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ABSTRACT

JHANANI THIAGARAJAN. Exploring the scalability of OpenCL for massively
parallel applications on Xilinx cloud platform. (Under the direction of
DR. HAMED TABKHI)

Field Programmable Gate Array (FPGA) is becoming a preferred platform for the
high-performance computing community because of the flexibility to adapt to new
computing challenges. FPGAs also provide a greater power-efficient alternative for
GPUs with its customizable data path and deep pipelining capability. Using high-level
synthesis and optimization tools, we can achieve better and comparable performance
to that of a CPU and GPU. OpenCL is the standard programming language for
general-purpose parallel programming of a heterogeneous system. The availability
of OpenCL has empowered high-performance execution of the massively parallel ap-
plication. OpenCL-HLS for FPGA enables programmers to explore various software
optimization with enhanced hardware capability.

We introduce a novel approach to study the scalability of OpenCL coarse-grain par-
allelism, Compute Unit (CU) replication on cloud FPGAs. This work demonstrates
that for every application there is an optimum number of CU to achieve the maxi-
mum performance benefits with higher memory bandwidth utilization and optimum
FPGA resources. We also provide a generic source-code template and a front-end
design exploration tool to explore and identify the optimum CU number for a given
application.

We have used the Xilinx SDAccel 2017.4 synthesis toolchain, which is an integrated
development environment for FPGA for evaluation purposes. On the hardware side,
the AWS cloud based Xilinx VU9P FPGA was employed. This project was funded
by the Xilinx University Program (XUP). Our experimental results on a mix of 15
applications taken from the Xilinx benchmark suite vs2017.4 and the Rodinia Bench-

mark Suite vs3.1 show an average speedup of 6.4x and average bandwidth utilization
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improved by 3.4x over baseline. Further to this, a mere 8% average resource utiliza-
tion and 1.33x power overhead was reported. Our tool results in a 31% improvement
in the total design synthesis time for an illustrative Histogram application.

Xilinx SDAccel based ‘DDR’ and ‘burst transfer’ optimizations were also explored
to improve bandwidth and performance. These optimization are helpful for data
hungry applications which have bandwidth as the major bottleneck. Combining CU
along with DDR, we could achieve a 7.5x speedup for the Largeloop OCL (from
SDAccel benchmark suite) application. In addition to this, we address the ‘memory
wall” and hide the memory latency problem by using OpenCL pipes. This approach
involves splitting an application into ‘read’; ‘compute’; and ‘write back’ sub kernels
which work concurrently. Results on seven massively parallel applications gave an

average speedup of 5.2x with 2.2x bandwidth improvement on cloud FPGAs.
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CHAPTER 1: INTRODUCTION

The internet boom from the mid-90s which is also called the dot-com bubble has
made a huge impact on us|1]|. It drastically changed how we live by making a major
impact on business, education, medicine and also helps us to make a better lifestyle
choice. The wider use of the internet has led to an abundant data creation that can
be processed and used for predicting the next trend. The processing of such huge
data will not be an easy task. The architecture of the processing devices needs to be
faster and efficient in producing the result. Sometimes it needs a bigger processing
server which can process billions of data in a fraction of second. To process such a
huge amount of data we need a computer with enormous processing capability.

With the impending death of Moore’s law and the huge need for high volume
processing|2|, the technology started moving towards the search for better architec-
ture which could process data with better throughput. This escalated the growth
of High-Performance Computers and made them widely used in all industries. Field
Programming Gate Arrays and Graphics Processing Units (GPUs) have increased the
breadth of research in all the scientific fields and are used in solving huge mathemati-
cal equations in a short period. The modern GPU architecture contains thousands of
core which can process terabytes of data. This ability to handle multiple tasks at the
same time makes it highly efficient. For Instance, searching for a word in the docu-
ment is a GPU friendly task since it can process multiple sections of the document in
parallel whereas calculating the sum of a Fibonacci sequence is not so GPU friendly
because of it’s serial nature. GPUs have their builtin scheduler to manage concurrent
thread execution at a massive scale through which it can hide the memory stalls.

GPUs as the name says its primarily used for graphics rendering but its architecture
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can be made use of in data-intensive industries which demand a powerful tool to
evaluate massive machine learning problems. However, programming should be done

very carefully to tap the full potential of GPU. FPGA also provides a huge scope be-

A

Flexibility

\ 4

Efficiency

Figure 1.1: Flexibility vs Efficiencies of different platforms

cause of its programmability and its better energy efficiency as compared to GPUs as
shown in Figure 1.1. FPGA consists of three main parts: Configurable Logic Blocks,
Programmable Interconnects, Programmable I/O blocks. The logic block implements
the logical functionality required by the design. These logical blocks are configurable
i.e., its internal states can be controlled. This gives the FPGA it’s cost-efficient par-
allel computing power which makes it suitable for rapid prototyping. It is also used
for processing real-time Computer vision applications because of their structure to
use both spatial and temporal parallelism. FPGA has a custom data path if there
are any stalls in the thread it has to wait for the data. This affects the bandwidth of
the device which leads to poor performance on FPGA.

Open Compute Language (OpenCL) in Figure 1.2 is a programming framework
that can execute across heterogeneous platforms consisting of central processing units,

graphics processing units, digital signal processors, field programming gate arrays and
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Figure 1.2: OpenCL platforms

other hardware accelerators. OpenCL has it’s design challenges despite its potential.
The challenges are mainly because of the significant difference in the architecture
of CPU, GPU, and FPGA[3]. CPUs and GPUs are based on ISA whereas FPGA is
mainly based on re-programmability. FPGA converts the algorithm into a customized
data path and operational level parallelism. Also, it can exploit deep pipelining
and temporal parallelism along with the advantage of spatial parallelism. GPUs,
on the other hand, exploits spatial parallelism with its large number of cores. So,
the programmers should understand the heterogeneous architecture before writing in
OpenCL to have a greater speed up.

The hardware architecture should be in pace with the advancement of technology.
Even though there is a lot of research done on optimizing code on GPUs and CPUs the
growth has become stagnant. So, the traditional CPU and GPUs may not be suitable
for all kinds of workloads. FPGA has a wider scope for research in all the fields. It
has gained an interest in both industry and academia. Many companies like Xilinx
and Intel have released lots of documentation and software which could optimize for
the FPGA architecture. Programmers can understand how OpenCL source code will
be mapped to FPGA architecture with the help of High-Level Synthesis (HLS). So,
the programmer can optimize at the software level to have an impact at the hardware
level.

GPUs work efficiently with the data level parallelism because of multiple CUs in its
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architecture. Compute Unit (henceforth referred to as CU) can also be replicated on

FPGAs. So, CU replication is a promising approach to increase OpenCL coarse-grain

parallelism on FPGAs.
1.1  Problem statement

Explore possibility to improve high performance computing using spatial paral-
lelism. CU replication is a good approach for exploring the spatial parallelism. The
programmer follows the iterative method for replicating CU to achieve maximum per-
formance which could take more than half a day for synthesizing and testing. There
is a vital need for a better method to find an optimum number of CU with lower time

spent for design space exploration.
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Figure 1.3: Baseline bandwidth utilization(%)

Figure 1.3, the bandwidth utilization is lower than 50% for most of the applica-
tion. This allows us to do design space exploration. Often, the programmer should
understand the architecture of FPGA to do design space exploration which makes it
harder to use FPGA or OpenCL. There is a need for proper design space exploration
which could cover the benefits and limitations of having CU replication. Another

bottleneck for bandwidth is memory latency. Accessing the global memory posses



additional delay in the processing of data and significantly affect the performance.
1.2 Contributions

Our contribution is to propose a generic template to replicate CUs combined with
a front-end tool to automatically identify the optimum number of CUs most suitable
for a given application and synthesize that design.

