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ABSTRACT

YI ZHEN. Representing and Reasoning with Clinical Knowledge in Radiation
Therapy Publications: A step towards evidenced-based medicine. (Under the

direction of DR. YAORONG GE)

To improve the quality and consistency of health care, evidence-based medicine

(EBM) was proposed to promote the wide adoption of current best evidence to make

decisions about care of individual patients. The practice of EBM in Radiation Oncol-

ogy is a process of integrating clinical expertise, patient’s expectation, and research

evidence to support decision-making in Radiation Therapy (RT). One of the goals of

the RT decision-making aims to design an ideal RT plan that achieves most damage

to target treatment site and least harm to surrounding healthy organs and tissues.

This aim requires radiation oncologists to understand and maintain up-to-date Ra-

diation Oncology knowledge, also known as the clinical evidence published in clinical

guidelines and clinical research studies, such as radiation-induced adverse events, dosi-

metric criteria recommendation, and meta-analysis of randomized controlled clinical

trials.

As the amount of clinical evidence increases, it is becoming increasingly difficult

for clinicians to maintain and adopt the best and most up-to-date clinical evidence

in their clinical practices. This demands the development of effective systems for

automated and intelligent clinical decision support (CDS), which relies on knowledge

engineering methods to translate narrative clinical knowledge into computable forms

and enable reasoning of the computerized knowledge. In the domain of RT, we believe

that computerized Radiation Oncology knowledge will improve the ability and quality

of intelligent decision-making in an efficient way.

This dissertation aimed to advance the state-of-the-art of research towards evidence-

based medicine in general and with a specific focus on intelligent decision support

for radiation therapy. First, we explored radiation-induced adverse events and their
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grading standards used in clinical research studies using ontological modeling and text

mining methods. Second, we investigated the challenges and developed a framework

for extracting Radiation Oncology knowledge from clinical guidelines and clinical

research studies. Third, we focused on the specific and challenging problem of un-

certainty nature of human biological systems and biomedical research approaches.

Toward this end, we investigated the feasibility of probabilistic models for represent-

ing extracted RT knowledge and the ability of performing reasoning. Specifically,

we developed novel methods to encode uncertain Radiation Oncology knowledge us-

ing Markov Logic Networks and conducted a study of quantifying uncertainties in

Radiation Oncology clinical evidence. We demonstrated the feasibility of using the

proposed methods as a general knowledge engineering framework for representing

complex and uncertain knowledge in Radiation Oncology for decision support.
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CHAPTER 1: INTRODUCTION

Evidence-based medicine (EBM) has been proposed as one of the most significant

developments in the practice of medicine as a result of the need to cope with infor-

mation overload and scientific decision-making over the last three decades. EBM is

defined as an integration of the best clinical evidence that is currently available from

systematic research with individual clinical expertise and patient values to support

clinical decision-making [1]. To improve the quality and consistency of health care,

EBM has evolved as a promising tool to promote the broad adoption of the current

best evidence to make decisions about the care of individual patients [2]. With the

rapid growth of clinical evidence in published research and the explosive increase of

information in clinical environments worldwide, it became difficult and, in some cases,

no longer possible for individual medical professionals to adopt, manage and main-

tain up-to-date clinical evidence or knowledge upon which to base their decisions. In

particular, the practice of EBM is critical and challenging for radiation oncologists,

medical physicists and dosimetrists to support effective and scientific decision-making

in radiation therapy (RT), a cancer treatment that incorporates the best clinical ev-

idence of radiation oncology into treatment decisions. This situation demands the

development of effective and efficient systems for automated and intelligent clinical

decision support in order to implement the practice of EBM in RT.

To promote EBM, the health care community developed models, protocols, and

tools for clinical practitioners to train, educate, guide, and facilitate the practice

of EBM [3]. The fundamental model of the practice of EBM comprises five steps:

(1) formulate the need into an answerable question; (2) acquire the best research

evidence to answer the formulated question; (3) critically appraise that evidence for its
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validity, impact, and applicability; (4) apply the appraised evidence; and (5) evaluate

the effectiveness and efficiency in executing these steps. Since informatics has been

accepted and utilized in health care, the practice of EBM has become more practical

in transferring the best evidence into clinical practice. Recent efforts have been made

in the development of intelligent systems for each step of the EBM practice model

[4, 5, 6, 7, 8]. More specifically, various systems and methods have been developed

for automated clinical evidence retrieval [9, 10, 11, 12], automatic summarization

of clinical research studies [13, 14], clinical evidence grading [15, 16], computerized

clinical guidelines [17, 18, 19, 20, 21], and intelligent decision support in health care

[22, 23, 24, 25]. While these methods and systems have improved the practice of EBM,

few efforts have tackled the limitations and expanded the benefits of implementing

the practice of EBM in RT because of the following major challenges and knowledge

gaps. Firstly, the search and identification of up-to-date clinical knowledge on RT,

with its different formats and heterogeneous resources, is labor-intensive and prone to

error. Secondly, clinical knowledge in RT is essentially a form of statistical knowledge

that captures the generalities of classes of patients rather than the peculiarities of

a specific patient [26]. Radiation oncologists are required to manually specialize

such highly generalized knowledge based on patients’ individual characteristics [27].

Thirdly, the uncertainty of clinical knowledge in RT is challenging to understand and

interpret using computer agents when determining the strength of recommendation

for clinical decision-making.

Therefore, a critical step toward the practice of EBM in RT is the development

of a system or a knowledge base to allow practitioners to acquire up-to-date clinical

knowledge in RT publications, thus enabling them to utilize and specialize clinical

knowledge for RT decision-making with uncertainty. This dissertation investigates

approaches to representing clinical knowledge in RT publications and proposes a

framework based on knowledge engineering methods to bridge the gap between sci-
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entific research and clinical practices in RT in an efficient and intelligent way.

In the following sections, we provide some background information related to the

domain of RT, clinical knowledge in RT publications, and knowledge representation

formalisms. In the next two chapters, we use text mining methods and ontological

modeling to explore radiation-induced adverse events and their grading standards as

used in RT research studies. Chapter 3 also presents the results of the extraction

of clinical knowledge from RT publications with term identification methods. In

Chapter 4, we describe the proposed method of representing clinical knowledge in

RT and the results of knowledge reasoning with uncertainty. Chapter 5 illustrates a

study on quantifying the uncertainty conveyed by hedging terms in RT publications.

In the final chapter, we conclude the dissertation and make recommendations for

future work.

1.1 Radiation Therapy

Radiation Therapy (RT) is currently one of the most effective cancer treatment

modalities by which to cure cancer, reduce cancer symptoms, and prevent cancer

from spreading. According to the American Cancer Society and the National Cancer

Institute, from 2012 to 2019, more than half of cancer patients received RT either

as a sole cancer treatment or in combination with other treatments [28]. Unlike

chemotherapy, which usually exposes the whole human system to anti-cancer drugs,

RT is usually a local treatment that aims to do the most damage to cancer cells with

the least possible harm to surrounding healthy cells. RT uses high-energy radiation

to kill cancer cells and shrink tumors by destroying the DNA of targeted cancer cells,

thereby preventing them from growing and dividing. Two primary types of RT are

frequently adopted in clinical practices: external beam RT and internal RT. External

beam RT applies a machine outside the patient’s body to deliver high-energy radiation

beams from many directions to a specific part of the body that contains the tumor,

whereas internal RT involves the implanting of a small amount of radioactive material
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inside the patient’s body within or near the tumor. The type of RT that is adopted

depends on the type of cancer and the location of the tumor. External beam RT is a

widely used treatment for most cancer types and has different treatment techniques,

such as three-dimensional conformal RT (3D-CRT), intensity-modulated RT (IMRT),

and image-guided RT (IGRT). Internal RT or brachytherapy is usually used to treat

several types of cancers, including head and neck cancer, breast cancer, cervix cancer,

and prostate cancer.

RT not only destroys cancer cells with radiation but also causes side effects by

exposing normal cells to radiation, as illustrated in Figure 1.1. In this disserta-

tion, we refer to the side effects that follow RT as radiation-induced adverse events.

Radiation-induced adverse events - also known as radiation toxicity on normal tissues

and organs - are defined as the inevitable damage caused by RT. For instance, fatigue

and hair loss are two commonly reported radiation-induced adverse events after RT.

Like any cancer treatment, the therapeutic benefit of RT is balanced against poten-

tial radiation-induced adverse events. Therefore, radiation-induced adverse events

are critically important factors for RT treatment planning, RT outcome evaluation,

and treatment safety and quality control. Over the past decades, many clinical stud-

ies and trials have explored the balance between tumor control performance and

radiation-induced adverse events [29, 30, 31]. A number of standard scoring crite-

ria have been proposed and used in RT clinical studies for reporting and grading

radiation-induced adverse events, such as the Common Terminology Criteria for Ad-

verse Events (CTCAE) [32], the Radiation Therapy Oncology Group (RTOG) [33],

and the Late Effects Normal Tissue Task Force-Subjective, Objective, Management

and Analytic (LENT-SOMA) [34].
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Figure 1.1: RT not only kills cancer cells with high-energy radiation but also causes
radiation-induced adverse events by damaging surrounding normal cells

RT is a highly sophisticated technology that requires a team of radiation oncolo-

gists, radiation therapists, medical physicists, and dosimetrists to spend significant

time and effort in the care of cancer patients. The RT process usually involves the

following five steps: (1) in the consultation step, the radiation oncologist diagnoses

the cancer type and stage, identifies the tumor with radiology imaging and deter-

mines the RT treatment techniques; (2) once the treatment technique determined, a

radiation simulation is performed on the patient to outline the exact treatment area,

determine the best angle and location for radiation treatment, and ensure immobiliza-

tion if needed by the RT team; (3) after simulation, the RT team develops a unique

optimal treatment plan for the patient and evaluates the plan by checking its quality

and safety iteratively in the RT treatment planning step; (4) the radiation therapists

deliver the treatment to the patient by following the generated plan; and (5) the ra-

diation oncologist reports and manages the side effects after treatment delivery in the

follow-up stage. The practice of radiation therapy requires the RT team members to

combine their expertise and knowledge of radiation therapy with patients’ values. For

the recent thirty years, each step of the RT process has involved computer modeling

and information techniques to assist decision-making. Among these steps, treatment
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planning forms the core of RT and is the field with the most potential for the ap-

plication of intelligent systems. In this dissertation, we focus on the improvement of

treatment planning by representing, managing and reasoning clinical knowledge from

RT publications.

An optimal RT plan maximizes damage to the cancer cells with high-energy ra-

diation while minimizing damage to the normal cells surrounding the cancer cells.

In order to develop an effective and accurate cancer treatment plan with the fewest

radiation-induced adverse events, radiation oncologists rely on a number of radiation

therapy publications during RT planning by following clinical guidelines such as the

Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) and ref-

erencing large numbers of peer-reviewed clinical research papers. During the process

of RT decision-making, radiation oncologists must take complex clinical knowledge

into account, including the prescribed dosage, the volume of tissue affected by radi-

ation, and the risk of radiation-induced adverse events. Ultimately, the dissertation

aims to assist radiation oncologists in making intelligent decisions about treatment

plans with less risk of radiation-induced adverse events by representing and reasoning

clinical knowledge in RT publications in computerized form.

1.2 Clinical Knowledge in Radiation Therapy

In order to make scientific clinical decisions in RT planning, medical professionals

must adopt the best and most up-to-date clinical knowledge provided in RT publica-

tions. Clinical knowledge in RT publications exists in two types of resources: primary

original research and secondary pre-appraised research. Primary original research

contains original research results and synopses without a critical evaluation process

and includes observational studies and randomized controlled trials. Secondary pre-

appraised research is filtered information research that has passed critical appraisal

and evaluation by experts and authorities; it includes meta-analysis, systematic re-

view, and clinical practice guidelines. The pyramid diagram in Figure 1.2 visualizes
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the ranking of clinical knowledge resources based on their strength of recommendation

and reliability in clinical decision-making. The reliability level of clinical knowledge

becomes higher and more robust from expert opinions at the bottom to clinical prac-

tice guidelines at the top. In the practice of EBM in RT, the RT practitioners should

select as high a level of evidence as possible.

