
A WIRELESS SENSOR NETWORK BREADCRUMB TRAIL FOR AN
AUTONOMOUS VEHICLE

by

Manu Chaudhary

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2019

Approved by:

Dr. James M. Conrad

Dr. Arun Ravindran

Dr. Aidan Browne

©2019
Manu Chaudhary

ALL RIGHTS RESERVED

ABSTRACT

MANU CHAUDHARY. A Wireless Sensor Network Breadcrumb Trail for an
Autonomous Vehicle. (Under the direction of DR. JAMES M. CONRAD)

Research in the area of wireless sensor networks has seen unprecedented growth in

the last decade. Human deployable ad-hoc networks are being used to communicate

essential information in places where there is no network or the network is destroyed

due to a disaster like a flood, hurricane, earthquake and other geologic processes.

The research in the field of autonomous vehicle to reach a GPS location along a trail

in an unstructured outdoor environment inspired us to make a breadcrumb network.

The term breadcrumb is inspired from the well-known fairy tale Hansel and Gretel,

in which Hansel uses breadcrumbs dropped on a trail to trace the way back home.

The prototype of this work has been made using RaspberryPis, GPS modules, and

XBees. The breadcrumb network will help in localizing its nodes and send the GPS

coordinates to the autonomous vehicle. This work has analyzed all the complications

which might occur in case a breadcrumb GPS does not work.

ACKNOWLEDGEMENTS

Thanks goes first and foremost to my advisor Dr. James M. Conrad for his guidance

through my graduate career. Dr. Conrad is tireless and consistent in managing his

students, without his help none of the work in thesis would have been possible. I

sincerely thank Dr. Conrad for believing in me and guiding me through the work

performed in this document. Thanks also goes to Dr. Arun Ravindran and Dr.

Aidan Browne for providing support and guidance, and accepting their positions as

my committee members. I would like to thank Dr Sam Shue, Dr. Benjamin Rhoades

and David Grabowsky for their constant support and guidance. Thanks also goes

to all of my colleagues and classmates in the masters program who, through their

presence, have helped lighten the load of many long hours. I would like to thank

Shantanu Mhapankar, Sunny Arokia Swamy, Raj Gupta, Karim Erian, and Lauren

Johnson for being there for help, advice, and moral support throughout my graduate

career. I would like to thank god, and to my family for all of their love and support.

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Problem Statement 2

1.3. Contribution 3

1.4. Organization of Thesis 3

CHAPTER 2: BACKGROUND STUDY 5

2.1. Introduction 5

2.2. Breadcrumb Networks 6

2.3. Human Deployable Breadcrumb Networks 7

2.4. Self Deployable Breadcrumb Networks 9

2.5. Localization using Breadcrumb Networks without Preinstalled
Network

13

2.6. ZigBee / XBee Personal Area Network PAN 16

2.6.1. ZigBee Protocol 17

CHAPTER 3: HARDWARE AND SOFTWARE SETUP 19

3.1. Hardware Setup 19

3.2. Interfacing with XBee 802.15.4 Radios 21

3.2.1. Serial Data 23

3.2.2. Serial Buffers 24

3.2.3. Modes of Operation in XBee 24

3.2.4. API Frames 26

3.3. Software Used 27

3.3.1. XCTU Software 27

3.3.2. Python XBee Library and Python GPS library 27

3.3.3. MySQL Server and PhpMyAdmin 27

CHAPTER 4: SYSTEM OVERVIEW 28

4.1. XCTU Software 28

4.2. Use of GPS Module 30

4.3. Block Diagram of the Prototype of a Breadcrumb Network 32

4.4. Different Types of Nodes Working in Breadcrumb Network 32

4.4.1. Algorithm Implemented in the Static Router Nodes 34

4.4.2. Algorithm Implemented in the Coordinator 41

4.4.3. Algorithm Implemented in Breadcrumb Nodes without
GPS

45

4.4.4. Algorithm Implemented in the Node Deployment Tool 45

4.4.5. Algorithm Implemented in the Moving Node 47

CHAPTER 5: TESTS AND OBSERVATIONS 51

5.1. Breadcrumb Network Prototype 51

5.1.1. Node Discovery and Determination of Previous Node,
Current Node and the Next Node

51

5.1.2. Installation Algorithm 52

5.1.3. GPS Data of all the Breadcrumb Nodes Collected in
MqSQL Database of Coordinator

54

5.1.4. Approximating the Location of the Node not Having
GPS

56

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 57

REFERENCES 58

LIST OF TABLES

TABLE 3.1: Characteristics of RaspberryPi 21

TABLE 3.2: Characteristics of XBee S2 22

TABLE 3.3: Characteristics of a Frame 26

TABLE 4.1: Path Loss Exponent values for different environments 39

LIST OF FIGURES

FIGURE 2.1: A breadcrumb-based network conceptual schema 6

FIGURE 2.2: RELATE Brick sensor node (left). Boot is attached with
RELATE sensor nodes (right)

8

FIGURE 2.3: Automatic breadcrumb system working, using a dispenser
(1) and breadcrumbs (2 and 3)

10

FIGURE 2.4: Network topology used by Liu et al. 11

FIGURE 2.5: The final TriopusNet node prototype 12

FIGURE 2.6: SensorFly node flying in a hallway 13

FIGURE 2.7: Experimental setup established with 4 SensorFly nodes 14

FIGURE 2.8: UnLoc architecture 15

FIGURE 2.9: Entire System Overview of Wang et al. 16

FIGURE 2.10: ZigBee Personal Area Network 18

FIGURE 2.11: ZigBee Protocols [1] 18

FIGURE 3.1: A set of four subfigures. 20

FIGURE 3.2: A Breadcrumb Node 21

FIGURE 3.3: Uart Data Flow 23

FIGURE 3.4: Data Byte 23

FIGURE 3.5: XBee Internal block diagram 24

FIGURE 3.6: API 1 Frame Structure 26

FIGURE 3.7: API 2 Frame Structure 27

FIGURE 4.1: Configuration settings of Coordinator 29

FIGURE 4.2: Configuration settings of a Router 30

FIGURE 4.3: GPS connection with USB To RS232 TTL PL2303HX Auto
Converter Module

31

FIGURE 4.4: Result obtained by Runnning GPSD on the terminal 31

FIGURE 4.5: Breadcrumb Network Prototype 33

FIGURE 4.6: Intersection area of the circles formed using radius calcu-
lated by RSSI is the location of unknown node

40

FIGURE 4.7: Communication between a Static Node with its nearby
Nodes

42

FIGURE 4.8: Communication between a Coordinator Node with its
nearby Nodes

43

FIGURE 4.9: GPS data of all the Router Nodes stored at PhpMyAdmin
Server

49

FIGURE 4.10: All the Nodes of the breadcrumb System 49

FIGURE 4.11: Entire System Setup 50

FIGURE 5.1: Device Discovery by Breadcrumb Node 52

FIGURE 5.2: New Node Installation 53

FIGURE 5.3: RSSI vs Distance at 0 Power Level 53

FIGURE 5.4: Location of the Testing 54

FIGURE 5.5: GPS Location of all Nodes Collected in MySQL database
of Moving Node

55

FIGURE 5.6: Location of all the Nodes seen on Google Map 55

LIST OF ABBREVIATIONS

FFD Full Function Device

FIRE Fire Information and Rescue Equipment

HMD Head Mounted Display

IEEE Institute of Electrical and Electronics Engineers

IPv4 Internet Protocol Version 4

MAC Medium Access Control

MUBCS multiple User breadcrumb System

PDR Pedestrian Dead Reckoning

RFD Reduced Function Device

RMG Relative Measurement Graph

RSSI Received Signal Strength Indicator

SNR Signal-to-noise ratio

UART Universal Asynchronous Receiver/Transmitter

USGS United States Geological Survey

WSN Wireless Sensor Network

CHAPTER 1: INTRODUCTION

1.1 Motivation

Research in the area of Wireless Sensor Network(WSN) has shown unprecedented

growth in the last decade. These networks are presently being used for industrial ap-

plications, environmental monitoring, precision agriculture, security and surveillance.

The research in the field of autonomous vehicles in unstructured human uninhabit-

able environment presents a big challenge. Today, the world is facing an increasing

frequency of natural disasters, large scale accidents, and terrorism. In these situa-

tions, people may need a network which can be established by the first responder

quickly and can be used by an autonomous vehicle to follow the path and reach the

destination.

The main motivation for this work comes from the situation where security per-

sonnel are doing surveillance in outdoor human uninhabitable place. In order to

maintain a communication with the base station they keep on establishing a network.

This network can be used to convey their physiological information. The same net-

work can be used by an autonomous vehicle to traverse a path by following the GPS

coordinates of the temporary network. In critical situations, an autonomous vehicle

can provide even a life saving assistance to the first responder. The main inspira-

tion for using a human deployable network to assist the autonomous vehicle comes

from the well-known fairy tale Hansel and Gretel, in which Hansel uses breadcrumbs

dropped on a trail to trace the way back home. While critically analyzing the topic,

an exhaustive study was carried to find an easy alternative solution for the problem,

then establishing a breadcrumb network by the first responder.

2

In the age of internet, one can trace the path followed by first responder all the

way to its destination by sending its GPS coordinates continuously to a online server,

and an autonomous vehicle can travel to that point with the help of its telemetry

sensors through the unstructured environment. In our study, we found that the

solution of using the internet not optimal because, in most of the uninhabitable

places, internet facilities are still not established. Even if internet is available, it

would not be continuous. With the limited information of the path followed by first

responder, it is very difficult for any vehicle to trace along that path with a very high

probability that the vehicle will land up in no return situation. Thus, after carrying

out an extensive study, one can conclude that there is a need of a Breadcrumb network

which can assist the first responder to send GPS coordinates and vital information

to the autonomous vehicle. The GPS coordinates communicated by the network to

the autonomous vehicle is used by the vehicle to reach the first responder and assist

him in his desired mission. For completing up this research, we are assuming that

the breadcrumbs placed by the first responder are kept in a trail or vehicle movable

locations so that vehicle can trace the breadcrumbs. The whole idea of establishing a

breadcrumb was to make a fail-safe network. During our study and implementation,

we found various problems associated with the breadcrumb network.

