately and is represented as an integer in the range [1, 5] where

1 indicates the highest quality and 5 the lowest. NIST provides a recommendation

that fingerprint images should be acquired up to four times until an NFIQ of 3 or

less is obtained in order to obtain best match results [20]. Lugini et al. evaluated

the frequency of low genuine match scores as related to image quality and found

that in the inter-device scenario even an NFIQ score of 3 leads to reduced matching

performance [9]. In this work, we include images with scores in the full range of [1,

5] without excluding or reacquiring images that fall outside of the recommendations.

Figure 3.9 shows how NFIQ scores are distributed across devices.

Minutiae Count. Fingerprint minutiae are ridge endings or ridge bifurcations

extracted from a fingerprint image [21]. Minutiae points are typically represented by

their location and direction, expressed as a triplet, m = [x, y, θ]. The number of

minutiae extracted from an image can be seen as a measure of image quality and may

vary based on human interaction with a sensor. For this work, we use MINDTCT,

a program from the NBIS distribution to obtain a minutiae count from each image.

Figure 3.10 shows the minutiae count across different devices.

Match Score. Automated matching algorithms are used to indicate the degree of

similarity between fingerprints. The score is computed as a function of the number

of corresponding minutiae. Minutiae points from two images are paired when they
2http://www.nist.gov/itl/iad/ig/nbis.cfm
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Figure 3.9: Distribution of image quality scores (NFIQ) across each device.

fall within a predefined distance and angle threshold. For this work, match scores are

generated between image pairs using the Identix BioEngine Software Development

kit. As well as being included in our proposed feature set, these scores act as a

baseline for comparison with our results.

Alignment. Placement of a user’s finger on a sensing device can affect the loca-

tion and orientation of minutiae points. By geometrically transforming two sets of

minutiae points to the same coordinate system, we are able to relate two impressions

of a finger. We use the Generalized Hough Transform detailed in [1] which takes two

sets of minutiae points (one from the gallery image and one from the probe image)

as input to produce three transformation parameters, ∆x, ∆y, and ∆θ, as output.

Pattern Noise. When a fingerprint image is captured, noise can be introduced

from various sources [22]. Two main components for such noise include random pho-

tonic noise and deterministic pattern noise. Pattern noise corresponds to a systemic

distortion and is present in every image acquired by a particular sensor. The domi-

nant part of the pattern noise is the Photo-Response Non-Uniformity noise (PRNU),
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Figure 3.10: Box plots of minutiae count for each device.
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Figure 3.11: Alignment parameters obtained from Generalized Hough Transform of
fingerprint image pairs: (a) ∆x ; (b) ∆y ; (c) ∆θ.

caused by pixels exhibiting different sensitivity to light. After computing an approx-

imate reference PRNU pattern for each sensor by averaging the residual PRNU of all

images taken by each sensor, we obtain the correlation between the reference pattern

and the noise pattern extracted from the image as:

ρ = corr(n,r) =
(n− µn)(r− µr)

‖n− µn‖ ‖r− µr‖
(3.4)

where n is the residual noise of an image and r is the reference PRNU pattern for

sensor the image is captured with. Figure 3.12 shows the difference of these correlation
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values between fingerprint pairs.
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Figure 3.12: Pattern noise value differences between fingerprint pairs.

Image Gradient. Gradient of an image measures the rate of change in grey levels.

We calculate image gradient as:

∇I =

 Gx

Gy

 (3.5)

where Gx represents differences in the horizontal direction and Gy represents differ-

ences in the vertical direction. Both Gx and Gy are matrices the same size as the

original image. Magnitude of the gradient is then given by:

∇I = [G2
x +G2

x]1/2 (3.6)

We use the difference of image gradient magnitude means of fingerprint pairs as one of

our features. Figure 3.13 shows the distribution of the differences between fingerprint

pairs.
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Figure 3.13: Mean gradient value differences between fingerprint pairs.

Intensity-based Statistics. For each pre-processed image we calculate the grey

level mean and standard deviation. The mean is calculated as:

µ =
1

N

N∑
i=1

Ai (3.7)

where each image is represented as a vector, A. Standard deviation is calculated

as:

S =

√√√√ 1

N

N∑
i=1

|Ai − µ|2 (3.8)

Figure 3.14 shows the distribution of the mean and standard deviation differences

between fingerprint pairs.
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Figure 3.14: Gray level statistic differences between fingerprint pairs: (a) Mean; (b)
Standard Deviation.



