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ABSTRACT

ROBERT E. EDMISTON. Neumann functions and image systems of the Laplacian
in the spheroidal geometry. (Under the direction of DR. SHAOZHONG DENG)

We apply the method of image charges from electrostatics to the study of the

Neumann function for the Laplace operator, equivalent to the Green’s function with

a Neumann boundary condition imposed. Such an analysis has previously been given

for the more general ellipsoidal case; however, the azimuthal symmetry of the prolate

and oblate spheroids simplify the analysis and the results may enjoy an undiminished

application, as many natural phenomena conform to these geometries. Our results

are twofold: we first use classical methods to derive a series form of the Neumann

function given a point source located in both the interior and exterior of the two

spheroids; we then use each series form to develop a corresponding system of images

that replicates the boundary conditions and yields an equivalent integral solution.
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CHAPTER 1: INTRODUCTION

Consider the following boundary value problem (BVP) for the Laplacian ∆:


∆u = f in Ω

u = g on ∂Ω,

(1.1)

where Ω denotes a region in R3 and ∂Ω denotes its boundary. This BVP will be called

a Dirichlet BVP due to the specification of the solution values on the boundary

(Dirichlet boundary condition). It occurs ubiquitously in the natural sciences; a

notable example is when the unknown function u gives the electric potential due to

a charge distribution f and a conductor ∂Ω.

A useful means of solving the above problem is to identify its associated

Green’s function. This function G is defined as the solution of a similar BVP:
∆G(r, rs) = δ(r− rs) in Ω

G(r, rs) = 0 on ∂Ω,

where δ is the Dirac delta distribution. This Green’s function is very useful as it

allows us to represent the solution of (1.1) as

u(r) =

∫
∂Ω

g(rs)
∂G(r, rs)

∂n
dS(rs) +

∫
Ω

G(r, rs)f(rs)drs.

which is obtained using the convolution property of Dirac delta and a routine inte-

gration by parts.
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In the present paper we study a similar but importantly different BVP:


∆u = f in Ω

∂u

∂n
= h on ∂Ω,

(1.2)

where n denotes the outward surface normal vector. We call this a Neumann BVP

due to the specification on the boundary of the normal derivative of the solution

(Neumann boundary condition). To avoid confusion with the Dirichlet BVP we will

henceforth refer to the Green’s function of the Neumann BVP as a Neumann function.

The Neumann function N for (1.2) is the solution to the following BVP:


∆N(r, rs) = δ(r− rs) in Ω

∂N(r, rs)

∂n
= j on ∂Ω.

Note that the boundary condition is nonzero; in fact, the divergence theorem prohibits

an identically zero boundary condition to this BVP. This implies that the Neumann

function is not unique. Indeed, the solution to (1.2) can be represented by

u(r) =

∫
∂Ω

j(r)u(r)dS(r)−
∫
∂Ω

h(rs)N(r, rs)dS(rs) +

∫
Ω

N(r, rs)f(rs)drs.

The overall goal of the present paper is to derive Neumann functions for

Neumann BVPs where ∂Ω is a prolate spheroid or an oblate spheroid. This will be

done in two ways. First, given a particular BVP, we will use separation of variables

in the appropriate geometry to obtain a series form of the Neumann function. Then,

using this series form, we will apply the method of images from electrostatics to

obtain an integral form of the Neumann function. This will yield two different means

of representing the same Neumann function, which may have practical implications
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in numerically approximating the solutions of Neumann BVPs.

We will now give an overview of the method of images and how it relates to

the present paper.

1.1 A Physical Interpretation

The utility of the Green’s and Neumann functions is not exhausted by their

ability to represent the solutions of more complicated Poisson’s equations. In fact,

physically they can represent the electric potential due to a point charge located in

the domain of interest. To see a classic example, consider a point charge located in R3

above the xy-plane at (0, 0, d), where the xy-plane represents an infinite, grounded,

conducting plate. Since the plane is grounded, it has an electric potential G of zero.

Additionally, it makes physical sense to have the potential V vanish at infinity.

Figure 1.1: A point charge of strength q located above a conducting plate.

It is known that this potential G then satisfies the following BVP:



∆G

[
(x, y, z), (0, 0, d)

]
=

q

ε0
· δ(x, y, z − d), z ≥ 0

G(x, y, z) = 0, x = y = z = 0 (on the conducting plate)

G(x, y, z)→ 0 as x, y, z →∞,

where ε0 is the vacuum permittivity, a fundamental physical constant. Note that

this BVP is nothing but a BVP for a Green’s function G with an additional decay
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condition! We will now show how the method of images allows us to solve such a

problem.

1.2 The Method of Images

The method of images is a tool used commonly in electrostatics to solve

Poisson’s equation. The main idea is to exploit the uniqueness theorem for Poisson’s

equation: if the “charge density" (given by the Laplacian) in Ω and the value of

the solution u on ∂Ω are known, then the potential u is uniquely determined [5].

A corollary of this is that if the charge density in Ω and the normal derivative of

u on ∂Ω are known, then the potential u is uniquely determined up to an additive

constant. The method of images uses this in the following way: we extend the domain

of the function u by adding a number of objects called images to the complement of

Ω that collectively satisfy the PDE and the boundary conditions. Doing so allows

us to use such properties as symmetry and is generally much easier than solving

Poisson’s equation directly. The uniqueness theorem then tells us that the potential

u calculated in this way is the potential we originally wanted (we can demand that

the additive constant be zero to secure uniqueness).

Recall the problem from the previous section: find the potential G due to

a point charge located above an infinite, grounded, conducting plate. We mentioned

that G is the solution of the BVP

∆G

[
(x, y, z), (0, 0, d)

]
=

q

ε0
· δ(x, y, z − d), z ≥ 0

G(x, y, z) = 0, x = y = z = 0 (on the conducting plate)

G(x, y, z)→ 0 as x, y, z →∞,

Applying the method of images to this BVP, we solve a simpler BVP, where

the conducing plate has been replaced by a point charge of opposite strength (the

image chage), located a distance d below where the plate used to be.
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Figure 1.2: Visualization of the simpler BVP.

The solution G0 to this new BVP is easily calculated using the Coulomb

potential from elementary electrostatics:

G0(x, y, z) = − 1

4πε0

(
q√

x2 + y2 + (z − d)2
+

−q√
x2 + y2 + (z + d)2

)
.

It is easily verified that G0 solves the BVP for G given above. Hence, by the unique-

ness theorem for Poisson’s equation, we can conclude that G = G0.

Note that the image system used to solve the BVP for G consisted of only one

image charge with strength −q. It should be clear that more complex problems will

require more images in their image systems (sometimes even continuous distributions

of images, instead of discrete charges). Also observe that the simple nature of the

above problem allowed us to easily choose the exact location of the image. In the

next example, we will need to manually calculate the location of the image in order

to fully specify the potential.

Consider this problem (adapted from Griffiths, 2013):

Find the electric potential G outside a grounded, conducting sphere

of radius R due to a point charge q located a distance a from the

center of the sphere, where a > R.

We make the ansatz that the image system for this BVP consists of a single image

charge of strength q′ located inside the sphere. We can use symmetry to simplify the
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placement of the image (it is reasonable that both the original charge q and the image

charge q′ lie on the same line emanating from the center of the sphere), but it is not

clear how far from the center of the sphere it should be; we will denote this unknown

distance by b.

Figure 1.3: A charge q located outside of a conducting sphere with image system q′.