1.2 Problem Statement

The breadcrumb network required to be made should be highly accurate in its

working. The first problem was to decide a suitable hardware and make a bread-

crumb network. The most basic and biggest problem was that a breadcrumb placed

in a highly dense vegetative environment might not give us the GPS reading. In

that situation, there will a portion of trail path which will be completely unknown to

the autonomous vehicle. The task is to localize the missing breadcrumb. The GPS

reading also have slight variations in the values of longitude, latitude and altitude at

different times. The another major issue was to approximate the most accurate read-

3

ing given by the GPS at different times. The breadcrumbs might get dysfunctional

due to hardware issue or human intervention. We have to devise a method that each

breadcrumb stores the GPS coordinates of a node placed before it and after it, so

that autonomous vehicle knows the GPS Coordinates of the next breadcrumb node.

In the external environment, it is very tough to know the limit of the range while

placing the breadcrumb nodes. If a node goes beyond the communication range of

the previously installed node, the communication between the node stops. When a

new breadcrumb node is installed, it should be able to identify its neighbouring nodes

by discovering the nearby nodes and identify the previously installed node.

1.3 Contribution

The breadcrumb networks is an active area of research with a large number of appli-

cations like environmental monitoring, precision agriculture, security and surveillance.

The application of a breadcrumb network to provide a traversing path for autonomous

vehicle has a numbers problems whose solution still required to found. This research

contribution are as follows:

1. To design a prototype of breadcrumb network using RaspberryPis.

2. To implement a Node Discovery, Power-On and Deployed algorithm in bread-

crumb nodes.

3. Solving the problem of localizing the breadcrumb not giving the latitude, lon-

gitude and altitude and implemented it on RaspberryPis.

4. Installing some breadcrumb nodes in between without the GPS modules and

approximating its location with the help of previous and next node installed.

1.4 Organization of Thesis

This thesis is organized into six chapters. Chapter 2 provides a background in-

formation about different types of breadcrumb networks and existing research in the

usage of breadcrumb networks. Chapter 3 describes the initial hardware and software

4

design. Chapter 4 describes the System Overview, which contains the algorithm de-

signed to make a prototype of a breadcrumb network and steps for configuring the

prototype. Chapter 5 summarizes the tests and observations. Chapter 6 presents the

conclusions of this research and future work.

CHAPTER 2: BACKGROUND STUDY

To make a breadcrumb network for an autonomous vehicle, an extensive back-

ground study was carried out to know all the types of breadcrumb networks used for

wireless communication. In this study, a large number of breadcrumb networks were

studied to know their merits and demerits. An extensive study was also done on the

ZigBee protocol.

2.1 Introduction

A wireless sensor breadcrumb network is made up of a large number of sensor

nodes used for establishing a communication path for transmitting essential informa-

tion. This information is transmitted through a self-configuring network of sensor

motes. The other very important problem solved by these motes is the task of lo-

calization. The self-localization capability is a highly required characteristic for a

wireless sensor networks [2]. In environmental monitoring applications like water

quality monitoring or precision agriculture, forest fire observation, the data measured

are meaningless without knowing the location. The location estimation enables innu-

merable applications, like intrusion detection, road traffic observation, surveillance,

and exploration using autonomous vehicles. Wireless sensor breadcrumb network’s

research is a rapidly developing area for a myriad of applications, like collecting physi-

ological data of firefighters working in a building, monitoring pipelines, or monitoring

wearable location awareness systems.

The term breadcrumbs is a reference to the well-known fairy tale Hansel and Gretel,

in which Hansel uses breadcrumbs to trace the path back home [3]. There are many

ways by which the breadcrumb network can be configured. The two major types of

6

breadcrumb networks are human deployable breadcrumb networks and self deployable

breadcrumb networks. The majority of breadcrumb systems we came across were

using hardware based on 900 MHz and 2.4 GHz frequencies.

2.2 Breadcrumb Networks

Breadcrumb nodes are small and low-priced devices that work as relays; that is,

their only aim is to forward packets between nodes. As an example of their use,

in an emergency situation, the first responders are provided with a large number of

breadcrumb devices with a mobile radio. They will drop these breadcrumb nodes,

for establishing a communication channel. Figure 2.1 shows a breadcrumb-based

Figure 2.1: A breadcrumb-based network conceptual schema [3]

network. The base station establishes communication with the mobile node with

the assistance of relays placed by the first responders, thus expanding the coverage

area.The advantages of the breadcrumb networks are as follows:

1. Helps in the creation of multihop network.

2. Establishes a communication channel between the first responders after the

relays are placed.

3. Guarantees an efficient and reliable communication

4. An increased coverage area is obtained.

7

5. The probability that network will get partitioned is reduced.

Extensive research has been conducted to address the deployment decision prob-

lem. All the deployment algorithms share several important characteristics. These

algorithms monitor the link quality by measuring received signal strength indicator

(RSSI), bandwidth or signal-to-noise ratio (SNR) [4, 5]. These measurements can

be collected with the help of probe packets artificially infused in the network or by

means of control messages acquired directly using the routing protocol. A threshold

for deploying a breadcrumb is set. When the link quality goes below a particular

threshold, the user should drop a new breadcrumb. For example, the algorithms used

in [4] and [5] use a pre-defined triggering threshold for all the applications. An effi-

cient deploying algorithm should be capable of observing changes in the network to

fulfill the relays needs.

2.3 Human Deployable Breadcrumb Networks

An extensive survey to look for human deployed breadcrumb networks was carried

to know the deployment criteria used by them and the success achieved. The first

human deployed breadcrumb network we came across was LifeNet [6]. LifeNet is an

ad-hoc network which can be used in emergency situations like fire in the building.

It is a static network which is required to be deployed in the building to establish

communication between the firefighters and the base station. This network infrastruc-

ture can be used for positioning, sensing, and communication. The firefighters use a

wearable computing equipment called as head mounted display for receiving naviga-

tional information. The sensor system is established on the sensor nodes referred as

RELATE Bricks (Figure 2.2), a variant of a RELATE node as introduced by Hazas

et al. [7]. The data processing and the communication for Bricks is handled with the

help of Particle Computer sensor node using a 8-bit PIC18 microcontroller and 868

MHz TR1001 radio front-end [8]. The Communication and the time synchronization

primitives are completed using the AwareCon network stack [9]. The sensor board is

8

Figure 2.2: RELATE Brick sensor node (left). Boot is attached with RELATE sensor
nodes (right) [7]

composed of four 40 kHz ultrasound transducers, power supply, and a temperature

sensor. They are using the transducers, which acts as receivers and transmitters for

ultrasonic bi-directional sensing. With the help of bidirectional ultrasonic sensing,

these devices can calculate their positions with respect to each other. Additionally,

they placed two of the ultrasonic sensing nodes on the pair of heavy duty boots. It is

used to perform spatial discovery of the nodes and to measure the distance and the

angle-of-arrival relative to discovered nodes. The Fire Information and Rescue Equip-

ment (FIRE) project at UC Berkeley’s Mechanical Engineering Department aimed

to design and implement a decision support tools for the assistance of firefighters in

order to raise their safety, effectiveness, and efficiency in emergency situations, mainly

in massive complex buildings [10]. To solve the problem of safety and localization

of firefighters, they created hardware and software tools. The strategy used by them

is to use a wireless sensor network (WSN) called SmokeNet to trace the firefighters

working in a large building and supply essential information to all the persons con-

cerned. The key information includes the location of firefighter, fire and physiological

data. The interface for these information is the FireEye head-mounted display(HMD)

and the electronic Incident Command System (eICS) software [11]. For solving the

problem of localization, the building should be pre-installed with beacon motes that

continuously broadcast a static information at a 40 Hz frequency. SmokeNet consists

of a large number of pre-installed nodes located at each smoke detector and doorway

9

in a building. Firefighters are equipped with MICA2 mote, a head-mounted display

(HMD) and a small wearable computer. [12]. In HMD, the locations of the firefighters

and messages from the incident command are provided to help them in their task.

The research by Souryal et al. is based on the requirement to extend the range of

single hop communication [5]. A single hop range is restricted by harsh radio propa-

gation conditions or distance. In this paper, a deployment procedure for the sensor

nodes is suggested, taking the consideration of real-time measurements and Physical

layer characteristics. They have implemented a prototype based on 900 MHz TinyOS

motes [13,14]. The deployed relays used for range extension have been referred to as

breadcrumbs. To access the exact location for the mote placement, a mobile mote

continuously performs the link assessment and deployment algorithm, giving a visual

indication regarding the new relay deployment position. The proposed relay algo-

rithm adapts to the environment automatically and helps in determining the location

to place the new relay. The new relay is placed when the user reaches to the edge of

the existing network.

