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ABSTRACT

JULIA STEINBERG SIMONSEN. Diffusion Processes on Solvable Groups of Upper Triangular
3× 3 Matrices. Applications in Asian and Basket Options.. (Under the direction of DR.

STANISLAV MOLCHANOV)

One of the general questions in algebraic groups is about the asymptotic behavior of the prob-

ability of return of a random walk defined on these groups. An upper-triangularity of a matrix is

preserved by a sum, product, inverse, thus they form a group. Growth rate of a group and the

asymptotic behavior of the probability of return of a random walk are closely related. Solvable

groups have an exponential growth rate and in well-established literature, it was shown that the

asymptotic behavior of the probability of return on these groups has a fractional-exponential decal.

The results in S. Molchanov, V. Konakov and S. Menozzi paper, are different from the previous

finding. They showed that in the case of solvable groups of upper-triangular 2x2 matrices the return

probability of the Brownian motions has a polynomial decay. In this dissertation, we extended this

research to the case of solvable groups of upper-triangular 3x3 matrices. The elements in the 3x3

matrices that define a Brownian motion on these groups contain integrals of geometric Brownian

motions. These integrals have an important role in mathematical finance in particular, in Asian and

Asian-Basket options. We proved some properties of these integrals and showed that certain cases

of geometric Asian-basket call options with two assets have a higher risk that the same type of put

options. Which implies that some trading strategies might benefit from a reevaluation using a new

risk assessment of geometric Asian-Basket.
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CHAPTER 1: INTRODUCTION TO GROUP THEORY

A group is a nonempty set G, called the underlying set of the group, together with a binary

operation on G with the following properties:

• Associativity: (ab)c = a(bc)

• Identity: 1a = a1 = a

• Inverses: aa−1 = a−1a = 1

Let’s list few definitions that are going to be used thru out this dissertation:

Definition 1. If we have a commutative property: ab = ba, then the group is abelian.

Definition 2. A group is finite, if the underlying set G is a finite set; otherwise, it is countable.

Definition 3. Lie product is given by a communicator: [X,Y ] = XY − Y X

Definition 4. Lie algebra Lie(Y,X2, ..., Xm) is the smallest vector space of smooth vector fields which

contains {Y,X2, ..., Xm} closed under the Lie product.

Definition 5. A matrix Lie group (roughly speaking - a continuous group) is a subgroup G of

GL(n,R) with the following property: if any sequence of matrices in G converges to some matrix

A, then either A is in G or A is not invertible.

Let G be a matrix Lie group with Lie algebra g. If X and Y are elements of g, then the following

results hold:

• AXA−1 ∈ g for all A ∈ g

• sX ∈ g for all real numbers s

• X + Y ∈ g

• XY − Y X ∈ g
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Definition 6. Let G be a group and let g0 = g and gk = [gk−1, gk−1] where gk ∈ G for k = 0, 1, 2, . . . ..

The group G is called a solvable Lie group if gk = eG for some k, where eG an identity element of

group G.

Definition 7. Let G be a group and g0 = g and gk = [g, gk−1] where gk ∈ G for k = 0, 1, 2, .... The

group G is called a nilpotent Lie group if gk = eG for some k, where eG an identity element of group

G.

If the group is nilpotent, then it is solvable. For general groups, one of the most basic and natural

questions about random walks concerns the asymptotic behavior of the probability of return to the

starting point [13]. An important observation that an upper-triangularity of a matrix is preserved

by a sum, product, inverse, thus they form a group. We will be focusing on solvable groups, which

can be realized as subgroups of invertible upper triangular matrices.

1.1 Growth Rate in Groups

Suppose G is a finitely generated group; and T s a finite symmetric set of generators (symmetric

means that if x ∈ T , then x−1 ∈ T . Any element x ∈ G : x = a1 · a2 · · · ak where ai ∈ T .

Definition 8. The closed ball of radius n is Bn(G,T ) = {x ∈ G|x = a1 · a2 · · · ak where ai ∈ T and

k ≤ n}.

Definition 9. The growth rate of the group G is #(n) = |Bn(G,T )|, which is the number of elements

in this closed ball.

Can we relate the growth rate of a group to the asymptotic behavior of the probability of return

of a random walk defined on that group?

Definition 10. The growth rate in a group is called

• Exponential, if #(n) ≥ an, a > 1.

• Sub-Exponential, if #(n) growth slower than an any exponential

• Polynomial, if #(n) ≤ C
(
nk + 1

)
, k ≤ ∞
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Consider a countable group G with finitely many generators a1, a2, . . . , am. Let x(t), where

t = 1, 2, ..., be a left-invariant symmetric random walk on G: p(g1, g2) = p(g2, g1) without any

compactness constraints on the transition probabilities. According to Kesten [17], all such groups

are divided into two classes: amenable groups, for which

lim sup
n→∞

ln p(2n, e, e)

2n
= 0

and nonamenable groups, for which p(2n, e, e) ≤ Ce–νn, where ν > 0.

An example of a nonamenable group is the free group. See details about group theory in Hall

[13].

1.2 Random Walks on Countable Groups

First significant results in the direction of study of random walks in groups were two papers [18]

and [17] that Harry Kesten published in 1959, in which he showed that for a symmetric random walk

on a group, the return probability decays exponentially if and only if the group is non-amenable.

Definition 11. A group G is amenable if one can say what proportion of G any given subset takes

up.

In this way, Kesten related the behavior of the random walk to the geometric structure of the

group.

1.3 Connecting Volume Growth with Probability of Return

The idea of using volume growth to study random walks on groups was introduced by Varopoulos

[27] in the early 1980’s. In the case of groups with polynomial growth, the volume growth completely

determines the behavior of the return probability.

Theorem 1 (Varopoulos’s theorem). Let G be a group of polynomial growth of degree d. Then

for a finitely supported symmetric random walk ξn on G, P (ξ2n = e)) ' n−
d
2 . Moreover, if G

is any group such that the volume growth satisfies the lower bound Cnd for all n, then ξn on G,

P (ξ2n = e)) = O
(
n−

d
2

)
.
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1.4 Growth rate and Asymptotic Behavior of Probability of Return

The class of amenable groups includes Abelian, nilpotent, and solvable groups. On such groups,

a nontrivial ergodic theory can be developed See details in Tempelman [26]. Abelian and nilpotent

groups have polynomial lower bound for the return probability. In the regards, of great interest are

solvable groups, which can be realized as subgroup of groups of upper triangular matrices. It was

believed that, for a Brownian motion on a solvable Lie group, the situation must be similar, that

is, the exponential growth of the volume of a Riemann ball of radius r must imply the fractional-

exponential decay of the transition density p(t, e, e) as t → ∞. It turned out that this is not so.

According to Konakov-Menozzi-Molchanov [19] for classical solvable Lie groups of 2 × 2 matrices,

we have p(t, e, e) ∼ c
tν .

1.5 Construction of Diffusion Processes on Lee Groups

Let’s start from the functional central limit theorem (FCLT). Let X1, X2, ..., Xn, ... are i.i.d ran-

dom variables and EXi = 0, V arXi = EX2
i = 1. If EXi = a and V arXi = σ2, the the transforma-

tion Yi = Xi−a
σ for i = 1, 2, ... leads to EYi = 0 and V arYi = 1.

Consider in C ([0, 1]) the random element xn(t), t ∈ [0, 1] given by formulas:

x(0) = 0

x

(
k

n

)
=
x1 + x2 + ...+ xk√

n
, k = 1, 2, ...n

on the greed { kn , k = 0, 1, ..., n} and by the linear interpolation between the points of the greed.

The usual CLT for fixed 0 < s ≤ 1 the distribution of xn(s) converges to N(0, σ) if n→∞. We

can show it by taking k = [sn], and consider sk√
n

=
s[sn]√
n

. Then E sk√
n

= 0, var sk√
n
→ s, n→∞ etc.

Similarly one can check that

(xn(t1), ..., xn(tm))
d−−−−→

n→∞
(b(t1), ..., b(tm))

for fixed m and 0 < t1 < ... < tm ≤ 1. Which means that the finite dimensional distributions

of xn(t), t ∈ [0, 1] for n → ∞ tends to the corresponding distributions of the Brownian motion

(Wiener process).
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1.6 Diffusion Processes on Solvable Groups of Upper-Triangular 2x2 matrices

Consider the solvable group T2 of upper-triangular 2× 2 matrices of the form [19]:

T2 =

ex1 y

0 ex2

 , x1, x2, y ∈ R

as well as important subgroups of this group, such as the group

T2 =

ex y

0 1

 , x, y ∈ R

Brownian motions on these groups can be constructed by using the multiplicative stochastic integral

introduced by McKean in [23] and studied in detail by Ibero in [15]. The idea of this approach is

to construct a matrix-valued stochastic integral in the Lie algebra of the group under consideration,

project the increments of this integral onto the group itself by using an exponential mapping, and

perform the multiplicative “gluing” of the resulting projections. Setting

g(0) = e =

1 0

0 1


We see that, on each of the groups specified above, the Brownian motion g(t) has the form

gT2
(t) =

e
W1(t)

t∫
0

eW1(s)+W2(t)−W2(s)dW3(s)

0 eW2(t)



pT2
(t, e, e) ∼ 1

4
√
π
t−2 (1)

gAff(R)(t) =

e
W1(t)

t∫
0

eW1(s)dW2(s)

0 1



pAff(R)(t, e, e) ∼
√
π

2
t−

3
2 (2)



6

gT2,U
(t) =

e
W1(t)

t∫
0

e2W1(s)−W1(t)dW2(s)

0 e−W1(t)



pT2,U
(t, e, e) ∼ 1

4
t−

3
2 (3)

The purpose of this dissertation is to establish this fact further and discuss diffusion processes on

the solvable group T3 of upper-triangular 3× 3 matrices.



CHAPTER 2: TRANSITION DENSITY FUNCTION AND PARTIAL DIFFERENTIAL
EQUATIONS

2.1 Partial Differential Equations

Let’s describe the partial differential equation’s (PDE) problem in the simplest case of the Lapla-

cian:

∆ =
∂2

∂x2
1

+ ...+
∂2

∂x2
d

acting in C2
(
Rd
)
. Define δ ∈ Rd as a bounded domain with the regular boundary ∂D. Regularity

means that for any point x0 ∈ ∂D the part of the boundary near x0 in the appropriate coordinate

system can be presented by the equation:

xi = Fi (x1, .., xd−1, xd+1, ...)

We will assume that Fi(·) ⊂ C1, though majority of the future results are applicable to picewise

boundaries.

2.1.1 Dirichlet Problems

For given function f(x) ∈ C (∂D) find the solution of the equation:
∆u(x) = 0, x ∈, u(x) ∈ C(D̄), (D̄) = D ∪ ∂D

u(y) = φ(y), y ∈ ∂D

such functions are known as harmonic functions. They are not only of the class C2(D), but also

analytic inside of the domain D. For some symmetric domains there are exact formulas for the

solution of the Dirichlet problem.



8

2.1.2 Nonhomogeneous problem with Dirichlet boundary conditions



∆u(x) + f(x) = 0, x ∈ D

f(·) ∈ C(D)

u(y) = 0, y ∈ ∂D

(4)

This equation can be solved by the Fourier method. Consider the spectral problem:

−δφ = λφ, φ|∂D = 0

The general results in the functional analysis give the existence of the complete orthonormal basis

of the eigenfunctions {φi(x), i ≥ 1, x ∈ D} in L2(D, dx):



(φi, φj) =

∫
D

φi(x)φj(x)dx = δi,j

−∆φi(x) = λiφi(x)

λi > 0

φi|∂D = 0

Using this basis we can solve Eq. (4). Put

u(x) =

∞∑
n=1

cnφn(x), f(x) =

∞∑
n=1

anφn(x)

then

∆u(x) = −
∞∑
n=1

cnλnφn(x) +

∞∑
n=1

anφn(x)

Hence: cn = an
λn

and

u(x) =

∞∑
n=1

(f, φn)

λn
φn(x)

This series converges at least in L2 (D, dx).

2.1.3 Parabolic Problem

Let’s consider the parabolic problem, which includes the times and space variables. Such problems

appear in the description of the heat energy propagation and diffusion. The simplest equation here
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is the Cauchy problem in the full space:
∂u(t,x)

∂t
= ∆u(f, x)

u(0,x) = φ(x) ∈ C
(
Rd
) (5)

Note that for d = 1, the solution of this equation is related to Brownian motion and is given by the

formula: 
u(t, x) =

∫
R2

p(t, x, y)φ(y)dy

p(t, x, y) = p(t, 0, y − x) =
1√
4πt

e−
(x−y)2

4t

We will use Eq. (5) in a different form:
∂u(t,x)

∂t
=

1

2
∆u(f,x)

u(0,x) =
1

(2πt)
d
2

∫
Rd

e−
(x−y)2

2t dy

Let’s consider the parabolic problems in the cylindrical domains [0, T ] × D ⊂ Rd. For example, a

nonhomogeneous Dirichlet problem:

∂u(t, x)

∂t
= ∆u(t, x) + f(t, x), f(t, ·)|∂D = 0

u(t, y) = 0, y ∈ ∆D, t ∈ [0, T ]

u(t, x) = 0, x ∈ D

A solution of this problem can be expressed in terms of eigenfunctions (φn(x), n ≥ 1):

u(t, x) =

∞∑
n=1

cn(t)φn(x), f(t, x) =

∞∑
n=1

an(t)φn(x)

Then:
∞∑
n=1

∂cn(t)

∂t
φn(x) = −

∞∑
n=1

cn(t)λnφn(x) +

∞∑
n=1

an(t)φn(x)

which means that

cn(t) =

t∫
0

e−λn(t−s)an(s)ds
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and

u(t, x) =

∞∑
n=1

t∫
0

e−λn(t−s) (f(s, ·), φn)φn(x)ds

=

∞∑
n=1

t∫
0

e−λn(t−s)

∫
D

f(s, y), φn(y)φn(x)dy

 ds

=

t∫
0

∫
D

q(t− s, x, y)f(s, y)dy

 ds
where

q(t− s, x, y) =

∞∑
n=1

e−λn(t−s)φn(y)φn(x)

The kernal q(t − s, x, y) is the transition probability of the Brownian motion inside D with the

annihilation on its boundary ∂D.