We suppose that the point where the potential is evaluated (the field point)

is located a distance r from the center of the sphere, a distance r1 from the charge q,

and a distance r2 from the image charge q′. To simplify the analysis, we may further

suppose that the field point and the two charges are located in the same plane. Lastly

suppose that the line connecting the field point with the center of the sphere makes an

angle θ with the line connecting the two charges. We can then express the potential

G as the solution to the following BVP:


∆G

[
(r, θ), (a, 0)

]
=

q

ε0
· δ(r − a, 0), r > R

G(r, θ) = 0, r = R.

(1.3)

Now, in order to find the potential G0 of the BVP due to the image system,

we must first determine both the location b of the image and its strength q′. Using

the coulomb potential and the law of cosines, G0 can be given as

G0(r, θ) =
1

4πε0

(
q√

r2 + a2 − 2ar cos θ
+

q′√
r2 + b2 − 2br cos θ

)
.
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Since we assume G0(r, θ) vanishes for r = R and for all θ, the two charges must have

opposite sign, and so we can use the above to yield that

q2(R2 + b2 − 2bR cos θ) = (q′)2(R2 + a2 − 2aR cos θ). (1.4)

Note that in order for this to hold for all θ, the two coefficients on cos θ must cancel.

In order to satisfy this requirement, we must have that

q′ = −
√
b

a
.

Substituting this into (1.4), we have that

R2 + b2 =
b

a
(R2 + a2).

Solving this for b gives us that

b =
R2

a
and q′ = −qR

a
.

We have thus determined both the location and the strength of the image charge.

Substituting into the above, we can express G0 as

G0(r, θ) =
1

4πε0

(
q√

r2 + a2 − 2ar cos θ
+

−qR√
a2r2 +R4 − 2aR2r cos θ

)
.

It is easily verified that G0 satisfies the BVP (1.3). Hence, again applying the unique-

ness theorem for Poisson’s equation, we can conclude that G = G0 gives the potential

asked for in the original problem.

This second example provides a key insight into how we will apply the

method of images in the prolate and oblate geometries: we will posit a number of

images to constitute an image system and then manually determine their locations
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and strengths. Only then will we be able to fully solve the Neumann BVP.



CHAPTER 2: ELEMENTS OF SPHEROIDAL HARMONICS

A spheroid with azimuthal symmetry is defined by

x2 + y2

a2
+
z2

b2
= 1,

where its status as prolate or oblate will depend on the the values of a and b. In

the following two sections of this chapter we present a number of facts about the

two spheroids that will prove invaluable for deriving the Neumann functions and

developing their corresponding image systems.

2.1 Prolate Spheroidal Harmonics

A prolate spheroid is generated by revolving an ellipse about its major axis.

In the above equation for a spheroid, this corresponds to the condition that 0 < a < b.

In this case, b is the length of the major axis, a is the length of the minor axis, and

2c is the interfocal distance with c =
√
b2 − a2. The prolate spheroidal coordinates

are given by the 3-tuple (ξ, η, φ), where ξ ∈ [1,∞) is the radial variable, η ∈ [−1, 1]

is the angular variable, and φ ∈ [0, 2π] is the azimuthal variable. The transformation

to Cartesian coordinates is given by:

x = c
√

(ξ2 − 1) (1− η2) cos(φ)

y = c
√

(ξ2 − 1) (1− η2) sin(φ)

z = cξη

It is important to note that a prolate spheroid is completely determined by the con-

stant ξb = b/c. This gives the following equivalent characterization of it to be used
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later:
x2 + y2

c2 (ξ2
b − 1)

+
z2

c2ξ2
b

= 1.

Additionally, the following form of the differential surface element of the prolate

spheroid can be derived by a routine computation of the Jacobian:

dSξ = hηhφdηdφ =
1

ωξ(η)
dηdφ

where

hξ = c
√

(ξ2 − η2) / (ξ2 − 1)

hη = c
√

(ξ2 − η2) / (1− η2)

hφ = c
√

(ξ2 − 1) (1− η2)

and

ωξ(η) =
1

c2
√

(ξ2 − η2) (ξ2 − 1)
.

Lastly, to determine the prolate spheroidal harmonics, we apply a separation

of variables to Laplace’s equation in prolate spheroidal coordinates. Supposing a

solution is given by A(ξ)B(η)C(φ), the following three ODE’s are known to result:

d

dξ

[(
1− ξ2

) dA
dξ

]
+ n(n+ 1)A− m2

1− ξ2
A = 0

d

dη

[(
1− η2

) dB
dη

]
+ n(n+ 1)B − m2

1− η2
B = 0

d2C

dφ2
= −m2C,

where m, n = 0, 1, 2, ... The first two are the well-known general Legendre differential

equations which have as eigenfunctions the special functions Pm
n (ξ) and Pm

n (η), called

Legendre polynomials of the first kind, which are singular at infinity, and Qm
n (ξ) and
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Qm
n (η), called the Legendre polynomials of the second kind, which are singular at

ξ, η = −1, 1. The third ODE has the typical eigenfunctions sin(mφ) and cos(mφ).

We then define the surface prolate spheroidal harmonics as

Cm
n (η, φ) = Pm

n (η) cos(mφ), Smn (η, φ) = Pm
n (η) sin(mφ)

Note that these definitions exclude the radial variable ξ; however, this is reasonable

as ξ is constant on the surface of a fixed prolate spheroid (ξ = ξb = b/c). Also, these

harmonics are not orthogonal over the surface of the prolate spheroid in their present

state, but will be when multiplied by the geometric weighting function ωξ(η) defined

above:

∫
Sξ

Smn (η, φ)SMN (η, φ)ωξ(η)dSξ =

∫ 1

−1

∫ 2π

0

Pm
n (η)PM

N (η) sin(mφ) sin(Mφ)dφdη

= γmnδnNδmM∫
Sξ

Smn (η, φ)CM
N (η, φ)ωξ(η)dSξ =

∫ 1

−1

∫ 2π

0

Pm
n (η)PM

N (η) sin(mφ) cos(Mφ)dφdη

= 0∫
Sξ

Cm
n (η, φ)CM

N (η, φ)ωξ(η)dSξ =

∫ 1

−1

∫ 2π

0

Pm
n (η)PM

N (η) cos(mφ) cos(Mφ)dφdη

= γmnδnNδmM ,

where

γmn =
2(n+m)!

(2n+ 1)(n−m)!
(1 + δ0m) π.

These orthogonality relations will be very useful in the analyses to come.

Finally, we define the interior prolate spheroidal harmonics as

Pm
n (ξ)Pm

n (η) cos(mφ), Pm
n (ξ)Pm

n (η) sin(mφ)
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and the exterior prolate spheroidal harmonics as

Qm
n (ξ)Pm

n (η) cos(mφ), Qm
n (ξ)Pm

n (η) sin(mφ).

In chapter 3 we will use superpositions of these harmonics to derive the interior and

exterior Neumann functions.

2.2 Oblate Spheroidal Harmonics

Recall the equation that defines an azimuthally symmetric spheroid:

x2 + y2

a2
+
z2

b2
= 1.

In the case of an oblate spheroid, we have that 0 < b < a; this corresponds to

revolving an ellipse about its minor axis. Now a is the length of the major axis, b

is the length of the minor axis, and the interfocal distance is given by c =
√
a2 − b2.

The oblate spheroidal coordinates are similar to those in the prolate case: they are

given by the 3-tuple (ξ, η, φ), where η ∈ [−1, 1] and φ ∈ [0, 2π] remain unchanged,

but now the radial variable is given by ξ ∈ [0,∞). The transformation to Cartesian

coordinates changes accordingly to reflect the new geometry:

x = c
√

(ξ2 + 1) (1− η2) cos(φ)

y = c
√

(ξ2 + 1) (1− η2) sin(φ)

z = cξη

The differential surface element is now given by

dSξ = kηkφdηdφ =
1

ψξ(η)
dηdφ
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where

kξ = c
√

(ξ2 + η2) / (ξ2 + 1)

kη = c
√

(ξ2 + η2) / (1− η2)

kφ = c
√

(ξ2 + 1) (1− η2)

and

ψξ(η) =
1

c2
√

(ξ2 + η2) (ξ2 + 1)
.

