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ABSTRACT

SHANK S. KULKARNI. Coupling of peridynamics and the finite element method
and Study of the damping property of polymer composites. (Under the direction of

DR. ALIREZA TABARRAEI)

Part - I: Coupling of peridynamics and the finite element method and modeling of

creep

One of the important modes of unpredicted failure for large complex structures such

as power stations, turbines, processing plants, refineries is a failure due to creep.

The ability to predict the evolution of damage due to creep is important. Classical

continuum based damage models are used widely for this purpose along with some

numerical techniques such as the Finite Element Method (FEM). Although this gives

a better prediction of creep strain, when the material is near failure, the finite element

method is not easily able to predict crack initiation and propagation. Special care

has to be taken for crack propagation such as, re-meshing or use of extended FEM

which either lose accuracy or increase the computational cost. These disadvantages

can be overcome by using Peridynamics (PD) instead of the finite element method

due to its integral formulation and the ability to model the crack as the material

response. Therefore one of the aims of this dissertation is to develop a peridynamic

formulation equivalent to classical stress-based damage models. We have chosen the

Liu-Morakami damage model for our study. In order to check the robustness of the

new method, numerous examples are simulated and the results are compared with

finite element simulations and show good agreement.

Although peridynamics is a very powerful method in predicting crack propagation,

it still has some disadvantages such as very high computational cost and an error

in solution near the boundary of the domain. Also, the application of loads and

boundary conditions in peridynamics is a tedious process. Therefore, in order to

remove these disadvantages, peridynamics can be coupled with the finite element
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discretization. The aim is to use PD near crack and the FEM everywhere else.

This allows advantage to be taken of both methods giving accurate results with

optimum resources. The main challenge in the coupling of peridynamics and the

finite element method is a generation of spurious reflections of waves at the interface

of peridynamics and the finite element domain. To understand this problem in detail,

we use an analytical approach to study the propagation of a plane wave and its

spurious reflection in a peridynamic bar using the two different methods. In the

first method, a coupled peridynamic–finite element approach is used in which the

peridynamic formulation is used in one part of the domain and the finite element is

used in the other part. In the second method, the peridynamic formulation is used

in the entire domain, but the bar is discretized by two grids of different sizes. In

both cases, the size of the grid of each zone does not change and the two grids share

one node with each other. The incident wave travels from the finer grid toward the

coarser grid. For the case when peridynamics is used on the entire domain, the size

of the peridynamics horizon changes based on the size of the gird. For both cases, we

investigate the impact of the relative size of the girds on the amplitude and energy

of the transmitted and reflected waves. Our analytical and numerical results show

that more spurious reflections occur when the size mismatch between the two grids

is large. In both cases, the issue of spurious wave reflection becomes more severe

when the peridynamic horizon size increases. For the case of a coupled peridynamic–

finite element grid, even when the size of the two grids is the same, spurious wave

reflection occurs which is due to the change in the formulation from a nonlocal to a

local continuum. The spurious reflection reduces when the wavelength of the incident

wave is large compared with the coarse grid.
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Part - II: Study of the damping property of polymer composites

Visco-elastic materials are used in many applications such as building dampers,

bunkers or protective casing for an external hard drive. This is because visco-elastic

materials have very good damping capacity and can absorb a huge amount of energy

without failure due to their polymeric nature. Polyurea is an example of one such

material which is commercially available. Two main problems with the use of such

materials are, i) their behavior is very complex and hence it is hard to develop a

constitutive model which is simple to use and also accurate, and ii) these materials

lack strength and hence need an addition of some fillers in order to provide strength.

In this dissertation, a nonlinear hyper–viscoelastic constitutive model obtained by

the superposition of a hyperelastic and a viscoelastic model is proposed to model the

behavior of polyurea under both tensile and compressive loading conditions at various

strain rates. The incompressible Ogden model is used to model the strain-dependent

response of polyurea while a three parameter standard linear solid (SLS) model and

nonlinear K-BKZ modes are used to model the strain rate dependent behavior of

polyurea. The material parameters of the model are found by curve fitting of the

proposed model to the experimental data. Comparison of the proposed model and

the experimental data shows that the proposed model can closely reproduce the stress-

strain behavior of polyurea under a wide range of strain rates (-6500 to 294 /s).

We also use finite element modeling to investigate the damping property of poly-

mer composites consisting of a viscoelastic matrix and randomly dispersed elastic

particles. The dynamic correspondence principle of viscoelasticity is used to solve

boundary value problems. The impact of vibration frequency and inclusion size and

volume fraction on the damping capability of polymer composites are studied. Re-

sults obtained by finite element simulations are compared with results obtained from

popular micromechanics methods such as the rules of mixtures, Halpin-Tsai, Hashin-

Shtrikman, and Mori-Tanaka. It is shown that micromechanics methods give accurate
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predictions only when inclusion volume fraction is small. Our results show that the

loading frequency and inclusion volume fraction significantly impact the damping

capability of polymer composites. In contrast, the impact of the size of inclusions

on the damping properties of polymer composites is negligible. The effect of do-

main boundary conditions on the simulation results is studied by conducting finite

element modeling on representative volume elements (RVEs) which are subjected to

periodic or mixed boundary conditions. The modeling results indicate that both

boundary conditions lead to similar predictions for damping. Sensitivity analyses are

conducted to assess how material properties influence the damping property. The

sensitivity analyses show that an increase in the stiffness of the composite matrix

leads to a reduction in the damping capability of polymer composites. In contrast,

an increase in the stiffness of inclusions results in an increase in the damping capa-

bility of polymer composites. Moreover, the damping properties are improved if the

relaxation time of the viscoelastic matrix is increased.
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Coupling of peridynamics and the

finite element method and

modeling of creep
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CHAPTER 1: INTRODUCTION

1.1 Background and motivation

Creep is one of the important reasons of failure for metal components working at

a high temperature such as power plants and turbines. To ensure high efficiency and

safety of the working environment, it is extremely important to predict failure due

to creep in advance. In order to do so, creep tests are performed on the specimen

to understand it’s creep properties. The specimen is loaded with a constant tensile

load or stress at elevated temperature, and the relation between observed creep strain

and time is plotted as a creep curve. In general, the creep curve is divided into three

parts namely, primary creep, secondary creep, and tertiary creep. Primary creep

will follow the sudden elastic elongation. In this stage, the strain will increase with

decelerating strain rate as time increases. Next is secondary creep, which occupies

the largest region of the creep curve. In this stage strain increases with an almost

constant strain rate obeying the Norton power law. The last stage is a tertiary

creep, in this region, strain increases with increasing strain rate finally leading to

fracture [5]. Although creep tests provide insight about creep failure, they are costly

and time-consuming as creep is slow process. Therefore many researchers focused

their efforts on numerical simulations of creep as its cheaper than experiments and

saves time. In general, numerical methods to simulate creep failure can be divided

into two categories, i. e. i) based on fracture mechanics and ii) based on damage

mechanics. Fracture mechanics based methods use parameters such as the stress

intensity factor K, J - integral or C∗ integral to predict crack growth [6–8]. Whereas,

damage mechanics based methods use damage parameter D which varies between 0

(no damage) to 1 (failure) to predict crack growth [9].
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Damage based models can be further divided into two types, stress based and strain

based. Kachanov-Robotnov model [10, 11] and Liu-Morakami model [12–14] are the

most widely used stress based models. These models can predict all three stages of

creep with great accuracy but need all parameters to be calibrated experimentally

with great care. Also, a large number of parameters have to be used. On the other

hand, strain based models use a few number of parameters, but this decreases the

accuracy of the model [15–17]. In a stain based model, it is assumed that the damage

parameter becomes unity at some critical strain value.

The finite element method (FEM) is the most widely used numerical method to

model creep because of its simplicity and commercially available software. Murakami

et al. [12,14,18] used FEM to simulate crack growth and showed the effect of a local

and nonlocal formulation. Also using the Liu-Morakami model along with FEM, Hyde

et al. [3,4,19–22] simulated a uniaxial creep test and crack propagation in a compact

tension (CT) specimen. They also showed that results are in good agreement with

experimental data. Simulations were performed on different materials and at different

temperatures to ensure the robustness of the model. Simple strain based models were

also used along with FEM to simulate creep [23, 24]. Although widely used, FEM

performs poorly in predicting the crack speed and growth path [25]. Pandey et al. [26]

used the extended finite element method (XFEM) [27] to simulate creep of CT as well

as C-shaped tension specimen. Kaupilla et al. [28] developed a continuum damage

model for creep from the balance laws and implemented using ANSYS [29].

Some popular methods other than XFEM for accurate modeling of crack propaga-

tion are, the cracking particle mesh-free method [30,31], phantom node method [32],

edge based cutting method [33,34], phase field method [35], and peridynamics [36,37].

As peridynamics (PD) has a better ability to model damage, one of the aims of this

dissertation is to come up with a peridynamic formulation equivalent to classical

stress based damage models for creep. We chose Liu-Morakami model for our study
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as it has some advantages over Kachanov-Rabatnov in terms of the selection of the

time step for numerical analysis. A comparative study can be found in [38].

Peridynamics theory [36,37] has been introduced to overcome the difficulties asso-

ciated with local continuum methods in modeling fracture and damage in materials.

Although there are quantum mechanics based methods available such as molecular

dynamics [39–42] which gives more accuracy while modeling cracks [43–46], they are

much more expensive and hence not able to solve realistic simulation problems. The

main issue of using classical continuum theory in modeling crack nucleation and prop-

agation is related to the presence of the spatial derivatives of displacement in the equi-

librium equations. Since the displacement field is not continuous across cracks, the

derivatives of the displacement field are not defined at these points; hence the equilib-

rium equations are not described. This issue translates to the computational methods

such as a finite element method based on a classical continuum formulation. If the

crack path is not known a priori, modeling crack nucleation and propagation using

the finite element method requires remeshing [47,48] which is a cumbersome process

and reduces the computational accuracy. Other local based continuum techniques

such as extended finite element method (XFEM) [27, 49] have been developed more

recently to eliminate the remeshing requirement. However, using XFEM for modeling

cases such as fragmentation when several cracks are available in the domain is very

challenging. Meshless methods such as the element-free Galerkin method [30, 50],

smooth particle hydrodynamics (SPH) [51–53] and reproducing kernel particle meth-

ods [54] which construct the approximation fields entirely in terms of nodes are other

classes of numerical techniques used to model crack propagation. Such techniques

remove the re-meshing requirements and can model the growth of cracks with ar-

bitrary and complex geometries. Peridynamics based meshfree methods have been

developed [55,56] and successfully used to model fracture and damage in various ma-

terials and systems. Silling et al. used peridynamics to reproduce Kalthoff-Winkler
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experimental results [57] and to model damage due to impact [55, 58]. Gerstle et

al. [59] modeled damage in reinforced concrete structures using peridynamics. Xu et

al. [60] employed peridynamics to model a crack in laminated composites. Bobaru et

al. [61–63] used peridynamics to model dynamic fracture in brittle materials and cap-

tured crack branching and kinking in the crack path. Wu and Ren [64] modeled ductile

failure during metal machining. Hu et al. [65] used peridynamics to model dynamic

fracture in fiber reinforced composites. Amani et al. [66] used peridynamics to model

thermoplastic fracture using a Johnson-Cook constitutive model. Ha et al. [67] and

Wang et al. [68] have used peridynamics to model fracture in rocks under compressive

loading. More recently, multiple groups have used peridynamic to model damage in

metals due to the corrosion [69–72]. Peridynamics performance has been validated

by applying it to several sophisticated applications including dynamic fracture anal-

ysis [73–79], polycrystal fracture [80], membrane fracture [81], fracture of composite

materials [82–86], modeling of corrosion damage [87–89], fatigue formulation [90–93],

modeling of structural response under extreme loading [94], material fragmentation

under impact [95], simulation of the kinetic of phase transformation [96], modeling

of geomaterials [97], viscoplasticity [98, 99], thermal diffusion [100], laminated glass

beam failure [101] , modeling of metal creep using classical stress based damage mod-

els [102], and modeling heat transition in bodies with evolving cracks [66, 103–106].

Hattori et al. [107] developed a framework of peridynamics for anisotropic materials.

Zhang et al. [108] increased the horizon of peridynamics theory by developing an ax-

isymmetric ordinary state based peridynamic model for elastic solids. Behzadinasab

et al. [109] solved a shock wave perturbation decay problem in granular material us-

ing peridynamics. Nguyen et al. [110] used peridynamics so predict the damage in

offshore structures.

In addition to the numerical verifications, rigorous mathematical analysis has been

used to examine the properties of peridynamics. Silling and Lehoucq [111] showed
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that in the limit when the nonlocal region around a point goes to zero, peridynamics

converges to classical elasticity theory. Du and Zhou [112] developed a functional

analytical framework for peridynamics and demonstrated the connections between

peridynamics and classical elastic theory. Alali and Lipton [113] analytically inves-

tigated the multiscale dynamics of heterogeneous media using peridyanmic formula-

tion. Mikata [114] studied peristatic and peridynamic problems in a 1D bar. Lindsay

et al. [115] came up with a multi-time step model for peridynamics. Kulkarni et

al. [116,117] analytically studied wave propagation in peridynamics and also the issue

of spurious reflections when coupled with FEM. Mutnuri and Gopalakrishnan [118]

studied the wave dispersion between peridynamics and a discrete material in a 1D

domain. Madenci et al. [119] proposed a alternative peridynamic formulation based

on differential operations.

Although peridynamics can model crack nucleation and propagation effectively;

however, due to its nonlocal formulation, it is computationally more expensive than

classical continuum mechanics. Two main techniques have been proposed to reduce

the computational costs associated with using peridyanmics. In the first approach,

peridynamics is coupled with a local method such as a finite element method [120–

129]. In this method, peridynamics is used in critical zones such as close to crack tips

to model crack propagation and the finite element method is used in the rest of the

domain. Since the finite element is used in most of the domain, the computational

cost reduces. Moreover, since robust techniques for imposing boundary conditions and

modeling contact phenomena using finite element are available, such techniques can

be directly employed when a coupled peridynamics and finite element method is used.

The main challenge associated with developing coupling techniques is the elimination

of the fictitious interface effects. For dynamic problems, the main source of numerical

artifacts is the spurious wave reflections at the interface of peridynamics and finite

element zones. The main source of spurious wave reflection is due to the change in
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the grid size [130] and the change of formulation from local to nonlocal [131–133].

In the second approach, peridynamics is used everywhere in the domain but the size

of the peridynamics grid adaptively changes [1,134,135]. This approach is similar to

the adaptive mesh refinement in finite elements where a finer grid is used in sensitive

zones such as the vicinity of defects and coarser grids are used in other regions. By

using this approach the total number of nodes in the domain is reduced which leads

to a reduction in the computational cost. The change in the grid size which is usually

associated with the change in the size of the horizon induces spurious wave reflection

at the transition point from the fine to the coarse grid.

Therefore, we study the issue of spurious wave reflection for the above two men-

tioned approaches using an analytical approach. The main motivation is to provide

a better understanding of the concept of wave reflection and to gain insights toward

resolving this issue. We study the propagation of a plane wave and investigate how

the size of grids and the size of the horizon impact the amplitude of the reflected

and transmitted waves. A solution to this issue of spurious reflections is proposed by

Wang et al. [136, 137] and proposed solution was incorporated in commercial finite

element software [138].

1.2 Original features of dissertation

Formulation of metal creep using state-based peridynamics and studying the prob-

lem of spurious wave reflection analytically while coupling PD and FEM are the main

contributions of this part of dissertation.

In order to come up with PD formulation for metal creep , we take reference of

metal creep formulation using finite element and propose equivalent steps in PD. A

new PD formulation is checked by solving numerous examples including a uniaxial

tension test, crack propagation under mode I loading and a bending test. All the

results are compared with the results from FEM and experiments. Problems are

solved by developing proprietary C++ codes.
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In an analytical study of spurious wave reflection, the effect of a number of pa-

rameters such as mesh size, the wavelength of the wave and size of the horizon is

understood. Analytical results were checked with numerical simulations and found in

good agreement with each other. The same problem was also studied for nonuniform

PD mesh and some interesting results were observed. The analytical solution was

obtained by writing code in MATLAB [139].

1.3 Outline of dissertation

The outline of the dissertation is as follows, Chapter 1 provides the background

and motivation for the research. Chapter 2 describes the theoretical background

of peridynamics, finite element methods, and creep models. Both bond based and

state-based PD models are discussed. Next chapter 3 highlights some important peri-

dynamic fundamentals such as dynamic to static conversion, discretization methods,

and skin effects. the following chapter 4 starts with the formulation of the creep

evaluation using finite elements and progresses towards the formulation of creep eval-

uation using state-based peridynamics. A new algorithm is given in terms of a flow

chart for a better understanding. Finally, the chapter ends with a description of a

new influence function which considers damage as well and how the parameters of this

influence function can be selected. Chapter 5 shows various examples solved using

the proposed method and its comparison to finite element method and experiments.

Uniaxial tension under plane strain, 3D uniaxial tension, 2D crack propagation under

mode I loading and bending problems are some examples solved.

Then chapter 6 talks about the analytical solution of spurious waves reflected at

the interface of PD and FEM while coupling both methods together in order to take

advantage of both methods. It starts with the discussion of wave propagation in

PD and then showing the actual problem with an example. Results are obtained for

uniform as well as nonuniform discretization. Energy flux calculations are also carried

out in the same chapter. Chapter 7 deals with the analytical solution for nonuniform
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PD meshes coupled together. Results are verified with numerical examples.

Finally, part I of the dissertation concludes in chapter 8 with conclusions from the

study. Appendixes are given to further explain some concepts and to give detailed

derivations.



CHAPTER 2: THEORETICAL BACKGROUND

2.1 Finite element formulation

The strong form of the boundary value problem for the elastostatic formulation

with domain Ω can be given as

∇ · σ + b = 0 in Ω, (2.1)

where ∇ is the gradient operator, σ is the stress tensor, and b is the body force per

unit volume. The boundary conditions can be prescribed as,

σ · n̂ = t̄ on Γt, (2.2a)

u = ū on Γu, (2.2b)

where, n̂ denotes the unit normal vector on the domain boundary, u is the displace-

ment field, Γt is the portion of the boundary with prescribed tractions t̄, and Γu is

the portion of the boundary with prescribed displacement field as shown in Fig. 2.1.

The weak form is obtained by using the principle of virtual work by assuming the

domain undergoes an arbitrary displacement field δu which gives rise to compatible

virtual strains δε and can be written as

∫
Ω
σ : δεdΩ =

∫
Ω

b · δudΩ +
∫

Γt
t̄ · δudΓ. (2.3)

The weak form is discretized in space using the finite element approximation of the
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Figure 2.1: Domain Ω under loading and boundary conditions.

displacement field and can be written as

∫
Ω

BTσdΩ =
∫

Ω
NTbdΩ +

∫
Γt

NT t̄dΓ, (2.4)

where N is the matrix of shape functions. By discretizing the domain into finite

elements and multiplying the Eq. (2.4) by a weight function w we get

nel∑
e=1

weT
[∫

Ωe
hBTCepBdΩe −

∫
Ωe
hNTbdΩe +

∫
Γet
hNT t̄dΓet

]
= 0, (2.5)

which can also be written as

[K]{∆u} = {∆f} = {fext} − {fint}, (2.6)

where K is the global stiffness matrix, ∆u is the incremental displacement vector and

fext, fint are incremental, external and internal force vectors respectively.

For plain stress problem, the stress strain relationship is written as
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
σxx

σyy

σxy

 = E

1− ν2


1 ν 0

ν 1 0

0 0 1−ν
2




εxx

εyy

εxy

 , (2.7)

and the stiffness matrix and force vector are given by

Ke =
∫

Ωe
hBTCepBdΩe, (2.8a)

f eext =
∫

Ωe
hNTbdΩe +

∫
Γet
hNT t̄dΓet , (2.8b)

where, B is shape functions derivatives, Cep is elasticity tensor and h is the thickness.

2.1.1 Finite formulation for a one–dimensional bar

If a one–dimensional domain is discretized with linear finite elements of length h,

the equation of motion of node k in the absence of body forces can be written as

ρhük = E

h
(uk+1 − 2uk + uk−1), (2.9)

where E is the Young’s modulus and ρ is the mass density.

2.2 Overview of peridynamic theory

An alternative approach to classical continuum mechanics is peridynamic theory

[36, 95]. Peridynamics is a nonlocal continuum theory in which a point x interacts

with other points in its vicinity. As shown in the Fig. 2.2, the interaction zone of

point x is its spherical neighborhood Hx = {x′ | 0 < ‖x− x′‖ ≤ δ}, where δ is the

horizon of point x. The vector from a point x to point x′ ∈ Hx is called a bond

defined by ξ = x′ − x and the bond length is denoted by ξ = |ξ|.
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Figure 2.2: A peridynamic domain before and after deformation.

2.2.1 Bond based peridynamics

All material points inside the horizon of some specific material point will exert a

certain amount of force on each other, this is equivalent to having a bond between

them, hence the name ’Bond based peridynamics’. The total force acting on a material

point is the sum of the forces acting on it by all the points within its horizon. In the

absence of a body force, the peridynamics equations of motion can be written as [36]

ρ
∂2u(x, t)
∂t2

=
∫
H
f(u(x′, t)− u(x, t),x′ − x, t)dVx′ , (2.10)

where x′ are position vectors of points within the horizon H of point x, u is the

displacement vector, ρ is the mass density and t is time. In Eq. (2.10), f is the

pairwise force between point x and x′. The value of the force function f depends

on the relative position ξ = x′ − x of the two interacting material points and their

relative displacement η = u(x′, t) − u(x, t). For a linear elastic material, force
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Figure 2.3: Interaction of material points inside the horizon of peridynamic region.

function f can be written as

f(ξ,η) = ξ + η
|ξ + η|c0s, (2.11)

where s is the bond stretch defined as

s = |ξ + η| − |ξ|
|ξ|

, (2.12)

and c0 is known as micromodulus function and represents the bond elastic stiffness.