CHAPTER 4: EXPERIMENTATION

4.1 Data Set

The data set employed in this study consists of fingerprints collected from 494

participants at West Virginia University. Images obtained include individual rolled

fingerprints on both the left and right hands as well as left and right thumb slaps. For

this study, we only use the right index fingerprints from the full set. Quality measures

and match scores were extracted from images at time of acquisition. In order to reduce

the number of impostor examples, impostor match scores were generated by dividing

users into groups of 100 and matching fingerprints within the same group.

Fingerprints were acquired from each participant by using four live-scan optical

sensors (D0-D3) and one set of ink-based ten-print cards (D4). Each user provided

fingerprints in the same order, with D4 being last so that ink would not affect the

other devices. All sensors and ten-print card scans operate at a resolution of 500 dpi

and are FBI certified. Details for each device are provided in Table 4.1.

Our data is separated into three sets for training, validation, and testing. Users

are mutually exclusive to each set so that we can test how effective our method is

at generalizing to new users. Both the training and validation sets are composed of

Table 4.1: Characteristics of the Live-scan devices used for the fingerprint acquisition
carried out in this study.

Manufacturer Model Resolution (dpi) Image size (pixels) Capture area (mm)
D0 Cross Match Guardian R2 500 800 x 750 81 x 76
D1 i3 digID Mini 500 752 x 750 81 x 76
D2 L1 Identity Solutions TouchPrint 5300 500 800 x 750 81 x 76
D3 Cross Match Seek II 500 800 x 750 40.6 x 38.1
D4 Ten Print Scans - 500 800 x 715 -
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Table 4.2: Details for each sub-set of fingerprint pairs.

Set Users Genuine Impostor
Training 125 1,875 131,250
Validation 125 1,875 131,250
Testing 244 3,660 248,025

fingerprint pairs between 125 users and the testing set is composed of the remaining

244. Further details of impostor and genuine splits are provided in Table 4.2.

4.2 Classification

For this work, classification experiments were performed using the Random Forest

classifier, a variation of traditional bootstrap aggregation (bagging) of weak tree-

structured learners. Ensemble methods combine hypotheses obtained from multiple

weak learners in order to obtain a final classification of input data [23]. Ensembles of

weak tree-based learners show a general resistance to the effects of overfitting (even

as the number of learners increases) and have been successful in scenarios where a

decision boundary is too complex for a single learner.

Random Forests consist of a collection of k tree-based classifiers hΘ1, ..., hΘk where

Θi is a subset of the full training data set (randomly sampled with replacement) used

to train a decision tree, hi [24]. When building each tree, a random subset of features

is used at each node to determine the split. During classification, an input sample is

entered as input to each of the k trees. The final class label for the sample is decided

by a majority vote from each tree’s output. Random Forests were recently used in [1]

to show improvement in fingerprint interoperability.

There are two major parameters to select when growing out a Random Forest.

The first is the number of trees that will make up the ensemble. In general, the main

negative aspect of increasing the number of trees is an increase in computational time

for vanishing improvements classification rates. The second parameter to tune is the
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number of features randomly sampled at each split. For classification tasks, Breiman

originally performed tests using a single randomly chosen feature and log2(M + 1)

features where M is the total number of features for a data example. Many imple-

mentations of Random Forest (including the Matlab implementation we use) default

instead to
√
M , which for our feature set ends up being very similar.

In selecting parameters for our model, we tune on a coarse selection of the number

of trees: [20 100 500 2500]. For number of randomly sampled features we use the

numbers [1 5 13 26], corresponding to a single feature,
√
M , M

2
, andM (corresponding

to traditional bagging methods) respectively. Table 4.3 shows the results of parameter

tuning on our validation set of fingerprint pairs. Area under the curve of the detection-

error tradeoff, in which lower values are better, was used to evaluate the effectiveness

of each model. While three different models gave the same value for AUC, the one

in which N = 500 and F = 13 was selected for evaluation of the test set for achieving

the best overall error-rates in the fewest number of trees.

4.3 Results

For our results, we use False Match Rates (FMR) and False Non Match Rates

(FNMR) to evaluate the performance of our proposed method. FMR corresponds to

testing instances where an impostor is incorrectly labelled as a genuine match whereas

FNMR corresponds to instances where a genuine match is labelled as an impostor.

Figure 4.1 shows the results of the selected Random Forest classifier on the final set of

features. Our proposed approach obtains a FMR of 0.004% and a FNMR of 4.454%

when tested on fingerprint pairs from users not seen by the classifier during training.

Figure 4.1 shows the DET obtained form our classifier compared to the DET of using

the match score alone (serving as a baseline).