To determine the oblate spheroidal harmonics we apply a separation of vari-

ables to Laplace’s equation in the oblate spheroidal coordinates. Supposing a solution

is given by A(ξ)B(η)C(φ), we again obtain three ODE’s:

d

dξ

[(
1 + ξ2

) dA
dξ

]
+ n(n+ 1)A− m2

1 + ξ2
A = 0

d

dη

[(
1− η2

) dB
dη

]
+ n(n+ 1)B − m2

1− η2
B = 0

d2C

dφ2
= −m2C

The only difference from the prolate case is the first equation, which has eigenfunctions

of the form Pm
n (iξ) and Qm

n (iξ), where i is the imaginary unit. It can be seen that

these are complex-valued by consulting tables for the Legendre functions. To avoid

this, we can instead use the normalized eigenfunctions given by Gil and Segura (1998):

Rm
n (ξ) = e−

nπi
2 Pm

n (iξ), Tmn (ξ) = ie
nπi
2 Qm

n (iξ)

These functions are real-valued on [0,∞) and can be shown to still form a complete

basis. This will ease our calculations while retaining the power of an eigenfunction

expansion. Note that since the eigenfunctions in η and φ are unaffected by the
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change of coordinates, the surface oblate spheroidal harmonics are equivalent to the

surface prolate spheroidal harmonics defined in the previous section. This entails that

the eigenfunction orthogonality relations over the surface of the spheroid will also be

unchanged (with the caveat that the weighting function ω is replaced by the weighting

function ψ). Hence the only change remaining is to define the solid harmonics, which

have a radial dependence. We thus define the interior oblate spheroidal harmonics as

Rm
n (ξ)Pm

n (η) cos(mφ), Rm
n (ξ)Pm

n (η) sin(mφ)

and the exterior oblate spheroidal harmonics as

Tmn (ξ)Pm
n (η) cos(mφ), Tmn (ξ)Pm

n (η) sin(mφ).

We are now fully prepared to derive the Neumann functions as eigenfunction

expansions.



CHAPTER 3: INTERIOR NEUMANN PROBLEMS

Recall that, given the location rs of a “source charge", we wish to solve the

following BVP: 
∆N(r, rs) = δ(r− rs) r ∈ Ω

∂N(r, rs)

∂n
= j(r) r ∈ ∂Ω.

(3.1)

It is known that the Green’s function for Poisson’s equation in R3, i.e.,

without boundary conditions, is

− 1

4π |r− rs|
;

we call this the free-space solution. By linearity, to derive a Neumann function N it

will be sufficient to derive a harmonic function, R(r, rs), that secures satisfaction of

the boundary conditions when added to the free-space solution. Hence the Neumann

function will look like

N (r, rs) = − 1

4π |r− rs|
+R (r, rs) .

(We will often refer to the harmonic function R as the reflected solution.) However,

depending on whether the source charge is located in the interior or in the complement

of Ω, the solution to the BVP may change. In fact, given our previous discussion of

the image method, the placement of the source charge should have a dramatic effect

on the solution! Hence, for each of the two geometries of interest, we will solve both

an interior BVP and an exterior BVP. We will refer to these four Neumann functions



16

as the interior prolate Neumann function, the exterior prolate Neumann function,

the interior oblate Neumann function, and the exterior oblate Neumann function. In

this chapter we derive the two interior Neumann functions and construct their image

systems.

3.1 Interior Prolate Neumann Functions

For instructive purposes, we will consider two separate interior BVPs in the

prolate case. In both problems, the source charge is located in the interior of the

prolate spheroid: 1 ≤ ξs ≤ ξb (see Figure 3.1).

Figure 3.1: A prolate spheroid with a point charge located in the interior at rs.
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3.2 Interior Prolate BVP 1

When Ω in (3.1) is the prolate spheroid given by ξb, the first interior Neu-

mann BVP is 
∆N i

p(r, rs) = δ(r− rs), 1 ≤ ξs ≤ ξ ≤ ξb

∂N i
p(r, rs)

∂n
=

1

4π
ωξb(η), ξ = ξb,

where the boundary condition is given by the weighting function ω mentioned in

chapter 1, and N i
p is our notation for an interior prolate Neumann function.

Also, it is easily seen that this BVP satisfies the compatibility condition

mentioned previously:

∫
Sξb

1

4π
ωξb(η)dSξb =

∫
Sξb

∂N i
p(r, rs)

∂n
dSξb = 1.

Due to the azimuthal symmetry of the prolate spheroid, a solution need not

contain the odd eigenfunction sin(mφ). We can also assume without loss of generality

that the source charge is located in the xz-plane (φs = 0). Hence we can express the

free-space solution using the well-known multipole expansion [6] as follows:

− 1

4π|r− rs|
= − 1

4πc

∞∑
n=0

n∑
m=0

HmnP
m
n (ξ<)Qm

n (ξ>)Pm
n (ηs)P

m
n (η) cos(mφ)

where

ξ> = max {ξ, ξs} , ξ< = min {ξ, ξs}

and

Hmn = (2n+ 1) (2− δm0) (−1)m
[

(n−m)!

(n+m)!

]2

.
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Recall from above that we want a harmonic reflected solution Ri
p such that

N i
p(r, rs) = − 1

4π|r− rs|
+Ri

p(r, rs)

satisfies the boundary condition. Hence we can represent Ri
p as a superposition of the

eigenfunctions of Laplace’s equation:

Ri
p (r, rs) =

∞∑
n=0

n∑
m=0

αmnP
m
n (ξ)Pm

n (η) cos(mφ),

which yields

N i
p (r, rs) = − 1

4πc

∞∑
n=0

n∑
m=0

HmnP
m
n (ξ<)Qm

n (ξ>)Pm
n (ηs)P

m
n (η) cos(mφ)

+
∞∑
n=0

n∑
m=0

αmnP
m
n (ξ)Pm

n (η) cos(mφ).

But since Pm
n (ξs) and Pm

n (ηs) are constant given a choice of rs, we can set

αmn = AmnP
m
n (ξs)P

m
n (ηs).

This yields

N i
p (r, rs) = − 1

4πc

∞∑
n=0

n∑
m=0

HmnP
m
n (ξs)P

m
n (ηs) [Qm

n (ξ)− AmnPm
n (ξ)]Cm

n (η, φ).

Hence all that remains is to determine the expansion coefficient Amn. To do this, we

will apply the boundary condition to the above equation. First note that

∂

∂n
N i
p(r, rs) =

1

hξb

∂

∂ξ
N i
p(r, rs) =

a2

c
ωξb(η)

∂

∂ξ
N i
p(r, rs).
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Substituting, we have that

a2

c
ωξb(η)

[
− 1

4πc

∞∑
n=0

n∑
m=0

HmnP
m
n (ξs)P

m
n (ηs)

[
Qm′

n (ξb)− AmnPm′

n (ξb)
]
Cm
n (η, φ)

]
=

1

4π
ωξb(η),

where Pm′
n (ξb) and Qm′

n (ξb) denote the derivatives with respect to ξ and evaluated at

ξ = ξb.