2.4 Self Deployable Breadcrumb Networks

Most of the breadcrumb networks which are used or required are in the case of

an emergency situation like fire fighting, natural disasters like earthquake. The need

for these networks arises when there is no pre-existing network or the pre-existing

network is destroyed. In some cases, like a fire in a building, it is tough for the fire-

fighters to deploy the network by installing the sensor motes at appropriate locations

so that their connectivity with the base station outside the building is maintained. To

solve this problem of a human requirement in establishing the network, we found the

research completed by Liu et al. which suggested a concrete method of establishing

a breadcrumb network without any human involvement [15]. The breadcrumbs used

here are very small size motes, contained in a dispenser. These breadcrumbs move

out of the dispenser automatically as per the need. The dispenser is fitted at the back

10

of firefighters as shown in Figure 2.3. The base station used here is a USB-ported

Figure 2.3: Automatic breadcrumb system working, using a dispenser (1) and bread-
crumbs (2 and 3) [15]

device attached to a laptop computer. The Texas Instruments Inc. evaluation board

SmartRF04EB has been used to program the breadcrumb, base station, dispenser

using IAR programming environment [16]. ZigBee networks have been used for im-

plementation because of the advantage of ZigBee over Bluetooth and WiFi in terms

of power, bandwidth, and cost [17]. A very important concept used in this network is

adaptive power control. It means dynamically increasing the power levels of remote

breadcrumbs to increase their chances to reconnect to the network. The paper also

addresses the issue of reduction in signal strength due to the difference in height of

dispenser and breadcrumb. To resolve the height effect problem, a unique technique

11

called as adaptive threshold adjustment is proposed. All the hardware used by Liu

et al. work on 2.4 GHz frequency range [15]. The benefit of using higher frequency is

that the antenna size gets reduced. Since antenna size gets reduced, a large number

of breadcrumbs can fit inside a dispenser. Their research also addresses the issue

of reduction in signal strength due to the difference in the height of dispenser and

breadcrumb. It focuses on the requirement that in case of multi-user application, the

user with the most number of breadcrumbs in dispenser should disperse its bread-

crumbs. Liu et al. work proposes the utility function based algorithm UF, which is

as follows: When the request message is broadcasted by the requester, the algorithm

gets initiated. After the algorithm gets initiated, neighbors send the information re-

garding the number of breadcrumbs to the requester. After a predefined time, the

value of utility functions is calculated by the requester for each of its neighboring

nodes and sends a message to the user with the highest number of breadcrumbs to

deploy a new breadcrumb. The UF coordination algorithm maintains connectivity

up to 87% greater distances than the baseline greedy coordination algorithm and also

maintaining a high packet delivery ratio. By using this network shown in Figure 2.4,

Figure 2.4: Network topology used by Liu et al. [15]

topology, they achieved 200 percent link redundancy at the price of 123 percent node

redundancy. Liu et al. further extended their research on breadcrumb networks by

using their breadcrumbs for various emergency response applications [15]. A similar

method of automatic deployment of the breadcrumb is used by Lai et. al for pipeline

monitoring [18]. These pipelines are used for various purposes like water pipelines for

carrying water, oil pipelines for carrying petroleum products. The prototype made

for monitoring the pipeline from inside is called as TriopusNet. TriopusNet automat-

12

ically deploys these sensors with the help of a deployment algorithm. The flowing

node inside the pipeline latches itself to the inside wall of the pipe by extending its

mechanical arms. The TriopusNet (Figure 2.5) system is made up of a breadcrumb

network of wireless sensor nodes. This system releases a new node from the repository

and executes a node replacement algorithm, whenever a node has a low battery or

experiences some fault. The TriopusNet node consists of:

Figure 2.5: The final TriopusNet node prototype [18]

1. A wireless sensor mote termed as Kmote.

2. A motor, which is driving three mechanical arms for latching detaching to the

pipes inner surface.

3. A spherical case for waterproofing the nodes

4. Gyroscope sensors and pressure sensors for node localization.

The Kmote circuit used in TriopusNet is a standard TelosB mote, which contains

a MSP430 microcontroller and a CC2420 radio stack [19, 20]. It is compatible with

Tiny-OS. Because pipes are of variable diameters, the arms stroke length should be

large enough to touch the pipe inner surface on all the sides. The Figure 2.5 shows

the final prototype of TriopusNet. The main benefit of TriopusNet is that it reduces

13

human effort in maintaining and deploying WSN infrastructure inside pipes. The

TriopusNet provides a promising strategy to automate the sensor deployment and

replacement inside pipelines. A very unique work which we came across is completed

Figure 2.6: SensorFly node flying in a hallway [21]

by Purohit et al. [21]. They proposed and implemented an aerial sensor network

called as SensorFly for indoor emergency application. The SensorFly node used in

the prototype implementation is shown in Figure 2.6. It is a miniature, low cost sensor

network, which has the capability to achieve three-dimensional sensing, self deploy

and adapt to network disruptions and node destruction in harsh environments like

fire in a building. The processor used in the first version of the sensorFly node was

made using ARM7 based LPC2148 [22]. The second and third version of sensorFly

nodes incorporates an additional external processor and an AVR AtMega644 for radio

function [23]. The navigation sensors used are Accelerometer, Gyroscope, compass

ultrasonic ranger, Nanotron nanoLoc RToF ranging, laser ranger and vision. They

assessed the platform in a real fire monitoring scenario with the help of CFAST indoor

fire simulation models [24]. SensorFly can completely eliminate the cost of building

large sensing infrastructure. The Figure 2.7 shows the final prototype of SensorFly

implemented and tested successfully.

2.5 Localization using Breadcrumb Networks without Preinstalled Network

Breadcrumb systems (BCS) are very useful in emergency situations to establish an

ad-hoc network. Breadcrumb networks can solve the problem of localization, which

14

Figure 2.7: Experimental setup established with 4 SensorFly nodes [21]

is highly essential in emergency situations like localizing a firefighter working dousing

fire in a building. In the research of Liu et al. a breadcrumb network is implemented

for multiple users, which utilizes efficient and automatic coordination among mul-

tiple users to accomplish better utilization of limited number of breadcrumbs [25].

This system is termed as MUBCS (multiple user breadcrumb system). This paper

proposes a utility function (UF) based algorithm. UF helps in maintaining longer

breadcrumb chain lengths with high system reliability and fairness by using suitable

benefit and cost functions. UF does not require any prior user mobility models, thus

making the design suitable for practical real life applications. For localizing a node

without the help of any pre-installed network we came across a study by Wang et

al. [26]. In this study, they have suggested an indoor localization technique by using

identifiable signatures in the indoor environment. These identifiable signatures may

be due to distinct pattern on smartphone accelerometer caused by an elevator, a cor-

ridor corner in a building may hear a unique WiFi access points, a particular location

may experience uncommon magnetic fluctuations. It is hypothesized that these kinds

of signatures can be used for internal landmarks of the building. They named their

technique as UnLoc and believe in its real world deployment. The Figure 2.8 provides

us the architecture of unLock. The research of Chandra et al. describes a wearable

15

Figure 2.8: UnLoc architecture [26]

location awareness system, which can determine the location of its user within a given

building if map of the building is available [27]. The system uses a modest number

of ultrasonic range transceivers as sensing elements. A simulation model of the prop-

agation of ultrasonic signals inside the building is used for calculating the expected

readings. There have been a lot of research done on combining PDR with wireless

sensor networks (WSN) [28–30]. The research of Li et al. [31] pointed out a very

important way of exactly locating the location of a breadcrumb. In their research,

each firefighter is provided with foot-mounted PDR units and also carries small de-

ployable motes called as breadcrumbs. The breadcrumbs are placed in a dispenser

and it is attached to the back of firefighter. The self deployed breadcrumb system

is used to transfer data and relative distances among system nodes i.e, breadcrumbs

and firefighters. By collecting these location measurements, a localization algorithm

is made, which provides the position estimates for both firefighter and breadcrumb.

A PDR (Pedestrian Dead Reckoning), which is a mounted on the foot of firefighter is

made up of a gyroscope and accelerometer as shown in Figure 2.9.

The accelerometer and gyroscope keep the record of acceleration and angular ve-

16

Figure 2.9: Entire System Overview of Wang et al. [26]

locity all time. With the help of inertial dynamic equations and combining it with

the zero velocity update error correction, the PDR provides firefighter displacement

estimate between two time points. Since the firefighters are moving, the breadcrumbs

get dropped from the dispenser, creating a chain to transmit data from firefighter to

the base station located outside the building. A breadcrumb estimates the distance

between itself and another breadcrumb with the help of receive signal strength in-

dicator (RSSI). By accumulating all these position related measurements, a relative

measurement graph (RMG) is constructed, where breadcrumbs and firefighters are

nodes of the graph and the measurements made are the edges of the graph. A col-

laborative localization algorithm is applied on the RMG to estimate the position of

breadcrumbs and firefighters. The localization algorithm developed by them is highly

scalable. This allows the nodes to join and leave the graph dynamically. The solution

provided is unique for localization using breadcrumb networks.

2.6 ZigBee / XBee Personal Area Network PAN

ZigBee is a global standard for making low-cost, low-power and low-data-rate wire-

less mesh networking built on the IEEE 802.15.4 standard [1]. The below list de-

scribes the three types of nodes that make a ZigBee based network. They include a

17

coordinator, end devices, and routers.

1. Coordinator: A coordinator is a full function device and is responsible for overall

network management. Each network has only one coordinator. The coordinator

performs the following functions:

• Selects the channel to be used by the network.

• Starts the network.

• Assigns how addresses are allocated to nodes or routers.

• Permits other devices to join or leave the network.

• Holds a list of neighbors and routers.

• Transfers application packets.

2. Router: A router is used in tree and mesh topologies to expand network cov-

erage. The function of a router is to find the best route to the destination to

transfer message.

3. End Device: The end device can be connected to a router or coordinator. It

operates at low duty and power. The end device performs the following func-

tions:

(a) Joins or leaves a network

(b) Transfers application packets

Figure 2.10 shows an example of a complete PAN with one central coordinator.

2.6.1 ZigBee Protocol

All the protocols of the ZigBee are shown breiefly in Figure 2.11.

The study related to all the breadcrumb networks and ZigBee protocol used for

wireless communication gave a great insight in designing a breadcrumb network for

an autonomous vehicle.

18

Figure 2.10: ZigBee Personal Area Network [1]

Figure 2.11: ZigBee Protocols [1]

CHAPTER 3: HARDWARE AND SOFTWARE SETUP

This chapter covers the hardware setup and the software used to testify the research

performed for the thesis. It begins with an overview of the hardware components. It

also stepwise explains the connections of the components to make the entire system.

It also explains the software components and libraries used to implement the complete

breadcrumb network described in Chapter 4.

