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ABSTRACT

DAN HAN. Population Dynamics with Immigration. (Under the direction of DR.
STANISLAV MOLCHANOV)

The paper contains the complete analysis of the Galton-Watson models with im-

migration, including the processes in the random environment, stationary or non-

stationary ones. We also study the branching random walk on Zd with immigration

and prove the existence of the limits for the first two correlation functions. Addi-

tional results concern the Lyapunov stability of the moments with respect to small

perturbations of the parameters of the model such as mortality rate, birth rate and

immigration rate.
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CHAPTER 1: INTRODUCTION

The subject of the population dynamics from the mathematical view point is the

analysis of the evolution in space and time of some species (we call them particles)

in the presence of such factors as birth and death processes, migration, immigration

and etc. The simplest models of such kind exclude the interaction between particles

and even the spatial distribution of the species.

The classical example is the Galton-Watson branching process with continuous

time. One of the defects of this model is the absence of the statistical equilibrium.

That is, n(t), the number of the particles at time t, either goes to ∞ with positive

probability or population degenerates P a.s. In the critical case when the mortality

rate and birth rate are equal to each other, P (n(t) = 0)→ 1 and this was the central

observation by Galton, the founder of the theory of branching processes.

The central problem in the population dynamics is the study of the models which

demonstrates the convergence to statistical equilibrium. On the mathematical level,

it is the theory of the infinite-dimensional Markov processes which phase space is the

set of all possible configurations of the particles, either on Zd (lattice models) or on

Rd (continuous models).

Configurations are changing in the time (due to migration,, birth-death processes

etc). Existence of statistical equilibrium is equivalent to the ergodicity of Markov

process, mentioned above. The probability measure (distribution) P (·) is the space
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of configurations converges weakly to the limit if t→∞. The limiting measure P (∞)

is the desirable stationary distribution (steady states).

The simplest population model with steady state is so called contact model.

In 2006, Y. Kondratiev and A. Skorokhod first proposed a continuous contact

model [11] in Rd. A series of researches in continuous contact models have been done

by Y. Kondratiev and his group, especially see the publication of Y. Kondratiev, O.

Kutovyi and S. Pirogov [10] in 2008. Under certain general technical assumptions,

they constructed the non-equilibrium contact process as a a spatial birth-and-death

Markov process on configuration space. The process describes a stochastic evolution

in configurations, i.e, locally finite subsets γ ⊂ Rd as the phase space of the process

in the language of papers [11],[10]. During the stochastic evolution, each particle

independently generates a new particle according to a dispersion probability density

0 ≤ a ∈ L1(Rd), which is an even function. The contact process generator is given on

proper function F (γ):

(LF )(γ) =
∑
x∈γ

µ(x, γ)[F (γ \ x)− F (γ)] +

∫
Rd

β(x, γ)[F (γ ∪ x)− F (γ)]dx

where µ(x, γ) describes the death rate of the particle x in the configuration γ.

β(x, γ) describes the rate at which, given the configuration γ, a new particle is born

at x ∈ Rd. They considered a spatial branching process with killing. Assume the

death rate µ = 1 and the birth rate

β(x, γ) = κ
∑
y∈γ

a(x− y)

0 ≤ a ∈ L1(Rd),

∫
Rd
a(z)dz = 1
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And in the nearest future, we will set κ, the diffusivity as 1.

The above construction means each y ∈ γ generates a new particle at x ∈ Rd with

the rate κa(x− y)dx independently. Additional unnecessary technical assumption in

[10] is the existence of the second moment:
∫
Rd
a(z)z2dz <∞.

For the critical value κ = 1 and the dimension d ≥ 3, they proved the existence of a

continuous family of invariant measures parameterized by the density values. Starting

with an admissible measure uniquely defined by the density of the initial state, the

critical contact process converges to the equilibrium measure uniquely defined by the

density of the initial state. But in the dimension d = 2, invariant measures for the

model do not exist. Namely, when d = 2, correlations between population members

are growing in time too fast and the second-order limiting correlation function will

diverge to infinity.

From a biological perspective, Y. Kondratiev and his group’s contact model is a

“forest” model: there is no motion of parental particles “trees” in space, however,

each parental “tree” can produce a new “seed”, and the seeds can jump to other

random positions around the parental “tree” and originate the new trees.

Denote n(t,Γ) is the number of particles at moment t in the set Γ ⊂ Rd. Assume

that the initial field of “trees” has a Poissonian structure with the density ρ0, i.e.

∀Γ ∈ B(Rd),m(Γ) =| Γ |≤ ∞, we have (for constant rates µ and β)

P{n(0,Γ) = k} = e−λ(Γ) (λ(Γ))k

k!
, k ≥ 0

λ(Γ) = |Γ|ρ0
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During a small period time dt, each particle located at x ∈ Rd can die with prob-

ability µdt or generates a new offspring with probability βdt. It means that the

parental tree stays at the same point x ∈ Rd, but it generate the seed (new offspring)

which jumps from x to x+ z with the distribution density a(z).

The field n(t,Γ) has multiplicity one and the correlation functions k
(n)
t (x1, x2, ..., xn)

has the sense of the densities:

k
(n)
t (x1, x2, · · · , xn)dx1...dxn = P{to find a particle at the moment t ≥ 0

in the volumes dx1, · · · , dxn around n points x1, · · · , xn}

In [10],the following model was introduced by Kondratiev et al. Consider initial

Poissonian field in Rd. Assume the death rate µ of the particles is equal to the birth

rate β. Whenever there is a transformation, the probability of death or birth is equal

to each other. That is, at moment t, a particle either dies with probability
1

2
or

produces a new seed, which will be randomly distributed according to a(z), z ∈ Rd.

Suppose this density function a(z) is symmetric a(z) = a(−z) and
∫
Rd
a(z) = 1.

Differential equations of k
(n)
t (x1, · · · , xn) are derived. Then the first two moments

have the following form:

∂k
(1)
t (x)

∂t
= −βk1

t (x) + β

∫
Rd
a(x− z)k

(1)
t (z)dz

k
(1)
0 (x) = ρ0

(1)

and
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∂k
(2)
t (x1, x2)

∂t
=− 2βk

(2)
t (x1, x2) + βk

(1)
t (x1)a(x1 − x2) + βk

(1)
t (x2)a(x2 − x1)+

β

∫
Rd
a(x1 − z)k

(2)
t (x2, z)dz + β

∫
Rd
a(x2 − z)k

(2)
t (x1, z)dz

k
(2)
0 (x1, x2) = ρ2

0

(2)

Under such a critical case β = µ, the equation (1) has unique solution k
(1)
t = ρ0.

The density is invariant of dynamics. For d ≥ 3,there exists a limiting distribution

of k
(2)
t . For d ≤ 2, k

(2)
t has a limiting distribution only when continuous density a(z)

satisfies some specific conditions.

The papers [10] and [11] covered only the continuous situation: particle fields in Rd,

d ≥ 1. The methods mentioned in [11] and [10] are not working in the lattice case. In

the papers [11],[10], the assumption that two particles cannot appear in the same site

(i.e the particle field has the multiplicity one) is the central point of analysis. For the

lattice models, this restriction will lead to highly complicated and highly non-linear

equations.

In 2010, Y. Feng, S. Molchanov and J. Whitmeyer [3] started the study of the

lattice contact models. They derived the equations for first three correlation func-

tions: m1(t, x) = E[n(t, x)], m2(t, x1, x2) = E[n(t, x1)n(t, x2)], m3(t, x1, x2, x3) =

E[n(t, x1)n(t, x2)n(t, x3]. And under assumptions about criticality (β = µ) and tran-

sitivity of the the underlying random walk with the generator

Laψ(x) = κ
∑
z 6=0

[ψ(x+ z)− ψ(x)]a(z)
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, they proved the existence of the limits

lim
t→∞

mi(t, ·) = mi(t, ·), i = 1, 2, 3

For the first two moments,they presented the exact formulas for the limiting density

and correlation function.

Let us stress that in [3], the dimension d can be arbitrary and there are no any

moment conditions. As the result, in dimension d = 1, 2 under regularity assumption

on the heavy tailed density a(z), the limiting moments exist .

Now the existence of the steady state for lattice contact process or branching ran-

dom walk on Zd is proven under the full generality, that is underlying random walk

is transient and β = µ (criticality), see S. Molchanov, J. Whitmeyer [14]

In 2017, S. Molchanov and J. Whitmeyer [14] proposed the new method to study

the problem of the steady states for the critical contact process. The model in [14]

and [3] is different from the model in [11] and [10]. It includes the spatial motion of

the particles. Particularly, at the moment of the birth of a new particle (offspring),

it can stay at the same site as the parental particle does.

Let us give the detailed description of the contact model (lattice case),see details

in [14].

We now consider our process with birth, death and migration on a countable space,

specifically the lattice Zd. We denote N(t, y), t ≤ 0, y ∈ Zd as the global population

at time t in the position y ∈ Zd and denote n(t, y, x) as the subpopulation at site

y ∈ Zd generated by a single initial particles in the site x ∈ Zd at initial time t = 0.
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Those subpopulations are independent, thus

N(t, y) =
∑
x∈Zd

n(t, y, x) and N(0, y) = 1

Each particle follows a random walk with generator κLaψ(x) = κ
∑
y∈Zd

[ψ(x + y) −

ψ(x)]a(y) with a symmetrical a(y) = a(−y) and normalization
∑
y

a(y) = 1. Death

occurs at rate µ and birth occurs at rate β. That means,during a period of time

(t, t+ dt), the probability that one particle will split into two particles is βdt and the

probability that one particle will die is µdt. In splitting, parental particle stays at

the same site and the new offspring jumps from x to x+ y with distribution b(y) and∑
y∈Zd

b(y) = 1 so that b is a probability distribution and b is symmetric so that the

probabilities to jump to opposite directions are equal: b(y) = b(−y). Using the jump

distribution b(·), on can introduce the new linear operator

Lbψ(x) = β
∑
z 6=0

[ψ(x+ z)− ψ(x)]b(z)

For the subpopulation n(t, y, x), x, y ∈ Zd, the generating function uz(t, x, y) =

Exz
n(t,y,x) =

∞∑
j=0

P{n(t, y, x) = j}zj. uz(t, x, y) satisfies the Kolmogorov-Petrovski-

Piskunov type equation:

∂uz
∂t

= κLauz − (β + µ)uz + βuz
∑
y∈Zd

uz(t, x+ v, y)b(v) + µ

u(0, x, y) =


z, x = y

1, x 6= y

(3)

Then the factorial moments ml(t, x, y) = E(n(n − 1) · · · (n − l + 1)) can obtain

their differential equations by differentiating (3) over z and substituting z = 1. For
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example, m1(t, x, y) = Exn(t, y, x) is given by

∂m1

∂t
= (κLa + βLb)m1 + (β − µ)m1

m1(0, x, y) = δ(y − x)

(4)

In the paper of S. Molchanov and J. Whitmeyer [14],this result uses backward

equation technique instead of forward Kolmogorov equations, a strategy not fea-

sible in the continuous space. When birth and mortality rates are equal to each

other and the underlying random walk generated by La is transient, then ml(t) =

EN(t, x)(N(t, x)− 1) · · · (N(t, x)− l+ 1)
t→∞−−−→ ml(∞) and therefore under Carleman

condition N(t, x)
t→∞−−−→
law

N(∞, x), where N(∞, x) is a steady state. Thus the whole

population reaches a stationary distribution (steady state).