This enables the programmer to remain oblivious of the design space and use our
tool as a push-button solution. To improve the bandwidth further, we worked on
optimizing the code by adding additional DDR and included Burst transfer. OpenCL
pipe-based split-kernel temporal parallelism approach to hide the memory latency of
massively parallel applications running on FPGA devices.

In summary, the contributions made are:-

1. Contribution 1: Automatic CU replication on cloud FPGA

Our tool automatically selects the sweet spot for extracting maximum spatial par-
allelism potential out of the FPGA

2. Contribution 2: Exploring DDR optimizations and burst transfer on cloud
FPGA

Increase in DDR makes FPGA faster for power hungry applications. Optimization
like DDR and burst transfer can be applied to increase the throughput

3. Contribution 3: Exploring OpenCL pipes for cloud FPGA

To hide the memory latency of massively parallel applications running on FPGA

devices, OpenCL pipe-based split-kernel temporal parallelism approach can be used
1.3 Thesis Outline

The outline of this thesis is as follows. Chapter 2 will give you the background
of the technology used. It reviews the basic OpenCL model on Xilinx FPGA using
SDAccel 2017.4. Chapter 3, briefly overviews the related works in the field of OpenCL

for FPGA devices. Chapter 4 proposes an open source tool to explore the scalability
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of OpenCL coarse-grained parallelism on cloud FPGA. In chapter 5, optimizations
for bandwidth and DDR have been explored. In chapter 6 , we present our first
contribution to exploring the efficiency of OpenCL pipes for hiding Memory latency
on cloud FPGA. Finally, Chapter 7 concludes the thesis and suggestions for future

work.



CHAPTER 2: BACKGROUND

In this chapter we see the over all background of using FPGA and the impact
of OpenCL on FPGAs. Then OpenCL sematics and the execution model is briefly
explained. Additionally, execution steps of FPGA on AWS is explained in the this

chapter.
2.1  OpenCL for FPGA

OpenCL is a parallel processing framework developed by Khronos groupl|4] to
address the challenges of programming in multicore and heterogeneous platforms.
OpenCL has made major changes in the computational capability for various types
of applications. It also has the advantage of running on a variety of platforms by
porting the algorithm to that architecture(CPUs, GPUs, and FPGA). Since OpenCL
single programming model and a set of system abstraction that is supported by all
heterogeneous hardware platform confirming to standard. And also has the major
advantage of vendor portability with a single programming model. OpenCL kernel
follows the programming method of C or C++. It provides lower-level hardware
abstraction that allows OpenCL to expose to the underlying platform, memory and
executions models of the device[5]. Multiple OpenCL kernels can be handled by a
single FPGA. With such features, FPGA could gain significant performance gain
compared to GPUs for certain applications. One of the limitations of using OpenCL
is memory latency. Like GPUs, the data has to be moved from host memory to FPGA
memory before any processing is done and back to host memory after the computa-
tion. OpenCL for FPGA needs significant improvement and fine-tuning to make the

use of FPGA more powerful.



OpenCL platform model:

In High-Performance Computing, the knowledge about the hardware architecture
is important to reap full performance benefit. An OpenCL platform model consists
of one or more devices connected to the host. Each device can have one or more CUs.
CUs are further divided into one or more processing elements as shown in Figure 2.1.
Even within the single system, there could be many OpenCL platforms that could be
targeted. The platform model’s API gives the flexibility to choose and adapt to the
desired platform and compute devices for executing its computation. This platform
model is essential for application development as it enables the portability between

OpenCL capable systems.

Device 1

Compute Unit

Device 0
> Compute Unit
Host I I — —
f Compute Unit
> [ [ | [ I
f Compute Unit
PE PE PE |._...._. PE

Figure 2.1: OpenCL Programming model

An OpenCL platform always starts with the host processor to communicate with
the device using PCle. The host processor has the following responsibility:

1. Manage the Operating system and enables the driver for all devices.

2. It sets up all global memory buffers and handles data transfer between the host
and the device.

3. Execute the application’s host program and also monitors the status of all CUs



in the system.

The platform model also presents an abstract device architecture that program-
mer’s target when writing code. FPGA hardware vendors like Intel, Xilinx, and
AMD will translate this abstract architecture to the physical hardware. All OpenCL
platform executes a common set of OpenCL API. The implementation of OpenCL
API functions is provided to each hardware vendor and have their own runtime li-
braries. The OpenCL runtime library is responsible for translating user commands as

described by OpenCL API into the hardware-specific command for the given device.

Global Memory

Bank ‘0’
DDR BANK Bank ‘1’ FPGA on
Bank ‘n’... Chip
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Computle Clomptljtle | | Compute
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R I R Dispatcher

|| Lol le 5| Control Compute Unit |
| Memory J Unit |
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Figure 2.2: OpenCL Memory model

OpenCL context refers to the physical collection of hardware resources on which the
application kernels are executed. The platform should at least have one heterogeneous
device available for the execution of the kernels. The architecture of CPUs and
GPUs cannot be changed and also has a fixed data path, memory system, and 1/O
architecture as shown in Figure 2.2. Also, it is not possible to attach high speed

I/O to the compute kernel. This makes FPGA more useful because of the blank
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computational canvas. The user can determine the level of customization that is
needed to support the application kernel. In deciding the level of customization in a
device, the programmer can take advantage of the fact the kernel CUs are not placed
in isolation with the FPGA fabric. The hierarchical representation of the memory
OS common across all OpenCL implementation but it is up to the individual vendor
to define how the OpenCL memory model is mapped to specific hardware.

The OpenCL specification 3 major memory layers:

1. Host memory: The representation of system memory which is directly accessible
from the host processor.

2. Global memory: This region of memory is accessible to both host and device.

3. Local memory: Local memory is local to a single CU. The host memory has no
control over the Local memory.

4. Private Memory: It is the region of memory that is private to the individual

work item that is executed by the processing element.
2.2 OpenCL execution Model

The openCL execution model defines how kernels execute. The most important
concept is to understand NDRange execution on the OpenCL device. OpenCL kernel
functions are executed one time for each point in the NDRange index space. This unit
of work for each point in the NDRange is called work item. Each unit of work in for
loop is allowed to execute in parallel and any order. It is this characteristic of OpenCL
that allows the programmer to take advantage of parallel computing resources. Work
items are organized into workgroups which are the unit of work scheduled onto the
CU. Because of this workgroup also define the set of work items that may share the
data using local memory. When the user submits the kernel for execution, they also
provide the NDRange. This is called the Global size in OpenCL. The workgroup can
also be set at runtime. This is called the local size in the OpenCL API. The user can

also let the local workgroup size selected at the run time. Once the workgroup size
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has been determined the NDRange has divided automatically into a workgroup and

it is scheduled for execution on the device as shown in Figure 2.3.
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Figure 2.3: OpenCL Execution model

2.3  AWS Cloud FPGA

Amazon EC2 F1 instances use FPGA the deliver custom hardware acceleration.
F1 instance offers high-performance computing with virtually unlimited capacity to
scale out the infrastructure and flexibility to change resources easily as often as your
workload demands. It also provides various development environments from low-level
hardware developers to software developers with support for C/C++ and OpenCL
and provides everything you need to develop, simulate, debug and compile and run
hardware acceleration in EC2. The AWS market place includes multiple versions of

the FPGA AMI with support SDAccel 2017.4 and other toolchain versions.
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2.4  Xilinx SDAccel 2017.4 Tool chain

The SDAccel environment is a heterogeneous system architecture platform to ac-
celerate compute-intensive tasks using Xilinx FPGA devices. It contains a host x86
machine that is connected to one or more Xilinx FPGA devices through a PCle Bus.
Also, offers all of the features of standard software development environments like
optimized compiler for host applications, cross compilers for FPGA with a strong
debugging environment to identify and resolve issues in the code as shown in figure
2.4. Within this environment, the SDAccel build process uses a standard compilation
and linking process for software and hardware element. The host process is built
through GCC and the FPGA is built through a separate process using the Xilinx
XOCC compiler.