3.1 Hardware Setup

The main aim of the thesis is to build a prototype of the breadcrumb network,

which can collect its GPS data along with the GPS data of previous and next node

and transmit it towards Moving Node. The Moving node stores all the data in a

MySQL database. The GPS data collected in the coordinator node is used by the

autonomous vehicle to traverse the path along the trail. For this thesis, RaspberryPi

boards have been used for implementing the breadcrumb network. For making the

breadcrumb network, three types of breadcrumb nodes have been used. These nodes

are Coordinator Node, Static Breadcrumb Nodes and Moving Node. A Tool is also

made using RaspberryPi and Xbee to help in the installation the new Node. The

Figure 3.2 shows the prototype of a static breadcrumb node with GPS. The main

aim of our breadcrumb network is to provide latitude, longitude, altitude and time

information of the previous and next breadcrumb node to the Moving Node node

as fast as possible. The nodes should be self configuring,i.e, they should be able to

identify their previous and next nodes and also they should be able to tell the user the

location of their placement. The placement indication is given by glowing an LED for

15 seconds, based on the signal strength relative to the previous node. The Moving

20

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Individual Components used to make a breadcrumb node: (a) Gowoops
GPS Module with 3m Active Antenna; (b) Dual USB Portable Solar Battery Charger
Solar Power Bank; (c) RaspberryPi; (d) Solu USB To RS232 TTL PL2303HX Auto
Converter Module; (e) Sparkfun XBee Explorer Dongle; and, (f)XBee S2 Module

node uses these GPS coordinates to reach the destination. The GPS modules used in

the breadcrumb node is Gowoops GPS Module with 3m Active Antenna. The GPS

modules are connected to the RaspberryPi using Solu USB To RS232 TTL PL2303HX

Auto Converter Module Converter Adapter. To transfer the GPS coordinate infor-

mation of the previous and next node to the Moving Node, S2 Series XBee modules

have been used. A SparkFun XBee Explorer Dongle is used to connect XBee S2 to

USB port of RaspberryPi. Figure 3.1 shows all the individual components used for

making a breadcrumb node. The RaspberryPi board is a development board built on

the Broadcom BCM2837B0 processor. Some specifications and features of the board

21

Table 3.1: Characteristics of RaspberryPi [32]
Processor BCM 2835 ARM11 700 MHz
Board Power Draw 600 mA
Video Ouput HDMI
GPIO Pins 40
SD Card MicroSD
Ethernet Port for Internet Access 10/100 MB
Operating System Rapbian

are listed in Table 3.1. All the radio communication between the breadcrumb nodes

Figure 3.2: A Breadcrumb Node

is handled by XBee S2 radio modules of Digi International. The radios provides the

802.15.4 protocol on a simple to implement and low-powered device. Table 3.2 shows

some of the important data-sheet specifications of the XBee S2 modules.

3.2 Interfacing with XBee 802.15.4 Radios

All data to be sent using the XBee is sent through UART interface connection.

Devices that have a UART interface can connect directly to the pins of the RF module.

The Figure 3.2 shows the Interfacing of the RaspberryPi to the XBee module using

XBee Explorer Dongle. To send data with the XBee module, it first needs to be

22

Table 3.2: Characteristics of XBee S2 [1]
Indoor/Urban Range up to 133 ft. (40 m)
Outdoor RF line-of-sight Range up to 400 ft. (120 m)
Transmit Power Output
(software selectable) 2mW (+3dBm)

RF Data Rate 250,000 bps

Serial Interface Data Rate
(software selectable)

1200 - 230400 bps
(non-standard baud rates also
supported)

Receiver Sensitivity -95 dBm
Supply Voltage 2.8 to 3.4 V
Operating Current (Transmit) 40mA (@ 3.3 V)
Power-down Current <1 uA @ 25 C
Operating Frequency Band ISM 2.4 GHz
Dimensions 0.960 inch x 1.087 inch(2.438cm x 2.761cm)
Operating Temperature 40 to 85 Celsius(industrial)

Antenna Options Integrated Whip, Chip, RPSMA, or
U.FL Connector

Supported Network Topologies Point-to-point, Point-to-multipoint,
Peer-to-peer & Mesh

Number of Channels
(software selectable) 16 Direct Sequence Channels

Addressing Options PAN ID and Addresses,
Cluster IDs and Endpoints (optional)

transferred to the XBee module over serial via UART. Once received by the XBee,

the data is queued in the module Data-In (DI) buffer. The buffer acts as a first in,

first out (FIFO) queue, delivering data as the CSMA/CA algorithm. The device will

also keep data queued as it is receiving transmissions. If the DI buffer is full, all

new data is discarded. Similarly, all radio frequency (RF) data received is placed

into the modules Data-Out buffer until the device receives it over UART. Any new

transmissions received when the DO buffer is full are discarded. Both the DI and

DO buffers are 100 bytes in size. The baud rate chosen for UART communications

in this thesis is 57600 baud [33]. Figure 3.3 shows the data flow between two XBees

connected to micro-controllers.

23

Figure 3.3: Uart Data Flow [1]

3.2.1 Serial Data

A device sends data to the XBee S2 RF Module’s UART through pin 4 as an asyn-

chronous serial signal. The signal should be high, when the device is not transmitting.

For successful serial communication, the UART of both devices (the microcontroller

and the XBee S2) should have compatible settings for the baud rate, parity, start

bits, stop bits, and data bits. Each data byte consists of a 8 data bits, start bit

(low) and a stop bit (high). Figure 3.4 shows the serial bit pattern of data passing

through the device. Figure 3.4 shows UART data packet 0x1F (decimal number 31)

as transmitted through the device [1].

Figure 3.4: Data Byte [1]

24

3.2.2 Serial Buffers

The XBee S2 modules maintains internal buffers to collect serial and RF data that

it receives. The serial receiver buffer collects incoming serial characters and holds

them until the device can process them. The serial transmit transmits the data out

the serial port until it receives via the RF link. Figure 3.5 shows the process of device

buffers collecting received serial data. The operating mode of an XBee radio module

Figure 3.5: XBee Internal block diagram [1]

establishes the way a user or any micro-controller attached to the XBee communicates

with the module through the Universal Asynchronous Receiver/Transmitter (UART)

or serial interface.

3.2.3 Modes of Operation in XBee

Radio modules can work in three different operating modes, depending on its con-

figuration and firmware:

• Application Transparent (AT) operating mode

• API operating mode

• API escaped operating mode

25

3.2.3.1 AT Mode

AT Mode is called as the Application Transparent Mode. The protocol link es-

tablished between the two XBees is transparent and it appears to be a direct serial

link between the communicating nodes. Even though the data transmission and re-

ception between the nodes is unprocessed, still the message passed between nodes is

encapsulated with needed information such as address and error checking bytes [34].

3.2.3.2 API Mode

API mode is an alternative to transparent AT mode. API operating mode requires

that the communication with the module is done through API frames. In API Mode,

the data is packaged with other information like checksum, destination address and

the type of packet. The receiving node also accepts the data with information such as

signal strength, type of packet, checksum and source address. The advantage is that

the user can build a packet that includes important data, such as destination address,

and the receiving node can pull the packet information such as source address of the

data. Although, the API Mode is more programming intensive, but it gives greater

flexibility and increased reliability [34]. With API operating mode, one can:

• Configure the XBee module itself

• Configure remote modules in the network.

• Manage data transmission to multiple destinations.

• Receive success/failure status of each transmitted RF packet.

• Identify the source address of each received packet.

Depending upon the value of AP parameter, the radio module operates in one of two

modes: API (AP=1) or API escaped (AP=2) operating mode.

26

Table 3.3: Characteristics of a Frame [34]
Field Description

Start
delimeter

The first byte of a frame consisting of a special sequence of bits
which indicate the beginning of a data frame. Its value is always
0x7E. This allows for easy detection of a new incoming frame.

Length
Specifies the total number of bytes included in the frame data
field. Its two-byte value excludes the start delimiter, the length,
and the checksum.

Frame
data

Composed by the API identifier and the API identifier-specific
data. The content of the specific data depends on the API
identifier (also called API frame type).

Checksum

The last byte of the frame. It helps test data integrity and is
calculated by taking the hash sum of all the API frame bytes that
came before it, excluding the first three bytes
(start delimiter and length).

3.2.3.3 API escaped operating mode

This mode increases the reliability of transmission by preventing the conflicts using

the special characters like the start-of-frame byte (0x7E). Since 0x7E appears at the

start of each API packet, a module knows that a new packet has begin if 0x7E is

received at any time [34].

3.2.4 API Frames

The structure of API frame in API non-escaped (API=1) and API escaped (API=2)

is shown in Figure 3.6 and Figure 3.7 respectively.

If the module is operating in API escaped operating mode, some bytes in the

Length, Frame data, and Checksum frame fields may need to be escaped. In ap-

Figure 3.6: API 1 Frame Structure [34]

plication programming interface (API) mode for communicating data, all messages

27

Figure 3.7: API 2 Frame Structure [34]

intended to be sent to other nodes must be packaged into a frame format before being

sent to the XBee module. All messages received from the module are also packaged

in this format.

3.3 Software Used

3.3.1 XCTU Software

XCTU is a free software used for configuring Digi RF modules. It includes new tools

that make it easy to set-up, configure and test XBee RF modules [34]. XCTU software

has been used to configure the XBee S2 in API escaped (API=2) operating mode.

XCTU software is installed in PC. XCTU cannot be installed in RaspberryPi. After

configuring the XBee S2 in API=2 mode, the XBee can be connected to RaspberryPi.

3.3.2 Python XBee Library and Python GPS library

The software programming language used in the making of the breadcrumb net-

work is done using Python. GPS and XBee library of Python helped in making the

breadcrumb network.

3.3.3 MySQL Server and PhpMyAdmin

To store the GPS data arriving from all the router nodes at the Moving node, the

MySQL database is installed in coordinator RaspberryPi. The data reaching at the

coordinator node is stored in tables inside the MySQL database.