The second fundamental question of the population dynamics is the stability (or

instability) of the steady state with respect to small perturbation of the parameters

of the model. How to measure of this ”smallness”? There are two possibilities:

(a) use L∞ norm. Instead of constant rates β, µ, one can consider functions

β(x) = β0 + εξ(x)

µ(x) = µ0 + εη(x)

where |ξ(x)| ≤ 1, x ∈ Zd, |η(x)| ≤ 1 and ε is a small parameter.

The function ξ(x) and η(x) can be random or deterministic. It is so-called Lyapunov

stability .

(b) use local perturbations, i.e. β(x) = β0, µ(x) = µ0 when x ∈ Zd − Γ but on the

finite set Γ, the difference β(x)− µ(x) = V (x) is not zero.
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It is clear that for the contact processes, we cannot expect the Lyapunov stability.

For instance, if β0 = µ0 and the underlying random walk is transient, then the steady

state exists but for ξ(x) ≡ 1,η(x) ≡ 0, the process with β(x) = β0 + ε, µ(x) = µ0 = β0

is supercritical. For the first moment, we have the obvious formula

m1(t, x) = m0e
εt →∞

as t→∞.

For ξ(x) ≡ −1, the result is opposite,

m1(t, x) = m0e
−εt → 0

as t→∞.

Even assumption that ξ(x), η(x) are independent random symmetrically distributed

fields, i.e. V (x) = ε(ξ(x) − η(x)) is symmetrically distributed potential cannot lead

to stabilization.

The local perturbations for the contact model were studied in several papers by

E.Yarovaya [1],[19],[18]. Roughly speaking, the result is the following one: For fixed

set Γ where β(x)−µ(x) > 0, the steady states exists if max
x∈Γ

(β−µ) ≤ δ, δ is sufficiently

small. If β − µ is large enough at least in one point, then m1(t, x) = E[n(t, x)]→∞.

Dissertation Outline

In this dissertation, the topic is supported by NSF DMS 1714402: Applied Spectral

Analysis in Population Dynamics, Biophysics, and Physical Chemistry. Chapter 2-4

are from published paper: Population Processes with Immigration published in the

Springer book Modern Problems of Stochastic Analysis and Statistics, 2017, page
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411-434, [5]. but with more details.

Chapter 5 is from published paper:Branching Random Walks with Immigration

published in the Springer book Analytical and Computational Methods in Probability

Theory, 2017, page 401-408, [4].

In Chapter 6, in the homogeneous environment, local and nonlocal perturbations

of parameters in the model are discussed.



CHAPTER 2: SPATIAL GALTON-WATSON PROCESS WITH
IMMIGRATION.NO MIGRATION AND NO RANDOM ENVIRONMENT.

2.1 Moments

In this section, we will study the branching process with immigration but without

migration. Assume that at each site for each particle we have birth of one new particle

with rate β and death of the particle with rate µ. Also assume that regardless of the

number of particles at the site we have immigration of one new particle with rate k

(this is a simplified version of the process in [16]). Assume that β < µ, otherwise the

population will grow exponentially. And n(t, x) is the population size at time t at

site x. Assume we start with one particle at each site. We call mj = E[nj(t, x)] the

jth moment of n(t, x).

For each site x ∈ Zd, n(t, x) is a branching process. All these branching process

n(t, x) for different sites x are independent from each other and there is no interactions

among those branching processes for different site x since there is no migration among

those sites. Because of this fact, it is sufficient to study n(t, x) for one particular site

x. Thus we write n(t) for n(t, x) of this particular site x. And we assume in the

beginning, n(0) = 1.

The Existence of Moment

Let us denote n0(t) as the subpopulation generated by the initial single particle and

n0(t − τi) as the subpopulation generated by the new immigrant who arrive at time
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t− τi with the rate k. The number of immigrants V during [0, t] follows Poisson(kt)

distribution. That is ,P (V (t) = m) = e−kt
(kt)m

m!
. For fixed V = m, the random

variable τ1, τ2, · · · , τm are independent and uniform on [0, t].

As a result, since n0(t), n0(t−τi),i = 1, 2, 3, · · · ,m are independent Galton Waston

processes. As a result,

E[n(t)] = E[n0(t) +
m∑
i=1

n0(t− τi)]

= e−(µ−β)t +
∞∑
m=1

e−kt
(kt)m

m!

∫ t

0

e−(µ−β)sds

t
m

= e−(µ−β)t +
1− e(µ−β)t

(µ− β)t
kt

= e−(µ−β)t +
k

µ− β
+

k

µ− β
e−(µ−β)t

Since µ− β > 0, as k →∞,the first moment exists and its limit is k
µ−β .

Calculation of Moments

In continuous time, we can obtain all moments recursively by means of the Laplace

transform with respect to n(t).

ϕ(t, λ) = E e−λn(t) =
∞∑
j=0

P{n(t) = j}e−λj.

Specifically, for the jth moment, mj

mj(t) = (−1)j
∂jϕ

∂λj
|λ=0. (5)

A partial differential equation for ϕ(t, λ) can be derived using the forward Kol-
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mogorov equations

n(t+ dt) = n(t) + ξdt(t) (6)

where the r.v. ξ is defined

ξdt(t) =


+1 w.p. βn(t)dt+ kdt

−1 w.p. µn(t)dt

0 w.p 1− ((β + µ)n(t) + k)dt

(7)

In other words, our site in a small time interval (t,t+dt) can gain a new particle with

probability βdt for every particle at the site or through immigration with probability

kdt; it can lose a particle with probability µdt for every particle at the site; or no

change at all can happen.

Now ϕ(t+ dt, λ) = E[e−λn(t+dt)] = E[E[e−λn(t+dt)|n(t)]].

And E[e−λn(t+dt)|n(t)] = e−λn(t)(1− (β+µ)n(t)dt− kdt) + (βn(t) + k)dte−λn(t)−λ +

µn(t)dte−λn(t)+λ.

One can apply the total expectation at both sides and use the formula −∂ϕ
∂λ

=

E[e−λn(t)n(t)]. This leads to the general differential equation

∂ϕ(t, λ)

∂t
= k(e−λ − 1)ϕ(t, λ) + β

∂ϕ(t, λ)

∂λ
(1− e−λ) + µ

∂ϕ(t, λ)

∂λ
(1− eλ) (8)

ϕ0(λ) = ϕ(0, λ) = e−λ (9)

from which we can calculate the recursive set of differential equations and we denote
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ϕ(t, λ)

∂t
as ϕt

∂jϕt
∂λj

= k

j∑
i=0

(
j

i

)
(e−λ − 1)(j−i)∂

iϕ

∂λi
+ β

j∑
i=0

(
j

i

)
(1− e−λ)(j−i)∂

i+1ϕ

∂λi+1

+µ

j∑
i=0

(
j

i

)
(1− eλ)(j−i)∂

i+1ϕ

∂λi+1

∂jϕ0(λ)

∂λj
= (−1)je−λ

Applying Eq. (5) we obtain a set of recursive differential equations for the moments

(−1)j
dmj(t)

dt
=

j−1∑
i=0

(
j

i

)
[k(−1)jmi + β(−1)jmi+1 + (−1)iµmi+1] (10)

mj(0) = 1

where we define m0 = 1. For example, the differential equations for the first and

second moments are

dm1(t)

dt
= (β − µ)m1(t) + k

m1(0) = 1

and

dm2(t)

dt
= 2(β − µ)m2(t) + (β + µ+ 2k)m1(t) + k

m2(0) = 1

These have the solutions:

m1(t) =
k

µ− β
+ (1− k

µ− β
)e−(µ−β)t
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and

m2(t) =
k(k + µ)

(µ− β)2
+
µ2 − 2k2 − β2 + kµ− 3kβ

(µ− β)2
e−(µ−β)t+

+
k2 + 2β2 + 3kβ − 2µβ − 2kµ

(µ− β)2
e−2(µ−β)t

Again, given that assumption µ > β, in other words, the birth rate is not high

enough to maintain the population size, as t→∞

m1(t) −−−→
t→∞

k

µ− β

m2(t) −−−→
t→∞

k(k + µ)

(µ− β)2

and

Var(n(t)) = m2(t)−m2
1(t) −−−→

t→∞

µk

(µ− β)2
.

Moreover, it is clear from Eq. (10) that all the moments are finite.

In other words, the expectation of the number of population will converge to a finite

limit, which can be regulated by controlling the immigration rate k, and this popu-

lation size will be stable, as indicated by the fact that the limiting variance is finite.

Without immigration, i.e., if k = 0, the population size will decay exponentially.

2.2 Local CLT

Setting λn = nβ + k, µn = nµ, we see that the model given by Eqs. (6) and (7) is

a particular case of the general random walk on Z1
+ = {0, 1, 2, · · ·} with generator [8]

Lψ(n) = ψ(n+ 1)λn − (λn + µn)ψ(n) + µnψ(n− 1), n > 0 (11)

Lψ(0) = kψ(1)− kψ(0) (12)
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The theory of such chains has interesting connections to the theory of orthogonal

polynomials, the moments problem, and related topics (see [7]). We recall several

facts of this theory.

a. Equation Lψ = 0, x > 1, (i.e., the equation for harmonic functions) has two

linearly independent solutions:

ψ1(n) ≡ 1

ψ2(n) =


0 n = 0

1 n = 1

1 + µ1
λ1

+ µ1µ2
λ1λ2

+ · · ·+ µ1µ2···µn−1

λ1λ2···λn−1
n > 2

(13)

b. Denoting the adjoint of L by L∗, equation L∗π = 0 (i.e., the equation for the

stationary distribution, which can be infinite) has the positive solution

π(1) =
λ0

µ1

π(0) (14)

π(2) =
λ0λ1

µ1µ2

π(0) (15)

· · · (16)

π(n) =
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
π(0) (17)
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where π(0) is a positive constant.