Consider the self-adjoint elliptic operator:

(Af)(x) =

d∑
i,j=1

∂

∂xi

(
ai,j(x)

∂f

∂xj

)
(6)

Definition 12. A matrix [ai,j(x)] is called positive-definite if ∀
(
y ∈ Rd

)
6= 0 we have

∑
ai,j(x)yiyj > 0

Assume that the matrix [ai,j(x)] in Eq. (6) is symmetric and strictly positive-definite. If there

exists a positive λ0 ≤ 1 such that ∀
(
y ∈ Rd

)
we have

λ0

d∑
i=0

y2
i ≤

∑
i,j

yiyj ≤ λ−1
0

d∑
i=0

y2
i

Then, we call the operator A uniformly elliptic and λ0 the constant of ellipticity. If ai,j(x) = δi,j

and λ0 = 1, then A is Laplacian. In the general theory elements ai,j(x) are only measurable (see

Friedman [9]).

2.2 Infinitesimal Generator

The infinitesimal generator is a partial differential operator that encodes a lot of information

about the stochastic process. Let Xt : [0,∞]×Ω −→ Rn defined on a probability space (Ω,F , P ) be
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an Itö diffusion satisfying a stochastic differential equation of the form:

dXt = b(Xt)dt+ σ(Xt)dWt

where W is an m-dimensional Brownian motion and b : Rn → Rn and σ : Rn → Rn×m. The

infinitesimal generator of Xt is the operator L, which is defined for f : Rn → R by:

(L f) (x) = lim
t→0

Ex[f(Xt)]− f(x)

t
(7)

Theorem 2. For any f ∈ C2
(
Rd
)

(twice differentiable with continuous second derivative) such that

the limit in Eq. (7) exists at a point x ∈ Rd, the infinitesimal generator of X can be presented in

the following form:

(L f) (x) =

d∑
i=1

bi(x)
∂f(x)

∂xi
+

1

2

d∑
i,j=1

(
σ(x)σ(x)T

)
i,j

∂2f(x)

∂xi, ∂xj

It is known from the general theory of PDE’s [9] that the solution to the following parabolic

problem exists and unique:
∂u(t,x)

∂t
= L u(t,x) =

d∑
i=1

bi(x)
∂f(x)

∂xi
+

1

2

d∑
i,j=1

(
σ(x)σ(x)T

)
i,j

∂2f(x)

∂xi, ∂xj

u(0,x) = φ(x) ∈ C
(
Rd
)

Moreover, the solution to the problem above can be presented in the following form:

u(t,x) =

∫
Rd

p(t,x,y)φ(y)dy

where p(t,x,y) is the fundamental solution of the same problem:
∂p

∂t
= Lxp

p(0,x,y) = δ(x− y)

where δ-function is the Dirac delta function and it is expressed as

δ(x− y) =
1

2π

∞∫
−∞

eip(x−y)dp

The Dirac delta can be loosely thought of as a function on the real line which is zero everywhere
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except at the origin [10], where it is infinite and it is also constrained to satisfy the identity

∞∫
−∞

δ(x)dx = 1

Due to the max principle p(t, x, y) > 0, t > 0. Consider the case when φ(y) = 1, then u(t, x) = 1;

and one can conclude that
∫
Rd
p(t, x, y)dy = 1, ∀x ∈ Rd, t > 0. Finally, the solution at the moment

t+ s can be constructed in two steps: solve the problem on [0, s] and take u(s, x) as the new initial

function for the parabolic problem on [s, s+ t]. It will lead to the fundamental relation:

p(t+ s,x,y) =

∫
Rd

p(s,x, z)p(t, z,y)dz

The last formula gives the simplest manifestation of the Markov property for Xt, t ≥ 0.

2.3 The Fundamental Solution of a Linear Parabolic Problem

Theorem 3. A solution of the parabolic equation
∂u

∂t
= L u

u(0, x) = ψ(x) ∈ C
(
Rd
)

can be presented in terms of the fundamental kernal p(t, x, y), which is the transition density of the

diffusion process with the generator L :



u(t, x) =

∫
Rd

p(t, x, y)ψ(y)dy

∂p(t, x, y)

∂t
= Lxp(t, x, y)

p(0, x, t) = δy(x)

and for ant t > 0, x, y ∈ Rd we have upper and lower Gaussian estimates:

c−1 e
−c−0

(x−y)2
t ≤ p(t, x, y) ≤ c+1 e−c

+
0

(x−y)2
t (8)

where constants c±1,0 depend only on the dimension d and the ellipticity constant λ0.

We can assume that ai,j(x) ∈ C∞
(
Rd
)
and approximate ”bad” coefficients by C∞ infinity coeffi-

cient. The central fact is that constants in Eq. (8) are independent on smoothness of coefficients.
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The general (non-symmetric) elliptic operator has the Fokker-Planck form:

L f(x) =

d∑
i,j=1

∂

∂xi
ai,j(x)

∂f

∂xj
+

d∑
i=1

bi(x)
∂f

∂xi

= (�, a∇f) + (b,∇f)

where the matrix [ai,j(x)] is called the diffusion tensor and the vector [bi(x)] is the drift. In the

mathematical literature the operator L is usually presented in Kolmogorov’s form:

L f(x) =

d∑
i,j=1

ai,j(x)
∂2

∂xi∂xj
+

d∑
i=1

b̂i(x)
∂f

∂xi

Let’s point out that b̂i(x) is not a drift. The standard assumption in the Itô theory is ai,j(x), bi(x) ∈

Lip
(
Rd
)
:

d∑
i,j=1

|ai,j(x)− ai,j(y)| ≤ L (x− y)

d∑
i=1

|bi(x)− bi(y)| ≤ L (x− y)

In addition, if det[ai,j(·)] > 0, then the parabolic equation
∂p(t, x, t)

∂t
= L p(t, x, y)

p(0, x, y) = δy(x)

(9)

has unique strictly positive solution: the transition density of the corresponding Markov diffusion

process. See details in [1].

2.4 Construction of Markov processes in Terms of Transition Density Function

Let (X,F , µ) be the measure space and p(t, x, y) be the transition density of some Markov process

x(t), x ≥ 0, which means

Px{x(t) ∈ Γ} =

∫
Γ

p(t, x, y)µ(dy)

The transition density must satisfy Chapman-Kolmogorov relation:

p(t+ s, x, y) =

∫
p(t, x, z)p(s, z, y)µ(dz)∫

p(t, x, y)µ(dy) = 1
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for 0 < t1 < t2 < ... < tn and Γ1, ...,Γn ⊂ F . One can define the finite dimensional distributions

mt1,t2,...,tn (Γ1, ...,Γn) =

∫
Γ1

p(t1, x1, z1)µ(dz1)

·
∫
Γ2

p(t2 − t1, z1, z2)µ(dz2)

· ... ·
∫
Γn

p(tn − tn−1, zn−1, zn)µ(dzn)

They satisfies the conditions of the Kolmogorov extension theorem. The symmetry is obvious,

the projectivity follows from Chapman-Kolmogorov equation. The extension theorem proves the

existence of the process x(t) with given finite dimensional distributions in the case of the countable

time t. The existence of the process with continuous trajectories or trajectories continuous from

the right (for the jumping processes) one can prove under stronger restrictions on (X,F , µ) and

p(t, x, y).

Let x = Rd, F = B(Rd), µ(dx) = dx (Lebesgue measure on Rd). Consider the uniformly elliptic

operator L either in the form

(L f) (x) =
∑
i,j

∂

∂xi

(
ai,j(x)

∂f

∂xj

)

or non-symmetric uniformly elliptic operator

(L f) (x) =
∑
i,j

ai,j(x)
∂2f

∂xi∂xj
+
∑
i

bi(x)
∂f

∂xi

where [ai,j(·)], [bi(·)] ∈ Lip
(
Rd
)
.

In both cases we have existence-uniqueness theorem for the fundamental solution p(t, x, y) of the

parabolic problem defined in Eq. (9). Since equation ∂u
∂y = L u with initial condition u(0, x) = 1

has solution u(t, x) = 1 means that
∫
Rd
p(t, x, y)dy = 1. Solution of the problem ∂u

∂y = L u, u(0, x) =

ψ(x) ∈ C
(
Rd
)

at the moment (t+s) equals
∫
Rd
p(t+s, x, y)ψ(y)dy or

∫
Rd
p(ξ, x, z)dz

∫
Rd
p(ξ, z, y)ψ(y)dy.

It leads to the Chapman-Kolmogorov relation.

Let’s recall another result by Kolmogorov: if the random process x(t), t ∈ [0, τ ] with values in
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Rd satisfies the relation:

E [X(t+ s)−X(t)]
α ≤ cs1+δ, δ > 0, α > 0

then it has the P-a.s. continuous modification.

For the Markov process with transition density p(t, x, y) the condition above holds if

∫
Rd

|y − x|αp(t, x, y)dy ≤ cs1+δ, ∀
(
x, y ∈ Rd

)
, δ > 0, α > 0, s ∈ [0, δ1]

Lemma 4 (Nash-Aronson estimate). In the self-ajoint case

∫
Rd

|y − x|4p(t, x, y)dy ≤ cs2

where constant c depends only on d and the constant of the uniform ellipticity.

2.5 Hörmander’s Condition

Vector fields in Rd can be identified with the first order differential operator:

(Xf) (x) =

d∑
i=1

ai(x)
∂f

∂xi

#        »

X(x) = {ai(x), i = 1, 2, ..., d}

{ai(x), i = 1, 2, ..., d} ∈ C∞

The class of such operators (vector fields) forms the Lee algebra with operations of addition,

multiplication by the constant and the Poisson bracket (or commutator). if X =
d∑
i=1

ai(x) ∂
∂xi

and

Y =
d∑
i=1

bi(x) ∂
∂xi

, then [X,Y ] = XY − Y X, which means:

(
[X,Y ]f

)
(x) =

d∑
i=1

ai(x)
∂

∂xi

 d∑
j=1

bj(x)
∂f

∂xj

− d∑
i=1

bi(x)
∂

∂xi

 d∑
j=1

aj(x)
∂f

∂xj


=

d∑
i=1

d∑
j=1

ai(x)bj(x)
∂2

∂xi∂xj
+

d∑
i=1

d∑
j=1

ai(x)
∂bj(x)

∂xi

∂f

∂xj

−
d∑
i=1

d∑
j=1

ai(x)bj(x)
∂2

∂xi∂xj
−

d∑
i=1

d∑
j=1

bi(x)
∂aj(x)

∂xi

∂f

∂xj

=

d∑
j=1

[
d∑
i=1

ai(x)
∂bj(x)

∂xi
−

d∑
i=1

bi(x)
∂aj(x)

∂xi

]
∂f

∂xj

Lee algebra can contain all C∞ vector fields on Rd on subclass of such fields closed with respect
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to linear operations and multiplication.

Consider on Rd the degenerated elliptic operator

L =

m∑
i=1

X2
i + Y (10)

where Xi =
d∑
j=1

ai,j(x) ∂
∂xj

, for i = 1, 2, ...,m, m < d and Y =
d∑
j=1

bi(x) ∂
∂xj

.

It is the diffusion operator with degenerated diffusion matrix of the order m.

The corresponding diffusion process X(t) can be constructed as the solution of Ito’s SDE with

smooth coefficients, which means that we have to assume that the derivatives of ai, bj are bounded,

i.e. ai, bj ∈ Lip
(
R2
)
.

Process X(t) has the transition density function, i.e. the measure:

P (t, x,Γ) = PX{X(t) ∈ Γ}, Γ ∈ B(Rd)

which satisfies the Chapman-Kolmogorov’s equation:

P (t+ s, s,Γ) =

∫
Rd

p(t, x, µ(dz))p(s, z,Γ)

Theorem 5 (Hörmander’s condition). Consider all commutators generated by the vector fields X1,

X2, ..., Xm except Y . which means:

X1, X2, ..., Xm, Y

[Xi, Y ], i = 1, 2, ...,m

[Xi, Xj ], i, j = 1, 2, ...,m; i 6= j

[[Xi, Y ], Xj ] ,

[[Xi, Y ], Y ] ,

[[Xi, Xj ], Xk] , ...

Assume that for an arbitrary point x ∈ Rd, one can find a set of vector fields (from this condition)

which forms the basis in the linear space with the origin x, i.e. such d-fields are linearly independent.

Then, process X(t) has C∞ transition density p(t, x, y).
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Proof. The detailed proof can be found in [14].

2.6 The Parametrix Method

How to construct p(t,x,y), which is the fundamental solution of
∂p(t,x,y)

∂t
= Lxp(t,x,y) =

∑
ij

aij(x)
∂2p(t,x,y)

∂xi∂xj
+
∑
i

bi(x)
∂p(t,x,y)

∂xi

p(0,x,y) = δy(x)

in the case of sufficiently smooth coefficient, say aij , bi ∈ C1
(
Rd
)

Let’s illustrate it in the simplified situation when b = 0. We have to solve the equation:
∂p(t,x,y)

∂t
=
∑
ij

aij(x)
∂2p(t,x,y)

∂xi∂xj

p(0,x,y) = δy(x)

(11)

Let’s ”freeze” the coefficients aij at the point ξ ∈ Rd (the singularity of fundamental solution),

i.e. consider the parabolic equation (over t and x ∈ Rd)
∂q(t,x, ξ)

∂t
=
∑
ij

aij(ξ)
∂2q(t,x, ξ)

∂xi∂xj

q(0,x, ξ) = δξ(x)

This is an equation with constant coefficients and it can be solved by the Fourier transform. Set

q̂(t,k, ξ) =

∫
Rd

q(t,x, ξ)ei(k,x)dx

then 
∂q̂

∂t
(t,k, ξ) = −

d∑
ij

aij(x)kikj q̂(t,k, ξ)

q̂(0,k, ξ) = ei(k,x)

then

q̂(t,x, ξ) = e
−t

d∑
ij
aij(x)kikj

ei(k,ξ)

Let aij(x) be the inverse matrix to aij(x). Observe that q(t,x, ξ) is Gaussian with covariance

matrix [aij(ξ)] and expectation ξ. Due to the well known formulas for the d-dimensional Gaussian
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distribution, the inverse Fourier transform finally gives us:

q(t,x, ξ) =
1

(4π)
d
2

√
det(aij(ξ))

Exp

− 1

4t

d∑
i,j=1

aij(ξ)(xi − ξi)(xj − ξj)

 t−
d
2

For the equation 
∂u(t,x)

∂t
=

d∑
ij

aij(x)
∂2u

∂xi∂xj
+ f(t,x)

u(0,x) = 0

one can use the Duhamel’s formula

u(t,x) =

t∫
0

ds

∫
Rd

q(t− s,x, ξ)f(s, ξ)dξ

then we present Eq. (11) in the following form (for a fixed ξ)
∂p(t,x, ξ)

∂t
=

d∑
i,j=1

aij(ξ)
∂2p

∂xi∂xj
+

d∑
i,j=1

[aij(x)− aij(ξ)]
∂2p

∂xi∂xj

p(0,x, ξ) = δξ(x)

note that here f(t,x) = (Lx −Lξ)p(t,x, ξ) which means

p(t,x, ξ) = q(t,x, ξ) +

t∫
0

ds

∫
Rd

q(t− s,x, ξ)(Lx −Lξ)p(t,x, ξ)dξ (12)

This is the integral equation of the Volterra type. Unfortunately for small t − s the Kernal

q(t− s,x,y) is very singular, but |aij(x)− aij(y)| ≤ L |x− y| and this fact (even |aij(x)− aij(y)| ≤

c1|x− y|α, 0 < α < 1) compensate this singularity. Calculations and estimations in the successive

approximations of Eq. (12) are complicated. See details in Friedman [9].

