
FAST AND ENERGY-EFFICIENT MOBILITY MANAGEMENT IN MOBILE
EDGE COMPUTING NETWORKS

by

Haoxin Wang

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2020

Approved by:

Dr. Jiang (Linda) Xie

Dr. Tao Han

Dr. Yu Wang

Dr. Weichao Wang

ii

c©2020
Haoxin Wang

ALL RIGHTS RESERVED

iii

ABSTRACT

HAOXIN WANG. Fast and Energy-Efficient Mobility Management in Mobile Edge
Computing Networks. (Under the direction of DR. JIANG (LINDA) XIE)

The prevalence of computation-intensive and latency-sensitive mobile applications,

such as mobile augmented reality (MAR) and autonomous driving, has an utmost

effect on resource-limited mobile clients. Mobile edge computing (MEC) is proposed

to be a promising paradigm to bridge the gap between the stringent computation

and latency requirements of mobile applications and the constrained computation

and battery capacity on mobile clients. The main feature of MEC is to push mobile

computing, network control and storage to the network edges (e.g., base stations

(BSs) and access points (APs)). However, prior work on MEC fails to achieve their

expected performance in multiple practical cases, e.g., irreparable network disruptions

caused by wireless link instability or user-mobility that is a critical characteristic of

mobile applications.

In this dissertation, fast and energy-efficient mobility management in MEC net-

works is explored. Link-instability and user-mobility incurred challenges in MEC are

addressed from four steps. (1) An intelligent handoff trigger mechanism is designed

to achieve a fast and accurate trigger for seamless mobility support in MEC networks.

(2) Fast and energy-efficient radio-service handoff protocols are established in order

to rebuild offloading services on a new MEC server with low overhead after a hand-

off is triggered at a mobile client in MEC networks. (3) To minimize performance

degradation during mobility caused by radio resource allocation unfairness, single and

multiple edge server radio resource allocation protocols to impartially allocate the up-

link and the downlink radio resources in MEC networks are proposed. (4) A dynamic

configuration adaptation algorithm is proposed for mobile clients to achieve energy-

efficient offloading in MEC networks while satisfying variant clients’ user preferences.

iv

In summary, this research is essential for providing fast and energy-efficient mobil-

ity support for mobile clients in MEC networks. In addition, this research provides

critical insights for future designs of mobility management in MEC networks.

v

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the direction of my advisor,

advice from my dissertation committee members, assistance from my colleagues, help

from my friends, and encouragement from my wife and family.

First and foremost, I wish to express my greatest and deepest gratitude to my

advisor, Dr. Jiang (Linda) Xie, for her guidance and supervision throughout these

years. The scientific methods and work ethic she taught me made where I am now.

I am very honored to be her student. Her instructions will always inspire me to

continue improving myself in the future.

I would like to thank my committee members: Dr. Tao Han, Dr. Yu Wang, and Dr.

Weichao Wang for their great help and invaluable advice along this dissertation work.

In addition, I appreciate the GASP grant from UNCC and Research Assistantships

from the National Science Foundation (NSF) and Toyota Motor North America as

the financial assistance for this dissertation.

I would also like to thank my colleagues and friends: Xingya Liu, Wahida Nasrin,

Moinul Hossain, Siqi Huang and many others. I am so thankful and appreciative to

have been able to receive help from them.

Thanks also to my parents and my parents-in-law, who have over the years sup-

ported and encouraged me with their best wishes.

In the end, I would like to thank my wife, Dairui Zhang. This dissertation would

not have been possible without her support, patience, and encouragement.

vi

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xiv

LIST OF ABBREVIATIONS xv

CHAPTER 1: INTRODUCTION 1

1.1. Background on Mobility Management in MEC Networks 1

1.2. Problem Statement 4

1.2.1. Inadequate Handoff Triggers in MEC Networks 4

1.2.2. Inefficient Radio-Service Handoff Process in MEC
Networks

5

1.2.3. Impartial Resource Allocation in MEC Networks 6

1.2.4. Energy-Guzzling Offloading Services in MEC Networks 9

1.3. Overview of the Proposed Research 10

1.4. Dissertation Organization 13

CHAPTER 2: RELATED WORK 14

2.1. Existing Handoff Trigger Mechanisms in MEC Networks 14

2.2. Existing Radio-Service Handoff Protocols in MEC Networks 15

2.3. Existing Radio Resource Allocation Protocols in MEC Networks 15

2.4. Related Work on Computation Offloading in MEC Networks 16

CHAPTER 3: PROPOSED HANDOFF TRIGGER SCHEME IN MEC
NETWORKS

18

3.1. Preliminary Experiments 19

3.2. System Model 22

vii

3.3. Analytical Models 23

3.4. The Proposed Handoff Trigger Scheme 25

3.4.1. Offloading Engine 27

3.4.2. MEC Resource Tracker 31

3.4.3. Tracking Window Controller 32

3.4.4. Data Collector 34

3.5. The System Implementation and Experiments 34

3.5.1. The Cloudlet-based MAR System Implementation 34

3.5.2. Performance Evaluation 36

3.5.3. Limitations of Our Testbed 37

3.6. Extensive Large-scale Simulations 37

3.6.1. Simulation Setup 38

3.6.2. Performance Evaluation 39

CHAPTER 4: PROPOSED RADIO-SERVICE HANDOFF PROTO-
COLS IN MEC NETWORKS

43

4.1. The Proposed Fast Radio-Service Hanoff Protocol 43

4.1.1. Key Ideas 43

4.1.2. Overview of the Proposed Protocol 45

4.1.3. Strategy for Feature Database Training 47

4.1.4. Proposed Feature Mapping Algorithm 49

4.1.5. Analysis 51

4.1.6. Performance Evaluation 52

viii

4.2. The Proposed Energy-Efficient Radio-Service Hanoff Protocol 56

4.2.1. AP-side Handoff Protocol 58

4.2.2. User-side Protocol 60

4.2.3. Implementation Challenges 61

4.2.4. Analysis 63

4.2.5. Mutiple BELL Zones Scenario 63

4.2.6. Performance Evaluation 64

CHAPTER 5: PROPOSED RESOURCE ALLOCATION PROTOCOLS
IN MEC NETWORKS

70

5.1. The Proposed Single Edge Server Resource Allocation Protocol 70

5.1.1. Key Factors in Edge-assisted Autonomous Driving 70

5.1.2. Key Idea 73

5.1.3. Proposed Algorithms in E-Auto 74

5.1.4. Performance Evaluation 78

5.2. The Proposed Multiple Edge Servers Resource Allocation
Protocol

81

5.2.1. Problem Statement 81

5.2.2. BELL-2M Algorithm 83

5.2.3. Performance Evaluation 86

CHAPTER 6: PROPOSED ENERGY-AWARE CONFIGURATION
ADAPTATION ALGORITHM IN MEC NETWORKS

89

6.1. A Comprehensive Experimental Study 89

6.1.1. Experimental Methodology 90

6.1.2. Experimental Results 92

ix

6.2. The Proposed Energy-Aware Configuration Adaptation
Algorithm

101

6.2.1. Experimental Results on Factors Affecting MAR
Client Energy Efficiency

102

6.2.2. Proposed System Architecture 107

6.2.3. Proposed Analytical Model and Problem Formulation 109

6.2.4. Proposed LEAF Optimization Algorithm 118

6.2.5. Performance Evaluation 122

CHAPTER 7: CONCLUSION 127

7.1. Completed Work 127

7.2. Future Work 130

7.3. Published and Submitted Work 130

REFERENCES 133

x

LIST OF FIGURES

FIGURE 1.1: Inadequate handoff triggers in MEC networks. (a) Of-
floaded video frame; (b) Correct analytics result; and (c) Result with
staleness.