CHAPTER 4: SYSTEM OVERVIEW

This chapter provides a detailed overview of the full software architecture imple-

menting the hardware and software of chapter 3. The breadcrumb network consists

of RaspberryPis, GPS modules and XBees. The main purpose of the breadcrumb

network is that each node collects the GPS Coordinates of the previous and next

node and send the GPS data periodically to the Moving Node. The collected GPS

coordinates are used by the autonomous vehicle to traverse its path through a trail.

The purpose of the breadcrumb network is to provide the GPS coordinates to the

autonomous vehicle so that the autonomous vehicle can follow that path and reach

its destination.

4.1 XCTU Software

For proving the concept of a breadcrumb network, a breadcrumb network prototype

is made using eight breadcrumbs. The first step for making a breadcrumb network

is to configure the XBees in API 2 mode. The API mode is essential for making a

breadcrumb network. In API mode, the data is first placed into a frame and then

transmitted. For making the network, an XBee configured in Coordinator API 2 mode

is attached to a USB port of a RaspberryPi and other five have to be configured into

Router API 2 mode. For initial configuration of the XBee, XCTU software is required.

XCTU software is the graphical software package, which is used for configuring the

different parameters in an XBee. Most of the parameters are kept as default. The

parameters which are essentially required to be configured are ID PAN ID, NI Node

Identifier, BD Baud Rate, PL Power, BH Broadcast Radius, NH Maximum Hops and

AP API Enable of the XBee. Some of these parameters are shown in Figure 4.1 inside

29

the green squares. The PAN ID should be the same for both the Coordinator and the

Routers. With the help of PAN ID, the system identifies all XBees belonging to the

same network. Since the XBee are operated in API 2 mode, the destination address of

Figure 4.1: Configuration settings of Coordinator

the Router does not possess any importance. The baud rate used in XBees is 57600.

The reason for using API 2 mode is that the API escaped (API 2) operation involves

escaping character sequences in an API frame to improve reliability, especially in

noisy RF environments. The Routers are also required to be configured using XCTU

software. All the Routers firmware is first updated with API 2 Mode. When a Router

is operated in API 2 mode, it uses a destination address of 0, irrespective of the value

of destination address placed. After installing the firmware, the Router is put to the

default settings. Most of the settings will be kept as default except a few as shown

30

in Figure 4.2 inside the green color squares. After configuring the XBees, they are

Figure 4.2: Configuration settings of a Router

attached to the USB port of RaspberryPis. The XBee pin length is 0.1 inch. It

cannot be connected to the breadboard, to further connect it to the GPIO pins of

RaspberryPi.

4.2 Use of GPS Module

The GPS connection to a RaspberryPi is made using USB to RS232 TTL PL2303HX

Auto Converter Module. This module helps in connecting the GPS to the USB port

31

of the RaspberryPi. The connection diagram is shown in Figure 4.3.

Figure 4.3: GPS connection with USB To RS232 TTL PL2303HX Auto Converter
Module

The GPS device data is received in the RaspberryPi with the help of GPSD. GPSD

is a daemon that receives data from a GPS receiver and provides the data back to

multiple applications. When GPSD starts, it is able to open up the proper socket and

when GPS is locked, some data is received from the GPS module. The data obtained

by running the GPSD on the terminal of RaspberryPi is shown in Figure 4.4.

Figure 4.4: Result obtained by Runnning GPSD on the terminal

For acquiring the appropriate data from the raw GPS data, Python3 GPS library

is used.

32

4.3 Block Diagram of the Prototype of a Breadcrumb Network

In this work, eight breadcrumb nodes are used. Six breadcrumb nodes are static

Nodes, including the Coordinator Node. Each breadcrumb node is composed of Rasp-

berryPi, GPS and an XBee. There is one Moving Node, which acts like a autonomous

vehicle. A Moving Vehicle is composed of a RaspberryPi and a XBee module. One

Node Deployment tool is also made using RaspberryPi and XBee to assist in the de-

ployment of the new node. The basic prototype of the breadcrumb network is shown

in Figure 4.5 and explained in upcoming sections.

4.4 Different Types of Nodes Working in Breadcrumb Network

In order to make a breadcrumb network, four types of breadcrumb nodes are used.

The first node is Coordinator. The coordinator node is the main controller node in

XBee network. This node is build using a RaspberryPi, GPS module, and an XBee

S2 module. This node functionality is to collect the GPS data and forward it to its

next node. The second type of breadcrumb nodes used are Static Router Nodes. The

Static Router Nodes are also build using RaspberryPi, GPS and XBee. All the Static

Router Nodes have exactly the same program working inside them. The third type of

node do not have a GPS connected to it. A single node in our breadcrumb network

prototype doesnot have GPS connected. This node will try to approximate its latitude

and longitude using the GPS data collected from its previous and next node. The

fourth type of node is a Moving Node, which acts like a future autonomous vehicle.

A Node Deployment tool is made using a RaspberryPI and XBee, which assist in

the deployment of the new node at the farthest possible distance. The Algorithms

working in all the types of nodes is explained below:

33

F
ig
ur
e
4.
5:

B
re
ad

cr
um

b
N
et
w
or
k
P
ro
to
ty
pe

34

4.4.1 Algorithm Implemented in the Static Router Nodes

4.4.1.1 Node Discovery

The static node is a self configuring node. When the Node is Power On, a Node

Discovery Algorithm begins. During the Node Discovery, the node tries to search

for the Node IDs and MAC Addresses of all the XBees in its vicinity. The Node

discovery algorithm works for 15 seconds. During the node discovery, all the MAC

Addresses and Node IDs are stored in a textfile, which acts like a Node table. The

Node IDs are put in XBees while configuring them. The Node IDs of all the Router

XBees are put in increasing order starting from one. The NodeID of the moving

node is negative one. After scanning the nearby nodes Node IDs, the node knows the

previously installed node from the highest Node IDs received during scanning. The

algorithm increases the highest Node ID received by one to get the Node ID of the

current node, and further increases it by one to get node of the next node. Algorithm 1

describes the Node Discovery Algorithm working in a Static Breadcrumb Node. The

Coordinator Node coordinates the entire system. Each network of XBees contains

only one coordinator node.

Algorithm 1 Node Discovery in Static Nodes
1: The node is Powered ON.
2: Open XBee Port.
3: The Node sends a broadcast signal to nearby nodes for their MAC Addresses and

Node IDs.
4: The nearby Nodes send their Node IDs and MAC Address and these are stored

in a textfile.
5: Node Discovery is done for only 15 seconds. In 15 seconds, all the nearby nodes

send their Node IDs and MAC Address.
6: Close XBee Port.

4.4.1.2 Installation Algorithm

Installation Algorithm helps in installing the breadcrumb nodes to maximum sep-

arable distances to increase the coverage area. The good range for communication

35

to work between the nodes is determined by the RSSI values. If the area is a plane

without much trees, vegetation and concrete structues, the signal strength decreases

slowly and the distance covered is large. A Node Deployment tool is used to identify

the newly installed node when powered on. It will send "Hello Messages" to the

newly powered on node, which gets the RSSI value by reading the "DB" parameter

from the API2 frame. As the distance increases, the signal strength decreases. When

the RSSI value reaches above 70, the node gives an indication to install it by glowing

an externally attached LED for 15 seconds. Algorithm 2 describes the Installation

Algorithm working in Static Breadcrumb Node.

Algorithm 2 Installation Algorithm in Static Nodes(Do Forever Till Node is not
Placed)
1: Open XBee Port.
2: Node waits to read the data coming from previous node.
3: After data is read, it will get the RSSI value by reading the “DB” parameter.
4: Close XBee Port.
5: If the RSSI value > 70, the Node is installed. LED glows for 15 seconds. Program

returns to main program.
6: Else, the program keeps on repeating until the RSSI > 70.

4.4.1.3 GPS Data Reading

Once the node is installed, it begins the GPS data Reading Algorithm. The GPS

device is connected to a USB port of RaspberryPi. As the USB port is read by

RaspberryPi, the algorithm takes out the latitude, longitude, altitude and time infor-

mation from the raw GPS data received and store the data in the three queues(named

as q, qNext and qPrevious). The data from these queues will be fetched to send data

to Moving Node, previous node and the next node. All the three queues are of size

5. After the queues are full, the program returns to the main program. Algorithm 3

describes the GPS Data Reading in Static Breadcrumb Node.

36

Algorithm 3 GPS Data Reading in Static Nodes(Repeat till the Queues get fill)
1: Open the textfile to get the discovered Node MAC address and Node IDs.
2: Read the textfile to get the highest Node ID, which is the Node ID of the previous

node installed.
3: The Node ID of the current node is PreviousNodeID +1.
4: Read the Raw GPS data coming to the node.
5: Extract the latitude, longitude, time and altitude data from Raw GPS Data.
6: Attach the Node ID of the current node to the Data.
7: Store the Data in Queue q, qPrevious and qNext, all are kept at size 5.
8: When the Queues get full with GPS data, return to the main program.
9: Else, if data is not available, fill the Queue with Data not available and return to

the main program.

4.4.1.4 Unicasting Data to Previous, Next and Moving Node

After receiving data from the previous node and next node, the unicasting algorithm

begins. This algorithm will fetch the GPS data stored in three separate queues(queue

q, qPrevious and qNext) and unicast the data to moving node, previous node and

next node. If the GPS data is not available, then data not available is stored in

the queue and the node will try to approximate its latitude and longitude using the

haversine formula (Equation 4.1), RSSI distance approximation and interpolation.

After approximating the GPS location, the approximated data is forwarded to the

moving vehicle, previous node and next node. The breadcrumb node will also forward

the data received from previous and next node towards the Moving Node. Algorithm

4 describes the unicasting in Static Breadcrumb Node.