Figure 1.2: The pyramid diagram ranks the reliability of different levels of clini-
cal knowledge in RT, usually from expert opinions at the bottom (least reliable) to
meta-analyses or systematic reviews and clinical practice guidelines at the top (most
reliable).

The focus of this dissertation is on clinical knowledge in RT publications from two

primary resources: (1) Quantitative Analyses of Normal Tissue Effects in the Clinic

(QUANTEC) [35], which are the clinical guidelines frequently used in RT treatment

planning and contain meta-analysis of RT plans and radiation-induced adverse events,

as well as recommendations for acceptable dose/volume constraints; and (2) clinical

studies referenced by QUANTEC reviews.The QUANTEC reviews play an important

role of clinical knowledge resources on assisting RT professional in determining ac-

ceptable dose/volume constraints to protect normal tissues and organs from radiation-

induced adverse events [36]. Figure 1.3 displays the outline of the QUANTEC reviews

which consist of three sections: 1) introductory papers; 2) organ-specific papers; and

3) vision papers. The clinical knowledge that we are extracting from QUANTEC
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reviews is primarily from the section of the sixteen organ-specific papers. Each of the

organ-specific papers is organized with a consistent structure of ten topic sections.

The following example shows a clinical knowledge statement coming from the section

of ’Recommended Dose/Volume Limites’ in the organ-specific paper about rectum in

the QUANTEC reviews. The clinical knowledge statement carries clinical knowledge

of our interest for RT treatment planning. It lists the dose/volume constraints on

rectum for patients with prostate cancer, and the potential risk rate of having ’Grade

2 late rectal toxicity’ if following these constraints while receiving 3D conventional

RT. The example is given as:

’For patients with prostate cancer, the following dose-volume constraints

for conventional fractionation up to 78 Gy are provided as a conserva-

tive starting point for 3D treatment planning: V50 < 50%, V60 < 35%,

V65 < 25%, V70 < 20%, and V75 < 15%. And the NTCP models predict

that following these constraints should limit Grade 2 rectal toxicity below

about 10%. ’
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Figure 1.3: The outline of the QUANTEC reviews consisting of three sections: 1) two
introductory papers; 2) sixteen organ-specific papers, each paper containing ten topic
sections; and 3) five vision papers. (From: ’Guest editor’s introduction to QUANTEC:
a users guide’)
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With regard to content, we investigate clinical knowledge in RT by focusing on

the following classes: radiation-induced adverse events, diagnoses, dose prescription,

dosimetric criteria, treatment technique, and target site [37]. As a crucial measure in

evaluating an RT plan, radiation-induced adverse events are the primary RT area of

interest. The knowledge related to radiation-induced adverse events includes the name

of adverse events, the duration, the grade, and the risk of radiation-induced adverse

events. The knowledge related to diagnoses in RT consists of patient clinical diagnosis

for RT, including patient information (e.g., age group and gender), primary cancer

type for RT, and relevant medical conditions (e.g., previous medical interventions

on the target site and medical history). Dose prescription is the radiation dosage

prescribed on the target by the radiation oncologist. Dosimetric criteria refer to

the dose-volume constraint protocols followed by radiation oncologists to limit the

effects of radiation on organs at risk. Dosimetric criteria consist of specified planning

parameters, such as maximum dose, mean dose, and the volume percentage receiving

a specific dose. A treatment technique is a commonly used technique for RT to cure

cancers and includes IMRT, 3D-CRT, VMAT, and so on. A target site is defined as

an anatomical site with cancer that receives a prescribed dose.

1.3 Knowledge Representation Formalisms

Knowledge representation and reasoning is a field of artificial intelligence that con-

cerns how a computer agent uses data, information, and knowledge to make decisions

[38]. In order to guide the problem-solving process, a computer agent first requires a

formal representation of domain knowledge in computer-interpretable language, then

inference answers to given problems or queries based on knowledge representation

formalisms. Knowledge representation formalisms provide computer agents with a

structure of hypothesis space consisting of key entities, semantic relationships, and

associated contexts from different resources for different purposes [39]. However, it is

still difficult to represent knowledge with clear logic, compact description, and prob-
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abilistic and temporal properties. Furthermore, it is a challenging problem for the

agent to capture and extract knowledge from traditional resources, such as narrative

text in literature, datasets and even figures in studies. Knowledge reasoning then uses

formalized knowledge and logical reasoning to make inferences and solve problems.

Knowledge-based systems usually offer several different ways of representing knowl-

edge in a domain and reasoning with this knowledge automatically to derive conclu-

sions. In terms of a logical representation, logical language acts as a basis for knowl-

edge representation, such as first-order logic (e.g., Horn-clause logic), description logic

(e.g., OWL, the Web Ontology Language), and temporal logic (e.g., Linear Tempo-

ral Logic) [40, 41, 42]. Existing representations such as Arden Syntax [43], EON

method [17] and ATHENA-CDS project [44] are insufficient for representing clinical

knowledge in RT. Among these examples, first-order logic is a robust representation,

but it is also problematic: firstly, representing knowledge in first-order logic as a list

of propositions does not clarify the relationships and structures among propositions;

secondly, inference in first-order logic is only semi-decidable; moreover, the world rep-

resented by first-order logic is absolute, while the clinical knowledge in RT is highly

uncertain. Ontology is a general knowledge formalism in the biomedical field and

is defined as a formal representation that captures concepts and relationships in a

specific domain to allow the sharing of knowledge. However, ontology is unable to

represent clinical knowledge in RT with uncertainty.

There has also been significant progress in the development of knowledge repre-

sentation and reasoning with uncertainty. Probabilistic graphic models have been

accepted as a natural formalism to represent and reason with uncertain biomedical

knowledge. Bayesian Networks (BNs) - also termed causal probabilistic networks -

are directed acyclic graph networks represented formally by a set of joint probability

distributions that are described by probability calculus. In directed graphs, edges

specify the from-and-to direction as relation or causal relationship. The properties of
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BNs have led to progress in using them to handle the uncertainty of knowledge repre-

sentation and reasoning in the biomedical domain [45, 46]. For example, researchers

have used BNs to build networks for cancer diagnosis in the early 2000s [47, 48, 49].

BN-based decision models have been proposed for prognosis and disease progression

when a diagnosis has already been made [50] and even for predicting cancer pro-

gression [51]. In RT, BNs have been used to represent the integrated RT process

to make individualized cancer treatment decisions, to provide guidelines for therapy,

and to allocate healthcare resources. Kalet [52] constructed BNs from ontology in

radiation oncology and implemented a software tool to create a BN topology based

on ontological semantics.

However, the relationships between entities in RT planning are more complex than

that in the above cases; they are not simple causal relationships. Recent efforts

to represent and reason knowledge have led to the development of statistical rela-

tional learning methods to handle both complexity and uncertainty in the real world

[53, 54, 55, 56]. Knowledge representation and reasoning in the RT domain require

not only the description of knowledge with logical language but also the handling

uncertainty with probability theory. Markov logic networks (MLNs) have been pro-

posed in knowledge representation and reasoning as a single formalism that gener-

alizes both first-order logic and Markov networks by attaching weights to first-order

logical formulas. The idea is to use predicate logic to generate Markov networks,

i.e., joint probability distributions that have an associated undirected graph. It is

also a probabilistic relational model that has the potential to address problems in

health informatics, such as by providing better estimates for clinical diagnostic crite-

ria and integrating information across health records [57]. MLN has also been used in

ontology matching to identify corresponding semantics between entities of different

ontologies in the biomedical field [58]. Several approaches and systems have been

proposed to extract knowledge from biomedical literature with MLNs [59, 60, 61].
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In addition, several projects have supported the implementation of MLNs, including

the Alchemy project [62, 63], and the TUFFY project [64]. Moreover, outside the

biomedical field, Snidaro showed an example by applying MLNs to fuse uncertain

knowledge and evidence for maritime situational awareness [65].

Much recently, Probabilistic Soft Logic (PSL) was proposed as another formalism

in statistical relational learning [66, 67]. Both MLNs and PSL combine logic and

probabilistic graphical model in a single representation, whereby each formula is as-

sociated with a weight and the probability distribution over possible worlds is derived

from the weights of the formulas that are satisfied by the possible worlds. However,

PSL is more general in interpreting knowledge since it is based on fuzzy logic [68] and

the suitability comparison between the two formalisms depends on their specific ap-

plications [69]. Considering the uncertainty and complexity inherent in RT planning,

we believe that an MLN is a more suitable representation formalism.

In simple terms, an MLN is a first-order logic knowledge base with a weight at-

tached to each formula [70, 71]. First-order logic enables an agent to compactly

represent RT clinical knowledge; a Markov network enables an agent to efficiently

handle uncertainty in RT decision-making. However, in addition to the challenges of

knowledge representation and reasoning in RT, MLNs have several challenges to over-

come: (1) how to translate knowledge from narrative text or figures into first-order

logic in accurate and efficient ways; (2) how to construct the probabilistic graphic

model with weights; and (3) how to assess the MLN built for RT planning.

1.4 Summary of Contributions

This dissertation proposes a framework based on knowledge engineering methods

to bridge the gap between scientific research and clinical practices in RT in an efficient

and intelligent way. In particular, the problem we are interested in is to represent,

manage, and utilize clinical knowledge in RT publications for clinical decision-making

in RT treatment planning. First, we explored radiation-induced adverse events and
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their grading standards used in clinical research studies by applying ontological mod-

eling and text mining methods. We developed an ontology for adverse events grading

standard with an accurate and efficient way to the radiation oncology community as

an initial step towards knowledge engineering. Second, we investigated the methods

and developed a framework for extracting radiation oncology knowledge from clinical

guidelines and clinical research studies. We suggest the RT community to improve

the grading standards for radiation-induced adverse events with three strategist: sub-

setting, re-examination, and ontological modeling. Third, we focused on the specific

and challenging problem of the uncertain nature of human biological systems and

biomedical research approaches. We found that MLNs can encode uncertain and

complex knowledge, and support reasoning to answer queries, and takes patient in-

dividual specialization into account. To this end, we investigated the feasibility of

probabilistic models for representing extracted RT knowledge and their ability to rea-

son. We found that learning weights from experts knowledge should be cautious, and

a data-driven weight learning method is more reliable in construction MLNs.

The dissertation comprises the following previous work I contributed to publications

or will be published. We investigated automatic methods to generate an ontology for

Common Terminology Criteria for Adverse Events (CTCAE), a standard for reporting

and grading adverse events in cancer care, in

Y. Zhen, J. Wu, L. Yuan, Y. Ge. A semi-automatic method for generating

ontology of the Common Terminology Criteria for Adverse Events. AMIA

Joint Summit on Translation Sciences, 2015.

We then analyzed the use of the three most prevalent standards for grading radiation-

induced adverse events in RT clinical studies by applying text mining methods in

Y. Zhen, Y. Jiang, L. Yuan, J. Kirkpatrick, J. Wu, Y. Ge. Understanding

the use of adverse event scoring criteria in radiation therapy: a literature
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mining approach. American Medical Informatics Association (AMIA)

Symposium, 2015.

An extension of this work that discussed the factors of adopting radiation-induced

adverse events grading standards in RT clinical studies appeared in

Y. Zhen, Y. Jiang, L.Yuan, J. Kirkpartrick, J. Wu, and Y. Ge. Analyzing

the usage of standards in radiation therapy clinical studies. IEEE EMBS

International Conference on Biomedical &Health Informatics (BHI), 2017.

We presented results of extracting radiation-induced adverse events from RT studies

with Named Entity Recognition methods in

Y. Zhen, S. Karki, L. Yuan, J. Wu, Y. Ge. Radiation Induced Adverse

Events Reported in Radiation Therapy Studies, AMIA Informatics Sum-

mit, 2018.

