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ABSTRACT 
 
 

HOLDEN CHRISTOPHER LANGDON. Oral Microbiome Signature for Hematological 
Cancer (Under the direction of Dr. FARAH MOUGEOT and Dr. JEAN-LUC MOUGEOT) 

 
 
Background 

The endogenous microbiome of healthy individuals in the oral cavity is diverse, 

representing over 700 different bacterial species. Some of these species may become 

opportunistic if certain elements in the microenvironment and host-response in the oral 

cavity are altered. Imbalance in microbiome composition, defined by higher or lower 

levels of relative abundance and microbial gene expression changes, has been linked to 

different forms of hematological cancer. 

Hypothesis 

We hypothesize we will identify unique oral microbiome profiles in hematological cancer 

patients when compared to healthy controls. Additionally, we expect to determine 

significant differences in the oral microbiome beta-diversity of lymphoma patients when 

compared to acute myelogenous leukemia (AML) patients. 

Objective 

1) To identify unique oral microbiome profiles of hematological cancer patients 

when compared to healthy control subjects. 

2) To compare the oral microbiome profiles of lymphoma patients and AML patients 

prior to cancer treatment. 

Methods 

Saliva samples and swabs of buccal mucosa, supragingival plaque and tongue were 

collected from hematological cancer patients (N=51), prior to cancer treatment, and 

healthy control subjects (N=38). Next generation sequencing (16S-rRNA gene V3-V4 
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region) was used to determine the relative abundance of bacterial taxa present at the 

genus and species levels. Differences in oral microbiome beta-diversity were tested 

using PERMANOVA by comparing hematological cancer patients vs. healthy controls 

patients (N=38) [Monte-Carlo corrected p values (α=0.05)]. Linear discriminant analysis 

(LDA) effect size (LEfSe; Log LDA threshold >0.005) analysis was performed to identify 

differentiating bacterial genus and species probes for the above mentioned pairwise 

comparisons. 

Results 

There were significant differences in the oral microbiome beta-diversity of hematological 

cancer patients compared to healthy controls (p=0.0001). LEfSe analysis showed 

significant LDA scores for 51 probes differentiating hematological cancer patients from 

healthy controls. Furthermore, there was a significant difference in the beta diversity of 

the oral microbiome of both lymphoma and AML patients when compared to each other 

as well as to healthy control subjects. 

Conclusion 

Hematological cancer patients had distinct oral microbial profiles compared to healthy 

controls. Additionally, oral microbiome profiles of lymphoma and AML patients were 

significantly different. Further investigation into the mechanistic interaction of the oral 

microbiome with the microenvironment in oral cavity and the host immune system is 

warranted. 
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CHAPTER 1: BACKGROUND AND SIGNIFICANCE 
 

 
1.1 Background 

 
Cancer 

This year in the United States alone an estimated 1.8 million people will be 

diagnosed with cancer with 600,000 people projected to succumb from cancer-related 

complications (16). Because of this, cancer has been a leading topic among researchers 

for the past 25 years since the advent of modern molecular and cellular biology. Before 

we are able to discuss the complexity of cancer formation, it is important to understand 

the different forms of cancer and their cellular basis. In its most basic form, cancer is the 

continual unregulated proliferation of any cell resulting in the invasion of healthy tissue 

(19). This results in more than one hundred different forms of cancer which all fall into 

four main groups; carcinomas, sarcomas, and hematological cancers such as leukemias 

and lymphomas (19). Carcinomas originate from epithelial tissue and are the most 

abundant form of cancer consisting of approximately 90 percent of all diagnosis. 

Sarcomas, being the rarest form of cancer, originate from connective tissue such as 

muscle and bone. Lastly, lymphomas and leukemias account for roughly eight percent of 

all diagnosis and originate from blood forming cells and cells of the immune system. 