An expression for the micromodulus function c0 can be found by equating peridy-

namics elastic energy density with the classical elasticity energy density [57]. Some

common forms of micromodulus functions are shown in Fig. 2.4. Details of the deriva-

tion of different micromodulus functions can be found in [1].

2.2.1.1 Peridynamic formulation for a one–dimensional bar

For a one–dimensional linear elastic bar, c0 can be expressed as [1]

c0 = 2E
δ2A

, (2.13)
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Figure 2.4: Examples of micromodulus functions. (a) constant, (b) triangular and
(c) inverted triangular [1].

and the force function can be written as

f(u,u′,x,x′) = c0
u′ − u
|x′ − x|

, (2.14)

where E is the Young’s modulus, A is the cross sectional area of bar, u′ is the

displacement of point x′ and u is the displacement of point x. If the bar is discretized

with N nodes, the equation of motion of node k can be obtained by discretizing

Eq. (2.10)

ρük =
∑
j

c0
uj − uk
|xj − xk|

Vjk, (2.15)

where Vjk is the volume of node j overlapping with the horizon of node k.

2.2.2 State based peridynamics

Previously explained bond based PD suffered from the following difficulties [37]:

1. Deformation of any single bond from one particular point, is always independent

of deformation of all other bonds connected to the same point. This resulted

in an equivalent Poisson’s ratio of 0.25. Materials with different Poisson’s ratio

can not be modeled.

2. Already available classical continuum mechanics models can not be used directly

in the peridynamic realm.
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3. Material can undergo permanent deformation undergoing volumetric strain.

This is inconsistent with experimental observation which says, material can

not undergo plastic deformation without shear loading.

In order to remove these above mentioned limitations of PD theory, in 2007 Silling et

al. proposed a new formulation of PD, and they named it, ’State based peridynamics.’

This new formulation overcame all the limitations of bond based PD.

2.2.2.1 Definition of state

In this formulation a "State" is defined as, a function which when operated on by

a vector, creates an unique image of that vector which gives a tensor whose order is

equal to the order of the state. A state of order 1 is called as vector state and state

of order 0 is called as scaler state. This operation can be written as Y 〈ξ〉, which

means state Y is operating on vector ξ. A state is not necessarily continuous or a

linear function. Details of the operations of states such as addition, multiplication,

derivatives etc. can be found in [37].

2.2.2.2 Deformation state

The deformation state of a bond ξ at time t is defined as

Y[x, t] 〈ξ〉 = y(x + ξ, t)− y(x, t), (2.16)

where

y(x, t) = x + u(x, t), (2.17)

and u is the displacement vector field. Y[x, t] acts on bond ξ and produces the image

of the bond under a deformation. The extension scalar state e measures the change

in the bond length due to deformation

e = y − x = |η| , y = |y′ − y| = |ξ + η| , x = |ξ| . (2.18)
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The volume dilatation θ at point x is obtained from

θ(e) = 3
q

(ωx) • e = 3
q

∫
Hx
ωxydVx′ − 3, (2.19)

where q is the weighted volume defined by

q = (ωx) • x =
∫
Hx
ωx2dVx′ , (2.20)

whereHx denotes the horizon of point x and ω is the influence function which depends

on |ξ|, ω = 1 for an unbroken bond and ω = 0 for a broken bond. The • operator

denotes the inner product between two states and is defined in [37].

The deviatoric part ed of extension state e is defined by

ed = e− θx

3 . (2.21)

2.2.2.3 Equations of motion and numerical discretization

The peridynamic equation of motion of point x is

ρ(x)ü(x, t) =
∫
Hx

(T[x, t] 〈x′ − x〉−T[x′, t] 〈x− x′〉)dVx′+b(x, t) = f intp (x, t)+b(x, t),

(2.22)

where T is the force state. The force state T[(x, t)] takes the bonds connected to

point x as input and produces a force density vector as the output. Since T acts on

a vector and produce a vector, T is similar to a tensor with the difference that T is

not necessarily linear or continuous. f intp (x, t) is the equivalent of the classical internal

force acting at point x.

Numerical implementation of the peridynamic continuum model requires the dis-

cretization of the domain. The most common discretization scheme employed in

peridynamics is the meshfree method proposed in [95]. As opposed to the finite el-
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ement discretization, in the mesh free method the domain is discretized by nodes

instead of elements. In a meshfree discretization nodes are not connected to each

other by elements or any other geometrical constraints. The discretized form of the

peridynamic equations of motion of node I is

ρ(xI)ü(xI , t) =
L∑
J=1

(T[xI , t] 〈xJ − xI〉 −T[xJ , t] 〈xI − xJ〉)VcJ + b(xI , t)

=
(
f intI

)
p

(t) + b(xI , t), (2.23)

where xI denotes a peridynamic discrete node, xJ is a node whose volume overlaps

with the horizon of xI and L is the total number of nodes whose volume overlaps with

the horizon of xI . VcJ is the portion of volume of xJ which in the initial configuration

is within the horizon of xI , as shown in Fig. 2.5a. VcJ can be given as VcJ = vIJVJ ,

where VJ is the volume of xJ in the initial configuration and vIJ is the volume fraction

given by

vIJ =


1 if |xJ − xI | ≤ δ − rp

2 ,

1
2 + δ−|xJ−xI |

rp
if δ − rp

2 < |xJ − xI | < δ + rp
2 ,

0 if |xJ − xI | ≥ δ + rp
2 ,

(2.24)

where rp represents the spacing between nodes. As shown in Fig. 2.5, the volume

fraction vIJ continuously reduces from 1 to 0. The discretized equations of motion can

be integrated in time using an explicit time integration scheme such as the velocity

Verlet method.
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Figure 2.5: (a) Discretization of domain in to PD points (only partial volume of point
xJ is inside horizon of point xI), (b) vIJ as a function of distance.

2.2.2.4 Linear elasticity using peridynamic formulation

For elastic materials T only depends on Y([x, t]) and can be obtained from the

strain energy density function ψPD(Y) given by

T(Y) = ∇ψPD(Y), (2.25)

where ∇ denotes the Fréchet derivative with respect to Y. The strain energy density

function of a linear elastic material is

ψPD(θ, ed) = Kθ2

2 + 15µ
2q (ωed) • ed, (2.26)

where K and µ are respectively the bulk modulus and shear modulus of the material.

Elastic materials can be represented in peridynamics using an ordinary model. In

an ordinary model, T = tM, where M is the unit vector along the deformed bond

direction and t is the magnitude of T. Using Eq. (2.26) in Eq. (2.25) the magnitude
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of the force state vector acting along the deformed bond direction is

t = 3Kθ
q

ωx+ 15µ
q
ωed. (2.27)

2.2.2.5 Plane stress peridynamic

The volume dilatation in a plane stress state is [140]

θ = 2(2ν − 1)
(ν − 1)

ωx • e
q

, (2.28)

and the force state is [140]

t = 2(2ν − 1)
(ν − 1)

(
k′θ − β

3 (ωed) • x
)
ωx

q
+ βωed, (2.29)

where

β = 8µ
q
, (2.30a)

k
′ = k + µ

9
(ν + 1)2

(ν − 1)2 . (2.30b)

2.3 Elastic creep analysis

Creep is permanent deformation of material operating at elevated temperature

whose stress is below the yield stress. In general, the creep curve is divided in three

parts namely, primary creep, secondary creep and tertiary creep as shown in Fig. 2.6.

Primary creep will follow the sudden elastic elongation. In this stage strain will

increase with decelerating strain rate as time increases. Next is secondary creep,

which occupies the largest region of the creep curve. In this stage, strain increases

with almost constant strain rate obeying a Norton power law. The last stage is
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Figure 2.6: Creep strain curve and various stages of creep.

tertiary creep, in this region strain increases with increasing strain rate finally leading

to fracture. Creep strain is highly dependent on temperature and applied loading. As

temperature increases, creep strain increases and as applied load increases, the creep

strain increases as shown in Fig. 2.7. For small strain problems, the total strain is

assumed to be divided into two parts, namely elastic strain εe and creep strain εc as,

εtotal = εe + εc. (2.31)

Elastic strain is related to stress as,

εe = (Cep)−1σ, (2.32)

whereas, creep strain is related to stress by the Liu-Morakami creep damage model

given in following section.
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Figure 2.7: Creep strain curve for (a) various stress with constant temperature and
(b) various temperatures with stress constant [2].

2.3.1 Liu-Morakami creep damage model

Creep strain rate in the multiaxial form using the Liu-Morakami model can be

given as,

ε̇cij = 3
2Cmσ

n2
eq

Sij
σeq

exp
(

2(n2 + 1)
π
√

1 + 3/n2

( σ1

σeq

)
·D

3
2

)
, (2.33)

where, Cm and n2 are material constant. ε̇cij,σeq, Sij and σ1 are creep strain rate, von

Misses stress, deviatoric stress and maximum principle stress respectively. Deviatoric

stress Sij can be given as,

Sij = σij −
1
3δijσkk, (2.34)

where, δij is Kronecker delta defined as,

δij =


1 if i = j,

0 if i 6= j,
(2.35)

and σkk = 3σh, where σh is hydrostatic stress, defined as:

σh = σ11 + σ22 + σ33

3 . (2.36)
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The damage variable D is evaluated by the equation,

Ḋ = Dm
(1− e−q2)

q2
σpre

q2D, (2.37)

where, Dm, q2, and p are material constants. σr is the rapture stress, which can be

given as,

σr = ασ1 + (1− α)σeq, (2.38)

where, α is the multi-axiality parameter. For a uniaxial condition α is zero.

2.3.1.1 Calculation of creep parameters

The Liu- Morakami model consists of a total of six parameters (Cm, n2,Dm, q2, p,

and α) which have to be found by careful testing of a specimen under creep. The

procedure to find these parameters can be given in brief as follows [3].

1. Uniaxial material constants: Cm, n2,Dm, q2, and p can be found using uniaxial

tension tests of a creep specimen.

(a) Cm and n2: These constants represents secondary creep behavior and hence

can be obtained by approximating the initial creep response as

ε̇c = Cmσ
n2 . (2.39)

By taking log of both sides, we get,

log(ε̇c) = n2log(σ) + log(Cm). (2.40)

By curve fitting a straight line through the creep data, Cm and n2 can be

obtained as shown in Fig. 2.8.
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(b) Dm, and p: In order to find these constants, we can rewrite Eq. (2.37) as,

dD

eq2D
= Qdt, (2.41)

where Q = Dm
(1−e−q2 )

q2
σp = constant. Now integrating Eq. (2.41) for limits

of 0 to 1 for D and 0 to total time to failure ttf for time gives us,

∫ 1

0
e−q2DdD = Q

∫ ttf

0
dt. (2.42)

After simplifying Eq. (2.42) with substitution of Q, we get

ttf = σ−p

Dm

. (2.43)

Taking the log of both sides of Eq. (2.43), we get

log(ttf ) = −plog(σ) + log( 1
Dm

). (2.44)

By curve fitting a straight line through the creep data, p and Dm can be

obtained as shown in Fig. 2.9.

(c) q2: After calculation of first four constants using the above mentioned

process, we know all other constants required for uniaxial creep curve apart

from q2. Therefore q2 can be easily found by curve fitting Eq. (2.33) in

data of εc vs time.

2. Multi axial material constant α: The most commonly used method to calculate

α involves creep testing on a notched specimen. The creep test is carried out

to find the total time to failure ttf . Using Eq. (2.37) , the total time to failure

can be written as,

ttf = 1
Dm(ασ1 + (1− α)σeq)p

. (2.45)
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Figure 2.8: Example of creep plot to calculate creep constants Cm and n2 [3].

Figure 2.9: Example of creep plot to calculate creep constants Dm, and p [3].

Then multiple finite element simulations can be carried out with different values

of α and total time to failure ttf can be calculated. The value of α that will be

selected whose ttf value match the value from Eq. (2.45).



CHAPTER 3: PERIDYNAMIC FUNDAMENTALS

In this chapter we will discuss some important peridynamic fundamentals that we

will need for creep formulation.

3.1 Dynamic to Static conversion

The peridynamic formulation is by itself a dynamic formulation. Therefore in order

to solve a static problems with a peridynamic formulation some special attention has

to be paid. Few of the most used methods to convert a dynamic formulation into a

static formulation are described in brief below.

3.1.1 Stability estimation/ Averaging method

Numerical results obtained from a peridynamic equation will fluctuate across some

value due to it’s dynamic nature. In order to find stable values of coordinates, the

average is considered of the maximum and minimum values. This is the simplest way

to obtain a steady state value. This method is introduced in [141, 142] and used for

peridynamics problem successfully in [143, 144]. This method works perfectly when

the fluctuation frequency is very high but, when the fluctuation frequency is low this

method is no longer accurate due to the long wavelength.

3.1.2 Energy minimization method

Another method is based on the total potential energy of a system. At steady

state, the total force acting on each PD node must be equal to zero. At this point

the total potential energy of the system is minimum. This can be achieved by an

iterative minimization method based on the conjugate gradient method [145]. This

method is used in the peridynamic realm by Le et al. [140].
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3.1.3 Dynamic relaxation method

The dynamic relaxation method was introduced long ago to solve static non-linear

problems [146,147]. This method is based on the fact that, the steady state solution

of the transient solution is static part. In order to do so a fictitious damping term

will be added in the equation of motion along with fictitious density as [148,149],

ρ(x)ü(x, t) + Λρ(x)u̇(x, t) = f intp (x, t) + b(x, t), (3.1)

where, Λ is the value of fictitious damping coefficient. Selection of this fictitious

damping coefficient was not always an easy choice as it will also affect the convergence

speed. Large value can leave the system over damped or a small value can take many

iterations to converge. This method was used in the peridynamics area by Rabczuk

et al. [150] to simulate quasi-static fracture in rocks.

3.1.4 Adaptive dynamic relaxation method

To improve the convergence, the concept of adaptive dynamic relaxation was in-

troduced in which a damping coefficient changes for every iteration [151, 152]. This

method was introduced in peridynamics formulation by Kilic et al. [153, 154]. The

effectiveness of this method was demonstrated by solving static problems involving

structural components under tensile and bending loadings and comparing the results

with finite element results [154]. Later many other researchers used this approach to

solve different peridynamics problems such as, brittle fracture [155].

3.2 Discretization method

In peridynamics, a homogeneous domain is discretized in a finite number of material

points with finite volume. Many different discretization methods were used in the

past [95, 156], but most commonly the domain will be divided with a square grid in

the case of 2D and a cubical grid in the case of 3D. There are two ways of discretizing
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Figure 3.1: Two ways of discretization of PD domain. (a) Cell edges on the domain
boundary, (b) nodes on the domain boundary

the domain boundary. Consider a simple example of the rectangular domain as shown

in Fig. 3.1. The solid blue line represents a domain boundary and the dotted black

lines are cell boundaries. As shown in the figure, the two ways are:

1. Align the boundary of a cell to a domain boundary. In this case there will

not be any nodes on the actual domain boundary, but all nodes will have the

same volume. The main disadvantage of this way is that the applied boundary

conditions will be applied to nodes somewhat inside boundary as there are no

nodes on the boundary. This causes an increase in the error of the solution.

2. Align the nodes to the domain boundary. In this case, nodes on the edge will

have a half volume and corner nodes will have a quarter volume.

In this study, we chose the discretization shown in Fig. 3.1 b.

3.3 Skin effect

Possession of the full neighborhood for any PD node is extremely important for ac-

curate results as PD parameters such as the deformation state in the case of the state

based PD or micro-modulus function in the case of the bond based PD are calculated

assuming a node has a complete neighborhood volume. The elastic strain energy den-

sity matches with the elastic strain energy density from the classical elasticity model.



29

Figure 3.2: Partial neighborhood of PD nodes near the domain boundary.

Due to this solutions obtained using PD matches with the classical continuum me-

chanics solutions for homogeneous deformations. But as shown in Fig. 3.2, nodes

near the domain boundary do not have a full neighborhood. Because of this nodes

near the domain boundary will result in slightly different behavior from the nodes

inside the bulk. This is called a "skin effect" or "surface effect". As nodes get closer

to the domain boundary, their neighborhood starts to decrease and becomes half for

nodes laying exactly on boundary. Corner nodes will have only quarter neighborhood

making them the least accurate nodes.

Many methods have been proposed in the literature to reduce this skin effect [157–

160]. A few of them are as follows:

1. The volume method: In this method the micromodulus value for nodes near the

boundary is increased in a such a way that boundary node has the same strain

energy density as an inner point.

2. The force density method: This is similar to the volume method. Micromodules

for a boundary node is multiplied with the multiplication parameter such that
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the materials behave as in the bulk.

3. The energy method: In this method, the strain energy density of the boundary

nodes is adjusted to match the inner nodes.

4. Fictitious node method: In this method, the ghost or dummy nodes are added

on the outside of the boundary till all the actual nodes have full neighborhood.

This is a very effective method which reduces error due to the skin effect to be

almost negligible.

In this study we will use the ’fictitious node method’ as this one is the most efficient

in reducing error in stress calculations. Details of all methods can be found in [160],

which reviews and compare all the methods.



CHAPTER 4: NUMERICAL IMPLEMENTATION

The concept of peridynamic constitutive correspondence was introduced in [37] to

take advantage of the large number of constitutive models which are already available

in classical continuum mechanics. For a peridynamic material model to be equivalent

to a classical material model, the strain energy density of both models should match

each other under the same deformations.

In the PD formulation, the deformation gradient can be approximated by

F =
[∫
H

ω(Y 〈ξ〉 ⊗ ξ)dVξ
]
K−1, (4.1)

where, ω is the influence function and K is the shape tensor given by

K =
∫
H

ω(ξ ⊗ ξ)dVξ. (4.2)

The force state using this correspondence principal is obtained by

T 〈ξ〉 = ωPK−1ξ, (4.3)

where, P is the first Piola-Kirchhoff stress tensor. The correspondence principle is

used to incorporate many classical continuum mechanics models in peridynamics such

as rate dependent plasticity or viscoelasticity [98]. Many attempts have been made

to incorporate other classical damage models in PD like the Johnson-Cook damage

model [66,161]. The general framework of incorporating any classical damage model

into PD is discussed in [162]. In this study we will use this correspondence principle

to incorporate the classical creep damage model in the PD.
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Figure 4.1: Application of incremental creep force on all points in the neighborhood
of PD node.

A forward Euler time integration scheme is used for calculation of the damage

parameter and creep strain.

4.1 Creep evaluation in finite element methods

The iterative scheme for creep growth using the finite element method is as follows,

1. Discretize the domain in uniform mesh, at time t = 0, initialize the damage

variable D = 0 at all Gauss points in all elements.

2. Carry out elastic-static analysis to find the displacement field u

(a) Calculate the element stiffness matrix and element force matrix

(b) Assemble the element matrices to obtain the global stiffness [K]global and

the force {f}global matrices.

(c) Apply the appropriate boundary conditions.

(d) Calculate the displacement at each node using,

[K]global{d} = {f}global. (4.4)
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3. Calculate the stress and strain at each Gauss point in all elements.

4. For creep analysis, the time increment ∆t is decided.

(a) Evaluate σ1 , σeq and σr at each Gauss point.

(b) Calculate the damaged Cep as (Cep)damage = (1−D)Cep.

(c) Using the Liu-Morakami model, compute the damage rate Ḋ, calculate the

incremental damage variable and update as

(∆D)t = ∆t(Ḋ) and (D)t+∆t = (D)t + (∆D)t. (4.5)

(d) Compute the creep strain rate ε̇c and calculate the increment in creep

strain and update as

(∆εc)t = ∆t(ε̇c) and (εc)t+∆t = (εc)t + (∆εc)t. (4.6)

(e) Evaluate the force vector due to incremental creep strain as

(∆f c)t =
∫

Ω
BT (Cep)damage∆εcdΩ, (4.7)

and calculate global the force matrix accordingly as shown in Fig. 4.1.

(f) Calculate the change in the displacement due to the creep force.

(g) Update the time to t = t + ∆t and repeat step 4 till the final time is

achieved.

4.2 Creep evaluation in peridynamics

The iterative scheme for creep growth using peridynamics is as follows,

1. Discretize the domain, at time t = 0, initialize the damage variable D = 0 at

all PD nodes and calculate the shape tensor K using Eq. (4.2) for each node.



34

Figure 4.2: Application of incremental creep force on all points in the neighborhood
of PD node.

2. Apply the appropriate boundary conditions and loads. (If necessary convert

surface loading into body force and apply on several layers of nodes.)

3. Carry out the elastic-static analysis by incorporation of the damping term into

the equation of motion of each node as

ρ(x)ü(x, t) + Λρ(x)ḋ(x, t) = f intp (x, t) + b(x, t), (4.8)

where Λ is the damping coefficient selected based on experience.

4. The equation of motion is to be solved using the velocity Verlet method until a

steady state solution is reached.

5. Calculate the stress at each node using the approximate deformation gradient

as

σ = Cepε, (4.9)

where Cep is known from the material properties and ε can be given as

ε = 1
2(FT + F)− I, (4.10)



35

where F is given by Eq. (4.1).

6. For creep analysis, the time increment ∆t is decided.

(a) Evaluate σ1 , σeq and σr at each PD node.

(b) Calculate the damaged Cep as (Cep)damage = (1−D)Cep.

(c) Using the Liu-Morakami model, compute the damage rate Ḋ, calculate the

incremental damage variable and update as

(∆D)t = ∆t(Ḋ) and (D)t+∆t = (D)t + (∆D)t. (4.11)

(d) Similar to the step above, compute the creep strain rate ε̇c, calculate the

incremental creep strain and update as

(∆εc)t = ∆t(ε̇c) and (εc)t+∆t = (εc)t + (∆εc)t. (4.12)

(e) Evaluate the force vector because of the incremental creep strain as

(∆f c)t = ω(Cep)damage(∆εc)tK−1ξ, (4.13)

and apply those forces as the body force at corresponding nodes as shown

in Fig. 4.2.

(f) Evaluate the updated displacement by solving the equation of motions for

each PD node until a new steady state is achieved.

(g) Update the time as t = t + ∆t and repeat step 6 until the final time is

achieved.