5

FIGURE 1.2: Conventional radio-service handoff process. 7

FIGURE 1.3: Experimental results for users with no mobility. (a) Average
offloading latency per frame; (b) Average downloading latency per
frame; (c) The number of downlink packets; and (d) The number of
uplink packets.

8

FIGURE 1.4: The overview of the proposed research. 10

FIGURE 3.1: Signal strength fluctuation. 19

FIGURE 3.2: Throughput 20

FIGURE 3.3: CDF of throughput 20

FIGURE 3.4: Frame rate. 20

FIGURE 3.5: The service latency vs the IOU. 26

FIGURE 3.6: Overview of the proposed handoff trigger scheme. 27

FIGURE 3.7: The cloudlet-based MAR testbed. 35

FIGURE 3.8: Sampled measurement IOU. 37

FIGURE 3.9: Comparison of the service latency and IOU. (a) Service
latency; (b) IOU.

39

FIGURE 3.10: Performance comparisons among LTE-C, WiFi-C, and Ex-
plorer. (a) Average service latency and STD; (b) Average energy cost
per frame; (c) Average monetary cost per frame; (d) Average service
latency and the ratio of frames LAm ≥ 200ms.

40

FIGURE 3.11: The impact of some factors on the system performance.
(a) System performance vs θ(g); (b) System performance vs δ.

41

FIGURE 4.1: Overview of the proposed fast radio-service handoff
protocol.

47

xi

FIGURE 4.2: Feature database training process. 48

FIGURE 4.3: Basic training result 49

FIGURE 4.4: Advanced training result 49

FIGURE 4.5: Effect of camera’s properties 51

FIGURE 4.6: Effect of feature ratio β 51

FIGURE 4.7: Testbed implementation. 53

FIGURE 4.8: Experimental service rebuilding latency. (a) Conventional
service rebuilding process; (b) Proposed service rebuilding scheme.

54

FIGURE 4.9: Simulation results. (a) Impact of the properties of device’s
camera; (b) Impact of the prediction iteration period; (c) Impact of
the prediction iteration stop requirements.

55

FIGURE 4.10: Comparison of WLAN deployments. (a) Conventional
WLAN deployment; (b) Proposed BELL deployment.

57

FIGURE 4.11: Mobile devices’ energy consumption for mobility manage-
ment services.

58

FIGURE 4.12: Example of a BELL with even number of MAPs. (a) BELL
deployment; (b) Beacon broadcast schedule.

60

FIGURE 4.13: Example of a BELL with odd number of MAPs. (a) BELL
deployment; (b) Beacon broadcast schedule.

60

FIGURE 4.14: Multiple BELL zones. 64

FIGURE 4.15: Testbed hardware architecture. 65

FIGURE 4.16: Testbed driver software structure. 65

FIGURE 4.17: Measured current of MU. (a) Current of the test Raspberry
Pi connecting a USB Wi-Fi adapter within C-WLAN; (b) Current of
the test Raspberry Pi for performing a periodic full channel scanning
within C-WLAN; (c) Current of the test Raspberry Pi for performing
one 802.11 standard handoff within C-WLAN; (d) Current of the test
Raspberry Pi for performing one BELL-handoff within BELL.

69

xii

FIGURE 5.1: The area change of camera captured video frames during
autonomous driving.

71

FIGURE 5.2: Overview of the proposed E-Auto scheme. 75

FIGURE 5.3: Comparison of channel access. (a) EDCA channel access;
(b) E-Auto channel access.

79

FIGURE 5.4: Acquired average frame rate vs. klow × slow. (a) UCVs
acquired average offloading frame rate; (b) DCVs acquired average
downloading frame rate.

80

FIGURE 5.5: Only MUs with RSSI in [µmin, µmax] might have chance to
be transferred.

83

FIGURE 5.6: Example of the Ping-Pong effect of a simple greedy algo-
rithm. (a) Original MU-MAP connection; (b) MU-MAP connection
after an iteration.

84

FIGURE 5.7: Load comparison. (a) M = 100; (b) M = 300. 87

FIGURE 5.8: Battery drain comparison. (a) Battery drain within C-
WLAN; (b) Battery drain comparison.

88

FIGURE 6.1: Processing pipeline of the deep CNN optimized object de-
tection application implemented in this section.

91

FIGURE 6.2: Experimental results for local execution. (a) Total latency
per frame and FPS; (b) Convert and inference latency per frame; (c)
Average energy consumption per frame breakdown (Nexus 6); and
(d) Average percentage breakdown of energy consumed in executing
300× 300 MobileNetv1 SSD model (Nexus 6).

94

FIGURE 6.3: Experimental results for remote execution. (a) Total latency
per frame and FPS; (b) Inference and communication latency per
frame; (c) Average energy consumption per frame breakdown (Nexus
6); and (d) Average percentage breakdown of energy consumed in
executing 320× 320 YOLOv3 model (Nexus 6).

95

FIGURE 6.4: Power consumption analyses of the image generation and
preview phases. (a) Preview resolution vs. power consumption; (b)
3A and image post processing algorithms vs. power consumption; (c)
Camera capture frame rate vs. power consumption; and (d) Com-
parison of the energy consumption per frame (remote execution).

100

xiii

FIGURE 6.5: Comparison of the object detection results (remote execu-
tion). (a) All enabled; (b) All disabled.

101

FIGURE 6.6: CPU frequency vs. power and service latency (computation
model size: 3202 pixels).

105

FIGURE 6.7: Computation model size vs. energy consumption and ser-
vice latency.

105

FIGURE 6.8: Camera FPS vs. power and sampling efficiency (computa-
tion model size: 3202 pixels).

106

FIGURE 6.9: Overview of the proposed edge-based MAR system. 109

FIGURE 6.10: The impact of CPU frequency on the power consumption
of image generation and preview.

110

FIGURE 6.11: MAR client’s wireless interface power consumption. 113

FIGURE 6.12: The proposed regression-based models. 116

FIGURE 6.13: Measured data vs. estimated data from our proposed
analytical model.

123

FIGURE 6.14: Optimality. (a) Q vs. Max. bandwidth; (b) Q vs. user
preference.

124

FIGURE 6.15: System performance vs. Max. bandwidth. 125

FIGURE 6.16: System performance vs. user preference. 125

xiv

LIST OF TABLES

TABLE 1.1: Conventional radio-service handoff latency results 7

TABLE 3.1: Notations used in the proposed handoff trigger scheme. 18

TABLE 3.2: Experimental results 37

TABLE 3.3: Staleness results (IOU) 41

TABLE 4.1: Handoff energy consumption results 67

TABLE 4.2: Handoff latency Results 67

TABLE 5.1: Notations used in E-Auto 71

TABLE 5.2: Data rate table of 802.11n (4 spatial streams) 79

TABLE 5.3: Scheme comparison 80

TABLE 5.4: Energy efficiency results 81

TABLE 6.1: Smartphones used in our study. 90

TABLE 6.2: Classifications of the tested smartphones. 90

TABLE 6.3: The proposed regression-based models. 117

TABLE 6.4: Power and duration of promotion & tail phases. 122

xv

LIST OF ABBREVIATIONS

AC Assistant MEC

AE Auto-Exposure

AF Auto-Focus

AIFSN Arbitration Inter-Frame Space Number

AP Access Point

AR Augmented Reality

AWB Auto-White-Balance

BCD Block Coordinate Descent

BS Base Station

CC Color Correction

CNN Convolutional Neural Network

DC Dominating MEC

EE Edge Enhancement

FPS Frame Per Second

IEEE Institute of Electrical and Electronics Engineers

ISP Image Signal Processor

LTE Long-Term Evolution

mAP Mean Average Precision

MAR Mobile AR

xvi

MEC Mobile Edge Computing

MINLP Mixed-Integer Non-Linear Programming Problem

NR Noise Reduction

QoE Quality-of-Experience

QoS Quality-of-Service

RBF Radial Basis Function

RSSI Received Signal Strength Indicator

SINR Signal-to-Interference-plus-Noise Ratio

VM Virtual Machine

WAN Wide Area Network

CHAPTER 1: INTRODUCTION

1.1 Background on Mobility Management in MEC Networks

Mobile edge computing (MEC) has emerged as a promising technology to overcome

the challenges of executing latency-sensitive and computation-intensive applications

at resource-limited mobile devices, by pushing mobile computing, network control,

and storage resources to the edge of mobile wireless networks (e.g., base stations

(BSs) and access points (APs)) [1].