We first proposed the idea of using Markov Logic Networks to represent clinical

knowledge in RT publications concerning both complexity and uncertainty in

Y. Zhen, S. Karki, L. Yuan, J. Wu, Y. Ge. Representation of Radiation

Oncology Knowledge Using Markov Logic Network. IEEE BHI, 2018

This work later appeared as a conference paper in

Y. Zhen, T. Xie, S. Karki, L. Yuan, J. Wu, and Y. Ge. Representing

Knowledge for Radiation Therapy Planning with Markov Logic Networks.

IEEE International Conference on Bioinformatics and Biomedicine (BIBM),

2018.

We plan to submit our study of quantifying uncertainty of clincial knowledge in

RT studies to the 2020 AMIA informatics Summit.



CHAPTER 2: REPRESENTING STANDARD FOR ADVERSE EVENTS WITH

ONTOLOGICAL MODELING

In this chapter, we present a semi-automatic approach to developing an ontological

representation for the Common Terminology Criteria for Adverse Events (CTCAE) to

enable accurate and efficient reporting of adverse events in cancer care. CTCAE is a

terminology standard for Adverse Event (AE) reporting in cancer treatment. The on-

tological modeling of CTCAE converts the standard from the current narrative and

tabular format into an explicit, formal and computerized representation formalism

that captures important concepts and semantic relationships specified in CTCAE. In

addition, the proposed approach is general and can be extended to generate ontolog-

ical representations for other clinical terminology standards in narrative and tabular

format.

2.1 Background

Accurate and standardized reporting of side effects or toxicity for patients receiving

cancer treatments are critically important for treatment outcome evaluation and its

safety and quality control. CTCAE is a descriptive terminology standard developed

by the National Cancer Institute (NCI) for Adverse Event (AE) reporting in cancer

research and clinical care. An AE is any unfavorable and unintended sign, symptom,

or disease temporally associated with the use of a medical treatment or procedure. In

short terms, AE is a term referring to side effects or toxicity associated with cancer

treatment in medical documentation and scientific analysis. A growing number of

clinical trials and research studies rely on this standard to capture AEs of cancer

treatment, such as radiation therapy, chemotherapy, and other systemic cancer ther-
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apy treatments [72]. Not only do the medical professionals use CTCAE to standardize

the process of AE reporting in the follow-up cancer care, but also clinical decision

support systems must reference the standard as a consistent knowledge resource of

AEs.

CTCAE is written in a tabular format that includes all AEs and their grading scales.

In CTCAE, AEs are grouped by 26 System Organ Classes, which are identified by the

anatomical or physiological system, etiology, or purpose. Thereby, CTCAE contains

26 tables of AEs organized by System Organ Class. Each row in the tables is an AE

and its grading definitions that describe the severity of AE after cancer treatment.

Figure 2.1 shows an example of several AEs in the table of gastrointestinal disorders in

CTCAE v 4.03. With the narrative and tabular format, the concepts and relationships

in CTCAE can hardly be retrieved and reasoned by computer agents for clinical

decision support. While CTCAE in its current tabular form may be sufficient for

manual entry of adverse events data in clinical trials, automatic reporting of adverse

events in Electronic Medical Records (EMRs) and other advance use of CTCAE in

decision support systems will require an explicit and formal representation for this

standard. The representation must not only capture essential concepts and semantic

relationships specified in CTCAE, but it also must allow medical professionals and

clinical decision support systems in cancer care to access, query, and manage clinical

knowledge related to AEs efficiently and intelligently.
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Figure 2.1: The example shows a table including four AEs and their grading defini-
tions under the class of gastrointestinal disorders from CTCAE v 4.03.

Trying to improve the efficiency of using CTCAE, several computerized tools for

CTCAE have been developed so far [73]. However, they are based on simple rep-

resentations that ignore the structure and semantic relationships in its definitions,

which still limits integrating and exploring it within other clinical information. We

note that an OWL version of CTCAE [74] in NCBO BioPortal has been released

and maintained by the Cancer Therapy Evaluation Program (CTEP) at the National

Cancer Institute. It is not a comprehensive ontology because it is a direct transla-

tion of the tabular format into an OWL representation without careful definitions of

important concepts and relationships pertaining to AE.

In this chapter, we describe a semi-automatic approach to convert CTCAE into

an ontological representation. According to Gruber’s definition, Ontology is the term

referring to the understanding sharing of a specific domain, which is often conceived

as a set of concepts or class relations, functions, axioms, and instances [75]. It is

a data model to formally represent defined concepts and their relationship for both

computing systems and humans. It also provides a shared framework of the com-
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mon knowledge of specific domains for computer agents’ communication and het-

erogeneous information integration. We aim to develop a comprehensive ontological

representation of the CTCAE that includes important concepts and semantic rela-

tionships about AE to enable knowledge sharing and semantic reasoning. Manually

constructing ontologies is time-consuming, labor-intensive and error-prone. Moreover,

manually updating ontologies when new standards are published could also intro-

duce significant delays and hinder the development and application of the ontologies.

Thus, we propose an approach to semi-automatically converting standards in tabular

representations, such as CTCAE, into ontologies that maintain concept-relationship

consistency and enable semantic reasoning.

2.2 Related Work

Several studies have developed general ontology design principles as guidelines for

ontology generation [76]. Guarino [77] proposed a methodology for ontology design

known as ’Formal Ontology’. The design principles included the need to: (1) be

clear about the domain; (2) take identity seriously; (3) isolate a basic taxonomic

structure; and (4) identify roles explicitly. Uschold and Gruninger [78] proposed a

skeletal methodology for building ontologies via a purely manual process. Ontolog-

ical design patterns (ODPs) were proposed by Reich [79], which could be used to

abstract and identify ontological design structures, terms, larger expressions, and se-

mantic contexts. Moreover, the ontology design method was successfully applied in

the integration of molecular biological information. Hwang [80] proposed a series of

desirable criteria for the final generated ontology. The generated ontology should be

(1) open and dynamic (both algorithmically and structurally for easy construction

and modification), (2) scalable and interoperable, (3) easily maintained, (4) context-

independent.

Based on the above guidelines, several approaches have emerged for generating

ontologies from heterogeneous data sources, such as from scratch, from structured in-



20

formation, from existing ontologies, or any combination of the three sources [81]. Ac-

cording to the different sources, ontology generation methods were grouped into four

main categories [82]: (1) conversion or translation methods prove that the ontological

representation is more comprehensive than other structured knowledge representa-

tion, such as XML or UML; (2) mining-based methods implement mining techniques

in order to retrieve enough information to generate an ontology mostly from un-

structured sources; (3) external knowledge-based methods build or enrich a domain

ontology by integrating external dictionaries, existing ontologies or other knowledge

resources; (4) frameworks based methods generate ontologies by utilizing predefined

modules and libraries in framework tools likes Protégé [83].

In conversion or translation methods, experiences show that this approach presents

a high degree of automation and a simple solution to ontology generation from an-

other representation format. However, simple conversion does not address the whole

problem of the ontology generation, especially in s specific task. Hannes Bohring [84]

has developed a tool that converts given XML files to OWL format. He hypothe-

sizes that items in XML schema can be converted to ontology’s classes, properties,

and instances without any other intervention on semantics and structures during the

transformation. This transformation is implemented by XML style-sheet language

transformation (XSLT) and has been also applied to the OntoWiki platform. Ghawi

[85] and Yahia [86]improved Bohring’s method to generate OWL ontology from mul-

tiple XML sources based on XML schema and XML schema graph (XSG). Their

methods enable ontology generation to deal with more complex cases and possible

design patterns. Hence, our proposed method is based on the conversion or trans-

lation approach to convert highly structured CTCAE into OWL ontology. We also

applied Protégé knowledge-based framework to refine generated ontology.
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2.3 Methods

2.3.1 Five Steps of Generating An Ontology for CTCAE

We developed a flexible approach to generating an ontology from a terminology

standard that is specified in tabular document format and applied this process to

convert CTCAE into an ontology. The first step is a manual process that converts

the CTCAE document into eXtensible Markup Language (XML) using an existing

tool. Then, in the ontology generation step, the XML representation is automatically

transformed into an OWL representation. Finally, the generated ontology is manually

refined by mapping important concepts and relationships to existing ontologies. The

ontology generation step makes use of four representation schemes, the XML, XML

schema, XML schema graph (XSG) and the Web Ontology Language (OWL).

We use XML to store CTCAE metadata and maintain consistency with the table-

layer structure. CTCAE is composed of a list of adverse event terms and their grading

scale definitions. The AEs are grouped by the System Organ Classes (SOCs). Thus,

CTCAE contains many organ-based disorders tables. Each organ-based disorder table

contains many adverse events that are associated with the specific organ. These

relationships are captured in XML as metadata. An XML Schema describes the

structure of an XML document. XML schema graph captures the graph structure of

the XML schema, which matches our expected OWL graph structure.

Figure 2.2 depicts the ontology generation process. The overall method consists of

five steps:
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Figure 2.2: The ontology generation consists of five steps: 1) the step of converting
CTCAE tables in PDF document into XML format; 2) the step of extracting XML
Schema for each XML document; 3) the step of generating XSG based on XML
Schema; 4)the step of generating OWL entities based on mapping rules; 5) the step
of refining ontology.

Step 1: Convert each CTCAE table into an XML format. In this step shown as Figure

2.3, CTCAE tables are exported into Microsoft Excel to clear irrelevant data.

Then, the clean excel document is converted into XML file by a java program.

In the resulting XML file, the XML root element is CTCAE; a root’s child

element refers to an organ-based disorders table; each XML grandchild ele-

ment of root represents an adverse event in an organ-based disorders table;

and the XML leaf element is a grading scale definition of an adverse event.
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Figure 2.3: An example shows the step of converting each CTCAE table into an XML
format. ′CTCAE ′ is mapped into the root element in XML; organ-based disorders
are mapped into the root element’s children; adverse events are mapped into the root
element’s grandchildren; and the grading scales definitions of each adverse event are
mapped into the leaf elements in XML.

Step 2: Extract XML schema out of the XML document by parsing general elements

in XML to specific structures such as complex types, elements, and attributes.

XML-Schema Object Model (XSOM) processes this step. XML schema is in

XML Schema Definition (XSD) language. Figure 2.4 gives an example of

extracted XML schema from its XML document by using XSD language.
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Figure 2.4: An example shows the XML schema extracted from its XML document
by using XSD language.

Step 3: Generate an XML-Schema Graph (XSG) by analyzing the XML-Schema. An

XSG is a directed acyclic graph that has a unique root vertex that is the

vertex of XML root element. It is composed of a vertex set and an edge

set, seen as Figure 2.5. The vertex set contains all elements, attributes, non-
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primitive types, element groups, and attribute groups. The edge set contains

the edges that link (1) each element to its type, if not primitive type, and (2)

each type, element group or attribute group to their contained elements and

attributes.

Figure 2.5: An example shows the XML-Schema graph generated from its XML
schema, which consisting of vertex sets and edge sets. In the XML-Schema graph,
the vertex set contains all elements, attributes and complex types.

Step 4: Generate OWL entities from XSG based on a set of mapping rules which

will be elaborated in the later subsection. OWL classes and individuals

emerge from complex types, and element-group declarations; object prop-
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erties emerge from element-subelement relationships; datatype properties

emerge from attributes and simple types.

Figure 2.6: An example shows the generation of OWL entities from XSG based on a
set of mapping rules.

Step 5: Manually refine the generated ontology by mapping important concepts to

existing ontologies, such as Disease Ontology (DO) [87] for disease concepts

and Foundational Anatomy Model (FMA) ontology [88] for anatomical con-

cepts.

2.3.2 Mapping Rules

Our method constructs an OWL ontology by transforming XML schema entities

into OWL model entities based on a set of mapping rules. In our CTCAE ontology

model, each adverse event’s grading scale definitions are instances of the adverse

event class. For example, Anemia Grade1 is a member of the class Anemia because

it denotes a single anemia grade. Our CTCAE ontology model contains four types
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of OWL entities: OWL classes, OWL individuals, object properties and datatype

properties. Thus, the transformation from XML schema entities into OWL entities

is based on the following four types of mapping rules:

Rule 1: OWL class mapping: maps an XML node (except leaf nodes) to an OWL

concept. XML node is defined as complex types and named elements in XML

schema. An OWL class generated from complex types has the name of the

complex element. For example, a complex type named ’CTCAE’ maps into

OWL class ’CTCAE’.