This random walk is ergodic (i.e., n(t) converges to a statistical equilibrium, a

steady state) if and only if the series 1 + λ0
µ1
· · ·+ λ0λ1

µ1µ2
+ · · ·+ λ0λ1···λn−1

µ1µ2···µn converges. In

our case,

xn =
λ0 · · ·λn−1

µ1 · · ·µn
=
k(k + β) · · · (k + (µ− 1))β

µ(2µ) · · · (nµ)
.

If β > µ, then, for n > n0, for some fixed ε > 0, k+(n−1)β
nµ

> 1 + ε, that is, xn ≥ Cn,

for some C > 1 and n ≥ n1(ε), and so
∑
xn = ∞. In contrast, if β < µ, then, for

some 0 < ε < 1, k+(n−1)β
nµ

< 1 − ε, and xn ≤ qn, for 0 < q < 1 and n > n1(ε); thus,∑
xn < ∞. In this ergodic case, the invariant distribution of the random walk n(t)

is given by the formula

π(n) =
1

S̃

λ0 · · ·λn−1

µ1 · · ·µn
,

π(0) =
1

S̃

where

S̃ = 1 +
k

µ
+
k(β + k)

µ(2µ)
+ · · ·+ k(k + β) · · · (β(n− 1) + k)

µ(2µ) · · · (nµ)
+ · · · .

Theorem 1 (Local Central Limit theorem). Let β and µ be fixed constants and β < µ.

The immigration rate k is a very large number. If l = o(k2/3), then, for the invariant

distribution π(n)

π(n0 + l) ∼ e−
l2

2σ2

√
2πσ2

as k →∞ (18)

where σ2 = µk
(µ−β)2

, n0 = k
µ−β .
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Proof.

π(n) =
1

S̃

k(k + β) · · · (k + β(n− 1))

µ(2µ) · · · (nµ)

=
1

S̃

(
β

µ

)n k
β
( k
β

+ 1) · · · ( k
β

+ n− 1)

n !

=
1

S̃

(
β

µ

)n Γ( k
β

+ n)

Γ( k
β
)n !

.

We see S̃ is a degenerate hypergeometric series, see [12], thus

S̃ =

(
1− β

µ

)− k
β

.

Set

an =

(
β

µ

)n Γ( k
β

+ n)

Γ( k
β
)n !

. (19)

Then, π(n) =
an

S̃
. We have

an+l = an

(
β

µ

)l
(1 +

k
β
− 1

n+ 1
)(1 +

k
β
− 1

n+ 2
) · · · (1 +

k
β
− 1

n+ l
)

= an

l∏
i=1

β

µ
(1 +

k
β
− 1

n+ i
)

= an

l∏
i=1

1 + β(i−1)(µ−β)
µk

1 + i(µ−β)
k

= an

l∏
i=1

β
µ
(n+ i− 1) + k

µ

n+ i
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and because n0 = k
µ−β

an0+l = an0

l∏
i=1

β
µ
( k
µ−β + i− 1) + k

µ

k
µ−β + i

= an0

l∏
i=1

β(i− 1)(µ− β) + kµ

i(µ− β)µ+ kµ

= an0

l∏
i=1

1 + β(i−1)(µ−β)
kµ

1 + i(µ−β)
k

= an0e

l∑
i=1

[ln(1+
β(i−1)(µ−β)

µk
)−ln(1+

i(µ−β)
k

)]

Take l = o(k2/3), since k is a very large constant, thus (l−1)(µ−β)β
µk

is small than δ

for k ≥ k0(δ). We integrate the series ln(1 + x) = x + O(x2) and because l = o(k
2
3 ),

when n ≥ 2, lim
k→∞

ln+1

kn
= 0, and lim

k→∞

l

k
= 0, lim

k→∞

l2

k2
= 0 we can get the following:

l∑
i=1

[ln(1 +
β(i− 1)(µ− β)

µk
)− ln(1 +

i(µ− β)

k
)]

=
l∑

i=1

[
β(i− 1)(µ− β)

µk
− i(µ− β)

k
+O(

i2

k2
)]

=
l∑

i=1

[
(µ− β)2i

−µk
+O(

1

k
) +O(

i2

k2
)]

=

∫ l

1

[
(µ− β)2x

−µk
+O(

1

k
) +O(

x2

k2
)]dx+O([

(µ− β)2l

−µk
+O(

1

k
) +O(

l2

k2
)]

= −(µ− β)2l2

−2µk
+O(

l

k
) +O(

l3

k2
) +O(

1

k
) +O(

l2

k2
)

∼ −(µ− β)2l2

−2µk
as k →∞

Hence

an0+l ∼ an0e
− (µ−β)2l2
−2µk = an0e

− l2

2kµ

(µ−β)2 ,
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or, setting σ2 = kµ
(µ−β)2

an0+l ∼ an0e
− l2

2σ2 .

From Eq.(19)

an0 =

(
β

µ

)n0 Γ( k
β
) + n0

Γ( k
β
)n0 !

and, using Stirling’s formula and the fact that n0 = k
µ−β

an0 ∼
(
β

µ

)n0

√
2π

k
β

+n0√
2π
k
β

(
k
β

+n0

e
)
k
β

+n0

(
k
β

e
)
k
β
√

2πn0(n0/e)n0

=

(
β

µ

) k
µ−β

√
2π

k
β

+ k
µ−β√

2π
k
β

(
k
β

+ k
µ−β
e

)
k
β

+ k
µ−β(

k
β

e

) k
β √

2π k
µ−β ( k

µ−β/e)
k

µ−β

=
1√
2πσ

(
1 +

β

µ− β

) k
β

where σ =
√

µk
(µ−β)2

. Thus

an0

S̃
∼

1√
2πσ

(1 + β
µ−β )

k
β

(1− β
µ
)1− k

β

=
1√
2πσ

(
(1 +

β

µ− β
)(1− β

µ
)

) k
β

=
1√
2πσ

(
µ

µ− β
µ− β
µ

) k
β

=
1√
2πσ

and so

π(n0 + l) =
an0+l

S̃
∼ an0

S̃
e−

l2

2σ2 ∼ 1√
2πσ

e−
l2

2σ2 as n0 →∞.



CHAPTER 3: BRANCHING PROCESS WITH MIGRATION AND
IMMIGRATION FOR BINARY SPLITTING

We now consider our process with birth, death, migration, and immigration on a

countable space, specifically the lattice Zd. As in the other models, we have β > 0,

the rate of duplication at x ∈ Zd; µ > 0, the rate of death; and k > 0, the rate of

immigration. Here, we add migration of the particles with rate κ > 0 and probability

kernel a(z), z ∈ Zd, z 6= 0, a(z) = a(−z),
∑
z 6=0

a(z) = 1. a(0) = 0. That is, a particle

jumps from site x to x + z with probability κa(z)dt. Here we put κ = 1 to simplify

the notation.

For n(t, x) the number of particles at x at time t, the forward equation for this

process is given by n(t+ dt, x) = n(t, x) + ξ(dt, x), where

ξ(dt, x) =



1 w. pr. n(t, x)βdt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt

−1 w. pr. n(t, x)(µ+ 1)dt

0 w. pr. 1− (β + µ+ 1)n(t, x)dt−
∑
z 6=0

a(z)n(t, x+ z)dt− kdt

(20)

Note that ξ(dt, x) is independent on F6t (the σ-algebra of events before or including

t) and

a) E[ξ(dt, x)|F6t] = n(t, x)(β − µ− 1)dt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt.

b) E[ξ2(dt, x)|F6t] = n(t, x)(β + µ+ 1)dt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt.
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c) E[ξ(dt, x)ξ(dt, y)|F6t] = a(x− y)n(t, x)dt+ a(y − x)n(t, y)dt.

A single particle jumps from x to y or from y to x. Other possibilities have

probability O((dt)2) ≈ 0. Here, of course, x 6= y.

d) If x 6= y, y 6= z, and x 6= z, then E[ξ(dt, x)ξ(dt, y)ξ(dt, z)] = 0.

We will not use property d) in this paper but it is crucial for the analysis of

moments of order greater or equal to 3.

From here on, we concentrate on the first two moments.

3.0.1 First moment

Due to the fact that β < µ, the system has a short memory, and we can calculate

asymptotically all the moments under the condition that n(0, x), x ∈ Zd, is an ar-

bitrary system of independent and identically distributed random variables. Assume

we have 0 particles in the beginning. Setting m1(t, x) = E[n(t, x)], we have

m1(t+ dt, x) = E[E[n(t+ dt, x)|F6t]] = E[E[n(t, x) + ξ(t, x)|F6t]]

= m1(t, x) + (β − µ)m1(t, x)dt+ kdt

+
∑
z 6=0

a(z)[m1(t, x+ z)−m1(t, x)]dt

(21)

Defining the operator La(f(t, x)) =
∑
z 6=0

a(z)[f(t, x + z) − f(t, x)], then, from Eq.

(21) we get the differential equation
∂m1(t, x)

∂t
= (β − µ)m1(t, x) + k + Lam1(t, x)

m1(0, x) = 0
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Because of spatial homogeneity, Lam1(t, x) = 0, giving
∂m1(t, x)

∂t
= (β − µ)m1(t, x) + k

m1(0, x) = 0

which has the solution

m1(t, x) =
k

β − µ
(e(β−µ)t − 1).

Thus, if β ≥ µ, m1(t, x)→∞, and if µ > β,

lim
t→∞

m1(t, x) =
k

µ− β
.

3.0.2 Second moment

We derive differential equations for the second correlation function m2(t, x, y) =

E[n(t, x)n(t, y)] for x = y and x 6= y separately, then combine them and use a Fourier

transform to prove a useful result concerning the covariance.