As compared to the cloud, MEC supports reduced network latency, which enabled a

myriad of real-time mobile applications that require low latency and high computation

power, including computational offloading, edge video caching, connected vehicles,

and smart healthcare.

To achieve the goal of seamless mobility, first, services should experience very

low-latency breaks so that mobility is transparent to applications. Second, the appli-

cation end-to-end Quality-of-Service (QoS)/ Quality-of-Experience (QoE) should be

maintained after the mobility to ensure smooth transition and minimum performance

degradation. Although the mobility support issue has been extensively investigated

in conventional wireless networks, mobility management schemes proposed in these

networks consider the communication-only scenario, while MEC networks tie commu-

nications together with computing activities. Therefore, under MEC networks, there

are some unique issues in the seamless mobility support.

First, in conventional wireless networks, user mobility causes the connectivity

change between a user and its attachment point in the wireless networks (i.e., AP

or BS). This triggers a radio handoff process in which a mobile user first identifies

nearby candidate APs/BSs, and then switches to the best available AP/BS. However,

2

in MEC networks, a user’s computation needs should also be considered in the hand-

off process when it roams to the service area of a new MEC server that is usually

attached to a BS or AP. For instance, a mobile user’s offloaded computational tasks at

its current MEC server should be migrated to or rebuilt on a new MEC server, after

a radio handoff is triggered. This service handoff process is new in MEC networks.

The time period, from the time when a mobile user loses its computation service

provided by its current MEC server to the time when the mobile user re-achieves

the service provided by a new MEC server, is defined as service rebuilding latency.

Seamless mobility requires a seamless service rebuilding process that should support

very low-latency of combined radio handoff and service handoff. All existing mobility

solutions consider the radio handoff and service handoff separately. In other words,

studies in communications only focus on improving the radio handoff efficiency (e.g.,

reducing the delay of identifying the best target AP), while studies in computing only

consider reducing the service handoff latency (e.g., reducing the data size needs to be

migrated). However, this leads to the inefficiency and prolonged delay of the service

rebuilding process; for example, the radio and service handoffs are always performed

sequentially, instead of in parallel, thus seamless mobility cannot be guaranteed.

Second, the QoS/QoE performance of the mobility management mechanisms de-

signed for conventional wireless networks cannot be guaranteed under MEC networks

due to the neglect of the computation related metrics in handoff decisions. For exam-

ple, in IEEE 802.11, the link quality connecting a mobile user and its associated AP

is used as a metric for triggering a handoff and selecting the new target AP after a

handoff. However, not considering any computation metric in handoff decisions may

lead to poor performance at the MEC server side. For example, a roaming user in

MEC networks will select the AP to associate with during a handoff if it obtains a

good radio link quality (e.g., high received signal strength indicator (RSSI)), but the

computation performance may be weak if the new MEC server has limited computing

3

resources, causing a high computation delay of the offloaded computing tasks thus,

seamless mobility is not supported.

In addition, the QoS of computation services in MEC networks cannot always be

guaranteed due to the legacy design of radio resource allocation in existing wireless

networks. Traditionally, wireless networks allocate more radio resources to down-

link, since downlink traffic volume is usually much higher than uplink. For example,

downloading a video from the Internet consumes significantly more bandwidth than

uploading a mobile user’s GPS information for the navigation purpose. Therefore,

downlink acquires higher throughput, peak data rate, and spectral efficiency than

uplink. However, in MEC networks, uplink traffic (e.g., a mobile user who is en-

joying an edge-based augmented reality (AR) application offloads real-time camera

captured video frames to an MEC server) may be massive and very latency-sensitive,

thus requiring even higher throughput than the downlink traffic (e.g., the MEC server

sends back the computation results to the user). Such new traffic distribution creates

unique challenges for seamless mobility support in MEC networks and requires the

resource allocation issue in wireless networks to be revisited and redesigned.

Finally, the limited battery life of mobile clients becomes a bottleneck, which im-

pedes the mobile clients to obtain better user experience in MEC environment. For

example, the advancement in deep learning and edge computing has enabled intel-

ligent mobile AR (MAR) on resource limited mobile clients. However, today very

few deep learning based MAR applications are applied in mobile clients because they

are significantly energy-guzzling. Although compared to running a deep learning al-

gorithm locally on a mobile device, edge-based approach may extend the device’s

battery life to some extent, it is still considerably energy consuming due to conduct-

ing multiple pre-processes on the mobile device, such as camera sampling, screen

rendering, image conversion, and data transmission [2]. For instance, based on the

measurement from our developed MAR testbed, a 3000 mAh smartphone battery is

4

exhausted within approximately 2.3 hours for executing our developed MAR applica-

tion which continuously transmits the latest camera sampled image frames to an edge

server for object detection. Therefore, the energy efficiency of MAR devices becomes

a bottleneck, which impedes MAR clients to obtain better MAR performance. For

example, decreasing the energy consumption of an MAR device is always at the cost

of reducing the object detection accuracy. Therefore, improving the energy efficiency

of MAR devices and balancing the tradeoffs between energy efficiency and other MAR

performance metrics are crucial to edge-based MAR systems.

1.2 Problem Statement

1.2.1 Inadequate Handoff Triggers in MEC Networks

Handoff triggers in conventional wireless networks is based on the radio link qual-

ity related metrics [3–7], such as RSSI (Received Signal Strength Indicator) [4,7], the

number of the lost beacons [4], and the number of re-transmitted packets at users. In

IEEE 802.11, only one of above mentioned metrics measured on one link direction,

usually the downlink direction, is used as the handoff trigger. However, these radio

quality based triggers are no longer sufficient in MEC networks. First, downlink and

uplink may be asymmetric, since mobile users and their associated AP may acquire

different transmission/receiving capabilities or have different hardware/software im-

plementations. Thus, it is possible the downlink quality stays good while the uplink

quality is weak. Therefore, considering a single measurement metric at the downlink

direction as the only metric for triggering handoffs is inadequate. In addition, as

explained previously, not considering computation related metrics in handoff triggers

will lead to poor performance at the MEC server side and severely affect the handoff

trigger accuracy. For example, a handoff will not be triggered if a user obtains a

good radio link quality (e.g., high RSSI or low packet re-transmission ratio), but a

weak computation performance (e.g., the MEC server allocates insufficient computing

resources to the user causing a high computation latency).

