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ABSTRACT 
 
 

SAM JOTHAM SUTHARSON. Circumferential stress analysis in steam header 
(Under the direction of DR. ALIREZA TABARRAEI) 

 
 

Thick walled cylindrical steam headers are subject to varying amounts of circumferential 

stresses in their normal operating cycles... Analyzing the variations in the amount and the 

location of hoop stresses on different samples with varying material parameters would be 

an expensive option if done experimentally, but a computational analysis results yields a 

more economical analysis of the problem presented, provided the boundary conditions 

prescribed immaculately replicate the operational conditions of the header 

computationally. 

This thesis deals with the computational finite element simulation of steam header 

sections with varying physical parameters and their effect on the circumferential stresses 

developed within the header when simulated with a nominal operating cycle using 

ABAQUS. The material chosen for the header is grade 91 steel and its physical properties 

were used for the simulation. Thirty steam header models of varying side tube penetration 

angles and varying cylinder wall thickness were used for the simulation to bring about a 

relationship between these variations and the circumferential stresses developed within the 

header. An additional three models were simulated to confirm the validity of the results.  

A careful observation from the results led to the identification of the primary 

physical factors that had the most significant effect on the circumferential stresses 

developed and this method is prescribed for similar design problems. 
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CHAPTER 1: INTRODUCTION 
 
 

Almost 75% of the world’s electricity is still being generated by steam turbines 

moving rotary generators. Any system involving steam as a prime mover makes use of a 

steam distribution header to ensure proper distribution of steam from boiler to the 

generator. With such a large scale of application, steam header design is a vital part of any 

steam distribution system. Improper designs can lead to catastrophic failures and the high 

pressures and temperature at which steam is used in these plants have resulted in loss of 

life and property. Due to these factors, it is of great importance to understand the behavior 

of steam headers and the various stresses developed within them during a normal operating 

cycle.  

  Steam headers are universally cylindrical and are subject to cylinder stress 

when operated under normal operating conditions. The study of the cylinder stress is 

crucial during the design of such vessels as they can lead to part failure by rupture if left 

unchecked. The pressure difference experienced during the operation results in 

circumferential stresses or hoop stresses in addition to axial and radial stresses. The 

material chosen was the analysis is grade 91 steel (SA335-P91).  

 
Table 1.1:Chemical composition of grade 91 steel - SA335-P91 (%) [17] 

 

 

C Mn P S Si Cr Mo V N Ni Al Nb 

0.08-

0.12 

0.3-

0.6 

.02 .01 0.2-

0.5 

8.0-

9.5 

0.85-

1.05 

0.18-

0.25 

0.03-

0.07 

0.4 0.04 0.06-

0.10 
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P 91 steel can maintain its physical strength even at the higher end of the operating 

temperature range and also increased oxidation resistance. The percentage of chromium 

present in P 91 is close to 9 % of the composition. This enables the alloy to maintain its 

strength at higher temperatures and gives it its high temperature oxidation resistance 

properties. The manufacturing process of this particular alloy also plays a vital role in 

producing the microstructures responsible for high creep strength properties. The alloy is 

formed by normalizing at 1050 DEG C followed by air-cooling down to 200 DEG c. This 

is then tempered by heating to 760 DEG C. The alloy’s microstructure formation depends 

primarily upon the heating and cooling rates maintained during formation. Failing to adhere 

to the recommended rates may result in poor mechanical properties and is a common cause 

of failure. Due to this reason, it is important that the alloy be formed under strict supervision 

with emphasis on the heating and cooling rates that enable the formation of the required 

microstructure [1]. Since the welding process can negatively impact the microstructure, it 

is required that the alloy be heat treated to reverse the thermal effects of welding on the 

material so that the microstructure returns to its required state after the weld is done. This 

step is crucial in maintaining the strength and integrity of P 91 steel. This makes it an ideal 

candidate for high temperature application, especially in the power generation industry 

where it is been in extensive use for the last decade. 

Steam distribution header are subject to temperatures in the range of 20-600 degree 

Celsius and internal pressure of around 30 MPa during normal operations. The material 

they are made out of needs to be able to withstand such high temperatures, pressures and 

must not fail from the extreme fluctuations in these operating conditions. Grade 91 steel is 

commonly used as a steam distribution header material due to its robust nature and its 
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ability to withstand cyclic loading involving such high temperature and pressure ranges 

over a period of time [1]. Fatigue and creep properties play a major role in determining the 

materials of steam header.  

 

 

Figure 1.1: Hoop stress failure [2] 
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CHAPTER 2:   MODELLING 
 
 

One quadrant of a section of the steam header arrangement with a single side tube 

penetration was modelled and simulated in ABAQUS. Thirty models of the same quadrant 

with varying side tube angles and varying wall thickness were modelled in ABAQUS.  The 

quadrants were modelled and then the respective symmetry boundary conditions were 

applied to simulate the entire structure. The models were created and executed using 

python scripts. The fig 2.1 and 2.2 represent the full header section and a cutaway. 

Figure 2.1: The complete section of the header 

 

Python scripting facilitated the creation and simulation of a large number of models 

within a short time frame as the models simulated similar in general profile. The variations 

in the side tube angles and the wall thickness were scripted into the base python script and 

submitted for analysis. The entire model was created and treated as a single section and the 
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material properties of AS335 P91 Steel was prescribed. The material properties were 

prescribed as temperature dependent variables. 

 

Figure 2.2: Steam header model cut-away  

 

The side tube penetration angle is the angle between the vertical YZ plane of 

symmetry of the model and the side tube penetration. Side tube penetration angles from 

the steam header were varied from 20 degrees to the vertical right up to 30 degrees through 

increments of 2.5 degrees. The other variable physical parameter was the inner and outer 

diameter of the main header section. The outer diameter was varied from 8 inches to 10 

inches through 1-inch increments and the inner diameter was varied from 5 inches to 8 

inches through 1-inch increments. The main section that was modelled has one side tube 

penetration with and one quadrant of the entire section was designed and analyzed. 



6 
 

Figure 2.3: Radial dimensions of the model 
 

Figure 2.4: Angular dimensions of the side tube  
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Figure 2.5: Length of the header segment  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: General specifications of the model 
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The fig 2.3 shows the basic dimensions used to model the quadrant that was used 

for analysis. The second fig 2.4 shows the side tube angle. This was the primary variable 

that was changed and the stress behavior was analyzed accordingly.  

Modelling and analyzing the entire model over 30 times would be extremely 

expensive in terms of computational resources and so the symmetry boundary condition 

available in ABAQUS was used to cut down the size of the analysis domain by a factor of 

two. The boundary conditions used were verified by running the simulations of the models 

with only the internal pressure loads. These results were then compared with the cylinder 

stresses obtained in a thick walled vessel using the cylinder stress equations. The results 

from the simulation differ from the results from the equation by a margin of 1 to 2 percent. 

This margin of error can be attributed to the presence of the side tube penetrations, which 

deviate the results from the ones obtained from the equation as the equation is meant for a 

perfectly closed thick walled cylindrical pressure vessel.  

2.1 Nomenclature 

Throughout the length of this thesis, due to the results of 30 models being discussed 

in detail, the model names follow the nomenclature pattern of A_B_C where A is the outer 

diameter in inches, B is the inner diameter in inches and C is the angle of the side tube 

penetration of the model.  For example, a model with the title 10_8_20, refers to a model 

with an outer diameter of 10 inches, inner diameter of 8 inches and the side tube penetration 

angle of 20 degrees. Fig. 2.7 and Fig 2.8 show the variation of the side tube angle. 
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a)                                                              b)                                                             c)                                                        
Figure 2.7: Models with varying side tube angles. (a) side tube angle 20 degrees, (b) side 
tube angle 22.5 degrees, (c) side tube angle 25 degrees. 
 

a)                                                                 b) 

 
Figure 2.8: Models with varying side tube angles. (a) side tube angle 27.5 degrees, (b) side 
tube angle 30 degrees. 
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CHAPTER 3: SETTING UP THE SIMULATION 
 
 

3.1 Material Properties and Operating Cycle 

The material properties of grade 91 steel were used for the analysis. ABAQUS by 

default does not have any units and lets the user define the consistency if units when 

modelling. These units were used for the material model. All the material properties used 

were specified as time dependent material properties. These properties were converted into 

consistent units so that the ABAQUS results would be coherent. 

 
Table 3.1: Material Properties of grade 91 steel [18] 

Temperature, 

 

 

[𝐶𝐶] 

Coefficient of 

Thermal 

Expansion 

[/𝐶𝐶] 

Thermal 

Conductivity, 

 

[𝑊𝑊/𝑚𝑚 /𝐶𝐶] 

Thermal 

Diffusivity, 

 

[𝑚𝑚2/𝑠𝑠] 

Elasticity 

Modulus, 

 

[𝑀𝑀𝑀𝑀𝑀𝑀] 

20  22.3 6.61 × 10−6 213000 

100 1.09 × 10−5 24.4 6.74 × 10−6 208000 

200 1.13 × 10−5 26.3 6.71 × 10−6 205000 

300 1.17 × 10−5 27.4 6.39 × 10−6 195000 

400 1.20 × 10−5 27.9 5.87 × 10−6 187000 

500 1.23 × 10−5 27.9 5.22 × 10−6 179000 

550 1.25 × 10−5 27.8 4.85 × 10−6 174000 

600 1.27 × 10−5 27.6 4.42 × 10−6 168000 
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The operating cycle used must be as close as possible to the normal operating cycle 

of a steam header. One cycle of the operating load is prescribed in ABAQUS. The primary 

load is the internal pressure load and the end load due to the internal pressure acting on the 

end caps of the closed steam header. The temperature condition was prescribed through the 

surface film coefficient property in ABAQUS. The surface film coefficient was prescribed 

as a time dependent amplitude with the sink temperature applied as the temperature load. 

A predefined field of 20 degree Celsius was applied throughout the system as the operating 

cycle used is taken as the first cycle. 

 
Table 3.2: Operating cycle used for the simulation [18] 

 

 

 

 

Time, 

[𝑚𝑚𝑚𝑚𝑚𝑚] 

Pressure 

[𝑀𝑀𝑀𝑀𝑀𝑀] 

Temperature, 

[𝐶𝐶] 

Film Coefficient, 

[𝑊𝑊/𝑚𝑚2/𝐶𝐶] 

0 0 20 0 

10 7.5 400 500 

30 7.5 500 500 

40 14 600 1000 

90 14 600 1000 

95 7.5 500 500 

417 0 20 500 

500 0 20 0 
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Figure 3.1: Operating cycle vs time period [18] 

 

The three primary loads were input as amplitude loads as they were time dependent. 

The internal pressure load was input as a direct amplitude load whereas the temperature 

load was implemented as the sink temperature for the film coefficient condition. The end 

load factor was calculated and was entered as a direct load. The end load factor was 

multiplied with the internal pressure load amplitude and then applied. 
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Figure 3.2: Set creation and boundary condition 

Figure 3.3: Set creation for symmetry along X-axis boundary condition 
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3.2 Set Creation and Boundary Conditions 

The fig 3.2 to fig 3.8 show the sets corresponding to the boundary condition used. 

These sets are used for easy application of the loads and the boundary conditions. To 

simulate the model as accurate as possible, the necessary boundary conditions needed to 

perfectly recreate the working conditions of the header. The boundary conditions were 

verified using pressure loads and compared to the results obtained using the same pressure  

values used in this operating cycle. This is discussed in CHAPTER  The model to be 

simulated was just a section of the complete model and hence proper boundary conditions 

had to be prescribed to simulate the symmetry and movements of the model. Symmetry 

can be prescribed in ABAQUS using the necessary boundary conditions. The main header 

section’s symmetry along the Z axis is modeled by applying a boundary condition on the 

face containing the side tube penetration cross section and parallel to the XY plane. This 

boundary condition constraints the movement along the Z axis whereas it is free to do so 

in the other two axes. Similarly the symmetry along the X axis is modeled by applying a 

boundary condition on the cross sectional face lying on the YZ plane. The boundary 

condition is set to constraint of movement along X axis with free movement along the other 

two axes. A separate co-ordinate system is prescribed for the side tube to apply symmetry 

condition of the side tube. The bottom edge is used to prescribe the local coordinate system 

with two points on the bottom edge of the tube selected as lying along the local X axis. 

With this as the reference, the coordinate system is constructed and the side tube end is 

constrained along the local Y axis and free to move along the other two axis to model 

symmetry of the side tube. The symmetry of the other half of the header section is 

prescribed by an equation constraint. The constraint is applied to the set of nodes with a 
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single node taken as their reference. The side tube also subject to a boundary condition 

where it is in symmetry condition. A local coordinate system is drawn for the side tube so 

that its boundary conditions are prescribed.  