When n = 0, we have that

−a
2

c2
[Q′0 (ξb)− A00 ∗ 0] = 1⇒ Q′0 (ξb) = − c

2

a2
,

which implies that A00 is arbitrary since

Q′0 (ξb) =
d

dξ

1

2
ln

(
ξ + 1

ξ − 1

)∣∣∣∣
ξ=ξb

=
1

1− ξ2
b

=
1

1− b2

c2

=
c2

c2 − b2
= − c

2

a2
.

Now, when n ≥ 1, we multiply both sides of the above relation by CM
N (η, φ), where

N ≥ 1, and then integrate over the surface Sξb of the spheroid to obtain

−a
2

c2

∞∑
n=0

n∑
m=0

(
HmnP

m
n (ξs)P

m
n (ηs)[Q

m′

n (ξb)− AmnPm′

n (ξb)]

·
∫
Sξb

Cm
n (η, φ)CM

N (η, φ)ωξb(η)dSξb

)
=

∫
Sξb

1

4π
ωξb(η)CM

N (η, φ)dSξb

=
1

4π

(∫ 2π

0

cos(Mφ)dφ

)(∫ 1

−1

PM
N (η)dη

)
.

Note that the first integral in the above equals γmnδnNδmM by the orthogonality

relations. Hence the lefthand side is nonzero only when N = n,M = m. Also note
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that ∫ 2π

0

cos(Mφ)dφ = 0, M ≥ 1.

In addition, when M = 0, PM
N (η) = PN(η), and

∫ 1

−1

PN(η)dη = 0, N ≥ 1.

Hence the righthand side of the relation above is zero for all N ≥ 1. Putting all of

this together, we have that, for n ≥ 1,

Amn =
Qm′
n (ξb)

Pm′
n (ξb)

.

Since A00 is arbitrary, we can set it equal to zero. Then the interior prolate Neumann

function is given by

N i
p(r, rs) = − 1

4π|r− rs|
+

1

4πc

∞∑
n=1

n∑
m=0

Hmn
Qm′
n (ξb)

Pm′
n (ξb)

Pm
n (ξs)P

m
n (ηs)P

m
n (ξ)Cm

n (η, φ).

3.3 Interior Prolate BVP 2

In this section we consider a more general interior BVP for the prolate

spheroid: 

∆N i
p(r, rs) = δ(r− rs), 1 ≤ ξs ≤ ξ ≤ ξb

∂N i
p(r, rs)

∂n
=

γη + δ√
ξ2
b − η2

, ξ = ξb.

The reason for this choice of boundary condition will soon become apparent. Recall

that we need to satisfy a compatibility condition:

∫
Sξb

γη + δ√
ξ2
b − η2

dSξb = 1.
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Indeed, noting that
1

ωξb(η)
= ac

√
ξ2
b − η2,

we have that

∫
Sξb

γη + δ√
ξ2
b − η2

dSξb = 2πac

∫ 1

−1

(γη + δ)dη = 4πacδ.

Note that this evaluates to 1 only if

δ =
1

4πac
,

so we will choose δ accordingly. Now we can understand the reason for choosing the

boundary condition as we did: the case where γ = 0 corresponds to the BVP we

solved in the previous section; hence the newer boundary condition is truly a more

general version.

Imposing the boundary conditions and using the orthogonality relations as

before, we have that

− a2

4πc2
γmnHmnP

m
n (ξs)P

m
n (ηs)[Q

m′

n (ξb)− AmnPm′

n (ξb)] =

∫
Sξb

Cm
n (η, φ)

γη + δ√
ξ2
b − η2

dSξb

=

(∫ 1

−1

Pm
n (η)

γη + δ√
ξ2
b − η2

1

ωξb(η)
dη

)(∫ 2π

0

cos(mφ)dφ

)

=

 2πac
∫ 1

−1
Pn(η)(γη + δ)dη, m = 0, n < 2

0, otherwise.

This follows from the theory of Legendre functions, which implies that this integral

vanishes if the degree of Pn(η) is greater than that of the polynomial with which it is

multiplied. Since the degree of γη + δ is 1, the integral is non-zero only when n = 0
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or n = 1. For n = 0, we have that

2πac

∫ 1

−1

P0(η)(γη + δ)dη = 2πac

∫ 1

−1

(1)(γη + δ)dη = 4πacδ.

Applying the boundary conditions for this case yields again that the expansion coef-

ficient A00 can be arbitrarily chosen and that

− a2

4πc2
γ00(η)H00P0 (ξs)P0 (ηs)Q

′
0 (ξb) = 4πacδ,

which implies that

δ =
1

4πac
.

Fortunately, this is the exact value of δ required above!

For n = 1, we have that

− a2

4πc2
H01P1 (ξs)P1 (ηs) [Q′1 (ξb)− A01P

′
1 (ξb)]

∫ 1

−1

(P1(η))2 dη

∫ 2π

0

dφ

= 2πac

∫ 1

−1

P1(η)(γη + δ)dη,

which reduces to

−a
2

c2
ξsηs [Q′1 (ξb)− A01] = 2πac

∫ 1

−1

(
γη2 + δη

)
dη =

4πacγ

3
.

This then yields

A01 =
4πc3γ

3aξsηs
+Q′1 (ξb) , ηs 6= 0.

Observe that α = 0 corresponds to the value of A01 from the previous boundary

condition, as expected.
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Finally, for n ≥ 2, it is easily seen that

Amn =
Qm
n (ξb)

P ′mn (ξb)
,

just as in the previous section. Hence we see that the only difference between the Neu-

mann function satisfying the general boundary condition and the Neumann function

in the previous section is the second term in the expansion, which in electrostatics

corresponds to one of the two dipole terms.

To observe the significance of this result, we can compare the graphs of the

two boundary conditions, which should ideally represent the normal component of

the electric field or a temperature current through the surface of the spheroid. For

example, if in the equation for the prolate spheroid we let b = 2 and c = 1, then

a =
√

3. Since γ is allowed to be arbitrary we can set γ = 100. The boundary

condition f is then given by

∂N

∂n
=

100η + 1
4π
√

3√
4− η2

and has the following graph as a function of η:

We can observe from this that the second boundary condition can be chosen to be

approximately linear for a desired range of η. This suggests the physical interpretation

of a temperature flux across the surface of a prolate spheroid that nearly vanishes at

the equator (η = 0), increases linearly from the equator to the top of the spheroid

(η = 1), and decreases linearly from the equator to the bottom of the spheroid

(η = −1). Hence if the source charge rs is placed above the equator (η > 0), this

boundary condition would be appropriate, as the temperature flux in this region

would be greater than in the region below the spheroid (η < 0), as seen in the graph.

Recall that the boundary condition f for the first interior prolate BVP was
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Figure 3.2: Graph of the boundary condition for Interior Prolate BVP 2.

given by
∂N

∂n
=

1

4π
ωξb(η),

which has the following graph as a function of η:

Figure 3.3: Graph of the boundary condition for Interior Prolate BVP 1.

This approximately quadratic graph contrasts sharply with the approximately linear

graph of the second boundary condition. The second boundary condition hence sug-

gests a very different physical interpretation: a temperature flux across the surface of

the prolate spheroid that nearly vanishes on the equator (η = 0), but that increases
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quadratically moving toward the top or the bottom. Hence if the source charge rs

is placed on the equator, this first boundary condition would be appropriate, as its

graph indicates that the equator is a source.

We can conclude from this that the two interior prolate BVPs discussed

above will be physically appropriate in different contexts, depending on the location

of the source charge rs. Note however that the solutions to each BVP differ only in

the second term of their series expansions, which suggests that useful approximations

may be obtained using only the first two or three terms. Also, remember that there

is a second view of these Neumann functions: that they are useful for representing

the solutions of a corresponding inhomogeneous Poisson’s equation. In this regard

the two Neumann functions perform exactly the same role!