The same steps can be given in the form of flow chart as shown in Fig. 4.3.
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Start

Read inputs (Material, dimensions, BCs)

Discretization (Mesh)

Calculate corrected volumes and K matrix

Initialize

Static analysis (Fig. 4.4)

loop over time steps, (t = ∆t, ..., n∆t)

Creep analysis (Fig. 4.5)

Static analysis (Fig. 4.4)

Update time and damage

Is desired time reached?

Stop

yes

no

Figure 4.3: Flow chart of steps of numerical implementation

loop over Pseudo time steps, (tpseudo = 0, ...,m∆tpseudo)

Calculate accl of each point using Eq. (4.8)

Update position and velocity using velocity verlet method

Is steady state solution reached?

Calculate stress and strain using approximate deformation gradient

Stop

yes

no

Figure 4.4: Flow chart of steps of achieving steady state solution

4.3 Time marching method

The time integration in the equation of motion is conducted using the velocity

Verlet algorithm. Let us say, we know the position xn for the current time step, and
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loop over all PD nodes, (i = 1, ..., N)

Calculate σ1 , σeq and σr

Calculate damaged Cep as (Cep)damage = (1−D)Cep

compute the damage rate Ḋ

compute the creep strain rate ε̇c

loop over all PD nodes inside the horizon of PD node i, (j = 1, ...,M)

Evaluate force vector because of incremental creep strain

apply those forces as body force to corresponding nodes

End loop j

End loop i

Figure 4.5: Flow chart of steps of creep analysis

we know the position, velocity and acceleration for the past time step as xn−1, vn−1

and an−1 respectively. We first calculate velocity for current time step n as,

vn = xn − xn−1

dt
, (4.14)

where dt is the size of the time step. Then using this value of velocity, we calculate

the acceleration for the current time step an as,

an = f int + b− Λvn
ρ

, (4.15)
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and finally, using this acceleration value, we can calculate the position for the future

time step n+ 1 as,

xn+1 = 2xn − xn−1 + dt2an, (4.16)

The forward Euler time integration scheme is used for the calculation of the damage

parameter and creep strain as,

dD

dt
= Dn −Dn−1

∆t ,

dεc

dt
= εcn − εcn−1

∆t . (4.17)

4.4 Selection of influence function

The PD formulation provided in section 2.2 incorporates two damage parameters.

One is the damage parameter D given in the classical damage model and other is

the influence function ω̂ in the PD formulation. Use of both damage criteria will

lead to nonphysical instabilities in the numerical computations [161]. For example,

nodes with full damage impose unrealistic high strains at all points within their

horizon. This will eventually lead to further propagation of damage causing diffusion

of damage, where as in reality damage should be localized [161]. To avoid this, we

modify the influence function such that the influence function is now dependent on

the classical damage parameter D of both nodes as well along the bond length. This

is given as

ω = ω̂(|ξ|, D,D′), (4.18)

where D and D′ are the classical damage parameters at point x and x′ respectively.

In a simplified form, the above equation can be written as [161]

ω̂(|ξ|, D,D′) = ωξ(|ξ|)ωD(D,D′), (4.19)
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Figure 4.6: Representation of Gaussian influence function for two dimensional case.

where D and D′ ∈ [0, 1] and ωξ(|ξ|) is the PD influence function whose value depends

only on the bond length. The value of ωD has to be zero if any one of its argument

is grater than the critical damage Dcritical i. e. when any points of the bond has full

damage, the value of ωD is zero and can be given as

ωD(D,D′) =


0 if D > Dcritical or D′ > Dcritical,

1 otherwise.
(4.20)

Different forms of PD influence functions have been used in the past [1, 92]. Here

we choose the following Gaussian form [75,161],

ωξ(|ξ|) = e−
|ξ|2

l2 , (4.21)

where l is length scale. Selection of the length scale is explained in next section.

Fig. 4.6 shows the general representation of the Gaussian influence function given by

Eq. (4.21). It has been shown that the influence function given by Eq. (4.19) does

not affect the satisfaction of the balance laws by the equation of motion [161].
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4.4.1 Calculation of length scale

The length scale is a measure of non-locality, and as the value of the length scale

decreases, material becomes more and more non local in nature.

Consider a PD node and a finite element of the same dimension under the same

stress σx along the x –direction as shown in Fig. 4.7. For simplicity, we are considering

the stress in only one direction here. To achieve this stress in the FEM element, let

us say we have to apply force Fc on each node of the element in the positive and

negative x –direction as shown. Now to achieve same stress at a PD node, we have to

apply forces on all nodes inside the horizon of the center node. We can calculate the

force state at the center PD node using the known stress value from Eq. (4.3). This

will give us the force acting on each neighbor node required to obtain the same stress

as the FEM element if the center point has only that neighbor node. But, in reality

all nodes inside the horizon are interacting with the center PD node. Therefore, to

get same stress, the following equality must be valid,

n∑
1
fx = 2Fc, (4.22)

where, fx is the force on the PD node, Fc is force on the FEM node and n is the

number of PD nodes inside the horizon of the center node.

Using Eq. (4.3), we can write above equality as,

n∑
1
e−
|ξ|2

l2 P̄K−1ξ = 2Fc. (4.23)

Therefore Eq. (4.23) is used to calculate the value of length scale. It must be noted

that, value of the length will be the same for a specific material with a specific mesh

size.
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Figure 4.7: Equivalence of PD and FEM stress at node.

4.4.2 Crack representation

The number of bonds associated with any PD node is equal to the number of nodes

inside its neighborhood. Since all bonds do not break simultaneously, rather each

bond breaks when the damage criteria for that particular bond is reached. Therefore,

we have to define a new parameter for each node indicating the number of broken

bonds at each node. This parameter fbroken is defined as the fraction of the number

of broken bonds to the total number of bonds for any node,

fbroken = number of broken bonds
total number of nodes inside horizon . (4.24)

At t = 0, the number of broken bonds is zero, and hence, the fbroken is zero. The

maximum value of fbroken is 1. A plot of fbroken gives us the crack path.



CHAPTER 5: NUMERICAL EXAMPLES OF CREEP MODELING

To demonstrate the performance of the peridynamic formulation presented in the

previous section, creep studies are performed on 316 stainless steel at 600◦ C temper-

ature. Material properties of 316 stainless steel are given in Table 5.1, while creep

constants are given in Table 5.2.

5.1 Selection of damping coefficient

In this paper, we are using the dynamic relaxation method with a value of damping

coefficient of Λ = 5. This value is chosen through a parametric study where the

damping coefficient value was varied within certain range.

In order to select a value of the damping coefficient Λ and also to check if the

developed C++ code is correct, we solve a simple problem of a plate with a circular

hole at the center as shown in Fig. 5.1. The plate has dimensions of 100 mm by 50

mm, and the diameter of hole is 20 mm. As shown in Fig. 5.1, the left side is fixed,

and on the right side, a tensile stress of 1 MPa is applied. The bulk modulus is set

to be 100 GPa and Poisson’s ratio is set to be 0.4. The plate is meshed with nodes

with a size of 0.1 mm. the time step is chosen to be 1 ms. Static analysis is done

with different values of damping coefficient ranging from 0.3 to 5.

Results of this parametric study are shown in Fig. 5.2, where the displacement of

point ’A’ on right edge is plotted against time. As can be seen from Fig. 5.2, the

value of Λ = 5 gives the optimum damping without overshoot or over-damping.

We also plot the displacement of all nodes on the vertical center line of plate (shown

in bottom right corner of Fig. 5.3). These displacement values are compared with

results from the finite element method using ABAQUS as shown in Fig. 5.3. We can
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Figure 5.1: Geometry of problem of plate with hole. Plate is under uniaxial tension.

Table 5.1: Tensile properties of 316 stainless steel at 600◦ C. [4]

E (GPa) v

148 0.3

Table 5.2: Creep constants of 316 stainless steel at 600◦ C. [4]

Cm n2 Dm p q2 α

1.47×10−29 10.147 2.73×
10−30

10.949 6.35 0.47845

see the results are in excellent agreement with each other, and hence, we can say that

the chosen value of damping coefficient is reasonable.

5.2 Uniaxial tension test (Plain stress condition)

As shown in Fig. 5.4a the steel plate is under a uniaxial stress of 240 MPa. Dimen-

sions of the plate are 1 cm × 10 cm. Plane stress conditions are assumed.

The mesh is generated with the seed size of 0.05 cm. Load and fixed boundary

conditions are applied on 5 layers of nodes each. Although the density of the steel is

not required for this kind of problem, but due to the dynamic formulation, we have

to assume some value for density. Here density is assumed to be 1000 kg/m3.

Horizon size for the PD formulation is chosen to be four times the seed size, i.e.
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Figure 5.2: Results of parametric study in order to chose optimum value of damping
coefficient.

Figure 5.3: Geometry of problem of plate with hole. Plate is under uniaxial tension.

0.2 cm. The real time step is chosen to be 100 s and pseudo time step is 10−3 s.

The example was solved by writing code with C++ which was run on the university

cluster with 1 processor, and the computational time was approximately 30 hours.
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Figure 5.4: Plate under uniaxial loading

Figure 5.5: Displacement of point ’A’ with respect to pseudo time.

The same problem was also solved using FEM. the same mesh size was used in the

FEM as well for ease of comparison. The FEM solution was obtained using MATLAB

code.

Fig. 5.6a shows the displacement of point A which is at the center of plate as shown

in Fig. 5.4. The initial displacement observed at time t = 0 s is due to elastic static

analysis. Then an almost linear increase is observed as time increases. This behavior

shows secondary creep. When the time exceeds 2500 hours significant increase in

the displacement is observed which represents tertiary creep finally ending in failure.

Fig. 5.6b shows the evolution of damage parameter D with respect to time. It can

be seen that it shows a similar behavior to the displacement curve. At t = 0 s value
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(a)

(b)

Figure 5.6: Comparison of FEM and PD results of point A for (a) Displacement with
respect to time and (a) Evolution of damage parameter D with respect to time.

of D is zero and increases with respect to time. Results shows very good agreement

with the finite element method.
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Figure 5.7: Uniaxial creep specimen

5.3 3D uniaxial tension

In order to check the robustness of the proposed method, we also simulate a uniaxial

creep tension test. The geometry of the uniaxial creep specimen in shown in Fig. 5.7.

A cylindrical part, denoted by the red color, is chosen for our simulation because of

symmetry. The length of cylinder is L = 50 mm and the radius is R = 5 mm. Again,

the same material i.e. 316 stainless steel is used. The value of the applied load is

240 MPa, 260 MPa, 280 MPa and 300 MPa respectively. The horizon size for the PD

formulation is chosen to be four times the seed size, i.e. 0.2 cm. A real time step is

chosen to be 100 s, and a pseudo time step is 10−3 s.

As the number of peridynamic nodes inside the horizon of any PD node increases

by one order for a 3D domain than a 2D domain, the computational time increases

exponentially. In order to save computational time the 3D examples are solved by

writing code with Fortran 2003 as Fortran is shown to be 30 % faster than C++.

Fig. 5.8 shows a comparison of results with experimental data obtained by Hyde
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Figure 5.8: Comparison of creep strain for point ’A’ obtained using proposed PD
model and experimental results from Hyde et al. [4] for different load values.

et al. [4]. Four different loading conditions are applied (240 MPa,260 MPa,280 MPa

and 300 MPa). Results are in good agreement with experiments.

We also solved the same example using FEM with the help of ABAQUS along with

it’s user subroutine CREEP. The FEM results are consistent with the PD results.

Fig. 5.9a shows the displacement field in the loading direction at time t = 20 hours

and Fig. 5.9b shows the stress distribution at the same time. As expected, the stress

is uniformly distributed in the body with a value of the applied load, in this case 240

MPa.

In both uniaxial examples (2D and 3D), critical damage is not reached. We are

doing the analysis until the damage parameter D = 0.5. The reason behind this is as

the material is uniform and ideal, the damage parameter is uniform all over the body;

hence, damage at all points will reach the critical value together. In reality, due to

some defects in the material, stress concentration will occur causing some points to

reach the critical damage before others. In this case, only a single crack can initiate.
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Figure 5.9: Displacement field on creep specimen in direction of loading.

Figure 5.10: Uniform stress field on creep specimen in direction of loading.

5.4 2D Crack propagation (Mode I loading)

Creep crack growth analysis of a specimen under mode I loading is studied. The

specimen geometry is shown in Fig. 5.11, and for this problem, we chooseW = L = 40

mm. The length of the initial crack is 20 mm. The crack is modeled by removing

one layer of nodes and breaking all the bonds which cross that removed layer. The

material used for the specimen is 316 stainless steel at 600◦ C, and it is subjected to

11.51 kN force.

5.4.1 Comparison of static analysis with finite element

In the previous examples of uniaxial tension, the stress at every point in body is

the same, and hence, the creep strain and damage parameter D is uniform in the
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Figure 5.11: Geometry of crack propagation specimen with initial crack.

Figure 5.12: Stress distribution in plate with crack for σyy under tension. (a) shows
results from finite element and (b) shows results from peridynamics.

whole body. But in the case of the plate with an initial crack, a nonuniform stress

distribution is expected, and hence, it is important to make sure that the stress

distribution after the static analysis is correct. In order to do that, we solve the same

example using the finite element method. The mesh size is kept the same in the finite

element and the PD as 0.1 mm. Linear plane stress elements are used to mesh the

domain with FEM.

The normal stress in the x– and y–direction obtained from the finite element and

peridynamics simulations are shown in Fig. 5.12 and Fig. 5.13. As expected, the
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Figure 5.13: Stress distribution in plate with crack for σxx under tension. (a) shows
results from finite element and (b) shows results from peridynamics.

stress intensity is observed near the crack tip. Results from PD and FEM are in close

agreement with each other. Stress intensity in the PD is spread over a slightly larger

area than the FEM due to the skin effect. All the methods used to reduce the skin

effect are only applicable on outer boundaries but cannot be used for the crack tip.

Therefore, the primary reasons for the difference between the stress values by the

FEM and PD can be summarized as follows:

1. Incomplete neighborhood for the points near the crack tip. The ghost node

method is used to reduce the skin effect on boundaries but cannot be used near

the crack tip. This is the most dominant reason for error.

2. Boundary conditions in the FEM are applied only on the surface; whereas in

the PD, it is applied on several layers of nodes. This definitely does not impact

much but still is a source for error.

3. The way in which the crack is modeled in PD and FEM is different. In the PD

the crack is formed by removing one layer of nodes; on the other hand in the

FEM crack is modeled in the geometry itself. This makes the crack in FEM a

bit sharper than the crack in PD.

Despite these sources for errors, overall results are in good agreement with each other.
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Figure 5.14: Crack propagation under mode I loading due to creep. (a) Initial crack,
(b) crack at t = 100, (c) crack at t = 300, and (d) crack at t = 500.

5.4.2 Crack propagation due to creep

The critical value of the damage parameter Dcritical = 0.75 is chosen as the bond

breaking criterion. Therefore, if the damage parameter at a node is 0.75 all bonds

attached to that node break. Although this causes loss of total mass in the domain,

the amount of lost mass is very small compared to the total mass of the domain and

hence can be neglected.

Fig. 5.14 shows the crack at three different times. As we can see, the crack prop-

agates in a straight line, and the crack growth rate increases with respect to time.

Although bonds can break due to excess strain, most of the bonds in this case are

broken due to the node reaching a critical damage value.
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Figure 5.15: Plate under bending

5.5 2D bending example

Finally, we simulate the creep under bending loading in a plane stress condition.

Fig. 5.15 shows the plate geometry. Values of L and W are chosen to be the same

and is equal to 10 mm. A body force is applied in negative y–direction on the right

end of the plate while the left end is fixed. Material parameters are kept the same.

Fig. 5.16 shows the stress distribution over the plate under bending. The plate

mostly contains stress along x–direction in upper (tension) and lower (compression)

part near the fixed end. As the creep model does not alter the stress, this stress

distribution is maintained throughout the simulation. As the stress along y–direction

is negligible, the deformation of the plate continues mostly because of the weakening

of the material due to the accommodation of the damage near the fixed end and

not because of the addition of the extra force. Fig. 5.16c shows the shear stress

distribution over the domain.

Fig. 5.17 compares the creep strain and damage values for two specific points ’A’

and ’B’ on the plate as shown in Fig. 5.15. The tracking points are chosen to be
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Figure 5.16: Stress contours in plate under bending loading. (a) σ11, (b) σ22, and (c)
σ12.

somewhat inside the domain and not on the boundary to avoid the skin effect observed

in peridynamics. It is observed that damage and creep strain is accumulated near the

high stress region. Results are in good agreement with the finite element method.
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(a)

(b)

Figure 5.17: Comparison of (a) creep strain and (b) Damage for points ’A’ and ’B’
under bending.



CHAPTER 6: ANALYTICAL SOLUTION FOR COUPLING OF PD AND FEM

6.1 Wave propagation in peridynamics

In this section, we study a longitudinal plane wave propagating from the left to

right in an infinite homogeneous elastic medium. By assuming that the peridynamic

grid is uniform and rectangular, and the wave travels along the grid lines, the three–

dimensional problem can be simplified to a one–dimensional wave propagation prob-

lem. A plane wave traveling in the positive x–direction can be represented as

u(x, t) = A0e
i(ωt−Kx), (6.1)

where u(x, t) is the magnitude of the wave at point x at time t, A0 is the amplitude

of the wave, i =
√
−1, K is the wave number and ω is the angular frequency of wave.

The wave number K, angular frequency ω, time period T , wavelength λ and wave

velocity v are related by

v = ω

K
= λ

T
. (6.2)

The one–dimensional peridynamic grid used to study the motion of the wave is

shown in Fig. 6.1. We assume the distance between every two peridynamic nodes is

h and we number the nodes consecutively as k = . . . ,−3,−2,−1, 0, 1, 2, 3, · · · with

k = 0 at the origin of the x–axis. We assume that a time step τ is used to integrate

the equations of motion. By using Eq. (6.2) and noting that on this grid x = kh, the

displacement of node k is due to the propagation of a planar wave Eq. (6.1), at time

step n (t = nτ) can be written as

uk,n = A0e
iω(nτ−kh/v), (6.3)
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Figure 6.1: Modeling of 1D bar using peridynamic theory.

where uk,n is the magnitude of the wave at time step n at node k.

The equation of motion of node k can be obtained using Eq. (2.15). By assuming

the horizon δ = 3h, we obtain

ρük =
k+3∑
j=k−3

c0
(uj − uk)
|xj − xk|

Vjk, (6.4)

where Vjk is a fraction of the volume of the PD node inside the horizon. The finite

difference method can be used to approximate acceleration at time step n using

ük,n = 1
τ 2 (uk,n+1 − 2uk,n + uk,n−1). (6.5)

Substituting Eq. (6.5) in Eq. (6.4) and using Eq. (6.3) gives (for detailed steps see

Appendix A)

sin2
(
ωτ

2

)
= Eτ 2

27ρh2

[
sin2

(
3φ
2

)
+ 3 sin2 φ+ 6 sin2

(
φ

2

)]
, (6.6)

where,

φ = ωh

v
(6.7)

is used to simplify the notation. Using Eq. (6.2) in Eq. (6.7) and noting that ω = 2πT
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Figure 6.2: Variation of velocity of wave with respect to mesh size for different values
of δ.

we obtain

φ = 2πh
λ
. (6.8)

By dividing both sides of Eq. (6.6) by v0 =
√

E
ρ
, the wave velocity in a continuous

medium, we obtain

v

v0
=

2h
[
sin−1

(
τ
3h

√
E
3ρ{sin

2
(

3φ
2

)
+ 3 sin2 φ+ 6 sin2

(
φ
2

)
}
)]

v0φτ
. (6.9)

This equation provides the ratio of the wave velocity obtained from the peridynamic

formulation to the theoretical value of the wave velocity v0 in the continuum domain.

It is expected that this ratio be close to one when the problem is solved with high

accuracy. Based on Eq. (6.9), besides the material parameters, two other factors

affect the wave velocity obtained from the peridynamics formulation. The first one is

the ratio of grid size to the wavelength (i.e. φ) and the second one is the integration

time step τ .



59

To study the impact of the peridynamic horizon size on the wave velocity pre-

dicted by the peridynamic formulation, we repeat the previous procedure for δ = 2h.

Following the steps outlined in Appendix A for δ = 2h we obtain

sin2
(
ωτ

2

)
= Eτ 2

8ρh2

[
sin2 φ+ 4 sin2

(
φ

2

)]
, (6.10)

and the ratio of the wave velocity obtained from the discretized peridynamic formu-

lation and the wave velocity in a continuum domain can be obtained from

v

v0
=

2h
[
sin−1

(
τ
2h

√
E
2ρ{sin

2 φ+ 4 sin2(φ2 )}
)]

v0φτ
. (6.11)

Finally, we solve the problem for the case of δ = h. When δ = h, the one–dimensional

peridynamics formulation obtained from Eq. (2.15) becomes equivalent to the one–

dimensional finite element method with linear elements given in Eq. (2.9). Following

steps of Appendix A yields

sin2
(
ωτ

2

)
= Eτ 2

ρh2

[
sin2

(
φ

2

)]
, (6.12)

which leads to the following equation for the ratio of wave velocities from the peridy-

namic formulation and the wave velocity in the continuous medium as

v

v0
=

2h
[
sin−1

(
τ
h

√
E
ρ
{sin2(φ2 )}

)]
v0φτ

. (6.13)

This equation has been previously derived by Bazant et al. [130, 163] for wave prop-

agation in a continuous medium discretized by the linear finite elements.

To study the impact of the grid resolution and size of the horizon on the wave

velocity, Eq. (6.9), Eq. (6.11) and Eq. (6.13) are plotted in Fig. 6.2 with value of
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τ = 1 ms. The graph shows that when the ratio of λ/h increases, i.e. when the grid

resolution is fine with respect to the wavelength, the wave velocity obtained from the

peridynamics formulation approaches that of the theoretical value for the continuum

medium. By increasing the size of horizon, a finer grid is required for the wave velocity

to match the theoretical value. For example, in order for the wave velocity v to match

its theoretical value, when δ = h, the wavelength should be at least 10 times larger

than the grid spacing, but when δ = 3h the wavelength should be about 30 times

larger than the grid size. This trend clearly shows the necessity of using finer grids

when the horizon size increases.