Figure 3.4: Set creation for symmetry of side tube along local Y-axis boundary condition 

Figure 3.5: Constraint nodes set creation for constraint by equation boundary condition 
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Figure 3.6: Reference node set creation for constraint by equation boundary condition 

  
Figure 3.7: Set creation for predefined field to apply the ambient room temperature 
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Figure 3.8: End load set creation for end load application 

 
Figure 3.9: Surface load set creation for internal pressure and thermal load 
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Two surface sets are created for the application of the main load and the end load. 

The fig 3.8 and fig 3.9 show the surface sets used for the main load and end load. The main 

load was the internal pressure load acting from within the header tube and since the header 

is closed on both ends, an end load is applied to the cylinder wall. These two loads are the 

primary loads and are entered as a time dependent amplitude. The temperature load is also 

prescribed as a time varying amplitude, but it is specified as the sink temperature for the 

film coefficient condition. The time dependent film coefficient is also input as an 

amplitude, with the acting surface being the main surface set. 

Figure 3.10: Final model with all loads and constraints  
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Figure 3.11 Partitioning of the material for a denser mesh 

 

3.3  Partitioning 

The initial model consisted of some complex geometrical features that could not be 

meshed using the default ABAQUS meshing techniques. Implementing a bottom up mesh 

was also not a viable solution since all 30 models had different profiles, bottom up meshing 

using python scripting would be considered time consuming and would defeat the purpose 

of scripting in the first place. To overcome this problem, partitioning was considered as a 

suitable alternative. The entire model was partitioned into smaller regions using datum 

planes at different angles. The angles were prescribed based on the side tube penetration 

angles. This was achieved by altering the scripts to include datum planes based on the side 
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tube angles. This method was much less time consuming and when it came to meshing it 

was much less complex than the bottom up method.  

3.4 Meshing 

Meshing was the most important part of the model prior to simulation. It was 

expected that the junction on the header segment where the side tube branched out would 

be the location of maximum hoop stresses by observing simulations of similar sections. 

This meant that the region surrounding the junction required denser meshing with a higher 

node count to produce results that were as accurate as possible [9]. The entire model could 

not be meshed with the same density as that would result in a computationally expensive 

model and that does not fall in line with the goal of this thesis. This was overcome by  

 
Figure 3.11: Fine and coarse meshes due to partitioning 
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making use of the partitions created earlier. The script was modified to create an additional 

partition near the junction area so that it could be meshed at a higher density compared to 

other areas of the segment. All the 30 models were meshed using the same technique by 

making appropriate changes to the scripts. On average, all models have an element count 

of around 15,000 to 16,000 elements in total with the junction of the side tube and main 

header bearing the highest density of elements. 

3.5 Mesh Verification 

The mesh verification tool is used to verify the quality of the mesh. Since the model 

used was meshed using the default options in ABAQUS, verifying the integrity and 

accuracy of the mesh is very important as a poor quality mesh can result in inaccurate 

results. The model used in this thesis contains some complex geometries which may result 

in poor quality meshes when meshed using the default ABAQUS meshing techniques. The 

shortcomings of this method was offset by partitioning the model. The different regions of 

partitions were assigned meshes of different sizes to accurately capture the stress evolution 

in areas where high stresses are expected. All the above mentioned actions raise the 

probability of errors being present in the meshed model, thus it is crucial that the mesh 

verification tool is used to identify the quality of the mesh.  

From the mesh verification tool results, it is clear that the meshed models fall well within 

the tolerance limit specified and will produce results that are accurate in capturing the stress 

and temperature evolution. 

3.6 Element Type 

A general purpose 20 noded triquadratic displacement, trilinear temperature 

reduced integration element was used for this analysis namely C3D20RT. This particular 
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element was chosen for the coupled analysis. It is a general purpose element with 20 nodes 

that effectively captures the stress distribution in a coupled temperature-displacement 

analysis. Due to the presence of the integration points at about one quarter of the typical 

element size away from the element boundary, the integration point values are extrapolated 

trilinearly and thus the mesh needs to be much finer where the high stress concentrations 

are expected. This is one among the primary reasons why the modeled was partitioned 

earlier in such a way that the high stress concentration areas have a finer mesh compared 

to the other areas. Even though it is a reduced integration element with lesser integration 

points, this element does not exhibit the hour-glassing behavior. The analysis is entirely  

elastic and thus this particular element type captures the stress values to a higher degree of 

accuracy compared to other elements.  

Figure 3.12: 20 node element [19] 
 

ABAQUS recommended this element as a default for the model that was used for 

this simulation. This element is not recommended for plastic problems where the value of 

poisons ratio is significantly higher. 
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3.7 Step 

This analysis is a coupled temperature-displacement analysis. It is a highly 

nonlinear analysis where both the thermal and mechanical conditions are solved 

simultaneously. The nature of the operating cycle of a steam distribution header warrants 

this procedure type. This analysis includes the mechanical effects of the temperature 

conditions and also the temperature effects of the mechanical conditions and 

simultaneously solves for the result. The nominal cycle that was used in the models consist 

of the steam temperature cycle which acts as the temperature load and the internal pressure 

acting on the system due to the high pressure steam as the mechanical load, both of which 

need to be solved simultaneously to arrive at the required result. The time period of the 

cycle prescribed is 500 minutes. ABAQUS by default does not have any units and relies 

upon the user to prescribe the units for the analysis. For this simulation, the unit chosen for 

time is seconds. All the material properties were converted to suit this unit. The loads that 

were applied as amplitudes were also converted for seconds and the appropriate values for 

the appropriate time in seconds was used in the amplitude curve. The step duration was 

chosen as 30000 seconds for the entire cycle of 500 minutes. The response parameter is set 

as transient in the step creation module as the entire cycle and the analysis is primarily time 

dependent we need the stress distribution and temperature difference results that vary over 

time.  

The time increment was set at a maximum of 2000 increments with the maximum 

increment size set at 1000. The minimum increment was capped at 1E-005 with the initial 

increment of 1. These particular numbers were chosen to reduce the size of the finals result 

file and also by some trial and error to find the sweet spot at which the solver converges, 
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resulting in a results of higher degree of accuracy while keeping computational time, costs 

and space at a minimum. This was a critical step in the analysis as 30 models needed to 

simulated and all their results needed to be processed. The load variation with time option 

was set at instantaneous to simulate the operating cycle with a higher degree of accuracy. 

The frequency of output to be recorded was set to be at every 20 increment to further save 

storage space and reduce processing times. It was important that this analysis was done in 

the most efficient way in terms of computational cost and time as the number of simulations 

involved meant that it would be counterproductive if the outputs were recorded for every 

iteration and provided the same degree of accuracy offered by recording the output for 

every 20 iterations. 
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CHAPTER 4: VERIFICATION 

 
 The prescribed boundary conditions need to be verified before the model is 

submitted for final simulation. The verification can be done by simulating the models by 

applying only the internal pressure load and verifying the results with the results obtained 

using the equations for hoop, axial and longitudinal stresses in thick walled cylinders. The 

results of the comparison yielded almost similar results with negligible error margins. It is 

suspected that the margin of error is primarily due to the presence of the side tube 

penetrations as the equations used do not account for them. To further mitigate the effect 

of the side tubes, the location chosen for the values to be observed was at farthest possible 

from the side tube junction. This verification concludes that the initial boundary conditions 

applied successfully replicate the symmetry of the model. This procedure reduced the 

computational power required to run the simulation by a factor of 4 as only a single 

quadrant of the model is used. This is one of the key advantages of Computational FEA.  

4.1 Axial Stress 

 The stress in axial direction at a point in the tube or cylinder wall can be expressed 

by the following equation 

  𝜎𝜎𝑎𝑎 =(𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖
2-𝑝𝑝𝑜𝑜𝑟𝑟𝑜𝑜2) 

(𝑟𝑟𝑜𝑜2−𝑟𝑟𝑖𝑖
2)

               (4.1) 

Where 𝜎𝜎𝑎𝑎= stress in axial direction (MPa, psi), 𝑀𝑀𝑖𝑖= internal pressure in the tube or 

cylinder (MPa, psi), 𝑀𝑀𝑜𝑜 = external pressure in the tube or cylinder (MPa, psi), 𝑟𝑟𝑖𝑖 = internal 

radius of tube or cylinder (mm, in) and 𝑟𝑟𝑜𝑜 = external radius of tube or cylinder (mm, in) 
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4.2 Circumferential Stress 

 The stress in circumferential direction - hoop stress - at a point in the tube or 

cylinder wall is given by the following equation 

𝜎𝜎𝑐𝑐 = �(𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖
2-𝑝𝑝𝑜𝑜𝑟𝑟𝑜𝑜2)

(𝑟𝑟𝑜𝑜2−𝑟𝑟𝑖𝑖
2)

� – �𝑟𝑟𝑜𝑜
2𝑟𝑟𝑖𝑖

2(𝑝𝑝𝑜𝑜−𝑝𝑝𝑖𝑖)
(𝑟𝑟2(𝑟𝑟𝑜𝑜2−𝑟𝑟𝑖𝑖

2))
�    (4.2) 

Where 𝜎𝜎𝑐𝑐= stress in circumferential direction (MPa, psi), 𝑟𝑟 = radius to point in tube or 

cylinder wall (mm, in) (𝑟𝑟𝑖𝑖 < 𝑟𝑟 < 𝑟𝑟𝑜𝑜) and maximum stress when 𝑟𝑟 = 𝑟𝑟𝑖𝑖 (inside pipe or 

cylinder) 

4.3 Radial Stress 

 The stress in radial direction at a point in the tube or cylinder wall is given by the 

following equation 

𝜎𝜎𝑟𝑟= �(𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖
2-𝑝𝑝𝑜𝑜𝑟𝑟𝑜𝑜2)

(𝑟𝑟𝑜𝑜2−𝑟𝑟𝑖𝑖
2)

� + �𝑟𝑟𝑜𝑜
2𝑟𝑟𝑖𝑖

2(𝑝𝑝𝑜𝑜−𝑝𝑝𝑖𝑖)
(𝑟𝑟2(𝑟𝑟𝑜𝑜2−𝑟𝑟𝑖𝑖

2))
�    (4.3) 

Where maximum stress when   𝑟𝑟  = 𝑟𝑟𝑜𝑜 (outside pipe or cylinder) 

4.4 Verification 

Using the above equations, the following stresses were calculated for one model 

with the following dimensions 𝑀𝑀𝑖𝑖 = 14 MPa, 𝑟𝑟𝑖𝑖 = 101.6 mm (4 in), 𝑟𝑟𝑜𝑜 = 127 mm (5 in), 𝑟𝑟 = 

101.6 mm (On the inner wall of the header). 

The corresponding stresses were calculated and their values are, 

𝜎𝜎𝑎𝑎= 24.9 MPa 

𝜎𝜎𝑐𝑐 = 63.8 MPa 

𝜎𝜎𝑟𝑟 = -14 MPa 
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To verify this, a sample simulation is run on the same model with the internal pressure load 

set as the only load acting on the model. The results of that simulation are represented in 

the following figures. 

.Figure 4.1 : Verification stresses from the simulation 

Figure 4.2: Maximum axial stress from simulation 



28 
 

Figure 4.3: Maximum circumferential stress from the simulation 

Figure 4.4: Maximum radial stress from the equation 
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Figure 4.5: Location of the node chosen for verification 
 

 The node chosen as shown in fig 4.5 was selected as it was the node farthest from 

the side tube. The presence of the side tube would produce some distortion in the results as 

the verification equations are for a closed thick walled cylinder. The minor deviations from 

the value calculated using the equations could also be attributed to this. 

 The same verification process was done for each model from the set of six model 

groups to make sure that all the boundary conditions prescribed to the models were in line 

with the operating conditions. All the models displayed similar levels of accuracy, thereby 

verifying that the boundary conditions used are the required boundary conditions. 
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CHAPTER 5: THEORY 
 
 

The fully coupled thermal displacement analysis is chosen for simulations in which 

the temperature affects the stress concentration and the stress concentration in turn affects 

the temperature field. To effectively model this simulation, ABAQUS makes use of 

elements with both temperature and displacement degrees of freedom. This type of analysis 

is usually chosen for metalworking where the inelastic deformation creates a significant 

temperature field and the created temperature field in turn affects the inelastic behavior. In 

these cases the results of both temperature and stress must be calculated simultaneously 

and ABAQUS accomplishes this by using the coupled temperature displacement elements. 

In this simulation ABAQUS standard solver was used and with a transient thermal 

response. 

5.1 ABAQUS 

A backward-difference scheme is used to integrate the temperatures and for nonlinear 

coupled system, Newton’s method is used. Both exact and an approximate implementation 

of Newton’s method is used. 

5.1.1 Exact Implementation 

It is done by using a nonsymmetrical Jacobian matrix as show in the following matrix 

equations representing coupled equations [10]. 