We will now begin the process of constructing an image system for the

interior prolate case.

3.4 Image System for the Interior Prolate Neumann Function

In building the image system for the interior prolate Neumann function, we

will use only the first BVP considered, since it yielded less complicated expansion

coefficients. As we discussed earlier, the image system will depend crucially on the

original boundary conditions. Hence we will build it to represent only the reflected

Neumann function N i,ref
p , since the free-space solution encodes no boundary data.

The following analysis is given in Xue, Edmiston, and Deng (2018); we present it

here because the exact same method will apply to the oblate cases.

Since we want our image system to approach that of the sphere in the limit,

we first posit a point image of strength Q. And since we set our source in the xz-plane

in the spheroid’s interior, symmetry dictates that we should place the point image

there as well, but in the spheroid’s exterior. We give the location of the point image

as rk = (xk, 0, zk) = (ξk, ηk, 0); these coordinates will be determined by the coming

analysis. Following Dassios and Sten (2009), we next posit a surface image consisting



26

of a confocal prolate spheroid Sξk in the exterior of the original spheroid Sξb , and

which contains the point image. The last component of the image system will be a

line image extending from the location rk of the point image to infinity along the

curve C : (η, φ) = (ηk, 0).

Figure 3.4: Visualization of the image system for the interior prolate BVP.

In keeping with the physical analogy to electrostatics, we assume that each

of the images has a “charge" density that we can integrate over an appropriate hyper-

surface to obtain the potential. Since the image system need not be unique, we are

free to prescribe any density we like, though it should reduce to the spherical limit.

For the line image, we define its density to be

ρ(t) = ρ (ξ, ηk, 0) =
αq(ξ)

hξ (ξ, ηk)

where α is a constant and q is a continuous function on [ξk,∞). We define the density

of the surface image to be

d(s) = d (ξk, η, φ) = ωξk(η)
∞∑
n=2

n∑
m=0

dmnC
m
n (η, φ)
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where the weighting function ω is used to exploit the orthogonality relations over

the surface Sξk . Also, note that we have demanded that the monopole (n = 0) and

dipole (n = 1) terms vanish. Indeed, it is known from electrostatics that a vanishing

monopole term implies a total surface strength (or “charge") of zero and vanishing

dipole terms imply a symmetric charge distribution over the surface with the centroid

at the origin. The total potential of the image system can then be written as

N i,im
p (r) = − Q

4π |r− rk|
− 1

4π

∫
C

ρ (t′)

|r− t′|
dl (t′)− 1

4π

∮
Sξk

d (s′)

|r− s′|
dsξk (η′, φ′) ,

which can be rewritten as

N i,im
p (r) = − Q

4π |r− rk|
− α

4π

∫ +∞

ξk

q (ξ′)

|r− t′|
dξ′ − 1

4π

∮
Sξk

d (ξk, η
′, φ′)

|r− s′|
dsξk (η′, φ′) .

Further, using the multipole expansion we can rewrite each of the three potentials:

Q

4π|r− rk|
=

Q

4πc

∞∑
n=0

n∑
m=0

HmnQm
n (ξk)Pm

n (ηk)Pm
n (ξ)Cm

n (η, φ),

α

4π

∫ +∞

ξk

q(ξ′)

|r− t′|
dξ′ =

1

4πc

∞∑
n=0

n∑
m=0

Hmn

(
α

∫ +∞

ξk

q(ξ′)Qm
n (ξ′)dξ′

)
Pm
n (ηk)Pm

n (ξ)Cm
n (η, φ),

and

1

4π

∮
Sξk

d(ξk, η
′, φ′)

|r− s′|
dSξk(η′, φ′) =

1

4πc

∞∑
n=2

n∑
m=0

HmnγmndmnQ
m
n (ξk)Pm

n (ξ)Cm
n (η, φ),

where the orthogonality relations have been used to rewrite the potential generated

by the surface image. Since we want the image system to represent the reflected part
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of the Neumann function, we demand that N i,ref
p = N i,im

p . This gives us that

1

4πc

∞∑
n=0

n∑
m=0

HmnP
m
n (ξ)Pm

n (ηk)C
m
n (η, φ)

(
QQm

n (ξk) + σ

∫ ∞
ξk

q (ξ′)Qm
n (ξ′) d (ξ′)

)
+

1

4πc

∞∑
n=2

n∑
m=0

HmnγmndmnQ
m
n (ηk)P

m
n (ξ)Cm

n (η, φ)

= − 1

4πc

∞∑
n=1

n∑
m=0

HmnP
m
n (ξs)P

m
n (ηs)

Qn
m (ξb)

P ′nm (ξb)
Pm
n (ξ)Cm

n (η, φ).

The next step is to examine the n = 0, 1, 2 terms in sequence in order to

determine the strength Q of the point image, the location rk of the point image, and

the expansion coefficient dmn from the surface image density. Taking n = 0, we have

QQ0 (ξk) + α

∫ ∞
ξk

q (ξ′)Q0 (ξ′) dξ′ = 0

which yields

Q = − α

Q0 (ξk)

∫ ∞
ξk

q (ξ′)Q0 (ξ′) dξ′.

In order to approach the spherical limit, we make a choice for q similar to that of

Dassios (2012):

q(ξ) = 1− 1

ξQ0(ξ)
.

Then we can evaluate the integral:

∫ ∞
ξk

q (ξ′)Q0 (ξ′) dξ′ =
ξk

2
ln

(
ξk + 1

ξk − 1

)
+

1

2
ln

(
ξ2

k − 1

ξ2
k

)
− 1.

Next we examine the n = 1 case, which yields

α

∫ +∞

ξk

q (ξ′)

[
Qm

1 (ξ′)− Qm
1 (ξk)

Q0 (ξk)
Q0 (ξ′)

]
dξ′Pm

1 (ηk) = −Q
m′
1 (ξb)

Pm′
1 (ξb)

Pm
1 (ξs)P

m
1 (ηs) .
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For convenience we define a function g:

gm1 (ξk) =

∫ ∞
ξk

q (ξ′)

[
Qm

1 (ξ′)− Qm
1 (ξk)

Q0 (ξk)
Q0 (ξ′)

]
dξ′, m = 0, 1.

Now, using the fact that, for φ = 0,

x = c
√
ξ2 − 1

√
1− η2 = −cP 1

1 (ξ)P 1
1 (η)

z = cξη = cP1(ξ)P1(η),

we have that

xk = − P
1
1 (ξk)

αg1 (ξk)

Q1′
1 (ξb)

P 1′
1 (ξb)

xs

zk = − P1 (ξk)

αg1 (ξk)

Q′1 (ξb)

P ′1 (ξb)
zs.

Using this together with the aforementioned fact that

x2 + y2

c2 (ξ2
b − 1)

+
z2

c2ξ2
b

= 1,

we obtain

x2
s

c2 (ξ2
k − 1)

P 1
1 (ξk)

2

α2g1
1 (ξk)

2

Q1′
1 (ξb)

2

P 1′
1 (ξb)

2 +
z2
s

c2ξ2
k

P1 (ξk)
2

α2g1 (ξk)
2

Q
′
1 (ξb)

2

P
′
1 (ξb)

2 = 1,

which is equivalent to

x2
s

a2

P 1
1 (ξk)

2

α2g1
1 (ξk)

2

Q1′
1 (ξb)

2

P 1′
1 (ξb)

2 +
z2
s

b2

P1 (ξk)
2

α2g1 (ξk)
2

Q′1 (ξb)
2

P ′1 (ξb)
2 = 1.