The wave dispersion curves can be obtained by rearranging Eqs (6.6), (6.10) and

(6.12) to obtain a relation between the angular frequency ω and wave vector K

ω = 2
τ

sin−1
[
τ

h

√√√√ E

27ρ

[
sin2

(
3Kh

2

)
+ 3 sin2(Kh) + 6 sin2

(
Kh

2

)]]
, for δ = 3h,

(6.14a)

ω = 2
τ

sin−1
[
τ

h

√√√√E

8ρ

[
sin2(Kh) + 4 sin2

(
Kh

2

)]]
, for δ = 2h,

(6.14b)

ω = 2
τ

sin−1
[
τ

h

√
E

ρ
sin
(
Kh

2

)]
, for δ = h.

(6.14c)

The dispersion curves for different horizon sizes are plotted in Fig. 6.3. These

curves show the same trend as the dispersion curves obtained in Reference [164]. For

large wavelengths, all the dispersion curves match with the theoretical values. For

small wavelengths, the dispersion curves obtained from the peridynamic formulation

do not match with the theoretical curve, and the difference is more significant for

larger horizon sizes.
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Figure 6.3: Dispersion relations for the different horizon sizes and wave vectors for
h = 1mm.

To verify the analytical results numerically, the propagation of a longitudinal wave

is modeled using the peridynamics formulation. The longitudinal wave is shown in

Fig. 6.4a and is composed of a coarse and a fine component represented by

u(x, t) = 10−4ei(x−
1000πt

32 ) + 10−5ei(x−1000πt). (6.15)

The value of λ/h for the low frequency component of the wave is approximately 250

and for the high frequency wave is approximately 8. A time step of 1 ms is used for

the time integration of the equations of motion.

The snapshots of the wave propagation obtained using different horizon size are

shown in Fig. 6.4. These snapshots show that the velocity of the low frequency (long

wavelength) component of the wave is the same for all horizon sizes and is equal

to the theoretical value of wave velocity. On the other hand, the high frequency

component (short wavelength) of the wave travels at a lower velocity than the low

frequency component. By increasing the size of horizon δ from h to 3h, the velocity of
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high frequency wave reduces drastically and it lags further behind the low frequency

wave. The numerical results are in agreement with the analytical results presented

in Fig. 6.2.

(a) (b)

(c) (d)

Figure 6.4: Propagation of high and low frequency waves in homogeneous bar for
different peridynamic horizons. (a) The initial wave, (b) δ = h, (c) δ = 2h and (d)
δ = 3h. The snapshots of the propagated waves are at t = 14s.

6.2 Non-uniform discretization

To reduce the high computational costs associated with using peridynamics, it is

advantageous to couple peridynamics and finite elements. In such a coupling method,

peridynamics is used in critical zones where crack nucleation and propagation is prob-

able and the finite element method is used elsewhere. Due to the change in the for-

mulation from a nonlocal to a local continuum and because of the difference in the
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grid size of the finite element and peridynamic zone, spurious wave reflections happen

at the interface between peridynamics and the finite element zone.

To demonstrate the issue of wave reflection, we model wave propagation using

a coupled peridynamics–finite element approach. The discretized one–dimensional

domain is shown in Fig. 6.5. As shown, the domain is discretized by a peridynamic

grid of constant spacing h in the left and a finite element mesh of constant size H ≥ h

in the right. Peridynamic nodes are shown with solid black circles and finite element

nodes are shown with "×". The peridynamics and finite element nodes are marked

consecutively as k = · · · − 3,−2,−1, 0, 1, 2, 3, · · · . The peridynamics zone covers the

subdomain with k ≤ 0 and finite element zone covers k ≥ 0. Therefore, the two

zone only overlap at k = 0 where the displacement, velocity, and acceleration of

the peridynamic node is transferred to the finite element node at k = 0. To ensure

that the peridynamic nodes close to the interface have the same number of neighbors

as the other peridynamics nodes, ghost nodes are added to the right side of the

interface. The ghost nodes are shown in red in Fig. 6.5 and their spacing is the same

as the original peridynamic grid. The displacement of ghost nodes are obtained be

interpolating the displacement of finite element nodes using the finite element shape

functions. We model the propagation of the wave presented in Eq. (6.15) from the

peridynamic zone to the finite element zone using the described coupling method.

The material is linear elastic and for simplicity its cross section and Young’s modulus

is kept to be unity. To ensure that both the finite element and peridynamic zone have

the same material properties, the peridynamic material parameter c0 is found using

Eq. (2.13). The H/h ratio is chosen to be 4.

The snapshot of the wave before and after reaching the interface point is shown in

Fig. 6.6a and Fig. 6.6b, respectively. As shown, after reaching the interface, only the

low frequency component of the wave can travel into the finite element zone and high

frequency component of the wave spuriously reflects back into the peridynamics zone.
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Figure 6.5: Coupling of peridynamics and finite element for (a) peridynamic grid
spacing is h and finite elements size is H, (b) both finite element and peridynamics
have the same spacing h. Peridynamic nodes are shown with solid black circles and
finite element nodes are shown with "×". Red color indicates ghost node.

The spurious wave reflection of the wave can significantly reduce the computational

accuracy and must be prevented. A technique for resolving the issue of spurious wave

reflection is proposed in [137]. In this section, we study the impact of the horizon

size δ, λ/h ratio and H/h ratio on the spurious wave reflection at the interface. For

the simplicity of the presentation, we study the coupling for two cases: a) when

the discretization is not uniform between the peridynamic and the finite element

domains, i.e. h 6= H; and b) when h = H, i.e. a uniform discretization is used in

both peridynamic and finite element zones.

The coupling of peridynamic and finite element zones when the finite element mesh

is coarser than the peridynamic grid is shown in Fig. 6.5a. As described previously,

the equation of motion of the nodes with k ≤ 0 is obtained using the peridynamic

formulation and equation of motion of nodes with k ≥ 0 is obtained using the finite

element method. At k = 0, information from the peridynamic domain is passed to the

finite element zone. Since all the peridynamic nodes should have the same number of

nodes in their horizon, ghost PD nodes are added to the right side of the interface.

For example, if δ = 3h, three PD ghost nodes are added as shown in Fig. 6.5.

Using Eq. (2.15) and Eq. (2.9), the equation of motion of PD and FE nodes when



65

(a)

(b)

Figure 6.6: (a) Incident waves and (b) reflection of high frequency wave from transition
point.

δ = 3h can be expressed as

ρük =
k+3∑
j=k−3

c0
(uj − uk)
|xj − xk|

Vjk, for k ≤ 0, (6.16a)

ρHük = E

H
(uk+1 − 2uk + uk−1), for k ≥ 0. (6.16b)
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To simplify the calculations and without the loss of generality, we assume that

the amplitude of the incident wave traveling from the peridynamic zone toward the

finite element zone is equal to one. A spurious wave reflection with an amplitude of

β occurs at k = 0 and a plane wave with amplitude of α transmits into the finite

element zone. Therefore, the displacement of each node can be written as

uk,n = eiω(nτ−kh/v) − βeiω(nτ+kh/v), for k ≤ 0, (6.17a)

uk,n = αeiω(nτ−kH/V ), for k ≥ 0, (6.17b)

where V is the velocity of wave in the finite element zone. Since the displacement

obtained from Eq. (6.17)a and Eq. (6.17)b at k = 0 should be the same, we obtain a

relation between the amplitude of transmitted and reflected waves as

1− β = α. (6.18)

Since the angular frequency of the wave does not alter after passing into the finite

element zone, by equating frequency of wave using Eq. (6.6) and Eq. (6.12) (by

changing FEM element length to H), we obtain a relationship between the wave

velocities in the peridynamic and the finite element zones as

sin2
(

Φ
2

)
= 1

27

(
H

h

)2[
sin2

(
3φ
2

)
+ 3 sin2 φ+ 6 sin2

(
φ

2

)]
, (6.19)

where, Φ = ωH
V
. Using Eq. (6.16)a, the equation of motion for the PD point at k = 0

can be written as

ρü0 = F−3 + F−2 + F−1 + F ∗1 + F ∗2 + F ∗3 , (6.20)

where F ∗j is the force due to ghost nodes in the FEM region. Here the value of k at

three ghost nodes can be given as, k∗1 = h/H, k∗2 = 2h/H and k∗3 = 3h/H. Substituting
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Eq. (6.17) in Eq. (6.20) gives (details are presented in Appendix B)

sin2
(

Φ
2

)
+ (H/h)2

108(1− β)

[
α
{
e−3iΦh/H + 3e−2iΦh/H + 6e−iΦh/H

}
+
{
e3iφ + 3e2iφ + 6eiφ − 20

}
− β

{
e−3iφ + 3e−2iφ + 6e−iφ − 20

}]
= 0. (6.21)

By solving Eqs (6.18),(6.19) and (6.21), the values of α and β for different ratios of

λ/H and H/h can be found.

A similar procedure can be conducted to find the amplitude of transmitted and

reflected waves for other values of δ. For example, for δ = 2h, the relationship

between the wave velocities in the peridynamics and finite element zones is found by

equating Eq. (6.10) and Eq. (6.12)

sin2
(

Φ
2

)
= 1

8

(
H

h

)2[
sin2 φ+ 4 sin2

(
φ

2

)]
, (6.22)

and by using the equation of motion of the PD node at k = 0 we obtain

sin2
(

Φ
2

)
+ (H/h)2

32(1− β)

[
α
{
e−2iΦh/H + 4e−iΦh/H

}
+
{
e2iφ + 4eiφ − 10

}
−β

{
e−2iφ + 4e−iφ − 10

}]
= 0. (6.23)

The values of α and β can be found by solving Eqs (6.18),(6.22) and (6.23) simulta-

neously. Finally, for δ = h, the PD formulation reduces to the finite element method.

This can be easily verified by using Eq. (6.12) to get

sin
(

Φ
2

)
=
(
H

h

)
sin
(
φ

2

)
. (6.24)
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Using the equation of motion of the PD node at k = 0 yields

sin2
(
φ

2

)
+ (1

4(1− β)

[
α
{
e−iΦ

h/H
}

+
{
eiφ − 2

}
− β

{
e−iφ − 2

}]
= 0. (6.25)

The values of α and β for different ratios of λ/H and H/h are plotted in Fig. 6.7.

As expected for large wavelengths, there is no reflection and the entire wave travels

into the finite element zone. But spurious wave reflections occurs for shorter wave

lengths. The amplitude of the reflected wave greatly depends on the λ/H ratio. The

effect of the change of δ is dominant for small H/h ratios. As we increase the value

of δ, spurious reflection decreases for small H/h ratio but remains almost constant

for high H/h ratio.

6.3 Energy flux calculation

Besides the amplitude of the transmitted wave, the energy of the reflected and

transmitted wave can be used to study the issue of wave reflection. The energy of a

wave is the sum of the potential (strain) and kinetic energy. Consider the plane wave

given in Eq. (6.1). The potential energy of the wave stored in a differential length dx

of the domain is

dEU = 1
2ρω

2u2dx, (6.26)

where u is the real part of displacement given by Eq. (6.1). By integrating the

above equation over the wavelength of the wave, the potential energy stored in one

wavelength is obtained as

EU =
∫ λ

0

1
2ρω

2u2dx = 1
4ρω

2A2
0λ, (6.27)

where λ is the wavelength. The kinetic energy of the wave over length dx is

dEK = 1
2ρu̇

2dx. (6.28)
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Results for amplitude of transmitted wave and reflected wave versus H/h
ratio for [(a),(b)] δ = h, [(c),(d)] δ = 2h and [(e),(f)] δ = 3h for different λ/H ratios.
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The total kinetic energy of the wave in a wavelength λ is

EK =
∫ λ

0

1
2ρu̇

2dx = 1
4ρω

2A2
0λ. (6.29)

Hence total energy in one wavelength is

E = EU + EK = 1
2ρω

2A2
0λ = 1

2ρω
2A2

0vT, (6.30)

or the average energy over wave period is

〈P 〉 = E

T
= 1

2ρω
2A2

0v. (6.31)

In the peridynamic zone v = ωh
φ
. Therefore, the average energy of the incident

(A0 = 1) and reflected (A0 = β) wave can be written as

〈PI〉 = 1
2ρω

3h

φ
, (6.32a)

〈PR〉 = 1
2ρω

3β2h

φ
. (6.32b)

Similarly, in the finite element zone V = ωH
Φ . Hence the average energy of the

transmitted wave (A0 = α) is

〈PT 〉 = 1
2ρω

3α2H

Φ . (6.33)

Hence, the ratios of the energy of the transmitted and reflected waves to the energy

of the incident wave can be written as

〈PR〉
〈PI〉

= β2, (6.34a)

〈PT 〉
〈PI〉

= α2 φ

Φ

(
H

h

)
. (6.34b)



71

The above two equations are plotted for different values of λ/H in Fig. 6.8. The

results show that very small fraction of energy gets transmitted for high frequency

waves. Although the fraction of energy reflecting back in the PD region is small, a

huge part of the energy is lost because of a numerical artifact. For low frequency

waves almost all energy is transmitted to the FEM part without any energy loss. The

sum of the power ratios is always one for higher λ/H ratios, which signifies that there

is no energy loss in the system and serves as a check for our calculations.

6.4 Uniform discretization

We study the special case when both the peridynamic and the finite element zone

have the same discretization size by setting h = H in Eqs (6.21–6.25). The amplitudes

and energies of the transmitted and reflected waves are shown in Fig. 6.9 and Fig. 6.10,

respectively. Fig. 6.11 shows the variation in the total energy of the wave with respect

to the relative wavelength. The results show that the amplitude of the transmitted

wave can be larger than the amplitude of the incident wave. The plots also show

that wave reflection happens at low values of λ/h. Since both finite elements and

peridynamics have the same grid spacing, the wave reflection occurs due to the change

in the domain formulation from a nonlocal to a local continuum. By increasing the

value of δ the amplitude of the wave reflection increases which indicates that by

increasing the size of horizon the nonlocal effects become more important.

A new coupling method to solve this issue is proposed based on Arlequin method

[165–167]. In this method, both the peridynamic domain and finite element do-

main overlap with each other at the interface. The displacements of the peridynamic

nodes are decomposed into two components, first the course displacement, this is

the displacement which can be supported by the FE nodes and the second, the fine

displacement, this is the displacement which can not be resolved by the FE nodes.

A viscous damping is introduced into the equation of motion of the fine displace-

ment part and the fine displacement component is damped out. This results in the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Results showing for ratio of average transmitted energy flux and average
reflected energy flux to average incident energy flux versus H/h ratio [(a),(b)] δ = h,
[(c),(d)] δ = 2h and [(e),(f)] δ = 3h for different λ/H ratios.
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(a)

(b)

Figure 6.9: Results for amplitude of (a) transmitted wave and (b) reflected wave
versus relative wavelength for uniform mesh.

suppression of the spurious reflection. This method was tested by solving numerous

examples and proven to be effective in resolving the issue of spurious reflections. The

detailed analysis of this method can be found in [136,137].
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(a)

(b)

Figure 6.10: Results for ratio of (a) average transmitted energy flux, and (b) average
reflected energy flux to average incident energy flux versus relative wavelength for
uniform mesh.
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Figure 6.11: Results for ratio of average total energy flux to average incident energy
flux versus relative wavelength for uniform mesh.



CHAPTER 7: ANALYTICAL SOLUTION FOR COUPLING OF NONUNIFORM

PD

In this chapter, the problem of a one–dimensional elastic wave propagation in a

peridynamic grid with uniform spacing everywhere except at one point is analyzed.

The PD grid is shown in Fig. 7.1a. As shown, the left and right sides of the domain

are discretized with grids of size h and H with H ≥ h. Similar to previous analysis

the nodes are numbered consecutively, and the two grids are connected at node k = 0.

We assume that the size of the horizon of the left and right regions of the domain

changes according to the grid spacing. For example, if the horizon of the left grid

is ε = 2h, the horizon of the right grid is δ = 2H. Since H ≥ h, the nodes of the

left region which are close to the interface have fewer nodes in their horizon than the

other nodes of the left region. On the other hand, the nodes of the right region which

are close to the interface have a greater number of nodes in their horizon than the

other nodes of the right region. We assume the node at k = 0 has the same horizon

k = 0 1 3-2-4

h H
δ 

ϵ 

-3 -1-5 2

(a)

k = 0 1-2-4

h hδ 
ϵ 

-3 -1-5 2 3

(b)

Figure 7.1: Coupling of peridynamics regions for different horizons with (a) different
mesh size and (b) same mesh size.
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(a)

(b)

Figure 7.2: (a) incident waves and (b) reflection of high frequency wave from transition
point for nonuniform mesh using only PD.

size δ of the right hand zone.

We model the propagation of the wave presented in Eq. (6.15) from a peridynamic

grid with h = 0.02 to another grid withH = 0.04 using the described coupling method
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for a linear elastic material. The snapshot of the wave before and after reaching the

interface point is shown in Fig. 7.2a and Fig. 7.2b, respectively. It is interesting

to note that the amplitude of the transmitted wave is more than amplitude of the

incident wave. Also, as expected, the high frequency wave spuriously reflects back

into the peridynamic zone. Additionally, we observe that some part of low frequency

wave also reflects from interface point. In what follows we obtain the amplitude of the

reflected and transmitted waves as a function of the grid spacings and the peridynamic

horizon size. To simplify the calculations, we assume that wave reflection occurs only

at k = 0.

7.1 Horizon three times the mesh size

Since the angular frequency of the wave does not change by transmission from the

left region to the right region, a relation between the wave velocities in two regions

can be obtained by using Eq. (6.6)

sin2
(

3φ
2

)
+ 3 sin2 φ+ 6 sin2

(
φ

2

)
=
(
h

H

)2[
sin2

(
3Φ
2

)
+ 3 sin2 Φ + 6 sin2

(
Φ
2

)]
, (7.1)

where φ = ωh
v

and Φ = ωH
V
. the equation of motion of node k = 0 can be expressed

as

ρü = F−3 + F−2 + F−1 + F1 + F2 + F3, for 1 ≤ H/h < 1.333, (7.2a)

ρü = F−4 + F−3 + F−2 + F−1 + F1 + F2 + F3, for 1.333 ≤ H/h < 1.666, (7.2b)

ρü = F−5 + F−4 + F−3 + F−2 + F−1 + F1 + F2 + F3, for 1.666 ≤ H/h < 2,

(7.2c)

ρü = F−6 + F−5 + F−4 + F−3 + F−2 + F−1 + F1 + F2 + F3, for 2 ≤ H/h < 2.333,

(7.2d)
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where Fi is the force exerted by node i on node k = 0. The forces Fi are given in

the right hand side of Eq. (2.15). By using Eq. (6.17) as the displacement field, the

equation of motion of node k = 0 can be written as

for 1 ≤ H/h < 1.333 :

sin2
(

3Φ
2

)
+ 3 sin2 Φ + 6 sin2

(
Φ
2

)
+ 1

4α

[(
6H
h
− 5

)
(e3iφ − βe−3iφ − α)

+3(e2iφ − βe−2iφ − α) + 6(eiφ − βe−iφ − α) + 6α(e−iΦ − 1)

+3α(e−2iΦ − 1) + α(e−3iΦ − 1)
]

= 0,

for 1.333 ≤ H/h < 1.666 :

sin2
(

3Φ
2

)
+ 3 sin2 Φ + 6 sin2

(
Φ
2

)
+ 1

16α

[
3
(

6H
h
− 7

)
(e4iφ − βe−4iφ − α)

+8(e3iφ − βe−3iφ − α) + 12(e2iφ − βe−2iφ − α) + 24(eiφ − βe−iφ − α)

+24α(e−iΦ − 1) + 12α(e−2iΦ − 1) + 4α(e−3iΦ − 1)
]

= 0,

for 1.666 ≤ H/h < 2 :

sin2
(

3Φ
2

)
+ 3 sin2 Φ + 6 sin2

(
Φ
2

)
+ 1

40α

[
6
(

6H
h
− 9

)
(e5iφ − βe−5iφ − α)

+15(e4iφ − βe−4iφ − α) + 20(e3iφ − βe−3iφ − α) + 30(e2iφ − βe−2iφ − α)

+60(eiφ − βe−iφ − α) + 60α(e−iΦ − 1) + 30α(e−2iΦ − 1) + 10α(e−3iΦ − 1)
]

= 0,

for 2 ≤ H/h < 2.333 :

sin2
(

3Φ
2

)
+ 3 sin2 Φ + 6 sin2

(
Φ
2

)
+ 1

40α

[
5
(

6H
h
− 11

)
(e6iφ − βe−6iφ − α)

+12(e5iφ − βe−5iφ − α) + 15(e4iφ − βe−4iφ − α) + 20(e3iφ − βe−3iφ − α)

+30(e2iφ − βe−2iφ − α) + 60(eiφ − βe−iφ − α)

+60α(e−iΦ − 1) + 30α(e−2iΦ − 1) + 10α(e−3iΦ − 1)
]

= 0. (7.3)
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The amplitudes of the transmitted wave α and reflected wave β can be found by

solving Eqs (6.18), (7.1) and (7.3).