�𝐾𝐾𝑢𝑢𝑢𝑢 𝐾𝐾𝑢𝑢𝑢𝑢
𝐾𝐾𝑢𝑢𝑢𝑢 𝐾𝐾𝑢𝑢𝑢𝑢

� �∆𝑢𝑢∆𝜃𝜃�=�
𝑅𝑅𝑢𝑢
𝑅𝑅𝑢𝑢
�    (5.1) 

Where ∆𝑢𝑢 and ∆𝜃𝜃 are corrections to the incremental displacement and temperature 

respectively, 𝐾𝐾𝑖𝑖𝑖𝑖 are the submatrices of the fully coupled Jacobian matrix and the 

mechanical and the thermal residual vectors are 𝑅𝑅𝑢𝑢 and 𝑅𝑅𝑢𝑢 respectively. The mechanical 
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and thermal equations are solved simultaneously. This system of equation is solved with 

the use of unsymmetrical matrix storage and solution scheme. Quadratic convergence is 

achieved when the solution estimate is within the radius if convergence of the algorithm. 

The default mode makes use of this exact implementation. 

5.1.2 Approximate Implementation 

Some type of problems require a weak coupling between the thermal and 

mechanical solutions that are evolving simultaneously. This equates to the off diagonal 

submatrices 𝐾𝐾𝑢𝑢𝑢𝑢,𝐾𝐾𝑢𝑢𝑢𝑢 being small compared to the components of the diagonal 

submatrices𝐾𝐾𝑢𝑢𝑢𝑢,𝐾𝐾𝑢𝑢𝑢𝑢. For these problems. Setting the off diagonal term to zero is a solution 

that can be less expensive computationally so that we obtain an approximate set of 

equations.  

�𝐾𝐾𝑢𝑢𝑢𝑢 0
0 𝐾𝐾𝑢𝑢𝑢𝑢

� �∆𝑢𝑢∆𝜃𝜃�=�
𝑅𝑅𝑢𝑢
𝑅𝑅𝑢𝑢
�    (5.2) 

Using this technique, both thermal and mechanical equations can be solved 

separately as there are fewer equation in each sub problem. This results in a reduction in 

the solver time by iteration by a factor of two with similar and significant savings in solver 

storage of factored stiffness matrix. In most situations, the sub problems are either fully 

symmetric or approximated as symmetric so that the symmetric storage and solution 

scheme can be used and it is less costly. This saves solver time by another additional factor 

of two. In the modified form of Newton’s method, the fully coupled effect is considered 

through the residual vector 𝑅𝑅𝑖𝑖 at each increment of time and hence does not affect the 

solution accuracy. This makes the rate of convergence switch from quadratic and depends 

on the magnitude of the coupling effect. And more iterations are needed to attain 

equilibrium compared to the exact implementation. Thus a significant coupling results in a 
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very slow convergence rate that may prohibit obtaining the solution and in places like these 

an exact Newton implementation is needed. Even in places where the approximation 

implementation is used, the convergence strongly depends on the first guesses’ quality and 

is controlled by selecting the method of the extrapolation step. 

5.1.3 Steady State 

An arbitrary time scale is applied to the step and this can be performed in 

Abaqus/Standard. The time period and the time incrementation are specified by the user.  

5.1.4 Transient Analysis 

This is the other analysis that can be performed. The time incrementation can be 

controlled directly here, or the Abaqus’/Standard can be controlled automatically and the 

latter is preferred. These time increments can be selected based on the maximum allowable 

nodal temperature change in an increment,  ∆𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚. Abaqus makes sure that the time 

increments are adjusted accordingly so that this max allowable temperature change at the 

nodes in an increment does not change. 

5.1.5 Spurious Oscillations  

In transient analysis, the guidelines defining the relationship between the minimum 

usable time increment and the element size is given by 

∆𝑡𝑡 >  𝜌𝜌𝑐𝑐
6𝑘𝑘
∆𝑙𝑙2     (5.3) 

Where ∆𝑡𝑡 is the time increment, 𝜌𝜌 is the density, c is the specific heat, k is the 

thermal conductivity, and ∆𝑙𝑙 is a typical element dimension, like the element’s length on 

one side. If the time increments chosen are smaller than this are used in a second-order 

element mesh, then spurious oscillations can appear in the solution, most commonly in the 

vicinity of boundaries with rapid temperature changes. These cause problems if 
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temperature dependent material properties are prescribed and they are also nonphysical. 

Using first order elements these oscillations can be eliminated by lumping the heat capacity 

terms, but the solutions may be inaccurate for small time increments. This can be rectified 

by employing finer meshes at regions of rapid temperatures changes. 

5.2 Temperature effects and stress  

An equation relating the temperature difference and the maximum hoop stress 

induced is required to establish how the stresses evolve during the given cycle. Consider a 

wire of length l fixed at one end and free on the other end, is subjected to a temperature  

rise of ∆𝑇𝑇. The wire will elongate by ∆𝑙𝑙 as shown in fig 5.1.  

 
Figure 5.1.: Wire segment 

 

The length of this extension is given by the formula 

∆𝑙𝑙 = 𝛼𝛼∆𝑇𝑇𝑙𝑙                     (5.4) 

Where 𝛼𝛼 is the coefficient of thermal expansion of the material of the wire with the units 1
℉, 

l is the original length of the wire. The value of 𝛼𝛼 depends upon the material of the wire. 

Now assume that this wire of length l is bound on both sides and subjected to a temperature 

change of  ∆𝑇𝑇. This change in temperature causes the wire to elongate but since it cannot 

elongate as it is bound on both ends, it buckles from the stress induced due to the 

temperature change as shown in fig5.2. 
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Figure 5.2: Wire segment bound on both sides 
 

To measure this stress induced due to the temperature change, one end of the same 

wire is made free and is subjected to the same temperature change ∆𝑇𝑇. This elongates the 

wire by a length of ∆𝑙𝑙. The wire is then pushed from the free side to till it is reduced to its 

original length l with the force P as shown in fig 5.3 

 
Figure 5.3: Setup to measure temperature effect of stress 

 
 

Now the amount of stress, f , in the wire due to the force P is given by 

     𝑓𝑓 = 𝑃𝑃
𝐴𝐴
          (5.5) 

 Where A is the cross sectional area of the wire. We know that the modulus of 

elasticity E is given by the following equation 

        𝐸𝐸 = 𝑓𝑓
𝜀𝜀
         (5.6) 

Where is the strain in the wire which is given by the equation 

       𝜀𝜀 = ∆𝑙𝑙
𝑙𝑙

                                          (5.7) 
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Substituting equation (5.7) in equation (5.6) : 

𝐸𝐸 = 𝑓𝑓
𝜀𝜀

= 𝑓𝑓
∆𝑙𝑙
𝑙𝑙

= 𝑓𝑓.𝑙𝑙
∆𝑙𝑙

                                                  (5.8) 

Substituting equation (5.8) in equation (5.4): 

                                                     𝐸𝐸 = 𝑓𝑓.𝑙𝑙
𝛼𝛼.∆𝑇𝑇.𝑙𝑙

= 𝑓𝑓
𝛼𝛼.∆𝑇𝑇

                                                             (5.9) 

And we end up with the final equation 

       𝑓𝑓 = 𝐸𝐸𝛼𝛼∆𝑇𝑇                                                          (5.10) 

This equation gives the stress in the wires due to the increase in temperature. This equation 

is the basis of the equation that was used in this thesis to establish the relationship between 

the temperature change and maximum hoop stress developed within the steam header 

section. The following equation was assumed to  

𝜎𝜎ℎ = 𝐸𝐸 𝐾𝐾 𝛼𝛼 �1 − 𝑢𝑢
180

�  ∆𝑇𝑇𝑚𝑚𝑚𝑚 𝑧𝑧                                 (5.11) 

Where 𝜎𝜎ℎ is the maximum hoop stress developed in the header during the cycle, K stress 

concentration factor, E is the modulus of elasticity, 𝛼𝛼 is the coefficient of thermal 

expansion, 𝜃𝜃 is the angle between the side tube penetration and the yz plane, ∆𝑇𝑇𝑚𝑚𝑚𝑚 is the 

maximum temperature difference in the steam header during the operating cycle and z is 

the multiplication factor that captures the evolution of both 𝜎𝜎ℎ and ∆𝑇𝑇𝑚𝑚𝑚𝑚. The relationship 

between both the maximum hoop stress and temperature difference and their evolution 

through increasing values of 𝜃𝜃 is studied by analyzing all the results from the 30 

simulations.  
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5.2.1 Stress concentration factor 

 The stress concentration factor K is a dimensionless number that is the ration of the 

highest stress to the nominal stress in an object. For object with complex geometries, like 

a circular hole in an otherwise even straight and closed pipe, there exist regions of stresses 

in and around the complex geometry where the stresses are much higher than the average 

stress levels over the object in general. The steam header section that is analyzed in this 

thesis is also one such geometry where the stress levels found in and around the side tube 

penetration are much larger than the average stress levels produced in the header section 

in general. This is the primary reason why the meshes near the side tube penetrations were 

made finer to accurately capture the evolution of higher magnitude stresses. This has been 

verified many times by many experimental verifications involving circular pipes with 

holes.  

 The stress concentration factor is critical to this equation as it used to estimate the 

stress amplification in the vicinity of the complex geometry. It is experimentally verified 

that elliptical holes have lower stress concentration factors compared to circular ones [15], 

but since the side tube that are being dealt with in this simulations are circular, a stress 

concentration factor of K = 3 was chosen. This value was chosen as the average stress 

concentration factor of a circular hole on a pipe is 3 [3] and this has been verified 

experimentally.  

5.2.2 Coefficient of thermal expansion 

 The coefficient of thermal expansion 𝛼𝛼 was kept as a constant at 1.23 × 10−5℃−1 

as all the models attained the maximum hoop stress and temperature difference values 

during the temperature range at which the coefficient of thermal expansion was 1.23 ×
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10−5℃−1. This value and the stress concentration factor were the only two factors that 

were kept constant through different models. 

5.2.3 Side tube angle 

The side tube angle is the angle between the centerline of the side tube and the YZ 

plane. The side tube angle ranges from 20 degrees to 30 degrees through 2.5 degree 

increments. The corresponding side tube angles are used in the equations representing the 

corresponding models. 

5.2.4 Temperature difference 

 The maximum temperature difference ∆𝑇𝑇𝑚𝑚𝑚𝑚 is measured by finding out the 

maximum difference in temperatures between two nodes in the model that show the highest 

variation in temperature. From ABAQUS, the node with the maximum temperature 

throughout the cycle and the node with the minimum temperature throughout the cycle was 

identified. The temperature difference between these two nodes were tabulated and the 

maximum difference was chosen as ∆𝑇𝑇𝑚𝑚𝑚𝑚. The temperature difference was chosen in this 

way because it was verified from the simulations that this value had a profound effect on 

how the hoop stresses evolved inside the model. This value was also unique to every model 

based on the varying parameters and these qualities were the main reason for this values to 

be chosen over the difference between the atmospheric temperature and the cycle 

temperature. 
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Figure 6.4: Location of nodes 
 

  The nodes shown in fig.6.4 are the location of the nodes at which the temperature 

difference was calculated. The temperature difference was obtained by subtracting the 

upper node temperature from the lower node temperature. For all the 30 models, the node 

location of highest temperature and lowest temperature remained the same. 

5.2.5 Modulus of elasticity 

 The modulus of elasticity was also prescribed as a temperature dependent property. 

This meant that to verify the equation, the modulus of elasticity at the temperature during 

which the maximum hoop stress was attained needed to be used. All the models used 
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attained their maximum hoop stress at two different temperatures and hence the 

corresponding two values of modulus of elasticity were used. The elasticity modulus used 

in the equation  
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CHAPTER 6: RESULTS 
 
 

The primary objective is to conduct a detailed hoop stress analysis of the models 

and finding out the best physical parameters that produce the least amount of 

circumferential stresses on the header segment. The hoop stresses were extracted from the 

model by prescribing a cylindrical coordinate system. In the result module, a cyndrical 

coordinate system was created. The coordinate system was created by identifying three 

reverence nodes on the arc of a circle along the circumference of the main header section. 

Setting this coordinate system as the main coordinate system for the results, the force along 

2,2 direction represents the hoop stress. The cylindrical co-ordinate system used is 

displayed in fig. 6.1 

 
Figure 6.1: Prescribed cylindrical co-ordinate system  
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This data is then analyzed to find the location of the node at which the maximum 

hoop stress value occurs. The hoop stress history of this particular node is extracted and 

stored in the spreadsheet software for results processing. Microsoft Excel was used as the 

default software to process results and also to plot the various relationship curves.  