I. x = y

m2(t+ dt, x, x) = E[E[(n(t, x) + ξ(dt, x))2|F6t]]

= m2(t, x, x) + 2E[n(t, x)[n(t, x)(β − µ− 1)dt+ kdt

+
∑
z 6=0

a(z)n(t, x+ z)]dt] + E[n(t, x)(β + µ+ 1)dt

+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt]

Denote Laxm2(t, x, y) =
∑
z 6=0

a(z)(m2(t, x+ z, y)−m2(t, x, y)).
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From this follows the differential equation
∂m2(t, x, x)

∂t
= 2(β − µ)m2(t, x, x) + 2Laxm2(t, x, x) + 2k2

µ−β + 2k(µ+1)
µ−β

m2(0, x, x) = 0

II. x 6= y

Because only one event can happen during dt

P{ξ(dt, x) = 1, ξ(dt, y) = 1} = P{ξ(dt, x) = −1, ξ(dt, y) = −1} = 0,

while the probability that one particle jumps from y to x is

P{ξ(dt, x) = 1, ξ(dt, y) = −1} = a(x− y)n(t, y)dt,

and the probability that one particle jumps from x to y is

P{ξ(dt, x) = −1, ξ(dt, y) = 1} = a(y − x)n(t, x)dt.

Then, similar to above

m2(t+ dt, x, y) = E[E[(n(t, x) + ξ(t, x))(n(t, y) + ξ(t, y))|F6t]]

= m2(t, x, y) + (β − µ)m2(t, x, y)dt+ km1(t, y)dt

+
∑
z 6=0

a(z)(m2(t, x+ z, y)−m2(t, x, y))dt+ (β − µ)m2(t, x, y)dt

+ km1(t, x)dt+
∑
z 6=0

a(z)(m2(t, x, y + z)−m2(t, x, y))dt

+ a(x− y)m1(t, y)dt+ a(y − x)m1(t, x)dt

= m2(t, x, y) + 2(β − µ)m2(t, x, y)dt+ k(m1(t, y) +m1(t, x))dt

+ (Lax + Lay)m2(t, x, y)dt+ a(x− y)(m1(t, x) +m1(t, y))dt
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The resulting differential equation is

∂m2(t, x, y)

∂t
= 2(β − µ)m2(t, x, y) + (Lax + Lay)m2(t, x, y)

+ k(m1(t, x) +m1(t, y)) + a(x− y)[m1(t, x) +m1(t, y)]

(22)

That is

∂m2(t, x, y)

∂t
= 2(β − µ)m2(t, x, y) + (Lax + Lay)m2(t, x, y)

+
2k2

µ− β
+ 2a(x− y)

k

µ− β

Because, for fixed t, n(t, x) is homogeneous in space, we can write m2(t, x, y) =

m2(t, x−y) = m2(t, u). Then, we can condense the two cases into a single differential

equation
∂m2(t, u)

∂t
= 2(β − µ)m2(t, u) + 2Laum2(t, u) + 2k2

µ−β + 2a(u) k
µ−β + δ0(u)2k(µ+1)

µ−β

m2(0, u) = En2(0, x)

Here u = x− y 6= 0 and a(0) = 0.

We can partition m2(t, u) into m2(t, u) = m21 + m22, where the solution for m21

depends on time but not position and the solution for m22 depends on position but

not time. Thus, Laum21 = 0 and m21 corresponds to the source 2k2

µ−β , which gives

∂m21(t, u)

∂t
= 2(β − µ)m21(t, u) +

2k2

µ− β

As t→∞, m21 → M̄2 = m2
1(t, x) = k2

(µ−β)2
.
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For the second part, m22 ,
∂m22

∂t
= 0, i.e.

∂m22(t, u)

∂t
= 2(β − µ)m22(t, u) + 2Laum22(t, u) + 2a(u)

k

µ− β
+ δ0(u)

2k(µ+ 1)

µ− β
= 0

As t → ∞, m22 → M̃2. M̃2 is the limiting correlation function for the particle field

n(t, x), t→∞. It is the solution of the “elliptic” problem

2LauM̃2(u)− 2(µ− β)M̃2(u) + δ0(u)
2k(µ+ 1)

µ− β
+ 2a(u)

k

µ− β
= 0

Applying the Fourier transform ̂̃M2(θ) =
∑
u∈Zd

M̃2(u)ei(θ,u), θ ∈ T d = [−π, π]d,

we obtain

̂̃M2(θ) =

k

µ− β
+
kâ(θ)

µ− β
(µ− β) + (1− â(θ)

.

We have proved the following result.

Theorem 2. If t→∞, then Cov(n(t, x), n(t, y)) = E[n(t, x)n(t, y)]−E[n(t, x)]E[n(t, y)]

= m2(t, x, y)−m1(t, x)m1(t, y), tends to M̃2(x− y) = M̃2(u) ∈ L2(Zd)

The Fourier transform of M̃2(·) is equal to

̂̃M2(θ) =
c1 + c2â(θ)

c3 + (1− â(θ))
∈ C(T d)

where c1 =
k

µ− β
, c2 =

k

µ− β
, c3 = µ− β

Let’s compare our results with the corresponding results for the critical contact

model [3] (where k = 0, µ = β). In the last case, the limiting distribution for the field

n(t, x), t > 0, x ∈ Zd, exists if and only if the underlying random walk with generator

La is transient. In the recurrent case, we have the phenomenon of clusterization. The
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limiting correlation function is always slowly decreasing (like the Green kernel of La).

In the presence of immigration, the situation is much better: the limiting correlation

function always exists and we believe that the same is true for all moments. The decay

of M̃2(u) depends on the smoothness of â(θ). Under minimal regularity conditions,

correlations have the same order of decay as a(z), z → ∞. For instance, if a(z) is

finitely supported or exponentially decreasing, the correlation also has an exponential

decay. If a(z) has power decay, then the same is true for correlation M̃2(u), u→∞.



CHAPTER 4: PROCESSES IN A RANDOM ENVIRONMENT

In this Chapter, there are four models involve a random environment. Two are

Galton-Watson models with immigration and lack a spatial component. In the first,

the parameters are random functions of the population size; in the second, they are

random functions of a Markov chain on a finite space. The last two models are spatial

and feature immigration, migration, and, most importantly, a random environment in

space, still stationary in time for the third but not stationary in time for the fourth.

4.1 Galton-Watson processes with immigration in random environments

4.1.1 Galton-Watson process with immigration in random environment based on

population size

Assume that rates of mortality µ(·), duplication β(·), and immigration k(·) are

random functions of the volume of the population x ≥ 0. Namely, the random

vectors (µ, β, k)(x, ω) are i.i.d on the underlying probability space (Ωe,Fe, Pe) (e:

environment).

The Galton-Watson Process is ergodic (Pe-a.s) if and only if the random series

S =
∞∑
n=1

k(0)(β(1) + k(1))(2β(2) + k(2)) · · · ((n− 1)β(n− 1) + k(n− 1))

µ(1)(2µ(2)) · · · (nµ(n))
<∞, Pe-a.s.

see reference [6].

Theorem 3. Assume that the random variables β(x, ω), µ(x, ω), k(x, ω) are bounded
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from above and below by the positive constants C±: 0 < C− ≤ β(x, ω) ≤ C+ < ∞.

Then, the process n(t, ωe) is ergodic Pe-a.s. if and only if 〈ln β(x,ω)
µ(x,ω)

〉 = 〈ln β(·)〉 −

〈ln(µ(·))〉 < 0

Proof. It is sufficient to note that

k(n− 1, ω) + (n− 1)β(n− 1, ω)

nµ(n, ω)

=
k(n−1,ω)−β(n−1,ω))

n
+ β(n− 1, ω)

µ(n, ω)

=
β(n− 1, ω)

µ(n, ω)
(1 +

k(n− 1, ω)− β(n− 1, ω))

n
)

= eln(
β(n−1,ω)
µ(n,ω)

)+ln(1+
k(n−1,ω)−β(n−1,ω))

n
)

≤ elnβ(n−1,ω)−lnµ(n,ω)+
k(n−1,ω)−β(n−1,ω))

n

= elnβ(n−1,ω)−lnµ(n,ω)+O( 1
n

).

Thus S ≤
∞∑
n=1

e

n∑
k=1

ln(
β(k−1,ω)
µ(k,ω)

)+
n∑
k=1

c
k

And according to the strong Law of Large Numbers,

1

n

n∑
k=1

ln
β(k − 1, ω)

µ(, k, ω)

P−a.s.−−−−→< ln
β

µ
>< 0

Also
n∑
k=1

c

k
≤ cln(n). That means that the series S diverges exponentially fast

for 〈ln β(·)〉 − 〈lnµ(·)〉 > 0; it converges like a decreasing geometric progression for

〈ln β(·)〉 − 〈lnµ(·)〉 < 0; and it is divergent if 〈ln β(·)〉 = 〈lnµ(·)〉. It diverges even

when β(x, ωe) = µ(x, ωe) due to the presence of k− ≥ C− > 0.

If β(·, ω),µ(·, ω) are independent, then ES <∞ if and only if 〈β(x−1)
µ(x)
〉 = 〈β〉〈 1

µ
〉 < 1.

The fluctuations of S, even in the case of convergence, can be very high, that is, it is
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possible that 〈lnβ〉 < 〈lnµ〉 but ES =∞.

4.1.2 Galton-Watson process with immigration in random non-stationary(time

dependent) environment

Assume that k(t) and ∆ = (µ−β)(t) are stationary random processes on (Ωm, Pm)

and that k(t) is independent of ∆. For a fixed environment, i.e., fixed k(·) and ∆(·),

the equation for the first moment can be derived by similar method used in Chapter

3 and it takes the form

dm1(t, ωm)

dt
= −∆(t, ωm)m1 + k(t, ωm)

m1(0, ωm) = m1(0)

Then

m1(t, ωm) = m1(0)e−
∫ t
0 ∆(u,ωm)du +

∫ t

0

k(s, ωm)e−
∫ t
s ∆(u,ωm)duds

Assume that 1
δ
> ∆(·) > δ > 0, 1

δ
> k(·) > δ > 0. Then

m1(t, ωm) =

∫ t

0

k(s, ωm)e−
∫ t
s ∆(u,ωm)duds+O(e−δt).

Thus, for large t, the process m1(t, ωm) is exponentially close to the stationary process

m̃1(t, ω) =

∫ t

0

k(s, ωm)e−
∫ t
s ∆(u,ωm)duds

Assume now that k(t) and ∆(s) are independent stationary processes and −∆(t) =

V (x(t)), where x(t), t > 0, is a Markov Chain with continuous time and symmetric

geometry on the finite set X. (One can also consider x(t), t > 0, as a diffusion process
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on a compact Riemannian manifold with Laplace-Beltrami generator ∆.) Let

u(t, x) = Exe
∫ t
0 V (xs)dxf(xt)

= Exe
∫ t
0 −∆(xs)dxf(xt)

Then 

∂u

∂t
= Lu+ V u = Hu

u(0, x) = f(x)

(23)

The operator L is symmetric in L2(x) with dot product (f, g) =
∑
x∈X

f(x) ¯g(x).