Since α is currently free to vary, this nonlinear equation is not guaranteed to have a

solution ξk. However, we can guarantee a solution by demanding that α satisfy the
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relation

α2 = ρ2

[
x2
s

a2

P 1
1 (ξb)

2

g1
1 (ξb)

2

Q1′
1 (ξb)

2

P 1′
1 (ξb)

2 +
z2
s

b2

P1 (ξb)
2

g1 (ξb)
2

Q
′
1 (ξb)

2

P
′
1 (ξb)

2

]

for some ρ ∈ R such that ρ2 > 1. To see this, define a function f : [ξb,∞)→ R given

by

f(ξ) =
1

α2

[
x2
s

a2

P 1
1 (ξ)2

g1
1(ξ)2

Q1′
1 1 (ξb)

2

P 1′
1 (ξb)

2 +
z2
s

b2

P1(ξ)2

P1(ξ)2

Q′1 (ξb)
2

P ′1 (ξb)
2

]
− 1.

Since 1
ρ2
< 1, we have that

f (ξb) =
1

ρ2
− 1 < 1− 1 = 0

It can be easily shown that f is continuous. Hence the intermediate value

theorem implies that the nonlinear equation has a solution ξk in (ξb,∞). This allows

ηk to be found, meaning that the location of the point image can be determined.

The last thing to do for this image system is to determine the expansion

coefficient dmn. This is done by examining the n = 2 case and performing some

simple algebra:

dmn =

− 1

γmnQm
n (ξk)

[
Qm′
n (ξb)

Pm′
n (ξb)

Pm
n (ξs)P

m
n (ηs)

+

(
QQm

n (ξk) + α

∫ ∞
ξk

q(ξ′)Qm
n (ξ′)dξ′)Pm

n (ηk)

)]
.

3.5 Interior Oblate Neumann Function

We claim that both the interior oblate Neumann function and its image

system very closely resemble those of the prolate case. This is to be expected since

the only difference between the two spheroids is in how they are generated from the

parent ellipse: the prolate spheroid is generated by revolving the ellipse about the

major axis while the oblate spheroid is generated by revolving it about the minor
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axis.

When Ω is the oblate spheroid given by ξb, the interior Neumann BVP we

wish to solve is 
∆N i

o(r, rs) = δ(r− rs), 1 ≤ ξs < ξ < ξb

∂N i
o(r, rs)

∂n
=

1

4π
ψξb(η), ξ = ξb,

where the boundary condition is given by the oblate weighting function ψ mentioned

in chapter 1, and N i
o is our notation for an interior oblate Neumann function. The

multipole expansion in oblate spheroidal coordinates is given by [6]:

− 1

4π |r− rs|
= − 1

4πc

∞∑
n=0

n∑
m=0

HmnR
m
n (ξ<)Tmn (ξ>)Pm

n (ηs)P
m
n (η) cos (m (φ− φs))

where

ξ> = max {ξ, ξs} , ξ< = min {ξ, ξs}

and

Hmn = (2n+ 1) (2− δm0) (−1)m
[

(n−m)!

(n+m)!

]2

.

(Note that Hmn is the same as in the prolate case.)

Hence in the interior case the expansion becomes

− 1

4π |r− rs|
= − 1

4πc

∞∑
n=0

n∑
m=0

HmnR
m
n (ξs)T

m
n (ξ)Pm

n (ηs)P
m
n (η) cos (m (φ− φs)) .

As in the prolate case, we posit the following form of our reflected solution:

Ri
o (r, rs) =

∞∑
n=0

n∑
m=0

BmnP
m
n (ξs)R

m
n (ηs)P

m
n (ξ)Rm

n (η) cos(mφ).
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Hence the Neumann function must be given by

N i
o (r, rs) = − 1

4πc

∞∑
n=0

n∑
m=0

HmnR
m
n (ξs)P

m
n (ηs) [Tmn (ξ)−BmnR

m
n (ξ)]Cm

n (η, φ).

Now, since the orthogonality relations over the surface of the oblate spheroid

Sξb depend only on η and φ (as mentioned in the previous chapter), the expansion

coefficient Bmn will exactly mimic that of the interior prolate case, with B00 allowed

to be chosen arbitrarily and

Bmn =
Tm

′
n (ξb)

Rm′
n (ξb)

n ≥ 1.

3.6 Image System for the Interior Oblate Neumann Function

As noted above, the only difference between the oblate and prolate spheroids

is in how they are generated from the parent ellipse by rotation about the minor or

major axes. Also recall that an image system for the interior oblate BVP will be

located in the complement of the domain, i.e., outside of the spheroid. Hence it is

reasonable to assume that the construction of the image system should not rely on

data interior to the spheroid. Such data would include the generation of the spheroid:

when the prolate spheroid is generated from its parent ellipse, the line through the

foci is not rotated; however, in the generation of the oblate spheroid, the line segment

connected the two foci traces out a circle. Such data will be important for constructing

an image system in the interior of the spheroid, but can be ignored for the present

case. Hence the image system for the interior oblate case should be built in the same

way as the image system for the interior prolate case, so we will not explicitly build

it here.



CHAPTER 4: EXTERIOR NEUMANN PROBLEMS

In this chapter we derive the Neumann functions and image systems for

exterior BVPs, i.e., BVPs where the source charge is located outside of the spheroid.

4.1 Exterior Prolate Neumann Functon

For a prolate spheroid given by ξb, the exterior Neumann BVP is



∆N e
p (r, rs) = δ(r− rs), ξb ≤ ξ ≤ ξs

∂N e
p

∂n
= − 1

4π
ωξb(η), ξ = ξb

N e
p (r, rs) = O

(
1

|r|2

)
, |r| → ∞.

We can again exploit the azimuthal symmetry of the prolate spheroid to write the

Neumann function as

N e
p (r, rs) = − 1

4πc

∞∑
n=0

n∑
m=0

HmnQ
m
n (ξs)P

m
n (ηs) [Pm

n (ξ)− CmnQm
n (ξ)]Cm

n (η, φ),

where Cmn is the expansion coefficient. Applying the boundary condition as before

yields

−a
2

c2
ωξb(η)

∞∑
n=0

n∑
m=0

HmnQ
m
n (ξs)P

m
n (ηs)

[
Pm′

n (ξb)− CmnQm′

n (ξb)
]
Cm
n (η, φ) = ωξb(η).
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Setting n = 0, we have that

C00 = − c2

a2Q0 (ξs)P0 (ηs)Q′0 (ξb)

= − c2

a2Q0 (ξs) (1) (−c2/a2)

=
1

Q0 (ξs)
.

Thus we see that the first coefficient cannot be chosen arbitrarily in the exterior case.

For n ≥ 1, we multiply by CM
N (η, φ) and integrate over Sξb to obtain

Cmn =
Pm′
n (ξb)

Qm′
n (ξb)

.

4.2 Image System for the Exterior Prolate Neumann Function

The development of the image system for the exterior Neumann function will

proceed along similar lines as in Chapter 3, but instead of a curve image extending

to infinity, we shall choose a curve image C extending from the point image to a new

line segment image confocal with the prolate spheroid Sξb and with the two foci as

endpoints. We will still choose as a surface image a confocal prolate spheroid Sξk

located in the interior of Sξb and containing the point image. Hence we will have a

total of four images in this image system (see Figure 4.1).

As before, we will build the image system to have a potential equal to the

reflected Neumann function

N e,ref
p (r, rs) =

Q0(ξ)

4πc
+

1

4πc

∞∑
n=1

n∑
m=0

Hmn
Pm′
n (ξb)

Qm′
n (ξb)

Qm
n (ξs)P

m
n (ηs)Q

m
n (ξ)Cm

n (η, φ)

derived above. The potentials for the point and surface images will have the same

representation as in the interior case. The new curve image will also have a similar

representation as a line integral, but this integral will now range from ξ′ = 1 to ξ′ = ξk.
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Figure 4.1: Visualization of the image system for the exterior prolate BVP.