4.4.1.5 Data Reading Algorithm

Data Reading Algorithm starts after the GPS data reading algorithm. This algo-

rithm will be waiting for the data to come to the XBee port. It will wait for 30 seconds

for the arrival of new data. The algorithm will try to receive four data by running

the receiver code four times. When a data is received, it will determine whether the

data is coming from previous node or next node and accordingly place the data in

the separate queues. Algorithm 5 describes the Data Reading in Static Breadcrumb

37

Algorithm 4 Unicasting Data to Previous, Next and Moving Node in Static Nodes
1: Open the text file where discovered Nodes MAC address and Node IDs are stored.
2: Read the text file and get the highest Node ID, which is the Node ID of the

previous node installed.
3: The Node ID of the current node is PreviousNodeID +1.
4: The Node ID of the next Node is PreviousNodeID+2.
5: Check the Data of GPS stored in Queue q.
6: If GPS data is available, Discover the MAC address of Moving Node and unicast

the Data Received from own GPS to the Moving Node.
7: Discover the previous MAC address of previous node and unicast GPS data from

queue qPrevious.
8: Discover the next Node MAC address and unicast GPS data from queue qNext.
9: If GPS data is not available, call the Function CalculateApproximateGPSLo-

cation to calculate the appoximate GPS location.
10: Discover the MAC address of moving node and unicast the Approximate GPS

data calculated.
11: Discover the MAC address of previous node and unicast the Approximate GPS

data by fetching the data from Queue qPrevious of size 5.
12: Discover the MAC address of next node and unicast own GPS data to next node

by fetching the data from Queue qNext of size 5.
13: Discover the MAC address of Moving Node and unicast the Data Received from

Previous node, which is stored in Queue qPreviousNodeData.
14: Discover the MAC address of Moving Node and unicast the Data Received from

Next node, which is stored in Queue qNextNodeData.

Node.

4.4.1.6 Approximate GPS Location

For calculating the approximate GPS location, the breadcrumb node will fetch data

of the previous node and next node and store them in separate queues. The distance

between the two nodes can be calculated using haversine formula [35] as described

below.

x = longβ − longα

y = latβ − latα

a = sin(
y

2
)2 − cos(latα)× cos(latβ)× sin(x

2
)2c = 2× tan−1(

√
a,
√
1− a))

D = c×R

(4.1)

Where:

38

Algorithm 5 Data Reading Algorithm(Execute four times) in Static Nodes
1: Open the textfile to get the discovered Node MAC address and Node IDs.
2: Read the text file and get the highest Node ID, which is the Node ID of the

previous node installed.
3: The Node ID of the current node is Previous NodeID +1.
4: The Node ID of the next Node is Previous NodeID+2.
5: Open XBee Port.
6: Receive the Data coming towards the Node. The receiver will get timeout after

30 seconds
7: Get the data and RSSI value from frame and concatenate them.
8: Check and identify, whether the concatenated data(data+RSSI) is coming from

previous node or Next Node.
9: If data is coming from previous node, store it in queue named as qPreviousNode-

Data of maximum size 30.
10: If data is coming from next node, store it in queue named as qNextNodeData of

maximum size 30.

latα : Latitude of a node

longα : Longitude of a node

latβ : Latitude of another node

longβ : Longitude of another node

a : Square of Half the chord length between the two points

c : Angular distance (radians)

R : Radius of the Earth ∼= 6370.0 kilometers(km)

D : Final, calculated distance between two Nodes

The node can also calculate its distance from the previous and next with the help

of RSSI value. RSSI can be used to measure the distance between two points. The

unique work of Shue et al. [36] has mentioned that RSSI is a good means to measure

distances in an outdoor environment. The RSSI (in dBm) using the log-distance path

loss model can be expressed as:

RSSI = 10nLog10d+ A (4.2)

where n is the path loss exponent, d is the transmission distance in meters, and A is

the reference value, which is the RSSI at 1 meter away from the transmitter. Most

39

Table 4.1: Path Loss Exponent values for different environments
Environment Path-Loss Exponent(n)
Free Space 2.0
Urban Area Cellular Radio 2.7 to 3.5
Indoor Residential 1.4 to 1.8

wireless transceivers represent RSSI in -dBm (decibel milliwatts) which represents

the amount of attenuation or lost power during transmission.

d = 10
RSSI−A

10n (4.3)

The path loss exponent, n can be calculated for each environment by recording RSSI

value at known distances and reverse solving for n. Typical values of n can be observed

in Table 4.1.

The value of RSSI at a distance of 1 meter calculated in an open environment is

= 47 dBm. The value of path loss exponent is 2. The distance of previous node to

unlocalized current node is d= (d1/(d1+d2))*D where d1 is transmission distance in

meters between previous node and current node calculated using Equation 4.4,

d1 = 10
RSSI1−47

10n (4.4)

and d2 is the transmission distance between current node and next node calculated

using Equation 4.5.

d2 = 10
RSSI1−47

10n (4.5)

The ratio of the distance of previous node to unlocalized current node and distance

between previous and next node is r= d/D. Using the interpolation, the latitude and

longitude code can be approximated. This concept of approximating the latitude and

longitude of the node without GPS can be understood from Figure 4.6.

4.4.1.7 Main Function working in Static Node

The main function will call all the algorithms described from Algorithm 1 to 6 in a

sequential manner. First, the node discovery algorithm is executed. After successful

node discovery and identification of the previous and next node, the node installation

40

Figure 4.6: Intersection area of the circles formed using radius calculated by RSSI is
the location of unknown node

Algorithm 6 Calculate Approximate GPS Location in Static Nodes
1: Fetch the GPS data stored in queue qPreviousNodeData.
2: Distance of PreviousNode to CurrentNode can be calculated by using Equa-

tion (4.4).
3: Fetch the GPS data stored in queue qNextNodeData.
4: Distance of NextNode to CurrentNode is calculated using Equation (4.5).
5: Use the Haversine Formula as show in Equation (4.1), to calculate the distance

between Previous and Next node, which is returned as D.
6: Distance of Unlocalised current node to Previous Node is d = (d1/(d1+d2))*D
7: Ratio r = d/D
8: Using interpolate, find the Latitude and Longitude of unknown Node using the

ratio r and GPS coordinates of previousNode and nextNode.
9: Return the Approximated Latitude and Longitude to the function, which is uni-

casting data to Previous Next and Current Node.

41

algorithm is executed. After the node is installed, the GPS data reading algorithm

is initiated. The main function initiate the Data Reading algorithm, then unicasting

the data to previous, next and moving node and then GPS Data reading algorithms

after flushing the previously stored data in the queues(q, qNext and qPevious).

Algorithm 7 Main Function in Static Node
1: Node Discovery Algorithm
2: Installation Algorithm
3: GPS Data Reading Algorithm
4: Start the Infinite While Loop.
5: Data Reading Algorithm.
6: Unicasting Data to Previous, Next and Moving Node
7: Flush the Queue q, qPrevious and qNext.
8: GPS Data Reading.

4.4.1.8 Inter-Node Communication

The internode communication diagram between the static nodes is described in

Figure 4.7, which explains the communication of Node N1 with its nearby nodes, i.e,

Node C and Node N2. It explains all the communication carried between a static

node with its nearby nodes, moving vehicle and the tool for installation.

4.4.2 Algorithm Implemented in the Coordinator

The Coordinator node is the first node of the XBee Network, which controls the

entire network. The coordinator is the first node to be powered on after the Moving

Node. It scans the network and complete the node discovery. Coordinator node do not

have any previously installed static node. Because of this, there is no communication

between the previously installed node with the current node in the Coordinator.

Also, since the Coordinator do not have any previous node, it cannot calculate its

approximated GPS location. The Coordinator should be placed at a place where

it can receive GPS signals continuously. The internode Communication between

Coordinator Node and its nearby Nodes is shown in Figure 4.8. Algorithms 8, 9, 10,

11 and 12 describes the complete algorithm working in the Coordinator Node.

42

F
ig
ur
e
4.
7:

C
om

m
un

ic
at
io
n
be

tw
ee
n
a
St
at
ic

N
od

e
w
it
h
it
s
ne
ar
by

N
od

es

43

Figure 4.8: Communication between a Coordinator Node with its nearby Nodes

Algorithm 8 Node Discovery in Coordinator Node
1: The node is Powered ON.
2: Open XBee Port.
3: The Node sends a broadcast signal to nearby nodes for their MAC Address and

Node ID.
4: The nearby Nodes send their Node IDs and MAC Address and these are stored

in a textfile.
5: Node Discovery is done for only 15 seconds. In 15 seconds, all the nearby nodes

send their Node IDs and MAC Address.
6: Close XBee Port.

44

Algorithm 9 GPS Data Reading in Coordinator Node(Repeat till the Queues get
fill)
1: Open the textfile to get the discovered Node MAC address and Node IDs.
2: Read the textfile to get the highest Node ID, which is the Node ID of the previous

node installed.
3: The Node ID of the current node is PreviousNodeID +1.
4: Read the Raw GPS data coming to the node.
5: Extract the latitude, longitude, time and altitude data from Raw GPS Data.
6: Attach the NodeID of the current node to the Data.
7: Store the Data in Queue q and qNext, all are kept at size 5.
8: When the Queues get full with GPS data, return to the main program.
9: Else, if data is not available till more than 20 iterations, fill the Queue with "Data

not available" and return to the main program.

Algorithm 10 Unicasting Data to Next and Moving Node in Coordinator Node
1: Open the textfile where discovered Nodes MAC address and Node IDs are stored.
2: Read the textfile and get the highest Node ID, which is the Node ID of the

previous node installed.
3: The Node ID of the next Node is PreviousNodeID+2.
4: Discover the MAC address of Moving Node and unicast the Data Received from

own GPS to the Moving Node.
5: Discover the next Node MAC address and unicast own GPS data to next node

by fetching the data from Queue qNext of size 5.
6: Discover the MAC address of Moving Node and unicast the Data Received from

Next node, which is stored in Queue qNextNodeData.