Thus, H = L + V is also symmetric and has real spectrum 0 > −δ > λ0 > λ1 > · · ·

with orthonormal eigenfunctions ψ0(x) > 0,ψ1(x) > 0, · · · Iinequality λ0 6 δ < 0

follows from our assumption on ∆(·).

The solution of equation (23) is given by

u(t, x) =
N∑
n=1

eλktψk(x)(t, ψk).

Now, we can calculate < m̃1(t, x, ωm) >.

< m̃ >=

∫ t

−∞
< k(·) >< Eπe

∫ t
s V (xu)du > ds (24)
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Here, π(x) = 1
N

= 1(x)
N

is the invariant distribution of xs. Then

< m̃ > =

∫ t

−∞
< k >

k=N∑
k=0

eλk(t−s)(ψkπ)(1ψk)ds

= − < k >
k=N∑
k=0

1

λk
(ψk1)2 1

N

= −< k >

N

N∑
k=0

(ψk1)2

λk

4.1.3 Galton-Watson process with immigration in random environment given by

Markov chain

Let x(t) be an ergodic Markov chain on the finite spaceX and let β(x(t)), µ(x(t)), k(x(t)),

the rates of duplication, annihilation, and immigration, be functions from X to R+,

and, therefore, functions of t and ωe. The process (n(t), x(t)) is a Markov chain on

Z1
+ ×X.

Let a(x, y), x, y ∈ X, a(x, y) ≥ 0,
∑
y∈X

a(x, y) = 1 for all x ∈ X, be the transition

function for x(t). Consider E(n,x)f(n(t), x(t)) = u(t, (n, x)). Then

u(t+ dt, (n, x)) = (1− (nβ(x) + nµ(x) + k(x)− a(x, x))dt)u(t, x)

+ nβ(x)u(t, (n+ 1, x))dt+ k(x)u(t, (n+ 1, x))dt

+ nµ(x)u(t, (n− 1, x))dt+
∑
y:y 6=x

a(x, y)u(t, (n, y))dt
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We obtain the backward Kolmogorov equation

∂u

∂t
=
∑
y:y 6=z

a(t, y)(u(t, (n, y))− u(t, (n, x)))

+ (nβ(x) + k(x))(u(t, (n+ 1, x))− u(t, (n, x)))

+ nµ(x)(u(t, (n− 1, x))− u(t, (n, x)))

u(0, (n, x)) = 0

Example. Two-state random environment.

Here, x(t) indicates which one of two possible states, {1, 2} the process is in at time t.

The birth, mortality, and immigration rates are different for each state: β1 and β2, µ1

and µ2, and k1 and k2. For a process in state 1, at any time the rate of switching to

state 2 is α1, with α2 the rate of the reverse switch. This creates the two-state random

environment. Let G be the generator for the process, as diagrammed in Figure 3.

Figure 1: GW process with immigration with random environment for two states

The following theorem gives sufficient conditions for the ergodicity of the process

(n(t), x(t)).
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Theorem 4. Assume that for some constants δ > 0 and A > 0

µi − βi ≥ δ, ki ≤ A, i = 1, 2

Then, the process (n(t), x(t)) is an ergodic Markov chain and the invariant measure of

this process has exponential moments, i.e., E eλn(t) ≤ c0 <∞ if λ ≤ λ0 for appropriate

(small) λ0 > 0.

Proof. We take as a Lyapunov function f(n, x) = n.

Then, Gf(n(t), x(t)) = (βx − µx)n + kx. So for sufficiently large n, specifically

n > A
δ
, we have Gf ≤ 0.

4.2 Models with immigration and migration in a random environment

For this most general case, we have migration and a non-stationary environment

in space and time. The rates of duplication, mortality, and immigration at time t

and position x ∈ Zd are given by β(t, x), µ(t, x), and k(t, x). As in the above models,

immigration is uninfluenced by the presence of other particles; also set δ1 ≤ k(t, x) ≤

δ2, 0 < δ1 < δ2 <∞. The rate of migration is given by κ, with the process governed

by the probability kernel a(z), the rate of transition from x to x+ z, z ∈ Zd.

If n(t, x) is the number of particles at x ∈ Zd at time t, n(t+dt, x) = n(t, x)+ξ(t, x),
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where

ξ(t, x) =



1 w. pr. n(t, x)β(t, x)dt+ k(t, x)dt+
∑
z 6=0

a(−z)n(t, x+ z)dt

−1 w. pr. n(t, x)µ(t, x)dt+
∑
z 6=0

a(z)n(t, x)dt

0 w. pr. 1− (β(t, x) + µ(t, x))n(t, x)dt−
∑
z 6=0

a(z)n(t, x+ z)dt

−
∑
z 6=0

a(z)n(t, x)dt− k(t, x)dt

For the first moment, m1(t, x) = E[n(t, x)], we can write

m1(t+ dt, x) = E[E[n(t+ dt, x)|Ft]] = E[E[n(t, x) + ε(t, x)|Ft]]

= m1(t, x) + (β(t, x)− µ(t, x))m1(t, x)dt+ k(t, x)dt

+
∑
z 6=0

a(z)[m1(t, x+ z)−m1(t, x)]dt

and so, defining, as above, La(f(t, x)) =
∑
z 6=0

a(z)[f(t, x+ z)− f(t, x)], we obtain


∂m1(t, x)

∂t
= (β(t, x)− µ(t, x))m1(t, x) + k(t, x) + Lam1(t, x)

m1(0, x) = 0

(25)

We consider two cases. The first is where the duplication and mortality rates

are equal, β(t, x) = µ(t, x). Because of the immigration rate bounded above 0, we

find that the expected population size at each site tends to infinity. In the second

case, to simplify, we consider β(t, x) and µ(t, x) to be stationary in time, and assume

the mortality rate to be greater than the duplication rate everywhere by at least a

minimal amount. Here, we show that the interplay between the excess mortality and

the positive immigration results in a finite positive expected population size at each

site.
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4.2.1 Case I

If β(t, x) = µ(t, x) 
∂m1(t, x)

∂t
= k(t, x) + Lam1(t, x)

m1(0, x) = 0

Taking Fourier transforms,
∂m̂1(t, v)

∂t
= k̂(t, v) + L̂a(v)m̂1(t, v)

m̂1(0, x) = 0

∂

∂t
(e−L̂a(v)tm̂1) = −L̂a(v)eL̂a(v)tm̂1 + e−L̂a(v)t∂m̂1

∂t
= eL̂a(v)tk̂(t, v)

e−κL̂a(v)tm̂1(t, v) =

∫ t

0

e−L̂a(v)sk̂(s, v)ds

m̂1(t, v) =

∫ t

0

e−(s−t)L̂a(v)k̂(s, v)ds

Taking the inverse Fourier transform,

m1(t, x) =
1

(2π)d

∫
Td

∫ t

0

e−(s−t)L̂a(v)k̂(s, v)dse−i(v,x)dv

=

∫ t

0

ds
∑
y∈Zd

k(s, y)p(t− s, x− y, 0) ≥
∫ t

0

δ1ds = δ1t
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where

p(t, x, y) =
1

(2π)d

∫
T d
e−tL̂a(v)−i(v,x−y)dv =

1

(2π)d

∫
T d
e
−t

d∑
j=1

(cos (vj)−1)−i(v,x−y)

dv

As t→∞, δ1t→∞. Thus, when the birth rate equals the death rate, the expected

population at each site x ∈ Zd will go to infinity as t→∞.

4.2.2 Case II

Here, β(t, x) 6= µ(t, x). For simplification we assume that only immigration, k(t, x),

is not stationary in time. In other words, we us assume that the duplication and

mortality rates are stationary in time and depend only on position: β(t, x) = β(x),

µ(t, x) = µ(x) and µ(x)− β(x) > δ1 > 0. From Eq. (25), we get
∂m1(t, x)

∂t
= k(t, x) + Lam1(t, x) + (β(t, x)− µ(t, x))m1(t, x)

m1(0, x) = 0

This has the solution

m1(t, x) =

∫ t

0

ds
∑
y∈Zd

k(s, y)q(t− s, x, y)

where q(t− s, x, y) is the solution for

∂q

∂t
= Laq + (β(t, x)− µ(t, x))q

q(0, x, y) = δ(x− y) =


1 y = x

0 y 6= x
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By the Feynman-Kac formula,

q(s, x, y) = Ex[e
∫ s
0 (β(xu)−µ(xu))duδ(xs − y)]

= E[e
∫ s
0 (β(xu)−µ(xu)duδ(xs − y))|x0 = x]

= E[E[e
∫ s
0 (β(xu)−µ(xu)duδ(xs − y))|x0 = x, xs = y]|x0 = x]

= P (xs = y|x0 = x)Ex→y[e
∫ s
0 (β(xu)−µ(xu)du]

= p(s, x, y)Ex→y[e
∫ s
0 (β(xu)−µ(xu)du]

where

p(t, x, y) =
1

(2π)d

∫
T d
e−tL̂a(v)−i(v,x−y)dv.

Finally

lim
t→∞

m1(t, x) = lim
t→∞

∫ t

0

ds
∑
y∈Zd

k(s, y)Ex→y[e
∫ t−s
0 (β(xu)−µ(xu)du]p(t− s, x, y)

and letting w = t− s

≤ lim
t→∞

∫ t

0

dw‖k‖∞Ex→y[e
∫ w
0 (β(xu)−µ(xu)du]

≤ ‖k‖∞
∫ ∞

0

e−δ1wdw since β(x)− µ(x) ≤ −δ1 < 0

=
‖k‖∞
δ1

.

Thus, when µ(x)− β(x) > 0, lim
t→∞

m1(t, x) is bounded by 0 and ‖k‖∞
δ1

, so this limit

exists and is finite.



CHAPTER 5: SPATIAL PROCESSES WITH IMMIGRATION ON ZD IN
HOMOGENEOUS ENVIRONMENT FOR MULTIPLE OFFSPRING

5.1 Description of the Model

We now consider our process with birth, death, migration, and immigration on a

countable space, specifically the lattice Zd.