Figure 6.2: Location of the node exhibiting maximum hoop stress 
 

 The fig.6.2 shows the node at which the maximum hoop stress occurs. This node 

was chosen to analyze the hoop stress history through the entire time period. The 

temperature difference between the nodes shown in the last chapter was also extracted from 

ABAQUS. Almost all the results extracted from the .odb files were exported to excel to 

facilitate easy result processing. Throughout this thesis, all the plots were developed using 

MS Excel by tabulating the corresponding stress and temperature difference values.  
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6.1 Stress Results 

 The extracted circumferential stress values were tabulate against their respective 

time intervals. These stress values were then sorted using the two primary physical 

parameters which were of interest , the side tube angle θ and the internal and external 

diameters of the main header segment. The fig 6.3 is a plot of the circumferential stresses 

of all the models with θ = 20 degrees.  

 
Figure 6.3: Stress (MPa) vs Time (seconds) for θ = 20 for all models. 

 

The initial observation is that there are three distinct bands of similar that exhibit 

similar stress maps. It is not surprising that the models with same wall thickness exhibit 

similar properties as it was expected. The models with wall thickness of 2 inches have 

similar properties for similar angles. For example, the results of a model with external 

diameter 9 inches and internal diameter of 7 inches and side tube angle 25 degrees is similar 

to that of a model with external diameter 10 inches and internal diameter 8 inches and side 
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tube angle 25 degrees. The same phenomenon is observed in materials with models of 1 

inch wall thickness and similar angles. From the result curves it is seen that the models 

with lesser wall thickness have their maximum hoop stresses in tension whereas the models 

with thickness of 1.5 inches and 2 inches both have their maximum hoop stresses in 

compression. This effect could be attributes to the extra material present in the thicker 

models. This presence of extra materials mean that the temperature difference between the 

outer wall and the inner wall is much greater than their thinner counterparts. The fig 6.4 is 

a plot of the temperature difference between the two nodes specified in the last chapter. 

 
Figure 6.4: Temperature difference (℃) vs Time (seconds) for θ = 20 for all models. 

 

The plots confirm that the header sections with a wall thickness 1.5 inches and 
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wall thickness of 1 inch. The maximum temperature difference value belongs to the mode 

9_5_20 with a value of about 160 ℃ compared to the around 75℃ for 9_7_20 and 8_6_20.    

It is observed that models with similar thickness and side tube angles have similar 

temperature difference profiles over the entire duration of the simulation.  

 
Figure 6.5: Stress (MPa) / Temperature Difference (℃) vs Time (seconds) for θ = 20,  
E.D = 10 inches, ID = 6 inches 
  

The fig 6.5 is a plot of both temperature difference and the circumferential stress 

for the model 10_6_20. The model has an external diameter of 10 inches and internal 

diameter of 6 inches with a stub angle θ = 20 degrees. The wall thickness is 2 inches and 

as predicted earlier, the maximum circumferential stress occurs in compression when the 

value of the temperature difference is at the maximum value within the model. The stress 
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℃. The following fig 6.6 is a plot of one of the thinner header models, 10_8_20. Some 

crucial inferences can be observed by studying the difference between these two plots. Here 

the maximum circumferential stress occurs when the initial temperature difference spike 

slowly attains an equilibrium condition. 

 
Figure 6.6: Stress (MPa) / Temperature Difference (℃) vs Time (seconds) for θ = 20,  
E.D = 10 inches, ID = 8 inches 
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surface contact with the heated steam. The layers below the inner surface initially resist the 

expansion by exerting an opposing force that shows up as the compressive circumferential 

forces in thicker models, but as time progresses and the inner layers are heated, they too 

expand with the inner layer and the resultant compression’s magnitude goes down and 

switches to tension. Supporting this theory, the thin walled headers also show a small 

compressive circumferential stress during the initial heating but since the thermal 

equilibrium is attained much sooner, the maximum stress is in tension.  

 
Figure 6.7: Circumferential stress directions of model 10_6_20 at increment number 105, 
when the temperature difference is close to minimum. 
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Figure 6.8: Circumferential stress directions in a cut of the model 10_6_20 at increment 
number 47, the frame of maximum tension. 

 Figure 6.9: Circumferential stress directions in a cut of the model 10_8_20 at increment 
number 100, the increment at which maximum hoop stress occurs in this model. 
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The maximum circumferential stress in thinner models correspond to the maximum 

internal pressure of the steam and come down in magnitude only when the internal pressure 

goes down. 

The models in fig 6.7 through fig 6.9 show the direction of the circumferential 

stresses confirming the theory about temperature and stress behavior of both the thick and 

thin models. These plots are important such that they show that the temperature prescribed 

in the operating cycle is more important in predicting the type and magnitude of the stress 

in the models during operation. 

 
Figure 6.10: Stress (MPa) vs Time (seconds) for all models with θ = 20 for the time 0 to 
4000 seconds. 
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Figure 6.10 is a magnification of the first 4000 seconds of the plot in fig 6.3. As 

explained already, the thicker models start off with a higher compressive circumferential 

stress and the thinner models with a lower value of the same. The models of similar 

thicknesses follow similar paths in the plot. There is a pronounced difference shown in the 

tensile circumferential stresses in the thinner models from 2000 seconds to 4000 seconds. 

The models with the larger surface area show a higher value of tensile stresses, unlike the 

models of thickness wall thickness 2 inches where the maximum compressive stress is 

almost identical and the difference is negligible. This would suggest the smaller models 

with the wall thickness of 1 inch have a lower value of maximum hoop stresses. The 

difference between them is of the order of around 40 MPa and this is a significant 

difference. 

 
Figure 6.11: Stress (MPa) vs Time (seconds) for all models with θ = 20 for the time 4000 
to 10000 seconds. 
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The fig 6.11 shows the same plot for a tie period for 4000 seconds to 10000 seconds. The 

small spikes in tensile stresses of the models with wall thickness above 1.5 inch represents 

the rapid rise as soon a thermal equilibrium is reached around the 5000 seconds mark with 

the internal pressure at the maximum value of 14 MPa. This does not last long due to the 

operation cycle prescribed. The internal pressure value drops, thereby reducing the tensile 

circumferential stresses in the models with thicker walls. 

 
Figure 6.12: Stress (MPa) vs Time (seconds) for all models with θ = 20 for the time 10000 
to 30000 seconds. 
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Figure 6.13: Stress (MPa) vs Time (seconds) for all models with θ = 22.5 for the cycle time 
0 to 30000 seconds. 

 
Figure 6.14: Stress (MPa) vs Time (seconds) for all models with θ = 25 for the cycle time 
0 to 30000 seconds. 
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Figure 6.15: Stress (MPa) vs Time (seconds) for all models with θ = 27.5 for the time 
period 0 to 30000 seconds. 
 

 
Figure 6.16: Stress (MPa) vs Time (seconds) for all models with θ = 30 for the time period 
0 to 30000 seconds.  
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Figure 6.17: Stress (MPa) vs Time (seconds) for all models with θ =30 for the time period 
0 to 4000 seconds 
 

 
Figure 6.18: Stress (MPa) vs Time (seconds) for all models with θ = 30 for the time period 
4000 to 10000 seconds. 
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Figure 6.19: Stress (MPa) vs Time (seconds) for all models with O.D = 10 inches, I.D = 6 
inches through all values of θ for the time period 4000 to 10000 seconds.  
 

 
Figure 6.20: Stress (MPa) vs Time (seconds) for all models with O.D = 10 inches, I.D = 6 
inches through all values of θ for the time period 4000 to 10000 seconds. 
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Fig 6.21: Operating cycle parameters against hoop stress and temperature difference 
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comparison with 8_6_30 even when the wall thickness is a constant at t = 1 inch. It can be 

inferred that for a constant value of θ and wall thickness, the model with the smallest cross 

sectional area of the annulus of the cylindrical header section would have the most 

favorable circumferential stress levels. 

The fig 6.19 and 6.20 show the plots for a model with wall thickness t = 2 inches and it 

shows that the models with lower values of θ have higher values of compressive stresses 

compared to tensile stresses in thinner models with t = 1 inch. The fig 6.22 shows that the 

stress in tension shows a similar behavior where lesser values of θ has marginally higher 

values of tension. The fig 6.22 is a plot of the stresses for model 10_8_θ. Here the model 

with θ = 20 degrees shows marginally higher compression whereas in tension, the model 

with θ = 30 degrees show higher stress values. However, it is to be noted that the 

temperature difference shown in fig 6.23 and fig 6.24 show that both thicker and thinner 

models with θ = 20 degrees show a higher temperature difference which decreases with θ. 

 
Figure 6.22: Stress (MPa) vs Time (seconds) for all models with O.D = 10 inches, I.D = 8 
inches through all values of θ for the time period 0 to 4000 seconds. 
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Figure 6.23: Temperature difference (℃) vs Time (seconds) for all models with O.D = 10 
inches, I.D = 8 inches through all values of θ for the time period 0 to 4000 seconds. 
  

 
Figure 6.24: Temperature difference (℃) vs Time (seconds) for all models with O.D = 10 
inches, I.D = 6 inches through all values of θ for the time period 0 to 4000 seconds. 
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Figure 6.25: Temperature difference (℃) vs Time (seconds) for θ = 20 through all models 
for the time period 0 to 4000 seconds. 

 
Figure 6.26: Temperature difference (℃) vs Time (seconds) for θ = 30 through all models 
for the time period 0 to 4000 seconds. 
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The following two fig 6.25 and fig 6.26 are the plots of temperature difference 

against time for a fixed value of θ and varying cross section areas. It is observed that the 

models with larger cross section area of the annulus for the same wall thickness has a lower 

temperature difference value.  

 
Figure 6.27: Stress (MPa) vs Temperature difference (℃) for the whole cycle for the model 
with O.D = 10 inches, I.D = 6 inches for all values of θ. 
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angles of θ, there is an decrease in the stress in both compression and tension for model 

with thickness 1.5 inches and above, and in compression for t = 1 inch. The unique behavior 

for tension in thinner header segments where stress increases with increase in θ can be 

attributed to them models with higher values of θ attaining thermal equilibrium much 

sooner than models with lower θ values. The following fig 6.28 and fig 6.29 are plots of 

the circumferential stresses of models with t = 2 inches and 1 inch respectively. Models of 

all θ values were plotted. In fig 6.26, the model 10_6_30 has the lowest values of 

compressive stresses at around 300 MPa and also the lowest values of temperature 

difference compared to 10_6_20, which has the maximum values for both. From this, it 

can be concluded that the model with the least plot area in this plot would be the best for 

overall performance and reduced thermal fatigue.  

 
Figure 6.28: Stress (MPa) vs Temperature difference (℃) for the whole cycle for the model 
with O.D = 8 inches, I.D = 6 inches for all values of θ. 
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The fig 6.27 is slightly different in such a way that the stresses in tension are 

marginally higher for θ = 30 and as θ decreases, the value of stress also decreases, but this 

holds good only for maximum tension. The difference in stress between θ = 30 and θ = 20 

is around the order of 10 to 15 MPa. In addition to that, during all other periods of the 

cycle, the stress values of the models with lower θ values are higher compared to the ones 

with higher θ values. The presence of more pronounced temperature difference for models 

with lower values of θ would result in a lower thermal fatigue life, which is not desired. So 

again, it is recommended to go with the model with the least plot are which would be 

8_6_30. From all the results analyzed, it is evident that the side tube angle θ is a significant 

factor in deciding the overall temperature difference and stress levels in header segment. 

This could be explained by the complex geometries that arise when the value of θ is 

reduced. Due to the symmetric nature of the header segment, a lower value of θ would 

mean two complex geometries in an otherwise perfect cylindrical vessel are placed closed 

to each other. The stress concentration factor in such structures are higher compared to the 

structures with complex geometries placed further apart. The pronounced temperature 

difference and stress maps are direct result of this. Tables 7.1 through 7.6 displays the value 

of the maximum circumferential stress and the maximum temperature difference for all the 

simulated models. 
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Table 6.1: Stress and temperature difference for m model 10_6_θ 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 6.2: Stress and temperature difference for m model 9_5_θ 
 
 
 

 
 
 
 
 

 

 

 

Table 6.3: Stress and temperature difference for m model 10_8_θ 
 

 

 

 

 

 

 

 

 
θ 

 
Maximum Hoop 

stress(MPa) 

Maximum 
Temperature 

difference (℃) 
10_6_20 -306.674 153.454 

22.5 -300.925 147.457 

25 -294.586 142.735 

27.5 -290.259 139.192 

30 -286.858 136.425 

θ Maximum Hoop 
stress(MPa) 

Maximum 
Temperature 

difference (℃) 
9_5_20 -307.08 165.237 

22.5 -302.115 156.476 

25 -296.108 150.049 

27.5 -290.868 145.146 

30 -286.555 141.283 

θ Maximum Hoop 
stress(MPa) 

Maximum 
Temperature 

difference (℃) 
10_8_20 180.55 70.292 

22.5 183.231 67.797 

25 185.211 66.057 

27.5 186.556 64.84 

30 187.409 63.995 
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Table 6.4: Stress and temperature difference for m model 9_7_θ 
 

 

 

 

 

 

 

Table 6.5: Stress and temperature difference for m model 8_6_θ 
 

 

 

 

 

 

 

Table 6.6: Stress and temperature difference for m model 10_7_θ 
 

 

 

 

 

θ Maximum Hoop 
stress(MPa) 

Maximum 
Temperature 

difference (℃) 
9_7_20 156.438 73.811 

22.5 165.517 70.584 

25 167.449 68.258 

27.5 169.004 66.561 

30 170.1065 65.346 

θ Maximum Hoop 
stress(MPa) 

Maximum 
Temperature 

difference (℃) 
8_6_20 146.289 79.151 

22.5 148.418 74.872 

25 150.205 71.724 

27.5 151.741 69.369 

30 153.0183 67.608 

θ Maximum Hoop 
stress(MPa) 

Maximum 
Temperature 

difference (℃) 
10_7_20 -185.343 113.877 

22.5 -178.855 109.546 

25 -173.648 106.373 

27.5 -172.183 104.025 

30 -171.525 102.287 
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Figure 6.29: Maximum hoop stress vs side tube angle θ for models with cylinder wall 
thickness t = 2 inches. 