A fundamental characteristic of all cancer is the development of a tumor from a 

single progenitor cell with an abnormal proliferation rate. The progenitor cell that gives 

rise to the tumor is not necessarily classified as a cancer cell, as it may have not 

acquired all the proper characteristics. Through a series of alterations, the cellular profile 

begins to favor increased capacity for proliferation and invasion ultimately resulting in 

cancer formation. This is normally a multistage process occurring over many years as 

indicated by most diagnoses occurring in older individuals.  
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Over the past decade there have been many advancements in cancer 

diagnostics as well as treatment protocols for patients. Even with these advancements, 

there are still many shortcomings in understanding the true underlying causes and 

factors affecting the progression of many cancers. This is in part due to the lack of 

knowledge on the interaction of the human microbiome and carcinogenesis (8). With 

current advancements being made in genomic analysis, new avenues are able to be 

explored that before may have not been possible such as the determination of microbial 

profiles of cancer patients. 

16S rRNA Gene 

The ability to identify microbiota at the species and genus level has become 

increasingly more efficient and cost effective over the past number of years. This is 

primarily due to the advancement in Next Generation Sequencing (NGS) technology. At 

the forefront of this research has been the idea that ribosomal RNA (rRNA) genes are 

highly conserved and evolutionarily stable, except for their hypervariable region making 

them ideal for microbial genus and species identification. Due to the attention 16S rRNA 

has received and advancements in genome sequencing technology, the current rRNA 

gene databases have been significantly improved making phylogenetic studies more 

efficient. A specific focus of ribosomal genome sequencing has been the 16S rRNA 

gene making it an ideal candidate for universal primer identification. The 16S rRNA gene 

contains nine hypervariable regions totaling 1500bp in length, with each region having 

the ability to determine certain taxonomical relationships. The most prominently used 

region is the V4 region, which is less than 300 bp long and can determine majority of 

identified microbes down to the genus and species level.  

Human Microbiome  

It was not until 2008 that the Human Microbiome Project was launched with a 

goal of obtaining a better understanding of the microbial flora responsible for health and 
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disease (15). Recent advancements in NGS have allowed us to analyze microbiota, 

including species that have not yet been isolated from live cultures (17). In conjunction 

with the Human Microbiome Project, there have been several breakthroughs in cancer 

research concerning a possible link between cancer and microbiome. It is important to 

understand how the human microbiome contributes to diseases such as cancers, human 

papillomavirus (HPV) infections and heart disease, amongst many others, but also how 

the human microbiome contributes to health.  

Oral Microbiome 

The oral cavity of healthy individuals has a diverse microbial profile, representing 

over 700 different bacterial species (1). Many of these species may become 

opportunistic if certain elements of the microenvironment and host-response in the oral 

cavity are altered. There are four main phyla of oral microbiota that play a role in health 

and disease: Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria (7). More 

specifically, the most prevalent genera in the oral cavity of healthy subjects are 

Prevotella, Neisseria, Streptococcus, Haemophilus, and Fusobacterium (18). However, 

an imbalance of each of these genera, i.e., higher or lower levels of relative abundance 

and associated gene expression are linked to many different forms of cancers from 

hematological to solid state tumors (10,12,13).  

Oral Microbiome and Cancer 

a) Solid State Cancers 

Due to the lack of diagnostic tools and low survival rate, pancreatic cancer has been 

widely studied within the microbial science community. Studies have noted significant 

increases in 31 different bacterial species in saliva samples collected from pancreatic 

cancer patients (5). Among those with increased levels are Porphyromonas gingivalis 

and Aggregatibacter actinomycetemcomitans, both found to be known causes of tooth 

decay and heart disease (4). It is believed that the increased chance of pancreatic 
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cancer and liver cirrhosis is possibly due to an elevation in the blood serum antibodies 

against P. gingivalis (5). Another prevalent genus of bacterium was found to be 

Fusobacterium, present in tongue microbiome. This genus was found not to be a good 

biomarker for diagnosis, but was associated with a worse prognosis (11). 