Algorithm 11 Data Reading Algorithm in Coordinator Node (Execute four times)
1: Open the textfile to get the discovered Nodes MAC address and Node IDs.
2: Read the text file and get the highest Node ID, which is the Node ID of the

previous node installed.
3: The Node ID of the next Node is PreviousNodeID+2.
4: Open XBee Port.
5: Receive the Data coming towards the Node. The receiver will get timeout after

30 seconds
6: Get the data and RSSI value from frame and concatenate them.
7: Check and identify, whether the concatenated data(data+RSSI) is coming from

previous node or Next Node.
8: If data is coming from next node, store it in queue named as qNextNodeData of

maximum size 30.

45

Algorithm 12 Main Function in Coordinator Node
1: Node Discovery Algorithm
2: Installation Algorithm
3: GPS Data Reading Algorithm
4: The nearby Nodes send their Node IDs and MAC Address and these are stored

in a text file.
5: Start the Infinite While Loop.
6: Unicasting Data to Next and Moving Node
7: Data Reading Algorithm.
8: Flush the Queue q and qNext.
9: GPS Data Reading.

4.4.3 Algorithm Implemented in Breadcrumb Nodes without GPS

In order to make the system cost effective in its future implementation at a large

scale, some nodes in the system are without GPS and their GPS location is calculated

with the help of the GPS location of their previous and next nodes. After the GPS

location is calculated inside the node, it is forwarded to the moving vehicle, previous

node and the next node. Algorithms 13 to 18 describes the complete algorithm

working in the Node without GPS.

Algorithm 13 Node Discovery in Node Without GPS
1: The node is Powered ON
2: Open XBee Port.
3: The Node sends a broadcast signal to nearby nodes for their MAC Address and

Node ID.
4: The nearby Nodes send their Node IDs and MAC Address and these are stored

in a textfile.
5: Node Discovery is done for only 15 seconds. In 15 seconds, all the nearby nodes

send their Node IDs and MAC Address.
6: Close XBee Port.

4.4.4 Algorithm Implemented in the Node Deployment Tool

In Wireless sensor networks, the nodes must be installed at the farthest possible

distances, so that the least number of nodes are required to make a network. But

the main problem, which is encountered while working in the outside field is that

it is very difficult to measure the exact location for node placement and if a node

46

Algorithm 14 Installation Algorithm in Node Without GPS (Do Forever Till Node
is not Placed)
1: Open XBee Port.
2: Node waits to read the data coming from previous node.
3: After data is read, it will get the RSSI value by reading the “DB” parameter.
4: Close XBee Port.
5: If the RSSI value > 70, the Node is installed. LED glows for 15 seconds. Program

returns to main program.
6: Else, the program keeps on repeating until the RSSI > 70.

Algorithm 15 Unicasting Data to Previous, Next and Moving Node in Node Without
GPS
1: Open the text file where discovered Nodes MAC address and Node IDs are stored.
2: Read the text file and get the highest Node ID, which is the Node ID of the

previous node installed.
3: The Node ID of the current node is Previous Node ID +1.
4: The Node ID of the next Node is PreviousNodeID+2.
5: since no GPS is connected, call the Function CalculateApproximateGPSLo-

cation to calculate the appoximate GPS location.
6: Discover the MAC address of moving node and unicast the Approximate GPS

data calculated.
7: Unicast the Approximated GPS data calculated in step 5.
8: Unicast the Approximated GPS data calculated in step 5.
9: Discover the MAC address of Moving Node and unicast the Data Received from

Previous node, which is stored in Queue qPreviousNodeData.
10: Discover the MAC address of Moving Node and unicast the Data Received from

Next node, which is stored in Queue qNextNodeData.

Algorithm 16 Data Reading Algorithm in Node Without GPS (Execute four times)
1: Open the textfile to get the discovered Nodes MAC address and Node IDs.
2: Read the textfile and get the highest Node ID, which is the Node ID of the

previous node installed.
3: The Node ID of the current node is PreviousNodeID +1.
4: The Node ID of the next Node is PreviousNodeID+2.
5: Open XBee Port.
6: Receive the Data coming towards the Node. The receiver will get timeout after

30 seconds
7: Get the data and RSSI value from frame and concatenate them.
8: Check and identify, whether the concatenated data(data+RSSI) is coming from

previous node or Next Node.
9: If data is coming from previous node, store it in queue names as qPreviousNode-

Data of maximum size 30.
10: If data is coming from next node, store it in a queue named as qNextNodeData

of maximum size 30.

47

Algorithm 17 Calculate Approximate GPS Location
1: Fetch the GPS data stored in queue qPreviousNodeData.
2: Distance of PreviousNode to CurrentNode can be caculated by using Equa-

tion (4.4).
3: Fetch the GPS data stored in queue qNextNodeData.
4: Distance of NextNode to CurrentNode is Equation (4.5).
5: Use the Haversine Formula as show in Equation (4.1), to calculate the distance

between Previous and Next node, which is returned as D.
6: Distance of Unlocalised current node to Previous Node is d = (d1/(d1+d2))*D
7: Ratio r = d/D
8: Using interpolate, find the Latitude and Longitude of unknown Node using the

ratio r and GPS coordinates of previousNode and nextNode.
9: Return the Approximated Latitude and Longitude to the function, which is uni-

casting data to Previous Next and Current Node

Algorithm 18 Main Function in Node Without GPS
1: Node Discovery Algorithm.
2: Installation Algorithm.
3: Start the Infinite While Loop.
4: Data Reading Algorithm.
5: Unicasting Data to Previous, Next and Moving Node

is placed outside the Zigbee Netowork range, their is a network breakdown and all

other nodes installed after that donot work. In order to prevent this mistake, while a

node is being installed, there should be tool a which is sending data "Hello" message

towards the newly installed node. The newly installed node should measure the RSSI

from the frame received continously. When the RSSI value increases above 70, the

LED attached to the node should glow to give indication to the user that there is a

sufficient separation and new node should be installed now.

4.4.5 Algorithm Implemented in the Moving Node

The moving node acts like an autonomous vehicle. It receives the data continously

from the nodes which are sending data towards it. From this data, the moving node

knows the latitude and longitude information of the next node even before reaching

near it. In this way, the autonomous vehicle gets to know about the location of the

next node similar to the fairy tail of Hansel and Gratel.

48

Algorithm 19 Main Function in the Node used as Deployment Tool
1: The node is powered ON.
2: Open XBee Port.
3: The Node sends a broadcast signal to nearby nodes for their MAC Address and

Node ID.
4: The nearby Nodes send their Node IDs and MAC Address and these are stored

in a textfile.
5: Node Discovery is done for only 15 seconds. In 15 seconds, all the nearby nodes

send their Node IDs and MAC Address.
6: Close XBee Port.
7: Identify the newest power on node.
8: Send Hello Messages to newly power on Node to help in its installation.
9: Power OFF the Node after the node has been installed.

Algorithm 20 Main Function of Moving Node
1: Open the XBee Port.
2: Receive the Data coming towards the Node. The receiver will get timeout after

1000 seconds.
3: Get the data and RSSI value from frame and concatenate them.
4: Store the data MySQL.
5: Close the XBee port.
6: Repeat the above steps continuously.

The Moving Node node stores all the data in the MySQL database table installed

inside the RaspberryPi. The phpMyAdmin server is also installed inside the Raspber-

ryPi. All the data stored in the MySQL database can be accessed by using a laptop

connected to the same network or by using the IP address of the Moving Vehicle

RaspberryPi. The data stored in the PHPMyAdmin server is as shown in Figure 4.9.

49

Figure 4.9: GPS data of all the Router Nodes stored at PhpMyAdmin Server

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10: Location of the Static breadcrumb nodes: (a) Node1; (b) Node2; (c)
Node3; (d) Node4; (e) Node5; (f) Node6; (g) Moving Node; and, (h) Tool for Instal-
lation

50

Figure 4.11: Entire System Setup

The entire system setup of eight Nodes, of which five are Router nodes, one Coor-

dinator, one Moving Node and one Node Deployment Tool is shown in Figure 4.10.

Figure 4.11 shows the location of each node.

CHAPTER 5: TESTS AND OBSERVATIONS

5.1 Breadcrumb Network Prototype

For the purpose of testing the breadcrumb network prototype, all the XBees are

configured at the lowest power level. All the breadcrumbs are kept at a height of 1

meter and they are at line of sight to each other. The tests were performed in a trail

near the EPIC building of UNC Charlotte.

5.1.1 Node Discovery and Determination of Previous Node, Current Node and

the Next Node

The breadcrumb network designed contains the same program in all the router

nodes with GPS and a slightly different program in the nodes without GPS. When

the Node is powered on, it will start doing the Node Discovery by sending broadcast

message to all the nodes in the system to get their MAC Addresses. In the initial

fifteen seconds, all the nearby nodes will send their MAC addresses along with their

Node Identifier. These MAC Addresses and Node Identifiers are stored in the textfile.

After the Node identification, the program will identity the maximum value Node ID

present in the textfile. This Node ID is the Node ID of the previously installed node.

The program increases the maximum received Node ID by one to get the Node ID of

the currently powered on node and get the Node ID of the next node by increasing the

Node ID of currently powered on node by one. The Node IDs are put in increasing

order while configuring the XBees using XCTU software. The Coordinator is given

the Node ID of zero. The other Router nodes are given Node IDs from 1 to 5. The

process of Node Identification can be seen in Figure 5.1.

52

Figure 5.1: Device Discovery by Breadcrumb Node

5.1.2 Installation Algorithm

After the execution of the Node Discovery to find the previous and the next node,

the Node Installation Algorithm begins. Once the Node is powered on, a Node in-

stallation Tool is also powered on. The Node Installation tool identifies the newly

powered on node and send "Hello Messages" to it. The RSSI value is extracted from

the frame received. The RSSI value in -dBm keeps on increasing when the distance

increases. When the RSSI value reaches to 70, an external LED glows, signalling

the installation of the Node. Figure 5.2 gives relation between different power levels,

RSSI and distances.

53

Figure 5.2: New Node Installation

In order to calculate the maximum range reliable communication between two

XBees devices, the RSSI values at different distances for 0 Power Level(+10 dBm) is

shown in Figure 5.3. As the distance increases the RSSI value decreases.