 
Figure 6.30: Maximum hoop stress vs side tube angle θ for models with cylinder wall 
thickness t = 1 inch. 
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The plots in fig 6.28 and fig 6.29 show variation of maximum hoop stress with 

increasing values of θ. It is once again seen that the maximum hoop stress values are lowest 

for the model with the smallest cross section area of the annulus for a given value of wall 

thickness. 

 
Figure 6.31: Temperature difference vs side tube angle θ for models with cylinder wall 
thickness t = 1 inch. 
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the same trend is observed in models of wall thickness t= 2 inches where the model with 

the smallest cross section annulus area has the highest value to temperature difference.  

 
Figure 6.32: Temperature difference vs side tube angle θ for models with cylinder wall 
thickness t = 2 inches. 
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Figure 6.33: Stress (MPa) vs Temperature difference for the model with O.D = 10 inches, 
I.D = 7 inches for all values of θ 
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determining the maximum circumferential stress levels developed in the header segment, 

and hence, the model 10_8 would be the best among the three for the given operational 

cycle. 

 
Figure 6.34: Stress (MPa) vs time (seconds) for the model with θ = 20 and O.D = 10 inches 
with wall thickness t = 1 inch, 2 inches and 1.5 inches. 

 
Figure 6.35: Stress (MPa) vs Temperature difference for θ = 20 and O.D = 10 inches with 
wall thickness t = 1 inch, 2 inches and 1.5 inches. 
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The verification and validation of the results in this thesis were compared to similar 

studies done on steam boiler headers for circumferential stress vs overall time plots and 

they were found to show the same trends. Similar studies were used to validate the thermal 

behavior for different angles of θ (side tube angles) and were found to show the same trend. 

The studies also compared the stress intensity factor and thermal fatigue life in relation to 

angle θ showed that they were inversely related.  

6.1 Prediction of results: 

The main goal of the secondary objective is to try to map the complete hoop stress 

history of a single node for a model without simulating it, using only the equation that was 

proposed earlier and the data obtained from the previous model simulations. The key aspect 

of the secondary objective is to propose a method in which the entire hoop stress values of 

any node can be predicted to a certain degree of accuracy without having to model and 

simulate a full-scale model to include a small change of a variable physical property.  

 To demonstrate how this is done, the 10_8 models are chosen (external diameter: 

10 inches, internal diameter: 8 inches). The node chosen is the same node at which the 

maximum hoop stress occurs as the history of hoop stress at that node is well documented. 

The procedure is as follows: 

 The equation 5.11 is used here. The equation is used without the multiplication 

factor and the maximum temperature difference is replaced with the temperature difference 

at the corresponding time step, and the elasticity modulus that was taken as a constant for 

the previous step is replaced with the corresponding elasticity modulus of the 

corresponding time step. The equation is then used to obtain the respective values for 

respective time steps. This operation is implemented easily using MS Excel where the 
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equation is specified for one cell and the corresponding values are applied at the subsequent 

cells. The result of this process is a value, which will be used to obtain a factor that sets up 

the secondary objective. This value is divided by the hoop stress obtained using Abaqus at 

the corresponding time step and this value obtained is the modified multiplication factor. 

The modified multiplication factor for all the models starting from 20 degree side tube 

angle to 30 degree side tube angle is obtained in the exact same way but for the respective 

models and their respective time steps.  

All the obtained modified multiplication factors are now tabulated in a spreadsheet 

software like Excel. Now the evolution of the multiplication factor is the primary factor 

that will be used to predict the hoop stress values of subsequent models. To study the 

evolution of this multiplication factor, the difference between the modified multiplication 

factors of subsequent models is obtained, i.e., the modified multiplication factor of model 

10_8_20 is subtracted from that of 10_8_22.5, and the modified multiplication factor of 

10_8-22.5 is subtracted from that of 10_8_25 and so on. At the end of this operation, there 

are four columns of values, which are the rates at which the multiplication factor varies 

from model to model. These values show the evolution of the multiplication factor as the 

angle of the side tube evolves. This is just one among the many behaviors of the models 

that is studied here to propose a way to predict the hoop stress history of future models. 

The values in these columns show a linear trend, but a somewhat constant value is needed 

to effectively model the prediction. For the before mentioned purpose, the difference best 

between the columns are calculated in the order of increasing angles again. This leaves us 

with three columns of values, which are not incremental in nature. The average of these 

values are taken and then they are added to the fourth column of the original differences of 
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modified multiplication factor. This value is later added to the modified multiplication 

factor of 10_8_30. The value obtained from this operation is substituted as the modified 

multiplication factor in the equation from the primary objective. Similarly, the temperature 

difference values are also tabulated and the above-mentioned calculations are done on them 

to obtain the extrapolated values of the temperature differences. Substituting both the 

modified multiplication factor and the new temperature difference, we arrive at the 

predicted hoop stress history. This process is repeated for all time steps using MS Excel 

and the values are tabulated. This predicted value is then compared with the experimental 

simulation that was run on Abaqus. The following figures are the plots comparing the curve 

from the ABAQUS simulation to the curve form the equation. The fig 6.36 for model 

10_8_32.5 shows that there is less error in that plot compared to the plots of 10_8_35. This 

was expected as this method can produce high degrees of accuracy for models closer to the 

verified models. Models with higher physical parameter deviation from the original models 

show a higher error percentage. A suitable solution for this issue would be further 

examination of data from the simulations and establishing a relationship among them to 

increase the accuracy of these predictions. Both the multiplication factor and the 

temperature difference values play a key role in predicting the output of subsequent 

models. It is to be noted that the internal pressure term is actually omitted but the reaction 

to the internal pressure is also included using the multiplication factor as it shows how the 

combined stress from both temperature difference and internal pressure evolve with 

increase in θ. The fig 6.36 through fig 6.39 are plots of the calculated values against the 

simulated values of stresses.  
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Figure 6.36: Hoop stress vs time period comparison between equation results and 
ABAQUS results for 10_8_32.5 

 

 
Figure 6.37: Hoop stress vs Temperature difference comparison between equation results 
and ABAQUS results for 10_8_32.5 
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Figure 6.38: Hoop stress vs time period comparison between equation results and 
ABAQUS results for 10_8_35 

 
Figure 6.39: Hoop stress vs Temperature difference comparison between equation results 
and ABAQUS results for 10_8_35 
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From the fig.6.38 and 6.39, it is clear that this method begins deviating from the 

simulation output. A much-detailed analysis of the hoop stress values of previous 

simulations with both larger and smaller side tube angle increments can accurately 

capture the evolution of the modified multiplication factor, increasing the accuracy of 

these results in subsequent simulations with increasing increments. The most important 

observation from these results is that any model that requires extensive modelling and 

analysis due to some small variations in design can be approached by this proposed 

method to reduce the computational cost and time.  

The following figures from fig 4.40 through fig 4.45 are the plots of both 

circumferential and radial stresses due to the temperature difference in the model alone. 

This result was obtained by simulating the models with the internal pressure without the 

temperature of the steam applied. The circumferential and radial stresses from these 

models at the point of maximum hoop stress is plotted. These values are then tabulated 

side by side with the original coupled displacement results. The difference between these 

two values are tabulated and plotted. The resultant plot gives the values of both 

circumferential and radial stresses due to the temperature difference alone. These results 

show a good picture into the amount of stress caused by the temperature variations in the 

model. The temperature difference alone sets up a significant amount of stress in the 

absence of the internal pressure forces. This result is in line with the previous finding 

where it was observed that temperature differences play a greater role in determining the 

final stress profile in the header. 
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Figure 6.40: Combined hoop stress and the hoop stress due to temperature difference alone 
against time for model with OD = 10 inches and ID = 6 inches and tube angle 20º 
 

  
Figure 6.41: Combined hoop stress and the hoop stress due to temperature difference alone 
against time for model with OD = 10 inches and ID = 6 inches and tube angle 30º 
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Figure 6.42: Combined radial stress and the radial stress due to temperature difference 
alone against time for model with OD = 10 inches and ID = 6 inches and tube angle 20º 

 

 

Figure 6.43: Combined radial stress and the radial stress due to temperature difference 
alone against time for model with OD = 10 inches and ID = 6 inches and tube angle 30º 
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Figure 6.44: Combined hoop stress and the hoop stress due to temperature difference 
alone against time for model with OD = 10 inches and ID = 8 inches and tube angle 30º 

 
Figure 6.45: Combined radial stress and the radial stress due to temperature difference 
alone against time for model with OD = 10 inches and ID = 8 inches and tube angle 30º 
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 For the thinner models the trend is slightly different. The radial stress looks to be 

much lower when the stress due to internal pressure is removed and the was expected as 

the internal pressure load acts directly on the walls and the main radial stress in the model 

is a direct result of this. Upon removal of this internal pressure load, the radial stress is 

significantly reduced. Hoop stresses are also much lower in thicker models because the 

thermal equilibrium is attained at a much faster rate due to the absence of excess material, 

and without the internal pressure load, the hoop stresses remain minimal compared to the 

thicker models. This again shows that the initial inference of thinner models having 

superior circumferential stress properties for similar operational cycles. 

 Four models with three side stubs were modeled and analyzed to study the behavior 

of circumferential stress in a multiple stub model. The model with external diameter 10 

inches and internal diameter 8 inches was chosen to perform this analysis. The thicker 

models were not included in this simulation as the marked difference between the thicker 

and thinner models have already been established using the results from the previous 

simulations. The 10_8 model was designed with three side stubs instead of one and the 

angles between the vertical and the last tube was a multiple of the angle between the vertical 

and the middle tube. For example, the model with a middle tube angle of 20 degrees was 

modelled with an angle of 40 degrees for the last tube. This design principle was followed 

to maintain symmetry and in accordance with current header designs. The respective angles 

of the middle and the last tube from the vertical for the models are 20-40, 30-60, 35-70 and 

40-80. These angles provide an insight as to how the stress and thermal properties vary 

when multiple side stubs are present. 
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Figure 6.46: Model with middle tube angle 20 degrees and last tube angle 40 degrees 

 

Figure 6.47: Model with middle tube angle 30 degrees and last tube angle 60 degrees 
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Figure 6.48: Model with middle tube angle 35 degrees and last tube angle 70 degrees 

  

Figure 6.49: Model with middle tube angle 40 degrees and last tube angle 80 degrees 
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Figure 6.50: Nodes for result processing and plots 
 

  Some additional boundary conditions were prescribed to take into the account the 

presence of the two additional side stubs. Both the middle tube and the last tube were 

constrained using equations constraints. Both pipes were also subjected to end loads using 

the same method we used to calculate end loads earlier. Side stub geometrical 

specifications were altered to accommodate multiple tubes in the main header segment. 

The inner surface of the additional tubes were included into the main surface set. The 

meshing was done using partitioning and a slightly finer mesh was applied to the area 

where higher stress levels were expected. The following result plots were obtained from 

the simulations. The data was collected from Abaqus and processed using MS Excel to 

develop these plots. 
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Figure 6.51: Hoop stress vs time period of the first tube for all three side tube stub models 

 
Figure 6.52: Hoop stress vs time period of the second tube for all three side tube stub 
models 
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Figure 6.53: Hoop stress vs time period of the third tube for all three side tube stub models 

 

 
Figure 6.54: Temperature Difference vs time period  
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The plot from fig 6.52 is of the hoop stress values against time for the node located in the 

center of the middle tube on the inner surface of the main header. From the fig 6.52 through 

fig 6.53, it is seen that both the middle tube and the last tube stress values show an 

interesting pattern. The stress values for the middle and the last tube show similar trends. 