Rule 2: OWL individuals mapping: maps an XML leaf node to an OWL instance.

All leaf nodes in XML document are defined as complex elements named

’Member’ in XML schema. These kinds of complex elements named ’Member’

are mapped into OWL individuals of classes.

Rule 3: Object property mapping: maps a relationship between two XML nodes to

an OWL object property. More specifically, the object properties are mapped

from the element-subelement relationship in XML schema. An object prop-

erty is added to the ontology when a complex element is already mapped to

an OWL class and relates to its surrounding complex elements. The object

property has a domain of corresponding classes and a range of its surrounding

classes. For instance, rectal bleeding indicates bleeding. An object property

’indicates’ existed between class ’RectalBleeding’ and class ’Bleeding’.

Rule 4: Datatype property mapping: maps an attribute of XML nodes to an OWL

datatype property. A simple element in XML schema is mapped to the

datatype property. The datatype property has a domain of the OWL class

corresponding to its surrounding complex types and a range of its XSD data

type. Using the complex element ’Member’ mentioned in the second rule, the
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datatype properties are ’level’ and ’definition’; their data types respectively

are ’xs: integer’ and ’xs:string’.

2.4 Experiments

The ontology generation method is applied to the tables of CTCAE v.4.03 in PDF

format. The automatic process of CTCAE ontology generation takes about 8 minutes.

The generated ontology covers all the terms, definitions, grades of adverse events in

CTCAE v.4.03 accurately. The refined ontology includes important semantic rela-

tionships that map CTCAE entities to concepts in existing ontologies, such as the

Disease Ontology (DO) and the Foundational Model of Anatomy ontology (FMA).

Table 2.1 presents the ontology metrics for the generated CTCAE ontology based

on BioPortal Ontology Metrics. The table is composed of two parts: 1) Statistical

metrics, and 2) Quality-control and quality-assurance metrics. The ontology contains

817 classes, including one root class ’CTCAE’, 26 organ-based disorders classes, and

790 adverse events classes. The ontology has 3050 individuals, which denote to all

grading scales of adverse events. The number of properties in the ontology is 7.

The properties include ’is − a’, ’hasSite’, ’indicates’, ’hasDefinition’, ’locatedin’,

’definition’, and ’level’. For OWL ontology, the maximum depth only counts the

’is − a’ relationship as a hierarchical relationship. So, the maximum depth of our

class hierarchical tree is 3. Maximum number of siblings in our ontology is 117.

The class ’GastrointestinalDisorders’ has the maximum number of children. The

average number of siblings at one lever in the class hierarchical tree is 4.

The second part of Table 2.1 shows Quality-Control and Quality-Assurance Metrics,

which indicates the quality of the ontology and helps to improve the quality. The

number of classes with only one subclass is one since only one adverse event term

exists in ’Congenital, familial and genetic disorders’. This number often indicates

that either the hierarchy is under-specified, or the distinction between the class and

the subclass is not appropriate. The number of classes with more than twenty-five
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subclasses is 12 since twelve organ-based disorders tables in CTCAE contain over

twenty-five adverse events. A class that has more than twenty-five subclasses is a

candidate for additional distinctions and categorization is needed. The number of

classes with no definition in our ontology is 53 since there is no definition in CTCAE

for root class ’CTCAE’, organ-based disorders classes, and adverse events class named

with ’other’. For comparison, we list the metrics of NCI CTEP’s OWL version of

CTCAE (referred as CTCAE OWL) in the last column. These metrics indicate that

the automatically generated part of our CTCAE ontology is comparable to CTCAE

OWL. The difference in the number of classes and individuals is due to difference

in treating grading scales as individuals in our ontology and subclasses in CTCAE

OWL.

Table 2.1: The comparison between our generated CTCAE ontology and CTCAE
OWL using the NCBO Bioportal Ontology Metrics.

Statistical Metrics Our generated

CTCAE

ontology

CTCAE OWL

# of Classes 817 3874

# of Individuals 3050 0

# of Properties 7 7

Maximum Depth 3 4

Maximum Number of Siblings 117 117

Average Number of Siblings 4 4

Quality-Control and Quality-Assurance Metrics

# of Classes with only one subclass 1 24

# of Classes with more than 25 subclass 12 12

# of Classes with no definition 53 3874
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A careful comparison of the generated ontology with the original standard indicates

that our method generates CTCAE ontology correctly. The generated CTCAE on-

tology contains all concepts, instances, and relationships as consistent with CTCAE

v.4.03. Consistency and accuracy of generated ontology are comparable to CTCAE

OWL. Our generated ontology improves logic and clarity of CTCAE ontology by using

class-individuals to represent an AE- its grade scales instead of class-subclasses. Con-

sidering large numbers of OWL entities, we compare CTCAE OWL to our proposed

CTCAE ontology by using an example of the AE named ’Rectal Pain’. Figure 2.7

displays a comparison by viewing ontology graphs that focus on ’Rectal Pain’ using

Protégé 4.319 - an ontology development environment. In the graph view of CTCAE

OWL shown in Figure 2.7(a), the three grade entities are subclasses of adverse event

class ’Rectal pain’. However, in our generated ontology displayed in Figure 2.7(b),

the three grades of rectal pain are individuals of class ’Rectal_pain’.
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(a) CTCAE OWL viewed under Protégé

(b) Our resulting ontology after refining vieved under Protégé

Figure 2.7: The comparison between CTCAE OWL and our CTCAE ontology viewed
under protégé. (a) The ontology graph view focusing on the class ’Rectal pain’ in
CTCAE OWL; (b) The ontology graph view focusing on the class ’Rectal_pain’ in
our resulting ontology.

Moreover, our resulting ontology promotes usability by extending and reusing exist-

ing ontologies in the final refining step. Figure 2.7(b) shows that reusing the Disease

Ontology (DO) and the Foundational Anatomy Model (FMA) ontology extends our

generated class ’Rectal_pain’. The adverse event ’Rectal_pain’ in CTCAE indicates



32

a ’rectal disease’ in DO and has site of ’Rectum’ in FMA. Hence, we can obtain

more concepts and relationships about such AEs from resulting ontology in oncology

adverse event domain.

2.5 Discussion

Our resulting CTCAE ontology provides a computerized representation for CT-

CAE. The ontological representation expresses contents in CTCAE as structured

classes, instances, and properties. Reusing existing ontologies expands entities and

enriches semantic relationships for CTCAE. Compared with current tabular CTCAE

or CTCAE in OWL version (referred as CTCAE OWL), our proposed CTCAE on-

tology supports knowledge sharing, reasoning, and querying in a domain of grading

adverse events. In our CTCAE ontology model, each adverse event’s grading scales

are instances of the adverse event class, rather than subclasses of the adverse event

class stated in existing CTCAE OWL. The method developed in this work is applica-

ble to other ontology generation tasks. Compared to manual ontology generation, the

proposed approach requires less time and labor, especially for large-scale terminology

standards. It will also reduce errors associated manual processes.

The proposed method has a couple of limitations as it stands. One is that the

refining step is a manual task. Future work would extend the generation method

to automatic reusing existing ontologies and other domain knowledge within adverse

events grading and reporting. The second is that the method lacks inter-operations

in annotating definitions. The definitions of adverse events and grades are rich text

for semantic reasoning. We would use Natural Language Processing and Text Mining

to annotate definitions automatically in future work.

2.6 Summary

In conclusion, this chapter provides an efficient approach for generating ontological

representations from terminology standards that are written in narrative and tabu-
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lar formats. Moreover, we developed an ontological representation for CTCAE, the

common standard for AE reporting in cancer care. As the first step of this disserta-

tion, the proposed CTCAE ontology provides a knowledge base of radiation-induced

adverse events for clinical decsion support in RT treatment planning.



CHAPTER 3: UNSERSTANDING THE GRADING STANDARDS FOR

RADIATION-INDUCED ADVERSE EVENTS IN RT STUDIES

Grading standards for radiation-induced adverse events after radiation therapy

(RT) is crucial for integrated, consistent, and accurate analysis of toxicity results at

large scale and across multiple studies. This chapter discusses the trends of using

the three most commonly used adverse event criteria in RT studies with text mining

methods. The adoption of standard for grading radiation-induced adverse events has

significant impact on the assessment and improvement of RT treatment. We also

investigate the factors affecting the adoption of these grading standards.

3.1 Grading Standards for Radiation-Induced Adverse Events

Several grading standards have been proposed and utilized for reporting radiation-

induced adverse events in RT studies. Three of the most commonly used standards

are the Common Terminology Criteria for Adverse Events (CTCAE) [32], the Ra-

diation Therapy Oncology Group (RTOG) [33], and the Late Effects Normal Tissue

Task Force-Subjective, Objective, Management and Analytic (LENT-SOMA) [34].

These adverse event scoring criteria have been revised multiple times in recent years.

In particular, CTCAE is strongly promoted as the comprehensive standard for ad-

verse event reporting in all cancer care, with a set of criteria for the standardized

classification of adverse effects of drugs or procedures [89, 90]. The initial develop-

ment of CTCAE referenced the standards by the Radiation Therapy Oncology Group

(RTOG)/European Organization for Research and Treatment of Cancer (EORTC)

Late Morbidity System created in 1984. The RTOG standards have been updated

for many versions and are still in use, containing grading standards for late radiation
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morbidity, acute radiation morbidity, and common toxicity standards. To overcome

the shortcomings of the RTOG/EORTC Late Effects System, the LENT-SOMA was

published by the joint efforts of the RTOG and EORTC in 1995 to produce a uni-

versal system for measuring and recording late effects of radiation therapy [91]. A

number of efforts have been reported to study and improve the scoring standards for

grading radiation-induced adverse events [92, 93, 94, 95, 96, 97]. However, there is

a lack of studies that attempts to understand how the various standards have been

used in RT studies, and therefore a lack of understanding as to how these standards

should be adopted, harmonized, or improved.

3.2 Methods

In this chapter, we are interested in addressing two specific questions: (1) the por-

tion of clinical studies that use each standard by year and by cancer type; (2) the trend

of usage in recent years. In order to answer these two questions, we developed a text

mining method for automatically categorizing articles based on grading standards,

and identifying cancer types of interest in the articles. While manual analysis by hu-

man experts is not prohibitive for individual questions, text mining techniques enable

highly efficient and automatic investigation of multiple comprehensive questions us-

ing large-scale biomedical literature. Automated text analysis also allows continuous

updates of trends analysis as newly published articles are added. Numerous litera-

ture exists for text mining techniques used in clinical medicine [98, 99, 100, 101]. We

develop and compare two text mining approaches, one based on regular expression

and one based on machine learning.

The text mining methods presented in this chapter focuses on two main tasks,

categorizing articles and identifying cancer types. To understand the use of the

three adverse event grading standards in RT clinical articles, we need to categorize

articles based on the standards used. Then we would like to identify the type of

cancer the clinical articles addressed. Our approach consists of four basic steps: data
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preprocessing, feature extraction, classifier training, and cancer type identification.

3.2.1 Data Preprocessing

Each article was first converted into a simple text document without figures, tables,

or references. Second, we applied tokenizer to each document to remove numerals and

punctuations transforming each document into a list of sentences, and each sentence

tokenized into a list of words. Then, we removed stop words in each document

based on the stop-words list. Finally, we applied lemmatization, a WordNet’s built-in

function, to group different inflected forms of a word.

3.2.2 Feature Extraction

We extracted features for statistical analysis and classifier modeling. Major features

include n-gram frequency, term frequency and inverse document frequency. Based on

experimental analysis, we use 4-gram frequency in modeling Naïve Bayes Classifier in

the article categorization task. Term frequency is calculated by counting the occur-

rence of phrases after applying n-gram model to each document. To avoid bias caused

by different length of documents, we use the total number of terms in a document to

normalize raw term frequency in such document.