Figure 5.3: RSSI vs Distance at 0 Power Level

54

5.1.3 GPS Data of all the Breadcrumb Nodes Collected in MqSQL Database of

Coordinator

The breadcrumb network prototype consists of five Routers, one Coordinator Node

and one Moving node. The results collected in the MySQL database is as shown in

Figure 5.5. The breadcrumb network will give the GPS location of the Node to the

Moving node well ahead, so that the moving node can navigate smoothly through

unknown terrain. The actual location for the test case results in shown in Figure 5.4.

The location of these GPS coordinates on the Google Map is shown in Figure 5.6

Figure 5.4: Location of the Testing

55

Figure 5.5: GPS Location of all Nodes Collected in MySQL database of Moving Node

Figure 5.6: Location of all the Nodes seen on Google Map

56

5.1.4 Approximating the Location of the Node not Having GPS

All the Nodes in the breadcrumb network doesnot have a GPS. The Nodes without

GPS try to approximate their GPS coordinates i.e, latitude and longitude with the

help of latitude and longitude of the previous node and the next node. These results

are fairly accurate. The distance between the actual location and approxinate location

is 1.5 meters. GPS is a very costly device. By avoiding putting GPS at some of the

breadcrumb nodes decreases the cost of the prototype by substantial amount.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

This research work sought to solve the problem of providing GPS coordinates to an

autonomous vehicle operating in an unstructured human uninhabitable environment.

The breadcrumb network designed is tested on a prototype of five routers, one coordi-

nator node and one moving node. The breadcrumb nodes automatically do the node

discovery to determine the previous and next node. A tool is also made, which will

help the user in establishing the nodes at maximum distances. This network can be

extended to any number of nodes. We have incorporated all the problems which can

cause the system to fail while designing the network. This network can be extremely

helpful in an event of natural calamities like hurricane, floods, earthquake and other

geologic processes. This system finds application in an event of security personnel

doing some combing operation in an area where there is no network. The breadcrumb

network can provide vital GPS coordinates to an autonomous vehicle to reach the

last deployed node by traversing the nodes and provide help to the first responder.

In future, a lot of work can be done on increasing the efficiency of the system

further. This system can be in future connected to autonomous vehicle and can

become very useful to work in an unstructured human uninhabitable environment.

This system will be a big step towards making a autonomous vehicle travel smoothly

in unstructured environment to long distances without human intervention.

58

REFERENCES

[1] “XBee/XBee-PRO S2C Zigbee RF Module.” https://www.digi.com/
resources/documentation/digidocs/pdfs/90002002.pdf, 2018.

[2] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor network localization
techniques,” Computer Networks, vol. 51, no. 10, pp. 2529–2553, 2007.

[3] K. Miranda, A. Molinaro, and T. Razafindralambo, “A survey on rapidly de-
ployable solutions for post-disaster networks,” IEEE Communications Magazine,
vol. 54, no. 4, pp. 117–123, 2016.

[4] J. Q. Bao and W. C. Lee, “Rapid deployment of wireless ad hoc backbone
networks for public safety incident management,” GLOBECOM - IEEE Global
Telecommunications Conference, pp. 1217–1221, 2007.

[5] M. R. Souryal, J. Geissbuehler, L. E. Miller, and N. Moayeri, “Real-time deploy-
ment of multihop relays for range extension,” Proceedings of the 5th international
conference on Mobile systems, applications and services - MobiSys ’07, p. 85,
2007.

[6] M. Klann, T. Riedel, H. Gellersen, C. Fischer, M. Oppenheim, P. Lukowicz,
G. Pirkl, K. Kunze, M. Beuster, M. Beigl, O. Visser, and M. Gerling, “LifeNet:
an Ad-hoc Sensor Network and Wearable System to Provide Firefighters with
Navigation Support,” Adjunct Proc Ubicomp 2007, vol. M, no. 1, pp. 124–127,
2007.

[7] M. Hazas, C. Kray, H. Gellersen, H. Agbota, G. Kortuem, and A. Krohn, “A
relative positioning system for co-located mobile devices,” Proceedings of the 3rd
international conference on Mobile systems, applications, and services - MobiSys
’05, p. 177, 2005.

[8] C. Decker, A. Krohn, M. Beigl, and T. Zimmer, “The particle computer sys-
tem,” 2005 4th International Symposium on Information Processing in Sensor
Networks, IPSN 2005, vol. 2005, pp. 444–448, 2005.

[9] A. Krohn, M. Beigl, C. Decker, and T. Riedel, “Syncob: Collaborative time
synchronization in wireless sensor networks,” 4th International Conference on
Networked Sensing Systems, INSS, no. July, pp. 283–290, 2007.

[10] J. Wilson, V. Bhargava, A. Redfern, and P. Wright, “A wireless sensor network
and incident command interface for urban firefighting,” Proceedings of the 4th
Annual International Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, MobiQuitous 2007, 2007.

[11] J. Snydal, A. Van Pelt, and J. Wilson, “FireEye: Needs and Usability Assessment
of a Head-Mounted Display for Firefighters,” 2005.

59

[12] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power wire-
less research,” 2005 4th International Symposium on Information Processing in
Sensor Networks, IPSN 2005, vol. 2005, pp. 364–369, 2005.

[13] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler., “TinyOS: An Operating System for
Sensor Networks, Technicle report, University of Berkeley,” 2007.

[14] A. Juels, “RFID security and privacy: A research survey,” IEEE Journal on
Selected Areas in Communications, vol. 24, no. 2, pp. 381–394, 2006.

[15] H. Liu, J. Li, Z. Xie, S. Lin, K. Whitehouse, J. A. Stankovic, and D. Siu, “Au-
tomatic and robust breadcrumb system deployment for indoor firefighter ap-
plications,” Proceedings of the 8th international conference on Mobile systems,
applications, and services - MobiSys ’10, p. 21, 2010.

[16] S. E. B. Troubleshooting, “Design Note DN300 Design Note DN300,” pp. 1–13.

[17] K. Pothuganti and A. Chitneni, “A Comparative Study of Wireless Proto-
cols,” IECON Proceedings (Industrial Electronics Conference), no. January 2014,
pp. 46–51, 2014.

[18] T. Lai, W.-J. Chen, K.-H. Li, P. Huang, and H.-H. Chu, “TriopusNet: automat-
ing wireless sensor network deployment and replacement in pipeline monitoring,”
Proceedings of the 11th international conference on Information Processing in
Sensor Networks, pp. 61–72, 2012.

[19] CrossBow, “TelosB,” North, 2008.

[20] S. Cc, “Chipcon Chipcon,” ReVision, pp. 2004–2006, 2004.

[21] A. Purohit, Z. Sun, F. Mokaya, and P. Zhang, “SensorFly: Controlled-mobile
Sensing Platform for Indoor Emergency Response Applications,” Processing in
Sensor, vol. 2009, no. April, pp. 223–234, 2011.

[22] NXP, “LPC2146 ARM7 Microcontroller Datasheet,” no. August, 2011.

[23] K. I. Sram and W. E. Cycles, “8-bit Atmel Microcontroller with 64K Bytes
Programmable ATmega644,” 2013.

[24] NIST, “NIST Special Publication 1026 CFAST – Consolidated Model of Fire
Growth and Smoke Transport (Version 6) Technical Reference Guide,” Nist
Special Publication, vol. 1026, no. April, 2009.

[25] H. Liu, Z. Xie, J. Li, K. Whitehouse, J. Stankovic, S. Lin, and D. Siu, “Efficient
and reliable breadcrumb systems via coordination among multiple first respon-
ders,” IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, PIMRC, pp. 1005–1009, 2011.

60

[26] H. Wang, S. Sen, and A. Elgohary, “No need to war-drive: Unsupervised indoor
localization,” Proceedings of the 10th international conference on Mobile systems,
applications, and services Pages 197-210, pp. 197–210, 2012.

[27] M. Chandra, M. T. Jones, and T. L. Martin, “E-textiles for autonomous location
awareness,” IEEE Transactions on Mobile Computing, vol. 6, no. 4, pp. 367–379,
2007.

[28] A. Correa, M. Barcelo, A. Morell, and J. L. Vicario, “Enhanced inertial-aided
indoor tracking system for wireless sensor networks: A review,” IEEE Sensors
Journal, vol. 14, no. 9, pp. 2921–2929, 2014.

[29] B. E. van Issum and N. H. Chamberlain, “37—The free diameter and specific
volume of textile yarns,” Journal of the Textile Institute Transactions, vol. 50,
no. 11, pp. T599–T623, 1959.

[30] J. Schmid, T. Gadeke, W. Stork, and K. D. Muller-Glaser, “On the fusion of
inertial data for signal strength localization,” Proceedings of the 8th Workshop
on Positioning Navigation and Communication 2011, WPNC 2011, pp. 7–12,
2011.

[31] J. Li, Z. Xie, X. Sun, J. Tang, H. Liu, and J. A. Stankovic, “An automatic and
accurate localization system for firefighters,” Proceedings - ACM/IEEE Inter-
national Conference on Internet of Things Design and Implementation, IoTDI
2018, pp. 13–24, 2018.

[32] M. Richardson and S. Wallace, Getting started with raspberry PI. O’Reilly Media,
Inc., 2012.

[33] X. X.-p. R. F. Modules, X. X.-p. R. F. Modules, and B. R. East, “Digi Interna-
tional Inc .,” 2013.

[34] “XCTU User Guide,” 2018.

[35] B. B. Rhoades, A Novel Framework for Integrating Legacy Vehicles into an In-
telligent Transportation System. PhD thesis, University of North Carolina at
Charlotte, 2018.

[36] S. Shue and J. M. Conrad, “Procedurally generated environments for simulating
RSSI- localization applications,” in Proceedings of the 20th Communications &
Networking Symposium, CNS ’17, (San Diego, CA, USA), pp. 7:1–7:11, Society
for Computer Simulation International, 2017.