For the model with the side tube angles 20 and 40, the stress is low, and it keeps increasing 

until the model with side tube angle 35 and 70 degrees, but the next model with side tube 

angles 40 and 80 degrees, the stress values actually drop and are the lowest among the four 

models. This could be considered as the sweet spot for this operation cycle and material. 

The temperature difference between the same nodes that were chosen for the single tube 

models is chosen again and the plot is shown in fig 6.54. It is seen that the temperature 

difference in the models with lesser angles or smaller ligaments are higher than the model 

with larger angles and larger ligaments. This behavior sets up the initial compressive stress 

in the models, which is larger in the models with smaller angles and as the temperature, 

difference reaches a minimum, the tensile stress peaks. The temperature difference 

properties mirror those of the single tube models. For the plot in FIGURE, the reslut shows 

that the model with the least angle has a considerably large compression hoop, but the least 

amount of hoop in tension. This model is followed by the model with side tube angles 40 

and 80, the largest angle models. 

 The fig 6.55 and fig 6.56 show the plot of the hoop streses in the ligaments of the 

models. The first ligament results show that the 20 and 40 degree model has the lowest 

overall stress with the highest compreesive stress, the largest angle model with the angles 

40 and 80 is at a close second, with the other two models slightly higher. The middle 

ligament hoop stress plt shows that the lrgest angle model with the side tube angle 40 nd 
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80 actually has the highest stress value in tension and the values drops with the reduction 

of side tube angles, but the interesting part is that the highest stress is actually in 

compression and the 40 and 80 model actually has the lowest value of stress in 

compression. 

 
Figure 6.55: Hoop stress vs time period of the first ligament for all three side tube stub 
models 

 
Figure 6.56: Hoop stress vs time period of the middle ligament for all three side tube stub 
models 
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 The following table shows the yield stress properties of P31 steel at elevated 

temperatures. It can be seen that the maximum stress, which is around the order of 306 

MPa does not occur at the maximum temperature, but rather at the maximum temperature 

difference. The stress limits are well within the yield stress value of P91 steel for that 

temperature.  

Table 6.7 : P91 Yield strength at elevated temperatures. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Temperature ℃ Yield Strength MPa 
37 413.69 
65 393.70 
93 385.42 
121 380.60 
149 377.83 
204 377.14 
260 377.14 
315 375.76 
343 373.32 
371 366.8 
399 358.53 
426 347.50 
454 334.40 
482 317.84 
510 299.23 
537 277.17 
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CHAPTER 7:    INFERENCE AND CONCLUSION 

 
There are multiple things to take away from the analysis of all the results. The primary 

objective of this thesis was to conduct a detailed study of the circumferential stress 

behavior of the header section when two primary physical properties of the header are 

varied. It is found that that the temperature difference plays a major role in determining the 

maximum circumferential stress developed within the header, both in tension and in 

compression. The temperature difference profile in turn is dependent on the side tube angle 

θ. The side tube angle is also responsible for the stress intensity in the model, which is 

indirectly verified in the results of this simulations. Some external papers have also 

confirmed that header with a longer ligament size, i.e higher values of θ are less susceptible 

to creep fatigue damage. It is clear that when if the header is not insulated during a typical 

operating cycle like the one used for this simulation, it’s operation life is will be reduced 

compared to an insulated one. The initial spike in compressive stresses for the models of 

thickness t = 2 inches is found to be the direct result of the initial temperature difference. 

It was also found that these values were the maximum values of stress obtained in the cycle 

for those models. Lack of insulation may result in reduced life and increase in fuel bills 

compared to an insulated steam boiler header. The ideal model for the cycle used in this 

thesis would be the model with the least amount of temperature difference and least amount 

of stress. From the results, the model 8_6_30 (ED = 8 inches, ID = 6 inches and θ = 30º) 

show the most favorable properties. It was concluded from the plots that a higher value of 

θ and a lower area of cross section of the annulus for models of same wall thickness shows 

the least amount of temperature difference and circumferential stresses.  
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 The entire method used in this thesis can be used as a test bed for different 

configurations of operating cycles for the same set of models. The physical parameters of 

the models can also be varied in terms of their outer and inner diameters and also the side 

tube angle θ can also be varied. The python codes used for the 30 simulations were 

developed in such a way that changing less than 20 lines of code can introduce a new 

operating cycle for a model with completely different OD, ID and θ with insulation in 

ABAQUS. This opens up new possibilities to model and simulate multiple models with 

different parameters to determine the best dimensions for a given cycle. The overall steam 

boiler header design remains unchanged from the cylindrical vessel design currently 

employed all over the world and most models can be simulated with minimal modifications 

to the code. This can result in significant reduction in time when simulation large number 

of models. The accuracy and validity of the results were verified by similar papers dealing 

with steam header stress analysis. 

 Thus, a detailed analysis of circumferential stresses for a given nominal operating 

cycle for a steam boiler header has been conducted. Using the results from around 30 

different models with varying side tube angles and inner and outer diameters, the most 

efficient header in terms of circumferential stress and temperature difference has been 

identified. In addition to that, the relationship between the circumferential stresses and the 

physical properties have also been studied. A method to simulate additional models with 

varying physical parameters and additional operating cycles has also been proposed by the 

means of the provided python script for use with ABAQUS. 
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APPENDIX : PYTHON SCRIPT USED FOR THE SIMULATION 

OF MODEL 10_8_20 

# -*- coding: mbcs -*- 
from part import * 
from material import * 
from section import * 
from assembly import * 
from step import * 
from interaction import * 
from load import * 
from mesh import * 
from optimization import * 
from job import * 
from sketch import * 
from visualization import * 
from connectorBehavior import * 
     
    #HEADER OUTER DIA 
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', 
sheetSize=1000.0) 
mdb.models['Model-
1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 
    0.0, 0.0), point1=(-40.0, -80.0)) 
mdb.models['Model-1'].sketches['__profile__'].geometry.findAt((40.0, 
80.0)) 
mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 
    mdb.models['Model-
1'].sketches['__profile__'].geometry.findAt((40.0, 80.0),  
    ), radius=127, textPoint=(-142.092498779297, -5.26472473144531)) 
     
    #HEADER INNER DIA 
mdb.models['Model-
1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 
    0.0, 0.0), point1=(-5.0, -75.0)) 
mdb.models['Model-1'].sketches['__profile__'].geometry.findAt((5.0, 
75.0)) 
mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 
    mdb.models['Model-1'].sketches['__profile__'].geometry.findAt((5.0, 
75.0),  
    ), radius=101.6, textPoint=(-129.864944458008, -51.5944595336914)) 
     
    #INITIAL EXTRUDE 
mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type= 
    DEFORMABLE_BODY) 
mdb.models['Model-1'].parts['Part-1'].BaseSolidExtrude(depth=200.0, 
sketch= 
    mdb.models['Model-1'].sketches['__profile__']) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
    #DATUM CSYS AND PLANE 
mdb.models['Model-1'].parts['Part-
1'].DatumCsysByThreePoints(coordSysType= 
    CARTESIAN, line1=(1.0, 0.0, 0.0), line2=(0.0, 1.0, 0.0), name= 
    'Datum csys-1', origin=(0.0, 0.0, 0.0)) 
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mdb.models['Model-1'].parts['Part-
1'].DatumPlaneByPrincipalPlane(offset=152.4,  
    principalPlane=XYPLANE) 
     
    #SIDE TUBE SWEEP SKETCH...DO NOT CHANGE 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=20.4, 
name='__sweep__',  
    sheetSize=816.0, transform= 
    mdb.models['Model-1'].parts['Part-1'].MakeSketchTransform( 
    sketchPlane=mdb.models['Model-1'].parts['Part-1'].datums[3],  
    sketchPlaneSide=SIDE1,  
    sketchUpEdge=mdb.models['Model-1'].parts['Part-1'].datums[2].axis2,  
    sketchOrientation=RIGHT, origin=(0.0, 0.0, 152.4))) 
mdb.models['Model-1'].parts['Part-
1'].projectReferencesOntoSketch(filter= 
    COPLANAR_EDGES, sketch=mdb.models['Model-1'].sketches['__sweep__']) 
mdb.models['Model-
1'].sketches['__sweep__'].ConstructionLine(point1=(0.0, 0.0),  
    point2=(0.0, -15.3)) 
mdb.models['Model-
1'].sketches['__sweep__'].VerticalConstraint(addUndoState= 
    False, entity=mdb.models['Model-
1'].sketches['__sweep__'].geometry[2]) 
mdb.models['Model-1'].sketches['__sweep__'].Spot(point=(0.0, 0.0)) 
mdb.models['Model-
1'].sketches['__sweep__'].CoincidentConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].vertices[0],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[2]) 
mdb.models['Model-1'].sketches['__sweep__'].FixedConstraint(entity= 
    mdb.models['Model-1'].sketches['__sweep__'].vertices[0]) 
mdb.models['Model-
1'].sketches['__sweep__'].ConstructionLine(point1=(0.0, 0.0),  
    point2=(-25.5, -35.7)) 
mdb.models['Model-
1'].sketches['__sweep__'].CoincidentConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].vertices[0],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[3]) 
     
    #SIDE TUBE ANGLE     
mdb.models['Model-1'].sketches['__sweep__'].AngularDimension(line1= 
    mdb.models['Model-1'].sketches['__sweep__'].geometry[3], line2= 
    mdb.models['Model-1'].sketches['__sweep__'].geometry[2], 
textPoint=( 
    -11.4507751464844, -45.9118728637695), value=20) 
     
    #DO NOT CHANGE 
mdb.models['Model-1'].sketches['__sweep__'].Spot(point=(0.0, -81.6)) 
mdb.models['Model-
1'].sketches['__sweep__'].CoincidentConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].vertices[1],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[2]) 
mdb.models['Model-
1'].sketches['__sweep__'].ObliqueDimension(textPoint=( 
    25.764253616333, -85.9457855224609), value=230.2, vertex1= 
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    mdb.models['Model-1'].sketches['__sweep__'].vertices[0], vertex2= 
    mdb.models['Model-1'].sketches['__sweep__'].vertices[1]) 
mdb.models['Model-
1'].sketches['__sweep__'].ConstructionLine(point1=(0.0,  
    -230.2), point2=(-122.4, -230.2)) 
mdb.models['Model-
1'].sketches['__sweep__'].HorizontalConstraint(addUndoState= 
    False, entity=mdb.models['Model-
1'].sketches['__sweep__'].geometry[4]) 
mdb.models['Model-
1'].sketches['__sweep__'].CoincidentConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].vertices[1],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[4]) 
mdb.models['Model-1'].sketches['__sweep__'].Line(point1=(-
35.2687157010159,  
    -96.9), point2=(-83.7859479282051, -230.2)) 
mdb.models['Model-
1'].sketches['__sweep__'].ParallelConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].geometry[3],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[5]) 
mdb.models['Model-
1'].sketches['__sweep__'].CoincidentConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].vertices[2],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[3]) 
mdb.models['Model-
1'].sketches['__sweep__'].CoincidentConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].vertices[3],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[3]) 
 
    #DO NOT CHANGE 
mdb.models['Model-1'].sketches['__sweep__'].undo() 
mdb.models['Model-1'].sketches['__sweep__'].Line(point1=(-
83.7859479282051,  
    -230.2), point2=(-34.9236609213986, -95.9519697846845)) 
mdb.models['Model-
1'].sketches['__sweep__'].ParallelConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].geometry[3],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[5]) 
mdb.models['Model-
1'].sketches['__sweep__'].CoincidentConstraint(addUndoState= 
    False, entity1=mdb.models['Model-
1'].sketches['__sweep__'].vertices[2],  
    entity2=mdb.models['Model-1'].sketches['__sweep__'].geometry[3]) 
     
    #SIDE TUBE LENGTH 
mdb.models['Model-
1'].sketches['__sweep__'].ObliqueDimension(textPoint=( 
    -80.5535049438477, -134.217987060547), value=140.0, vertex1= 
    mdb.models['Model-1'].sketches['__sweep__'].vertices[2], vertex2= 
    mdb.models['Model-1'].sketches['__sweep__'].vertices[3]) 
     