3.2.3 Classifier Modeling

The goal of the document categorization task is to classify all documents based on

grading standards used. The task categorizes each document with one of the three

standards, ’CTCAE/CTC ’, ’RTOG ’, and ’LENT-SOMA’. We separately used two

classification methods to categorize all documents, one is based on regular expression

(RE), and the other is based on Naïve Bayes classifier. Both methods have been

shown to work well in text mining tasks [102, 103].

3.2.3.1 Regular Expression Based Classifier

The regular expressions enable a rule-based classifier. It assumes that the basic

feature to differentiate documents is a specific pattern, such as particular characters,



37

words, or patterns of characters. The patterns determine which document uses which

standards. If a document contains strings that match RE patterns for one of the

three standard standards, the document is categorized as a sample of that criterion.

Some documents may be labeled with more than one standards class if they contain

strings that match more than one set of RE patterns.

Table 3.1: The definitions and example of text component used in the regular expres-
sions discovery process.

Text Components Definition Example

Snippet A sequence of characters that

provide semantic information

for our categorization task

’All symptoms were scored

according to the Common

Terminology Criteria for

Adverse Events.’

Token Words, numbers, or symbols

in snippet

’All ’, ’symptoms’, ’were’,

’scored ’, ’according ’, ’to’,

’the’, ’Common’,

’Terminology ’, ’Criteria’,

’for ’, ’Adverse Events’.

Phrase A sequence of consecutive

tokens

’All symptoms’, ’were’,

’scored ’, ’according to’,

’Common Terminology

Criteria for Adverse Events’.

Key An ordered list of phrases [’were’, ’scored’, ’according

to’] [’scored’, ’according to’,

’Common Terminology

Criteria for Adverse Events’].

Regular Expression A sequence of characters that

define a search pattern

[scored\s+.*\s+(ctcae)\s

+(v|version)?\s+\d?
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We use an iterative process to discover REs in three basic steps: 1) Extract text

snippets from labeled object articles; 2) Extract keys from snippets; 3) Generate

REs. A text snippet is defined as a sequence of characters that provide semantic

information for our categorization task. A snippet contains tokens that are defined as

words, numbers, or symbols. A sequence of consecutive tokens composes a phrase. A

key is defined as an ordered list of phrases. The keys are a critical source to generate

general regular expressions. A RE is defined as a sequence of characters that define

a search pattern. Currently, the last step, RE generation, is done manually. Table

3.1 explains what the text components are by listing the definition and example for

each text component including snippet, token, phrase, key, and RE. The examples in

Table 3.1 are not an exhaustive list of keys, phrase or RE we processed.

After discovering all the REs for classifying RT articles, we use the following al-

gorithm to train RE based classifier. The algorithm of training regular RE based

classifier involves the following main steps:

Step 1 Initialization: Select N labeled articles to generate initial REs using the RE

discovery process explained above. The N articles consist of 3 groups: 1/3

of N article randomly from each of the three classes. Set the initial REs as

current REs CRE{r1, r2, ..., rn}.

Step 2 Refinement: Select N new labeled articles to test current REs CRE{r1, r2, ..., rn}

and get F-measure value f as an accuracy measure; refine current RE by ap-

plying the RE discovery on the misclassified articles including false positive

and false negative cases to get the new REs CRE ′{r1, r2, ..., rn}; then use the

new regular expressions CRE ′{r1, r2, ..., rn} to get a new F-measure f ′.

Step 3 Iteration: Iterate Step 2 by setting CRE to CRE ′ unless f ′ stops changing

significantly, namely the change rate falls below ε, i.e. |f
′−f |
f
≤ ε

Step 4 Testing: apply the final regular expressions to test the remaining labeled arti-



39

cles as a validation. In the experiments reported here we empirically selected

N of 10 and ε of 0.01.

Algorithm 1: The algorithm of training RE based classifier
Data: RT articles with labels

Result: Final REs {r1, r2, ..., rn}

initialization;

while the new F-measure stop changing significantly do

Set new REs to current REs;

Test current REs with N new labled articles, get the new F-measure;

Refine current REs by applying the RE discovery process;

Return the new REs.
end

3.2.3.2 Naïve Bayes Classifier

Naïve Bayes Classifier is a classical and effective model for text classification [104].

In the article categorization task, we aim to compare the performance of Naïve Bayes

Classifier with that of the regular expression based classifier. We use 5-fold cross-

validation to partition training data and testing data. In each round, the training

data is consisted of 424 randomly selected documents labeled by a domain expert.

The rest of the documents are testing data to validate the trained classifier model.

After five rounds, each document has four candidate standards labels. The final class

for each document is the most voted candidate standards.

3.2.4 Cancer Type Identification

Cancer type identification is straightforward for MEDLINE articles because most

of them have already been tagged with MESH terms that indicate cancer types. For

the few remaining articles, we use a dictionary-based matching method to identify

cancer types in the title and abstract. The look-up dictionary consists of cancer types

from the domain exper’s annotation, and terms under Neoplasms [C04] of PubMed
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MESH tree structures.

3.3 Experiments

3.3.1 Materials

We selected RT-related clinical articles, also called RT studies in this chapter, in

MEDLINE (pubmed.gov) that were published between January 2010 and December

2012 to train and validate models. A total of 668 articles were found using a search

strategy described in Supplementary Materials. From the 668 results, we excluded 104

articles due to inadequate information, and 33 articles due to duplication, resulting

in a total of 531 articles that were analyzed in our study. All selected full articles

were downloaded and extracted into text files for analysis, including both abstracts

and full texts, while excluding all figures, tables, and reference lists.

The entire dataset for trends analysis includes additional published articles from

January 2013 to August 2015, selected using the same search strategy. A total of 372

articles were found in MEDLINE. After excluding 38 articles due to lack of full texts,

and 75 duplicated articles, a total of 259 articles were included in the full dataset

amounting to a total of 790 articles.

To develop a gold standard for training and validation, a radiation oncology physi-

cian manually reviewed all 531 articles in the training/validation subset and labeled

them according to the adverse event grading standards used. This process generated

3 classes, one for each standard grading standards.

After evaluating the two text mining methods using the training/validation dataset,

we applied the more accurate method to analyze the entire set of full articles from

2010 to 2015 in terms of the overall usage trends over these years and also in term of

usage of the three standards in different cancer types.
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3.3.2 Training and Validation of Classifiers

The training of the RE based classifier took 4 iterations to complete. We noticed

that F-measure reaches a plateau of f = 86.7% in the third iteration in Figure 3.1.

Thus, we used 30 randomly selected articles in total to learn the REs, and we used

the remaining 501 articles to test the resulting classifier.

Figure 3.1: During the process of training regular expressions, F-measure increased
with iterations and reached plateau in the third iteration.

The validation results show the RE based classifier to be reasonably accurate with

a precision of 84.2% and recall of 85.1%. Compared to the RE based classifier, the

Naïve Bayes classifier is worse with a precision of 72.1% and recall of 73.8%, but is

still comparable to reported text categorization results [105]. Table 3.2 and Table 3.2

seperately show the confusion matrix generated by the two classifiers in comparison

to the gold results annotated by the radiation oncology expert.
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Table 3.2: Confusion matrix of the RE based classifier.

# of Articles Actual

CTCAE

Actual RTOG Actual

LENT-SOMA

Predicted

CTCAE

286 44 0

Predicted

RTOG

29 268 19

Predicted

LENT-SOMA

5 11 26

Table 3.3: Confusion matrix of the Naïve Bayes classifier..

# of Articles Actual

CTCAE

Actual RTOG Actual

LENT-SOMA

Predicted

CTCAE

224 48 21

Predicted

RTOG

87 261 13

Predicted

LENT-SOMA

9 14 11

Based on the categorization results, Figure 3.2 presents the usage trends of adverse

event grading standards over the three years in comparison to results from the domain

expert. As seen in the figures, the two classifiers show similar trends comparable to

those of the domain expert. These results provide an indication that the classifiers

have sufficient accuracy for detecting usage trends of adverse event grading standards

in clinical articles.
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Figure 3.2: Comparing usage trends generated by the two text mining methods with
those by domain expert using data from 2010 to 2012. Each line shows the proportion
of the RT articles that use a particular grading standard.
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3.3.3 Usage Trends of Grading Standards for Radiation-Induced Adverse Events

During 2010-2015

Using the more accurate regular expression based classifier, we analyzed the trends

of the three standard adverse event grading standards in RT clinical articles since

2010. The overall trends are shown in Figure 3.3. We observe that CTCAE and

RTOG continue to be dominant standards in RT articles, each used by almost half

of the articles while the LENT-SOMA standards are used by a small percentage of

articles. During this period, the usage of RTOG remains relatively stable, that of

CTCAE trends slightly up, while that of LENT-SOMA trends slightly down.

Figure 3.3: The usage trends of the three grading standard for raduation-induced
adverse events in RT articles from 2010 to mid 2015 using the regular expression
based classification method. Each line shows the proportion of the articles that use
a particular grading standard.

Next, we analyzed the trends by cancer types. Figure 3.4 shows the overall usage

of the three standard grading standards in major cancer types over the past five and

half years. One interesting finding from this figure is the strong contrast between

lung cancer studies that heavily favor CTCAE and the head and neck cancer studies

that clearly favor the RTOG standard. We also notice that LENT-SOMA is not only
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rarely used, but also used only in select types of cancers, such as the prostate cancer

and breast cancer studies. Furthermore, LENT-SOMA is especially not used in lung

cancer studies.

Figure 3.4: The usage proportion of the three grading standard for radiation-induced
adverse events grouped by cancer types discussed in RT articles. The last category
(Others) includes all other cancer types each with 10 or fewer articles.

3.4 Discussion

We investigated usage trends of the three most commonly used grading standards

for radiation-induced adverse events in RT by mining the full text of published lit-

erature during 2010-2015. We resorted to mining the full text because the abstract

section of clinical articles normally lack details on which grading standards were used

in reporting radiation-induced adverse events or normal tissue toxicity after radia-

tion therapy. Mining the full text also supports more detailed analysis of normal

tissue toxicities and their adoption of grading standards. With the large and growing

number of clinical publications, manual analysis of literature is becoming increasingly
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difficult especially when new questions and more comprehensive analyses are needed.

The text mining methods provide an important tool for understanding and improv-

ing the standards efficiently and continuously monitoring how standards are used for

capturing and reporting radiation-induced adverse events in practice.

3.4.1 Error Analysis

There are two potential reasons why the RE based classifier has higher precision

than the Naïve Bayes classifier in this study. The first reason is that size of training

dataset is relatively small for a Naïve Bayes classifier. The second reason is that the

features are relatively simplistic in the current model. However, the method based

on RE has its drawbacks too. For example it will have difficulty dealing with articles

containing latent information about grading standards.

The accuracy of the classifiers can be further improved. Examples of failure made

by the regular expression based classifier include false positive and false negative

instances. The majority of failures (57.2%) were traced to the regular expression.

The RE only identifies text patterns learned, but ignores the context of why a grading

standard is mentioned. In many cases, clinical trials used one grading standards A and

mentioned another grading standards B for comparison or reference purpose. In these

cases, the RE based classifier might label the clinical trial using grading standards B,

when B better matched the learned RE. For example, an article may have a reference

of CTCAE like ’XX group applied CTCAE to set questionnaires to grade prostate

cancer on 1995’ which positively matches regular expressions for CTCAE. However,

this clinical study, in fact, used RTOG grading standards to grade toxicity. The next

largest source of failure was from the generation of regular expression for RTOG, which

contributed 36.5%. Radiation Therapy Oncology Group (RTOG) is an organization,

which conducts many clinical trails in the radiation oncology community. The use

of RTOG to describe both the clinical trails and the grading standards for adverse

events caused confusion in the current classifier. Unrecognized snippet of grading
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standards also contributed to classification failures, accounting for 6.3%. This failure

is expected since the iteration of learning regular expression stopped on 4th round and

our training sample is small. Unrecognized representations of grading standards, such

as ’CTCAEs’ are used in few clinical trials. We anticipate that expanding training

dataset and improving regular expression generation algorithms could overcome these

failures.