The confocal line image is a new addition and so we will give its representation here.

As noted by Dassios and Sten (2012), in the case of the exterior Neumann

problem on a sphere, a point image of charge -1 must be placed at the center of

the sphere. Since we want our image to reduce to the spherical limit, we require

that the n = 0 potential Q0(ξ)/4πc be generated by the confocal line image. This is

reasonable since the confocal line image should reduce to a point image as the focal

distance approaches zero. We require that this confocal line image have a uniform

density µ given by

µ(z) = − 1

2c
, −c ≤ z ≤ c.

Then the potential generated by the confocal line image is given by

− 1

4π

∫ c

−c

µ(z)

|r− (0, z, 0)|
dz =

1

8π

∫ 1

−1

1

|r− (1, η′, 0)|
dη′

=
1

8πc

∞∑
n=0

(2n+ 1)

[∫ 1

−1

Pn (η′) dη′
]
Pn(1)Qn(ξ)Pn(η)

=
Q0(ξ)

4πc
(as the above integral is nonzero only for n = 0),
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which is the result we wanted. Note that since the potential due to the confocal line

image should be independent of the azimuthal variable φ, we were able to have that

m = 0.

We must also check that the total charge of the confocal line image is −1.

Indeed, ∫ c

−c
µ(z)dz = −

∫ c

−c

1

2c
dz = −1.

Now we can write the total potential of the image system as

N e,im
p (r) =

Q0(ξ)

4πc
− Q

4π |r− rk|
− α

4π

∫ ξk

1

q (ξ′)

|r− t′|
dξ′− 1

4π

∮
Sξk

d (ξk, η
′, φ′)

|r− s′|
dsξk (η′, φ′) .

Note that, as long as the above function q is continuous, the integral from ξ′ = 1 to

ξ′ = ξk will exist. Following Dassios and Sten (2012), we will manually choose q and

then determine the missing pieces: the location of the point charge and the density

of the surface image. For simplicity, we choose q(ξ′) = 1 for ξ′ ∈ [1, ξb].

Demanding as before that N e,im
p (r) = N e,ref

p (r, rs), we have that

1

4πc

∞∑
n=0

n∑
m=0

Hmn

[
QPm

n (ξk) + α

∫ ξk

1

q (ξ′)Pm
n (ξ′) dξ′

]
Pm
n (ηk)Qm

n (ξ)Cm
n (η, φ)

+
1

4πc

∞∑
n=2

n∑
m=0

HmnγmndmnP
m
n (ξk)Qm

n (ξ)Cm
n (η, φ)

=− 1

4πc

∞∑
n=1

n∑
m=0

Hmn
Pm′
n (ξb)

Qm′
n (ξb)

Qm
n (ξs)P

m
n (ηs)Q

m
n (ξ)Cm

n (η, φ)

(4.1)

Comparing the monopole (n = 0) terms yields that

Q = −α
∫ ξk

1

q (ξ′) dξ′

= −α
∫ ξk

1

1dξ′

= α (1− ξk) .
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Next, comparing the dipole (n = 1) terms, we have that

αgm1 (ξk)Pm
1 (ηk) = −P

m′
1 (ξb)

Qm′
1 (ξb)

Qm
1 (ξs)P

m
1 (ηs) , m = 0, 1, (4.2)

where g is the function defined by

gm1 (ξk) =

∫ ξk

1

q (ξ′) [Pm
1 (ξ′)− Pm

1 (ξk)] dξ′, m = 0, 1.

Now, we can rewrite (4.2) as

xk = − P 1
1 (ξk)

αg1
1 (ξk)

Q1
1 (ξs)

P 1
1 (ξs)

P 1′
1 (ξb)

Q1′
1 (ξb)

xs,

zk = − P1 (ξk)

αg1 (ξk)

Q1 (ξs)

P1 (ξs)

P ′1 (ξb)

Q′1 (ξb)
zs,

where
g1 (ξk) = ξk −

ξ2k
2
− 1

2
,

g1
1 (ξk) =

√
ξ2

k − 1− ξk
√
ξ2k−1

2
−

ln
(√

ξ2k−1+ξk

)
2

.

Since the point image is located on the surface image Sξk , we can use the equation of

a prolate spheroid to obtain

x2
s

a2

P 1
1 (ξb)2

α2g1
1 (ξk)2

Q1
1 (ξs)

2

P 1
1 (ξs)

2

P 1′
1 (ξb)2

Q1′
1 (ξb)2 +

z2
s

b2

P1 (ξb)2

α2g1 (ξk)2

Q1 (ξs)
2

P1 (ξs)
2

P ′1 (ξb)2

Q′1 (ξb)2 = 1,

which is a nonlinear algebraic equation in ξk, similar to the one used in the con-

struction of the image system for the interior prolate case. We can apply the same

method used in that case to find the solution ξk: by choosing α appropriately, we can

guarantee the existence of a solution, whereas numerical investigations suggest that

the solution is unique [8].

Finally, as in the interior prolate case, we posit the density of the surface
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image Sξk to be given by

d(s) = d (ξk, η, φ) = wξk(η)
∞∑
n=2

n∑
m=0

dmnC
m
n (η, φ).

Using this, we compare the n ≥ 2 terms in (4.1) to obtain

dmn =

−1

γmnPm
n (ξk)

[
Pm′
n (ξb)

Qm′
n (ξb)

Qm
n (ξs)P

m
n (ηs)

+

(
QPm

n (ξk) + α

∫ ξk

1

q(ξ′)Pm
n (ξ′)dξ′

)
Pm
n (ηk)

]
.

Thus we have determined the location and strength of the point image and the density

of the surface image, which completes the image system and thus yields an integral

form of the exterior prolate Neumann function.

4.3 Exterior Oblate Neumann Function

For an oblate spheroid given by ξb, the exterior Neumann BVP is



∆N e
o (r, rs) = δ(r− rs), ξb ≤ ξ ≤ ξs

∂N e
o

∂n
= − 1

4π
ψξb(η), ξ = ξb

N e
o (r, rs) = O

(
1

|r|2

)
, |r| → ∞.

Applying the oblate multipole expansion to this BVP and using azimuthal symmetry,

we have

N e
o (r, rs) = − 1

4πc

∞∑
n=0

n∑
m=0

HmnT
m
n (ξs)P

m
n (ηs) [Rm

n (ξ)−DmnT
m
n (ξ)]Cm

n (η, φ),
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where Dmn is the expansion coefficient. Imposing the boundary conditions then yields

a2

c2
ψξb(η)

∞∑
n=0

n∑
m=0

HmnT
m
n (ξs)P

m
n (ηs)[R

m′

n (ξ)−DmnT
m′

n (ξ)]Cm
n (η, φ) = ψξb(η). (4.3)

Setting n = 0, we obtain

1 = −a
2

c2
T

′

0(ξb)T0(ξs)D00

= −a
2

c2
iQ

′

0(iξb)iQ0(iξs)D00

=
a2

c2
Q

′

0(iξb)Q0(iξs)D00

=
a2

c2

(
i
c2

a2

)
Q0(iξs)D00.

Hence

D00 =
1

iQ0(iξs)
=

1

T0(ξs)
.