The central result is the existence of the fundamental solution p(t,x,y) and it’s upper estimate

p(t,x,y) ≤ c1(T,Λ, d)+Exp

(
−c2(T,Λ, d)+|x− y|2

t

)
t−

d
2 , t ∈ [0, T ] (13)

in contrast to the self-adjoint case, the constants C+
1,2 depend on T and coefficient aij(x) are at

least Gölder’s. It is sufficient to prove the existence of the diffusion process with the generator L .

If we add to L the first order term
(

#»

b (x),∇
)

and assume that | #»b (x)| ≤ c0 and
#»

b (x) ∈ Lip
(
Rd
)
,

then the estimate Eq. (13) is still valid. The proof of these results is in [9].



CHAPTER 3: ASIAN AND BASKET OPTIONS

All stochastic processes discussed here are real-valued. They are defined on a common probability

space (Ω,F , P ). Notation X(t)
d
= Y (t) means the equality in law of X and Y .

The distribution of a the integral of geometric Brownian motion over a finite time interval with

applications to risk theory and pension funding was studied by Dufresne [5]. In this paper he showed

that the integral of geometric Brownian motion has the same distribution as a random variable with

inverse gamma distribution. In mathematical finance, this integral is being used in Asian option

pricing. In this area Yor [28] made a significal contribution by deriving an explicit formula for the

distribution and moments of the integral of geometric Brownian motion. He used a Bessel process

and the Laplace transform method in the derivation of his results. Using his results we can find an

alternative way to derive Bougerol’s identity in law [2].

Beside finance, geometric Brownian motion is being used in accurate estimation of species diver-

gence times from the analysis of genetic sequences relies on probabilistic models of evolution of the

rate of molecular evolution [25].

Let’s fix t > 0 and let W = (Ws)s∈[0,t] be a Brownian motion. Let B = (Bs)s∈[0,t] = (Ws|Wt = 0)

be a Brownian bridge from (0, 0) to (t, 0). For a Brownian bridge one can find the following four

equivalent definitions:

dBs = dWs −
Bs
t− s

ds (14)

Bs = (t− s)
s∫

0

dWu

t− u
(15)

Bs = Ws −
s

t
Wt (16)

Bs =
t− s√
t
W

(
s

t− s

)
(17)

The Eq. (14) and Eq. (15) define the the same process. The equality between Eq. (14) and Eq. (16)

is only an equality in law. The representation in Eq. (16) comes from an orthogonal decomposition
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of Gaussian variables. Indeed, the Brownian bridge is Gaussian with

E[Bs] = 0

Cov(Bu, Bv) = u ∧ v − uv

t

The Brownian bridge can be defined only up to distribution. The distribution of W and B are

equivalent and orthogonal. From Eq. (14) by Girsanov’s theorem [11] we get the Radon-Nykodym

derivative:

dBs
dWs

= exp

− s∫
0

Bu
t− u

dWu −
1

2

s∫
0

(
Bu
t− u

)2

du


Using the self-similarity property of the Brownian motion, we can conclude the following:

{Bs}s∈[0,t]
d
= {But}u∈[0,1]

t− s√
t
W

(
s

t− s

)
d
=
t− tu√

t
W

(
tu

t− tu

)
{Bs}s∈[0,t]

d
=
√
t(1− u)W

(
u

1− u

)
Hence, the self-similarity property of the Brownian bridge is:

{Bs}s∈[0,t]
d
=
√
t{Bs}s∈[0,1] (18)

Let’s consider several stochastic processes related to the exponential functional
{
A

(µ)
t

}
defined in

[3]. In particular, for a continuous process φ : (0,∞)→ R, we define

Aµt (φ) =

t∫
0

e2φ(s)+µsds (19)

At(φ) =

t∫
0

e2φ(s)ds and Zt(φ) = e2φ(t)At(φ) (20)

Also, for two continuous processes φ1 and φ2 define

At(φ1, φ2) =

t∫
0

e2φ1(s)−2φ2(s)ds and Zt(φ1, φ2) = e2φ2(t)At(φ1, φ2) (21)
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3.1 Asian Options

An Asian option is a special type of option contract, where the payoff is determined by the average

underlying price over some pre-set period of time. One advantage of Asian options is that these

reduce the risk of market manipulation of the underlying instrument at maturity [16]. Another

advantage of Asian options involves the relative cost of Asian options compared to European or

American options. Because of the averaging feature, Asian options reduce the volatility inherent in

the option; therefore, Asian options are typically cheaper than European or American options.

We consider a security market with a risk asset with a constant risk-free return rate r > 0. Let’s

assume that the price process dynamics is

dS(s) = rS(s)ds+ σS(s)dW (s)

Where W (s) for s ≥ 0 is standard Brownian motions and the volatility σ is a positive constant. The

price of the asset is

S(s) = S(0)e

(
r−σ22

)
s+σW (s)

The equation above was used in the derivation of the Black–Scholes model [6]. Merton was the first

to publish a paper [24] expanding the mathematical understanding of the options pricing model,

and coined the term ”Black–Scholes options pricing model”. Merton and Scholes received the 1997

Nobel Memorial Prize in Economic Sciences for their work.

Then the average price of underlying asset is defined in the following way:

1

t

t∫
0

S(s)ds =
S(0)

t

t∫
0

eνσs+σW (s)ds =
4Sj(0)

tσ2

σ2t
4∫

0

e2( 2νs
σ +σW (s))ds

where ν = r
σ −

1
2σ, which is the same that

1

t

t∫
0

Sj(s)ds =
4Sj(0)

tσ2
A

2ν
σ

σ2t
4

(W ) (22)

In addition, by Girsanov’s theorem [11] we can reduce A
2ν
σ

σ2t
4

(W ) to Aσ2t
4

(W ).
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3.2 Modified Asian and European-Asian Geometric Basket Options

A basket option is a type of financial derivative where the underlying asset is a group, or basket,

of commodities, securities, or currencies. As with other options, a basket option gives the holder the

right, but not the obligation, to buy or sell the basket at a specific price, on or before a certain date.

We consider a security market with two independent risk assets with a constant risk-free return rate

r > 0. Let’s assume that the price process dynamics are

dS1(s) = rS1(s)ds+ σS1(s)dW1(s)

dS2(s) = rS2(s)ds+ σS2(s)dW2(s)

Where W1(s) and W2(s) for s ≥ 0 are standard Brownian motions and the volatility σ is a positive

constant. Further, we assume that the asset prices are uncorrelated. The price of each asset is

S1(s) = S1(0)e

(
r−σ22

)
s+σW1(s)

S2(s) = S2(0)e

(
r−σ22

)
s+σW2(s)

In general, the geometric basket option for N assets is defined in the following way:(
N∏
i=1

Si(t)

) 1
N

where Si(t) is an asset price at time t for i = 1, .., N .

Let’s define a modified Asian geometric basket for two assets option as

t∫
0

√
S1(s)

S2(s)
ds =

√
S1(0)

S2(0)

t∫
0

e
σ
2W1(s)−σ2W2(s)ds

Due to the self-similarity of Brownian motion, we note that W (s) =
d
= 4

σW
(
σ2s
16

)
.

The price of the modified Asian geometric basket with two assets will be:

√
S1(0)

S2(0)

t∫
0

e
2W1

(
σ2s
16

)
−2W2

(
σ2s
16

)
ds =

16

σ2

√
S1(0)

S2(0)

σ2t
16∫

0

e2W1(s)−2W2(s)ds

which is the same that

16

σ2

√
S1(0)

S2(0)
Aσ2t

16

(W1,W2) (23)
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Let’s define modified European-Asian geometric basket option with two assets as

t∫
0

√
S1(s)S2(t)

S2(s)
ds =

√
S1(0)

t∫
0

e
σ
2W1(s)+σ

2W2(t)−σ2W2(s)ds

The price of the modified European-Asian geometric basket option with two assets will be:

=
√
S1(0)

t∫
0

e
2W1

(
σ2s
16

)
+2W2

(
σ2t
16

)
−2W2

(
σ2s
16

)
ds =

16

σ2

√
S1(0)

σ2t
16∫

0

e2W1(s)+2W2(t)−2W2(s)ds

which is the same that

16

σ2

√
S1(0)Zσ2t

16

(W1,W2) (24)



CHAPTER 4: PROPERTIES OF EXPONENTIAL FUNCTIONALS OF BROWNIAN MOTION
AND ITS APPLICATION IN ASIAN AND BASKET OPTIONS

In this chapter, we will formulate and prove several properties of asymptotic behavior of the

random variables At and At(W1,W2). Note that

At(W1) = E

 t∫
0

eW1(s)dW2(s)

∣∣∣∣∣∣W1


At(W1,W2) = E

 t∫
0

eW1(s)−W2(s)dW3(s)

∣∣∣∣∣∣W1W2


Lemma 6. Let W (s) be a standard Brownian motion. Let B(s) = (W (s)|W (t) = 0) be a Brownian

bridge on [0, t] then

E

[
1√
At

∣∣∣∣Wt ∈ dx
]

= E


 t∫

0

e2B(s)ds

−
1
2

 −−−→
t→∞

√
2π3

t

Proof. Per Konakov-Menozzi-Molchanov [19], we know that for two independent Brownian motions

W (s), Ŵ (s) for s ∈ [0, t]:

P

 t∫
0

eW (s)dŴ (s) ∈ dx,W (t) ∈ dx

 ∼√π

2
t−

3
2 , t→∞

which means

P

 t∫
0

eW (s)dŴ (s) ∈ dx

∣∣∣∣∣∣W (t) ∈ dx

 =

P

(
t∫

0

eW (s)dŴ (s) ∈ dx,W (t) ∈ dx
)

P (W (t) ∈ dx)

∼
√
π

2
t−

3
2

√
2πt =

π

t

Conclude the following:

P

 t∫
0

eB(s)dŴ (s) ∈ dx

 ∼ π

t
, t→∞ (25)
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On the other hand
t∫

0

eB(s)dŴ (s) is a conditional centered Gaussian process for fixed B, and hence:

P

 t∫
0

eB(s)dŴ (s) ∈ dx

 = E

P
 t∫

0

eB(s)dŴ (s) ∈ dx

∣∣∣∣∣∣B


=
1√
2π
E


 t∫

0

e2B(s)ds

−
1
2


Combing the equation above with Eq. (25), we get the statement of this lemma.

Lemma 7. Let W1(s) and W2(s) be two independent standard Brownian motions. Let B1(s) =

(W1(s)|W1(t) = 0) and B2(s) = (W2(s)|W2(t) = 0) be two independent Brownian bridges on [0, t]

then

E

[
1√

At(W1,W2)

∣∣∣∣∣W1(t) ∈ dx,W2(t) ∈ dx

]

= E


 t∫

0

e2B1(s)+2B2(t)−2B2(s)ds

−
1
2

 −−−→
t→∞

π√
2
t−1

Proof. Per Konakov-Menozzi-Molchanov [19], we know that for two independent Brownian motions

W1(s), W2(s) and W3(s) for s ∈ [0, t]:

P

 t∫
0

eW1(s)+W2(t)−W2(s)dW3(s) ∈ dx,W1(t) ∈ dx,W2(t) ∈ dx

 ∼ 1

4
√
π
t−2, t→∞

which means

P

 t∫
0

eW1(s)+W2(t)−W2(s)dW3(s) ∈ dx

∣∣∣∣∣∣W1(t) ∈ dx,W2(t) ∈ dx



=

P

(
t∫

0

eW1(s)+W2(t)−W2(s)dW3(s) ∈ dx,W1(t) ∈ dx.w2(t) ∈ dx
)

P (W1(t) ∈ dx)P (W2(t) ∈ dx)

∼ 2πt

4
√
π
t−2 =

√
π

2
t−1

Conclude the following:

P

 t∫
0

eB1(s)−B2(s)dW3(s) ∈ dx

 ∼ √π
2
t−1, t→∞ (26)

On the other hand, for fixed B1 and B2,
t∫

0

eB1(s)−B2(s)dW3(s) is a conditional centered Gaussian
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process and hence:

P

 t∫
0

eB1(s)−B2(s)dW3(s) ∈ dx

 = E

P
 t∫

0

eB1(s)−B2(s)dW3(s) ∈ dx

∣∣∣∣∣∣B1B2


=

1√
2π
E


 t∫

0

e2B1(s)−2B2(s)ds

−
1
2


Combing the equation above with Eq. (26), we get the statement of this lemma.