While Fusobacterium is a poor biomarker for pancreatic cancer, it has been identified 

as an indicator of colorectal carcinogenesis. F. nucleatum is present not only in the stool 

samples but also in tumor biopsies of colorectal cancer patients (2). This bacterium has 

become such a consistent biomarker for colorectal cancer that it has begun to be used in 

screening patients and giving prognosis in Japan (9). 

Gastric cancer has also been linked to changing levels in the four main phyla of 

microbiota in oral cavity. There is a significant increase, roughly 18 percent, in 

Proteobacteria in gastric cancer patients when compared to healthy controls (6). In 

addition to the increased Proteobacteria, there was a decrease in Fusobacterium, 

Neisseria, and Haemophilus by roughly six percent with the exception of Porphyromonas 

which decreased by three percent (6). 

Esophageal cancer has also shown a link between the oral microbiome and 

carcinogenesis. When comparing patients with esophageal squamous cell carcinomas to 

healthy controls, there was an increase in Prevotella, Streptococcus, and 

Porphyromonas (3). Through further analysis, researchers were able to predict the 

pathway through which Streptococcus contributes to carcinogenesis of esophageal 

tissue. As with many carcinogens, the carcinogenesis pathway activation occurs through 

the initiation of inflammation and development of dysplasia (3). 

While solid state tumors have been studied for linkages between the oral microbiome 

and carcinogenesis over the recent years, there are still areas that lack significant 

research. For example, there is little evidence for lung and breast cancers showing 

associations with possible microbiome biomarkers for these diseases.  
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b) Hematological Cancers 

Very little research has focused on the association of the oral microbiome with 

hematological cancers. The data that has been collected on blood cancers such as 

multiple myeloma, acute lymphoblastic leukemia, and many others suggest that the 

human microbiota could be playing a role in tumorigenesis or the prevention of that 

thereof. While there has been evidence showing that leukemia patients have a less 

diverse microbiome, there has not been significant evidence showing specific bacterial 

associations between the two (14). 

1.2 Significance 

While cancer development has been a leading topic of research for many years, 

there is still a large deficit of information regarding mechanisms of pathogenesis and 

host response in conjunction with the role of oral microbiome in carcinogenesis.  

The understanding of the complex interaction and cohabitation of the oral microbiome 

with the host is largely based on an understudied theory on tumor formation and 

progression. While there has been some research done on such correlation, the sample 

sizes used in previous studies were too small to draw a reliable conclusion (20). With our 

sample size, hematological cancer (n=148 Samples, N= 51 patients) and healthy control 

(n=141 samples, N= 38 patients), we will be able to conclude with higher confidence that 

our results pertain to a larger cancer population.  

Our main objective is to show an association between oral microbiome profiles 

and hematological cancer types. Due to the complex and diverse genetic make-up of 

cancer, the investigation of cancer formation pathways in the context of the oral 

microbiome is challenging. However, once an association has been established, certain 

mechanisms for tumorigenesis could be investigated in the context of host response 

involving the innate and adaptative immune system. Ultimately, biomarkers may be 

identified for diagnosis and for the prediction or monitoring of rate of progression and 
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response to treatment. Thus, this research provided a better understanding of the oral 

microbiome in both healthy controls and hematological cancer populations.  

Hypothesis: We expect to identify unique oral microbiome profiles in hematological 

cancer patients compared to healthy controls. Additionally, we expect to see significant 

differences in the oral microbiome beta-diversity of lymphoma patients when compared 

to AML patients. 

1.3 Objectives 

Objective 1) To compare oral microbiome profiles between hematological cancer 

patients and healthy controls prior to cancer treatment. 

Objective 2) To compare the oral microbiome profiles of AML and  lymphoma patients 

prior to cancer treatment. 
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CHAPTER 2: MATERIALS AND METHODS 
 

 
2.1 Patient Recruitment  
 

Patients (N=51; 19 females, 32 males; age range= 18-76) diagnosed with 

hematological cancers and were to receive conditioning treatment to prepare for 

hematopoietic stem cell transplant were recruited by Carolinas Medical Center, 

Charlotte, North Carolina. Additionally, healthy control subjects (N=38; 27 females, 11 

males; age range= 24-84) were recruited to obtain an oral microbial profile baseline. 