We additionally see an improvement over the results of [1] when we apply the

previous method to a data set with fingerprint pairs that are mutually exclusive

between training and testing. Figure 4.2 shows the DET obtained from our model
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Table 4.3: Comparison of validation results on different Random Forest parameters
where N is the number of trees, F is the number of randomly selected features at
each split, FMR is the percentage of impostor examples misclassified, FNMR is the
percentage of genuine examples misclassified, and DET AUC is the area under the
curve of the Detection-Error Tradeoff.

Random Forest Validation Error
N F FMR (%) FNMR (%) DET AUC
20 1 0.001 40.000 0.200

5 0.003 3.733 0.019
13 0.006 3.147 0.016
26 0.009 2.987 0.015

100 1 0.000 51.520 0.258
5 0.004 3.467 0.017
13 0.008 2.880 0.014
26 0.008 2.880 0.015

500 1 0.000 35.040 0.175
5 0.003 3.627 0.018
13 0.005 2.880 0.014
26 0.013 2.987 0.015

2500 1 0.000 49.547 0.248
5 0.003 3.573 0.018
13 0.005 2.880 0.014
26 0.008 2.987 0.015



25

False Positive Rate (%) 
0 10 20 30 40 50

F
a

ls
e

 N
e

g
a

ti
v
e

 R
a

te
 (

%
) 

0

2

4

6

8

10
Detection Error Tradeoff

Baseline

Proposed Approach

Figure 4.1: Comparison of the results obtained with the proposed approach with the
Detection Error Tradeoff with the baseline of a thresholded match score.

Table 4.4: False Non-Match Rates obtained by each method when False Match Rate
is held equal at 0.01%.

Method FNMR (%)
Match Score 5.77

Marasco et al. [1] 4.73
Proposed Method 4.24

compared to the DET obtained by using the previously used feature set and classifier

on the same training and testing split that we used.

We further illustrate improvements over previous methods by comparing FNMR

when FMR is held constant. 4.4 shows the results for each of the previously discussed

DETs evaluated at a FMR of 0.01%.
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Figure 4.2: Comparison of the Detection Error Tradeoff curve obtained from the
proposed method with that obtained by using the features and classifier presented in
[1] on the same training and testing set.



CHAPTER 5: CONCLUSIONS

5.1 Feature Importance

While we show improvements over previous methods, the primary purpose of this

study is to explore Wavelet Entropy and Binarized Statistical Image Features as

applied to the problem of fingerprint interoperability. To perform this evaluation

in isolation of other changes over previous methods, we compare the DET obtained

from our full feature set with the DET of three other sets. The first additional set

does not include wavelet entropy measures, the second does not include binarized

statistical image features, and the third includes neither wavelet entropy nor the

binarized statistical image features. Figure 5.1 shows that there is very little change

in the DET curves between these feature sets. Table 5.1 further illustrates that results

when held at 0.01% FMR appear slightly worse when using the proposed features.

This seems at odds with feature ranking methods, class correlation for instance, that

included our new features high in rankings.

Despite the overall improvements, there is no definitive proof that our newly pro-

posed features have a strong impact on fingerprint interoperability. Although we make

use of features explored in previous work, there are several changes that may account

Table 5.1: False Non-Match Rates obtained by feature sets when False Match Rate
is held equal at 0.01%.

Method FNMR (%)
Proposed 4.24

No Entropy 4.13
No BSIF 4.18
Neither 4.10
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Figure 5.1: Comparison of the results obtained with the full feature set that includes
Wavelet Entropy and BSIF measures with three feature sets: (1) one without entropy;
2 one without BSIF; (3) one with neither entropy nor BSIF.

for the difference in results. First, most of the features used in this study represent a

pair of fingerprints by taking the unsigned difference between corresponding values.

This choice was primarily made as a way to explore the distribution of genuine and

impostor examples in a more intuitive manner. Second, our pre-processing method

may have an effect; however, it is not known exactly what steps were taken during

pre-processing in previous work. Lastly, it is possible that there are differences in

both feature extraction and learning algorithm implementations between versions of

software components used.

5.2 Future Work

Future directions to consider for the study of fingerprint interoperability include

extending experiments to include additional sensors. Ideally the features selected

to improve interoperability could generalize even to devices not seen during model

training. Different sensing technologies could also be explored. This study focuses on

the use of optical sensors, but other device types exist such as capacitive and ultra-
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sound. It is important to note that the acquisition devices involved in this study are

high end applicances and that attempts to extend research into types of sensors such

as those present on consumer devices may require drastic changes to features and

methodology. Further work may also include the exploration of any number of image

pre-processing techniques, additional features and classification algorithms.
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