Lemma 8. Let B(s) be a Brownian bridge on [0, t] then for any α ∈ R+:

E


 t∫

0

eαB(s)ds

−1
 =

1

t
(27)

Proof. Let’s B̃(s) for s ∈ [0, 1] be a standard Brownian bridge. Per Donati-Martin [4], for any

α ∈ R+:

E


 1∫

0

eαB̃(s)ds

−1
 = 1

Let’s B(s) for s ∈ [0, t] be a Brownian bridge. Using the self-similarity property of Brownian

bridge, we can conclude the following:

E


 t∫

0

eαB(s)ds

−1
 =

1

t
E


 1∫

0

eα
√
tB̃(s)ds

−1
 =

1

t

Lemma 9. Let B1(s) and B2(s) be two independent standard Brownian bridges for s ∈ [0, t], then

there exists a Brownian bridge B3(s) for s ∈ [0, t] such that

B1(s)−B2(s)
d
=
√

2B3(s)

Proof. The expected value of each B1(s) and B2(s) bridge is zero, with variance s(t−s)
t . Thus:

E [B1(s)−B2(s)] = E [B1(s)]− E [B2(s)] = 0

V ar (B1(t)−B2(t)) = E
[
(B1(t)−B2(t))

2
]

= E
[
B2

1(t)
]

+ E
[
B2

2(t)
]

=
2s(t− s)

t

(28)
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Hence there exists another Brownian bridge B3(s) such that

B1(t)−B2(t)
d
=
√

2B3(t)

The value of Asian option exponentially depends on
√
t, in particular E[At] ∼ eO(

√
t). In partic-

ular, we have the following results that were proven in [22]:

ln
(
At
t

)
2
√
t

d−−−→
t→∞

maxs∈[0,1]W (s)

The value of modified European-Asian geometric basket option with two assets is very large for

t → ∞ exponentially depends on
√
t. This property was formulated in [20] without a proof, so we

present its proof in the lemma bellow.

Lemma 10. Let M(t) = max
s≤t

(W1(s) +W2(t)−W2(s)) where W1(s) and W2(s) are independent

Brownian motions for s ∈ [0, t], then

ln (Zt(W1,W2))

2
√
t

d−−−→
t→∞

M(1)

Proof. Due to the self-similarity of the Brownian motion, we have W (s)
d
= cW

(
s
c2

)
for any s ≥ 0

and c > 0, and hence

Zt(W1,W2) =
1

t

t∫
0

e2
(
W1(s)+W2(t)−W2(s)

)
ds

d
=

1∫
0

e2
√
t
(
W1(s)+W2(1)−W2(s)

)
ds

Per Lemma 9, there exists a Brownian bridge B(t) such that

W1(s)−W2(s)
d
=
√

2B(s) +
(
W1(1)−W2(1)

)
s

Denote

M1 = max
s∈[0,1)

[√
2B(s) +

(
W1(1)−W2(1)

)
s
]

m1 = min
s∈[0,1)

[√
2B(s) +

(
W1(1)−W2(1)

)
s
]
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For any a ∈ (m1,M1) define

L1(a) = lim
ε→0

1∫
0

1|
√

2B(s)+(W1(1)−W2(1))s−a|≤εds

Since L1(a) > 0 almost surely,

A(t)
d
= e2

√
tW2(1)

1∫
0

e
2
√
t

(
B(s)+

(
W1(1)−W2(1)

)
s

)
ds

= e2
√
tW2(1)

M1∫
m1

e2
√
taL1(a)da ≥ e2

√
tW2(1)

M1∫
M1−ε

e2
√
taL1(a)da

≥ e2
√
tW2(1)e2

√
t(M1−ε)

M1∫
M1−ε

L1(a)da

Then define δε =
M1∫

M1−ε
L1(a)da and note that δεe

2
√
t(W2(1)+M1−ε) ≤ A(t) ≤ e2

√
tW2(1)+M1 , taking the

log of both sides, we get the following:

ln(δε) + 2
√
t (M1 +W2(1)− ε) ≤ ln(A(t)) ≤ 2

√
t (M1 +W2(1))

ln(δε)

2
√
t

+M1 +W2(1)− ε ≤ ln(A(t))

2
√
t
≤M1 +W2(1)

Due to the fact that ln(δε) is positive and bounded for some ε > 0, we have ln(δε)

2
√
t

p−−−→
t→∞

0 and

hence ln(A(t))

2
√
t

d−→ max
s≤1

(
W1(s) +W2(1)−W2(s)

)
.

The value of Asian option is bounded if the price of the underlying asset is bounded. In particular,

we have the following results that were proven in [22]:

E

 t∫
0

e2W1(s)ds

∣∣∣∣∣∣maxs∈[0,t]W1(s) ≤ 1

 ≤ e2

2

1− 2
√

2πt
∞∫
1

e−
x2

2t

dx


−1

The value of modified European-Asian geometric basket option with two assets is bounded if the

prices of the underlying assets are bounded. This property was formulated in [20] without a proof,

so we present its proof in the lemma bellow.

Lemma 11. Let Zt =
t∫

0

e2(W1(s)+W2(t)−W2(s))ds where W1(s) and W2(s) are independent Brownian

motions for s ∈ [0, t]. Then:

lim
t→∞

E
[
Zt|W1(s) ≤ 1,W2(s) ≤ 1, s ≤ t

]
= 0 (29)
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Proof. Let’s define

M1(t) = maxs∈[0,t]W1(s)

M2(t) = maxs∈[0,t]W2(s)

a(t) = E [Zt|M1(t) ≤ 1,M2(t) ≤ 1]

and notice that

a(t) = E

 t∫
0

e2(W1(s)+W2(t)−W2(s))ds

∣∣∣∣∣∣M1(t) ≤ 1,M2(t) ≤ 1


=

t∫
0

E
[
e2(W1(s)+W2(t)−W2(s))

∣∣∣M1(t) ≤ 1,M2(t) ≤ 1
]
ds

Due to the fact that W1 and W2 are independent, we can simplify the formula to the following:

a(t) =

t∫
0

E
[
e2W1(s)

∣∣∣M1(t) ≤ 1
]
E
[
e2W2(t)−2W2(s)

∣∣∣M2(t) ≤ 1
]
ds

Since Brownian motion has independent increments, we can conclude the following:

E
[
e2W2(t)−2W2(s)

∣∣∣M2(t) ≤ 1
]

= E
[
e2W2(t)−2W2(s)

]
= e2(t−s)

Now our problem reduces to finding the following integral:

a(t) = e2t

t∫
0

e−2sE
[
e2W1(s)

∣∣∣M1(t) ≤ 1
]
ds

Due to Hölder’s inequality, we can conclude the following:

a(t) ≤

√√√√√ t∫
0

e4t−4sds

√√√√√ t∫
0

(
E
[
e2W1(s)

∣∣M1(t) ≤ 1
])2

ds

=

√
e4t − 1

2

√√√√√ t∫
0

(
E
[
e2W1(s)

∣∣M1(t) ≤ 1
])2

ds

Per Jensen’s inequality, we have

(
E
[
e2W1(s)

∣∣∣M1(t) ≤ 1
])2

≤ E
[
e4W1(s)

∣∣∣M1(t) ≤ 1
]
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There is exists a constant C1 for which, the following inequality is true and it was proven in [22]:

E

 t∫
0

e2W1(s)ds

∣∣∣∣∣∣M1 ≤ 1

 ≤ C1

Using the same techniques that was used in [22], we can show that there exists a constant C2 such

that the following is true:

E

 t∫
0

e4W1(s)ds

∣∣∣∣∣∣M1 ≤ 1

 ≤ C2

Therefore there exists a constant C such that

a(t) ≤
√
e4t − 1

2

√√√√√ t∫
0

(
E
[
e2W1(s)

∣∣M1(t) ≤ 1
])2

ds

≤
√
e4t − 1

2

√√√√√ t∫
0

E
[
e4W1(s)

∣∣M1(t) ≤ 1
]
ds ≤ C



CHAPTER 5: SOLVABLE GROUPS OF UPPER TRIANGULAR 3X3 MATRICES

1 Approximation of Diffusion by Random Walks

Consider the group T3 of upper triangular 3× 3 matrices of the form

T3 =




ex1 y1 z

0 ex2 y2

0 0 ex3

 , x1, x2, x3, y1, y2, z ∈ R


We are interested in the approximation of the Brownian motion by a discrete random walk on

solvable groups on upper triangular matrices. Let ε > 0 be a given small parameter. The time step

of our random walk
(
xεn
)
n≥0

will be ε2. In particular for a given time t > 0, it makes nε(t) =
⌊
t
ε2

⌋
steps on the interval [0, t]. Set

e = gε,0 =


1 0 0

0 1 0

0 0 1


and for all r ≥ 0 let

gε,r+1 = gε,r, Aε,r+1 =


eεX1,k εY1,k εZ1,k

0 eεX2,k εY2,k

0 0 eεX3,k

 (30)

where the X1,k, X1,k, X3,k, Y1,k, Y2,k and Z1,k are symmetric Bernoulli random variables, i.e.

P[X1,k = 1] = P[X1,k = −1] = P[X2,k = 1] = P[X2,k = −1] = P[X3,k = 1] = P[X3,k = −1] =

P[Y1,k = 1] = P[Y1,k = −1] = P[Y2,k = 1] = P[Y2,k = −1] = P[Z1,k = 1] = P[Z1,k = −1] = 1
2 defined

on some given probability space (Ω,A,P). Let’s also assume that they are independent for a fixed

k and their sets for different k are also independent.
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Note that for any r our gε,r has the following form:

gε,r =


ex1,r y1,r z1,r

0 ex2,r y2,r

0 0 ex3,r


where the representation of xi,r is as follows:

xi,1 = εXi,1

xi,r = ε
r∑
j=1

X1,j

=⇒ xi,r = ε

r∑
j=1

Xi,j

.

For simplicity, let’s assume that xi,0 = 0 for all i.

And, the representation of y1,r is as follows:
y1,1 = εY1,1

y1,r = εY1,re
x1,r−1 + y1,r−1e

εX2,r = εY1,re
x1,r−1 + y1,r−1e

x2,r−x2,r−1

which means that the explicit formula for y1,r is as follows:

y1,r = ε

r∑
k=2

Y1,ke
x1,k−1+x2,r−x2,k

The representation of y2,r is as follows:
y2,1 = εY2,1

y2,r = εY2,re
x2,r−1 + y2,r−1e

εX3,r

which means that the explicit formula for y2,r is as follows:

y2,r = ε

r∑
k=2

Y2,ke
x2,k−1+x3,r−x3,k

The representation of z1,r is as follows:
z1,1 = εZ1,1

z1,r = z1,r−1e
εX3,r + εY2,ry1,r−1 + εZ1,re

x1,r−1



33

which means that the explicit formula for z1,r is as follows:

z1,r = ε

r∑
k=2

Y2,ky1,k−1 + ε

r∑
k=1

Z1,ke
x1,k−1+x3,r−x3,k

Assume r = [tn] for some t ≤ 1, let n → ∞ and then according to the functional central limit

theorem by Donsker-Prohorov:

xi,r
d−→ eWi(t), i ∈ [1, 3]

yj,r
d−→

t∫
0

eWj(s)+Wj+1(t)−Wj+1(s)dWj+3(s), j ∈ [1, 2]

z1,r
d−→

t∫
0

s∫
0

eW1(u)+W2(s)−W2(u)dW4(u)dW5(s) +

t∫
0

eW1(s)+W3(t)−W3(s)dW6(s)

Hence, a Brownian motion on the T3 group has the following form:

gT3(t) =


eW1(t) ξ1(t)

t∫
0

ξ1(s)dW5(s) + ξ3(t)

0 eW2(t) ξ2(t)

0 0 eW3(t)

 (31)

where

ξ1(t) =

t∫
0

eW1(s)+W2(t)−W2(s)dW4(s)

ξ2(t) =

t∫
0

eW2(s)+W3(t)−W3(s)dW5(s)

ξ3(t) =

t∫
0

eW1(s)+W3(t)−W3(s)dW6(s)

and W1(s), W2(s), W3(s), W4(s), W5(s), and W6(s) are independent standard Brownian motions

for s ∈ [0, t]. The term ξ3(t) will only produce noise and for the our purpose we will zero it out in

the most of our theorems. Observe the following qualities:

E[ξ1(t)] = Zt(W1,W2)

E[ξ2(t)] = Zt(W2,W3)

E[ξ3(t)] = Zt(W1,W3)
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For more visual representation of all our groups of upper-triangular matrices, lets introduce visual

representation shown on Figure 1 of Brownian motion of T3 group defined in Eq. (31).

Figure 1: Solvable Group of Upper Triangular 3x3 Matrix. General Case.

We will be creating sub-groups by zeroing out some of the elements of this matrix, and visually

will be replacing red squares with white ones. There are 26 = 64 different matrices, but only 56 of

them form a group. Let’s start with the most simple set of subgroup - all groups of rank 1.

5.1 Solvable Groups of Rank 1 of Upper Triangular 3x3 Matrices

By leaving only one of the elements six elements of T3 group in place, we will get six sub-groups

of rank 1. Their visual representation is shown in Figure 2.

1

1

1
∼

1

1

1
∼

1

1

1
∼ 1

1
∼

1

1
∼

1

1 ∼

Figure 2: Solvable Groups of Upper Triangular 3x3 Matrices of Rank 1.

Here and through out the dissertation we use x ∈ dx to denote the notation: x ∈ (x, x+dx). The

transition probability for each of the group is the same and it has the following form:

p(t, e, e) = P (W (t) ∈ dx) ∼ 1√
2π
t−

1
2 , t→∞

Note the the first three groups are nilpotent and the last three ones are solvable.

5.2 Solvable Groups of Rank 2 of Upper Triangular 3x3 Matrices

By leaving two of six elements of T3 group in place, we will get sub-groups of rank 2. The total

number of matrices will be C2
6 = 15, but only 12 of them form a group. First of all, lets visually

represent results from Konakov-Menozzi-Molchanov [19]:

Our first ten groups, shown in table 2, are simple since their transition probability can be derived

directly from the table 1.
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N Group Brownian Motion Decay of p(t, e, e)

1

eW1(t)
t∫

0

eW1(s)+W2(t)−W2(s)dW3(s)

0 eW2(t)

 1
4
√
π
t−2

2 1

eW1(t)
t∫

0

eW1(s)dW2(s)

0 1

 √
π
2 t
− 3

2

Table 1: Decay of Probability of Return on Solvable Lie Groups of Upper Triangular 2x2 Matrices.