Hematological cancer diagnosis included Acute Lymphoblastic Leukemia (ALL), Acute 

Myelogenous Leukemia (AML), Lymphoma, Myelodysplastic Syndrome (MDS), 

Myelofibrosis and Myeloma. Due to data collection being used initially for a longitudinal 

study, samples were collected before conditioning therapy at baseline, one to three 

weeks post-transplantation, and one-year post-transplantation. For the purpose of our 

research we analyzed only those at baseline (pre-cancer treatment).  

2.2 Sample Collection and Processing 

Oral samples (saliva sample, buccal mucosa, tongue and superficial 

supragingival plaque swabs) were collected from each patient at baseline (pre-cancer 

treatment). Initial saliva collection was performed while chewing unsweetened and 

unflavored gum (The Wrigley Company, Mars, Inc., Chicago, IL) for a period of two 

minutes into a 50mL conical BD Falcon polypropylene centrifuge tube (Corning, NY), 

and kept on ice for no longer than 30 minutes before processing or being stored at -

80°C. 

Buccal mucosal samples were collected by swabbing both sides of the buccal 

mucosa for 10 seconds each. Tongue samples were obtained by swabbing a 1 𝑐𝑚! 

region on both sides of the middorsal region of the tongue for 5 seconds. Finally, the 

superficial supragingival plaque (SSP) samples were obtained using OmniSwabs (GE 
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Life Sciences-Buckinghamshire, UK) across the lateral surfaces of all maxillary and 

mandibular teeth at the junction of the tooth and gingiva. 

Bacterial genomic DNA was extracted from oral samples using QIAamp DNA 

Mini Kit procedure (QIAGEN, Valencia, CA) per manufacturer’s instructions. 

Identification of bacterial genus and species utilized Human Oral Microbe Identification 

using Next Generation Sequencing (HOMINGS), which employs a ProbeSeq program 

for species detection through recognition of the 16S rRNA gene (V3-V4 region). During 

sample preparation, 50ng of genomic DNA was used for PCR in which the 16s rRNA 

(V3-V4) region was amplified, followed by purification and processing methods 

described by Caporaso et al. using Miseq (Illumina, Inc., San Diego, CA.)(18). ProbeSeq 

sequence identification used rRNA-based in silico probes in a BLAST program to 

determine the species frequency. The sequence-reads matched one of the 737 probes 

(620 ProbeSeq species probes and 117 genus probes). Results were provided as Excel 

spreadsheets displaying total probe hits (number of matches per oligomer) ranging from 

0 – 300,000.  

2.3 Analysis Preparation  

Results for each patient set (hematological patients and healthy controls) were 

provided in Excel files (2 hematological cancer files, 1 healthy control file). For the 

purpose of our study, we were only interested in baseline timepoint. Once all data was 

extracted from each patient set, sorted and combined into two separate excel files, i.e. 

one for hematological cancer patients and one for healthy control subjects, we converted 

all data to relative abundance by dividing each probe by the total number of hits per 

patient. Each patient set was also associated with demographic information that had to 

be added to each Excel file once the conversion to relative abundance was complete. 

Additionally, all Excel files needed to be individually formatted according to Primer v7 

program (PRIMER-E Ltd., Ivybridge, UK).  
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2.4 Statistical Analysis 

A chi-squared test was run on each group to ensure there were no significant 

differences in frequencies of saliva sample, buccal mucosa, tongue and superficial 

supragingival plaque swabs between the three groups. 

a) PERMANOVA 

Primer v7 program (PRIMER-E Ltd., Ivybridge, UK) was used to run a multivariate 

permutational analysis of variance (PERMANOVA) using reduced-model with 

unrestricted permutation of raw data, 9,999 permutations and type III partial sum of 

squares. Four different groupings were analyzed, hematological cancer vs. healthy 

control (G1), AML vs. healthy control (G2), Lymphoma vs. healthy control (G3) and AML 

vs. Lymphoma (G4) in order to compare the beta-diversity in a cross-sectional analysis 

of relative abundance data. RA data were square root transformed and converted to 