Notation: (i): the birth rate of j − 1 particles: βj > 0, j = 2, 3, 4, 5, · · · , the rate

of birth that one particle will split into j particles at moment t, in other words, the

birth rate that each parent particle will generate j−1 offsprings independently.During

a period of time (t, t + dt), the probability that one particle will split into j parti-

cles is βjdt. Let us introduce the corresponding infinitesimal generating function

F (z) = µ− (µ+
∑
j≥2

βj)z+
∑
j≥2

βjz
j. We will assume that F (z) is an analytic function

in the circle |z| < 1+δ, δ > 0, i.e the rate of birth βj as a function of j is exponentially

decreasing. And we also assume that the new offsprings start their evolution from the

same birth place independently on others, like in the classical paper of Kolmogorov,

Petrovski and Piskunov(1937)[9]

(ii):the rate of death:µ > 0. During a period of time (t, t+dt), the probability that

one particle will die is µdt.

(iii):the rate of immigration: k > 0. During a period of time (t, t + dt), the prob-
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ability that one new particle outside of the system appears in the site x ∈ Zd is kdt.

The appearance of a new particle in the system is uninfluenced by the presence of

other particles.

(iv): the rate of particles’ migration: κ > 0. Migration of the parent particle de-

pends on the probability kernel a(z), a(0) = 0,
∑
z 6=0

a(z) = 1,z ∈ Zd, here a(z) is the

transition rate of parent particle from x to x + z, z ∈ Zd at t. The parent particle

jumps from site x to x+ z during a period of time (t, t+dt) with probability κa(z)dt.

The generator of the corresponding (underlying) random walk is the discrete or lattice

Laplacian Laψ(x) = κ
∑
z 6=0

[ψ(x+ z)− ψ(x)]a(z).

This model is similar to the well-known Kolmogorov-Petrovski-Piskunov (KPP)

model(1937)[9]. However, first, for the KPP model, the state space is continuous state

space Rd instead of discrete state space Zd and the underlying process is Brownian

motion instead of a random walk. These two differences are rather essential technical

points. In the KPP case, the study of stead states was developed by the ideas of

R. L. Dobrushin [2], who applied a technique involving partial differential equations.

In the case of continuous contact model, in the terminology in Kondratiev, Kutoviy

and Pirogov (2008) [10], there is no immigration (i.e k=0) and the birth rate equals

the death rate (i.e β2 = µ), They applied forward Kolmogrov equation to prove the

existence of the steady states (the limit of the total number of population as t→∞.

In the classical Galton-Waston process model, the backward Kolmogrov equation

is used [6]. But with the presence of the immigration, we have to use foreward
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Kolmogrov equation.

For simplicity, we denote n(t, x, y) as n(t, x), the number of particles at x at time

t, the equation for this process is given by n(t+ dt, x) = n(t, x) + ξ(dt, x), where

ξ(dt, x) =



1 w. pr. n(t, x)β2dt+ kdt+ κ
∑
z 6=0

a(z)n(t, x+ z)dt

j w. pr. n(t, x)βj+1dt j ≥ 2

−1 w. pr. n(t, x)(µ+ κ)dt

0 w. pr. 1−
∞∑
j=2

n(t, x)βjdt− n(t, x)(µ+ κ)dt

−κ
∑
z 6=0

a(z)n(t, x+ z)dt− kdt

(26)

Note that ξ(dt, x) is independent on F6t (the σ-algebra of events before or including

t) and only one event can happen during (t, t+ dt). Thus

a) E[ξ(dt, x)|F6t] =
∞∑
j=1

jn(t, x)βj+1dt+ kdt+ κ
∑
z 6=0

a(z)n(t, x+ z)dt− n(t, x)(µ+

κ)dt.

b) E[ξ2(dt, x)|F6t] =
∞∑
j=1

j2n(t, x)βj+1dt+kdt+κ
∑
z 6=0

a(z)n(t, x+ z)dt+n(t, x)(µ+

κ)dt.

c) E[ξ(dt, x)ξ(dt, y)|F6t] = κa(x− y)n(t, x)dt+ κa(y − x)n(t, y)dt.

A single particle jumps from x to y or from y to x. Other possibilities have

probability O((dt)2) ≈ 0. Here, of course, x 6= y.

d) If x 6= y, y 6= z, and x 6= z, then E[ξ(dt, x)ξ(dt, y)ξ(dt, z)] = 0.

We will not use property d) in this paper but it is crucial for the analysis of

moments of order greater or equal to 3.
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From here on, we concentrate on the first two moments.

5.2 First Moment

Setting m1(t, x) = E[n(t, x)], we have

m1(t+ dt, x) = E[E[n(t+ dt, x)|F6t]] = E[E[n(t, x) + ξ(t, x)|F6t]]

= m1(t, x) +
∞∑
j=1

jm1(t, x)βj+1dt+ kdt− µm1(t, x)dt

+ κ
∑
z 6=0

a(z)[m1(t, x+ z)−m1(t, x)]dt

(27)

Defining the operator La(f(t, x)) =
∑
z 6=0

a(z)[f(t, x + z) − f(t, x)], then, from Eq.

(27) we get the differential equation
∂m1(t, x)

∂t
= (

∞∑
j=1

jβj+1 − µ)m1(t, x) + k + Lam1(t, x)

m1(0, x) = E[n(0, x)]

(28)

Because of spatial homogeneity, Lam1(t, x) = 0, giving
∂m1(t, x)

∂t
= (

∞∑
j=1

jβj+1 − µ)m1(t, x) + k

m1(0, x) = E[n(0, x)]

Let β =
∞∑
j=1

jβj+1. When β = β(x), µ = µ(x), k = k(x) are bounded functions on

the lattice Zd, we will have exactly same equation as equation (28). When we have all

parameters β,k,µ constants, we can solve this equation and get the following result:

m1(t, x) =
k

µ− β
− k

µ− β
e(β−µ)t + E[n(0, x)]e(β−µ)t

.
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Thus if β ≥ µ, m1(t, x)→∞, and if µ > β,

lim
t→∞

m1(t, x) =
k

µ− β

independently on the initial conditions. The next result presents the Lyapunov sta-

bility of the first moment.

Theorem 5. Let coefficients βn(x), n ≥ 2, µ(x), k(x), x ∈ Zd are bounded and µ(x)−

β(x) ≥ δ1 > 0, k(x) ≥ δ2 > 0. Then for the bounded initial condition, there exists

m1(∞, x) = lim
t→∞

m1(t, x)

Let us stress that in the contact model (see [9] and [13]),the limiting steady states

exists only in the critical case when µ(x) = β(x) and this state is unstable with respect

to any sufficiently small in L∞-norm perturbations(including random perturbations)

of the parameters of the model.

5.3 Second Moment

We derive differential equations for the second correlation function m2(t, x, y) for

x = y and x 6= y separately, then combine them and use a Fourier transform to prove

a useful result concerning the covariance.
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I. x = y

m2(t+ dt, x, x) = E[E[(n(t, x) + ξ(dt, x))2|F6t]]

= m2(t, x, x) + 2E[n(t, x)[
∞∑
j=1

jn(t, x)βj+1dt+ kdt+ κ
∑
z 6=0

a(z)n(t, x+ z)dt

− n(t, x)(µ+ κ)dt]] + E[
∞∑
j=1

n(t, x)βj+1dt+ kdt+ κ
∑
z 6=0

a(z)n(t, x+ z)dt+

n(t, x)(µ+ κ)dt]

= m2(t, x, x) +
∞∑
j=1

j2βj+1m1(t, x)dt+ kdt+ κ
∑
z 6=0

a(z)[m1(t, x+ z)

−m1(t, x)]dt+m1(t, x)(µ+ 2κ+ 2k)dt+ 2
∞∑
j=1

jm2(t, x, x)βj+1dt

+ 2κ
∑
z 6=0

a(z)[m2(t, x, x+ z)−m2(t, x, x)]dt− 2m2(t, x, x)µdt

Denote Laxm2(t, x, y) =
∑
z 6=0

a(z)(m2(t, x+ z, y)−m2(t, x, y)).

From this follows the differential equation

∂m2(t, x, x)

∂t
= 2(β − µ)m2(t, x, x) + 2κLaxm2(t, x, x)

+
∞∑
j=1

j2βj+1m1(t, x) + k + Lam1(t, x)

+m1(t, x)(µ+ 2κ+ 2k)

m2(0, x, x) = E[n2(0, x)]

II. x 6= y

Because only one event can happen during dt

P{ξ(dt, x) = 1, ξ(dt, y) = 1} = P{ξ(dt, x) = −1, ξ(dt, y) = −1} = 0,
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while the probability that one particle jumps from y to x is

P{ξ(dt, x) = 1, ξ(dt, y) = −1} = κa(x− y)n(t, y)dt,

and the probability that one particle jumps from x to y is

P{ξ(dt, x) = −1, ξ(dt, y) = 1} = κa(y − x)n(t, x)dt.

Denote Lay =
∑
z 6=0

a(z)(f(t, x, y + z)− f(t, x, y)). Thus

m2(t+ dt, x, y) = E[E[(n(t, x) + ξ(t, x))(n(t, y) + ξ(t, y))|F6t]]

= m2(t, x, y) + (β − µ)m2(t, x, y)dt+ km1(t, y)dt

+ κ
∑
z 6=0

a(z)(m2(t, x+ z, y)−m2(t, x, y))dt+ (β − µ)m2(t, x, y)dt+ km1(t, x)dt

+ κ
∑
z 6=0

a(z)(m2(t, x, y + z)−m2(t, x, y))dt+ κa(x− y)m1(t, y)dt

+ κa(y − x)m1(t, x)dt

= m2(t, x, y) + 2(β − µ)m2(t, x, y)dt+ km1(t, y)dt+ km1(t, x)dt+

κ(Lax + Lay)m2(t, x, y)dt+ κa(x− y)(m1(t, x) + κm1(t, y))dt

The resulting differential equation is

∂m2(t, x, y)

∂t
= κ(Lax + Lay)m2(t, x, y) + 2(β − µ)m2(t, x, y)

+ km1(t, x) + km1(t, y)

+ κa(x− y)[m1(t, x) +m1(t, y)]

(29)

with the initial condition m2(0, x, y) = (En(0, x))2

Due to the fact that for fixed t,n(t, x) is homogeneous in space, we can writem2(t, x, y) =
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m2(t, x− y) = m2(t, u). Thus we can combine two cases and recieve the equation for

the second moment:



∂m2(t, u)

∂t
= 2κLaum2(t, u) + 2(β − µ)m2(t, u)

+δ0(u)Ψ(m1) + 2κa(u)Φ(m1)

m2(0, x, y) = (En(0, x))2(1− δ0(u)) + δ0(u)En2(0, u)

Here x − y = u, Ψ(x) and Φ(x) are known functions and depend linearly on the

first moment m1.