N Group Decay of p(t, e, e)

1

1

1
∼ 1

1
∼ 1

1
∼ 1

√
π
2 t
− 3

2

2

1

1

1
∼ 1

1
∼

1

1
∼

1

1

1
∼ x 1

2π t
−1

3 1 ∼

1

∼
1
∼ x 1

2π t
−1

Table 2: Decay of Probability of Return on Solvable Groups of 3x3 Matrices of Rank 2.

Note the important fact that the first and the last group in row 2 in the table above are nilpotent

group and it is known that the decay of its transition density is polynomial, but the rest of the

groups in that table are solvable, and still the decay of its transition density is polynomial. The

Brownian motions on groups defined in the table above have the following form:

1

1
∼


1 0 0

0 eW2(t)
t∫

0

eW2(s)dW5(s)

0 0 1



1

1
∼


eW1(t) 0

t∫
0

eW1(s)dW6(s)

0 1 0

0 0 1


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1

1
∼


eW1(t)

t∫
0

eW1(s)dW4(s) 0

0 1 0

0 0 1


Groups on the second row:

1

1

1
∼


1 0 W6(t)

0 1 W5(t)

0 0 1



1

1
∼


1 0 W6(t)

0 1 W5(t)

0 0 1



1

1
∼


1 0 W6(t)

0 eW2(t) 0

0 0 1



1

1

1
∼


1 W4(t) W6(t)

0 1 0

0 0 1


Groups on the last row:

1 ∼


eW1(t) 0 0

0 1 0

0 0 eW3(t)



1

∼


1 0 0

0 eW2(t) 0

0 0 eW3(t)


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1
∼


eW1(t) 0 0

0 eW2(t) 0

0 0 1


The remaining three solvable groups have a visual representation shown in Figure 3. Note that

these groups are equvalent to the group of upper triangular 2x2 matrices representing the Affine

group in one dimension.

1

1 ∼

1

1 ∼

1

1
∼

1

Figure 3: Affine Group - Matrix Representation.

And the Brownian motions on them are defined in the following way:
1 0

t∫
0

eW3(t)−W3(s)dW6(s)

0 1 0

0 0 eW3(t)

 ∼


1 0 0

0 1
t∫

0

eW3(t)−W3(s)dW5(s)

0 0 eW3(t)



∼


1

t∫
0

eW2(t)−W2(s)dW4(s) 0

0 eW2(t) 0

0 0 1


Note that they are equivalent and have the same transition probability, the decay of which is

found in the theorem bellow.

Theorem 12. Let W1(s) and W2(s) be independent Brownian motions on [0, t] then the transition

density for

(
W1(t),

t∫
0

eW1(t)−W1(s)dW2(s)

)
is p(t, e, e) ∼

√
2
π t
− 3

2 , t→∞

Proof. Let’s define a Brownian bridge on [0, t] such that: B1(s) = (W1(s)|W1(t) ∈ dx) and, using
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Lemma 6 we can conclude:

p(t, e, e) ∼ 1√
2πt

P

 t∫
0

eW1(t)−W1(s)dW2(s) ∈ dx

∣∣∣∣∣∣W1(t) ∈ dx


=

1√
2πt

P

 t∫
0

e−B1(s)dW2(s) ∈ dx


=

1√
2πt

E

P
 t∫

0

e−B1(s)dW2(s) ∈ dx

∣∣∣∣∣∣B1


=

1

2π
√
t
E


 t∫

0

e−2B1(s)ds

−
1
2

 =

√
2

π
t−

3
2 , t→∞

5.3 Solvable Groups of Rank 3 of Upper Triangular 3x3 Matrices

By leaving three of six elements of T3 group in place, we will get sub-groups of rank 3. The total

number of matrices will be C3
6 = 20, but only 17 of them form a group. In the Table 3 we show all

our simple cases for which the transition probabilities are derived in a simple way.

Solvable Group Brownian Motion Decay of p(t, e, e)

eW1(t) 0 0
0 eW2(t) 0
0 0 eW3(t)

 1√
8π3

t−
3
2

Table 3: Decay of Probability of Return on Group of Diagonal 3x3 Matrix.

Second group of solvable subgroups of rank 3 is listed in the Table 4 and their transition density’s

asymptotic decay is 1
2 t
−2. Third group of solvable subgroups of rank 3 is listed in the Table 5

table and their transition density’s asymptotic decay is 1
4
√
π
t−2. Fourth group of solvable subgroup

of upper triangular 3x3 matrices of rank 3 is listed in the Table 6 and their transition density’s

asymptotic decay is 1
2 t
−2. Let’s find transition probabilities for the remaining three groups.
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Solvable Group Brownian Motion Decay of p(t, e, e)

1
1

t∫
0

eW2(t)−W2(s)dW4(s) 0

0 eW2(t) 0
0 0 eW3(t)

 1
2 t
−2

1


eW1(t) 0 0

0 1
t∫

0

eW3(t)−W3(s)dW5(s)

0 0 eW3(t)

 1
2 t
−2

1
1 0

t∫
0

eW3(t)−W3(s)dW6(s)

0 eW2(t) 0
0 0 eW3(t)

 1
2 t
−2

1

1

1 W4(t)
t∫

0

eW3(t)−W3(s)dW6(s)

0 1 0
0 0 eW3(t)

 1
2 t
−2

1

1

1
t∫

0

eW2(t)−W2(s)dW4(s) W6(t)

0 eW2(t) 0
0 0 1

 1
2 t
−2

Table 4: Solvable Groups of 3x3 Matrices of Rank 3 with Decay of Prob. of Return 1
2 t

2.

Solvable Group Brownian Motion Decay of p(t, e, e)

1


1 0 0

0 eW2(t)
t∫

0

eW2(s)+W3(t)−W3(s)dW5(s)

0 0 eW3(t)

 1
4
√
π
t−2

1

e
W1(t)

t∫
0

eW1(s)+W2(t)−W2(s)dW4(s) 0

0 eW2(t) 0
0 0 1

 1
4
√
π
t−2

1

e
W1(t) 0

t∫
0

eW1(s)+W3(t)−W3(s)dW6(s)

0 1 0
0 0 eW3(t)

 1
4
√
π
t−2

Table 5: Solvable Groups of 3x3 Matrices of Rank 3 with Decay of Prob. of Return 1
4
√
π
t−2.



40

Solvable Group Brownian Motion Decay of p(t, e, e)

1

e
W1(t)

t∫
0

eW1(s)dW4(s) 0

0 1 0
0 0 eW3(t)

 1
2 t
−2

1

1

e
W1(t) 0

t∫
0

eW1(s)dW6(s)

0 1 W5(t)
0 0 1

 1
2 t
−2

1


eW1(t) 0 0

0 eW2(t)
t∫

0

eW2(s)dW5(s)

0 0 1

 1
2 t
−2

1

1


1 0 W6(t)

0 eW2(t)
t∫

0

eW2(s)dW5(s)

0 0 1

 1
2 t
−2

1

e
W1(t) 0

t∫
0

eW1(s)dW6(s)

0 eW2(t) 0
0 0 1

 1
2 t
−2

Table 6: Solvable Groups of 3x3 Matrices of Rank 3 with Decay of Prob. of Return 1
2 t
−2.
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5.3.1 Subgroup with Elements only in the Last Column

If we zero out X1, X2 and Y1 in the T3 group, we will get a subgroup with a Brownian motion:


1 0

t∫
0

eW3(t)−W3(s)dW6

0 1
t∫

0

eW3(t)−W3(s)dW5

0 0 eW3(t)


=

1

1 (32)

Define: B1(s) = (W1(s)|W1(t) ∈ dx), for s ∈ [0, t], and using Lemma 8, conclude:

p(t, e, e) = P

W1(t) ∈ dx,
t∫

0

eW1(t)−W1(s)dW2 ∈ dx,
t∫

0

eW1(t)−W1(s)dW3 ∈ dx


∼ 1√

2πt
P

 t∫
0

eW1(t)−W1(s)dW2 ∈ dx,
t∫

0

eW1(t)−W1(s)dW3 ∈ dx

∣∣∣∣∣∣W1(t) ∈ dx


=

1√
2πt

P

 t∫
0

e−B1(s)dW2 ∈ dx,
t∫

0

e−B1(s)dW3 ∈ dx


=

1√
2πt

E

P
 t∫

0

e−B1(s)dW2 ∈ dx,
t∫

0

e−B1(s)dW3 ∈ dx

∣∣∣∣∣∣B1


=

1√
2πt

1

2π
E


 t∫

0

e−2B1(s)ds

−1


∼ 1√
8π3

t−
3
2 , t→∞

5.3.2 Subgroup with Elements only in the First Row

Let’s zero out X2, X3 and Y2 in the T3 group and we will get it’s subgroup on which a Brownian

motion is defined in the following way:
eW1(t)

t∫
0

eW1(s)dW4

t∫
0

eW1(s)dW6

0 1 0

0 0 1

 = 1

1
(33)
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Define: B1(s) = (W1(s)|W1(t) ∈ dx), for s ∈ [0, t], and using Lemma 8, conclude:

p(t, e, e) = P

W1(t) ∈ dx,
t∫

0

eW1(s)dW4 ∈ dx,
t∫

0

eW1(t)dW6 ∈ dx


∼ 1√

2πt
P

 t∫
0

eW1(s)dW4 ∈ dx,
t∫

0

eW1(t)dW6 ∈ dx

∣∣∣∣∣∣W1(t) ∈ dx


=

1√
2πt

P

 t∫
0

eB1(s)dW4 ∈ dx,
t∫

0

eB1(t)dW6 ∈ dx


=

1√
2πt

E

P
 t∫

0

eB1(s)dW4 ∈ dx,
t∫

0

eB1(t)dW6 ∈ dx

∣∣∣∣∣∣B1


=

1√
2πt

1

2π
E


 t∫

0

e2B1(s)ds

−1


∼ 1√
8π3

t−
3
2 , t→∞

5.3.3 Heisenberg Group

A Brownian motion on the Heisenberg H group has the following form:

gH(t) =


1 W1(t)

t∫
0

W1(s)dW2(s)

0 1 W2(t)

0 0 1

 =

1

1

1
(34)

and W1(s) and W2(s) are independent standard Brownian motions for s ∈ [0, t]. Accoring to Gromov

[12], Heisenberg group has a polynomial growth. Let’s find what exactly it is for this group.

Consider the following process:

Θ
(H)
t =

W1(t),W2(t),

t∫
0

W1(s)dW2(s)

 (35)

The fundamental solution of the parabolic equation bellow is a transition probability density of

Θ
(H)
t : 

∂p(t,x,y)
∂t = L p(t,x,y)

p(0,x,y) = δy(x)

where L is an infinitesimal generator of Θ
(H)
t .

Observe that Θ
(H)
t is a Markov process and it satisfies the following system of stochastic differential
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equations: 

dx(t) = dW1(t)

dy(t) = dW2(t)

dz(t) = x(t)dW2(t)

(36)

Let’s rewrite it in a matrix form:

d


x(t)

y(t)

z(t)

 = σ(x, y, z)


dW1(t)

dW2(t)

dW3(t)

 (37)

where:

σ(x, y, z) =


1 0

0 1

0 x

 (38)

In order to find the infinitesimal generator L , we need to compute the following:

σ · σT =


1 0

0 1

0 x

 ·
1 0 0

0 1 x

 =


1 0 0

0 1 x

0 x x2

 (39)

Hence:

(L f)(x, y, z) =
1

2

[
∂2

∂x2
+

∂2

∂y2
+ 2x

∂2

∂y∂z
+ x2 ∂

2

∂z2

]
(x, y, z)

note that det[σ · σT ] ≡ 0, which means that the operator is a degenerator. Hörmander’s form

that is defined in Eq. (10) is:

L =
1

2

[
∂2

∂x2
+

(
∂

∂y
+ x

∂

∂z

)2
]

=
1

2

(
X2

1 +X2
2

)
Note that in equation above Y ≡ 0. Now, lets find the commutators:

X1 →
∂

∂x
→ [1, 0, 0]

X2 →
∂

∂y
+ x

∂

∂z
→ [0, 1, x]

[X1, X2] =
∂

∂x

(
∂

∂y
+ x

∂

∂z

)
−
(
∂

∂y
+ x

∂

∂z

)
∂

∂x
=

∂

∂z
→ [0, 0, 1]

Observe that that the commutators are linearly independent, which means that they form a basis and
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hence, per Theorem 5(Hörmander’s condition) the operator L is hypoelliptic and smooth transition

density exists.