Bray-Curtis similarity matrices prior to PERMANOVA analysis. Each PERMANOVA 

grouping was run from paired data of the four oral site samples, namely saliva (S), 

buccal mucosa (B), tongue (T) and superficial supragingival plaque (P). For all 

groupings, PERMANOVA Monte-Carlo-corrected p-values (p<0.05) were obtained using 

both fixed and random variables. The factors “condition” (Hematological cancer and 

Healthy control) and “sample site” (S, B, T, P) were set as fixed variables, while 

“diagnosis” (ALL, AML, Lymphoma, MDS, Myelofibrosis, Myeloma) and “antibiotic 

treatment were set as random variables for G1. The factors “condition” and “sample site” 

were set as fixed variables for G2, G3, and G4. For the analysis involving random 

variables (i.e., antibiotic treatment, cancer stage), these were nested in the factor 

“condition”. For depiction of PERMANOVA design refer to (Figure 1). 

b) Principal coordinate analysis (PCoA) and non-metric multidimensional 

scaling (nMDS) 
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For the analyses that were statistically significant to visualize the comparisons, non-

metric multi-dimensional scaling nMDS and PCoA plots were formed from RA data using 

Primer v7 (PRIMER-E Ltd., Ivybridge, UK). 

c) Linear discriminate analysis (LDA) effective size (LEfSe) 

Analysis was performed on each grouping using online tool Galaxy v1.0, in order to 

determine differentiating features at the genus and species level, as demonstrated by 

Segata et al. (21). Taxonomy levels were manually added to all groupings within the text 

files that were formatted according to Galaxy V1.0 required formatting. Data formatting 

and input consisted of diagnosis (hematological cancer and healthy control) as class and 

patient ID as subject. Analysis strategy ‘one-against-all’ was used for multiclass analysis, 

the factorial Kruskal-Wallis test as well as pairwise Wilcoxon signed-rank test for all 

groupings was set at a Monte-Carlo (a=0.05). Results were displayed as histograms and 

cladograms representing taxa with an LDA>4.0 threshold for groupings (G1, G2, G3) 

and LDA>3.0 for grouping (G4). 

 

 

 

 

 

 

 

 

 

 

 

 



 11 

CHAPTER 3: RESULTS 
 

 
3.1 Abundance Data and Species Detection 
 

ProbSeq results representing matched sequence reads of the 737 total probes 

(620 species and 117 genus probes) for hematological cancer patients and healthy 

control subjects are represented in (Supplemental Table 1). Relative abundance data 

was used to analyze most prevalent species and genus for hematological cancer 

patients, as well as healthy control subjects. The most abundant genus present in both 

hematological cancer and healthy control subjects was Streptococcus. Furthermore, 

Rothia dentocariosa accounted for the largest difference in relative abundance between 

hematological cancer and healthy controls (Figure 2). 

3.2 Cross-sectional Analysis 

Hematological cancer patients had a distinct oral microbial profile when 

compared to healthy controls (p=0.0001). Initial analysis of G2 comparison noted 

significant interaction between condition and sample site, possibly indicating an 

imbalance in the two groupings. Secondary analysis of G2 was performed after sample 

data was balanced, i.e. sample number and male to female distribution with new sample 

data as follows; AML (n= 56 samples M= 32, F= 24) and healthy control (n=56 samples, 

M= 32, F= 24). The secondary analysis indicated a significant difference in oral 

microbiome beta-diversity when comparing AML to healthy control subjects (p=0.0001). 

Additionally, G3 and G4 analyses indicated a significant difference in the oral microbial 

profile of Lymphoma patients when compared to healthy control subjects (p=0.0001), as 

well as AML patients (N=20 patients; n=56) (p=0.0148). As expected, there were 

significant differences in the oral microbial beta-diversity when comparing sample sites 

(p=0.0001), as well as comparison of individuals that had been treated with antibiotics to 
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those who had not for all patient sets (hematological cancer and healthy control) 

(p=0.0245).  