3.4.2 Limitations

We note this study compares the usage trends of three standards relative to each

other. It does not intend to compute the actual utilization rate of individual stan-

dards. This study also has the limitation that only English language articles in MED-

LINE are included in the analysis. However, given that most RT clinical studies are

collected in MEDLINE and reported in English, we believe the findings in this study

are representative of the current trends of standards adoption in RT. Furthermore,

due to the small number of time points, especially in the validation part, the slightly

increasing and decreasing trends that we identified from the data are not statistically

significant. The actual trends could be level (slope of zero) for all or some of the three

standard grading standards in the past 6 years.

3.4.3 Strategies to Improve CTCAE

From an informatics perspective, it is desirable that the research community adopts

one standard for all clinical articles in radiation therapy and we believe that this

standard should be CTCAE since it is based on the other two standards and is more

up to date. The present study points out a significant challenge in the RT community

with continued use of more than two standards in clinical studies. The apparent slow

adoption of CTCAE can be attributed to a few factors. First, RTOG is released

much earlier and has a longer history of adoption. And it initially contains more

comprehensive content than the early versions of CTCAE, such as the late morbidity
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effects standards that the early CTCAE did not include. Second, the comprehensive

CTCAE v4.0 was released in 2009. But many of the RT clinical articles take many

years to complete and therefore, the use of CTCAE may not have been fully reflected

in the published articles. Third, we also conjecture that the complexity of the more

recent CTCAE versions may have hindered its adoption. While the RTOG standard

lacks details in adverse events, its simplicity makes it easier to understand and adopt.

This complexity may also explain why LENT-SOMA has a low adoption rate. Finally,

there may also be definitions of adverse events in CTCAE that do not properly fit

the needs of certain cancer types, such as the head and neck cancer, in radiation

treatment.

We propose that the RT community consider three strategies to improve the CT-

CAE standard. First, in order to make it easier to understand and adopt, we suggest

creating subsets of CTCAE that are specific for major cancer types. This is supported

by our analysis that shows limited number of RT related adverse event types reported

in major cancer types. The subsetting strategy is not new. It has been widely adopted

in large terminologies such as the SNOMED CT [106] and UMLS [107]. To illustrate

the feasibility of the subsetting strategy, we applied a dictionary based term identi-

fication method to extract all adverse events reported in the collected articles. We

found a total of 142 different types of adverse events reported in these 790 clinical

articles. Figure 3.5 shows the total number of adverse event types reported in all

articles of the four major cancer types as well as the average, minimal, and maximal

number of adverse event types per article. As we can see, the adverse event types

reported in major cancer studies are limited, with total numbers ranging from 30 to

60 within a cancer type and averaging less than 7 different types per article. Table

3.4 shows the top adverse event types with occurrence > 55% reported for the four

major cancer types with 40% or more of respective studies in our six years dataset.



49

Figure 3.5: Total numbers of adverse event types reported for four major cancer types
and average, minimal, and maximal numbers of adverse event types per article. The
high-low-dots represent the max-min numbers of adverse event types for each cancer
type (in black lines) per article. The total number of adverse event types is the sum
of all adverse event types reported in one-type cancer articles (the blue bars).

Second, we believe it is important to reexamine the definitions of adverse events

related to certain cancer types that currently favor other grading standards. Finally,

we propose that the CTCAE should be represented as a true ontology so that the re-

lationship between adverse events, their affected anatomy, the related synonyms, and

severity are explicitly represented. A more formally defined ontology for radiation-

induced adverse events will better enable efforts to harmonize, subset, mapping, and

improving the standard as well as integrating with other existing clinical standards

in the broader clinical research community.
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Table 3.4: The top adverse event types reported with occurrence > 55% for the four
major cancer types in RT clinical studies.

Four Major Cancer Types Top Adverse Events

Breast Cancer

fibrosis
breast pain
breast edema
fat necrosis

hyperpigmentation

Head and Neck Cancer

dysphagia
leukopenia

thrombocytopenia
hemorrhage
neutropenia
xerostomia
mucositis

Lung Cancer pneumonitis
esophagitis

Prostate Cancer

urinary frequency
urinary obstruction

hemorrhage
proctitis
dysuria
fatigue



CHAPTER 4: CLINICAL KNOWLEDGE REPRESENTATION AND

REASONING FOR RT TREATMENT PLANNING WITH MARKOV LOGIC

NETWORKS

Radiation oncologists rely on clinical guidelines and results of clinical research stud-

ies to design an effective Radiation Therapy (RT) treatment plan with the goal of

maximum damage to cancer cells and minimum effects on normal tissue. As a step

toward computerizing the clinical guidelines and clinical trials results in RT plan-

ning, this chapter presents an approach and investigates its feasibility of representing

the complex and uncertain clinical knowledge in RT using Markov Logic Networks

(MLNs). Within this approach, different types of clinical knowledge in RT with as-

sociated uncertainty can be extracted from published clinical guidelines and research

studies, then be represented into a computerized formal model, and reasoned with

evidence for intelligent RT planning. As an example for demonstration we focus on

the RT tratement planning scenario for limiting the risk of radiation-induced effects

and suggesting dosimetric criteria and prescription dosage. We tested the constructed

MLNs by making inferences to predicate the risk of radiation-induced effects given

RT dose-volume plan. The initial results show the MLNs prediction of risk is in the

range of risk suggested in guidelines.

4.1 Knowledge Engineering with Markov Logic Networks

Formally, a Markov Logic Network (MLN) is defined as a set of pairs (Fi, wi),

where Fi is a formula in first-order logic and wi is a real-valued weight. The weighted

formulas of MLN define a template for constructing a probabilistic graphical model

or Markov network that specifies a distribution over possible worlds. Given different
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sets of constants, different grounding Markov networks are produced by the MLN.

Each state of grounding Markov network represents a possible world. For example,

a possible world described in RT planning studies can be a finite world like ’a 60-

years-old male patient with prostate cancer and his whole bladder receiving a dose of

60 Gy in 40 daily fractions, and having RTOG grade 3 bladder toxicity’. Knowledge

engineering builds a model of the domain (e.g., radiation oncology) with knowledge

representation formalisms and allows one to make inferences or answer certain ques-

tions with knowledge reasoning engines (e.g., what is the recommended dose/volume

for a sixty-years-old patient with prostate cancer to limit the risk of having RTOG

Grade 3 bladder late toxicity below 30%).

Considering the uncertainty and complexity inherent in RT treatment planning,

we believe Markov Logic Networks (MLNs) is a suitable representation formalism.

Markov Logic Networks generalize both first-order logic and Markov networks by

attaching weights to first-order logic formulas. There are two challenges to represent

RT knowledge with MLNs. The first challenge is translating narrative statements of

RT planning guidelines into first-order logic. Moreover, the translated first-order logic

formulas can clarify relations and structures of RT planning knowledge. The second

challenge is that RT guidelines and studies are missing grounding data to support

weights learning for MLNs and inference with MLNs. Here, we describe an approach

to convert narrative clinical guidelines and clinical research studies of RT planning

into a computerized representation with MLNs, which allows statistical relational

learning and reasoning.

In MLN, formulas can be seen as soft constraints on a set of possible worlds. A

possible world is less probable when it violates one formula, but not impossible. The

weight associated with formula indicates the constraining degree of the formula: the

higher the weight, the greater the difference in log probability between a world that

satisfies the formula and one that does not, other things being equal. In other words,
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the probability of a possible world is proportional to the exponentiated sum of weights

of formulas that satisfied in that world. Collectively, the first step of this method

is to learn the structure of MLN from QUANTEC papers; secondly, learn weights

for formulas based on statistical data and cases from clinical studies; thirdly, make

inference on the risk of having normal tissue effects and the probability of receiving

RT dose plan.

4.2 Methods

4.2.1 Materials

The chapter is focusing on representing RT treatment planning knowledge from

the set of RT guidelines commonly called the Quantitative Analyses of Normal Tissue

Effects in the Clinic (QUANTEC) consisting of 16 organ-based reviews and the 471

referenced clinical research studies by QUANTEC reviews. Important reasoning tasks

include predicting the risk rate of having certain radiation-induced adverse events for

a specific patient after RT plan, and determining which RT plan is most appropriate

to achieve the clinical goals.

4.2.2 Overview of Proposed Framework

Figure 4.1 illustrates the workflow of representing RT planning knowledge with

Markov Logic Networks framework. The framework consists of three modules: A)

structure learning; B) weight learning; and C) Inference. The structure learning

module aims to learn the structure of MLNs, namely first-order logic formulas, from

QUANTEC guidelines and RT studies by 1) extracting RT knowledge statements

with a Named Entity Recognizer based on CRF method; 2) construct first-order logic

formulas by translating the extracted knowledge statements manually. The weight

learning module is to determine the weights of the formula in MLNs. In this module,

we learn the associated weights for constructed first-order logic formulas in structure

learning module from a relational database. The relational database is generated by
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simulating RT planning data from the 471 research studies. In the inference module,

we make inference on the risk of potential side effects and make the recommendation

for RT treatment plan by given query and evidence.

Figure 4.1: The workflow of representing RT planning knowledge with Markov Logic
Networks (MLNs) framework. The MLNs framework consists of three modules:
A.Structure Learning; B. Weight Learning; and C.Inference.

4.2.3 Structure Learning

Structure learning is currently a manual process. Firstly, we annotate QUANTEC

papers manually by extracting statements carrying clinical knowledge for RT treat-

ment planning, which is primarily expressed with the entities and relations that hold
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between entities in the domain of RT treatment planning shown in Figure . We ex-

tracted the following six classes of clinical knowledge in RT: radiation-induced effects,

diagnosis, dose prescription, dosimetric criteria, treatment technique, and target site.

We introduced the six classes of clinical knowledge for RT treatment planning in

Chapter 1. The statements carrying clinical knowledge for RT treatment planning

are simply defined as sentences: 1) containing entities and their relations in the above

six classes; 2) occurring in the sections of recommendation, discussion, conclusion, and

analysis.

Secondly, we manually translate the extracted knowledge statements into first-

order logic formulas. In order to translate the narrative statements in QUANTEC

reviews and RT studies, we assume that relations between these entities above could

be expressed with first-order logic connectives such as implications, conjunctions, bi-

conditional, and negation. In order to translate the narrative statements in QUAN-

TEC papers, we assume that relations between these entities above could be expressed

with first order logic connectives such as implications, conjunctions, biconditional, and

negation. During annotation, statements containing potential entities are highlighted,

entities and relations within statements are extracted for constructing first-order logic

formula. In order to reduce the variation of narrative states in the original papers,

we first fit the statements into a set of templates before constructing first-order logic

formulas.

We use three types of symbols to construct first-order logic formulas: constants,

variables and predicate. Constant symbols represent objects in the domain (e.g.,

specific patients: Anna, Bob). Variable symbols represent range over objects in

the domain. Predicate symbols represent relations among objects in the domain or

attributes of objects. Formulas are recursively constructed from predicate symbols

applied to a tuple of constants and, variables, or functions using logical connectives

and quantifiers. Table 4.1 lists variables, and Table 4.2 lists predicates to define the
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structures of MLNs in RT treatment planning.

Table 4.1: The variables for constructing MLNs in RT treatment planning.

Varibales Name Symbol Definition

patient p The patient receiving RT.

cancer c Major cancer type cured in RT.

medical condition mc Previous medical intervention on the target site,

medical history.

target site s Disease site exposing to the prescribed dosage.

RT plan rt The treatment plan.

dose prescription dp Treatment prescription, ranging from a set of

prescribed dose/volume/fraction.

treatment

technique

t Treatment technique modalities used in RT.

dosimetric criteria dc Parameters of OAR Constraints

radiation-induced

adverse events

ae Radiation toxicity or side effects associated with RT.

grade g The grade of radiation-induced adverse events.

risk r The risk of radiation-induced adverse events.
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Table 4.2: The predicates for constructing MLNs in RT treatment planning.