Without loss of generality, to simplify the calculation, assume for each site, in the

beginning, the number of population is k
µ−β , then we can obtain final differential

equation:



∂m2(t, u)

∂t
= 2κLaum2(t, u) + 2(β − µ)m2(t, u)

+2
k2

µ− β
− 2κka(u)

µ− β
+ δ0(u)

k(
∞∑
j=1

j(j − 1)βj+1 + 2µ)

µ− β

m2(0, u) = k2

(µ−β)2

(30)

To solve this equation, we can make a transformation of (30). The solution of

equation (30) is m2(t, u) = m21(t, u) + k2

(µ−β)2
.


∂m21(t, u)

∂t
= 2κLaum21(t, u)− 2κka(u)

µ− β
+ δ0(u)

k(2µ+
∞∑
j=1

j(j − 1)βj+1)

µ− β

m21(0, u) = 0

(31)

For equation (31),we can apply discrete Fourier transform to m21(t, u):
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m̂21(t, θ) =
∑
u∈Zd

m21(t, u)ei(θ,u), θ ∈ [−π, π]d

and use the following lemma:

Lemma 6. Define L̂(ϕ) =
∑
z 6=0

(1 − cos(ϕ, z))a(z). Then L̂f(ϕ) = −f̂(ϕ)L̂(ϕ) =

(â(ϕ)− 1)f̂(ϕ)

Proof.

L̂axf(ϕ) =
∑
x∈Zd

ei(ϕ,x)
∑
z 6=0

a(z)(f(x+ z)− f(x))

=
∑
z 6=0

a(z)[e−i(ϕ,z)
∑
x∈Zd

ei(ϕ,x+z))f(x+ z)−
∑
x∈Zd

ei(ϕ,x)f(x)]

=
∑
z 6=0

a(z)(e−i(ϕ,z) − 1)f̂(ϕ)

= −f̂(ϕ)
∑
z 6=0

(1− cos(ϕ, z))a(z)

= −L̂(ϕ)f̂(ϕ)

And

â(ϕ) =
∑
z∈Zd

a(z)ei(ϕ,z)

=
∑
z∈Zd

a(z)cos(ϕ, z) since a(z) is symmetric

=
∑
z 6=0

a(z)cos(ϕ, z)

Thus L̂f(ϕ) = −f̂(ϕ)L̂(ϕ) = (â(ϕ)− 1)f̂(ϕ).
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After applying Fourier transform at both sides of equation (31), we get
∂m̂21(t, θ)

∂t
= 2κ(â(θ)− 1)m̂21(t, θ)− 2κkâ(θ)

µ− β
+

k(2µ+
∞∑
j=1

j(j − 1)βj+1)

µ− β

m̂21(0, θ) = 0

(32)

The solution of equation (32) is in the following form:

m̂21(t, θ) =

k(2µ+
∞∑
j=1

j(j − 1)βj+1)− 2κâ(θ)

2κ(1− â(θ))(µ− β)
(1− e2κ(â(θ)−1)t)

Then we can find the inverse Fourier transform.

m21(t, u) =
1

(2π)d

∫
T d
e−i(θ,u)m̂21(t, θ)dθ

=
1

(2π)d

∫
T d
f(θ)eâ(θ)tdθ

where T d = [−π, π]d and f(θ) = e−â(θ)t−i(θ,u)m̂21(t, θ).

â(θ) is twice continuously differentiable and has a maximum at the point θ = 0, see

E. Yarovaya [17]. Then using the Laplace method, we get m21(t, u) has the following

asymptotic property:

m21(t, u) = etâ(0)(
2π

t
)d/2

f(0) +O(t−1)√
|detâ′′θθ(0)|

∼ (
2π

t
)d

k(2µ+
∞∑
j=1

j(j − 1)βj+1)

(2κµ− β)
(1− e−2κt) +O(t−1)√

|detâ′′θθ(0)|

as t→∞.

Hence, we have already proved the following theorem:

Theorem 7. Let coefficients βn(x), n ≥ 2, µ(x), k(x), x ∈ Zd are bounded and µ(x)−
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β(x) ≥ δ1 > 0, k(x) ≥ δ2 > 0. Then for the bounded initial condition, there exists

m2(∞, x, y) = lim
t→∞

m2(t, x, y)

Let’s compare our results with the corresponding results for the critical contact

model [3] (where k = 0, µ = β). In the last case, the limiting distribution for the field

n(t, x), t > 0, x ∈ Zd, exists if and only if the underlying random walk with generator

La is transient. In the recurrent case, we have the phenomenon of clusterization. The

limiting correlation function is always slowly decreasing (like the Green kernel of La).

In the presence of immigration, the situation is much better: the limiting correlation

function always exists and we believe that the same is true for all moments.



CHAPTER 6: LOCAL AND NONLOCAL PERTURBATIONS OF THE
HOMOGENEOUS ENVIRONMENT

6.1 Nonlocal Perturbations

Let m1(t, x) = En(t, x), m1(0, x) = 0, V (x) = β(x)− µ(x).

∂m1

∂t
= Lam1 + V (x)m1 + k(x) (33)

Let

β(x) = β0 + εξ(x), |ξ| ≤ 1

µ(x) = µ0 + εη(x), |η| ≤ 1

k(x) = k0 + εζ(x), |ζ| ≤ 1

and ε is a sufficiently small constant. Denote ∆ = µ0 − β0 > 0

Then

0 < k0 − ε ≤ k(x) ≤ k0 + ε

−∆− 2ε ≤ V (x) ≤ −∆ + 2ε

Due to Kac-Feinman Formula,

m1(t, x) = Ex

∫ t

0

k(xs)e
∫ s
0 V (xu)duds

First, m1(t, x) ≤ (k0 + ε)

∫ t

0

e(−∆+2ε)sds ≤ k0 + ε

∆− 2ε
→ k0 + ε

µ0 − β0 − 2ε
.

Second, m1(t, x) ≥ (k0 − ε)
∫ t

0
e(−∆−2ε)sds→ k0 − ε

µ0 − β0 + 2ε
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Thus m1(t, x)→ k
∆

+O(ε) +O(e−γt) as t→∞ uniformly in t. and we proved the

Lyapunov stability of the first moment.

6.2 Local Perturbations

We now consider our process with birth, death, migration, and immigration on a

countable space, specifically the lattice Zd. We have β = β0 + σδ0(x) > 0, the rate

of duplication at x ∈ Zd; µ = µ0 > 0, the rate of death; and k > 0, the rate of

immigration. Here, we add migration of the particles with rate κ > 0 and probability

kernel a(z), z ∈ Zd, z 6= 0, a(z) = a(−z),
∑
z 6=0

a(z) = 1. That is, a particle jumps from

site x to x+ z with probability κa(z)dt.

For n(t, x) the number of particles at x at time t, the forward equation for this

process is given by n(t+ dt, x) = n(t, x) + ξ(dt, x), where

ξ(dt, x) =



1 w. pr. n(t, x)βdt+ kdt+ κ
∑
z 6=0

a(z)n(t, x+ z)dt

−1 w. pr. n(t, x)(µ+ κ)dt

0 w. pr. 1− (β + µ+ κ)n(t, x)dt− κ
∑
z 6=0

a(z)n(t, x+ z)dt− kdt

(34)

Note that ξ(dt, x) is independent on F6t (the σ-algebra of events before or including

t) and

a) E[ξ(dt, x)|F6t] = n(t, x)(β − µ− κ)dt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt.

b) E[ξ2(dt, x)|F6t] = n(t, x)(β + µ+ κ)dt+ kdt+
∑
z 6=0

a(z)n(t, x+ z)dt.

c) E[ξ(dt, x)ξ(dt, y)|F6t] = κa(x− y)n(t, x)dt+ κa(y − x)n(t, y)dt.

A single particle jumps from x to y or from y to x. Other possibilities have
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probability O((dt)2) ≈ 0. Here, of course, x 6= y.

d) If x 6= y, y 6= z, and x 6= z, then E[ξ(dt, x)ξ(dt, y)ξ(dt, z)] = 0.

We will not use property d) in this paper but it is crucial for the analysis of

moments of order greater or equal to 3.

6.2.1 First Moment

Theorem 8. There is a critical value of σ, denoted as σcr. If σ is large enough (σ > σcr),

then Hψ = λ0ψ has positive eigenvalue λ0(σ) with positive eigenfunction ψ(x) and

∂m1

∂t
= κLam1 + (β − µ)m1 + σδ0(x)m1 + k (35)

has solution m1(t, x) ∼ k

µ− β
+ C0ψ(x)eλ0t

Proof. Denote m̃1 =
k

µ− β
+m1, then

∂m̃1

∂t
= κLam̃1 + (β − µ)m̃1 + σδ0(x)m̃1 +

σkδ0(x)

µ− β
(36)

Denote κLau+ (β − µ)u+ σδ0(x)u = Hu, H is the Schrödinger operator.

Applying Fourier transform to Hψ = λ0ψ, and denote ∆ = µ− β

−κ(1− â(θ))ψ̂(θ)−∆ψ̂(θ) + σψ(0) = λ0ψ̂(θ)

σψ(0) = (λ0 + κ(1− â(θ)) + ∆)ψ̂

ψ̂(θ) =
σψ(0)

λ0 + ∆ + κ(1− â(θ))
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ψ(x) =
1

(2π)d

∫
T d

σψ(0)

λ0 + ∆ + κ(1− â(θ))
e−iθxdθ

Thus

ψ(0) =
1

(2π)d

∫
T d

σψ(0)

λ0 + ∆ + κ(1− â(θ))
dθ

1

σ
=

1

(2π)d

∫
T d

dθ

λ0 + ∆ + κ(1− â(θ))
= I(λ0) (37)

This is the equation for λ0. Since 1− â(θ) > 0, ∆ > 0, thus

I(0) =
1

(2π)d

∫
T d

dθ

∆ + κ(1− â(θ))

which is positive and finite in any dimensions , and I(λ0) is a decreasing function

of λ0, thus positive eigenvalue λ0 exists if
1

σ
< I(0), that is σ > σcr, where σcr=

1

I(0)

and at most one positive eigenvalue exists.