( N\
C/C++ with Host FPGA RTL,C/C++
OpenCL API Application kernels OpenCL C
O Build Target
: Selection
Compile Compile
x86 FPGA
Build steps Build steps
Link Link

o ' ' FPGA
Host Application Binary
Executable (-xclbin)
(.exe)
Figure 2.4: SDAccel Execution model

1. Host application source file is compiled to object file (.0) The object files are
now linked with Xilinx SDAccel runtime shared library to create the executable (.exe)
2. FPGA build process using XOCC. Each kernel is independently compiled to

Xilinx Object (.xo) file i.e, C/C++ and OpenCL C kernels are compiled for imple-
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mentation in an FPGA using the XOCC compiler. This step leverages the Vivado
HLS compiler. RTL kernels are compiled using package xo utility. The RTL kernel
wizard in the SDAccel environment can be used to simplify this process.

3. The kernel .xo files are linked with the hardware platform (.dsa) to create the
FPGA binary (.xclbin)

Sdaccel_setup.sh

AWS SETUP

|———f———
| h 4 |

i IAM AWS | Software Emulation

| |

| |

| S3 Bucket i CL Hardware Report
| setup i Application Emulation

I AES ! l

| Configure |

|

[

= Create_sdaccel_afi.sh

Hardware }—7/ XCLBIN /
e

h 4

47/ Awsxclbin H F1 instance }—puﬁrt‘\}

End

Figure 2.5: SDAccel Execution and setup flowchart

2.4.1  Execution Model

SDAccel 3 different built targets. in which 2 of them are used to debug the kernel
code and to validate the purpose and default hardware target used to generate the
actual FPGA binary as shown in Figure 2.5.

Software Emulation (sw_emu): Host and kernel are compiled to run on the x86
processor. This target is useful to identify syntax issues, perform source-level de-
bugging and to confirm the functional correctness of the system of the kernel code

running together with the application and verify the behavior of the system. It is
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faster than the hardware emulation since it runs on x86.

Hardware Emulation (hw_emu): The kernel code is compiled into a hardware
model(RTL) which is run in a dedicated simulator. It takes a longer time to build for
the hardware emulation. This target is useful for testing the functionality of the logic
that will go into FPGA and to get a performance estimate with the best-debugging
capability and moderate compilation time.

System (hw): Kernel code is compiled into a hardware model(RTL) and this is im-
plemented on the FPGA device. The final FPGA run provides accurate performance

results with long build time.

Table 2.1: System characteristics used for study.

Host system Intel Xeon Platinum 8000
Host specs 16-core, 32GB DDR4 Memory
FPGA Family Virtex Ultrascale
FPGA Device VU9IP
LUTs 1,157,112
LUTMem 584,988
REG 2,330,479
Block RAM blocks 2,134
GPU AMD FirePro W7100
GPU Max CUs 28

2.5 Experimental setup

We have taken applications from SDAccel 2017.4 directory and Rodinia bench-
mark. SDAccel directory contains a diverse range of complex applications that allows
the users to directly work on them without larger modifications. Rodinia [6] is an
open source benchmark suite that allows the researcher to study architecture such
as FPGA, GPU, and CPU. It has a diverse set of applications with various com-
putation patterns with state of the art algorithm and also, provides input sets for
testing different situations. We used Xilinx SDAccel 2017.4 to compile and syn-
thesize OpenCL codes. SDAccel profiler collects kernel performance data such as

execution time took by one CU, bandwidth efficiency of the global memory, resource
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utilization, and power. The applications binaries are built for Xilinx Virtex VU9P
FPGA using SDAccel 2017.4. Table 2.1 list the parameters of our FPGA platform.
We also used AMD FirePro W7100 GPU to report our GPU kernel performance and

AMD CodeXL power profiler for power information.



CHAPTER 3: RELATED WORKS

The advent of OpenCL for FPGAs combined with capabilities of HLS tools has
generated tremendous amounts of interests and impacted a lot of research in this
area. OpenCL execution efficiency on FPGAs devices has been explored in many
works [7, 8, 9]. Graphic processing unit is relatively older than FPGA. GPU pro-
gramming is relatively easier than FPGA [3|. To harness the full potential of FPGA,
the programmers should understand the architecture of an FPGA. There is a lot
of research in various different field exploring the possibilities of using FPGA and
OpenCL in different domain such as image processing, deep learning and neural
network[10, 11]. Also, many researches focused on the comparison of the efficiency
of GPU and FPGAJ12, 13, 14]. For some applications, FPGA’s performance num-
bers are better than GPU. This is mainly due to availability of software optimization
on FPGAJ15]. Intel[16] and Xilinx[17]| are providing various user friendly opportu-
nity for the research community to explore FPGA. They also provide development
environment with various possibilities of software optimization|18, 19].

Most of the previous research work primarily focus on application-specific perfor-
mance optimization techniques|20, 12]. The past work also proposes a framework
that performs a metric-guided design space exploration while |21, 22| introduce ana-
lytical models for FPGA based architectures and explore OpenCL directives like loop
unrolling, pipelining, array partitioning, PE duplication(Work-Item replication) etc.

Efficient multi threading is done by constructing Sparse matrix vector using com-
piler and it can support irregular applications with dynamic workload. context switch-
ing is used to hide the memory latency|23]. Few Researches have also proposed mem-

ory optimization for convolution neural networks. Apart from that, to reduce the
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data movement while maintaining the accuracy favorable architecture which is hard-
ware friendly has been used[24].Algorithm which posses irregular memory access also
affects performance on multi core architecture[25, 26].

The researches in the feld of OpenCL HLS has benefited many fields of high perfor-
mance computing. Many recent articles have explored the possibilities of improving
performance of applications on FPGA|8, 6, 7|. By using optimization methods such as
a single pipeline model and by exploiting data parallelism by generating SIMD paral-
lel pipes, up to 6 times speedup [15] can be achieved. Another optimization technique
to extract the run time information to obtain the true dependencies between oper-
ations [27]. This assists the designer in evaluating different architectural options in
the context of high-level synthesis and a better understanding of the performance
impact of different accelerator design choices [28]. COMBA (Comprehensive model-
based analysis) [29] framework analyzes the effect of functions, loops, and arrays in
the design description which can be done by using pluggable analytical models.

There is also an interest in optimizing the interkernel communication using OpenCL
pipe semantics. A mechanism in [30] can efficiently capture the behavior for 2 dimen-
sional (2D) vision algorithms to benefit OpenCL pipe based execution.

Another example [31] is to use pipes for efficient DNA and RNA sequencing. A
design space exploration is offered [21] by a parallel pipeline analytical model to
capture the performance resource trade-off . All these ideas focus mainly on inter-
kernel parallelism and data transfer across multiple kernels in producer-consumer
fashion. Prefetching the data available before the time of execution 32, 33] is another
approach that can hide memory stalls and lead to better speedup. There has been a
few relevant works done for hardware prefetching [34], [35] software prefetching [36, 37]
and merging them to achieve maximum performance. Moreover techniques like double
buffering [38] and [39] have shown performance improvements by overlapping memory

accesses with computation. Double buffering involves decreasing the granularity of
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data transfer to smaller tiles and loading into on-chip memories. Data is accessed
directly from the main memory, which reduces the setup costs when the bulk transfer
of data within tiles takes place. A major disadvantage of this method is that the
memory must have a predictable streaming access pattern. Another disadvantage
would be the need to understand the buffer allocation of buffer tile sizes to perform
double buffering optimization.

Overall, OpenCL for FPGAs is still at its early stages. There is a lack of in-depth
analysis and generalized solutions to enhance the OpenCL execution efficiency on
FPGA devices. The major focus has been on creating an efficient application specific
data-path rather than removing the bottleneck of memory latency. In this paper,
we propose a generalized design solution (borrowed from throughput-oriented design
principles) to overlap memory access and computation at a massive scale to hide
memory latency and avoid memory stalls.