Significant comparisons are expressed in PCoA plots and nMDS plots with the least 

amount of variation observed among G4 (AML vs lymphoma), with a total of three 

principal coordinates of 36.3 percent. The highest variation was observed among G3 

(lymphoma vs helathy control), with a total of three principal coordinates of 40.8 percent. 

(Figure 3 and 4) 

Detailed PERMANOVA results 

G1: Hematological cancer vs. healthy control subjects 

• Analysis 1- Condition- fixed, Sample Site- fixed, Diagnosis random (Sa, Co) 

o Co 0.0001 (main variable) 

o Sa 0.0001, Di 0.0107 (secondary variables) 

• Analysis 2- Condition- fixed, Sample Site- fixed, Antibiotics random (Sa, Co) 

o Co 0.0001 (main variable) 

o Sa 0.0001, An 0.0245 (secondary variables) 

G2: AML vs. healthy control subjects 

• Analysis 1- Condition- fixed, Sample Site- fixed 

o Co 0.0001 (main variable) 

o Sa 0.0001 (secondary variable) 

G3: Lymphoma vs. healthy control subjects 

• Analysis 1- Condition- fixed, Sample Site- fixed 

o Co 0.0001 (main variable) 

o Sa 0.0001 (secondary variable) 

G4: AML vs. Lymphoma 

• Analysis 1- Condition- fixed, Sample Site- fixed 
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o Co 0.0148 (main variable) 

o Sa 0.0001 (secondary variable) 

Condition= G1- Hematological cancer, healthy control subjects; G2- AML, healthy control 

subjects; G3- Lymphoma, healthy control subjects; G4- AML, Lymphoma patients 

Diagnosis= ALL, AML, Lymphoma, MDS, Myelofibrosis and Myeloma 

Antibiotic= Yes, No 

Sample site= Buccal mucosa, saliva, superficial supragingival plaque, tongue  

3.3 LEfSe Analysis 

LEfSe analysis identified 52 probes differentiating hematological cancer patients 

from healthy controls. The most differential features being among those diagnosed with 

MDS, noting Streptacoccaceae (log LDA ≈ 5.3) as the most differential feature (Figure 

5). Additionally, there was an indication that there may be a relationship between the 

microbial communities of AML, ALL and MDS (Figure 6). Further analysis indicated 21 

features differentiating AML patients from healthy controls and 24 features differentiating 

Lymphoma patients from healthy controls. Bacilli (log LDA ≈ 4.8) were the leading 

differential feature of AML and Lymphoma patients when compared to healthy control 

subjects. Additionally, there were 19 features differentiating Lymphoma patients from 

patients who were diagnosed with AML (Figure 5).  
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CHAPTER 4: DISCUSSION AND CONCLUSION 
 
 
4.1 Discussion 
 

This is one of the largest studies that has compared the effects of hematological 

cancers on oral microbiome profiles to that of healthy individuals. In agreeance with Hu 

Jei et al.(6) the most prevalent genera in the oral cavity of our healthy control subjects 

were Prevotella, Neisseria, Streptococcus, Haemophilus, and Fusobacterium. 

Additionally, we analyzed five different forms of hematological cancers independently as 

well as a group (hematological cancer). All analysis of taxa abundance was done using 

V3-V4 region 16s rRNA gene next generation sequencing in conjunction with ProbeSeq 

species and genera identification program.   

There were significant differences in the oral microbiome profile of hematological 

cancer patients when compared to healthy controls. LEfSe analysis indicated there were 

52 features differentiating hematological cancer patients from healthy control subjects. 

The most prominent of the differential features was Streptococcaceae belonging to MDS 

patient group. Additionally, analysis of cladogram structure indicated a possible 

relationship between the communities of AML, ALL and MDS.  