5

To study the impact of inadequate handoff triggers, experimental studies are con-

ducted, based on an edge-based mobile AR application, to demonstrate the IEEE

802.11 standard handoff trigger is inadequate in MEC networks, as shown in Figures

1.1(a), 1.1(b), and 1.1(c). Edge-based AR applications are uplink traffic dominating,

where users offload a large amount of camera captured video frames to edge servers for

object analytics purposes in real-time. Figure 1.1(a) shows the video frame offloaded

to the MEC server for processing. After a long delay, the user acquires the returned

analytics results (i.e., labels) in Figure 1.1(c). From the figure we can see that the

reported two chairs’ locations are obviously wrong, compared with the correct results

shown in Figure 1.1(b). This incorrect analytics result is due to the change of the

scene captured by the user’s camera because of user mobility within the long delay

waiting for the returned analytics results. Therefore, without an adequate handoff

triggering mechanism that considers both the computing and communication require-

ments of user applications, a user may experience poor performance in MEC and may

remain poor for a lengthy duration.

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

(a)

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

(b)

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

chair

(c)

Figure 1.1: Inadequate handoff triggers in MEC networks. (a) Offloaded video frame;
(b) Correct analytics result; and (c) Result with staleness.

1.2.2 Inefficient Radio-Service Handoff Process in MEC Networks

When a mobile user moves away from its attached MEC server, its offloading ser-

vice has to be migrated or rebuilt on a new nearby MEC server. This process is called

service rebuilding and takes a long delay that may deteriorate user experience. The

6

service rebuilding process includes radio and service handoffs. Although many exist-

ing papers proposed different ways to reduce radio and service handoff latencies, the

service rebuilding latency still cannot satisfy the requirements of latency-sensitive ap-

plications. First, all existing solutions consider radio and service handoffs separately

and they are always performed sequentially. This leads to inefficient service rebuilding

process. In addition, most existing work on service handoff is not suitable for prac-

tical wireless networks. For instance, virtual machine (VM) live migration is widely

used in data centers, where the computing service is encapsulated in a VM. How-

ever, it is not suitable for the service handoff across MEC servers [8] because, unlike

centralized data centers that are deployed with dedicated high-bandwidth networks,

connectivity between MEC servers is subject to varying wide area network (WAN)

latency, bandwidth, and jitter. Therefore, migrating the whole VM file system takes

considerably longer.

Experimental measurement studies are conducted to demonstrate the inefficiency

of service rebuilding process in existing MEC networks. The measurement results

are shown in Figure 1.2 and Table 1.1. According to Table 1.1, the total service

rebuilding latency is around 41 seconds, which is too much for latency-sensitive ap-

plications/services. Additionally, as shown in Figure 1.2, the radio handoff cannot

run in parallel with the service handoff because the target MEC server has to be

notified first if a mobile user is handed off to the corresponding AP before initiating a

service handoff. Compiling the application code costs approximate 27.3 seconds that

significantly delays the service rebuilding.

1.2.3 Impartial Resource Allocation in MEC Networks

Many current video streaming applications/services in MEC networks are no longer

downlink traffic dominant only [9–19]. Thus, traditional radio resource allocation

designs that favor the downlink traffic are no longer suitable for supporting QoS/QoE

in MEC. Experimental measurement studies are conducted to explore the wireless

7

5 100 15 20 25 30 35 40 45
Seconds since service rebuilding start

Trigger

Scanning

Auth and Re-assoc

Downloading

Compiling

Loading

TCP

Radio handoff

Service handoff

-24 6 11 16 21
Seconds since service rebuilding start

Downloading

Compiling

Loading

Trigger

Scanning

Auth and Re-assoc

TCP

-19 -14 -9 -4 1

Mobile user

loses the service

Mobile user re-

achieves the service

Mobile user

loses the service

Mobile user

re-achieves

the service

Achieve a predicted

target cloudlet

14.1 sec

Figure 1.2: Traditional radio-service handoff process.

Table 1.1: Conventional radio-service handoff latency results

Overall Breakdown

Radio handoff
Trigger 0.41sec

3.06sec Scanning 2.62sec
Auth and Re-assoc 24ms

Service handoff 38.89sec

Downloading 7.1sec
Compiling 27.3sec
Loading 4.4sec

Building TCP connection 90ms
Total latency 41.15sec

network performance changes while heavy uplink and downlink traffic co-exist and

demonstrate the unfairness in traditional IEEE 802.11 wireless networks, as shown in

Figure 1.3.

Observations from Figure 1.3: The latency of downloading and offloading each

video frame and the average latency are measured and calculated, where users do not

have mobility. As shown in Figure 1.3(a), the average offloading latency per frame is

dramatically increased by approximately 1600%, after a user with downloading traffic

joined the network. As shown in Figure 1.3(b), the average downloading latency per

frame is only increased by approximately 125% after a user with offloading traffic

joined the network, which is much less than the increase of the average offloading

latency. As shown in Figure 1.3(a), when the downloading video frame resolution in-

creases (i.e., the total downloading data size increases), the average offloading latency

per frame does not change much. The same observation is obtained in the downlink

8

Offloading video frame resolution

no offloading 640x480 1980x1080

0.05

0

0.1

0.15

0.2

0.25

0.3
Downloading video frame resolution 480x320

Offloading video frame resolution

no offloading 640x480 1980x1080

0.05

0

0.1

0.15

0.2

0.25

0.3
Downloading video frame resolution 480x320

Offloading video frame resolution

640x480

0

1

2

3

4

5

6

7

8

9

no download 480x320 720x480 1280x720 1920x1080

Downloading video frame resolution

Offloading video frame resolution

640x480

0

1

2

3

4

5

6

7

8

9

no download 480x320 720x480 1280x720 1920x1080

Downloading video frame resolution

Offloading video frame resolution

640x480

0

1

2

3

4

5

6

7

8

9

no download 480x320 720x480 1280x720 1920x1080

Downloading video frame resolution

Offloading video frame resolution

640x480

0

1

2

3

4

5

6

7

8

9

no download 480x320 720x480 1280x720 1920x1080

Downloading video frame resolution

(a)

Offloading video frame resolution

no offloading 640x480 1980x1080

0.05

0

0.1

0.15

0.2

0.25

0.3
Downloading video frame resolution 480x320

Offloading video frame resolution

no offloading 640x480 1980x1080

0.05

0

0.1

0.15

0.2

0.25

0.3
Downloading video frame resolution 480x320

Offloading video frame resolution

640x480

0

1

2

3

4

5

6

7

8

9

no download 480x320 720x480 1280x720 1920x1080

Downloading video frame resolution

Offloading video frame resolution

640x480

0

1

2

3

4

5

6

7

8

9

no download 480x320 720x480 1280x720 1920x1080

Downloading video frame resolution

(b)

0 5 10 15 20 25 30 35 40 45 50
Time (s)

4000

4500

3500

3000

2500

2000

1500

1000

500

0

Connected vehicle

B with offloading

traffic joining

Downlink trafficDownlink traffic

Connected vehicle B leaving

0 5 10 15 20 25 30 35 40 45 50
Time (s)

4000

4500

3500

3000

2500

2000

1500

1000

500

0

Connected vehicle

B with offloading

traffic joining

Downlink traffic

Connected vehicle B leaving

0 5 10 15 20 25 30 35 40 45 50

4000

4500

3500

3000

2500

2000

1500

1000

500

0

Time (s)

Uplink trafficUplink traffic

Connected vehicle

A with downloading

traffic joining

Connected vehicle A leaving

0 5 10 15 20 25 30 35 40 45 50

4000

4500

3500

3000

2500

2000

1500

1000

500

0

Time (s)

Uplink traffic

Connected vehicle

A with downloading

traffic joining

Connected vehicle A leaving

(c)

0 5 10 15 20 25 30 35 40 45 50
Time (s)

4000

4500

3500

3000

2500

2000

1500

1000

500

0

Connected vehicle

B with offloading

traffic joining

Downlink trafficDownlink traffic

Connected vehicle B leaving

0 5 10 15 20 25 30 35 40 45 50
Time (s)

4000

4500

3500

3000

2500

2000

1500

1000

500

0

Connected vehicle

B with offloading

traffic joining

Downlink traffic

Connected vehicle B leaving

0 5 10 15 20 25 30 35 40 45 50

4000

4500

3500

3000

2500

2000

1500

1000

500

0

Time (s)

Uplink trafficUplink traffic

Connected vehicle

A with downloading

traffic joining

Connected vehicle A leaving

0 5 10 15 20 25 30 35 40 45 50

4000

4500

3500

3000

2500

2000

1500

1000

500

0

Time (s)

Uplink traffic

Connected vehicle

A with downloading

traffic joining

Connected vehicle A leaving

(d)

Figure 1.3: Experimental results for users with no mobility. (a) Average offloading
latency per frame; (b) Average downloading latency per frame; (c) The number of
downlink packets; and (d) The number of uplink packets.

scenario, as shown in Figure 1.3(b).