Even though current accelerators show better performance over the generic pro-
cessor, the design space of FPGA is still not well explored and systematized. This
is especially true for Compute Unit replication which has enormous performance po-
tential. It is therefore important to not only design scalable accelerators but also
design tools that can significantly reduce the synthesis design-time that is economi-
cally viable across all infrastructure. In this work, we formalize these ideas to propose
a generic template and a novel tool that allows faster FPGA synthesis with maxi-
mum parallelism potential and least resource and power overhead. To the best of
our knowledge this is the very first work that attempts to do so for Xilinx FPGA

platforms.



CHAPTER 4: EXPLORING THE SCALABILITY OF OPENCL COURSE
GRAINED PARALLELISM ON CLOUD FPGA

This research provides an exhaustive study on the scalability of OpenCL coarse-
grain parallelism, CU (referred to as CU) replication on cloud FPGAs. This work
demonstrates that for many applications there is an optimum number of CUs to
achieve the maximum performance benefits for memory bandwidth, memory conflicts
introduced by CU replication, and available FPGA resources.

OpenCL primarily allows two types of parallelism- data level and task level. CU
replication a promising approach to increase OpenCL coarse-grain parallelism on
FPGAs. The single kernel CU is split into multiple kernels so that all the data can
be processed in parallel. Not all applications will work perfectly with the splitting
of kernels because of the bandwidth and resource restriction. Our work shows a
detailed study on all range of applications and with the maximum CU achieved per
each application. Our experimental results of 15 applications are taken from Xilinx
SDAccel 2017.4 suite and Rodinia benchmark suite v3.1 and achieved a maximum
speedup of 6.4 times with 3.4 times bandwidth improvement over the baseline with
mere 8% of average resource utilization.

Figures 4.1 and 4.2 plot the baseline profiling information of 15 massively parallel
applications on Xilinx cloud FPGAs. The figures show the average resource utilization
of less than 5% and a bandwidth of less than 50%. This opens up opportunities to
explore CU replication. However, implementing CU replication requires a detailed
architecture knowledge of the device and programmers often opt for the ’trial and
error’ approach which is highly inefficient and cannot achieve full parallelism benefits.
This is partly because the extensive design space exploration consumes a lot of time

and partly due to the unavailability of a generic programming approach to carry out
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Figure 4.1: Baseline resource utilization

the coarse-grain CU parallelism.
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Figure 4.2: Baseline bandwidth utilization(%)

In summary, the contributions made are:-
1. Proposed a generic template to replicate CUs so that the user can modify the
application especially suited for Xilinx platforms.

2. Present a novel tool to automatically identify an optimum number of CUs most
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suitable for a given application hiding the hassle of manual design space exploration.

3. Port all the 15 OpenCL applications to run on GPUs and compare the perfor-
mance.

This work explores the scalability of coarse-grain parallelism on Xilinx cloud FP-
GAs. It provides an in-depth study on limitation and benefits of CU (CU) replications
across many FPGA devices. The work demonstrates that there is a unique optimum
number of CUs per each given application for available memory bandwidth, memory
access conflicts across CUs, and available FPGA resources. At the same time, the
work proposes a generic template to replicate CUs combined with a front-end tool to
automatically identify the optimum number of CUs most suitable for a given appli-
cation and synthesize that design. This enables the programmer to remain oblivious

of the design space and use our tool as a push-button solution.
4.1  CU Replication

CU replication is a task-based parallelism approach implemented on top of the
existing pipeline or temporal parallelism. This offers courser level granularity for spa-
tial thread along with the temporal thread-level granularity which can give maximum
speed up.

CU replication is done for the single kernel program. Multiple copies of the single
program as shown in Figure 4.3 are replicated along with datapath, thread dispatcher,
control unit and, load/store. The workgroup dispatcher splits the work among mul-
tiple CUs and, all CUs run concurrently utilizing the full potential of FPGA while
maintaining the synchronization between all the threads.

CU replications comes with its own set of problems.

1. Replicating CU is an NP-hard problem since multiple parameters like FPGA
resources, workgroup sizing, the additional cost associated with the CU setup is in-
volved.

2. CU will not give any performance improvement since the over splitting of jobs
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leads to the extra time taken to access the global memory.

3. The bandwidth might reach its maximum potential. Xilinx used AXI intercon-
nect and they limit to having 10 masters/slave interface the kernels and the intercon-
nect connecting to the memory controller.

4. The OpenCL CU replication on Xilinx FPGAs imposes programming challenges

to an average programimer.
4.2 Generic Tool for CU replication

This section introduces generic template for CU Replication.

Listing 4.1: Generic template of kernel

__kernel void template(__global const float *var_1,
__global const float *var_2,
__global float *var_n){
int global_id = get_global_id (0);
int size = Y_SIZE/get_global_size (0);
for (y=global_idxsize; y<(global_id+1)*size; y++)
{
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Listing 4.2: Generic template of host

#include <iostream.h>

int main(int argc, charx argv[])

cl::NDRange global_size = WORK_GROUP;
cl::NDRange local_size = 1;
q.enqueueNDRangeKernel (krnl, 0, global_size, local_size, NULL, NULL);

For any given application mapped into Xilinx FPGAs, each workgroup is mapped to
each CU [19]. We, therefore, divide the outer loop of the kernel viz. Y SIZE by the
total global work size which is equal to the number of CUs (Listing 4.1).

The local work size in the host code is kept as 1 as the work items are pipelined
inside the kernel using xcl _pipelineloop pragma provided by Xilinx SDAccel optimiza-
tion. In this way, throughput and performance increases. Both local and global work
size is specified in NDRange OpenCL API call. Thus any OpenCL kernel(2D/3D)

can be easily split up as per the template.
4.2.1  Algorithmic implementation

Algorithm 1 presents our proposed automation tool for CU replication. The modi-
fied OpenCL kernel code (based on the generic template) is the primary input to the
tool that gets initialized through the command line by providing an argument for the
number of CUs (Work Group)(line 2). Tool flow diagram in Figure 4.4 outlines the

algorithm.
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Figure 4.4: Tool flow

At the heart of our tool is the iteration controller(Figure 4.4). We choose Hardware
(HW) emulation for performing different check conditions. We set a multiplication
factor of Delta to extract the maximum parallelism without maxing out the resources.
This number is purely a programmer’s choice. Delta(A) allows for ‘automatic jump
through iterations’ i.e, depending on present Execution time value iterations across
number of CUs can be unevenly incremented. This helps in a dynamic, faster design
exploration time resulting in very few iterations.

The iteration controller simultaneously calculates if x(t) <(A)*x(t-1) (where x(t) is
the current value of CU execution time and x(t-1) is the previous), continue iterating
else stop.

The maximum number of CU per application will vary depending on the resource
utilization and bandwidth. Having many CUs will result in a higher probability of
maxing out resources and also increase the synthesis time. The TIMING (line 17-22)
and RESOURCE (line 24-29) checks are concurrently made until the optimum CU
number is generated.

4.2.2  Case Study
In this section, we first arbitrarily select the histogram application and run hardware

(HW) + software (SW) emulation and an actual hardware run on the FPGA for
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Algorithm 1 CU Replication Tool

function MAIN()
Validate project directory path
Initialize Execution Argument
Set Delta(A) = Variable t>0
Set CU + 1
while true do
Set CU + CU + 1
Run Hardware Emulation with Execution Argument
if TIMING or RESOURCES then
Terminate loop
end if
end while
Execute system synthesis
Store results
end function

function TIMING()
y = f(x) + parse profile summary file
if (y = f(x) = x(t) < Delta* xz(t — 1) then
y = f(z)==(t)
end if
end function

function RESOURCES()
y = f(x) < parse profile summary file
if (LUT or LUTMem or REG or BRAM or BW)<100 then
y=f(z)==()
end if

end function
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Figure 4.5: Histogram application for tool validation Hardware emulation



26

xR
n

I
‘-° -Software emulation ‘

xR
=
T
7
|

~
9]
T
|

Kernel execution time(ms)
(=) ~
W =]
[ [
7
'd
1 |

N
S
I
1 4
/
|

55 I SN = — T I

Cu1 Cu2 CU4 CUS8 CuU9
Number of compute units

Figure 4.6: Histogram application results for tool validation Software emulation

analysis. We limit our set of experiments due to the time complexity of synthesis.
Next, we discuss the following three aspects for our tool validation.