7.2 Horizon two times the mesh size

The relation between wave velocities in the two regions can be obtained by using

Eq. (6.10)

sin2 φ+ 4 sin2
(
φ

2

)
=
(
h

H

)2[
sin2 Φ + 4 sin2

(
Φ
2

)]
. (7.4)

The equation of motion for node k = 0 can be given as follows,

ρü = F−2 + F−1 + F1 + F2 for 1 ≤ H/h < 1.5, (7.5a)

ρü = F−3 + F−2 + F−1 + F1 + F2 for 1.5 ≤ H/h < 2, (7.5b)

ρü = F−4 + F−3 + F−2 + F−1 + F1 + F2 for 2 ≤ H/h < 2.5. (7.5c)
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By finding the forces Fi using Eq. (2.15) and displacement field from Eq. (6.17), the

equation of motion of node k = 0 can be written as

for 1 ≤ H/h < 1.5 :

sin2 Φ + 4 sin2
(

Φ
2

)
+ 1

4α

[(
4H
h
− 3

)
(e2iφ − βe−2iφ − α)

+4(eiφ − βe−iφ − α) + 4α(e−iΦ − 1) + α(e−2iΦ − 1)
]

= 0,

for 1.5 ≤ H/h < 2 :

sin2 Φ + 4 sin2
(

Φ
2

)
+ 1

6α

[(
4H
h
− 5

)
(e3iφ − βe−3iφ − α) + 3(e2iφ − βe−2iφ − α)

+6(eiφ − βe−iφ − α) + 6α(e−iΦ − 1) + 3
2α(e−2iΦ − 1)

]
= 0,

for 2 ≤ H/h < 2.5 :

sin2 Φ + 4 sin2
(

Φ
2

)
+ 1

24α

[
3
(

4H
h
− 7

)
(e4iφ − βe−4iφ − α) + 8(e3iφ − βe−3iφ − α)

+12(e2iφ − βe−2iφ − α) + 24(eiφ − βe−iφ − α) + 24α(e−iΦ − 1) + 6α(e−2iΦ − 1)
]

= 0.

(7.6)

Eq. (7.6) can be solved along with Eqs (6.18) and (7.4) to obtain amplitudes of

reflected and transmitted waves.

7.3 Discussion of the results

The amplitude of the transmitted and reflected wave for two cases of λ/H = 2.5

and λ/H = 50 are shown in Fig. 7.3. The discontinuities in the values of α and

β observed in the graphs of Fig. 7.3, occurs when the number of nodes within the

horizon of node k = 0 changes.

The plots of Fig. 7.3 show that when the wave passes between two PD grids of

different sizes, a spurious wave reflection occurs. The wave reflection is more severe for

higher values of H/h, i.e. when the grid size changes more drastically. An important
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(a)

(b)

Figure 7.3: Results for amplitude of (a) transmitted and (b) reflected wave at interface
point for PD with non uniform mesh.

observation is that the amplitude of the transmitted wave is higher than the amplitude

of the incident wave. When the grids become finer compared with the wavelength, i.e.

when λ/H increases, the amplitudes of both the reflected and the transmitted wave
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(a)

(b)

Figure 7.4: Fraction of energy (a) reflected, and (b) transmitted for non uniform PD
for different λ/H ratios and different values of δ.

reduce. However, spurious wave reflections do not disappear even when λ/H = 50.

The wave reflection is studied further by plotting the ratio of the average energy

flux of the reflected and transmitted wave to the average energy flux of the incident
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Figure 7.5: Results for ratio of average total energy flux to average incident energy flux
versus relative wavelength for non uniform PD for different λ/H ratios and different
values of δ.

wave as shown in Fig. 7.4. These graphs show that when λ/H = 50 the energy of the

reflected wave is less than 2% of the energy of the incident wave. On the other hand,

when λ/H = 2.5, the energy of the reflected wave can be as high as 60% percent

of the energy of the incident wave. The ratio of the average energy flux of both the

transmitted and reflected wave to the average energy flux of the incident wave is

shown in Fig. 7.4c. This figure shows that the total energy of the transmitted and

reflected waves is higher than the total energy of the incident wave. This is mainly

because the amplitude of the transmitted wave is higher than the amplitude of the

incident wave.

As a special case, we study the propagation of wave when only the size of the

horizon changes and the grid size remains uniform, i.e. H = h, as shown in Fig. 7.1b.

The peridynamic horizon size for k < 0 is ε = 3h and for k ≥ 0 the horizon δ = 2h.

In this case, the relation between the wave velocities in the two regions is obtained
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by equating Eq. (6.6) and Eq. (6.10)

sin2 Φ + 4 sin2
(

Φ
2

)
= 8

27

[
sin2

(
3φ
2

)
+ 3 sin2(φ) + 6 sin2

(
φ

2

)]
, (7.7)

here Φ = ωh
V

and φ = ωh
v
, where v and V are the wave velocities in the left and

right regions, respectively. After substituting the solution from Eq. (6.17) into the

equation of motion for point k = 0 using Eq. (6.16) we get,

sin2 φ+ 4 sin2
(
φ

2

)
+ 1

4α

[
αe−2iΦ + 4αe−iΦ + e2iφ + 4eiφ− βe−2iφ− 4βe−iφ− 10α

]
= 0.

(7.8)

Eqs (6.18), (7.7) and (7.8) can be used to find the amplitude of the transmitted

and reflected waves. These amplitudes along with the ratios of the average energy

flux are plotted in Fig. 7.6. These figures show that even when the grid is uniform,

wave reflection can occur. This reflection is due to the change in the size of the

peridynamic horizon. For λ/h ratio more than 20, the wave passes without any

spurious reflection through the transition point. The simplest way to avoid this is

by filtering out wavelengths with a λ/H ratio less than 20. Other techniques for

resolving the issue of wave reflection due to the change of the grid or horizon size are

presented in [134,135].

7.3.1 Comparison with numerical results

The analytical results of this section are verified with the numerical results. For

this purpose the wave propagation in a bar of length 20 mm is modeled. The domain

is discretized in the left by a grid with a node spacing of h = 0.02 mm. To study

the impact of the ratio of H/h, the grid spacing H of the right side of the domain is

varied. A plane wave with amplitude of 10−4 mm represented by

uk = 10−4eiω(τn−kh/v), (7.9)
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(a) (b)

(c) (d)

Figure 7.6: Results for dual horizon PD with uniform mesh for (a) transmitted wave,
(b) reflected wave, (c) fraction of transmitted average energy flux and (d) fraction of
reflected average energy flux.

travels from left to rigth and the amplitudes of the reflected and the transmitted

waves are measured. A time step of τ = 10−3 s is chosen for numerical integration.

Results of the numerical simulations are shown in Fig. 7.7 and are compared with

the analytical results. We can see that for δ = H results are in excellent agreement

with the analytical predictions. When δ = 2H, the amplitudes of reflected and

transmitted waves are following the same trend as is predicted by the analytical

method, however the values of the amplitudes are different. This difference between

numerical and analytical results can be due to the assumption that wave reflection

occurs only at k = 0.
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(a)

(b)

Figure 7.7: Comparison of numerical results with analytical results for L/H = 50 for
(a) δ = H and (b) δ = 2H.



CHAPTER 8: CONCLUSIONS

The Peridynamic formulation to predict the creep in metal using a stress based

damage model is presented. The Liu-Morakami creep damage model was used to

model creep. The dynamic relaxation method was used to obtain steady state results

from the dynamic formulation of PD. The influence function of the peridynamics

formulation is modified to incorporate damage from the Liu-Morakami creep model.

Robustness of the proposed model was shown by solving a plain stress 2D example

and comparing results with finite element models. 316 Stainless steel at 600◦ C is

used as a material for the creep test. Results were in good agreement with the FEM

with the maximum error of less than 9%. Also, a 3D uniaxial creep test was simulated

using peridynamics and results were compared with the finite element model which

shows good agreement with each other.

Crack propagation due to creep was simulated for the same material, 316 stainless

steel, for a plane stress condition. As fictitious node method to reduce the skin

effect cannot be used at a crack tip or newly formed crack surfaces. Some error

was observed for the stress field near the crack tip, but the overall results were in

good agreement with FEM. Finally, the bending problem was solved using the new

formulation. This new formulation gives an alternative way for modeling creep in

metals using peridynamics allowing us to exploit the salient features of PD while

modeling creep.

We also studied the one–dimensional wave propagation in a domain composed of

two regions. Two cases were considered. In the first case, peridynamics is used in

one zone and the finite element method is used in the other zone. In the second

case, peridynamics is used everywhere, but the grid spacing and horizon size change
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between the two regions. Using an analytical approach, we showed that spurious

wave reflections occur in both cases. The amplitude of the spurious waves depends

on factors such as the wavelength of the incident wave, the ratio of the grid spacing in

the two regions of the domain, and the horizon size of the peridynamic zone. As the

ratio of the wavelength to grid size increases, the spurious wave reflection reduces.

The wave reflection gets worse when the size of the resolution of the grids changes

more drastically, but wave reflection can happen even when the grid spacings are close

to each other. The results also showed that an increase in the horizon size leads to

more wave reflection at the interface of the two zones.

A difference between the two cases is on the amplitude of the transmitted wave.

When the coupled peridynamic–finite element technique was used to model the wave

propagation, the amplitude of the transmitted wave into the finite element zone was

always less than the amplitude of the incident wave. However, when peridynamics

is used on the two different grids, the amplitude of the transmitted wave into the

coarser grid can be larger than the amplitude of the incident wave. This means that

the energy of the transmitted wave is higher than the energy of the initial wave. This

is an artifact of the numerical modeling and significantly reduces the computational

accuracy.
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CHAPTER 9: INTRODUCTION

9.1 Background and motivation

Vibrations are inevitably present during the operation of equipments and vehicles.

Effective damping of vibrations is essential in the design of structural components

since excessive vibrations can damage or adversely affect the in-service performance

of equipments and structures. Material damping using polymer composites provides

an effective solution to the damping problems of a wide spectrum of industries in-

cluding automotive [168, 169], aerospace [169], civil engineering [170] and food pack-

aging [171,172]. One example of such material is polyurea. Remarkable strength and

adhesion characteristics of polyurea along with its high toughness to density ratio,

its ability to resist abrasion, corrosion and impact bring it a wide range of applica-

tions including corrosion protection, membranes, containments, and lining. A recent

development of spray polyurea elastomer technology (SPUA) has enabled the use of

polyurea for direct spray coating on a vast type of surfaces to enhance their me-

chanical properties and durability [173]. It is shown that implementing the polyurea

coating on structural components act as a protective layer which reduces damage

to the structures and personnels under blast and impact loading [173–177]. Due to

such a wide spectrum of applications, polyurea undergoes different loading condi-

tions at different strain and strain rates. Predicting and understanding the behavior

of polyurea coated structures under different loading conditions necessitates the de-

velopment of a reliable constitutive model for polyurea. The proposed constitutive

model should be able to capture the behavior of polyurea at large deformations under

different strain rates from quasi-static loadings to high strain rates under impact.

For practical purposes, constitutive models should be simple with few material
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parameters which can be determined from standard experiments. In this dissertation,

we use the experimental data of Ronald et al. [178] and Serva et al. [179] to propose

two frame–independent incompressible hyper-viscoelastic models for both tensile and

compressive behavior of polyurea.

Similar to most polymers, polyurea displays strain rate stiffening and strengthen-

ing effects even at low and intermediate strain rates [178–182]. Experiments indicate

that polyurea is an incompressible elastomer and its stress-strain behavior depends

significantly on temperature, pressure and strain rate [175, 183]. Gamonpilas and

McCuiston [184] developed a nonlinear constitutive viscoelastic model assuming sep-

arable time and strain-dependent behavior. They used a Mooney–Rivlin model to

describe the strain-dependent behavior of polyurea and Prony series to capture its

time-dependent behavior. Li and Lua [185] proposed a nonlinear hyper-viscoelastic

constitutive model for polyurea under compression loading. They employed the Og-

den model to describe the the hyperelastic behavior of polyurea under quasi-static

loading and a hereditary integral with a Zaps (BKZ) memory function for the vis-

coelastic behavior. Amirkhizi et al. [175] used the Prony series to model the behavior

of polyurea in compression and considered the effects of temperature and pressure

using William-Landel-Ferry (WLF) equation. Although the above mentioned consti-

tutive models are comparatively simple, however, since they use constant rate inde-

pendent material parameters, their application is limited to a narrow range of strain

rates. More complicated constitutive models have been developed which can predict

the response of polyurea under a wider range of strain rates. Shim and Mohr [181]

used the approach of multiplicative decomposition of deformation gradients to pro-

pose a nonlinear viscoelastic model for the behavior of polyurea under compression.

They used two parallel Maxwell elements and a Gent spring to describe loading and

unloading behavior. Elsayed et al. [176] developed a variational constitutive model

by decomposing the mechanical response of polyurea into equilibrium and nonequilib-
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rium components and used it to model ballistic impact on steel–polyurea composite

plates. Although these constitutive models can predict the response of polyurea ac-

curately, however, implementing these models in a finite element code is complicated

and they have been developed only for compressive loading mode [186].

Although, these polymers have great damping capacity they lack in strength. Hence

it is essential to come up with some technique in order to increase their strength.

Therefore, Polymer Matrix Composites (PMCs) are invented in which fillers are added

to increase the strength and stiffness of polymers. The addition of inclusions, how-

ever, can alter the damping properties of the polymer matrix. Damping properties

of PMCs can be tailored by properly choosing the size, shape, volume fraction and

constitutive properties of the inclusions. Hence, to design polymer composites which

demonstrate high damping capability it is imperative to understand how the proper-

ties of inclusions affect the damping properties of polymer matrix composites.

Several efforts have been made in the past to study the damping properties of poly-

mer composites as a function of their constituents properties. Most of these meth-

ods are limited to fiber–reinforced or laminated composites under a two–dimensional

state of stress. Adams and Bacon [187] developed a micromechanical model to predict

damping in unidirectional fiber–reinforced composites. Hwang and Gibson [188] pro-

posed a strain energy–finite element method to study the damping of discontinuous

fiber reinforced composites. Kaliske and Rother [189] employed a consistent microme-

chanical theory of a representative fiber matrix cell to predict material damping of

fiber composites. They obtained six damping coefficients corresponding to six stress

components. Brinson and Lin [190] used Mori-Tanaka [191] and Halpin-Tsai [192]

homogenization techniques to predict the loss and storage modulus of fiber reinforced

polymer composites. Although their model shows good agreement with finite ele-

ment results [193] however they considered only one inclusion in the computation

unit cell. As the number of inclusions increases their model loses accuracy since it
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does not take into account the interactions between inclusions. More recently, Moore

et al. [194] used a multiscale approach to augment the Mori-Tanaka and Halpin-Tsai

models by an additional interaction term between inclusions. They assumed that

inclusions have a cubic shape and obtained the additional interaction term based on

stress concentration factors.

Stochastic Finite Element Method (SFEM) simulations are mostly focused on ma-

terial and geometric uncertainties. Random variables are treated as Gaussian or

non-Gaussian distributions. Kaminski et al. [195] applied stochastic perturbation

technique together with the finite element method to calculate effective elastic prop-

erties of the rubber-carbon composite. They also studied the effect of interface defects

on overall elastic properties [196]. The bonding between filler particles and the matrix

is never perfect. Due to the presence of some imperfections such as voids or inconsis-

tencies, material properties near the boundary of filler particles can vary significantly

from both filler particle and matrix. This can be modeled by adding a thin layer all

around the filler particles. In the past, many experiments have been done to prove

the existence of such interphase and its thickness is estimated to be between 30 to 240

nm [197–200]. Therefore it is important to study the effect of interphase on damping

properties. In this dissertation affect of interphase is assumed to be negligible. More

details about interphase can be found out in [201–204].

9.2 Original features of dissertation

Ogden model and Mooney-Rivlin model are used to represent the hyperelastic be-

havior of polyurea at low strain rates while standard linear solid (SLS) model and

K-BKZ model are used to model its viscoelastic behavior at high strain rates. A

distinct feature of the proposed constitutive models is their rate dependent mate-

rial parameters which allow replicating the experimental results in a wide range of

tensile and compressive strain rates. Comparison of the proposed models with the ex-

perimental results indicates that proposed hyper–viscoelastic models can accurately
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model the behavior of polyurea under various tensile and compressive strain rates.

In this part of dissertation, the finite element method is used to investigate the

damping properties of polymer composites aiming at quantifying the key parameters

influencing the damping quality of polymer composites. Both two-dimensional and

three–dimensional modelings are performed. A wide range of properties for the inclu-

sions and matrix as well as the size of the inclusions are considered. To consider the

interaction between inclusions, the representative volume elements (RVEs) used in

our modelings include multiple inclusions. The properties of RVEs can be predicted

using either a periodic or mixed boundary condition for the RVEs. We also compare

the results obtained from periodic and mixed boundary conditions by conducting

simulations using both periodic and mixed boundary conditions for the RVEs. Finite

element modeling results are compared with results from analytical micromechanics

methods such as rules of mixtures, Halpin-Tsai, Hashin-Shtrikman, and Mori-Tanaka.

Finally, we conduct sensitivity analyses to determine the material properties that play

a more significant role on the damping properties of polymer composites.

9.3 Outline of dissertation

Outline of part II of the dissertation is as follows, first chapter 9 gives the back-

ground and motivation of this study. Then chapter 10 describes the theoretical back-

ground required for the study. This includes kinematics of continuum mechanics fol-

lowed by hyper-elastic material models descriptions (Ogden model and Mooney-Rivin

model) and visco-elastic material models descriptions (SLS model and K-BKZ model).

Next, chapter 11 talks about the proposed hyper-viscoelastic model for polyurea and

gives all material parameters in details.

Chapter 12 elaborates the material models used for the study of damping capacity

of polymer composites. It also gives predictions of the damping capacity of polymer

composites using micro-mechanics analytical methods such as Mori-Tanaka, Halpin-

Tsai etc. Chapter 13 lays down the ground for finite element study of damping



96

properties by explaining the RVE generation algorithm, model geometry and bound-

ary conditions used. Following chapter, chapter 14, explains the results obtained by

finite element analysis. Results are obtained for 2D as well as 3D models using differ-

ent types of boundary conditions. Lastly, chapter 15 shows the results of sensitivity

analysis which gives the effect of uncertainty on material parameters on damping

property of composite. Finally, part II concludes with chapter 16.



CHAPTER 10: THEORETICAL BACKGROUND

10.1 Kinematics

Consider a continuum body B which moves in space from an initial (reference)

configuration Ω0 to a current configuration Ω as shown in Fig. 10.1. Let the position

vector of particles in the initial and current configurations be denotes with X and x,

respectively. The motion of body B is defined by a vector field Φ which maps points

X from the initial configuration Ω0 to their places x in the current configuration

Ω [205]

x = Φ(X, t). (10.1)

An important variable in characterizing the deformation is the deformation gradient

defined by

F = ∇Φ = ∂Φ

∂X
. (10.2)

The deformation gradient provides a relationship between vectors in the initial and

current configurations. Its determinant J = detF provides a measure for the change

in volume. The deformation gradient can be used to define strain measures.

For example the square of the local changes in distances due to deformation is

represented by the right Cauchy-Green deformation tensor (C) defined by

C = F T · F , (10.3)

which provides an important strain measures in material coordinates. The transpose
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Figure 10.1: Deformation of continuum body.

of tensor C is known as left Cauchy-Green deformation tensor B

B = F · F T , (10.4)

and provides a measure of strain in the spatial coordinates. Another measure of strain

is given by the Green strain tensor E defined by

E = 1
2(C − I), (10.5)

where I is the unit tensor. The Green strain tensor measures the difference of the

square of length of a differential line segment in the current configuration and the

initial configuration.

The eigenvalues of tensorsB or C are the squares of the principle stretches denoted

by λ2
i , i = 1, 2, 3, where λi are principle stretches.

Tensors B and C have the same invariants which can be written in terms of the
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principle stretches as

I1 = I1(B) = I1(C) = λ2
1 + λ2

2 + λ2
3, (10.6a)

I2 = I2(B) = I2(C) = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, (10.6b)

I3 = I3(B) = I3(C) = J2 = λ2
1λ

2
2λ

2
3. (10.6c)

10.1.1 Isotropic incompressible materials under uniaxial loading

Consider an incompressible material under uniaxial loading. Let the principle

stretch in the direction of loading be denoted by λ1. Since the material is incom-

pressible, J = λ1λ2λ3 = 1. Assuming the material is isotropic, the two other prin-

ciple stretches are equal, i.e λ2 = λ3. Hence, the incompressibility condition yields

λ2 = λ3 = λ
− 1/2
1 . The Corresponding deformation gradient and left Cauchy-Green

deformation tensors can be written as

F =


λ1 0 0

0 λ
− 1/2
1 0

0 0 λ
− 1/2
1

 , B =


λ2

1 0 0

0 λ−1
1 0

0 0 λ−1
1

 . (10.7)

Therefore, the three invariants of tensor B can be written as

I1 = λ2
1 + λ2

2 + λ2
3 = λ2

1 + 2λ−1
1 , (10.8a)

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 = λ−2

1 + 2λ1, (10.8b)

I3 = λ2
1λ

2
2λ

2
3 = 1. (10.8c)

10.2 Hyper-elasticity

Elastic materials for which the work of external forces is independent of their path

are known as hyperelastic materials. Hyperelastic materials are characterized by the
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existence of a strain energy function W defined per unit reference volume. The strain

energy function of an isotropic hyperelastic material can be expressed as a function

of one variable tensor C or B, i.e W (C) = W (B). Moreover, it can be shown using

the representation theorem of invariants that the strain energy function of isotropic

hyperelastic materials can be represented using the invariants of C or B

W = W (I1(C), I2(C), I3(C)) = W (I1(B), I2(B), I3(B)). (10.9)

Several forms of strain energy functions including Neo-Hookean [206], Arruda-

Boyce [207], Mooney-Rivlin [208,209], Yeoh [210] and Ogden [211] have been proposed

in the past. In this paper we use Ogden model to model the behavior of polyruea

under quasi–static loadings.

10.2.1 Incompresible Hyperelastic Materials

Hyperelastic materials which can sustain large deformations without noticeable

change in volume are known as incompressible hyperelastic materials. For such ma-

terials I3 = J = λ1λ2λ3 = 1. The general form of the strain energy function of

incompressible isotropic hyperelastic materials can be written as

W = W (λ1, λ2, λ3)− p(J − 1), (10.10)

where p is the hydrostatic pressure and acts as an indeterminate Lagrange multiplier.