Furthermore, AML and Lymphoma had a distinct oral microbiome beat-diversity 

when compared to healthy controls. We identified 21 differential features of AML and 24 

differential features of lymphoma, the most prevalent being those among the healthy 

control subjects. Bacilli were indicated as the most prevalent differentiating feature (log 

LDA ≈ 4.8) for both AML and lymphoma patients when compared to healthy control 

subjects. Additionally, there was indication that there may be a relationship between the 

oral microbiome profile of AML patients and healthy control subjects. 

Relative abundance data comparison showed a significant increase of Rothia 

dentocariosa and Actinomyces genus in hematological cancer patients when compared 
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to healthy control subjects. Actinomyces is an opportunistic pathogen most well-known 

for causing oral abscesses and on occasion, abscesses in the lungs and gastric tract. 

We were also able to note a significant decrease in Haemophilus parainfluenzae and 

Streptococcus genus. Many different species of Streptococcus are present in the oral 

cavity and as a genus account for the largest RA of healthy individuals.  

4.2 Conclusion 

In conclusion, we noted significant differences in oral microbiome beta-diversity 

when comparing hematological cancer patients to healthy control subjects. We were 

also able to note differences among hematological cancer patient’s oral microbiome 

profiles when comparing patients diagnosed with AML to patients diagnosed with 

lymphoma. More research is necessary to better understand how the oral microbiome 

interacts with its microenvironment and the host immune system of cancer patients in 

order to elucidate possible mechanistic pathways. 
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Figure 1. PERMANOVA design to assess differences in oral microbiome beta-
diversity between groups 

Oral microbiome beta-diversity differences were determined using four different 

groupings. Group 1 (G1) analysis compared hematological cancer patients to healthy 

control subjects. Group 2 (G2), Group 3 (G3) and Group 4 (G4) used subgroup 

diagnosis of hematological cancer group as follows. G2 analysis compared acute 

myelogenous leukemia (AML) patients to healthy control subjects. G3 analysis 

compared lymphoma patients to healthy control subjects. G4 analysis compared AML to 

lymphoma patients. 
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Figure 2. Clustering of cancer patients and healthy controls oral samples based 
on oral microbiome relative abundances 

Oral bacterial genus and species relative abundance (RA) changes in oral samples 

(saliva sample, buccal mucosa, tongue and superficial supragingival plaque swabs) for 

hematological cancer patients and healthy control subjects are represented. The 

difference between hematological cancer patients and healthy control subjects is 

represented by green bars.  

Standard error of the mean (Standard deviation/Square root of N) values are 

represented for each RA with the probe identifier shown for each genus and species. 

The largest relative abundance difference when comparing hematological cancer 

patients to healthy control subjects is Rothia dentocariosa.  
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Figure 3. PCoA cross-sectional analysis of hematological cancer patients and 
healthy control subjects 

PERMANOVA testing for the PcoA comparisons shown in figure resulted in Monte-Carlo 

p<0.05. PERMANOVA was based on all 737 probes comprised of 620 species and 117 

genus probes. 

Patients having next generation sequencing data for saliva sample, buccal mucosa, 

tongue and superficial supragingival plaque swabs. a. hematological cancer patients vs. 

healthy control subjects with a total of three principal coordinates of 39.3 percent 

variation; b. AML vs healthy control subjects with a total of three principal coordinates of 

39.4 percent variation; c. Lymphoma patients vs. healthy control subjects with a total of 

all principal coordinates being 40.8 percent variation representing the largest variation; 

d.  AML vs. lymphoma patients with a total of all principal coordinates of 36.3 percent 

variation representing the smallest variation.  

Group 1: Hematological Cancer Patients vs. healthy Control Subjects PCoA
a.

Group 2: AML vs. Healthy Control Subjects PCoA
b.

Group 3: Lymphoma vs. Healthy Control Subjects PCoA Group 4: AML vs. Lymphoma PCoA
c. d.
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Figure 4. nMDS for hematological cancer patients and healthy control subjects 

Nonmetric multidimensional (nMDS) scaling of PERMANOVA performed on Bray-Curtis 

dissimilarity matrices determined from square root transformed relative abundance data 

using PRIMERv7 (PRIMER-E Ltd, Ivybridge, UK). PERMANOVA testing resulted in 

Monte-Carlo p<0.05 for the comparisons shown and was based on all 737 probes 

comprised of 620 species and 117 genus probes. All groupings displayed differences in 

3D clustering of samples when comparing hematological cancer samples to healthy 

control subjects as well as AML to lymphoma patients. 