In order to find the reasons for the aforementioned observations, another experi-

ment study is conducted. The traffic of downlink and uplink is measured, as shown in

Figure 1.3(c) and 1.3(d), respectively. In Figure 1.3(d), a big uplink throughput drop

occurs during the [5, 43] second period, because a user with downloading traffic joins

the network. On the other hand, there is no obvious downlink throughput decline

as shown in Figure 1.3(c), when a user with uplink traffic joins the network. This

is because usually APs are configured with a smaller Arbitration Inter-Frame Space

Number (AIFSN) value for voice and video traffic (e.g., AIFSN = 1) than that of

9

its associated stations (e.g., AIFSN = 2). Thus, an AP obtains a higher priority for

channel contention than its associated stations (i.e., the downlink traffic has a higher

priority than the uplink traffic during contention), which significantly impacts the

transmission efficiency of the user offloading its camera captured video frames. Al-

though the same AIFS value may be configured for both the AP and stations in order

to eliminate the above unfairness, the complicated and fierce channel contention may

still badly impact the throughput of both downlink and uplink.

1.2.4 Energy-Guzzling Offloading Services in MEC Networks

An accurate analytical energy model is significantly important for understanding

how energy is consumed in an MAR device and for guiding the design of energy-

aware MAR systems. However, to the best of our knowledge, there is no existing

energy model developed for MAR devices or applications. Developing a comprehen-

sive MAR energy model that is general enough to handle any MAR architecture and

application is very challenging. This is because (i) interactions between MAR con-

figuration parameters (e.g., client’s CPU frequency and computation model size) and

MAR device’s energy consumption are complex and lack analytic understandings; (ii)

interactions between these configurations and the device’s energy consumption may

also vary with different mobile architectures.

In addition, designing an energy-aware solution for mobile devices in edge-based

MAR systems is also challenging, even after we obtain an analytical energy model.

This is because: (i) complicated pre-processes on MAR devices increase the com-

plexity of the problem. Compared to conventional computation offloading systems,

besides data transmission, there are also a variety of pre-processing tasks (e.g., cam-

era sampling, screen rendering, and image conversion) necessarily to be performed on

MAR devices, which are also energy consuming. For example, over 60% of the energy

is consumed by camera sampling and screen rendering, based on observations from

our developed testbed. Therefore, we have to take into account the energy efficiency

10

of these pre-processing tasks while designing an energy-aware approach for MAR

clients. (ii) Considering the user preference constraint of individual MAR clients also

increases the complexity of the problem. For example, maintaining a high detection

accuracy for a client who prefers a precise MAR while decreasing its energy consump-

tion is very challenging. As stated previously, reducing the energy consumption of

the MAR device without degrading other performance metrics is no easy task. (iii)

In practical scenarios, an edge server is shared by multiple MAR clients. Individual

client’s energy efficiency is also coupled with the radio resource allocation at the edge

server. Such a coupling makes it computationally hard to optimally allocate radio

resources and improve each client’s energy efficiency.

1.3 Overview of the Proposed Research

Handoff trigger

mechanism in

MEC networks

Radio-service

handoff protocols

in MEC networks

Resource allocation

protocols in MEC

networks

Realizing fast and

accurate handoff

triggers

Realizing the seamless

service restoring on

the new MEC server

Fast

handoff

Energy-efficient

handoff

Research Work

Single edge

server

Multiple

edge servers

Mitigating the

service staleness

Guiding the

target MEC

server selection

Realizing impartial

radio resource allocation

in MEC networks

Research Objectives

Configuration

adaptation algorithm

in MEC networks

Guiding the

configuration adaptation

for mobile clients (e.g.,

MAR device)

Improving the energy

efficiency of mobile

devices

Figure 1.4: The overview of the proposed research.

Based on the analysis of the above four issues in MEC networks, to achieve the

performance goals of seamless mobility, carefully and intelligently design the overall

service rebuilding procedure that fully exploits the extracted application features and

information that a user can possibly obtain to the advantages of seamless mobility

support is proposed. Figure 1.4 shows the overview of the proposed research. Fol-

11

lowing four design strategies are proposed: (1) smart handoff trigger that covers

both network-side link quality and server-side computation performance to achieve a

fast and accurate trigger for seamless mobility support in MEC networks; (2) radio-

service handoff process for seamlessly restoring offloaded services on the new MEC

server after a handoff is triggered; (3) impartial resource allocation to minimize

performance degradation during mobility caused by radio resource allocation unfair-

ness; and (4) dynamic configuration adaptation to guide MAR configuration

adaptations and radio resource allocations at the MEC server, and to minimize the

MAR client’s energy consumption while satisfying their user preferences.

First of all, a practical smart handoff trigger scheme is intelligently designed to

achieve a fast and accurate handoff trigger. The proposed trigger scheme covers

both network-side link quality and server-side computation performance for users

with frequent mobility in MEC networks. In particular, (1) the factors that may

cause service staleness in detail by establishing analytical models are first studied.

Then, based on our analytical models, (2) a handoff trigger scheme to quickly and

accurately discover the factors causing the service staleness is designed. Finally, (3) a

method that can efficiently mitigate the service staleness after a mobile user detects

the factors incurring service staleness is proposed.

Second, two protocols to mitigate the radio-service handoff latency and improve

the handoff energy efficiency are proposed. (1) A fast radio-service handoff protocol

is proposed, where radio and service handoffs are conduct in parallel. The proposed

protocol seamlessly restores offloading services on the target MEC server after a radio

handoff is triggered. The seamless service rebuilding process is achieved via predict-

ing mobile user’s target MEC server, before being triggered a radio handoff, and

leveraging extracted features from the user’s camera captured frames. Furthermore,

based on the proposed fast radio-service handoff protocol, a feature database training

strategy and feature mapping algorithm are proposed to achieve a high prediction

12

precision and a short prediction latency. (2) An energy efficient radio-service handoff

protocol is proposed, where radio and service handoffs are conduct in sequence. The

proposed protocol provides an energy-efficient and low-latency handoff service for its

associated mobile users by reproducing and scheduling the beacons broadcast from

APs.

In addition, two resource allocation protocols are proposed to mitigate the ra-

dio resource allocation unfairness for mobile users in MEC networks. The proposed

protocols mitigate the unfairness caused by the design bias in conventional wireless

networks. (1) For the single edge server scenario, the key factors that may impact the

radio resource allocation in detail are first studied. Then, based on our analysis, a

service period allocation protocol is proposed to impartially assign the radio resources

to both users with downlink traffic and users with uplink traffic. In addition, a frame

resolution selection algorithm is proposed to guarantee a better performance in terms

of a higher frame rate. (2) For the multiple edge servers scenario, a user-friendly

load-balancing protocol among multiple MEC servers is proposed. In addition, the

proposed protocol can always find the optimal load-balancing solution is proved.