Let’s prove a lemma first that we will use in computing the decay of the transition density:

Lemma 13. Let B(s) be a Brownian bridge on [0, t], then

E


 t∫

0

B2(s)ds

−
1
2

 ≈ 3.07

t

E


t t∫

0

B2(s)ds−

 t∫
0

B(s)ds

2

− 1

2

 ≈ 3.94 · t− 3
2

Proof. Using the self-similarity property of Brownian motion W{(s)}s∈[0,t] and representing Brow-

nian bridge as {B(s)}s∈[0,t] = t−s√
t
W
(

s
t−s

)
, we can conclude the following:

E


 t∫

0

B2(s)ds

−
1
2

 = E


t 1∫

0

B2(ut)du

−
1
2


= E


t 1∫

0

(t− tu)2

t
W 2

(
ut

t− ut

)
du

−
1
2


= E


t2 1∫

0

(1− u)2W 2

(
u

1− u

)
du

−
1
2


=

1

t
E


 1∫

0

B2(s)ds

−
1
2


and

E


t t∫

0

B2(s)ds−

 t∫
0

B(s)ds

2

− 1

2

 =

E

( 1∫
0

B2(s)ds−
(

1∫
0

B(s)ds

)2
)− 1

2


√
t3

Define

α = E


 1∫

0

B2(s)ds

−
1
2

 (40)

β = E


 1∫

0

B2(s)ds−

 1∫
0

B(s)ds

2

− 1

2

 (41)
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Using the Karhunen–Loeve theorem, the Brownian bridge may also be represented as a Fourier

series with stochastic coefficients, as

B(s)s∈[0,1] =

∞∑
k=1

√
2sin(kπs)

kπ
ξk

where ξ1, ξ2, . . . are independent identically distributed standard normal random variables. Using

the fact that 2
k2π2

1∫
0

sin2(kπs)ds = 1
k2π2 and 2

k1k2π2

1∫
0

sin(k1πs)sin(k2πs)ds = 0 we can compute the

following:

1∫
0

B2(s)ds =

1∫
0

( ∞∑
k=1

√
2sin(kπs)

kπ
ξk

)2

ds =

∞∑
k=1

1

k2π2
ξ2
k

and

1∫
0

B(s)ds =

1∫
0

∞∑
k=1

√
2sin(kπs)

kπ
ξkds =

∞∑
k=1

ξk
√

2

kπ

1∫
0

sin(kπs)ds

=

∞∑
k=0

√
2−
√

2cos(πk)

k2π2
ξk =

∞∑
k=0

N

(
0,

2(1− cos(πk))2

k4π4

)

= N

(
0,

∞∑
k=0

2(1− cos(πk))2

k4π4

)
= N

(
0,

1

12

)
=

χ√
12
, χ ∼ N(0, 1)

Plugging the result of two equations above into Eq. (40) and Eq. (41), we get the following:

α = E

( ∞∑
k=1

ξ2
k

π2k2

)− 1
2


β = E

( ∞∑
k=1

ξ2
k

π2k2
− χ2

12

)− 1
2

 (42)

Let’s compute the Laplace transform function:

Φα(λ) = E

[
e
− λ
π2

∞∑
k=1

ξ2k
k2

]
= E

[ ∞∏
k=1

e−
λξ2k
π2k2

]
=

∞∏
k=1

E

[
e−

λξ2k
π2k2

]

and

Φβ(λ) = E

[
e
− λ
π2

∞∑
k=1

ξ2k
k2
−λχ

2

12

]
= E

[
e−λ

χ2

12

∞∏
k=1

e−
λξ2k
π2k2

]
= E

[
e−λ

χ2

12

]
Φα(λ)
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Since each ξk is standard normal random variable, we have:

E

[
e−

λξ2k
π2k2

]
=

1√
2π

∞∫
−∞

e−( λ
π2k2

+ 1
2 )x2

dx =
πk√

2λ+ π2k2
=

1√
1 + 2λ

π2k2

E

[
e−λ

χ2

12

]
=

1√
2π

∞∫
−∞

e−( λ12 + 1
2 )x2

dx =
2
√

3π√
6 + λ

Therefore,

Φα(λ) =

∞∏
k=1

1√
1 + 2λ

π2k2

, Φβ(λ) =
2
√

3π√
6 + λ

Φα(λ)

Using the fact that sinh(x) = x
∞∏
k=1

(
1 + x2

π2k2

)
we can conclude that

Φα(λ) =

( ∞∏
k=1

(
1 +

2λ

π2k2

))− 1
2

=

(
1√
2λ
sinh

(√
2λ
))− 1

2

=

√√√√ √
2λ

sinh
(√

2λ
)

Φβ(λ) =

√
12π
√

2λ

(6 + λ)sinh(
√

2λ)

Note that the probability density function will have the following form:

fα(λ) = Φ−1
α (λ) =

1

2πi

a+i∞∫
a−i∞

√ √
2x

sinh(
√

2x)
eλxdx

fβ(λ) = Φ−1
β (λ) =

1

2πi

a+i∞∫
a−i∞

√
12π
√

2x

(6 + λ)sinh(
√

2x)
eλxdx

Computing these integrals is very a difficult job and instead we estimate the expectation in Eq. (42)

numerically in Matlab using Monte-Carlo method [8] and get the following results:

α ≈ 3.07, β ≈ 3.94

Theorem 14. Suppose that pH(t, e, e) is the transition probability density function from state e into

state e of a Brownian motion on the Heisenberg group defined in Eq. (34) then

pH(t, e, e) ∼ CHt−2 as t→∞

where e is the identity in GH and CH ≈ 0.6271
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Proof. We need to find a joint transition probability density function of
t∫

0

W1(s)dW2(s), W1(t) and

W2(t). The transition probability density for any Brownian motion W is the probability density for

W (t+ s) given that W (t) = y. Since W (t+ s)−W (t) is centered Gaussian, we have E[W (t+ s)] =

E[W (t)] = y and therefore:

p
(
W (t+ s) = x|W (t) = y

)
=

1√
2πt

e
(x−y)2

2t

Hence, P
(
W1(t) ∈ dx

)
= P

(
W2(t) ∈ dx

)
∼ 1√

2πt
. Using Bayer’s theorem we can conclude the

following:

pH(t, e, e) = P

 t∫
0

W1(s)dW2(s) ∈ dx,W1(t) ∈ dx,W2(t) ∈ dx


∼ 1√

2πt
P

 t∫
0

W1(s)dW2(s) ∈ dx,W2(t) ∈ dx

∣∣∣∣∣∣W1(t) ∈ dx


∼ 1√

2πt
P

 t∫
0

B1(s)dW2(s) ∈ dx,W2(t) ∈ dx


where B1(s) is a independent standard Brownian bridge on [0, t]. Let’s fix B1 and note the distri-

bution of

(
t∫

0

B1(s)dW2(s),W2(t)

)
is centered Gaussian with

Σ =


t∫

0

B2
1(s)ds

t∫
0

B1(s)ds

t∫
0

B1(s)ds t


Hence:

pH(t, e, e) =
1√
2πt

P

 t∫
0

B1(s)dW2(s) ∈ dx,W2(t) ∈ dx



=
1

2π
√
t
E


t t∫

0

B2
1(s)ds−

 t∫
0

B1(s)ds

2

− 1

2


Let’s change variables in the integral above as u = s

t and use the self-similarity property of Brownian
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motion, i.e. B(ut)
d
=
√
tB(u), we can conclude the following:

pH(t, e, e) =
1

2π
√
t
E


t3 1∫

0

B2
1(s)ds− t3

 1∫
0

B1(s)ds

2

− 1

2



=
1

2πt2
E


 1∫

0

B2
1(s)ds−

 1∫
0

B1(s)ds

2

− 1

2


Per Lemma 13:

E


 1∫

0

B2
1(s)ds−

 1∫
0

B1(s)ds

2

− 1

2

 ≈ 3.94

thus pH(t, e, e) ∼ CHt−2 where CH ≈ 3.94
2π ≈ 0.6271

The statement of the theorem above agrees with Fischer [7], who showed that in the case of

Brownian motion on the Heisenberg group the return probability decayed like t−2. However, Fisher

did not compute CH which is found in Theorem 14.

5.4 Solvable Groups of Rank 4 of Upper Triangular 3x3 Matrices

By leaving four of six elements of T3 group in place, we will get sub-groups of rank 4. The total

number of matrices will be C4
6 = 15, but only 12 of them form a group. In the table bellow we show

all our simple cases for which the transition probabilities are derived in a simple way.

Solvable Group Brownian Motion Decay of p(t, e, e)
eW1(t) 0 0

0 eW2(t)
t∫

0

eW2(s)+W3(t)−W3(s)dW5

0 0 eW3(t)


1√
2

1
4π t
− 5

2e
W1(t)

t∫
0

eW1(s)+W2(t)−W2(s)dW4 0

0 eW2(t) 0
0 0 eW3(t)


e

W1(t) 0
t∫

0

eW1(s)+W3(t)−W3(s)dW6

0 eW2(t) 0
0 0 eW3(t)



Table 7: Solvable Groups of Upper Triangular 3x3 Matrices of Rank 4.
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Solvable Group Brownian Motion Decay of p(t, e, e)

1
1

t∫
0

eW2(t)−W2(s)dW4

t∫
0

eW3(t)−W3(s)dW6

0 eW2(t) 0
0 0 eW3(t)

 π
2 t
−3

1

e
W1(t)

t∫
0

eW1(s)dW4

t∫
0

eW3(t)−W3(s)dW6

0 1 0
0 0 eW3(t)

 1
4
√

2
t−

7
2

1


eW1(t) 0

t∫
0

eW1(s)dW6

0 eW2(t)
t∫

0

eW2(s)dW5

0 0 1

 π
2 t
−3

Table 8: Additional Solvable Groups of Upper Triangular 3x3 Matrices of Rank 4.

We have six more subgroups, and let’s find transitional probabilities for some of them.

5.4.1 Subgroups without Middle Element in First Row and only two Elements on Main Diagonal

If we zero out X1 and Y1 in the T3 group, we will get a subgroup with a Brownian motion having

the following form: 
1 0

t∫
0

eW3(t)−W3(s)dW6(s)

0 eW2(t)
t∫

0

eW2(s)+W3(t)−W3(s)dW5(s)

0 0 eW3(t)


=

1

(43)

If we zero out X2 and X3 in the T3 group, we will get a subgroup with a Brownian motion having

the following form: 
eW1(t) 0

t∫
0

eW1(s)+W3(t)−W3(s)dW6(t)

0 1
t∫

0

eW3(t)−W3(s)dW5(t)

0 0 eW3(t)


= 1 (44)

The asymptotic decay of the transition density on both groups above is exactly the same. So, we
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will just focus on the first one. Let’s define

Θ(t) = (x1(t), x2(t), x3(t), x4(t))

=

eW2(t), eW3(t),

t∫
0

eW2(s)+W3(t)−W3(s)dW5(s),

t∫
0

eW3(t)−W3(s)dW6(s)


note that it satisfies the following PDE:

dx1(t) = x1(t)dW2(t)

dx2(t) = x2(t)dW3(t)

dx3(t) = x3(t)dW3(t) + x1(t)dW5(t)

dx4(t) = x4(t)dW3(t) + dW6(t)

The matrix form of it is:

dΘ = σ · dW, where σ =



x1 0 0 0

0 x2 0 0

0 x3 x1 0

0 x4 0 1


Define

A = {aij} = σσT =



x2
1 0 0 0

0 x2
1 x2x3 x2x4

0 x2x3 x2
1 + x2

3 x3x4

0 x2x4 x3x4 1 + x2
4


The infinitesimal generator of the process Θ(t) has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
1

∂2

∂x2
2

+
∂2

∂x3
2

+ 2x2
∂2

∂x3∂x4
+ (x2

1 + x2
2)
∂2

∂x2
4

]

Note that the determinant of the diffusion tensor is x4
1x

2
2 > 0 and under assumption that it is strictly

positive there exists a unique and strictly positive transition density of the process Θ(t).
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Define and B2(s) = (W2(s)|W2(t) = 0), B3(s) = (W3(s)|W3(t) = 0), for s ∈ [0, t] and conclude:

p(t, e, e) = P

W2(t) ∈ dx,W3(t) ∈ dx,
t∫

0

eW2(t)+W3(t)−W3(s)dW5(s) ∈ dx,

t∫
0

eW3(t)−W3(s)dW6(s) ∈ dx


=

1

2πt
P

 t∫
0

eB2(s)−B3(s)dW5(s) ∈ dx,
t∫

0

e−B3(s)dW6(s) ∈ dx


=

1

4π2t
E


 t∫

0

e2B2(s)−2B3(s)ds

t∫
0

e−2B3(s)ds

−
1
2


Per Hölder inequality:

E


 t∫

0

e2B2(s)−2B3(s)ds

t∫
0

e2B3(s)ds

−
1
2



≤

√√√√√√E


 t∫

0

e2B2(s)−2B3(s)ds

−1
E


 t∫

0

e2B3(s)ds

−1


Per Lemma 8:

E


 t∫

0

e2B3(s)ds

−1
 =

1

t

Per Lemma 8 and Lemma 9:

E


 t∫

0

e2B2(s)−2B3(s)ds

−1
 =

1

t

Therefore:

E


 t∫

0

e2B2(s)−2B3(s)ds

t∫
0

e2B3(s)ds

−
1
2

 ≤ 1

t

Thus, we found an upper estimate of the transition density:

0 < p(t, e, e) ≤ 1

4π2
t−2, t→∞
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5.4.2 Subgroup without Last Two Elements in the Last Column

If we zero out X3 and Y2 in the T3 group, we will get a subgroup with a Brownian motion having

the following form:
eW1(t)

t∫
0

eW1(s)+W2(t)−W2(s)dW4(s)
t∫

0

eW1(s)dW6(s)

0 eW2(t) 0

0 0 1

 =
1

(45)

Let’s define

Θ(t) = (x1(t), x2(t), x3(t), x4(t))

=

eW1(t), eW2(t),

t∫
0

eW1(s)+W2(t)−W2(s)dW4(s),

t∫
0

eW1(s)dW6(s)


note that it satisfies the following PDE:

dx1(t) = x1(t)dW1(t)

dx2(t) = x2(t)dW2(t)

dx3(t) = x3(t)dW2(t) + x1(t)dW4(t)

dx4(t) = x1(t)dW6(t)

The matrix form of it is:

dΘ = σ · dW, where σ =



x1 0 0 0

0 x2 0 0

0 x3 x1 0

0 0 0 x1


And:

A = {aij} = σσT =



x2
1 0 0 0

0 x2
1 x2x3 0

0 x2x3 x2
1 + x2

3 0

0 0 0 x2
1


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Hence its generator has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
2

∂2

∂x2
2

+ (x2
1 + x2

3)
∂2

∂x2
3

+ x2
1

∂2

∂x4
2

+ 2x2x3
∂2

∂x2∂x3

]
=

1

2

[
x2

1

∂2

∂x1
2

+ x2
1

∂2

∂x2
3

+ x2
1

∂2

∂x4
2

+

(
x2

∂

∂x2
+ x3

∂

∂x3

)2
]

Note that the determinant of the diffusion tensor is x6
1x

2
2 > 0, and under assumption that it is

strictly positive exists unique and strictly positive transition density of the process Θ(t).