 

 

Group 1: Hematological Cancer Patients vs. healthy Control Subjects nMDS

3D Stress: 0.14

Group 2: AML vs. Healthy Control Subjects nMDS

3D Stress: 0.13

3D Stress: 0.13

Group 3: Lymphoma vs. Healthy Control Subjects nMDS
Group 4: AML vs. Lymphoma nMDS

3D Stress: 0.13

a.

c. d.

b.
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Figure 5. LEfSe results for hematological cancer patients and healthy control 
subjects displayed as horizontal histograms 

Linear discriminant analysis Effect Size (LEfSe) was performed to determine distinct oral 

microbiome features in samples (saliva sample, buccal mucosa, tongue and superficial 

supragingival plaque swabs) from hematological cancer patients and healthy control 

subjects. 

 

Data formatting and input consisted of diagnosis (hematological cancer and healthy 

control) as class and patient ID as subject. 

 

a. LEfSe results showing a histogram of hematological cancer patient samples and 

helathy control subjects with most differential features belong to MDS. A total of 52 

differential features were identified 13 Myf, 1 Mye, 7 MDS, 3 Lym, 7 CML, 10 AML, 3 

ALL and 8 healthy controls. 

b. Horizontal histogram comparing differential features of AML patients (red) and healthy 

control subjects (green) representing top 21 differential features 

c. Horizontal histogram displaying top 24 differential features of lymphoma 

patients(green) and healthy control subjects (red).  

d. Horizontal histogram displaying top 19 differential features of AML (red) and 

lymphoma (green) patients. 

a. b. c. d.
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Figure 6. Cladograms representing discriminative features of hematological 
cancers and healthy control subjects 

a. LEfSe Cladogram with 52 differential features identified by LEfSe. Largest group is the 

Firmicutes that show the differential features of MDS. Within that group falls 

Negativicutes and Bacilli making subgroups that differentiate with AML and MDS. There 

may be some relationship between the communities of AML, ALL, and MDS.  

Actinobacteria are the largest differential feature of Lym with a subgroup of differential 

features of CML. There may be overlap in microbial communities within these two 

diagnosis. Myf has differential features coinciding with Bacteroidetes and Proteobacteria. 

b. LEfSe Cladogram with 21 differential features identified by LEfSe. Largest group is 

the Firmicutes that show the differential features of healthy controls. Within that group 

fall the Negativicutes and Bacilli making subgroups that differentiate healthy controls 

from AML.  Actiniobacteria and Bacteroidetes are the largest groups that show 

differential features of AML. c. LEfSe Cladogram with 24 differential features identified 

by LEfSe. Largest group is the Firmicutes that show the differential features of healthy 

controls. Actiniobacteria are the largest groups that show differential features of Lym. d. 
LEfSe Cladogram with 19 differential features identified by LEfSe. Largest group is the 

Negativicutes that show the differential features of AML. Flavobacteria is the largest 

group that show differential features of Lym. 

a. b.

c. d.
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Table 1. Demographics table for hematological cancer patients and healthy 
control subjects 

 

 

 

 

 

 

 

 

 

 

 

Criteria Hemotological Cancer Healthy Control
Male 32 11
Femal 19 27
Total Patients 51 38

Ethnisity/Sex Hemotological Cancer Healthy Control
Male
American Indian 0 1
Asian 0 2
Black 12 0
Caucasion 20 7
Hispanic 0 1
Other 0 0
Total Males 32 11
Female
American Indian 0 0
Asian 0 2
Black 5 2
Caucasion 13 22
Hispanic 0 1
Other 1 0
Total Females 19 27
Total Patients 51 38
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