Using the strain energy function, the three principle Cauchy stresses can be obtained

using

σei = −p+ λi
∂W

∂λi
, i = 1, 2, 3. (10.11)
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10.2.1.1 Ogden model

A very sophisticated strain energy function for incompressible materials is presented

by Ogden [211]. According to Ogden, the strain density function can be written as

W =
n∑
j=1

2µj
α2
j

(
λαi1 + λαi2 + λαi3 − 3

)
, (10.12)

where µj are constant shear moduli, αj are dimensionless constants and n is the

number of terms in the strain energy function. Using Eq. (10.11) the three principle

Cauchy stresses in Ogden model are

σei = −p+
n∑
j=1

µjλ
αj
i , (10.13)

where the hydrostatic pressure p is determined using incompressibility and boundary

conditions.

The hydrostatic pressure p can be obtained using the boundary conditions of σ2

(or σ3) be equal to zero. By using this requirement in Eq. (10.13) we obtain

p =
n∑
j=1

µjλ
αj
2 =

n∑
j=1

µjλ
−αj/2
1 . (10.14)

Using Eq. (10.14) in Eq. (10.13) gives an equation for σ1

σe1 =
n∑
j=1

µj(λαj1 − λ
−αj/2
1 ). (10.15)

10.2.1.2 Mooney-Rivlin model

One more well known form of strain energy potential was proposed by Mooney

and Rivlin [208, 209]. According to this model, a strain energy density is a polyno-

mial series. It was found that only first three terms of polynomial are sufficient fit
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compressive response [212]. Therefore, strain energy potential can be given as,

W (I1, I2) = M1(I1 − 3) +M2(I2 − 3) +M3(I1 − 3)(I2 − 3), (10.16)

where, M1,M2, and M3 are unknown parameters to be found out by curve fitting of

stress strain response of 1D testings. The constitutive equation can be given as,

σe = −pI + α1B + α2B ·B, (10.17)

where, coefficients α1 and α2 can be given as,

α1 = 2
(
∂W

∂I1
+ I1

∂W

∂I2

)
,

α2 = −2∂W
∂I2

. (10.18)

For uni-axial loading conditions, using Eq. (10.8a) and substituting it in Eq. (10.17)

along with Eq. (10.18) we get,

σe = 2λ(1− λ−3)
[
M1λ+M2 +M3[(λ2 + 2λ−1 − 3) + λ(λ−2 + 2λ− 3)]

]
, (10.19)

where λ is stretch in loading direction.

10.3 Visco-elasticity

Basic characteristic of viscoelastic material is the relationship between stress and

strain depends on loading history. Hence they show phenomenon such as, creep, stress

relaxation and hysteresis. In general viscoelastic materials can be divided in to two

categories, linear viscoelastic materials and non-linear viscoelastic materials. Most

common method is use of spring and dash-pot to mathematically model viscoelastic

material. Following sections describes some most common linear (Maxwell, Kelvin,

SLS [213]) as well as non-linear (K-BKZ [214–216]) models for viscoelastic materials.
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10.3.1 The Maxwell model

Maxwell model consists of a spring and a dash pot in series as shown in Fig. 10.2.

Stress applied will be same on both spring as well as dash pot but strain will be

divided in two elements as ε1 and ε2. Therefore we can write following equation for

spring element which is purely elastic and obeys Hooks law,

ε1 = σ

E
. (10.20)

Similarly, dash pot is purely viscus material which obeys

ε̇2 = σ

η
, (10.21)

this equation. Lastly, addition of strains in both element should be equal to total

strain. Therefore,

ε = ε1 + ε2. (10.22)

By taking derivative of Eq. (10.22) and then substituting values of ε1 and ε2 from

Eq. (10.20) and Eq. (10.21) respectively, we get constitutive equation for Maxwell

model as,

ε̇ = σ̇

E
+ σ

η
. (10.23)

Physically, we can expect that after application of load spring will elongate instanta-

neously and deformation will keep on increasing with respect to time because of the

dash pot. Once load is removed, spring deformation will be recovered but system will

have permanent deformation due to dash pot. This shows the creep behavior, under

constant load deformation will keep on increasing.
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Figure 10.2: Block diagram of Maxwell model.

10.3.2 The Kelvin model

Other two element model, Kelvin model, consists of a spring and a dash pot in

parallel as shown in Fig. 10.3. Stress applied will be divided in both spring as well as

dash pot as σ1 and σ2 but strain ε will be same in two elements. Therefore we can

write following equation for spring element which is purely elastic and obeys Hooks

law,

ε = σ1

E
. (10.24)

Similarly, dash pot is purely viscus material which obeys

ε̇ = σ2

η
, (10.25)

this equation. Lastly, addition of stress in both element should be equal to total stress

applied. Therefore,

σ = σ1 + σ2. (10.26)

By substituting values of σ1 and σ2 from Eq. (10.24) and Eq. (10.25) respectively in

to Eq. (10.26), we get constitutive equation for Kelvin model as,

σ = Eε+ ηε̇. (10.27)
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Figure 10.3: Block diagram of Kelvin model.

Physically, we can expect that after application of load deformation will keep on

increasing with respect to time because of the dash pot but not in linear way. Once

load is removed, due to spring all deformation will be recovered and system will not

have any permanent deformation. This shows the relaxation behavior, under constant

strain the stress will keep on decreasing.

10.3.3 SLS model

The standard linear solid (SLS) model used in this paper is the three-parameter

model shown in Fig. 10.4.This model is a combination of a Kelvin model and a free

spring acting in series.

The kinematic equation for this model is

ε = ε1 + ε2, (10.28)

where ε1 and ε2 are the strain of the free spring and Kelvin element, respectively.

From equilibrium the stress in the free spring σ1 and the stress in the Kelvin element

σ2 are the same and equal to the remote stress σv

σv = σ1 = σ2. (10.29)
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Figure 10.4: Block diagram of standard linear solid (SLS) model.

The relation between stress and strain in the Kelvin model is given by

σ2 = σE + ση = E2ε2 + ηε̇2, (10.30)

where η is the viscosity of dashpot, σE and ση are respectively the stress in the spring

and dashpot of the Kelvin model. By using Eq. (10.29) and Eq. (10.30) in Eq. (10.28)

and noting that for the free spring σ1 = E1ε1 the constitutive equation of the three

parameter model is obtained as

(E1 + E2)σv + ησ̇v = E1E2ε+ E1ηε̇. (10.31)

The three material parameters of the model are E1, E2 and η which should be deter-

mined using experimental stress-strain response.

The relaxation modulus of this model can be obtained by solving the differential

equation (10.31) for a relaxation test of constant strain. The relaxation modulus of

the three parameter model can be written as

E(t) = E1

E1 + E2

(
E2 + E1e

− t/τ
)
, (10.32)
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where τ = η/(E1 +E2). The relaxation modulus can be used in a hereditary integral

to find the relationship between stress and strain for a general form of loading

σv =
∫ t

0
E(t− ξ)dε

dξ
dξ, (10.33)

where t is total time. By substituting Eq. (10.32) in to Eq. (10.33), the relation

between stress and strain can be written in the following integral form

σv =
∫ t

0
(A1 + A2e

− (t− ξ)/A3)ε̇dξ, (10.34)

where A1 = E1E2/(E1+E2), A2 = E2
1/(E1+E2) and A3 = τ . Three model parameters

A1, A2 and A3 are determined using experimental data from different strain rate under

uniaxial loading.

10.3.4 K-BKZ model

Using K-BKZ model Cauchy stress tensor for homogeneous, isotropic, and incom-

pressible material can be written as [214–217],

σv = −pvI + F (t) ·
t∏

τ=−∞
{C(τ)} · F T (t), (10.35)

where σv is Cauchy stress tensor, pv is the pressure for viscoelastic part and ∏ is

frame-independent matrix function which consider effect of strain rate. Although

there are many different forms proposed for function ∏, one of the well accepted form

is given as,
t∏

τ=−∞
{C(τ)} =

∫ t

−∞
φ(I ′1, I

′

2)m(t− τ)Ė(τ)dτ, (10.36)

where φ(I ′1, I
′
2) is a damping function, m(t) is relaxation function and Ė can be given

as,

Ė = 1
2(Ḟ T · F + F T · Ḟ ). (10.37)
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I
′
1 and I

′
2 are first and second invariants of strain tensorC(τ). In case of uniaxial load-

ing we can prove that (I1)hyperelastic = (I ′1)viscoelastic and (I2)hyperelastic = (I ′2)viscoelastic.

Many different forms of damping function are found in literature, we will use the

following in order to reduce number of parameters [218]:

φ(τ) = B1 +B2
(
I
′

2 − 3
)
, (10.38)

where B1 and B2 are undetermined parameters. The relaxation function is usually

given in terms of Prony series as,

m(t− τ) = G∞ +
n∑
i=1

Gie
− (t− τ)/ωi , (10.39)

where n is number of terms in Prony series , G∞ is long term shear modulus, Gi and

ωi are relaxation shear modulus and relaxation time respectively.

10.4 Hyper- Viscoelasticity model

It is postulated that the stress-strain response of polyurea is a combination of

hyperelasticity and viscoelasticity. Therefore, the total stress can be given as the

addition of hyperelastic and a viscoelastic components [219–223]

σtotal = σe + σv, (10.40)

where σtotal is the total Cauchy stress, σe characterizes the quasi–static hyperelastic

response and σv is the rate dependent viscoelastic component of stress tensor.



CHAPTER 11: HYPER-VISCOELASTIC CONSTITUTIVE MODEL FOR

POLYUREA

11.1 Quasi static response

In first part, we assume that quasi static response of polyurea is purely hyper elastic

and hence can be modeled by Ogden or Mooney Rivlin model. We curve fit both the

models (Ogden and Mooney Rivlin) to compressive quasi static response of polyurea

given in [179]. Curve fitting is done using MATLAB tool, ’cftool’ [224].

The material parameters of Ogden model for polyurea are found by fitting Eq. (10.15)

using four pairs of constant µj and αj(n = 4) to the experimental data. Similarly,

material parameters of Mooney-Rivlin model are found by fitting Eq. (10.19) to the

experimental data. The experimental data from Sarva et al. [179] at a compressive

strain rate of 0.0016 /s are used to find the material parameters for compressive

loading.

Fig. 11.1 shows comparison between Ogden and Mooney-Rivlin model. As seen in

figure, Ogden model is better fit and reason can be number of parameters available

in Ogden model are higher than Mooney-Rivlin. Therefore we will use Ogden model

for further modeling.

The tensile tests conducted by Ronald et al. [178] on polyurea at a strain rate of 0.09

/s are used to find the material parameters for polyurea under tension. The Ogden

material parameters for polyurea under quasi–static loading are shown in Table 11.1.

For the purpose of comparison, the experimental data and the stress–strain curves

obtained using these material parameters are plotted in Fig. 11.2. The R2 values

which represents goodness of fit for tension and compression response are 0.9998 and

0.9982, respectively. This indicates a good agreement between the proposed Ogden
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Figure 11.1: Fitting of four term Ogden model and three term Mooney Rivlin model
to low strain rate compression (0.0016 /s) data.

Table 11.1: Material parameters for four term Ogden model.

1 2 3 4
for tension
µi (MPa) −9.149 −6.346 −7.47 0.001635
αi −1.658 4.289 −8.37 7.35
for compression
µi (MPa) 6.114 3.526 9.673 3.421
αi 9.853 9.853 −4.924 1.067

model with the experimental data for quasi–static response of polyurea for both

tension and compression loading conditions.

11.2 High strain rate response

11.2.1 KBKZ + Ogden model

Coefficients of Prony series in K-BKZ model can be found out by approximating

master curve obtained by relaxation tests done on polyurea. Using standard WLF

function data from relaxation testes at different temperatures can be shifted according

to time-temperature shift principle. This is already done by Li et. al. [185] and is
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Figure 11.2: Fitting of four term Ogden model to low strain rate tension (0.09 /s)
data.

given here in Table 11.2 just for the sake of completeness of constitutive model. Prony

series is approximated using six terms along with the value of G∞ = 25 MPa.

Table 11.2: Coefficients of Prony series given by Eq. (12.12)

1 2 3 4 5 6

Gi (MPa) 15.8879 28.3111 38.1695 44.0718 66.9582 86.1898

ωi (ms) 301.61 0.13146 1.0556 ×

10−3

4.3933 ×

10−5

2.4659 ×

10−6

1.6715 ×

10−7

By substituting σv from K-BKZ model using Eq. (10.35) along with Eq. (12.12)

we get,

σtotal = σe + 1
2λ
−1
∫ t

0
λ−2

[
B1 +B2(I2 − 3)

]
m(t− τ)λ̇dτ

+λ2
∫ t

0
λ
[
B1 +B2(I2 − 3)

]
m(t− τ)λ̇dτ, (11.1)

here two undermined parameters B1 and B2 are to be determine by curve fitting.
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(a)

(b)

Figure 11.3: Plots showing relation between true strain rate and material parameters
B1 and B2 for compression using Ogden + K-BKZ model.

Unlike SLS model K-BKZ model has only two undermined parameters to be found

out using curve fitting. This constraints our ability to obtain a very good fit. As
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nature of response of polyurea under tension is challenging to capture, we observed

that K-BKZ model is inadequate for capturing that response.

Parameters obtained for compression behavior are summarized in Table 11.3 and

Eq. (11.3) is plotted for parameters B1 and B2 in Fig. 11.3 along with parameter

values from experimental data. The values of these parameters for each strain rate

are presented in Table 11.4. As R2 values are very close to 1 , we can say the fit is

very good. Fig. 11.4 shows results using these parameters.

Table 11.3: Material parameters for S1
i , S2

i and S3
i visco-hyperelastic model using

Ogden + B-KBZ model.

i = 1 2 3

for compression

S1
i −1.157 −0.05093 1.31

S2
i −0.005827 0.2671 −0.07649

Figure 11.4: Comparison of stress values predicted using proposed constitutive model
using Ogden + K-BKZ model and experimental data.



114

Table 11.4: Material parameters B1 and B2 of Ogden + K-BKZ model for different
strain rates.

strain rate B1(MPa) B2(MPa)
for compression
14 0.30025 −0.088286
80 0.38025 −0.097286
800 0.4925 −0.1099286
1200 0.50525 −0.119286
2250 0.52525 −0.122286
6500 0.57025 −0.137286

11.2.2 SLS + Ogden model

The total visco–hyperelastic stress obtained using Ogden and SLS model is obtained

by using Equations (10.15) and (10.34) in Eq. (10.40)

σtotal =
n∑
j=1

µj(λαj1 − λ
−αj/2
1 ) +

∫ t

0
(A1 + A2e

− (t− ξ)/A3)ε̇dξ, (11.2)

The material parameters for Ogden model are presented in Table 11.1. The material

parameters of the SLS model are obtained by using the experimental data of Ronald

et al. [178] and Sarva et al. [179] at different strain rates. To ensure the accuracy of

the model, the viscoelastic material parameters A1, A2 and A3 are found separately

for each strain rate. The values of these parameters for each strain rate are presented

in Table 11.5. The total stress obtained using Eq. (11.2) by employing the material

parameters of Table 11.5 are plotted in Fig. 11.5 and compared with the experimental

data. These graphs show that the proposed hyper–viscoelastic equation can capture

the behavior of polyurea over a wide range of strain rates under both tensile and

compressive loadings.

The values of material parameters shown in Table 11.5 indicate that A1, A2 and A3

are rate dependent. We propose to represent the rate dependence of these material

parameters using

Ai = S1
i (|ε̇|)S

2
i + S3

i , i = 1, 2, 3 (11.3)
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(a)

(b)

Figure 11.5: Comparison of curve fitted stress strain curve for proposed hyper-
viscoelastic constitutive model using Odgen + SLS model and experimental data
for (a) tension and (b) compression.

where S1
i ,S2

i and S3
i are constants which are found by fitting Eq. (11.3) to the values

of Ai presented in Table 11.5. The values of S1
i ,S2

i and S3
i are shown in Table 11.6 and
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Table 11.5: Material parameters A1, A2 and A3 of Ogden + SLS model for different
strain rates.

strain rate A1(MPa) A2(MPa) A3
for tension
7.2 7.007 0.007153 −0.02382
168 14.35 0.19879 −0.0014498
210 15.33 0.2039 −0.001074
294 16.5 0.2239 −0.000755
for compression
14 12.1 115.0 9.5× 10−5

80 16.05 121.0 4.496× 10−5

800 22.249 149.86 1.373× 10−5

1200 24.407 161.42 1.053× 10−5

2250 28.349 183.59 6.4439× 10−6

6500 37.06 236.81 1.4031× 10−6

9000 40.371 258.35 0.2198× 10−6

their capability in reproducing the values of Table 11.5 is demonstrated in Fig. 11.6

to Fig. 11.8. As shown in Figs. 11.6 to 11.8, Eq. (11.3) closely matches with the

original values of Ai. The R2 values which indicate the goodness of the fitting are

close to one which indicates the high quality of fitting curve.

Table 11.6: Material parameters S1
i , S2

i and S3
i of visco-hyperelastic model using

Ogden + SLS model.

i = 1 2 3
for tension
S1
i 2.8350 0.2870 2.0100
S2
i −0.6663 −0.1587 0.4942
S3
i −0.1174 −0.7900 0.0005686

for compression
S1
i 1.277 0.325 8.863
S2
i 1.14 0.5364 110.3
S3
i 281.0 −0.3772 −8.841

The results from both models are very good, but Ogden + SLS model gives slightly

better fit than Ogden + K-BKZ model. Also one important thing to note here is k-

BKZ model could not give accurate results for response of polyurea under tension.

Therefore we can say that Ogden + SLS model is the best option to ahead with.
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(a)

(b)

Figure 11.6: Plots showing relation between true strain rate and material parameter
A1 for (a) tension, and (b) compression for combined Odgen and SLS model.
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(a)

(b)

Figure 11.7: Plots showing relation between true strain rate and material parameter
A2 for (a) tension, and (b) compression for combined Odgen and SLS model.
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(a)

(b)

Figure 11.8: Plots showing relation between true strain rate and material parameter
A3 for (a) tension, and (b) compression for combined Odgen and SLS model.
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(a)

(b)

Figure 11.9: Comparison of stress values predicted using proposed hyper-viscoelastic
constitutive model using Odgen + SLS model and experimental data for (a) tension
and (b) compression.



CHAPTER 12: PREDICTIONS OF DAMPING PROPERTIES USING

ANALYTICAL METHODS

In this chapter, we briefly describe the micormechanics based analytical methods

that are commonly used for predicting homogeneous properties of composites.

12.1 Material description

12.1.1 Matrix material model

We assume that the polymer matrix is a linear viscoelastic material. The consti-

tutive relations for a viscoelastic material can be written as

σij(t) =
∫ t

0
Cijkl(t− τ)dεkl(τ)

dτ
dτ, (12.1)

where σij and εkl are stress and strain tensors and Cijkl is the time dependent modulus

of the material. For a linear viscoelastic material, Eq. (12.1) can be written as

σij(t) =
∫ t

0
2G(t− τ)dεij

dτ
dτ + I

∫ t

0
K(t− τ)

dεV olij

dτ
dτ, (12.2)

where εij is deviatoric strain, εV olij is volumetric strain and G(t) and K(t) are shear

and bulk relaxation modulus, respectively.

Under a time harmonic deformation history

ui(x, t) = u0
i (x, ω)eiωt, (12.3)

the strain field is

εij(x, t) = ε0
ij(x, ω)eiωt, (12.4)
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where ω is the frequency, x is the position vector and i =
√
−1. Using Eq. (12.4)

in Eq. (12.1) and assuming the material is isotropic, the deviatoric and dilatational

stress components can be written as

sij = 2G∗(ω)εij,

σkk = 3K∗(ω)εkk,
(12.5)

where G∗(ω) and K∗(ω) are the shear and bulk modulus defined in complex form as

G∗(ω) = iω
∫ ∞

0
G(t)e−iωtdt,

K∗(ω) = iω
∫ ∞

0
K(t)e−iωtdt.

(12.6)

The complex Young’s modulus of viscoelastic materials can be obtained using

E∗(ω) = 9K∗G∗
3K∗ +G∗

, (12.7)

which can be written in a simplified form as the sum of storage and loss moduli

E∗(ω) = E
′(ω) + iE

′′(ω), (12.8)

where real and imaginary parts represent the storage and loss moduli, respectively.

Storage modulus represents the ability of a viscoelastic material to store energy and

loss modulus represents the energy dissipated through conversion to heat. The loss

factor (tan δ) defined as the ratio of loss to storage modulus

tan δ = E
′′

E ′
, (12.9)

provides a measure of the damping capability of viscoelastic materials [213].
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The plane strain complex Young’s modulus E∗pl can be obtained using

E∗pl = E∗

1− υ∗2 , (12.10)

where υ∗ is complex Poisson’s ratio obtained from

υ∗ = 3K∗ − 2G∗
2(3K∗ +G∗) . (12.11)

12.1.2 Prony series

Shear and bulk modulus of a linear viscoelastic materials can be represented by a

Prony series as

G(t) = G∞ +
N∑
j=1

Gje
−t/τj ,

K(t) = K∞ +
N∑
j=1

Kje
−t/τj ,

(12.12)

where Gj and Kj are the relaxation shear and bulk modulus, τj is the relaxation

time and G∞ and K∞ are the long term shear and bulk modulus when the material

is completely relaxed. By substituting Eq. (12.12) in Eq. (12.6), complex shear and

bulk moduli in terms of frequency can be written as

G∗(ω) = G∞ + iω
N∑
j=1

Gjτj
(1 + iωτj)

,

K∗(ω) = K∞ + iω
N∑
j=1

Kjτj
(1 + iωτj)

.

(12.13)

Details about this conversion of time domain response to frequency domain response

can be found in Appendix E.

The relaxation time and moduli of the matrix used in this paper are taken from

Reference [190] and are given in Table 12.1. These material parameters are chosen
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because they include a broad range of relaxation times. We assume that the density

of polymer matrix is 1.0 gr/cm3.

Table 12.1: Bulk and shear relaxation moduli for matrix material. The units of
relaxation moduli and relaxation times are in bar and second, respectively.