    #DO NOT CHANGE 
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mdb.models['Model-1'].ConstrainedSketch(name='__profile__', 
sheetSize=816.0,  
    transform=(0.0, 0.0, -1.0, 0.939692620785629, -0.342020143326437, 
0.0,  
    -0.342020143326437, -0.939692620785629, -0.0, -83.7859479282051, -
230.2,  
    152.4)) 
mdb.models['Model-
1'].sketches['__profile__'].ConstructionLine(point1=(-408.0,  
    0.0), point2=(408.0, 0.0)) 
mdb.models['Model-
1'].sketches['__profile__'].ConstructionLine(point1=(0.0,  
    -408.0), point2=(0.0, 408.0)) 
mdb.models['Model-1'].parts['Part-
1'].projectReferencesOntoSketch(filter= 
    COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-
1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 
    0.0, 0.0), point1=(0.0, -30.0)) 
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint( 
    addUndoState=False, entity1= 
    mdb.models['Model-1'].sketches['__profile__'].vertices[1], entity2= 
    mdb.models['Model-1'].sketches['__profile__'].geometry[3]) 
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint( 
    addUndoState=False, entity1= 
    mdb.models['Model-1'].sketches['__profile__'].vertices[0], entity2= 
    mdb.models['Model-1'].sketches['__profile__'].geometry[2]) 
     
    #SIDE TUBE OUTER DIA     
mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 
    mdb.models['Model-1'].sketches['__profile__'].geometry[4], 
radius=25.4,  
    textPoint=(38.5387939453125, -51.92283550419)) 
 
    #SIDE SWEEP 
mdb.models['Model-1'].parts['Part-1'].SolidSweep(path= 
    mdb.models['Model-1'].sketches['__sweep__'], pathOrientation=RIGHT,  
    pathPlane=mdb.models['Model-1'].parts['Part-1'].datums[3], 
pathUpEdge= 
    mdb.models['Model-1'].parts['Part-1'].datums[2].axis2, profile= 
    mdb.models['Model-1'].sketches['__profile__'], 
sketchOrientation=RIGHT,  
    sketchUpEdge=mdb.models['Model-1'].parts['Part-1'].datums[2].axis1) 
     
    #DO NOT CHANGE 
mdb.models['Model-1'].sketches.changeKey(fromName='__profile__', 
toName= 
    '__save__') 
 
#*--CHANGE X AND Y VALUE HERE--* *--X=SIN(THETA)*230.2 ,Y=C0S 
(THETHA)*230.2--*  
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=3.59, 
name='__profile__',  
    sheetSize=143.68, transform= 
    mdb.models['Model-1'].parts['Part-1'].MakeSketchTransform( 
    sketchPlane=mdb.models['Model-1'].parts['Part-1'].faces[1],  
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    sketchPlaneSide=SIDE1,  
    sketchUpEdge=mdb.models['Model-1'].parts['Part-1'].datums[2].axis1,  
    sketchOrientation=LEFT, origin=(-78.733, -216.317, 152.4))) 
mdb.models['Model-1'].parts['Part-
1'].projectReferencesOntoSketch(filter= 
    COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].retrieveSketch(sketch= 
    mdb.models['Model-1'].sketches['__save__']) 
del mdb.models['Model-1'].sketches['__save__'] 
mdb.models['Model-1'].sketches['__profile__'].delete(objectList=( 
    mdb.models['Model-1'].sketches['__profile__'].geometry[2], )) 
mdb.models['Model-1'].sketches['__profile__'].delete(objectList=( 
    mdb.models['Model-1'].sketches['__profile__'].geometry[7], )) 
mdb.models['Model-
1'].sketches['__profile__'].CircleByCenterPerimeter(center=( 
    0.0, 0.0), point1=(0.0, -13.6213825643063)) 
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint( 
    addUndoState=False, entity1= 
    mdb.models['Model-1'].sketches['__profile__'].vertices[5], entity2= 
    mdb.models['Model-1'].sketches['__profile__'].geometry[6]) 
mdb.models['Model-1'].sketches['__profile__'].CoincidentConstraint( 
    addUndoState=False, entity1= 
    mdb.models['Model-1'].sketches['__profile__'].vertices[4], entity2= 
    mdb.models['Model-1'].sketches['__profile__'].geometry[5]) 
    #SIDE TUBE INNER DIA 
mdb.models['Model-1'].sketches['__profile__'].RadialDimension(curve= 
    mdb.models['Model-1'].sketches['__profile__'].geometry[8], 
radius=17.78,  
    textPoint=(-33.0677856445313, -16.1681496354006)) 
    #EXTRUDE CUT 
mdb.models['Model-1'].parts['Part-
1'].CutExtrude(flipExtrudeDirection=OFF,  
    sketch=mdb.models['Model-1'].sketches['__profile__'], 
sketchOrientation= 
    LEFT, sketchPlane=mdb.models['Model-1'].parts['Part-1'].faces[1],  
    sketchPlaneSide=SIDE1, sketchUpEdge= 
    mdb.models['Model-1'].parts['Part-1'].datums[2].axis1, upToFace= 
    mdb.models['Model-1'].parts['Part-1'].faces[3]) 
     
    #DATUM PLANE PARTITION AND REMOVE EXTRA FACES 
mdb.models['Model-1'].parts['Part-
1'].DatumPlaneByPrincipalPlane(offset=0.0,  
    principalPlane=YZPLANE) 
mdb.models['Model-1'].parts['Part-1'].PartitionCellByDatumPlane(cells= 
    mdb.models['Model-1'].parts['Part-1'].cells.findAt(((-117.322624,  
    10.786931, 200.0), )), datumPlane= 
    mdb.models['Model-1'].parts['Part-1'].datums[3]) 
mdb.models['Model-1'].parts['Part-1'].RemoveFaces(deleteCells=False, 
faceList=( 
    mdb.models['Model-1'].parts['Part-1'].faces.findAt((-58.493177, -
83.07291,  
    153.541372), ), mdb.models['Model-1'].parts['Part-
1'].faces.findAt(( 
    -67.41703, -133.34951, 153.546149), ),  
    mdb.models['Model-1'].parts['Part-1'].faces.findAt((-80.13076, -
146.047435,  
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    154.038151), ), mdb.models['Model-1'].parts['Part-
1'].faces.findAt(( 
    -102.456599, -223.404439, 154.668035), ),  
    mdb.models['Model-1'].parts['Part-1'].faces.findAt((-8.565473, -
126.710823,  
    154.031316), ), mdb.models['Model-1'].parts['Part-
1'].faces.findAt(( 
    -117.322624, 10.786931, 200.0), ))) 
mdb.models['Model-1'].parts['Part-1'].PartitionCellByDatumPlane(cells= 
    mdb.models['Model-1'].parts['Part-1'].cells.findAt(((58.004584,  
    -102.592468, 0.0), )), datumPlane= 
    mdb.models['Model-1'].parts['Part-1'].datums[6]) 
mdb.models['Model-1'].parts['Part-1'].RemoveFaces(deleteCells=False, 
faceList=( 
    mdb.models['Model-1'].parts['Part-1'].faces.findAt((10.13103, -
117.303202,  
    0.0), ), mdb.models['Model-1'].parts['Part-
1'].faces.findAt((8.832473,  
    -101.215352, 101.599996), ),  
    mdb.models['Model-1'].parts['Part-1'].faces.findAt((10.13103, -
117.303202,  
    152.4), ), mdb.models['Model-1'].parts['Part-
1'].faces.findAt((10.19709,  
    -126.589965, 50.799998), ))) 
 
    #CREATE INSTANCE AND MAKE INDEPENDENT 
mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-
1',  
    part=mdb.models['Model-1'].parts['Part-1']) 
mdb.models['Model-1'].rootAssembly.makeIndependent(instances=( 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'], )) 
     
    #PARTITION BY EDGE 
mdb.models['Model-1'].rootAssembly.PartitionCellByExtrudeEdge(cells= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].cells.getSequenceFromMask( 
    ('[#1 ]', ), ), edges=( 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges[11],  
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].edges[12]), line= 
    mdb.models['Model-1'].rootAssembly.datums[1].axis3, sense=FORWARD) 
     
    #SET AND SURFACE CREATION 
    #MAIN SURFACE 
mdb.models['Model-1'].rootAssembly.Surface(name='MAIN_SURFACE', 
side1Faces= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].faces.findAt((( 
    -39.933495, -161.593477, 151.254492), ), ((-53.824638, -96.00472,  
    151.253843), ), ((-0.75146, -101.597221, 50.799998), ), )) 
    #END LOAD SURFACE 
mdb.models['Model-1'].rootAssembly.Surface(name='END_LOAD', side1Faces= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].faces.findAt((( 
    -0.751419, -110.058329, 0.0), ))) 
    #BACK_BC SET 
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mdb.models['Model-1'].rootAssembly.Set(faces= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].faces.findAt((( 
    -22.526723, -116.360774, 152.4), ), ((-89.288141, -185.905352, 
152.4), ), ( 
    (-60.52146, -101.90976, 152.4), ), ((-33.281721, -163.238749, 
152.4), ), ),  
    name='BACK_BC', xEdges= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].edges.findAt((( 
    -90.299433, -196.110272, 152.4), ), ((-36.495379, -152.255332, 
152.4), ), ( 
    (-76.733901, -136.560028, 152.4), ), ((-105.864037, -222.164233, 
152.4), ),  
    ((-65.288132, -236.932654, 152.4), ), ((-49.611009, -210.569758, 
152.4), ),  
    )) 
    #FRONT_BC SET 
mdb.models['Model-1'].rootAssembly.Set(faces= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].faces.findAt((( 
    0.0, -118.533333, 101.599996), ), ((0.0, 110.066666, 101.599996), 
), ),  
    name='FRONT_BC') 
    #SIDE TUBE BOTTOM SET  
mdb.models['Model-1'].rootAssembly.Set(faces= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].faces.findAt((( 
    -102.456599, -223.404439, 150.131958), )), name='SIDE_TUBE_BTTM') 
     
    #DATUM PLANES AND PARTITION FOR MESHING 
mdb.models['Model-1'].rootAssembly.DatumPlaneByPointNormal(normal= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges[6], 
point= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].InterestingPoint( 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges[6], 
MIDDLE)) 
mdb.models['Model-
1'].rootAssembly.DatumPlaneByPrincipalPlane(offset=35.0,  
    principalPlane=XYPLANE) 
mdb.models['Model-
1'].rootAssembly.DatumPlaneByPrincipalPlane(offset=75.0,  
    principalPlane=XYPLANE) 
mdb.models['Model-1'].rootAssembly.DatumPlaneByRotation(angle=125.0, 
axis= 
    mdb.models['Model-1'].rootAssembly.datums[1].axis3, plane= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].datums[6]) 
mdb.models['Model-1'].rootAssembly.PartitionCellByDatumPlane(cells= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].cells.getSequenceFromMask( 
    ('[#1 ]', ), ), datumPlane=mdb.models['Model-
1'].rootAssembly.datums[10]) 
mdb.models['Model-1'].rootAssembly.PartitionCellByDatumPlane(cells= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].cells.getSequenceFromMask( 
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    ('[#4 ]', ), ), datumPlane=mdb.models['Model-
1'].rootAssembly.datums[11]) 
mdb.models['Model-1'].rootAssembly.PartitionCellByDatumPlane(cells= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].cells.getSequenceFromMask( 
    ('[#1 ]', ), ), datumPlane=mdb.models['Model-
1'].rootAssembly.datums[12]) 
mdb.models['Model-1'].rootAssembly.PartitionCellByDatumPlane(cells= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].cells.getSequenceFromMask( 
    ('[#1 ]', ), ), datumPlane=mdb.models['Model-
1'].rootAssembly.datums[13]) 
mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  
    deviationFactor=0.1, edges= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask( 
    ('[#1f8ff #791f9e ]', ), ), size=2.0) 
mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  
    deviationFactor=0.1, edges= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask( 
    ('[#0 #1186e780 ]', ), ), size=8.0) 
mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  
    deviationFactor=0.1, edges= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask( 
    ('[#1fff8f0f #8000000 ]', ), ), size=6.0) 
mdb.models['Model-1'].rootAssembly.seedEdgeBySize(constraint=FINER,  
    deviationFactor=0.1, edges= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask( 
    ('[#fc400000 #66000061 ]', ), ), size=11.0) 
mdb.models['Model-1'].rootAssembly.generateMesh(regions=( 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'], )) 
 
    #SECTION CREATION AND SECTION ASSIGNMENT 
mdb.models['Model-1'].HomogeneousSolidSection(material='Project Pipe 
Steel',  
    name='Section-1', thickness=None) 
mdb.models['Model-1'].parts['Part-1'].SectionAssignment(offset=0.0,  
    offsetField='', offsetType=MIDDLE_SURFACE, region=Region( 
    cells=mdb.models['Model-1'].parts['Part-
1'].cells.getSequenceFromMask( 
    mask=('[#1 ]', ), )), sectionName='Section-1', thicknessAssignment= 
    FROM_SECTION)    
 