Last but not least, a user preference based energy-efficient optimization algorithm is

proposed to reduce the per frame energy consumption of MAR clients without com-

promising their user preferences by dynamically selecting the optimal combination

of MAR configurations and radio resource allocations according to user preferences,

camera FPS, and available radio resources at the edge server. In particular, (1) an

edge-based MAR system is designed and implemented to analyze the interactions

between MAR configurations and the client’s energy consumption. Based on the

experimental study, several insights that can potentially guide the design of energy-

aware MAR systems are summarized. (2) The first comprehensive energy model

is proposed, which identifies the tradeoffs among the energy consumption, service

latency, and detection accuracy, and the interactions among MAR configuration pa-

13

rameters (i.e., CPU frequency and computation model size), user preferences, camera

sampling rate, network bandwidth, and per frame energy consumption for a multi-

user edge-based MAR system. (3) An energy-efficient optimization algorithm, LEAF,

which guides MAR configuration adaptations and radio resource allocations at the

edge server, and minimizes the per frame energy consumption while satisfying variant

clients’ user preferences is developed.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, related work

on the proposed research is introduced. In Chapter 3, a handoff trigger mechanism

in MEC networks is proposed. In Chapter 4, two radio-service handoff protocols in

MEC networks are proposed. In Chapter 5, two resource allocation protocols in MEC

networks are given. In Chapter 6, an energy-aware configuration adaptation algorithm

in MEC networks is proposed. Following that, the publications and remaining work

are listed in Chapter 7.

CHAPTER 2: RELATED WORK

Currently, a significant amount of research work has addressed various issues in

MEC networks [20–35], including system and network modeling [36–44], architecture

design [45–66], offloading decision [67–82], virtual machine (VM) migration [8,83–91],

path selection [92,93], multi-user resource allocation [94–113], green MEC [114–118],

security [119–122], and standardization [123–128]. However, the mobility support

issue in MEC networks is under-explored in the literature and it is becoming a serious

barrier to the success of large-scale MEC deployment. In addition, although mobility

management has been extensively studied in conventional wireless networks [3–6],

these works did not consider the unique issues caused by both the communication

and computing needs of mobile users as well as their interrelationships. Therefore,

they cannot achieve the goal of seamless mobility in MEC.

2.1 Existing Handoff Trigger Mechanisms in MEC Networks

Currently, most of papers studying the handoff trigger only focus on conventional

wireless networks. Handoff triggers in conventional wireless networks is based on the

radio link quality related metrics [3–7], such as RSSI [4, 7], the number of the lost

beacons [4], and the number of re-transmitted packets at users. In IEEE 802.11, only

one of above mentioned metrics measured on one link direction, usually the downlink

direction, is used as the handoff trigger. However, these radio quality based trig-

gers are no longer sufficient in MEC networks. First, downlink and uplink may be

asymmetry, since mobile users and their associated AP may acquire different trans-

mission/receiving capabilities, or have different hardware/software implementations.

Thus, it is possible the downlink quality stays good while the uplink quality is ter-

15

rible. Therefore, considering a single measurement metric at the downlink direction

as the only metric for triggering handoffs is inadequate. In addition, as explained

previously, not considering computation related metrics in handoff trigger will lead

to poor performance at the MEC server side and severely affect the handoff trigger

accuracy. For example, a handoff will be not triggered if a user obtains a good radio

link quality (e.g., high RSSI or low packet re-transmission ratio), but a terrible com-

putation performance (e.g., the MEC server allocates insufficient computing resources

to the user causing a high computation latency).

2.2 Existing Radio-Service Handoff Protocols in MEC Networks

Related work on radio-service handoffs in MEC networks has two major issues.

First, all existing solutions consider radio handoff and service handoff separately and

they are always performed sequentially [129–133]. This leads to inefficient service

rebuilding process. In addition, most existing work on service handoff focused on

virtual machine (VM) migration [8, 83, 134–136], where the offloading service is en-

capsulated in a VM. When a mobile user moves away from its original server, the

VM is directly migrated from the original server to the target server. However, it is

not suitable for the service handoff across MEC servers [8], since unlike centralized

data centers which are deployed with dedicated high-bandwidth networks, connec-

tivity between MEC servers is subject to widely-varying wide area network (WAN)

latency, bandwidth, and jitter. Therefore, migrating the whole VM file system takes

considerably long time.

2.3 Existing Radio Resource Allocation Protocols in MEC Networks

There are several related papers studying the radio resource allocation in MEC

networks with various limitations. First of all, most of existing work does not consider

the resource allocation unfairness between the downlink and uplink [137–139]. In

conventional wireless communication scenarios, downlink (from the Internet/server to

16

mobile clients) often attracts much more attention than uplink (from mobile clients to

the Internet/server), since comparing to uplink, downlink occupies a larger amount of

traffic. Therefore, in conventional wireless communication technologies, for instance,

downlink in Long-Term Evolution (LTE) networks acquires higher throughput, peak

data rate, and spectral efficiency than uplink [140,141]; and this also happens in WiFi

networks [141, 142]. However, many current video streaming applications/services

in MEC networks are no longer downlink traffic dominant only [14, 16, 18]. Thus,

conventional radio resource allocation designs that favor the downlink traffic are no

longer suitable for supporting QoS/QoE in MEC. Second, most of existing papers do

not consider the user-mobility-impact on the radio allocation.

2.4 Related Work on Computation Offloading in MEC Networks

Most existing research on computation offloading focuses on how to make offload-

ing decisions. [143–145] coordinate the scheduling of offloading requests for multiple

applications to further reduce the wireless energy cost caused by the long tail prob-

lem. [146] proposes an energy-efficient offloading approach for multicore-based mobile

devices. However, these solutions cannot be applied to improving the energy effi-

ciency of mobile devices in MAR offloading cases. This is because (i) a variety of

pre-processing tasks in MAR executions, such as camera sampling, screen render-

ing, and image conversion, are not taken into account and (ii) besides the latency

constraint that is considered in most existing computation offloading approaches, de-

tection accuracy is also a key performance metric, which must be considered while

designing an MAR offloading solution. In addition, although some existing work

proposes to study the tradeoffs between the MAR service latency and detection ac-

curacy [147–149], none of them considered (i) the energy consumption of the MAR

device and (ii) the whole processing pipeline of MAR (i.e., starting from the camera

sampling to obtaining detection results).

In addition, energy modeling has been widely used for investigating the factors that

17

influence the energy consumption of mobile devices. [7, 141, 150–155] propose energy

models of WiFi and LTE data transmission with respect to the network performance

metrics, such as data and re-transmission rates, respectively. [156–159] propose multi-

ple power consumption models to estimate the energy consumption of mobile CPUs.

However, none of them can be directly applied to estimate the energy consumed by

MAR applications. This is because MAR applications introduce a variety of (i) en-

ergy consuming components (e.g., camera sampling and image conversion) that are

not considered in the previous models and (ii) configuration variables (e.g., computa-

tion model size and camera sample rate) that also significantly influence the energy

consumption of mobile devices.

CHAPTER 3: PROPOSED HANDOFF TRIGGER SCHEME IN MEC

NETWORKS

A practical smart handoff trigger scheme in MEC networks, named as Explorer, is

described in this chapter. The proposed handoff trigger scheme covers both wireless

link quality and server-side computation performance for users with frequent mobility

in MEC networks in order to achieve a fast and accurate handoff trigger. First, the

factors that may cause service staleness are investigated in detail by establishing

analytical models. Then, based on these analytical models, a handoff trigger scheme

that can quickly and accurately discover the factors causing the service staleness is

proposed. Finally, after a mobile user detects the factors incurring service staleness,

an approach that can efficiently mitigate the service staleness is proposed. Parameter

that will be used in analytical models and the proposed handoff trigger scheme are

listed in Table 3.1.