G∞ = 3.162

K∞ = 200

τGj Gj τGj Gj

0.032 2.512 100.0 19.953

0.100 10.0 316.228 12.589

0.316 56.234 1000.0 2.512

1.0 316.228 3162.278 1.698

3.162 1000.0 10000.0 1.202

10.0 199.526 31622.777 1.148

31.623 50.119 100000.0 1.096

τKj Kj τKj Kj

100 3000 316.228 100

12.1.3 Inclusions

Since the glass inclusions in our model are much stiffer and stronger than the

polymer matrix, a linear elastic material model is used to model them. The inclusions

are assumed to have a Young’s modulus of E = 64.89 GPa, a Poisson’s ratio of 0.249

and density of 2.47 g/cm3.

12.2 Rules of mixtures

The rules of mixture provides a simple method for estimating homogeneous prop-

erties of composites. Rules of mixtures can be written as

1
E∗h

= vm
E∗m

+ vf
Ef

, (12.14)
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(a)

(b)

Figure 12.1: a) Values of tan δ obtained using rules of mixtures for different inclusion
volume fractions, b). Zoom–in of tan δ plots at their peaks.

where E∗h is the homogenized complex Young’s modulus of composite, E∗m is the

complex Young’s modulus of matrix, Ef is the Young’s modulus of inclusions, and

vm and vf are volume fractions of matrix and inclusions, respectively.
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By using Eqs. (12.13) and (12.7) in Eq. (12.14) the homogenized complex Young’s

modulus of composite as a function of frequency E∗h(ω) is obtained. The tan δ of the

composite at different frequencies can be obtained by using loss and storage modulus

of E∗h(ω) in Eq. (12.9). The values of tan δ of a polymer composite at various inclusion

volume fractions using the material parameters given in Section 12.1 are plotted

in Fig. 12.1. As shown in Fig. 12.1(a), the value of tan δ significantly depends on

the vibration frequency. Fig. 12.1(b) shows the zoomed portion of peak tan δ from

Fig. 12.1(a). It can be seen in Fig. 12.1(b) that, by increasing the inclusions volume

fraction, the peak value of tan δ decreases and the frequency at which the peak tan δ

occurs reduces. Based on this model, the value of tan δ is not sensitive to the inclusions

volume fraction.

12.3 Hashin-Shtrikman Bounds

Hashin and Shtrikman [225] bounds provide the narrowest possible bounds of ho-

mogenized bulk and shear modulus of isotropic elastic composites. Using dynamic

correspondence relations Hashin and Shtrikman (H–S) bounds can be extended to ob-

tain lower and upper bounds for homogenized bulk and shear modulus of viscoelastic

composites

K∗L = K∗m + vf
1

Kf−K∗m
+ (2n+1)vm

(2n+1)K∗m+(3n+1)G∗m

,

K∗U = Kf + vm
1

K∗m−Kf
+ (2n+1)vf

(2n+1)Kf+(3n+1)Gf

,

G∗L = G∗m + vf
1

Gf−G∗m
+ (5n+1)vm(K∗m+2G∗m)

(4n+1)G∗m[(2n+1)K∗m+(3n+1)G∗m]

,

G∗U = Gf + vm
1

G∗m−Gf
+ (5n+1)vf (Kf+2Gf )

(4n+1)Gf [(2n+1)Kf+(3n+1)Gf ]

,

(12.15)

whereK∗m and G∗m are complex bulk and shear modulus of matrix, Kf and Gf are bulk

and shear modulus of inclusion, vm and vf are matrix and inclusion volume fraction
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(a)

(b)

Figure 12.2: Plots for (a)upper and (b)lower H-S bounds for tan δ for different volume
fractions.

respectively, K∗L and G∗L are lower bounds on bulk and shear modulus , K∗U and G∗U

are upper bounds on bulk and shear modulus and parameter n = 0 corresponds to

cylindrical inclusions [226] while n = 1 corresponds to spherical inclusions [225].
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The upper and lower H–S bounds of tan δ for different inclusion volume fractions

are plotted in Fig. 12.2. Since inclusions are significantly stiffer than matrix, there

is remarkable gap between the upper and lower bounds of tan δ hence predicting the

value of tan δ using H–S bounds is not possible.

12.4 Halpin-Tsai model

Halpin-Tsai model is based on the self-consistent micromechanics method developed

by Hill [227]. The Halpin-Tsai equations can be written as

E∗h = E∗m
1 + 2ζvfη∗
1− vfη∗

,

η∗ =
Ef
E∗m
− 1

Ef
E∗m

+ 2ζ
,

(12.16)

where ζ is the aspect ratio of inclusion. The aspect ratio of spherical inclusions is

assumed to be 1. The value of tan δ can be found using the above equations by

separating imaginary and real parts of homogenized Young’s modulus. The values

of tan δ obtained using Halpin-Tsai model are plotted in Fig. 12.3(a). It is observed

that values of tan δ obtained using Halpin-Tsai model are smaller than values obtained

using rules of mixtures.

12.5 Mori-Tanaka method

Mori–Tanaka method is the most widely used analytical method for determining

homogenized properties of composites. Since the influence of the shape of inclusions

on the overall properties of composites are considered through Eshelby tensor [228],

the Mori–Tanaka method provides a more accurate prediction of the homogenized

properties of composites than other micromechanical methods. In this method, the

homogenized complex modulus is given by

C∗ = C∗
m

(
I − vf [S∗vm + vfI + (Cf −C∗

m)−1C∗
m]−1

)−1
, (12.17)
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where C∗
m and Cf are respectively the compliance tensor of matrix and inclusions,

I is the identity matrix and S∗ is the Eshelby’s tensor. For plain stress 2D Eshelby’s

tensor is given as,

S∗ =


7−5ν∗

15(1−ν∗)
5ν∗−1

15(1−ν∗) 0
5ν∗−1

15(1−ν∗)
7−5ν∗

15(1−ν∗) 0

0 0 4−5ν∗
15(1−ν∗)

 . (12.18)

The values of tan δ obtained using Mori–Tanakamethod are plotted in Fig. 12.3(b).

In comparison with Halpin–Tsai method, the Mori–Tanaka method predicts lower

values for tan δ. The plots of Fig. 12.3(b) also show that at low vibration frequencies

the values of tan δ are not affected by the inclusion volume fraction.
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(a)

(b)

Figure 12.3: Estimated tan δ using (a)Halpin-Tsai and (b) Mori-Tanaka model for
different inclusion volume fractions.



CHAPTER 13: FINITE ELEMENT FORMULATION

13.1 RVE generation algorithm

The finite element computations are conducted on a representative volume element

(RVE). The RVE is defined as the smallest volume whose properties represent the

property of the whole structure. Based on the Hill’s definition [227] an RVE should

a) be entirely typical of the whole composite on average and b) includes a sufficient

number of inclusions such that for macroscopically uniform boundary conditions, the

properties of RVE be independent of the value of displacement and traction boundary

conditions.

Different techniques for generating computational RVEs have been used in the

past. Random sequential adsorption (RSA) schemes [201, 229–231] sequentially add

inclusions to the matrix by randomly generating its location, size and orientation.

The new inclusion is accepted only if it does not overlap with the previous inclusions.

Jamming is an issue associated with RSA schemes which prevents achieving high

volume fractions using this technique. Another class of methods which are used for

the generation of RVEs are Monte Carlo (MC) based techniques [232–234]. Such

techniques are essentially two–step schemes. First all the inclusions are deposited

in the simulation box then the location and orientation of inclusions along with the

size of RVE are modified to remove intersections and to achieve the desirable volume

fraction. Because the movements are random, the removal of the overlaps using MC

method is slow. To accelerate the process, molecular dynamics based techniques

[235, 236] have been used to remove overlaps. More recently image reconstruction

procedures [194, 237, 238] have been used to generate RVEs by extracting data from

microstructural images. Such techniques require image analysis tools to reconstruct
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Figure 13.1: Flow chart of RVE generation

the three-dimensional structure of polymer composites.

In this paper we use a random sequential adsorption approach to generate the RVEs

employing python scripting in Abaqus [239]. Location of the center of inclusions are

randomly generated using random generator function of Python. The distance of the

new inclusions from existing particles is checked to prevent intersecting of inclusions

with each other. To ensure proper meshing, a minimum gap of 10% of the diameter

of inclusion is maintained between any two inclusions. The addition of new particles

continues until the desired volume fraction is obtained. Further details can be found

in [240,241].
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13.2 Model geometry

We conduct both two–dimensional and three-dimensional simulations. The two–

dimensional simulations are conducted under a plane-strain condition representing

transverse behavior of unidirectional fibrous composites. The three–dimensional sim-

ulations are conducted on polymer composites with spherical inclusions. An example

of a two and three–dimensional representative volume element is shown in Fig. 13.2a

and Fig. 13.2b, respectively. RVEs are square and cube in two–dimensional and three–

dimensional model respectively with an edge size of 2mm. Two–dimensional models

are meshed using 6-node and 8-node plane strain elements as shown in Fig. 13.3a.

Nodes on the boundary of matrix and inclusion are shared between both materials

as shown in Fig. 13.3b. Three dimensional finite element models are meshed using 8-

node tetrahedral elements as showed in Fig. 13.4. Similar to two–dimensional models,

the nodes at the interface are shared between inclusion and matrix.

Since damping property of polymers is directly related to the value of tan δ, we use

finite element method to calculate tan δ by applying the following strain

εyy = ε0 sin(ωt), (13.1)

to the top surface of the RVE. In Eq. (13.1) ε0 is the amplitude of applied strain, ω is

the vibration angular frequency and t is time. Since the amplitude of applied strain

does not impact the value of tan δ, in our simulations we choose ε0 = 1.0%. The

impact of vibration frequency on damping is studied by considering a wide range of

frequencies from 10−8/s to 102/s.

The value of tan δ can be calculated by comparing the input strain curve of Eq. (13.1)

with the output stress curve. A typical input and output of a steady state vibration

of Eq. (13.1) is shown in Fig. 13.5. As shown in Fig. 13.5 the angle δ is the phase lag

between the input strain curve and output stress curve. The phase lag is related to
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Figure 13.2: Example of (a) 2D RVE and (b) 3D RVE with inclusion volume fraction
0.10.

the time lag ∆t between the strain and stress curves by

δ = 2π∆tf = ω∆t, (13.2)

where f is the loading ordinary frequency.

13.3 Boundary conditions

We use both mixed and periodic boundary conditions in our finite element mod-

elings. Periodic boundary conditions are considered to be the most efficient and

accurate choice for calculating the properties of RVEs [242–246]. The prescription

of periodic boundary conditions can be challenging for complicated meshes, there-

fore mixed boundary conditions are used more often in finite element modeling of

the damping properties of polymer composites [190, 194, 247]. In this paper, for the

purpose of understanding the impact of boundary conditions on the predicted values

of the damping of polymer composites, we use both mixed and periodic boundary

conditions.
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Figure 13.3: (a) A two–dimensional finite element mesh, and (b) node sharing at the
interface between matrix and inclusion.

y

xz

Figure 13.4: Discretization of a three dimensional RVE domain using finite element
mesh.

13.3.1 Mixed boundary conditions

Mixed boundary conditions are applied by decomposing the boundary into two

parts

Ω = Ωu ∪ Ωt, (13.3)
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Figure 13.5: Example of input and output of steady state vibration

where displacements are prescribed on Ωu and tractions are applied on Ωt. In this

paper, the mixed boundary conditions shown in Fig. 13.6a are applied to the RVEs.

As shown in Fig. 13.6a, a normal strain is applied to the top surface of the RVE using

Eq. (13.1) while roller supports are applied to the left, bottom and back faces of the

RVE as,



u1 = 0 on left face,

u2 = 0 on bottom face,

u3 = 0 on back face,

(13.4a)

where, u1,u2 and u3 are displacements in x, y and z direction respectively. The x

component of the displacement of the right face of RVE is tied to the corresponding

displacement component of edge BC and the z component of the displacement of the

front surface of RVE is tied to the corresponding displacement component of edge

AB. Such constraints are required to ensure that the RVE surfaces remain plane

during deformation and no void is created in the domain as an artifact of numerical
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Figure 13.6: RVE showing (a) Mixed boundary conditions and (b) Periodic boundary
conditions.

modeling.

13.3.2 Periodic boundary conditions

To apply periodic boundary conditions (PBCs) to the RVE, the boundary Ω of

the RVE is decomposed into two parts, as shown in Fig. 13.6b: Ω+ and Ω− such

that Ω = Ω+ ∪ Ω−. If a surface belongs to Ω+ its opposite surface belongs to Ω−.

The imposition of periodic boundary conditions on the RVE is schematically shown

in Fig. 13.6b. RVE has eight vertices υ1 to υ8 connected by three boundary pairs

Ω+
p and Ω−p , where p = 1, 2, 3. To avoid rigid body motion vertex υ1 is fixed. Roller

supports are applied to vertex υ2, υ3 and υ4. Finally loading is applied to vertex υ4

in y direction.

By assuming that the RVE deforms in a repetitive way identical to its adjacent

neighbors, the periodic boundary conditions are obtained by enforcing that the dis-

placement and tractions of opposite surfaces of the RVE should satisfy the following
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compatibility condition [248]

u(x+) = u(x−) ∀x+ ∈ Ω+ and matching x− ∈ Ω−, (13.5a)

t(x+) = t(x−) ∀x+ ∈ Ω+ and matching x− ∈ Ω−, (13.5b)

where u and t are the displacement and traction vectors, respectively. In a finite

element simulations, these conditions are satisfied by enforcing the following relations

between the displacements of opposite surfaces [242]

uΩ+
1

= uΩ−1
− uυ3 + uυ1 , (13.6a)

uΩ+
2

= uΩ−2
+ uυ1 − uυ4 , (13.6b)

uΩ+
3

= uΩ−3
− uυ2 + uυ4 , (13.6c)

where ui is displacement vector for any point on the corresponding boundary Ωi and

uυi is displacement vector for vertex υi. The relations in Eq. (13.6) are imposed

by discretizing the RVE using a periodic mesh such that opposite boundaries are

discretized using the same mesh distribution. A python script is used to find the

matching nodes on opposite faces and the relations of Eq. (13.6) are imposed to the

matching nodes using equation constraint in Abaqus for each degree of freedom of all

nodes on boundary surfaces.



CHAPTER 14: RESULTS

To eliminate the impact of randomness of the arrangement of constituents on the

calculated values of tan δ, the values of tan δ presented in this section are ensemble

averages. The ensemble averages 〈tan δ〉 are obtained from

〈tan δ〉 = 1
M

M∑
J=1

(tan δ)J , (14.1)

where M is the number of samples in the ensemble and (tan δ)J is the value of tan δ

calculated using the J th RVE. To ensure enough number of RVE samples are available

in the ensemble, we incrementally increase the size of the ensemble. If the value of

ensemble average of tan δ does not change by increasing the size of ensemble, the

ensemble average is converged and the ensemble contains enough number of samples.

We use the following convergence criterion

∣∣∣∣∣〈tan(δ)〉M − 〈tan(δ)〉M+1

〈tan(δ)〉M

∣∣∣∣∣ < Tol = 0.01%, (14.2)

where 〈·〉M denotes an ensemble average value obtained using M samples. As an

example, the ensemble average of the maximum value of tan δ versus the number of

samples in the ensemble are shown in Fig. 14.1. These results are obtained for a

three–dimensional RVE with a inclusion volume fraction of vf = 0.10 under mixed

boundary conditions. This graph shows that the convergence criterion is satisfied by

an ensemble containing 25 samples. In this paper, the reported values of tan δ are the

ensemble averages obtained from an ensemble with 100 samples for two–dimensional

RVEs and 50 samples for three–dimensional RVEs.
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Figure 14.1: Ensemble average of peak tan δ versus realization number for vf = 0.10.

y

x

Figure 14.2: Deformation of RVE under applied loading.

14.1 Interaction between inclusions

The analytical methods mentioned above assume that the inclusions are at large

distances from each other so that they don’t interact with each other. This assumption

is only valid when inclusions volume fraction is low and hence there is considerable

distance between any two inclusions. In practice, when inclusion volume fraction in-



141

y

x

Interaction 
between fillers

Figure 14.3: Mises stress distribution in a 2D RVE indicating interaction between
inclusions.

Figure 14.4: Comparison of peak tan δ values for RVEs with single inclusion versus
RVEs with random particles distribution.

creases inclusions get close to each other which results in interaction between stress

fields of individual inclusions. The deformation and Mises stress distribution in a 2D

RVE are shown in Fig. 14.2 and Fig. 14.3 show; respectively. As shown in Fig. 14.3,

the interaction between particles lead to stress concentration in the regions between

particles. Such an interaction affects the mechanical properties of composite ma-
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terials. We also studied the effect of interaction between inclusions by comparing

the values of peak tan δ for RVEs including only one inclusion at their center versus

RVEs with similar inclusion volume fraction but including several small inclusions

randomly distributed in the matrix. The peak tan δ results for these cases are shown

in Fig. 14.4. The peak tan δ for the RVEs with random distribution is obtained by

averaging the results obtained from 100 RVEs. As Fig. 14.4 shows, at low volume

fraction the peak tan δ of both RVEs are close to each other. By increase in the

inclusions volume fraction the difference between the value of peak tan δ between the

two RVEs increases. Such difference between the results is due to the interaction

between the inclusions. Due to such interaction between inclusions, the analytical

homogenization approach cannot be used for obtaining the damping properties of

polymer composites with high inclusion volume fractions.

14.2 Two–dimensional analysis of tan δ

The average values of tan δ under different vibration frequencies for a two–dimensional

RVE under mixed boundary conditions are shown in Fig. 14.5a. These graphs show

that damping is significantly influenced by the vibration frequency. At low frequen-

cies the value of tan δ is close to zero indicating that stress is in phase with the

applied strain and no energy damping is occurring. Then value of tan δ increases as

frequency increases until reaching its maximum value at a frequency of about 10−2/s.

Further increase in the vibration frequency leads to a reduction in the damping ca-

pability of polymer composite and tan δ goes to zero for frequencies greater than

102/s. Moreover, the graphs of Fig. 14.5a show that increasing the inclusion volume

fraction slightly reduces the maximum value of tan δ. The frequency at which peak

tan δ occurs as a function of inclusion volume fraction is shown in Fig. 14.5b. This

graph shows that by increasing the volume fraction the maximum damping occurs

at a lower frequency. Comparison of results from FEM with analytical methods is

shown in Fig. 14.6. It is very clear that, analytical methods gives accurate predictions
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(a)

(b)

Figure 14.5: (a) tan δ values for 2D system with mixed boundary conditions at varying
frequencies, and (b) the frequency at which peak tan δ occurs versus inclusion volume
fraction.

only for very low volume fraction. As inclusion volume fraction increases predictions

deviate drastically. In all analytical methods Mori-Tanaka gives closest predictions
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(a)

(b)

Figure 14.6: Comparison of FEM tan δ values for 2D system with analytical methods
for inclusion volume fraction of (a) vf = 0.05 and (b) vf = 0.30 .

as it considers shape of inclusions. But it gives very accurate answers for prediction

of tan δ for few inclusions but looses its accuracy for large number of inclusions as it

does not consider interactions between inclusions.
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Figure 14.7: Comparison of peak tan δ values for 2D system with mixed boundary
conditions and periodic boundary conditions for different volume fractions.

14.3 Effect of boundary conditions

The maximum value of tan δ obtained using mixed and periodic boundary condi-

tions (PBCs) are shown in Fig. 14.7 and compared with analytical methods. In the

absence of inclusions the maximum tan δ predicted using periodic boundary condi-

tions is about 6% lower than that obtained using mixed boundary condition. As the

inclusion volume fraction increases the tan δ obtained from the two boundary con-

ditions approach each other. Although the results obtained from the PBCs are in

general slightly less than those obtained from mixed boundary conditions, however,

the values predicted by the two boundary conditions are close to each other and both

mixed and periodic boundary conditions can be used for the purpose of calculating

tan δ. Mori-Tanaka method gives very accurate predictions for small number of in-

clusions but gives huge error for large number of inclusions. This is basically because

of the fact that, analytical methods don’t consider interactions between particles.

When number of particles are low, interaction between any two particle is very weak
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Figure 14.8: Deformation of 3D RVE under applied loading.

and hence analytical methods give correct predictions, but as number of particles

increases, interaction forces increases and predictions introduce huge errors.

14.4 Three-dimensional analysis of tan δ

We conduct three–dimensional analysis to study the damping of composites with

spherical inclusions. An example of the deformation of a 3D RVE under applied

loading is shown in Fig. 14.8 The values of tan δ obtained using mixed boundary

conditions are shown in Fig. 14.9a. Similar to the results of two–dimensional analysis,

by increasing the vibrational frequency the value of tan δ increases until it reaches its

peak value after which further increase in the input frequency leads to a reduction in

the value of tan δ. Increase in inclusion volume fraction results in a decrease in the

the peak value of tan δ. The maximum value of tan δ in the absence of inclusions is

more than that obtained from two–dimensional analysis, indicating that damping is

higher under plane strain conditions.

The impact of boundary conditions on the peak value of tan δ is studied and

the peak values of tan δ obtained from these boundary conditions are presented in

Fig. 14.9b. Similar to the plane stress case, RVEs with periodic boundary condi-
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(a)

(b)

Figure 14.9: (a) tan δ values for 3D system with mixed boundary conditions at vary-
ing frequencies and (b) Comparison of peak tan δ values for 3D system with mixed
boundary conditions and periodic boundary conditions for different inclusion volume
fractions.

tions demonstrate a lower tan δ value, but the maximum difference between the peak

tan δ obtained from the two boundary conditions is about 5%, hence using periodic
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Figure 14.10: Comparison of tan δ values for 2D system with mixed boundary con-
ditions for different variation in radius of inclusions for different inclusion volume
fractions.

or mixed boundary condition leads to similar predictions for tan δ. Again similar

behavior is observed with comparison to predictions of analytical methods.