Predicates Definition

Prostate_Cancer(p)* Whether the patient p having prostate cancer.

Is_Planned(p, rt) Whether the patient p is planned with an RT

plan rt.

Is_Prescribed(rt, dp) Whether the RT plan rt is prescribed with dose

prescription dp.

Is_Constrained_Rectum(rt, dc)* Whether the RT plan rt is constrained by

dosimetric criteria dc on rectum.

Risk_of_AE(rt, ae, g, r) Whether the radiation-induced adverse event ae

at grade g occurs with the risk r after having

RT plan rt.

Use_IMRT (rt)* Whether the RT plan rt uses treatment

technique IMRT.

Smaller_Than_15%(x)* Whether numerical value x is smaller than 15%.

* Similar predicates can be easily written by replacing ’Prostate_Cancer’ with

another type of cancers, ’Rectum’ with other organ-at-risk, ’IMRT ’ with other treat-

ment techniques, and ’15%’ with other numeric value separately.

4.2.4 Weight Learning

Weights associated with formulas in MLN reflect constraining degree of formulas

to possible worlds and hold the probabilistic properties of MLN. Although the MLN

weights can be assigned by experts in theory, they are usually learned from one or

more relational databases containing a set of grounding truth of possible worlds.

During weight learning, we make a closed world assumption9: the ground atom is

assumed to be false if it is absent in the database.

A challenge of representing clincial knowledge in RT with MLNs is that there is
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no direct data for weight learning since the resource of clinical knowledge in this

dissertation is published studies rather than Electronical Medical Record. We in-

vestigated the feasibility of synthesizing a relational database for weight learning

by sampling and simulating data from RT research studies that are referenced by

QUANTEC papers. The published RT research studies contain statistical informa-

tion about cohorts, such as patients’ age distribution, radiation treatment dosage,

and the probablistic distribution of radiation-induced adverse events over the co-

horts. For instance, the QUANTEC paper on bladder [108] referenced a study con-

ducted by Pos et al [109]. In Pos’s study, 50 patients with bladder cancer received

the total dose of 55 Gy in 20 fractions in 4 weeks on whole bladder. Age of the

50 patients varied from 58 to 93 years with a median of 79 and standard deviation

of 7. And the clinical study also provided the distribution of side effect after pa-

tients receiving RT, for example, RTOG Grade 1 bladder late toxicity was observed

in 15 patients and Grade 2 toxicity was observed in two patients after RT, and so

forth. According to this data, we built a relational database of ground atoms by

simulating a group of 50 patients p = (P1, P2, ..., P50) with 50 different RT treat-

ment plans rt = (RT1, RT2, ..., RT50) that fit the patient characteristic data, and

side effects data mentioned above. We assume that the age of patient fits normal

distribution in the simulated data. Here are examples of ground atoms in the gen-

erated relational database for weight learning (only examples not all ground atoms):

Bladder_Cancer(P1), Is_Prescribed(RT1,
′Doseof55Gyin20fractionsin4weeks′),

and so on. After generating relational training databases from research studies, we

apply weight-learning algorithms provided by Alchemy [62, 63], an open system for

MLNs, to learn weights for formulas.

4.2.5 Inference

After learning the structure and weights of MLNs, we can make inference with the

MLNs model. The goal of inference in MLNs is to get the most likely probability
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distribution of the system. We used Markov chain Monte Carlo (MCMC) inference

supported by Alchemy to inference queries with built MLNs and evidence. The idea

of MCMC inference is to sample a sequence of states according to their probabilities,

and then count the fraction of sampled states where the formula hold. To implement

MCMC inference, Alchemy applies three MCMC algorithms: Gibbs sampling, MC-

SAT, and simulated tempering. MC-SAT performs orders of magnitude faster than

the other two algorithms and applies to any models that can be expressed in MLN.

The ideal of MC-SAT is to combine MCMC and SampleSAT.

4.3 A Knowledge Reprentation Example of Generated MLNs

In structure learning step, we extracted 341 entities related to RT treatment plan-

ning in QUANTEC, and translated 61 statements in recommended dose/volume limits

section of QUANTEC guidelines into 84 first-order logic formulas. This experiment

show preliminary results on MLNs representation of some key knowledge in QUAN-

TEC review on rectum using 29 referenced clinical studies on prostate cancer. We

assume that a patient only having one major cancer type for RT treatment, and only

receiving one treatment prescription in the RT treatment plan. That is specified by

using the syntax ’ ! ’ following the variables in predicates. Figure 4.2 displays an

example of partial MLNs we generated for representing RT knowledge on radiation

dose-volume effects of the rectum.
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Figure 4.2: The example of a knowledge statement, its first-order logic translation,
and the corresponding MLNs script for representing clinical knowledge on RT treat-
ment plan for curing prostate cancer.

After learning the structure and weights for MLNs, we can apply MLNs to make

inference for queries with given evidence. We apply the MLNs to make an inference

for a patient named Bob with prostate cancer, and his RT plan followed the dosimet-

ric criteria: V50 < 50%, V60 < 35%, V65 < 25%, V70 < 20%, and V75 < 15%. V50 is a

commonly used OAR constraints parameters, which means the OAR volume percent-

age receiving dose over 50Gy. The query predicate is Risk_of_AE(′Bob′, ′late −

rectal toxicity′, 2, r). The predicate indicates the probability of an event occurring
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or not in possible worlds. The event is that the risk of a patient named Bob appear-

ing Grade 2 late rectal toxicity is r. The r is a known incidence from RT studies.

After inference, Table 4.3 shows the answer to the query Risk_of_AE(′Bob′, ′late−

rectal toxicity′, 2, r). The relative probability for each grounding atom indicates

the likelihood of the event occurring in the model, instead of the actual probability

of the event in the real world. The higher the relative probability is, the more likely

the event occurs. According to the inference results, the most likely occurred event

is that the risk of Bob having Grade 2 late rectal toxicity is 7% if his RT plan fol-

lows the OAR constraints as: V50 < 50%, V60 < 35%, V65 < 25%, V70 < 20%, and

V75 < 15%. Comparing the inference inferencing results with expected risk of toxicity

under the recommended dose-volume limits section in QUANTEC paper on the rec-

tum, we found the queried risk of having Grade 2 late rectal toxicity is comparable

to the expected risk of late rectal bleeding in QUANTEC review on the rectum. The

QUANTEC review on rectum concludes that if a patient with prostate cancer, RT

plan should restrict the rectum exposing radiation dosage with V50 < 50%, V60 < 35%,

V65 < 25%, V70 < 20%, and V75 < 15% to limit the risk of Grade 2 late rectal toxicity

below 10%. The risk of a patient having Grade 2 rectal toxicity predicated as 7%

from our MLNs inference is consistent with the range ≤ 10% in QUANTEC paper’s

recommendation. It suggests the initial validity of the MLNs representation.

Table 4.3: The resulsts of making inference on the query ’What is the risk of the
patient named Bob appearing Grade 2 late rectal toxicity after RT’.

Grounding Atom Relative Probability

Risk_of_AE(′Bob′, ′late rectal toxicity′, 2, 7%) 0.42

Risk_of_AE(′Bob′, ′late rectal toxicity′, 2, 9%) 0.33

Risk_of_AE(′Bob′, ′late rectal toxicity′, 2, 16%) 0.15

Risk_of_AE(′Bob′, ′late rectal toxicity′, 2, 22%) 0.10
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4.4 Discussion

We demonstrated the methods with a small example of the feasibility of using

Markov Logic Networks (MLNs) to represent uncertain knowledge of RT planning

with complex entities and relationships from narrative RT publications. This repre-

sentation allows computer inference of queries based on evidence in a probabilistic

graphical model. The method of representing clincial knowledge in RT with MLNs

provides radiation oncology community a computerized and efficient way to reference

a large number of clinical practice guidelines and peer-reviewed clinical research stud-

ies during RT treatment planning. And the evidence-driven weight learning process

takes patient individual specialization into account. In addition, the paper proposes

a general method that can be applied to different domains of health informatics with

the Statistical Relational Learning and reasoning model.

However, this method has one limitation in representing RT studies. It is labor-

intensive in the understanding the semantics of statements in RT studies to construct

first-order logic formulas. To overcome the limitations, we could put more effort

on structure (logic) learning by using domain experts’ annotation and information

retrieval. Ultimately, our hope is that the MLNs based on past clinical studies and

guidelines as described in this study can be used as the initial knowledge to learn

and accumulate new knowledge from direct clinical study data and thus develop

increasingly more sophisticated RT knowledge in the MLN framework.



CHAPTER 5: Quantifying Uncertainty of Hedging Terms in Radiation Oncology

Knowledge

Markov Logic Networks (MLNs) use weight to indicate the strength of the formulas

constraining the possible worlds represented by MLNs. In short terms, weight in

MLNs plays the role to express the uncertainty of clinical knowledge in RT. While we

can learn the weights for MNLs formulas with the relational databases, the process of

weight learning ignores the uncertain nature of knowledge statements which is caused

by human biological systems and biomedical research approaches. The following

sentence is an example of uncertainty conveyed in knowledge statement, which is

quoted from the QUANTEC paper of lung. The verbal expression ’may’ affects the

strength of accepting this recommendation in RT guideline to reduce the side effects

on lung. It is very common to indicate uncertainty, vaugeness and belief to adopt

knowledge statements by using verbal expressions likes ’may’ in RT publications.

’Limiting the dose to central airways to ≤ 80 Gy may reduce the risk of

bronchial stricture.’

In this chapter, we present a study to understand the uncertain nature of the

hedging terms occuring in RT publications in a quantitative way. Hedging term is

defined as a verbal expression denoting probability or uncertainty in RT publications.

The study consists of two surveys and the follow-up data analysis. We are interested

in the quantification of the uncertainty indicated by hedging terms in RT publications,

and their association with contextual information and expert’s knowledge background.
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5.1 Related Works

Uncertainty usage is common seen phenomena in clinical settings and biomedical

texts due to the nature of human language and biological systems. The use of quali-

tative terms to describe and interpret the uncertainty in medical texts is potentially

inaccurate and misunderstanding [110, 111]. In addition, quantification of the uncer-

tainty in medical texts allows computer systems to understand and translate medical

texts for further intelligent applications.

Many efforts have been put on probability scoring efforts over decades, which com-

prehensively conclude that context is crucial to the score [112, 113, 114, 115, 116, 117].

In our study, we aim to investigate how these terms are perceived in the field of ra-

diation therapy and oncology so as to narrow the range of ambiguity and potentially

report a probability score of high confidence for this uncertainty (hedging) terms.

Since numerical meanings of probability expressions are available in published litera-

tures, instead of scoring context-free hedging terms, we started with scoring hedging

terms within a slightly narrow but generic context - radiation therapy to treat cancer

resulting in an adverse event. It serves as a standard with which we can compare

more context-specific scores of these terms.

Hannauer and his group had a study on the use of uncertainty terms in 100,000

clinical documents to reveal the potenial implications of these terms when sharing the

documents with patients [118]. They also provided a table of uncertain expressions

which we used to select our object hedging terms.

In Kong’s study [119], the respondents were given the statement and questions as

’One of the senior physicians in your hospital told you that a particular symptom was

in the disease you were discussing. What would be your estimate of the frequency

of this symptom in this disease?’ One of the 12 probability expressions are filled the

blank in the statement. According to Kong’ study, they think that not only different

contexts but also different formats may affect responses since they are essentially
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different measuring devices. They also asked respondents to use four different scales

for each response: high probability scale, low probability scale, uniform scale and free

choice scale.

In Hobby’s study [120], they used the Visual Analogue Scale to measure the nu-

merical meaning of expressions describing probability in radiologic report. The re-

spondents were asked to indicate the probability of presence of a disease implied by

each of the 18 expressions on a visual analogue scale.

In O’brien’s study [121], the respondents were asked to give a percentage probability

rating to a list of 23 words or phrases which could be used in a hypothetical situation

to convey to a patient the probability of headache occurring as a side effect from a

drug they had prescribed. No drug name or type was specified.