Define and B1(s) = (W1(s)|W1(t) = 0), B2(s) = (W2(s)|W2(t) = 0), for s ∈ [0, t] and conclude:

p(t, e, e) = P

W1(t) ∈ dx,W2(t) ∈ dx,
t∫

0

eW1(t)+W2(t)−W2(s)dW4 ∈ dx,
t∫

0

eW1(s)dW6 ∈ dx


=

1

2πt
P

 t∫
0

eB1(s)−B2(s)dW4 ∈ dx,
t∫

0

eB1(s)dW6 ∈ dx


=

1

4π2t
E


 t∫

0

e2B1(s)−2B2(s)ds

t∫
0

e2B1(s)ds

−
1
2


Per Hölder inequality:

E


 t∫

0

e2B1(s)−2B2(s)ds

t∫
0

e2B1(s)ds

−
1
2



≤

√√√√√√E


 t∫

0

e2B1(s)−2B2(s)ds

−1
E


 t∫

0

e2B1(s)ds

−1


Per Lemma 8:

E


 t∫

0

e2B1(s)ds

−1
 =

1

t

Per Lemma 8 and Lemma 9:

E


 t∫

0

e2B1(s)−2B2(s)ds

−1
 =

1

t

Therefore:

E


 t∫

0

e2B1(s)−2B2(s)ds

t∫
0

e2B1(s)ds

−
1
2

 ≤ 1

t
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Thus, we found an upper estimate of the transition density:

0 < p(t, e, e) ≤ 1

4π2
t−2, t→∞

5.4.3 Subgroup with only First Element on the Main Diagonal

If we zero out X2 and X3 in the T3 group, we will get a subgroup with a Brownian motion having

the following form:
eW1(t)

t∫
0

eW1(s)dW4(s)
t∫

0

s∫
0

eW1(u)dW4(u)dW5(s) +
t∫

0

eW1(s)dW6(s)

0 1 W5(t)

0 0 1

 (46)

The visual representation of Eq. (46) is shown on Figure 4.

1

1

Figure 4: Affine Group of Upper Triangular 3x3 Matrix of Rank 4

Let’s define

Θ(t) =

eW1(t),

t∫
0

eW1(s)dW4(s),W5(t),

t∫
0

s∫
0

eW1(u)dW4(u)dW5(s) +

t∫
0

eW1(s)dW6(s)


X(t) = (x1(t), x2(t), x3(t), x4(t))

=

eW1(t),

t∫
0

eW1(s)dW4(s),W5(t),

t∫
0

eW1(s)dW6(s)


Note that Θ(t) satisfies the following PDE:

dx1(t) = x1(t)dW1(t)

dx2(t) = x1(t)dW4(t)

dx3(t) = dW5(t)

d

 t∫
0

x2(s)dW5(s) + x4(t)

 = x2(t)dW5(t) + x1(t)dW6(t)
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The matrix form of it is:

dΘ = σ · dW, where σ =



x1 0 0 0

0 x1 0 0

0 0 1 0

0 0 x2 x1


And:

A = {aij} = σσT =



x2
1 0 0 0

0 x2
1 0 0

0 0 1 x2

0 0 x2 x2
1 + x2

2


Hence the generator of the process Θ(t) has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
1

∂2

∂x2
2

+
∂2

∂x3
2

+ 2x2
∂2

∂x3∂x4
+
(
x2

1 + x2
2

) ∂2

∂x2
4

]

Hörmander’s form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
1

∂2

∂x2
2

+

(
x2

∂

∂x4
+

∂

∂x3

)2

+ x2
1

∂2

∂x2
4

]

Note that the determinant of the diffusion tensor is x6
1 > 0 which means that there exists a unique

and strictly positive transition density of the process Θ(t). From the method of parametrix we know

that the fundamental solution is possible to find, but is computationally complex. However, the

central result is existence of it’s upper estimate:

0 < p(t, e, e) ≤ c · t−2, t→∞
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5.4.4 Subgroup with only Middle Element on the Main Diagonal

If we zero out X1 and X3 in the T3 group, we will get a subgroup with a Brownian motion having

the following form:
1

t∫
0

eW2(t)−W2(s)dW4(s)
t∫

0

s∫
0

eW2(s)−W2(u)dW4(u)dW5(s) +W6(t)

0 eW2(t)
t∫

0

eW2(s)dW5(s)

0 0 1


(47)

The visual representation of Eq. (47) is shown on Figure 5.

1

1

Figure 5: Solvable Group of Upper Triangular 3x3 Matrix with Middle Element on Main Diagonal

Let’s define

Θ(t) =

eW2(t),

t∫
0

eW2(t)−W2(s)dW4(s),

t∫
0

eW2(s)dW5(s),

t∫
0

s∫
0

eW2(s)−W2(u)dW4(u)dW5(s) +W6(t)


X(t) = (x1(t), x2(t), x3(t), x4(t))

=

eW2(t),

t∫
0

eW2(t)−W2(s)dW4(s),

t∫
0

eW2(s)dW5(s),W6(t)


Note that Θ(t) satisfies the following PDE:

dx1(t) = x1(t)dW2(t)

dx2(t) = x2(t)dW2(t) + dW4(t)

dx3(t) = x1(t)dW5(t)

d

 t∫
0

x2(s)dW5 + x4(t)

 = x2(t)dW5(t) + dW6(t)
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The matrix form of it is:

dΘ = σ · dW, where σ =



x1 0 0 0

x2 1 0 0

0 0 x1 0

0 0 x2 1


And:

A = {aij} = σσT =



x2
1 x1x2 0 0

x1x2 1 + x2
2 0 0

0 0 x2
1 x1x2

0 0 x1x2 1 + x2
2


Hence the generator of the process Θ has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ (1 + x2
2)

∂2

∂x2
2

+ x2
1

∂2

∂x2
3

+ (1 + x2
2)

∂2

∂x4
2

+2x1x2
∂2

∂x1∂x2
+ 2x1x2

∂2

∂x3∂x4

]
Note that the determinant of the diffusion tensor is x2

1 > 0 and under assumption that it is strictly

positive there exists a unique and strictly positive transition density of the process Θ(t). From the

method of parametrix we know that the fundamental solution is possible to find, but is computa-

tionally complex. However, the central result is existence of it’s upper estimate:

0 < p(t, e, e) ≤ c · t−2, t→∞

5.4.5 Subgroup with only Last Element on the Main Diagonal

If we zero out X1 and X2 in the T3 group, we will get a subgroup where Brownian motion is

defined in the following way:
1 W4(t)

t∫
0

W4(s)dW5(s) +
t∫

0

eW3(t)−W3(s)dW6(t)

0 1
t∫

0

eW3(t)−W3(s)dW5(t)

0 0 eW3(t)


=

1

1 (48)
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Note that in terms of calculating the transition probability from the initial state back to the

initial state, the term
t∫

0

eW3(t)−W3(s)dW6(t) can be eliminated as it only creates noise.

Let’s define

Θ(t) =

eW3(t),W4(t),

t∫
0

eW3(t)−W3(s)dW5,

t∫
0

W4(s)dW5 +

t∫
0

eW3(t)−W3(s)dW6


X(t) = (x1(t), x2(t), x3(t), x4(t))

=

eW3(t),W4(t),

t∫
0

eW3(t)−W3(s)dW5,

t∫
0

W4(s)dW5


Let’s take a derivative of each element of the process Θ(t) with respect to t constructing a system

of PDEs: 

dx1(t) = x1(t)dW3(t)

dx2(t) = dW4(t)

dx3(t) = x3(t)dW3(t) + dW5(t)

d

 t∫
0

x2(s)dW5 + x4(t)

 = x2(t)dW5(t) + x4(t)dW3(t) + dW6(t)

The matrix form of it is:

dΘ = σ · dW, where σ =



x1 0 0 0

0 1 0 0

x3 0 1 0

x4 0 x2 1


And:

A = {aij} = σσT =



x2
1 0 x1x3 0

0 1 0 0

x1x3 0 1 + x2
3 x2 + x3x4

0 0 x2 + x3x4 1 + x2
2 + x2

4


The generator of the process Θ(t) has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+
∂2

∂x2
2

+ (1 + x2
3)

∂2

∂x3
2

+ x2
2

∂2

∂x4
2

]
+ x1x3

∂2

∂x1∂x3
+ x2

∂2

∂x3∂x4
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Hörmander’s form:

L =
1

2

[(
x1

∂2

∂x1
+ x3

∂2

∂x3

)2

+

(
∂2

∂x3
+ x2

∂2

∂x4

)2

+
∂2

∂x2
2

]

Note that the determinant of the diffusion tensor is x2
1 > 0 and under assumption that it is

strictly positive there exists a unique and strictly positive transition density of the process Θ(t).

From the method of parametrix we know that the fundamental solution is possible to find, but is

computationally complex. However, the central result is existence of it’s upper estimate:

0 < p(t, e, e) ≤ c · t−2, t→∞

5.5 Solvable Groups of Rank 5 of Upper Triangular 3x3 Matrices

By leaving five of six elements of T3 group in place, we will get sub-groups of rank five. The total

number of matrices will be C5
6 = 6, and only 5 of them form a group.

5.5.1 Subgroups without a middle Element in the First Row or in the Last Column

Let’s assume that Y1,k is zero for all k = 1, 2, ... in the group T3, then it will form a subgroup of

the upper triangular 3× 3 matrices of rank 5 and the Brownian motion on this group will have the

following form: 
eW1(t) 0

t∫
0

eW1(s)+W3(t)−W3(t)dW6(s)

0 eW2(t)
t∫

0

eW2(s)+W3(t)−W3(s)dW5

0 0 eW3(t)


= (49)

Let’s assume Y2,k is zero for all k = 1, 2, ... in the group T3, then it will form a subgroup of the

upper triangular 3 × 3 matrices of rank 5 and the Brownian motion on this group will have the

following form:
eW1(t)

t∫
0

eW1(s)+W2(t)−W2(s)dW4

t∫
0

eW1(s)+W3(t)−W3(t)dW6(s)

0 eW2(t) 0

0 0 eW3(t)

 = (50)
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Let’s define a process that corresponds both Brownian motions defined above:

Θ(t) =

eW1(t), eW2(t), eW3(t),

t∫
0

eW1(s)+W2(t)−W2(s)dW4,

t∫
0

eW1(s)+W3(t)−W3(s)dW6(s)


Note that it satisfies the following PDE:

dx1(t) = x1(t)dW1(t)

dx2(t) = x2(t)dW2(t)

dx3(t) = x3(t)dW3(t)

dx4(t) = x4(t)dW2(t) + x1(t)dW4(t)

dx5(t) = x5(t)dW3(t) + x1(t)dW6(t)

The matrix form of it is:

dΘ = σ · dW, where σ =



x1 0 0 0 0

0 x2 0 0 0

0 0 x3 0 0

0 x4 0 x1 0

0 0 x5 0 x1


And:

A = {aij} = σσT =



x2
1 0 0 0 0

0 x2
2 0 x2x4 0

0 0 x2
3 0 x3x5

0 x2x4 0 x2
1 + x2

4 0

0 0 x3x5 0 x2
1 + x2

5


Hence the generator of Θ(t) has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
2

∂2

∂x2
2

+ x2
3

∂2

∂x3
2

+ (x2
1 + x2

4)
∂2

∂x4
2

+ (x2
1 + x2

5)
∂2

∂x5
2

]
+ x2x4

∂

∂x2∂x4
+ x3x5

∂

∂x3∂x5
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Hörmander’s form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
1

∂2

∂x4
2

+ x2
1

∂2

∂x5
2

+

(
x2

∂2

∂x2
+ x4

∂2

∂x4

)2

+

(
x3

∂2

∂x3
+ x3

∂2

∂x5

)2
]

Note that the determinant of the diffusion tensor is x6
1x

2
2x

2
3 > 0, which means that there exists

unique and strictly positive transition density of the process Θ(t).

Define

B1(s) = (W1(s)|W1(t) = 0)

B2(s) = (W1(s)|W1(t) = 0)

B3(s) = (W3(s)|W3(t) = 0)

and conclude:

p(t, e, e) ∼ 1√
8π3

P

 t∫
0

eB2(s)−B3(s)dW4 ∈ dx,
t∫

0

eB1(s)−B3(s)dW5 ∈ dx

 t−
3
2

∼ 1√
8π3

E

P
 t∫

0

eB2(s)−B3(s)dW4 ∈ dx,
t∫

0

eB1(s)−B3(s)dW5 ∈ dx

∣∣∣∣∣∣B1B2B3

 t− 3
2

∼ 1√
32π5

E


 t∫

0

e2B2(s)−2B3(s)ds

t∫
0

e2B1(s)−2B3(s)ds

−
1
2

 t− 3
2

Per Lemma 9 there are exist Brownian bridges B̄1(s)s∈[0,t] and B̄2(s)s∈[0,t] such that
√

2B̄1
d
=

2B1(s)− 2B3(s) and
√

2B̄2
d
= 2B2(s)− 2B3(s). Per Lemma 8:

E


 t∫

0

e2B̄1(s)ds

−1
 = E


 t∫

0

e2B̄2(s)ds

−1
 =

1

t

Using Hölder’s inequality, we get the following:

E


 t∫

0

e2B2(s)−2B3(s)ds

t∫
0

e2B1(s)−2B3(s)ds

−
1
2

 ≤ 1

t

Thus, we found an upper estimate of the transition density:

0 < p(t, e, e) ≤ 1

4
√

2π5
t−

5
2 , t→∞
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5.5.2 Subgroup without a first Element in the First Row

Let’s assume that X1,k is zero for all k = 1, 2, ... in the group T3, then it will form a subgroup of

the upper triangular 3× 3 matrices of rank 5 and the Brownian motion on this group will have the

following form:
1

t∫
0

eW2(t)−W2(s)dW4(s)
t∫

0

s∫
0

eW2(s)−W2(u)dW4(u)dW5(s) +
t∫

0

eW3(t)−W3(t)dW6(s)

0 eW2(t)
t∫

0

eW2(s)+W3(t)−W3(s)dW5(s)

0 0 eW3(t)


=

1

Let’s define

Θ(t) =

eW2(t), eW3(t),

t∫
0

eW2(t)−W2(s)dW4(s),

t∫
0

eW3(s)+W3(t)−W3(s)dW5(s),

t∫
0

s∫
0

eW2(s)−W2(u)dW4(u)dW5(s) +

t∫
0

eW3(t)−W3(t)dW6(s)


X(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))

=

eW2(t), eW3(t),

t∫
0

eW2(t)−W2(s)dW4(s),

t∫
0

eW3(s)+W3(t)−W3(s)dW5(s),

t∫
0

s∫
0

eW2(s)−W2(u)dW4(u)dW5(s)


Note that it satisfies the following PDE:

dx1(t) = x1(t)dW2(t)

dx2(t) = x2(t)dW3(t)

dx3(t) = x3(t)dW2(t) + dW4(t)

dx4(t) = x4(t)dW3(t) + x2(t)dW5(t)

d

 t∫
0

x3(s)dW5 + x5(t)