1. Provide reasoning for choosing HW over SW emulation- Figure 4.5 shows the
HW emulation and system run’s execution time and Figure 4.6 shows the SW em-
ulation execution time. The disparity between timing information is evident from
both the graphs. While the HW emulation resembles the actual hardware, software
emulation time is quick but inconsistent. On the flip side, HW emulation suffers from
comparatively longer compilation time for larger kernel and bigger data. However
this is a trade-off that we take into account considering the accuracy requirements.

HW emulation suffers another drawback which arises since logic optimizations done
by Synthesis and Place & Route can reduce required resources, meaning we could fit
in more CUs than indicated by emulation. However, this is overshadowed by the fact
that we almost never hit the resource limit, other factors like reaching max bandwidth
is the prime performance bottleneck.

2. Show one complete design space exploration to verify our tool results- HW

emulation (Fig 4.5) shows the optimal speed up with 8 CUs. We validate this by
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running an entire design space from CU1 (baseline) through CU9 and observe that
the actual system run also shows the maximum speed up at CUS8 after which the
performance degrades. CUS is therefore the most optimal solution.

3. Report timing-Finally, we report the synthesis time for each iteration of CUs

(Table 4.1) for the same application. We discuss the implications of these results in

Sec 7.0.2 in detail.

Table 4.1: Design space exploration of Histogram application

Number of CUs(CUs) 1 2 4 8 9
Synthesis time(mins) 87 | 127 | 191 | 330 | 360
Execution time(milli secs) | 2.52 | 1.69 | 1.04 | 0.5 | 0.53




CHAPTER 5: EXPLORING DDR OPTIMIZATIONS AND BURST TRANSFER

Optimizations are necessary on the OpenCL program for efficient data movement,
kernel development for the best performance on FPGA. There are numerous OpenCL
commands which are used for ‘read’, ‘write’, and ‘copy’ buffers and images. The host
code and the kernel code needs to be changed for a better data transfer. A template

for changing the code is provided in this chapter.
5.1  Using DDR Transfer

DDR (Double Data Rate) is the advanced version of synchronous dynamic random
access memory that waits for clock signals before responding to control inputs. DDR
uses both the falling edge and rising edges of the clock signal. So, it can transfer twice
per each clock cycle. DDR is used for the application which has a very high bandwidth
to the global memory. The device with multiple DDR bank can be targeted so that
kernels can access all available memory banks simultaneously as shown in Figure 5.1.
SDAccel supports multiple DDR banks. To take advantage of multiple DDR banks,
the user needs to assign CL memory buffer to different banks in the host code as well

as configure the XCL binary file to match the bank.

)
Memory interconnect
*Input or DDRO
Controller

OpenCL Kernel

Memory interconnect
*Output or DDR1
Controller
-/

Figure 5.1: Global memory to DDR Banks
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In the figure, we see that the OpenCL kernel’s global memory is connected to two
separate DDR and controlled by memory or interconnect controller. Without DDR
banks both the global memory access the same DDR memory to transport the data to
and from the global memory. SDAccel accelerator card support 1,2 or 4 DDR Banks
and up to 80 GB/s raw DDR bandwidth. For kernels moving a large amount of
data between the FPGA and DDR Xilinx recommends that you direct the SDAccel
compiler and runtime library to use multiple DDR banks to move data effectively

between the kernel and global memory.

Listing 5.1: Generic template of adding DDR Channel

#include <CL/cl_ext.h>

int main(int argc, char*x* argv)

{
cl_mem_ext_ptr_t inExt, outExt;
inExt.flags = XCL_MEM_DDR_BANKO;

outExt.flags = XCL_MEM_DDR_BANK1;

inExt.obj = input_data.data() ; outExt.obj = output_data.data();
inExt.param = 0 ; outExt.param = O0;

int err;

cl_mem buffer_inImage = clCreateBuffer (world.context,

CL_MEM_READ_ONLY| CL_MEM_EXT_PTR_XILINX, image_size_bytes,

&inExt, &err);

cl_mem buffer_outImage = clCreateBuffer (world.context,
CL_MEM_WRITE_ONLY | CL_MEM_EXT_PTR_XILINX,image_size_bytes,

&outExt , NULL);

In listing 5.1, we create an OpenCL memory pointer and initialize it to DDR Bank

0 and 1. Then we connect the inputs and the output to each DDR bank. The OpenCL
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buffers that is "buffer inlmage" and "buffer outImage" are created using "cl mem".
While creating OpenCL buffer it is important to pass CL_ MEM EXT PTR_XILINX,

the pass is the Xilinx extension for using DDR bank.
5.2 Using Burst transfer

Burst transfer helps in hiding memory latency as well as improve the bandwidth
utilization and efficiency of the memory controller. It is recommended to infer burst
transfers from successive requests of data from consecutive address locations. This
achieves the best efficiency of the memory controller and keeps the CU inside the
FPGA device busy all the time.

The memory layout of the data object is a key factor to consider for improving the
data transfer efficiency. Considering a 4x4 matrix, an example conceptually it is a two-
dimensional array as shown in the matrix logical layout. In C/C++ programming,
arrays are physically stored in row-major order that all the data in the row is stored
in consecutive order. If the program reads column-wise the burst transfer cannot be

done.

Listing 5.2: Generic template of adding Burst transfer

kernel __attribute__ ((reqd_work_group_size (1, 1, 1)))
void wvadd(
const __global uintl16 #*inl, // Read-0Only Vector 1
const __global uintl6 *in2, // Read-0Only Vector 2
__global uint16 *out, // Output Result
int size // Size in integer
)
{
local uint16 v1_local [LOCAL_MEM_SIZE]; // Local memory to store
vectorl

int size_inl16 = (size-1) / VECTOR_SIZE + 1;

int chunk_size = LOCAL_MEM_SIZE;
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//boundary checks

if ((i + LOCAL_MEM_SIZE) > size_in16)

chunk_size = size_inl6 - i;

//Each chunk of data %s loaded into the global memory
vi_rd: __attribute__((xcl_pipeline_loop))

for (int j = 0 ; j < chunk_size; j++){

vli_locall[j] = in1l [i + jI1;

}

In listing 5.2, We calculate the boundary for each chunk of data that needs to be
transferred to the local memory. Then loops are used to access each data from the
global memory and transfer it to local memory. The latency for accessing the data
from the local memory is slower than accessing it from global memory. Each CU has
its own local memory. So, each CU should transfer the data that it needs to process
on to its local memory. It is important to know that the size of local memory is

limited.