Table 3.1: Notations used in the proposed handoff trigger scheme.

Variable Description
k2
m Frame resolution of the mth video frame (pixels2)
γ The number of bits carried by one pixel (bits)
LAm Service latency of the mth video frame (s)
LAtrm Wireless network latency of the mth video frame (s)
LAcpm Computation latency of the mth video frame (s)
cm Computation complexity of the mth video frame (TFLOPS)
H Channel gain
I Interference power (watt)
σ2 Background noise power (watt)
P Transmission power (watt)
B Network bandwidth (Hz)
f Available computational resources on the server (TFLOPS)

19

3.1 Preliminary Experiments

In order to mitigate the staleness and guarantee the detection accuracy simul-

taneously during user-mobility, MAR systems need to process at high frame-rates.

Therefore, having a stable wireless link in an energy-efficient way, especially the up-

link, when MAR users move, is very important. It is natural to ask that whether

WiFi or cellular networks, which are the two most commonly-used wireless technolo-

gies, can offer wireless connections with the aforementioned feature for MAR users.

To answer this question, we conduct a series of experiments in an 8000m2 campus

building with multiple APs. ASUS ZenFone AR is used as the testing platform. Two

network candidates are chosen for test, i.e., 802.11ac (eduroam) for WiFi and LTE

(supported by T-mobile) for cellular networks.

WiFi RSSI LTE RSSI

100 200 3000 50 150 250
Time (sec)

R
S

S
I

(d
B

m
)

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

WiFi RSSI LTE RSSI

100 200 3000 50 150 250
Time (sec)

R
S

S
I

(d
B

m
)

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

100 200 3000 50 150 250
Mbps

-40

-50

-60

-70

-80

-90

-100

R
S

S
I

(d
B

m
)

AP 1 AP 2

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

100 200 3000 50 150 250
Mbps

-40

-50

-60

-70

-80

-90

-100

R
S

S
I

(d
B

m
)

AP 1 AP 2

Figure 3.1: Signal strength fluctuation.

Signal strength fluctuation. First, as shown in Figure 3.1, we measure the

signal strength fluctuation, indicated by RSSI, on the testing ZenFone AR. The data

is generated from tracking the value of RSSI while the testing ZenFone AR is moving

around inside the campus building. This measurement is repeated 5 times with the

same moving trace, in order to get a statistical confidence in the experimental results.

WiFi: user-mobility incurs violent signal strength fluctuations and frequent handoff

attempts, approximately every 50s, which causes the MAR user losing the wireless

20

connection for more than 3 seconds. This will definitely cause a high staleness for

MAR applications. LTE: the measured RSSI of LTE within the trace is relatively

stable. Only when the testing platform is away from the building’s window-side, the

RSSI drops down.

WiFi RSSI LTE RSSI

100 200 3000 50 150 250
Time (sec)

R
S

S
I

(d
B

m
)

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

WiFi RSSI LTE RSSI

100 200 3000 50 150 250
Time (sec)

R
S

S
I

(d
B

m
)

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

100 200 3000 50 150 250
Throughput (Mbps)

-40

-50

-60

-70

-80

-90

-100

R
S

S
I

(d
B

m
)

AP 1 AP 2

100 200 3000 50 150 250
Throughput (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

100 200 3000 50 150 250
Throughput (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

10
2

10
1

10
0

10
-1

F
ra

m
e

ra
te

 (
fp

s)

WiFi offloading

LTE offloading

10
2

10
1

10
0

10
-1

F
ra

m
e

ra
te

 (
fp

s)

WiFi offloading

LTE offloading

Figure 3.2: Throughput

WiFi RSSI LTE RSSI

100 200 3000 50 150 250
Time (sec)

R
S

S
I

(d
B

m
)

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

WiFi RSSI LTE RSSI

100 200 3000 50 150 250
Time (sec)

R
S

S
I

(d
B

m
)

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

100 200 3000 50 150 250
Throughput (Mbps)

-40

-50

-60

-70

-80

-90

-100

R
S

S
I

(d
B

m
)

AP 1 AP 2

100 200 3000 50 150 250
Throughput (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

100 200 3000 50 150 250
Throughput (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

Figure 3.3: CDF of throughput

WiFi RSSI LTE RSSI

100 200 3000 50 150 250
Time (sec)

R
S

S
I

(d
B

m
)

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

WiFi RSSI LTE RSSI

100 200 3000 50 150 250
Time (sec)

R
S

S
I

(d
B

m
)

-40

-50

-60

-70

-80

-90

-100

-110

-120

-130

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

100 200 3000 50 150 250
Throughput (Mbps)

-40

-50

-60

-70

-80

-90

-100

R
S

S
I

(d
B

m
)

AP 1 AP 2

100 200 3000 50 150 250
Throughput (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

100 200 3000 50 150 250
Throughput (Mbps)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

WiFi downlink

WiFi uplink

LTE downlink

LTE uplink

10
2

10
1

10
0

10
-1

F
ra

m
e

ra
te

 (
fp

s)

WiFi offloading

LTE offloading

10
2

10
1

10
0

10
-1

F
ra

m
e

ra
te

 (
fp

s)

WiFi offloading

LTE offloading

Figure 3.4: Frame rate.

Throughput/frame rate. Then, we measure the throughput of both WiFi and

LTE in 50 different locations inside the campus building, and quantify the offloading

frame rate, where the frame resolution of the offloaded streaming is 640× 480 pixels.

In order to mitigate the contextual discrimination on collected data, we repeat our

measurement in the morning and evening, on weekdays and weekends. Measurement

results are depicted in Figures 3.2, 3.3, and 3.4.

21

We observe that (1) although LTE can provide the downlink throughput in between

20 and 30 Mbps, its uplink throughput is still not good enough for supporting fast

MAR offloading. This observation is also confirmed by the data rate report originated

from Speedtest [160], where the average download and upload speed of LTE in the

United States during the first half of 2018 are 27.33 Mbps and 8.63 Mbps, respectively.

(2) Although WiFi obtains a higher average throughput than LTE on both downlink

(80.21 Mbps vs. 22.80 Mbps) and uplink (78.36 Mbps vs. 14.26 Mbps), at over 32%

and 24% testing locations, the throughput of the downlink and uplink through WiFi

is lower than that of LTE, respectively. (3) The performance of the downlink and

uplink is not always synchronized. For instance, sometimes LTE has a better downlink

throughput than that of WiFi, however, its uplink throughput is lower than that of

WiFi. (4) As shown in Figure 3.4, the testing platform suffers very low frame rate,

approximately 0.19 fps, through WiFi at some locations, which is only 10% of the

lowest frame rate through LTE. Even though the offloading frames are compressed

by a lossy compression algorithm, such as JPEG, the frame rate through WiFi is

still much lower than 10 fps. Even worse, such levels of compression result in an

almost unusable reduction in the quantity of extractable keypoints [17], which leads

to a terrible recognition accuracy. (5) As shown in Figure 3.2, although the hardware

of each AP is the same, the throughput at the same RSSI of different APs might

be different, which demonstrates that only collecting the raw RSSI can not directly

imply the performance of throughput.

Energy efficiency. Lots of existing works propose to offload mobile network traffic

from cellular to WiFi, since cellular networks incur a higher power consumption than

WiFi. However, WiFi links are not always energy efficient. As demonstrated in many

measurements [161, 162], the energy efficiency of WiFi is prone to multiple factors,

such as multi-path and channel fading. Therefore, blindly offloading frames through

WiFi during user mobility may not be beneficial or even steal more energy.