 = x3(t)dW5(t) + x5(t)dW3(t) + dW6(t)
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The matrix form of it is:

dΘ = σ · dW, where σ =



x1 0 0 0 0

0 x2 0 0 0

x3 0 1 0 0

0 x4 0 x2 0

0 x5 0 x3 1


And:

A = {aij} = σσT =



x2
1 0 x1x3 0 0

0 x2
2 0 x2x4 x2x5

x1x3 0 1 + x2
3 0 0

0 x2x4 0 x2
2 + x2

4 x2x3 + x4x5

0 x2x5 0 x2x3 + x4x5 1 + x2
3 + x2

5


Hence the generator of Θ(t) has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
2

∂2

∂x2
2

+ (1 + x2
3)

∂2

∂x3
2

+ (x2
2 + x2

4)
∂2

∂x4
2

+ (1 + x2
3 + x2

5)
∂2

∂x5
2

]
+ x1x3

∂2

∂x1∂x3
+ x2x4

∂2

∂x2∂x4
+ x2x5

∂2

∂x2∂x5

Hörmander’s form:

L =
1

2

[(
x1

∂

∂x3
+ x1

∂

∂x3

)2

+

(
x2

∂

∂x2
+ x4

∂

∂x4

)2

+

(
x2

∂

∂x2
+ x5

∂

∂x5

)2
]

+
1

2

[
∂2

∂x3
2
− x2

2

∂2

∂x2
2

+ x2
2

∂2

∂x4
2

+
∂2

∂x5
2

+ x2
3

∂2

∂x5
2

]
Note that the determinant of the diffusion tensor is x2

1x
2
2 > 0 which means that there exists a

unique and strictly positive transition density of the process Θ(t). From the method of parametrix

we know that the fundamental solution is possible to find, but is computationally complex. However,

the central result is existence of it’s upper estimate:

0 < p(t, e, e) ≤ c · t− 5
2 , t→∞
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5.5.3 Subgroup without the Last Element in the Last Row

Let’s assume that X3,k is zero for all k = 1, 2, ... in the group T3, then it will form a subgroup of

the upper triangular 3× 3 matrices of rank 5 and the Brownian motion on this group will have the

following form:
eW1(t)

t∫
0

eW1(s)+W2(t)−W2(s)dW4

t∫
0

s∫
0

eW1(u)+W2(s)−W2(u)dW4dW5 +
t∫

0

eW1(s)dW6

0 eW2(t)
t∫

0

eW2(s)dW5(s)

0 0 1


=

1

Let’s define

Θ(t) =

eW1(t), eW2(t),

t∫
0

eW1(s)+W2(t)−W2(s)dW4(s),

t∫
0

eW2(s)dW5(s),

t∫
0

s∫
0

eW1(u)+W2(s)−W2(u)dW4(u)dW5(s) +

t∫
0

eW1(s)dW6


note that it satisfies the following PDE:

dx1(t) = x1(t)dW1(t)

dx2(t) = x2(t)dW2(t)

dx3(t) = x3(t)dW2(t) + x1(t)dW4(t)

dx4(t) = x2(t)dW5(t)

d

 t∫
0

x3(s)dW5(s) + x5(t)

 = x3(t)dW5(t) + x1(t)dW6(t)

The matrix form of it is:

dΘ = σ · dW, where σ =



x1 0 0 0 0

0 x2 0 0 0

0 x3 x1 0 0

0 0 0 x2 0

0 0 0 x3 x1


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And:

A = {aij} = σσT =



x2
1 0 0 0 0

0 x2
2 x2x3 0 0

0 x2x3 1 + x2
3 0 0

0 0 0 x2
2 x2x3

0 0 0 x2x3 x2
1 + x2

5


Hence the generator of Θ(t) has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
2

∂2

∂x2
2

+ (1 + x2
3)

∂2

∂x3
2

+ x2
2

∂2

∂x4
2

+ (x2
1 + x2

5)
∂2

∂x5
2

]
+ x2x3

∂2

∂x2∂x3
+ x2x3

∂2

∂x5∂x6

Note that the determinant of the diffusion tensor is x6
1x

4
2 > 0 which means that there exists a

unique and strictly positive transition density of the process Θ(t). From the method of parametrix

we know that the fundamental solution is possible to find, but is computationally complex. However,

the central result is existence of it’s upper estimate:

0 < p(t, e, e) ≤ c · t− 5
2 , t→∞

5.5.4 Subgroup Without the Middle Element in the Middle Row

Let’s assume that X2,k is zero for all k = 1, 2, ... in the group T3, then it will form a subgroup of

the upper triangular 3× 3 matrices of rank 5 and the Brownian motion on this group will have the

following form:
eW1(t)

t∫
0

eW1(s)dW4(s)
t∫

0

s∫
0

eW1(u)dW4(u)dW5(s) +
t∫

0

eW1(s)+W3(t)−W3(t)dW6(s)

0 1
t∫

0

ee
W3(t)−W3(s)

dW5(s)

0 0 eW3(t)


= 1

Let’s define Θ(t) as the following process:

Θ(t) =

eW1(t), eW3(t),

t∫
0

eW1(s)dW4(s),

t∫
0

eW3(t)−W3(s)dW5(s),

t∫
0

s∫
0

eW1(u)dW4(u)dW5(s) +

t∫
0

eW1(s)+W3(t)−W3(t)dW6(s)


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Note that it satisfies the following PDE:

dx1(t) = x1(t)dW1(t)

dx2(t) = x2(t)dW3(t)

dx3(t) = x1(t)dW4(t)

dx4(t) = x4(t)dW3(t) + dW5(t)

d

 t∫
0

x3(s)dW5 + x5(t)

 = x3(t)dW5(t) + x5(t)dW3(t) + x1(t)dW6(t)

Let’s rewrite it in a vector form:

dX = σdW, where σ =



x1 0 0 0 0

0 x2 0 0 0

0 0 x1 0 0

0 x4 0 1 0

0 x5 0 x3 x1


Then:

A = {ai,j(x)}i,j∈[1,5] = σ · σT =



x2
1 0 0 0 0

0 x2
2 0 x2x4 x2x6

0 0 x2
1 0 0

0 x2x4 0 1 + x2
4 x3 + x4x5

0 x2x5 0 x3 + x4x5 x2
1 + x2

3 + x2
5


Note that x1, x2 > 0, x3, x4, x5 ≥ 0. The matrix A is positive-definite and its eigenvalues are

(1, x1, x1, x2, x3).

Hence the generator of Θ(t) has the following form:

L =
1

2

[
x2

1

∂2

∂x1
2

+ x2
2

∂2

∂x2
2

+ x2
1

∂2

∂x3
2

+ (1 + x2
4)

∂2

∂x4
2

+ (x2
1 + x2

3 + x2
5)

∂2

∂x5
2

]
+ x2x4

∂2

∂x2∂x4
+ x2x5

∂2

∂x2∂x5
+ (x3 + x4x5)

∂2

∂x4∂x5

Note that the determinant of the diffusion tensor is x6
1x

2
2 > 0 which means that there exists a

unique and strictly positive transition density of the process Θ(t). From the method of parametrix
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we know that the fundamental solution is possible to find, but is computationally complex. However,

the central result is existence of it’s upper estimate:

0 < p(t, e, e) ≤ c · t− 5
2 , t→∞

5.6 Solvable Groups of of Upper Triangular 3x3 Matrices: General Case

We will not going to zero out any elements of the T3 group and will find the decay of the transition

density of the following process:

Θ(t) =
(
eW1(t), eW2(t), eW3(t),

t∫
0

eW1(s)+W2(t)−W2(s)dW4(s),

t∫
0

eW2(s)+W3(t)−W3(s)dW5(s),

t∫
0

s∫
0

eW1(u)+W2(s)−W2(u)dW4(u)dW5(s) +

t∫
0

eW1(s)+W3(t)−W3(s)dW6(s).


Let’s define 

x1(t) = eW1(t)

x2(t) = eW2(t)

x3(t) = eW3(t)

x4(t) =

t∫
0

eW1(s)+W2(t)−W2(s)dW4(s)

x5(t) =

t∫
0

eW2(s)+W3(t)−W3(s)dW5(s)

x6(t) =

t∫
0

eW1(s)+W3(t)−W3(s)dW6(s)

Let’s take a derivative of each element of the process Θ(t) with respect to t constructing a system

of PDEs:

dx1(t) = eW1(t)dW1(t) = x1(t)dW1(t)

dx2(t) = eW2(t)dW2(t) = x2(t)dW2(t)

dx3(t) = eW3(t)dW3(t) = x3(t)dW3(t)
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dx4(t) = eW2(t)dW2(t)

t∫
0

eW1(s)−W2(s)dW4(s) + eW1(t)dW4(t)

= x4(t)dW2(t) + x1(t)dW4(t)

dx5(t) = eW3(t)dW3(t)

t∫
0

eW2(s)−W3(s)dW5(s) + eW2(t)dW5(t)

= x5(t)dW3(t) + x2(t)dW5(t)

d

 t∫
0

x4(s)dW5(s) + x6(t)

 = x4(t)dW5(t) + x6(t)dW3(t) + x1(t)dW6(t)

Let’s rewrite it in a vector form:

dΘ = σdW, where σ =



x1 0 0 0 0 0

0 x2 0 0 0 0

0 0 x3 0 0 0

0 x4 0 x1 0 0

0 0 x5 0 x2 0

0 0 x6 0 x4 x1


Define A = {ai,j(x)}i,j∈[1,6] then

A = σ · σT =



x2
1 0 0 0 0 0

0 x2
2 0 x2x4 0 0

0 0 x2
3 0 x3x5 x3x6

0 x2x4 0 x2
1 + x2

4 0 0

0 0 x3x5 0 x2
2 + x2

5 x2x4 + x5x6

0 0 x3x6 0 x2x4 + x5x6 x2
1 + x2

4 + x2
6


Per Theorem 2, the infinitesimal generator of Θ(t) has the following form:

L̂ =
1

2

[
x2

1

∂2

∂x1
2

+ x2
2

∂2

∂x2
2

+ x2
3

∂2

∂x3
2

+
(
x2

1 + x2
4

) ∂2

∂x4
2

+
(
x2

2 + x2
5

) ∂2

∂x5
2

+
(
x2

1 + x2
4 + x2

6

) ∂2

∂x6
2

]
+ x2x4

∂2

∂x2∂x4
+ x3x5

∂2

∂x3∂x5
+ (x2x4 + x5x6)

∂2

∂x5∂x6
+ x3x6

∂2

∂x3∂x6
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L̂ =
1

2

[(
x2

∂

∂x2
+ x4

∂

∂x4

)2

+

(
x3

∂

∂x3
+ x5

∂

∂x5

)2

+

(
x2

∂

∂x5
+ x4

∂

∂x6

)2

+ x2
6

∂2

∂x6
2

]

+
x2

1

2

[
∂2

∂x1
2

+
∂2

∂x4
2

+
∂2

∂x6
2

]
+ x5x6

∂2

∂x5∂x6
+ x3x6

∂2

∂x3∂x6

Note that x1, x2, x3 > 0 and x4, x5, x6 ≥ 0. The matrix A is a positive-definite matrix and

det[A] = x6
1x

4
2x

2
3 > 0, which means per [1] that the parabolic equation

∂p(t, x, t)

∂t
= L p(t, x, y)

p(0, x, y) = δy(x)

(51)

has unique strictly positive solution, which is the transition density of the Θ(t) diffusion process.

Using the Parametrix method described in the section 2.6, we can try to construct the solution,

but this exercise is very complicated and is out of scope for this dissertation. However we are able

to use Eq. (13) and by letting t→∞ we get an upper estimate of the transition probability density:

0 < p(t, 0, 0) ≤ ct− 5
2 , t→∞

where the constant c depend only on the dimension d.

5.7 Conclusions and Future Work

5.7.1 Conclusions

Starting from M. Yor [28], exponential functionals of the Brownian motion were studied in math-

ematical finance, in particular in Asian option pricing. At the same time, they play a significant

role in different settings: the analysis of diffusions on the class of solvable Lie groups, in particular

on the group of upper-triangular 3x3 matrices, with positive diagonal elements.

Diffusion processes on solvable groups of upper-triangular 2x2 matrices studied in a few papers by

S. Molchanov, V. Konakov, S. Menozzi; the Brownian motion on thse groups is studied in [21], the

approximation of diffusion on the these groups is studied in [19] and the local and quasi-local limit

theorems on these groups are studied in [20]. Brownian motions on these groups are constructed

by using the multiplicative stochastic integral. In this thesis, we extended this research and these
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results are summarized bellow:

• Brownian motions were constructed on all 52 sub-groups of the solvable groups of upper-

triangular 3x3 matrices, including the Heisenberg group. There are six solvable sub-groups

of rank 1, 12 solvable sub-groups of rank 2, 17 solvable sub-groups of rank 3, 12 solvable

sub-groups of rank 4, five solvable sub-groups of rank 5 and one in general case.

• We proved that the asymptotic decay of the return probabilities in the continuous model is

polynomial for all sub-groups of rank 1, rank 2 and rank 3.

• For 6 out of 12 sub-group of rank 4, we proved the asymptotic decay of the return probabilities

is polynomial. For the remaining 6 solvable sub-groups, we proved that the existence and

uniqueness of positive return probabilities. Moreover, we found a polynomial upper bound of

the asymptotic decay of return probabilities.

• For general case and all solvable sub-groups of rank 5 we proved the existence and uniqueness

of positive return probabilities and found a polynomial upper bound of the asymptotic decay

of return probabilities.

• We have proven that for modified Asian-European geometric basket options with two assets,

the value of the option is bounded if the underline asset prices are bounded. This fact implies

that there is more risk in certain type of basket options.

• We have also proven that the price of modified Asian-European geometric basket options with

two assets depends on
√
t.

5.7.2 Future Work

For future work, we plan to prove the polynomial behaviour of the asymptotic decay of return

probabilities of Brownian motion defined on the remaining ten solvable Lie sub-groups of upper-

triangular 3x3 matrices. We also plan to expend the research to the general case of solvable groups

of upper-triangular NxN matrices.
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To extend work in [19], we plan to compute the return probabilities in discrete models of solvable

group of upper-triangular 3x3 matrices that have been defined in this dissertation. Also, we plan

establish additional properties for Asian and European-Asian geometric basket options in the general

case of N assets.
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