    #MATERIAL 
mdb.models['Model-1'].Material(name='Project Pipe Steel') 
    #ELASTIC PROPERTIES 
mdb.models['Model-1'].materials['Project Pipe 
Steel'].Elastic(dependencies=0,  
    moduli=LONG_TERM, noCompression=OFF, noTension=OFF, 
table=((213000.0, 0.29,  
    20.0), (208000.0, 0.29, 100.0), (205000.0, 0.29, 200.0), (195000.0, 
0.29,  
    300.0), (187000.0, 0.29, 400.0), (179000.0, 0.29, 500.0), 
(174000.0, 0.29,  
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    550.0), (168000.0, 0.29, 600.0)), temperatureDependency=ON, 
type=ISOTROPIC) 
    #DENSITY 
mdb.models['Model-1'].materials['Project Pipe 
Steel'].Density(dependencies=0,  
    distributionType=UNIFORM, fieldName='', table=((7.75e-09, ), ),  
    temperatureDependency=OFF) 
    #COEFFICIENT OF THERMAL EXPANSION 
mdb.models['Model-1'].materials['Project Pipe 
Steel'].Expansion(dependencies=0,  
    table=((1.09e-05, 100), (1.13e-05, 200), (1.17e-05, 300), (  
    1.2e-05, 400), (1.23e-05, 500), (1.23e-05, 600), (1.23e-05, 700)),  
    temperatureDependency=ON, type=ISOTROPIC, userSubroutine=OFF, 
zero=0.0) 
mdb.models['Model-1'].materials['Project Pipe Steel'].setValues( 
    materialIdentifier='') 
    #THERMAL CONDUCTIVITY 
mdb.models['Model-1'].materials['Project Pipe Steel'].Conductivity( 
    dependencies=0, table=((22.3, 20.0), (24.4, 100.0), (26.3, 200.0), 
( 
    27.4, 300.0), (27.9, 400.0), (27.9, 500.0), (27.8, 550.0), (27.6,  
    600.0)), temperatureDependency=ON, type=ISOTROPIC) 
    #SPECIFIC HEAT CAPACITY 
mdb.models['Model-1'].materials['Project Pipe 
Steel'].SpecificHeat(table=(( 
    435000000.0, 20.0), (447000000.0, 50.0), (458000000.0, 75.0), 
(467000000.0, 100.0), ( 
    477000000.0, 125.0), (487000000.0, 150.0), (495000000.0, 175.0), 
(506000000.0, 200.0),  
    (515000000.0, 225.0), (528000000.0, 250.0), (541000000.0, 275.0), 
(553000000.0, 300.0),  
    (566000000.0, 325.0), (581000000.0, 350.0), (597000000.0, 375.0), 
(613000000.0, 400.0),  
    (629000000.0, 425.0), (647000000.0, 450.0), (667000000.0, 475.0), 
(690000000.0, 500.0),  
    (714000000.0, 525.0), (740000000.0, 550.0), (770000000.0, 575.0), 
(806000000.0, 600.0),  
    (849000000.0, 625.0), (901000000.0, 650.0), (970000000.0, 675.0), 
(1060000000.0,  
    700.0), (1160000000.0, 725.0), (971000000.0, 750.0)), 
temperatureDependency=ON) 
mdb.models['Model-1'].materials['Project Pipe 
Steel'].setValues(description='') 
 
    #LOAD AMPLITUDES 
    #FILM COEFFICIENT 
mdb.models['Model-1'].TabularAmplitude(data=((600.0, 0.5), (1800.0, 
0.5),  
    (2400.0, 1), (5400.0, 1), (5700.0, 0.5), (25020.0, 0.5), ( 
    30000.0, 0)), name= 
    'Film Coefficient', smooth=SOLVER_DEFAULT, timeSpan=TOTAL) 
    #INTERNAL PRESSURE 
mdb.models['Model-1'].TabularAmplitude(data=((600.0, 7.5), (1800.0, 
7.5), ( 
    2400.0, 14.0), (5400.0, 14.0), (5700.0, 7.5), (25020.0, 0.0), 
(30000.0,  
    0.0)), name='Internal Pressure Load', smooth=SOLVER_DEFAULT,  
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    timeSpan=TOTAL) 
    #STEAM TEMPERATURE 
mdb.models['Model-1'].TabularAmplitude(data=((0.0, 20.0), (600.0, 
400.0), ( 
    1800.0, 500.0), (2400.0, 600.0), (5400.0, 600.0), (5700.0, 500.0), 
( 
    25020.0, 20.0), (30000.0, 20.0)), name= 
    'Temperature', smooth=SOLVER_DEFAULT, timeSpan=TOTAL)    
 
    #NODE SET CREATION FOR CONSTRAINT BY EQUATION 
mdb.models['Model-1'].rootAssembly.Set(name='Constraint Set', nodes= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].nodes.getSequenceFromMask( 
    mask=('[#f4000000 #0:26 #ffffffe0 #ffffffff:3 #7ff #0:186 
#ffff0000',  
    ' #ffffffff:5 #7ffff #0:1583 #38380f00 #318c3838 #e18c61c 
#31870c63',  
    ' #c318c386 #30e18c61 #631870c6 #1c318c38 #630e18c6 #8631870c 
#61c318c3',  
    ' #c630e18c #38631870 #c61c318c #c630e18 #c3863187 #8c61c318 
#70c630e1',  
    ' #8c386318 #18c61c31 #870c630e #18c38631 #e18c61c3 #1870c630 
#318c3863',  
    ' #e18c61c #31870c63 #c318c386 #30e18c61 #631870c6 #1c318c38 
#630e18c6',  
    ' #8631870c #61c318c3 #c630e18c #38631870 #c61c318c #c630e18 
#c3863187',  
    ' #8c61c318 #70c630e1 #8c386318 #18c61c31 #870c630e #18c38631 
#e18c61c3',  
    ' #1870c630 #318c3863 ]', ), )) 
mdb.models['Model-1'].rootAssembly.Set(name='reference node', nodes= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].nodes.getSequenceFromMask( 
    mask=('[#8000000 ]', ), ))   
     
    #CREATE INTERNAL PRESSURE LOAD STEP--* 
mdb.models['Model-1'].CoupledTempDisplacementStep(deltmx=10.0, 
initialInc=1.0,  
    matrixStorage=SOLVER_DEFAULT, maxInc=1000.0, maxNumInc=2000, 
minInc=1e-05,  
    name='INTERNAL_PRESSURE_LOAD', previous='Initial', 
solutionTechnique= 
    SEPARATED, timePeriod=30000.0)   
 
    #INTERACTION PROPERTIES --MASS FLUX--* 
mdb.models['Model-1'].FluidExchangeProperty(dataTable=((21.0, ), ), 
definition= 
    MASS_FLUX, name='IntProp-1') 
 
    #CONSTRAINT BY EQUATION  
mdb.models['Model-1'].Equation(name='Constraint-1', terms=((1.0,  
    'Constraint Set', 3), (-1.0, 'reference node', 3)))  
     
    #PREDEFINED FIELD SET CREATION 
mdb.models['Model-1'].rootAssembly.Set(cells= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].cells.findAt((( 
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    0.0, -110.066666, 100.799998), ), ((0.0, 118.533333, 100.799998), 
), ((0.0,  
    110.066666, 61.666667), ), ((-93.859907, -184.241369, 149.103704), 
), (( 
    -66.487005, -130.780742, 151.327965), ), ((-0.751419, -110.058329, 
0.0), ),  
    ), name='Predefined Field') 
     
    #PREDEFINED FIELDS 
mdb.models['Model-1'].Temperature(createStepName='Initial',  
    crossSectionDistribution=CONSTANT_THROUGH_THICKNESS, 
distributionType= 
    UNIFORM, magnitudes=(20.0, ), name='Predefined Field-1', region= 
    mdb.models['Model-1'].rootAssembly.sets['Predefined Field'])     
     
    #LOADS 
    #1.END LOAD (END LOAD=INTERNAL RADIUS/(2*HEADER THICKNESS) 
mdb.models['Model-1'].Pressure(amplitude='Internal Pressure Load',  
    createStepName='INTERNAL_PRESSURE_LOAD', distributionType=UNIFORM, 
field='' 
    , magnitude=-1.778, name='END LOAD', region= 
    mdb.models['Model-1'].rootAssembly.surfaces['END_LOAD']) 
 
    #2.INTERNAL PRESSURE LOAD 
mdb.models['Model-1'].Pressure(amplitude='Internal Pressure Load',  
    createStepName='INTERNAL_PRESSURE_LOAD', distributionType=UNIFORM, 
field='' 
    , magnitude=1.0, name='INTERNAL PRESSURE', region= 
    mdb.models['Model-1'].rootAssembly.surfaces['MAIN_SURFACE'])     
     
    #SURFACE FILM CONDITION--* 
mdb.models['Model-
1'].FilmCondition(createStepName='INTERNAL_PRESSURE_LOAD',  
    definition=EMBEDDED_COEFF, filmCoeff=1.0, filmCoeffAmplitude= 
    'Film Coefficient', name='SURFACE_FILM_CONDITION', sinkAmplitude= 
    'Temperature', sinkDistributionType=UNIFORM, sinkFieldName='',  
    sinkTemperature=1.0, surface= 
mdb.models['Model-1'].rootAssembly.surfaces['MAIN_SURFACE'])     
     
    #CREATE LOCAL DATUM CSYS 
mdb.models['Model-1'].rootAssembly.DatumCsysByTwoLines(CARTESIAN, 
line1= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges[46], 
line2= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'].edges[45], 
name= 
    'Datum csys-2') 
 
    #DISPLACEMENT BOUNDARY CONDITIONS--* 
    #BACK BC 
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, 
createStepName='Initial',  
    distributionType=UNIFORM, fieldName='', localCsys=None, 
name='BACK',  
    region=mdb.models['Model-1'].rootAssembly.sets['BACK_BC'], 
u1=UNSET, u2=UNSET 
    , u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET) 
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    #FRONT BC    
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, 
createStepName='Initial',  
    distributionType=UNIFORM, fieldName='', localCsys=None, 
name='FRONT',  
    region=mdb.models['Model-1'].rootAssembly.sets['FRONT_BC'], u1=SET, 
u2=UNSET,  
    u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET) 
    #SIDE TUBE BOTTOM BC     
mdb.models['Model-1'].DisplacementBC(amplitude=UNSET, 
createStepName='Initial',  
    distributionType=UNIFORM, fieldName='', 
localCsys=mdb.models['Model-1'].rootAssembly.datums[25], name= 
    'SIDE TUBE BOTTOM', region=mdb.models['Model-
1'].rootAssembly.sets['SIDE_TUBE_BTTM'] 
    , u1=UNSET, u2=SET, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET)       
 
    #ELEMENT SET CREATION FOR RESULT EXTRACTION  
mdb.models['Model-1'].rootAssembly.Set(elements= 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].elements.getSequenceFromMask( 
    mask=('[#0:60 #80 #cc000000 #88ccc #eeeee000 #8cccccc #eeefffff',  
    ' #fffceeee #ffffffff #ffffffee #ffffffff:5 #ffffff #0:31 
#10000000',  
    ' #33333111 #7f777773 #ffffffff:23 #ffff #0:34 #ffff0000 
#ffffffff:153',  
    ' #cf #0:3 #ff000000 #ffffffff:3 #ceff #0:4 #ffffffff:3',  
    ' #8effff #0:4 #ffffff00 #ffffffff:156 #f ]', ), ), name='Result 
Element') 
 
 
     
    #HISTORY OUTPUT REQUEST/INCREMENT VALUE  
mdb.models['Model-1'].historyOutputRequests['H-Output-
1'].setValues(frequency= 
    20) 
 
mdb.models['Model-1'].rootAssembly.setElementType(elemTypes=(ElemType( 
    elemCode=C3D20RT, elemLibrary=STANDARD), 
ElemType(elemCode=UNKNOWN_WEDGE,  
    elemLibrary=STANDARD), ElemType(elemCode=C3D10MT, 
elemLibrary=STANDARD)),  
    regions=( 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-
1'].cells.findAt((( 
    0.0, -110.066666, 100.799998), ), ((0.0, 118.533333, 100.799998), 
), ((0.0,  
    110.066666, 61.666667), ), ((-93.859907, -184.241369, 149.103704), 
), (( 
    -66.487005, -130.780742, 151.327965), ), ((-0.751419, -110.058329, 
0.0), ),  
    ), )) 
 
mdb.models['Model-1'].rootAssembly.regenerate() 
     
    #JOB CREATION    
mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,  
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    explicitPrecision=SINGLE, getMemoryFromAnalysis=True, 
historyPrint=OFF,  
    memory=90, memoryUnits=PERCENTAGE, model='Model-1', modelPrint=OFF,  
    multiprocessingMode=DEFAULT, name='HEADER_10_8_1', 
nodalOutputPrecision=SINGLE,  
    numCpus=1, numDomains=16, numGPUs=1, queue=None, scratch= 
    '', type=ANALYSIS, userSubroutine='', waitHours=0, waitMinutes=0)    
 
    #SUBMIT 
#mdb.jobs['HEADER_10_8_1'].submit(consistencyChecking=OFF)           
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