Now, since the orthogonality relations are in terms of only η and φ, we are

able to use the same integration as in the prolate case. So, by multiplying (15) by

CM
N (η, φ) and integrating over the surface of the spheroid Sξb , we have, for n ≥ 1,

that

Dmn =
Rm′
n (ξb)

Tm′
n (ξb)

,

which is analogous to the expansion coefficient for the exterior prolate BVP:

Cmn =
Pm′
n (ξb)

Qm′
n (ξb)

, n ≥ 1.

Hence the exterior Neumann function is given by

N e
o (r, rs) = − 1

4π |r− rs|
+
T0(ξ)

4πc

+
1

4πc

∞∑
n=1

n∑
m=0

Hmn
Rm′
n (ξb)

Tm′
n (ξb)

Tmn (ξs)P
m
n (ηs)T

m
n (ξ)Cm

n (η, φ).

(4.4)
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4.4 Image System for the Exterior Oblate Neumann Function

We now construct an image system that represents the reflected part of the

exterior Neumann function, N e
ref (r, rs); namely,

N e
ref (r, rs) =

T0(ξ)

4πc
+

1

4πc

∞∑
n=1

n∑
m=0

Hmn
Rm′
n (ξb)

Tm′
n (ξb)

Tmn (ξs)P
m
n (ηs)T

m
n (ξ)Cm

n (η, φ).

Note again that the primary mathematical difference between the oblate and prolate

cases is the rotation of the generating ellipse around the minor (oblate) or major

(prolate) axes. Hence it is reasonable to assume that the image systems for both

cases should contain the same number and type of images (where “type" refers to

the dimension of the image as a manifold). Due to the azimuthal symmetry of the

two spheroids, both image systems should contain a surface image which contains

a second, point image. Recall that in the prolate case a confocal line image was

also used since the prolate spheroid arises from rotation about this line. In order

to use focal data in the oblate case, we note that the two foci trace out a circle of

radius c when the ellipse is rotated to produce the oblate spheroid. Hence instead

of a one-dimensional confocal line image, we will use a one-dimensional circle image.

Finally, in a manner similar to the prolate case, the exterior oblate image system will

contain an additional curve image that connects the point image to the circle image

(see Figure 4.2).

Now, recall that in the prolate case the n = 0 potential was generated by the

confocal line image on which the charge density was uniform. Hence in the oblate case

the n = 0 potential should be generated by the circle image, which should also have

a uniform density. To calculate this density µ, we again use the multipole expansion,
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Figure 4.2: Visualization of the image system for the exterior oblate BVP. The green
dot represents the point image, the red circle represents the surface image, the blue
circle represents the focal circle image, and the magenta curve represents the curve
image connecting the point image to the circle image.

noting that on the circle image Γ we have that ξ = η = 0:

T0(ξ)

4πc
= − 1

4π

∫
Γ

µ

|r− r′ |
dr

′

= − cµ
4π

∫ 2π

0

1

|(ξ, η, φ)− (0, 0, φ′)|
dφ

′

= − cµ
4π

[
1

c

∞∑
n=0

n∑
m=0

HmnR
m
n (0)Pm

n (0)Tmn (ξ)Pm
n (η)

∫ 2π

0

cos(m(φ− φ′
))dφ

′
]

= − µ

4π

∞∑
n=0

(2n+ 1)Rn(0)Pn(0)Tn(ξ)Pn(η) ∗ 2π (nonzero only for m = 0)

= −µ
2

∞∑
n=0
n even

e−
inπ
2

(2n+ 1)

4n

[(
n

n/2

)]2

Tn(ξ)Pn(η).
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Integrating both sides with respect to η, we have that

T0(ξ)

2πc
=

∫ 1

−1

T0(ξ)

4πc
dη

=

∫ 1

−1

[
− µ

2

∞∑
n=0
n even

e−
inπ
2

(2n+ 1)

4n

[(
n

n/2

)]2

Tn(ξ)Pn(η)

]
dη

= −µ
2

∞∑
n=0,
n even

e−
inπ
2

(2n+ 1)

4n

[(
n

n/2

)]2

Tn(ξ)

∫ 1

−1

Pn(η)dη (by Fubini’s theorem)

= −µ
2
T0(ξ) ∗ 2.

Hence the circle image density is given by

µ = − 1

2πc
.

By analogy with the prolate case, we should have that

∫
Γ

µdΓ = −1.

Indeed, ∫
Γ

µdΓ =

∫ 2π

0

c ∗ − 1

2πc
dφ = −1.

Now that we have derived the density for the circle image, all that remains

is to determine the strength and location of the point image, as well as the density of

the surface image. However, since these types images are also present in the exterior

prolate case, these determinations can be made by following the exact method used

previously; hence we will omit the details. The only remaining difference to account

for is the line integral that determines the strength of the curve image connecting the

point image to the circle image. But it can be easily seen that this integral will be

identical to the one used in the interior cases, except that the bounds will be from
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ξ′ = 0 to ξ′ = ξk instead of ξ′ = 1 to ξ′ = ξk. Thus the image system for the exterior

oblate case is now fully determined.

4.5 Further Justification for the Uniform Density of the Confocal Line Image

To further justify our result that the n = 0 potential arises from a circle

image of uniform density, we consider a related problem from electrostatics:

Find the electric potential V (z) a distance z above the center of a

uniformly charged circular ring of radius c lying in the xy-plane.

The total charge on the ring is µ.

Using natural units and noting that the linear charge density on the ring is λ = µ
2πc

,

the potential is given by

V (z) =
cλ

4π
√
c2 + z2

∫ 2π

0

dθ

=
µ

4π
√
c2 + z2

.

It is easy to check that for z � c,

V (z) ∼ µ

4πz
+O

(
1

z3

)
.

Now recall that the n = 0 potential from the oblate case is given by

T0(ξ)

4πc
=
iQ0(iξ)

4πc

= −µ
2
iQ0(iξ)

(
here µ = − 1

2πc

)
= −µ

4
i ln

(
iξ + 1

iξ − 1

)
.
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It can be shown that as ξ →∞,

i

2
ln

(
iξ + 1

iξ − 1

)
∼ 1

ξ
− 1

3ξ3
+

1

5ξ5
+O

(
1

ξ7

)
.

Hence for ξ � c,
T0(ξ)

4πc
∼ − µ

2ξ
+O

(
1

ξ3

)
,

which closely matches the limiting approximation of V (z). Also, note that η = ±1

corresponds exactly to the physical situation where the field point is directly above

or below the center of the circle image (the ring in the electrostatics problem). Hence

we see that a circle image of uniform density generates a potential that approximates

the potential of a known electrostatics problem with a similar setup. For η 6= ±1,

discrepancies will arise, but the fact that we have agreement for a physically relevant

case should increase the confidence in our result.



CHAPTER 5: CONCLUSIONS

In the present paper we derived the Neumann functions for interior and

exterior boundary value problems (BVPs) for the Laplacian in the prolate and oblate

spheroidal geometries. Two methods were used to accomplish this: we first used a

classical separation of variables to derive a series form of the Neumann functions.

The second method used these series solutions in conjunction with the method of

images from electrostatics to derive an integral form of the Neumann functions; this

was done via the construction of an image system in the complement of the domain

of interest.

For the interior prolate case, we derived a series form of the Neumann func-

tion for two different boundary conditions that have two different physical interpre-

tations. It was seen that the two series solutions differed in only one term of the

expansion. This suggests that the image system for both BVPs should be nearly

identical, although only one was constructed.

We saw that the image systems for the interior prolate and interior oblate

cases were constructed in the same manner. However, the image system for the

exterior oblate case differed from that of the exterior prolate case: in the former case

a circular image with focal radius was used in place of the confocal line image used

in the latter case.

An important future direction of the present work will be to investigate the

differences in numerical efficiency of the series and integral forms of the Neumann

functions derived here.
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