14.5 Effect of variation in the size of inclusions on damping properties

In practice it is not possible to use inclusions of the same particle size, hence it is

necessary to understand the effect of variation in inclusions size on tan δ at constant

inclusion volume fractions. For this purpose, we use normal distribution function to

create inclusions with different radius in the RVE. We generate four cases where in

case one radius of inclusions are same and that is equal to mean value of normal

distribution function. In case two, radius of inclusions is varied by ±25%. Similarly

in case three and four radius of inclusions is varied by ±50% and ±75% respectively.

To avoid inclusions which are too small or too large the maximum and minimum

radius of inclusions are limited to 25% and 175% of it’s mean value. All the RVEs

generated have multiple number of inclusions so the effects of inclusions interactions
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are considered. Results for all four cases are shown in Fig. 14.10. These results show

that the peak value of tan δ is not very sensitive to the size of inclusions as long as

the number of inclusions in both cases are comparable.



CHAPTER 15: SENSITIVITY ANALYSIS

We conduct sensitivity analysis (SA) to understand how the prediction of the damp-

ing properties of polymer composites are impacted by the uncertainty in the input

parameters of material properties of matrix and inclusions. In this paper two types of

sensitivity analysis are conducted. The first set of analysis is performed with respect

to uncertainty in the instantaneous Young’s modulus of polymer and inclusion and

the second set of sensitivity analysis is conducted with respected to the relaxation

time of matrix. Since the matrix material presented in Table 12.1 has multiple re-

laxation times, the sensitivity analysis of relaxation time is conducted only on the

relaxation time which is associate with the largest value of relaxation modulus, i.e

τ = 3.162 s. This relaxation time is chosen since its corresponding modulus has the

most impact on the instantaneous configuration of the matrix.

The sensitivity analysis is conducted by preparing RVEs with different material

properties. For each inclusion volume fraction 100 RVEs are generated. The instan-

taneous Young’s modulus of the matrix and inclusion are randomly chosen in the

range of 0.5 MPa to 900 MPa for matrix and 32 GPa to 96 GPa for inclusions. The

value of the relaxation time of the matrix is varied by 50% while keeping all the other

parameters fixed. Different schemes have been developed in the past for the generation

of input variables over a specific range. These include deterministic sampling, random

sampling, stratified sampling [249–251]. In deterministic sampling input parameters

are selected in regular intervals. Although this is a very straight forward approach

but the number of required samples increases exponentially. This disadvantage can be

overcome by using a random sampling technique such as Monte Carlo. Monte Carlo

scheme provide an efficient technique for the generation of random input variables,
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however using Monte Carlo approach can lead to artificial correlations in the input

and output parameters [250]. To remove the issue of undesired correlations, stratified

sampling method has been developed. In stratified sampling method the sampling

space is divided into separate groups called strata. Random samples are drawn from

each strata group. This technique is further extended to Latin Hypercube Sampling

(LHS) where the range of each variable is divided into equal intervals and a sample

is selected from each interval [251]. In this paper, to overcome the issue of undesired

correlations between input parameters, we use LHS to generate random values for the

Young’s modulus of matrix and inclusions. Python package pyDOE [252] is used to

generate sample points using LHS with two variables and 100 sample points for each

variable.

15.1 Results of sensitivity analysis

The scatter plots of peak value of tan δ versus the Young’s modulus of inclusions

and matrix at different volume fractions are shown in Fig. 15.1 to Fig. 15.6. The

data of these figures show that as the inclusions become stiffer the peak value of tan δ

increases whereas when matrix becomes stiffer the peak value of tan δ decreases.

15.2 Regression analysis

In order to understand results better, regression analysis is conducted on obtained

data. In simple words, regression analysis is nothing but study of how parameters

are dependent of each other. In our case, the material properties are independent

parameter and peak value of tan δ is dependent parameter. Therefore our aim is to

come up with an equation which will give us relationship between these dependent

and independent parameters. The most common and easiest type of relationship is

linear relationship. Linear regression lines are fitted to the scatter data points using

the following equations

ȳ = c+mx̄, (15.1)
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where intercept c and slope m are given by

c = ȳ −mx̄,m = Sxy
Sxx

, Sxx =
N∑
j=1

x2
j −Nx̄2, Sxy =

N∑
j=1

xjyj −Nx̄ȳ, (15.2)

where xi and yi represent inputs and outputs parameters, i.e the Young’s modulus

and the peak of tan δ, x̄ and ȳ are mean values of xi and yi and N is the number

of observations. The intercept c and slope m corresponding to uncertainty in the

Young’s modulus of filler and matrix are presented in Table 15.1 and Table 15.2,

respectively.

The 95% confidence interval (CI) is calculated using

yC = yfitted ± tα(SE)
√

1
N

+ (x− x̄)2

SSx
, (15.3)

and the 95% prediction interval (PI) is computed by

yP = yfitted ± tα(SE)
√

1 + 1
N

+ (x− x̄)2

SSx
, (15.4)

where, yfitted is fitted value using regression, tα is the coefficient for 95% level and SE

is the residual standard error. The expected bounds of the regression function are

depicted by the confidence interval lines, while the width of the confidence interval

provides an indication of the quality of the fitted regression function. The width of

the prediction interval is always wider than the CIs as the PIs takes into consideration

the uncertainty in knowing the value of the population as well as the data scatter.

As shown in Table 15.1 the slope of regression lines of peak tan δ versus inclusion’s

Young’s modulus is always positive and increases from 0.5 × 10−6 to 3 × 10−6 as

inclusion volume fraction increases from 0.05 to 0.30. This shows that at a specific

volume percentage, composites with stiffer inclusions have higher damping capabili-

ties. On the other hand, the intercept values of the regression lines decreases from
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Table 15.1: The intercept and slope of linear regression line for peak tan δ versus
Young’s modulus of inclusions

Filler volume
fraction (Vf )

0.05 0.10 0.15 0.20 0.25 0.30

Intercept 1.9104 1.7132 1.6568 1.4855 1.5492 1.2572
Slope×10−6 0.5 1.0 2.0 2.0 2.0 3.0

Table 15.2: The intercept and slope of linear regression line for peak tan δ versus
Young’s modulus of matrix

Filler volume
fraction (Vf )

0.05 0.10 0.15 0.20 0.25 0.30

Intercept 1.9788 1.8899 1.8548 1.7855 1.8643 1.6343
Slope×10−4 −0.7 −2.0 −2.0 −3.0 −4.0 −4.0

1.9104 to 1.2576 as the inclusion volume fraction increases indicating that composites

with lower inclusion volume fractions have higher damping capabilities.

The values of slope and intercept presented in Table 15.2 show that as the matrix

get stiffer the values of both slope and intercept reduces. The value of slope is negative

for all the inclusion volume fractions and reduces from −0.7×10−4 to −4×10−4. This

shows that increase in the stiffness of matrix adversely affect the damping capability of

composite and its adverse effects are more severe for composites with higher inclusion

volume fractions. The figures also show the regions with 95% confidence intervals

and 95% prediction intervals . The area which lies between the red lines depicts the

95% CIs while the 95% PIs are depicted by the area between the magenta lines. The

likely location of the true population parameter can be inferred from the CIs, while

the PIs provide an indication regarding the distribution of values and where the next

data point can be expected.

The effect of relaxation time on the peak value of tan δ is shown in Fig. 15.7. As

expected when the relaxation time of polymer increases the damping capability of

polymer improves. The plot of Fig. 15.7 shows that for the matrix used in this paper

the peak value of damping is linearly related to the relaxation time.
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(a)

(b)

Figure 15.1: Peak tan δ versus Young’s modulus of (a) inclusions and (b) matrix for
inclusion volume fraction of 0.05 .
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(a)

(b)

Figure 15.2: Peak tan δ versus Young’s modulus of (a) inclusions and (b) matrix for
inclusion volume fraction of 0.10 .
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(a)

(b)

Figure 15.3: Peak tan δ versus Young’s modulus of (a) inclusions and (b) matrix for
inclusion volume fraction of 0.15 .
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(a)

(b)

Figure 15.4: Peak tan δ versus Young’s modulus of (a) inclusions and (b) matrix for
inclusion volume fraction of 0.20 .
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(a)

(b)

Figure 15.5: Peak tan δ versus Young’s modulus of (a) inclusions and (b) matrix for
inclusion volume fraction of 0.25 .
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(a)

(b)

Figure 15.6: Peak tan δ versus Young’s modulus of (a) inclusions and (b) matrix for
inclusion volume fraction of 0.30 .
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Figure 15.7: Peak tan δ versus relaxation modulus of matrix.



CHAPTER 16: CONCLUSIONS

New constitutive model for polyurea was presented using superposition of hyper-

elastic and viscoelastic behavior. Four parameter Ogden model and three parameters

Mooney-Rivlin model was used for modeling the hyper-elastic part. It was found

that four parameter Ogden model is better in predicting the quasi-static response of

polyurea than three parameter Mooney-Rivlin model. The most important reason for

better accuracy of the Ogden model is more number of parameters which gives it more

flexibility. SLS model and K-BKZ model were used to model viscoelastic behavior.

New constitutive model using ’Ogden + SLS’ model is very effective in predicting

stress-strain curve for polyurea under a wide range of strain rates, i. e. for tension

from 0.09 to 294 /s and for compression from 0.0016 to 9000 /s. ’Ogden + K-BKZ’

model is also effective in predicting the stress-strain curve for compression response

but not suitable for tension response. This new model can be easily incorporated into

commercial finite element software.

We used finite element modeling to study the damping property of polymer com-

posites with elastic inclusions. The computations were done on representative volume

elements which include several inclusions. The modelings were conducted using mixed

and periodic boundary condition. For each model, the values of tan δ under different

vibration frequencies were calculated. Both periodic and mixed boundary conditions

give similar results. Results show that the vibration frequency significantly impacts

the value of tan δ. Moreover, the finite element modelings indicate that by increasing

the inclusion volume fraction the damping capability of polymers composites reduces.

Some analytical methods such as Mori-Tanaka gives accurate predictions for damping

properties of composite for small inclusion volume fractions. But for high inclusion
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volume fractions use of analytical methods is not recommended as predicted proper-

ties deviate by a marginal amount.

Sensitivity analysis showed that as inclusions get stiffer the value of peak tan δ

increases whereas as matrix gets stiffer the value of peak tan δ decreases. Furthermore,

the relaxation time of the polymer matrix plays a significant role on the damping

capability of polymer and an increase in the relaxation time of material results in an

increase in tan δ.



APPENDIX A: Kachanov-Rabotnov damage model

One of the most widely used creep damage model is Kachanov-Rabotnov damage

model and can be given as [10],

ε̇cij = 3
2A

(
σeq

1− ω

)n
tm
(

Sij
σeq

)
, (A.1)

where, A, n and m are material constant. ε̇cij,σeq, and Sij are creep strain rate, von

Misses stress and deviotaric stress respectively.

Damage variable D is evaluated by equation,

Ḋ = B
σξRr

(1 + φ)(1 +D)φ t
m, (A.2)

where, B, ξR, and φ are material constants. σr is rapture stress, which can be given

as,

σr = ασ1 + (1− α)σeq, (A.3)

where, α is multi-axiality parameter. For uniaxial condition α is zero. All material

parameters have to be determined by careful creep test experiments. Many researchers

used this model to predict creep in different materials such as, Nickel and Titanium

based alloys [253, 254], Ti-6Al-2Cr-2Mo alloy [255], P91 steel [256, 257], P92 steel

[258] etc. Although model predicts creep very well, as material reaches failure the

damage rate obtained by Kachanov-Rabotnov model reached infinity. This makes it

computationally expensive to use with any numerical method as time step required

for integration needs to be very small.

On the other hand Liu-Morakami model does not suffer from this issue and hence
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Figure A.1: Comparison of evolution of damage parameter D for Liu-Morakami and
Kachanov-Rabotnov model.

more stable for using in numerical simulation. Fig. A.1 shows the comparison of

evolution of damage parameter D for Liu-Morakami and Kachanov-Rabotnov model.

Due to this reason we chose Liu-Morakami model over Kachanov-Rabotnov model in

this study.



APPENDIX B: Convergence analysis

Convergence is an important part of any numerical solution. As peridynamic model

is non-local formulation, convergence in case of peridynamics is somewhat different

than finite elements. In case of peridynamics, horizon size δ and size of PD node r are

two important parameters on which accuracy of solution depends up on. Therefore,

two types of convergences can be checked in peridynamics.

Figure B.1: Schematic of (a) m convergence and (b) δ convergence.

1. m convergence: δ is fixed and m goes to ∞, where m = δ
r
. This case is shown

in Fig. B.1a. As value of δ is fixed and m is increasing, means value of r in

decreasing, implying finer mesh. This increases number of PD nodes inside

horizon resulting in increasing computational time exponentially. We chose the

fixed value of δ = 0.4 cm and values of r and m are given in Table B.1.

2. δ convergence: m is fixed and δ goes to 0. This case is shown in Fig. B.1b. As

value of δ also decreases keeping number of PD nodes inside the horizon fixed,

this results in increasing computational time only due to more number of PD
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nodes inside whole domain. We chose the fixed value of m = 4 and values of r

and δ are given in Table B.2.

(a)

(b)

Figure B.2: Results of (a) m convergence and (b) δ convergence.
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Table B.1: Parameters used for m convergence with fixed value of δ = 0.4 cm.

r m

0.2 2
0.1 4
0.05 8
0.04 10

Table B.2: Parameters used for δ convergence with fixed value of m = 4.

r δ

0.2 0.8
0.1 0.4
0.05 0.2
0.04 0.16

Results of both convergence studies are shown in Fig. B.2. It can be seen that, as

value of m increases, solution from peridynamics approaches the FEM solution. On

the other hand, as value of δ decreases, PD solution approaches the finite element

solution. Here solution from ABAQUS can be considered as exact solution as problem

is static problem with simple geometry.



APPENDIX C: Details of derivations of equations for angular frequency in

peridynamic zone

Eq. (6.4) can be written as,

ρük = Fk+3 + Fk+2 + Fk+1 + Fk−1 + Fk−2 + Fk−3, (C.1)

where Fk+3 is force exerted by (k + 3)th PD node on kth PD node and so on. Hence

for nth time step, we can denote same equation of motion as,

ρük = c0
(uk+3,n − uk,n)
|xk+3,n − xk,n|

Vk+3

2 + c0
(uk+2,n − uk,n)
|xk+2,n − xk,n|

Vk+2 + c0
(uk+1,n − uk,n)
|xk+1,n − xk,n|

Vk+1

+c0
(uk−1,n − uk,n)
|xk−1,n − xk,n|

Vk−1 + c0
(uk−2,n − uk,n)
|xk−2,n − xk,n|

Vk−2 + c0
(uk−3,n − uk,n)
|xk−3,n − xk,n|

Vk−3

2 , (C.2)

here volume of PD node is multiplied by fraction of volume of PD node inside horizon

δ = 3h. As mesh is uniform, volume of all PD nodes is same and can be given by,

Vk+3 = Vk+2 = Vk+1 = Vk−1 = Vk−2 = Vk−3 = Ah. (C.3)

Also, from Eq. (2.13) we know that c0 can be given as,

c0 = 2E
δ2A

= 2E
(3h)2A

= 2E
9Ah2 . (C.4)
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By substituting Eq. (C.4) and Eq. (C.3) in Eq. (C.2), along with Eq. (6.5) we get,

ρ

τ 2 (uk,n+1 − 2uk,n + uk,n−1) = 2E
9Ah2

[
(uk+3,n − uk,n)

3h
Ah

2 + (uk+2,n − uk,n)
2h Ah

+(uk+1,n − uk,n)
h

Ah+ (uk−1,n − uk,n)
h

Ah+ (uk−2,n − uk,n)
2h Ah+ (uk−3,n − uk,n)

3h
Ah

2

]
.

(C.5)

As we substitute solution from Eq. (6.3) in to Eq. (C.5), amplitude A0 will cancel out

from both sides of equation, along with eiω(τr) and e−iω(kh/v) and we are left with,

eiωτ − 2 + eiωτ = Eτ 2

27ρh2

[
e−3iωh/v + 3e−2iωh/v + 6e−iωh/v + 6eiωh/v + 3e2iωh/v + e3iωh/v− 20

]
.

(C.6)

Using property eiθ = cos(θ) + i sin(θ), we get

2 cos(ωτ)− 2 = Eτ 2

27ρh2

[
2 cos

(
3ωh
v

)
+ 6 cos

(
2ωh
v

)
+ 12 cos

(
ωh

v

)
− 20

]
, (C.7)

further simplifying above equation using trigonometric property, cos(x) = 1−2 sin2
(
x
2

)
we get,

sin2
(
ωτ

2

)
= Eτ 2

27ρh2

[
sin2

(
3φ
2

)
+ 3 sin2 φ+ 6 sin2

(
φ

2

)]
, (C.8)

here, φ = ωh
v
. Which is Eq. (6.6) in section 6.1.



APPENDIX D: Details of derivations of equations for reflected and transmitted

wave amplitudes for non-uniform mesh

For the case of non-uniform mesh, equation of motion for PD node at k = 0 can

be written using Eq. (6.16) as,

ρü0,n+1 = c0

[
u−3,n − u0,n

3h
Ah

2 + u−2,n − u0,n

2h Ah+ u−1,n − u0,n

h
Ah

+
u∗1,n − u0,n

h
Ah+

u∗2,n − u0,n

2h Ah+
u∗3,n − u0,n

3h
Ah

2

]
, (D.1)

where u∗1, u∗2 and u∗3 are displacements of three ghost nodes respectively. Value of k

for three ghost nodes can be given as k∗1 = h/H, k∗2 = 2h/H and k∗3 = 3h/H.

By substituting the solution from Eq. (6.17b) in above equation along with Eq. (6.5),

we get,

ρ(1− β)
τ 2

[
eiωτ(n+1) − 2eiωτ(n) + eiωτ(n−1)

]
= E

H

[
αeiω(τn−H/V ) − 2αeiωτ(n)

+eiω(τn+h/v(H/h)) − βeiω(τn−h/v(H/h))
]
, (D.2)

with canceling eiωτ(n) from both sides of above equation and rearranging we get,

(1− β)
[
eiωτ − 2 + eiωτ

]
= 2Eτ 2

ρh2

[
α
{
e−3iΦh/H + 3e−2iΦh/H + 6e−iΦh/H

}
+
{
e3iφ + 3e2iφ + 6eiφ − 20

}
− β

{
e−3iφ + 3e−2iφ + 6e−iφ − 20

}]
. (D.3)
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Using property eiθ = cos(θ) + i sin(θ) and substituting φ = ωh
v

and Φ = ωH
V

we get,

(1− β)
[
2 cos(ωτ)− 2

]
= 2Eτ 2

ρh2

[
α
{
e−3iΦh/H + 3e−2iΦh/H + 6e−iΦh/H

}
+
{
e3iφ + 3e2iφ + 6eiφ − 20

}
− β

{
e−3iφ + 3e−2iφ + 6e−iφ − 20

}]
. (D.4)

By further simplifying above equation using trigonometric property, cos(x) = 1 −

2 sin2
(
x
2

)
we get expression for angular velocity as,

sin2
(
ωτ

2

)
= −Eτ 2

108(1− β)ρh2

[
α
{
e−3iΦh/H + 3e−2iΦh/H + 6e−iΦh/H

}
+
{
e3iφ + 3e2iφ + 6eiφ − 20

}
− β

{
e−3iφ + 3e−2iφ + 6e−iφ − 20

}]
. (D.5)

Now by equating Eq. (D.5) with Eq. (6.12), which is expression for angular velocity

in FEM region we get,

sin2
(

Φ
2

)
+ (H/h)2

108(1− β)

[
α
{
e−3iΦh/H + 3e−2iΦh/H + 6e−iΦh/H

}
+
{
e3iφ + 3e2iφ + 6eiφ − 20

}
− β

{
e−3iφ + 3e−2iφ + 6e−iφ − 20

}]
= 0, (D.6)

which indeed is Eq. (6.21). We have to mention here, φ in Eq. (6.12) becomes Φ in

this case as per our nomenclature. As a final step, Eq. (D.6) is solved simultaneously

with Eq. (6.18) for α and β along with Eq. (6.19) for the case of δ = 3h.



APPENDIX E: Conversion of time domain response to frequency domain response

using Fourier Transform

It is important to convert time domain response in to frequency domain to get

clear understanding of visco-elastic material’s behavior. It can be achieved by tak-

ing Fourier transform of time domain response. In this appendix we will see how

Eq. (12.13) which represents the shear modulus of visco elastic material in frequency

domain is obtained from Eq. (12.12) which represents the shear modulus of in time

domain.

The shear modulus of visco elastic material in time domain is given by Eq. (12.12),

which is

G(t) = G∞ +
N∑
j=1

Gje
−t/τj , (E.1)

where t represents time. Fourier transform of Eq. (E.1) is to be taken to convert it

to frequency domain response. Following is the step by step procedure for the same.

G∗(ω) = iω
∫ ∞

0
G(t)e−iωtdt,

= iω
∫ ∞

0

[
G∞ +

N∑
j=1

Gje
−t/τj

]
e−iωtdt,

= iω
∫ ∞

0
G∞e

−iωtdt+ iω
∫ ∞

0

N∑
j=1

Gje
−t/τje−iωtdt,

= iωG∞

∫ ∞
0

e−iωtdt+ iω
N∑
j=1

Gj

∫ ∞
0

e−t/τje−iωtdt,

= iωG∞

∫ ∞
0

e−iωtdt+ iω
N∑
j=1

Gj

∫ ∞
0

e
−t(iω+ 1

τj
)
dt,
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G∗(ω) = iωG∞

[
−e−iωt

iω

]∞
0

+ iω
N∑
j=1

Gj

[
−e−t(iω+ 1

τj
)

iω + 1
τj

]∞
0
,

= iωG∞

[
−(e−∞ − e0)

iω

]
+ iω

N∑
j=1

Gj

[
−(e−∞ − e0)
iω + 1

τj

]∞
0
,

= G∞ + iω
N∑
j=1

Gj

iω + 1
τj

,

= G∞ + iω
N∑
j=1

Gjτj
(1 + iωτj)

,

which is Eq. (12.13).
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