CHAPTER 6: EXPLORING THE EFFICIENCY OF OPENCL PIPES FOR
HIDING MEMORY LATENCY

OpenCL-HLS enables parallel programmers to develop a customized data path that
best fits the application. The performance benefits of FPGA not only comes from
the inherent pipeline architecture that allows temporal parallelism but also comes
through the advantage of spatial parallelism. OpenCL is primarily based on GPU
architecture that benefits from Single Instruction Multiple Thread (SIMT). FPGAs
architecture does not have a multi-level cache hierarchy or run-time scheduler to make
use of SIMT. This means that there is a lack of data that arise from a single thread
waiting for the memory in the pipeline. The execution path of the pipelined thread
has to wait for the previous thread to receives the data. This memory stall leads to

the under-utilization of memory and bandwidth.
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Figure 6.1: Baseline bandwidth utilization(%)

Figure 6.1 shows the overall bandwidth utilization of all the applications from

Rodinia benchmark on Xilinx VU9P FPGA. The average bandwidth utilization of all
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the seven application has less than 25% bandwidth utilization. This motivates us to

identify a solution that mitigates the memory wall problem.
6.1  OpenCL pipes

OpenCL pipe standard was introduced in OpenCL 2.0 and it is incorporated into
the Xilinx SDAccel environment. A pipe is a memory buffer that can be used to
communicate from one kernel to another so that kernels can avoid accessing the
external memory which leads to external memory access latency. A pipe is a memory
object that has an associated data buffer alongside it. The pipe memory is used to
store the inter kernel communication data while data buffer is used to synchronize
data communication to the thread id. Pipe objects are accessed by built-in pragmas

that are vendor-specific and cannot be accessed by the host.

FIFO
FIFO > Kernel 0 Kernel 1 » FIFO
: FIFO U
! 1/0 Pipes ! ! 1/0 Pipes !
RAM

Figure 6.2: OpenCL pipes

Pipes communicate in the first in first out fashion i.e, the producer will fill the pipe
with data that is to be used by the consumer. There is a constant synchronization
between the producer and consumer. The depth of the FIFO pipe is decided by the
programmer. Figure 6.2 shows kernel communication using FIFO pipes. We notice
that kernel 0 uses 2 FIFO pipes. The number of pipes initialized is based on the

number of global variables that need to be sent to the other kernel.
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6.2  Methodology

The first step is to identify the memory access pattern. This can be done by
using LLVM based automated tool which could do static analyses on the complex
access behavior and data dependencies and the next step is to identify the global
variables that can be decoupled from computation[40]. Then we use this information
to split-up into read/write and compute sub kernels. Then we run each of these

kernels concurrently. The figure 6.3 shows a conceptual architecture of the memory

Global Memory

A
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Figure 6.3: Kernel communication through OpenCL pipes

decoupling approach in which the kernel runs concurrently overlapping memory access
and thread execution at the runtime. The single kernel is split into sub kernels:
(1) Read kernel, (2) Compute kernel, (3) Write back kernel and each sub kernel is
executed in separate CU. Since all three sub kernels run concurrently, they must have
synchronization between all CUs.

We also introduce a generic template for decoupling the memory access and compu-
tation. To decouple the memory access first we must identify if the application kernel
can be decoupled i.e., the global variable whose access pattern is statically identifiable
is categorized as decouplable (Example - streaming pixel, fixed stride access) while
non-decouplable variables are runtime dependent access (Example - next data index,
quick sort algorithm) [41]. After classifying the data as static predictable, we propose
a template with which the programmers can split the kernel baseline.

In Figure 6.4, the OpenCL code is converted to its intermediate representation and
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sent to the LLVM analyzer. The LLVM analyzer determines the address dependency

and categorizes in to statically predictable and Runtime dependent. if it is statically

predictable use a generic pipe template to modify the code.

Table 6.1 shows the application we took for this paper. Most of the mathematical

and image processing applications are memory decouplable.

Table 6.1: Application list

Application | Class of application
NN Data Mining
SRAD Extract Image processing
Gaussian Linear Algebra
Hotspot Physics Simulation
BF'S Graph Algorithms
LUD _Diag Linear Algebra
LUD Internal Linear Algebra
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6.2.1  Generic Template

Listing 6.1 shows the baseline kernel of the Nearest Neighbour application. The
LLVM static analysis tool sees if all the global variables are decouplable. Then we

remove all local variables from the port list and its relevant computation.

Listing 6.1: Nearest Neighbor kernel baseline

__kernel void NN(__global LatLong *d_locations,

__global float *d_distances...)

if (globalIlId < numRecords) {

__global LatLong *latLong = d_locations+globalld;

__global float *dist=d_distances+globalld;

*dist = (float)sqrt((lat-latlLong->lat)*(lat-latLong->lat)+

(1lng-latLong->1ng)*(1lng-latlLong->1ng));

Table 6.2 shows the baseline profiling information for all applications. It lists the
resource utilization, execution time and average bandwidth of each OpenCL kernel.
As shown in table 6.2 the resource utilization of all the applications except hotspot
is low. The Gaussian kernel takes the maximum time to execute, followed by SRAD.
The computation and read/ write memory transfers of all kernel contribute to the
execution time. A similar pattern is shown for SRAD’s bandwidth as well. The
average bandwidth utilization of NN and Gaussian are somewhat similar and follows
the SRAD while the least is by hotspot.

OpenCL 2.0 specification introduces a new memory object called a pipe. A pipe
stores data organized as a FIFO and can be used to stream data from one kernel to
another inside the FPGA device without having to use the external memory, which

greatly improves the overall system latency. The depth of the pipe is the length of




Table 6.2: Baseline profiling information for each application
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Benchmarks LUTsReli%l;i\?lelirtllhzg%%l(%gl{ AM Execution Time(ms) | Avg bandwidth utilization(%)
Nearest Neigbor | 0.37 0.22 0.25 0.09 5.68 26.49
SRAD Extract | 0.33 0.19 0.16 0.05 319.57 56.75
Gaussian 0.37 0.18 0.22 0.05 3681.99 24.95
Hotspot 0.69 0.21 0.37 8.76 47.63 4.58
BFS 0.6 0.36 0.35 0.14 2.498 9.664
LUD Diag 0.34 0.19 0.2 0.23 .47 16.99
LUD Internal 0.36 0.19 0.22 0.09 0.2 19.76

the FIFO. OpenCL 2.0 allows us to specify the length of the pipe.

Listing 6.2: Nearest Neighbor kernel decouplable version

//Declaring Pipe buffer memory with Depth ’DEPTH’

pipe float pO0 __attribute__((xcl_reqd_pipe_depth(DEPTH)));

pipe float pl __attribute__((xcl_reqd_pipe_depth(DEPTH)));

Listing 6.3: Nearest Neighbor kernel decouplable version(continued)

__kernel void NN_read(__global const float x*x,

__global const float *y)

{...
write_pipe_block(pO, &d_locations[globalId]);
.

__kernel void NN_compute(...)

{...

read_pipe_block(p0, &loc_lat);
float d_distances = (...);
write_pipe_block(pl,&d_distances);

-}

__kernel void NN_write(__global float *d_distances,
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L)
{...
read_pipe_block(pl, (d_distances+globalId));
}

Next, Listing 6.2 and 6.3 show us the template used for splitting the kernels. Listing
2 is just used for instantiating OpenCL pipes with a user-defined specific Pipe depth.
Xilinx SDAccel toolchain allows us to fix pipe depths in powers of two up to 32768.

Listing 4.3 shows the baseline kernel splitting into ‘kernel read’, ‘kernel compute’
and finally ‘kernel write’. The transformed kernel code is called in the host source
code encapsulated in the same OpenCL context. Inter-kernel communication and
synchronization between threads are inherent to the property of OpenCL. Each queue
is mapped into individual CU and have their own Thread dispatcher (TD) and Load

store unit (LSU) and run concurrently.




CHAPTER 7: RESULTS

Table 2.1 lists the parameters of our FPGA platform. We use Xilinx SDAccel
HLS for OpenCL[19] for compiling and synthesizing the OpenCL code. The SDAccel
profiler collects kernel performance data, bandwidth efficiency of global memory, re-
source utilization and power. We also use the AMD FirePro W7100 GPU to report
our GPU results for kernel performance and the AMD CodeXL Power profiler for
power information.