In Timmermans’s study [122], they asked the respondents to assign numerical val-

ues with a scale containing three values: point estimate, lower bound, and upper

bound. This scale defines both the estimated probability of the hedging term and its

probability range. They also asked the respondents several questions with context:

1) whether they would treat the patient or not; 2) how much experience they had had

with the specific disease, on a seven-point scale; 3) how much confidence they had in

their decisions to treat or not; 4)their interpretations.

5.2 Study Design

5.2.1 Select 14 Hedging Terms as Research Objects

Hedging terms have been studied in isolation from any context or within a context.

We selected 14 hedging terms as our research objects from RT publications. The 14

hedging terms are top 14 frequently occurred hedging terms in Radiation Oncology

knowledge statements. We did a survey on the hedging terms or verbal expressions

carrying uncertainty in RT publications. We counts the frequency for each hedging

terms occured in QUANTEC reviews and their references. The frequency of hedging

terms is seen in Figure 5.1, and then we selected the top 14 hedging terms without am-
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biguity for our study. The selected hedging terms for this study are: ’common’, ’could

be’, ’frequently ’, ’high risk ’, ’likely ’, ’may ’, ’might ’, ’possible’, ’potential ’, ’probably ’,

’rarely ’, ’risk of ’, ’suggest ’, and ’usually ’.

Figure 5.1: The top 30 frequently occured hedging terms in QUANTEC reviews and
RT studies referenced by QUANTEC reviews.

As to the scoring scale for quantifying these 14 hedging terms, we did another

survey on the scoring scales for probablistic degree of verbal expressions in medical

documents. We decided to use point estimate, lower bound and upper bound in

percentage for scoring the probablistic belief of the hedging terms.

5.2.2 Experiments: Context-Domain V.S Context-Specific

In the study, we designed two experiments for respondents to score the numer-

ical probability of hedging terms: context-domain experiment and context-specific

experiment. We are interested in the effcts of contexts put on the quantification

of hedging terms. First, in the context-domain situation, context is not complete

free, but provide the domain of radiation therapy context for the respondents. In

the context-specific situation, contextual information are given, such as organ at risk,

target organ, cancer type, and adverse events. In the context-domain experiment, the
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respondents were first presented with 14 hedging terms in a random order with only

a generic context of radiation therapy domain. The respondents are asked to assign

a probability percentage to each hedging term in a hypothetical situation: a patient

was treated for cancer with radiation therapy. No connotation of morbidity, sinister

adverse event, or parameters of treatment are specified. This is to gain an insight

of how individuals of different groups infer probability from only these terms. We

did not ask the respondents questions in context-free experiment, because the goal

of the study is to investigate the uncertainty of hedging terms in radiation oncology

domain, and plenty of work of uncertain expressions have been done in general field.

In context-specific experiment, we provide specific contexts for exact sentences that

contain these hedging terms. These sentences are extracted from 470 published clin-

ical studies which are referenced by a Radiation Therapy clinical guideline: QUAN-

TEC. Specific contexts include the organ at risk, target organ, cancer type, and

adverse events. This reveals how these hedging terms are scored with specific con-

text. The respondents are asked: 1) to assign a numerical probability for each hedging

terms with given specific contexts; 2) to indicate the importance of factors in affect-

ing their choices, such as their experience in the specific context, their confidence on

the decision, and the information clarity in their opinion. By comparing the results

from the context-domain experiment and context-specific experiment, we can explain

variation of results between the two settings, and the factors cause this variation.

5.2.3 Survey Questions

The survey consists of four types of questions. The are (1) the demographic ques-

tion; (2) the ranking question; (3) the context-domain question; and (4) the context-

specific question.

In the demographic question, we ask the respondenst to define their group based

on their expertise and knowledge relate to RT, shown in Figure 5.2.
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Figure 5.2: The demographic question asks the respondents to define their group.

In the ranking question, we ask the respondents to rank the 14 hedging terms based

on their probabilistic degree from most likely to least likey in Figure 5.3

Figure 5.3: The ranking question asks the respondents to rank the 14 hedging terms
based on their probabilistic degree from most likely to least likely.

In Figure 5.4 and Figure 5.5, the respondents are asked to assign probablistic scores

for each hedging term under two situations seperately: context-domain situation and

context-specific situation.
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Figure 5.4: The context-domain questions ask the respondents to assign each of the
14 hedging terms a probabilistic score under the RT domain situation

Figure 5.5: The context-specific question asks the respondents to assign each of the 14
hedging terms a probabilistic score under the RT domain situation and given specific
contextual information.
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5.3 Results

5.3.1 Demographic Information

We collected responses from 22 participants. Among the twenty-two respondents,

there are four medical student, four radiation physicists, three radiation oncologists,

seven health informaticians, and four lay persons.

5.3.2 The Ranking of Hedging Terms

The responses of the ranking question are shown as Figure 5.6. Based on the rank-

ing results, we found that only few terms having consistent opinions on their ranking,

and most terms having poorly consistent opinions including ’risk of’, ’common’.

Figure 5.6: The ranking distribution of the 14 hedging terms. The X-axis refers to
the ranking orders from top 1 (most likely) to the 14 (least likely. The Y-axis referst
to the respondents proportion.

5.3.3 The Probablistic Scores of Hedging Terms

The Box-Plots in Figure 5.7, Figure 5.8, and Figure 5.9 shows the respondents’

scoring for each hedging term on point estimate, upper bound and lower bound re-

spectively. For most of these 14 hedging terms, responses have large variance on



71

assigning the probabilistic scores.

Figure 5.7: The Box Plot of probablistic scores for the 14 hedging terms on point
estimate.
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Figure 5.8: The Box Plot of probablistic scores for the 14 hedging terms on upper
bound.
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Figure 5.9: The Box Plot of probablistic scores for the 14 hedging terms on lower
bound.

Due to the large variances of probablistic scores for most hedging terms, we firstly

checked their mean values of the probablistic sores for each hedging terms. Then, we

seperately explored the probablistic scores on different respondent groups for each 14

hedging terms. Figure 5.10 lists the mean values of probablistic score for each hedging

term on point estimate. The ranking of their mean values matches the common sense

of the usage of these hedging terms. For instance, the hedging term ′probably′ has

stronger belief than the term ′possible′. However, the mean values of probablistic

scores for each hedging terms and their ranking are insufficient to determine the

quantative weights for MLN in RT or other applications.
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Figure 5.10: The Box Plot of probablistic scores for the 14 hedging terms.

Thereby, we explored the decisions on assigning probablistic scores for each hedging

terms by different respondent groups. The boxplots displays that different groups

have very different opinion on the probablistic scores for most hedging terms in the

following 14 figures including: Figure 5.11, Figure 5.12, Figure 5.13, Figure 5.14,

Figure 5.15, Figure 5.16, Figure 5.17, Figure 5.18, Figure 5.19, Figure 5.20, Figure

5.21, Figure 5.22, Figure 5.23, and Figure 5.24.
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Figure 5.11: The Box Plot of probablistic scores for the hedging term ’common’.

Figure 5.12: The Box Plot of probablistic scores for the hedging term ’could be’.
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Figure 5.13: The Box Plot of probablistic scores for the hedging term ’frequently’.

Figure 5.14: The Box Plot of probablistic scores for the hedging term ’high risk’.
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Figure 5.15: The Box Plot of probablistic scores for the hedging term ’likely’.

Figure 5.16: The Box Plot of probablistic scores for the hedging term ’may’.
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Figure 5.17: The Box Plot of probablistic scores for the hedging term ’might’.

Figure 5.18: The Box Plot of probablistic scores for the hedging term ’possible’.
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Figure 5.19: The Box Plot of probablistic scores for the hedging term ’potential’.

Figure 5.20: The Box Plot of probablistic scores for the hedging term ’probably’.
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Figure 5.21: The Box Plot of probablistic scores for the hedging term ’rarely’.

Figure 5.22: The Box Plot of probablistic scores for the hedging term ’risk of ’.
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Figure 5.23: The Box Plot of probablistic scores for the hedging term ’suggest’.

Figure 5.24: The Box Plot of probablistic scores for the hedging term ’usually’.

We also made one-way ANOVA analysis on the responses of different groups. Figure

5.25 displays the result of one-way ANOVA on five groups, and Figure 5.26 displays



82

the result of one-way ANOVA on two groups. The mean values of only 6 hedging terms

have significant difference among five respondent groups. The means of probabilistic

cores in the ’Radiation Oncologist’ group are much lower than other groups, except

for term ’usually’. The mean values of only one hedging term (’high risk’) have

significant difference between lay person and RT expert. There were no significant

difference between RT expert and layperson on assigning probabilistic scores to most

hedging terms .

Figure 5.25: The One-Way ANOVA of mean probablistic scores on five groups, in-
cluding group ’Lay Person’, ’Radiation Physicist’, ’Health Informatician’, ’Medical
Student’, and ’Radiation Oncologist’.

Figure 5.26: The One-Way ANOVA of mean probablistic scores on two groups, in-
cluding two groups ’Lay Person’, and ’Radiation Experts’ .
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5.4 Conclusion

We condcuted a study on quantifying the uncertainty of hedging terms in RT

publications. We aim to understand the uncertainty carried by the hedging terms

in a quantitative way. We expected to apply the results of quantificiation as a part

of weight learning from expert knowledge for constructing Markov Logic Networks.

However, the study concludes that poor consistent opinions among different groups

on quantifying probabilistic scores and large variance inside the groups. We should

be cautious to use the results as a weight learning method towards MLNs. Due to the

small number of respondents participating in the study, we suggest to involve more

respondents to obtain reliable results in future.



CHAPTER 6: CONCLUSIONS

In this dissertation, we shows that Markov Logic Networks are a promising solution

for clincial knowledge representation and reasoning. Forwards the practice of EBM

in RT treatment planning, we develop an approach to transfer clinical knowledge in

RT publications into computerized representation for clinical decision support in RT

treatment planning through text mining and knowledge engineering methods. We

use text-mining techniques to extract knowledge from RT narrative texts, and apply

Markov Logic Network (MLN) to represent and reason clinical knowledge in RT.

Markov Logic Network (MLN) is able to represent computerized knowledge of RT with

complex entities and relationships from narrative resources. It also allows computer

agent make inference of queries based on evidence in a probabilistic graphical model.

The method of representing and reasoning RT knowledge with MLN provide radiation

oncology community a computerized and efficient way to reference a large number of

clinical practice guidelines or peer-reviewed research studies during RT planning. And

the evidence-driven weight learning process takes patient individual specialization

into account. In addition, the paper proposed a general and semi-automatic method

that can be applied into different domains of health informatics with the Statistical

Relational Learning and reasoning model.

6.1 Limitations

However, this method has several limits. Currently, we manually translate tem-

plates extracted from QUANTEC papers into first-order logics. It is error-prone and

labor-intensive in understanding semantics in RT studies to construct first-order log-

ics. To overcome the this limit, we could put future effort on logic learning by using
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domain experts’ annotation and information retrieval of natural language understand-

ing.

Another drawback of our proposed method is that we ignore the temporal relations

when building computerized knowledge representation. And the knowledge extraction

from RT text limits the clinical knowledge representation and reasoning. It is difficult

to extend the method with rapidly growing RT publications. Therefore in future,

a scalable and extendable platform should be implemented to support knowledge

extraction from RT text, and representation and reasoning of clinical knowledge in

RT.We also need elaborate the evaluation plan, and find the boundary of our proposed

model.

6.2 Future Direction of Research Work

In order to overcome the above limitations, we could put efforts on future research

work in the following directions. First, inductive logic programming is a promis-

ing field of encoding narrative speech into logic formalisms. With inductive logic

programming, the structure learning of MLNs with first-order logic formulas can be

programmed in a labor-saving and error-less way. Second, there is an interesting prob-

lem on how to import temporal information into knowledge representation models.

Third, we could conduct a systematical evaluation on the representation of clincial

knowledge in RT publications, and a comparison study of different knowledge rep-

resentation formalisms. In addition, a larger study of quantifying the uncertainty of

hedging terms in RT publications is suggested.
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