Then we can express m̃1 =
∞∑
i=1

Ci(t)ψi(x), σδ0(x)k
µ−β =

∞∑
i=1

aiψ(x), when we substitute

this into equation (36), we have

∑
C ′i(t)ψi(x) =

∑
λiCi(t)ψ(x) +

∑
aiψi(x) (38)

Thus C ′i = λiCi + ai, which leads to Ci =
eλit+Dλ0 − a0

λ0

. Where D is an arbitrary

constant.

Thus m1(t, x) has the solution m1(t, x) ∼ k
µ−β + C0ψ0(x)eλ0t
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Theorem 9. If 0 < σ < σcr, for the first moment,
∂m1(t, x)

∂t
= Lam1(t, x) + (β − µ)m1 + σδ0m1 + k

m1(0, x) = 0

(39)

Where µ − β ≥ A1 > 0, 0 < k ≤ A2. Then the solution of Eq. (39) is bounded and

has a limit if t→∞

Proof. This has the solution according to Duhamel principle:

m1(t, x) =

∫ t

0

ds
∑
y∈Zd

k(s, y)q(t− s, x, y)

where q(t− s, x, y) is the solution for

∂q

∂t
= Laq + (β − µ+ σδ0(x))q

q(0, x, y) = δ(x− y) =


1 y = x

0 y 6= x

By the Feynman-Kac formula,

q(s, x, y) = Ex[e
∫ s
0 (β(xu)−µ(xu)+σδ0(xu))duδ(xs − y)]

= E[e
∫ s
0 (β(xu)−µ(xu)du+σδ0(xu)δ(xs − y))|x0 = x]

= E[E[e
∫ s
0 (β(xu)−µ(xu)+σδ0(xu))duδ(xs − y))|x0 = x, xs = y]|x0 = x]

= P (xs = y|x0 = x)Ex→y[e
∫ s
0 (β(xu)−µ(xu)+σδ0(xu))du]

= p(s, x, y)Ex→y[e
∫ s
0 (β(xu)−µ(xu)+σδ0(xu))du]

where

p(t, x, y) =
1

(2π)d

∫
T d
e−tL̂a(v)−i(v,x−y)dv.

Let V (x) = β − µ+ σδ0(x) Finally
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lim
t→∞

m1(t, x) = lim
t→∞

∫ t

0

ds
∑
y∈Zd

k(s, y)Ex→y[e
∫ t−s
0 V (xu)du]p(t− s, x, y)

and letting w = t− s

≤ lim
t→∞

∫ t

0

dw‖k‖∞Ex→y[e
∫ w
0 V (xu)du]

≤ ‖k‖∞
∫ ∞

0

e(−A1+σcr)wdw since β − µ+ σδ0(x) ≤ −A1 + σcr < 0

=
A2

A1 − σcr
.

Thus, when µ − β > 0, lim
t→∞

m1(t, x) is bounded by 0 and
A2

A1 − σcr
, so this limit

exists and is finite.

6.2.2 Second Moment

We derive differential equations for the second correlation function m2(t, x, y) =

E[n(t, x)n(t, y)] for x = y and x 6= y separately, then combine them and use a Fourier

transform to prove a useful result concerning the covariance.

I. x = y

m2(t+ dt, x, x) = E[E[(n(t, x) + ξ(dt, x))2|F6t]]

= m2(t, x, x) + 2E[n(t, x)[n(t, x)(β − µ− κ)dt+ kdt

+ κ
∑
z 6=0

a(z)n(t, x+ z)]dt] + E[n(t, x)(β + µ+ κ)dt+ kdt

+ κ
∑
z 6=0

a(z)n(t, x+ z)dt]

Denote Laxm2(t, x, y) =
∑
z 6=0

a(z)(m2(t, x+ z, y)−m2(t, x, y)).
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From this follows the differential equation

∂m2(t, x, x)

∂t
= 2(β(x)− µ(x))m2(t, x, x) + 2κLaxm2(t, x, x) + κLam1(t, x)

+(β(x) + µ(x) + 2κ+ 2k)m1(t, x) + k

m2(0, x, x) = 0

II. x 6= y

Because only one event can happen during dt

P{ξ(dt, x) = 1, ξ(dt, y) = 1} = P{ξ(dt, x) = −1, ξ(dt, y) = −1} = 0,

while the probability that one particle jumps from y to x is

P{ξ(dt, x) = 1, ξ(dt, y) = −1} = κa(x− y)n(t, y)dt,

and the probability that one particle jumps from x to y is

P{ξ(dt, x) = −1, ξ(dt, y) = 1} = κa(y − x)n(t, x)dt.
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Then, similar to the above

m2(t+ dt, x, y) = E[E[(n(t, x) + ξ(t, x))(n(t, y) + ξ(t, y))|F6t]]

= m2(t, x, y) + (β(x)− µ(x))m2(t, x, y)dt+ k(x)m1(t, y)dt+

κ
∑
z 6=0

a(z)(m2(t, x+ z, y)−m2(t, x, y))dt+ (β(y)− µ(y))m2(t, x, y)dt

+ k(y)m1(t, x)dt+ κ
∑
z 6=0

a(z)(m2(t, x, y + z)−m2(t, x, y))dt

+ κa(x− y)m1(t, y)dt+ κa(y − x)m1(t, x)dt

= m2(t, x, y) + (β(x)− µ(x) + β(y)− µ(y))m2(t, x, y)dt

+ k(x)m1(t, y)dt+ k(y)m1(t, x)dt+ κ(Lax + Lay)m2(t, x, y)dt

+ κa(x− y)(m1(t, x) + κm1(t, y))dt

The resulting differential equation is

∂m2(t, x, y)

∂t
= κ(Lax + Lay)m2(t, x, y) + (β(x)− µ(x) + β(y)− µ(y))m2(t, x, y)

+ k(y)m1(t, x) + k(x)m1(t, y) + κa(x− y)[m1(t, x) +m1(t, y)]

(40)

Consider Hx and Hy, two operators applied to x and y respectively.

Hxm2(t, x, y) = κLaxm2(t, x, y) + (β(x)− µ(x))m2(t, x, y), and

Hym2(t, x, y) = κLaym2(t, x, y) + (β(y)− µ(y))m2(t, x, y).

From the theorem we proved in the first moment case, we know if σ > σcr,

then Hx and Hy both have at most one positive eigenvalue λ0(σ) with positive

eigenfunction ψ(x) and ψ(y) respectively. (Hx +Hy)ψi(x)ψj(y) = λpψi(x)ψj(y)

and λp = λi + λj,where λi and λj are eigenvalues of Hx and Hy respectively
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and m2(t, x, y) =
∞∑
p=0

eλptψi(x)ψj(y). As t→∞, m2(t, x, y) ∼ e2λ0ψ0(x)ψ0(y) +

e(λ0+λ1)tψ0(x)ψ1(y)+e(λ0+λ1)tψ1(x)∗ψ0(y), thus m2(t, x, y) ∼ e2λ0t[ψ0(x)ψ0(y)+

e(λ1−λ0)t[ψ0(x)ψ1(y) + ψ1(x)ψ0(y)]] = e2λ0t(ψ0(x)ψ0(y) + o(1))

This result implies that when the perturbation at site x = 0 is strong enough

(σ > σcr), the second moment will diverge as t→∞.



CHAPTER 7: CONCLUSION

This paper is devoted to the study of the branching processes in the presence of

the immigration in Zd space. Probably, the first publication in this area goes to

B. Sevastyanov [15]. But his goal was mainly the proof of the limit theorems, than

the analysis of the transition to the steady state. In chapter 2, we posed Spatial

Galton-Watson Process with Immigration Model (no migration and no random en-

vironment). We calculated asymptotically all moments recursively by means of the

Laplace transform and proved under some conditions the convergence to the station-

ary limit dynamics in time. That is, when death rate µ is more than birth rate β, and

immigration rate k > 0, the expectation of the number of population will converge

to a finite limit, which can be regulated by controlling the immigration rate k, and

this population size will be stable. For this limiting dynamics, we proved again under

the technical conditions, the central limit theorem for the total population n(t). In

the functional terms, it gives the transition of the process n(t + τ) to the limiting

Ornstein-Uhlenbeck process n∗(t), t→∞ after appropriate normalization.

In chapter 3, we posed Branching Process with Migration and Immigration for Bi-

nary Splitting model. We gave the analysis of the first two moments for the number

of population. We showed the limiting correlation function always exists.
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In Chapter 4, there are four models involve a random environment. Two are

Galton-Watson models with immigration and lack a spatial component. In the first,

the parameters are random functions of the population size. We proved the process

n(t, ωe) is ergodic Pe − a.s. if and only if < ln(β(·)) > − < ln(µ(·)) >< 0 when the

random variables β(x, ω), µ(x, ω), k(x, ω) are bounded from above and below by the

positive constants. In the second model: Galton-Watson process with immigration

in random non-stationary(time dependent) environment model, assume that k(t) and

∆ = (µ − β)(t) are stationary random processes on (Ωm, Pm) and that k(t) is inde-

pendent of ∆. We proved for large time t, the process of expectation of population

size is exponentially close to a stationary process. In the third model:Galton-Watson

process with immigration in random environment given by Markov chain x(t), we give

sufficient conditions for the ergodicity of the process (n(t), x(t)). In the forth part,

we pose models with immigration and migration in a random environment. When

death rate µ equals birth rate β, the expected population at each site x ∈ Zd will

go to infinity as t→∞. When β(t, x) 6= µ(t, x) and only immigration, k(t, x) is not

stationary in time. µ(x) − β(x) > δ1 > 0. Then the limit of first moment of the

population size as t→∞ exists.

In Chapter 5, we extended the model in Chapter 3 to more general case where we

have multiple offspring. We calculated the first moment and present the Lyapunov

stability of the first moment. We proved under the bounded initial condition, the

limit of second moment exists as well.
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In Chapter 6, we discussed the local and nonlocal perturbations of the homoge-

neous environment.we proved the Lyapunov stability of the first moment for nonlocal

perturbations. If we have higher death rate than birth rate and there exists local

perturbation at a site, there exists a critical value and we calculated this critical

value σcr, the first two correlation functions have finite limit when the perturbation

at this site is small enough (σ < σcr), otherwise the first two correlation functions will

diverge as t→∞. That means, if the perturbation is small enough, the expectation

of population size is finite as time t goes to infinity.
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