A total of 15 massively parallel applications comprising of different classes and
access patterns (Table 7.1) from the Xilinx SDAccel repository[42| and the Rodinia
Benchmark suite|6] are used for our experiments. This gives a fair chance to compare
performance across single work-item kernels favoring FPGAs and multiple work item

kernels written for GPUs. The baseline profiling information is shown in Table 7.1.
7.0.1  Optimization performed over baseline

The Xilinx SDAccel source repository and Rodinia benchmarks provide some opti-
mizations on the naive OpenCL codes making the algorithm efficient[19]. We include
these optimized codes as our baseline implementation. These optimizations (Table
7.1) includes loop pipeline (A), asynchronous workgroup copy (B), array partition
(C), function inline (D), loop unroll (E), DDR channel (F) and burst transfer (G).

7.0.2  Performance Evaluation

Table 7.1 shows the class of each application where it belongs to and its optimization
information along with the memory access pattern. It shows that the application
with really low bandwidth has an irregular access pattern. The application with

irregular memory access has longer memory access latency. Table 7.2 shows the
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Benchmarks Class of application Baseline optimization | Memory access pattern
Affine Image processing AB Irregular
AES Security C, D Regular
Median Filter Non-linear digital filtering A B E Irregular
Histogram Image processing ,C Regular
Tiny Encryption Security A B, C Regular
Watermarking Image processing AEF Regular
Systolic Array Array architecture A C G Regular
Large Loop OCL | Convolution layer of CNN , Regular
Nearest Neighbor Data mining A Regular
LUD Diag Linear Algebra A G Irregular
SRAD Extract Image processing A Regular
Gaussian Fanl Linear Algebra A Regular
Gaussian Fan2 Linear Algebra A Regular
Hotspot Physics Simulation A CE Regular
BFS Graph Algorithms ,E Irregular

Table 7.2: Baseline profiling information for each application

T v
Benchmarks LUTSReiOGI;C; I;tlihé(}g]l; é (@R AM Execution Time (ms) | Avg bandwidth (%) | Power (Watt)
Affine 1.18 0.25 0.79 0.75 8.04 39.09 35.1
AES 0.66 0.26 0.36 2.06 2.21 100 34.81
Median Filter 0.74 0.26 0.5 3.05 1.14 6.79 35.01
Histogram 4 0.38 2.27 8.2 2.52 96 36.68
Tiny Encryption | 4.86 0.18 2.24 3.66 7.33 59.1 36.9
Watermarking 0.45 0.25 0.31 0.91 0.29 81 37
Systolic Array 2.65 0.73 1.1 0.09 0.4 0.51 35.14
Large Loop OCL | 0.56 0.22 0.48 | 21.72 2391 100 39.08
Nearest Neighbor | 0.37 0.22 0.25 0.09 5.68 9.6 34.9
LUD Diag 0.34 0.19 0.2 0.23 7.74 16.9 35
SRAD Extract 0.33 0.19 0.16 0.05 316.5 56.7 35
Gaussian Fanl 0.84 0.44 0.46 0.09 1.52 24.9 34.7
Gaussian Fan2 0.87 0.36 0.56 0.19 0.2 19.7 35
Hotspot 0.69 0.21 0.37 8.06 47.63 4.58 34
BFS 0.73 0.36 0.45 0.19 2.49 9.6 35

report generated by the Xilinx SDAccel software. We see that the average power is

36 Watt. These are the performance result of a single compute unit.

7.1  Automatic Compute unit replication on cloud FPGA

To improve the performance we split the compute unit into multiple compute unit
and We analyze the performance of our applications in two parts:-

First, we see the relative performance improvement of benchmarks over the baseline
implementation for the CU(CU|N]) that gives the maximum speedup in Figure 7.1.
We get a maximum performance improvement of 53.1x over baseline implementation

for the LUD Diag application and a 6.4x on average. However, we either get a
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constant or very little speed up for a few of the applications like AES, Watermarking,
Gaussian Fanl, etc., This can be attributed to 3 factors-baseline execution time,

optimizations, bandwidth usage.

S \ \ \ 1 -
" I Baseline version
| I Maximum Compute Units(IN)

10" F 5

SpeedUp over baseline(log)

Figure 7.1: Performance improvement over the baseline

As an illustration, the Gaussian Fan2 application’s baseline performance numbers
are the lowest. The scheduler will take the least number of CU during the run time
since using a CU will create an overhead of calling the host which is counterproductive
to its performance.

LUD Diag, on one hand, has low bandwidth utilization (Table 7.2) and uses burst
transfer (Table 7.1) where the data transfer happens in larger chunks and therefore
benefits the most (21x improvement) from this approach. AES, on the other hand,
has a very high baseline bandwidth utilization Table 7.2. This makes bandwidth a
limiting factor hindering its ability to improve speed up.

Next, we observe the total design time that our tool takes to reach the optimal CU
number for maximum speedup in Figure 7.2. The total design time for the tool to

reach the optimal number of CUs is given as in Eq. 7.1:-
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Figure 7.2: Total tool design time

N
TotalDy =Y~ Dy(CU) + Dy(CUx.1) (7.1)
i=1

where,

D (CU) shows the tool design time for each iteration of the compute unit.

We correlate this with the design time of the Histogram application (Figure 7.2)
that takes 46m30s and additional synthesis time (for max CU|8]) of 300m totaling
346m30s. In contrast, the total design space exploration time (Table 4.1) is 1095m.
Our tool achieves over 31% design time improvement for the Histogram application.

The tool design time (D) is a factor of the size of the application (dataset), com-
putation demands and memory access patterns. Overall, we observe that applications
with regular memory accesses (Table 7.1) run faster since irregular memory accesses
cause divergence affecting the tool design time. As an example, the Watermark ap-

plication takes a mere 12m35s vs the BFS that takes 612m25s of tool design time

(D).
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7.1.1  Resource Overhead

Resource overhead is mainly introduced due to additional register blocks, memory
blocks, combinational logic and block RAMs which are required for replicating CUs
that significantly increase every time a new CU is added. Figure 7.3 shows the average
percentage of resource utilization overhead. On average we measured a 6% increase

in LUTs, 4% increase in LUTMem, 8% increase in registers and 8% increase in Block

RAMs.
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Figure 7.3: Percentage resource utilization overhead over baseline

7.1.2  Power Overhead

Power results (Figure 7.4) show similar trends like the resource utilization and we
observe the maximum power usage for the Large Loop OCL application that shows
maximum power usage of 3.6x over baseline owing to its larger BRAM utilization
(Table 7.2 and Figure 7.3). However for most of the applications with very miniscule
baseline resource utilization (Table 7.2), adding more CUs does not affect power as

much. The average power overhead was thus reported a mere 1.33x over baseline.
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Figure 7.4: Power overhead over baseline

7.1.3 Bandwidth utilization increase over baseline

Bandwidth utilization increase Figure 7.5 represents the maximum read and write
bandwidth improvement that the application can use, thus more the number of CUs
more is the bandwidth. This however is different for applications like Large Loop
OCL that have a large baseline bandwidth number (Table 7.2). Also, with increasing
bandwidth we do see a increased speed up- pointing to the fact that more CUs can
extract more performance. This is evident from the Hotspot application that saw
a 21x rise in bandwidth leading to 2.8x speed-up. On average we observe a 3.8X
improvement in bandwidth utilization numbers.

7.1.4 FPGA vs GPU comparison

In this section (Table 7.3), we give a performance perspective for all of our appli-
cations. While Rodinia applications |6] were written for GPUs, we ported the rest of
applications to GPU version using the generic OpenCL APIs and AMD C++ bind-
ings devoid of any optimizations. We chose to run our applications on the AMD GPU
since it has comparable bandwidth [43] to the FPGA.

While our FPGA best performance beats baseline across most of the applications,
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Figure 7.5: Bandwidth improvement over baseline

GPU performance is comparable to the FPGA numbers except for a few of the appli-
cations where GPU beats FPGA by a huge margin. Dynamic power(W) numbers of

the applications on both the platforms listed in Table 7.2 are comparable in nature.



Table 7.3: GPU vs FPGA performance comparison

Application Timing results (ms)
FPGA Baseline | FPGA best | GPU
Affine 8.04 2.71 1.05
AES Decrypt 2.21 1.93 0.024
Median Filter 1.14 0.21 0.902
Histogram Equalization 2.52 0.55 87.61
Tiny Encryption 7.33 2.72 1.26
Watermark 0.29 0.29 0.016
Systolic Array 0.40 0.1 0.89
Large loop OCL 2391 244.26 0.0029
Nearest Neighbor 5.68 1.96 0.3
LUD Diag 7.74 0.145 2.06
SRAD Extract 316.5 37.7 70
Gaussian Fanl 1.52 1.52 0.3
Gaussian Fan2 0.20 0.20 0.13
Hotspot 47.63 16.40 2.0
BFS 2.49 2.49 0.9

7.2 Exploring DDR optimization and burst transfer

Optimization enables efficient transfer of OpenCL data. The host code and the
kernel code needs to be changed for a better data transfer. There are multiple opti-
mizations available for better data transfer. Double Data rate and Burst transfer are

some of the data transfer optimizations.
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Figure 7.6: Large Loop OCL with SpeedUp and Bandwidth

7.2.1  Using DDR

Double Data Rate (DDR) is used for the application which needs larger data to be
transferred. An application such as Large Loop OCL is a data-hungry neural network
application. The efficiency of the data transfer can be improved by splitting up the
global memory inside the kernel to separate DDR.

Figure 7.6(b) shows that there is a sudden drop in the bandwidth because of the
additional DDR added to it. Adding a compute unit to increase the amount of data
transferred per each DDR channel so there is a significant increase in the percentage
of Bandwidth when compute unit increases.

The Large Loop OCL shows a better speed up when read and write channels are
separated. Increasing the compute unit along with the DDR improves the speedup

as shown in Figure 7.6(a)
7.2.2  Using Burst Transfer

Burst transfer is used for hiding memory latency during the data transfer. This is
done by loading all the data from global memory to the local memory. The latency
for accessing the local memory is lower than accessing global memory. Figure 7.7(b)
shows that there is an increase in the bandwidth because of continuous access to
memory from global to the local memory.

The figure 7.7(a) shows that the performance increase because of burst transfer.



48

.
=

— [ [ Tt Tt
L = Lh = th
T T T

SpeedUp over baseline
=

Percentage Bandwidth utilization

n

—_

ne fev
B ase\\ St T {ﬁ“'& use\"“i . ‘a“iitt
B“\’ W ‘B\iﬁ"
(a) Speed Up over Baseline (b) Bandwidth Utilization

Figure 7.7: Affine with Burst transfer

The compute unit accessed the data needed for computation from the local memory.
7.3  Exploring OpenCL pipes

We used eight standard applications from Rodinia Benchmark suite. They namely
are Nearest Neighbors, Srad base (Srad extract application), Gaussian, B-+Tree, LUD
Diagonal, LUD internal and Hotspot. Our FPGA implementations are synthesized

on the Virtex Ultrascale FPGA while we have used the AMD FirePro W7100 device

for our GPU implementation.
7.3.1  Performance and Resource overhead

In Figure 7.8, the performance improvement of Rodinia benchmark with the pipeline
implemented over the baseline performance is shown. The average speedup of perfor-
mance improvement is 6 times over the baseline. LUD diagonal achieved maximum
performance improvement, whereas the LUD internal showed the least performance
improvement. LUD internal has more local variable which causes stalls when com-

pared to LUD diagonal. As a result, stalls increase the execution time of the kernel
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and thus reducing the performance. We can see that applications have a considerable

increase in performance based on the number of a local variable in the applications.
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Figure 7.8: Performance improvement over baseline

The total utilization of LUT, Registers, BRAM and LUT memory is considered
for resource utilization. LUT, Registers, BRAM and LUT memory are required for
the pipe construction. As a result, there is an increase in resource utilization when
compared to the baseline. The average utilization of LUT and LUT Memory is
around 1.75% while register and BRAM is 1.5% and 0.5% as shown in Figure 7.9.
The resource utilization is based on the number of pipes created and the depth of the
pipe. Gaussian shows the highest resource utilized because of it uses 7 pipes for kernel
communications. BFS and Hotspot have the lowest resource utilization because of
less number of pipes.

Multiple global variables are accessed using different pipes which also contributes
to the increase in register blocks, memory blocks, and many logic gates. Figure
7.10 shows the average Bandwidth increase of the pipeline version over the baseline
version. Overall, we observe a significant increase in bandwidth utilization which leads

to a reduction in memory stalls. The average bandwidth consumed by the pipeline
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Figure 7.9: Resource overhead over baseline

version is 2X more than that of the baseline. The LUD Diag and LUD Internal
consume the maximum bandwidth while Gaussian consumes the least among the
seven applications.

In this part, we compare GPU and CPU performance for all of our applications.
We ported the Xilinx FPGA OpenCL codes (vs. 2017.4) and made them work for
the GPU version suited for running on our local AMD FirePro W7100 GPU. We
specifically rewrote the entire host code written for Xilinx FPGAs while keeping the
kernel code the same for individual applications. For the implementation part, we
used the generic OpenCL APIs and used AMD C++ bindings. We obtained the CPU
numbers from the Xilinx SDAccel tool.

Table 7.4 compares the performance numbers of FPGA-baseline, proposed decou-
pled execution (FPGA best), and GPU. The GPU performance that we observe is
comparable to the FPGA numbers except for a few of the applications where GPU
beats FPGA by a huge margin. This concludes that despite FPGAs are bandwidth

limited they perform comparably well alongside GPUs. With an increase in band-
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width utilization capacity, FPGAs can surely outperform GPUs.

Table 7.4: GPU vs FPGA performance comparison

Application Timing results (ms)

FPGA Baseline | FPGA best | GPU

NN 5.68 1.88 0.3

SRAD Extract 319.57 109 70
Gaussian 3681.57 603 406
Hotspot 47.63 12.7 2.0
BFS 2.498 0.62 0.9
LUD Diag 7.47 0.49 2.06
LUD Internal 0.2 0.2 0.01




CHAPTER 8: CONCLUSIONS

This research explores various optimization techniques that can be applied to im-
prove thread-level utilization, performance, and occupancy on FPGA. The focus of
our study is to exploit the spatial parallelism on top of the temporal parallelism on
FPGA. The work initially focused on exploring CU replication with the same kernel.
We also studied that replicating multiple CUs may not give the maximum perfor-
mance. In order to help the design space exploration, a fully automatic tool is used
to identify the number of CUs that can be used for an application. At the same
time, a systematic OpenCL programming template for streamlining CU replication
at the source level is proposed. Overall, our results demonstrate a maximum of 53X
and 6.4X average speedup over 15 massively parallel OpenCL applications. Further,
our tool achieves over 31% design time improvement for the Histogram application
that serves as an illustration in Chapter 4. Then we explore other optimizations
like Double Data rate to increase the channel bandwidth and Burst transfer to in-
crease Bandwidth. With DDR, we could achieve 7.5x speedup. Affine which is a
image processing application is optimized with burst transfer which produced 1.5x
performance improvement in chapter 5. Further proposed sub-kernel parallelism to
hide the memory access latency of massively parallel applications running on FPGA.
The memory access latency is hidden by prefetching the data which will be used
by future threads and concurrently executing the current thread. This is done by
decoupling the kernels into read/write kernel and computation kernel. The LLVM
based OpenCL analyzer is used to identify the kernel’s statically prefetchable data.
The inter-kernel communication between the read/write kernel [41] and computation

kernel is done by constructing OpenCL pipes. Our experimental results over seven



53
Rodinia applications running on Xilinx VU9P Cloud FPGAs demonstrate an average
of 5.2x speedup with a 2.2x increase in bandwidth utilization and just under 2.5x

resource utilization overhead compared to baseline implementation.
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