22

Summary. We find that both WiFi and LTE fail to offer satisfactory wireless

links for MAR offloading services during user mobility, especially the uplink. Some-

times even compressing the video or decreasing the video frame resolution may not

compensate the poor uplink throughput.

3.2 System Model

As we observed in our preliminary experiments, although WiFi can provide high

downlink and uplink throughput in most locations, it is extremely volatile and un-

stable under user-mobility, which may incur terrible MAR performance even after

applying video compression or frame resolution decrease. While cellular networks are

more stable than WiFi when an MAR client is moving, the performance of MAR

offloading is constrained by the low uplink throughput, monetary cost, and energy ef-

ficiency of cellular networks. Therefore, at the heart of the proposed Explorer is that

MAR clients offload object analytics through WiFi at a higher priority and switch to

cellular networks when their associated AP-attached MECs fail to offer high-quality

MAR services. Thus, we consider all the AP-attached MECs as Dominating MECs

(DCs) and the BS-attached MECs as the Assistant MECs (AC). However, unlike

traditional work on WiFi and cellular integration, switching between DCs and AC

requires more complicated estimation on the sources of performance decrease and

sophisticated handoff trigger design.

We consider an MEC-enabled network environment with one AC and N densely

deployed DCs. Denote N as the set of DCs and a as the AC. We focus on a repre-

sentative MAR user moving in the above mentioned network environment. Denote

M as the set of generated video frames. Let Lm denote the location where video

frame m ∈ M is generated. Due to the dense deployment of APs, multiple DCs can

provide service to the MAR user for each video frame m at location Lm. And these

DCs are denoted as D(Lm) ⊆ N . Meanwhile, the MAR user can obtain the service

from AC a at any location Lm. Object analytics of a particular video frame m is

23

performed at either the user associated DC n ∈ D(Lm) or the AC a without being

further offloaded to other DCs or a remote cloud. Denote (awm,n, a
c
m,a) ∈ {(1, 0), (0, 1)}

as the MEC association indicator which indicates the MAR user is served by DC n if

(awm,n, a
c
m,a) = (1, 0) and is served by AC a if (awm,n, a

c
m,a) = (0, 1).

3.3 Analytical Models

In this section, analytical models are designed for analyzing the MEC-based MAR

system. We consider how to model the wireless network latency, computation latency,

and analytics staleness. The service latency of the mth video frame can be defined

as,

LAm = LAtrm + LAcpm, (3.1)

where LAtrm is the wireless network latency incurred by transmitting the video frame

m from the MAR user to its associated DC or AC; LAcpm is the computation latency

of the object analytics on the server. In addition, since the data size of the analytics

results is usually small, we do not include the latency caused by transmitting the

analytics results.

Wireless Network Latency Model: the wireless network latency is determined

by the user’s video frame resolutions and wireless channel quality. We assume that

the AR video generated by the MAR user is pre-processed into video frames with the

resolution of km× km pixels. Thus, the data size of the mth video frame is calculated

as k2
mγ bits. In addition, Shannon’s Theorem is used to model the wireless uplink

channel quality. Denote Hτ
m,n and Hτ

m,a as the channel gain when the MAR user

transmits the mth video frame to DC n ∈ D(Lm) and AC a at time τ ∈ [0, LAtrm],

respectively. The maximum achievable uplink transmission rate for transmitting the

mth video frame at τ is given by

rτm = (awm,nBw + acm,aBc) log2

(
1 + awm,n

PwH
τ
m,n

σ2
w + Iτm,n

+ acm,a
PcH

τ
m,a

σ2
c + Iτm,a

)
(3.2)

24

where Bw and Bc are the channel bandwidth of WiFi and cellular networks, re-

spectively; σ2
w and σ2

c are the background noise power, and Iτm,n and Iτm,a are the

interference power at DC n and AC a while transmitting the mth video frame at τ ,

respectively. Therefore, the wireless network latency experienced by the mth video

frame is modeled as

LAtrm =
k2
mγ

Rm

, (3.3)

where Rm =
∫ LAtrm
0 rmdτ

LAtrm
, which is the average wireless uplink data rate for transmitting

the mth video frame. Moreover, the energy consumption for transmitting the mth

video frame can be modeled as

Etr
m = (awm,nPw + acm,aPc)LA

tr
m. (3.4)

Computation Latency Model: the computation latency is closely related to

the computation complexity of a user’s task and available computational resources

at the user associated MEC server. Let fm,n ∈ (0, Fn] and fm,a ∈ (0, Fa] be the

available computational resources at DC n and AC a, respectively, where Fn and Fa

are the computation capacity of DC n and AC a, respectively. We assume that fm,n

and fm,a do not change during the whole computation processing of the mth video

frame. Therefore, the computation latency experienced by the mth video frame can

be modeled as

LAcpm =
cm

awm,nfm,n + acm,afm,a
. (3.5)

In addition, computation complexity cm is closely related to the video frame resolution

k2
m. Since we focus on the wireless link level performance rather than the MEC

server system level performance in this paper, we consider an existing computation

complexity model [19] described as cm = ψ(k2
m) = 7× 10−10k3

m + 0.083, where ψ(k2
m)

is convex with respect to the mth video frame resolution k2
m. Although this model is

25

built by implementing a special object recognition framework, YOLO [163], our work

is applicable to any other computation complexity model.

Analytics Staleness Model: to evaluate the staleness, we use the Intersection

over Union (IOU) metric, which is similar to [18]:

IOU =
area|O ∩G|
area|O ∪G|

, (3.6)

where O and G are the bounding boxes of the detected object and the ground truth,

respectively. The average of the object IOUs in a video frame gives the frame’s IOU.

The value of IOU highly depends on the service latency. A larger service latency

usually results in a lower IOU, which denotes a higher staleness. Therefore, we model

the IOU as a function of the service latency LAm. To do so, we implement an object

recognition framework, YOLOv3 [164], on a Nvidia Jetson TX2. Figure 3.5 shows

that the IOU decreases when the service latency becomes larger. Such a relationship

between the IOU and LAm can be characterized by a convex function, e.g., the

measurement data can be fitted by a convex function,

IOUm(LAm) = 0.1323× LA3
m − 0.02898× LA2

m − 0.9623× LAm + 1.091,

(3.7)

with the root mean square error (RMSE) of 0.05.

3.4 The Proposed Handoff Trigger Scheme

The proposed handoff trigger scheme, Explorer, is shown in Figure 3.6. At the

heart of the proposed scheme is that mobile users choose DCs for object analytics

at a higher priority and switch to the AC when their associated DCs cannot offer

small-staleness services. The proposed Explorer, as shown in Figure 3.6, consists

of four components: the offloading engine, MEC resource tracker, tracking window

controller, and data collector.

26

0.2 0.4 0.6 0.8 1.0 1.2

0.4

0.5

0.6

0.3

0.2

0

0.7

0.8

0.9

1
Measurement Data

Fitted Curve

IO
U

Latency (s)

Measurement Data

Fitted Curve

0.2 0.4 0.6 0.8 1.0 1.20
Latency (s)

0.4

0.5
0.6

0.3

0.2

0.7

0.8
0.9

1

0.1

0
IO

U

(0.638, 0.5)

(0.198, 0.9)

Excellent

Qualified

(1.053, 0.2)
Extreme

low-quality

Measurement Data

Fitted Curve

0.2 0.4 0.6 0.8 1.0 1.20
Latency (s)

0.4

0.5
0.6

0.3

0.2

0.7

0.8
0.9

1

0.1

0
IO

U

(0.638, 0.5)

(0.198, 0.9)

Excellent

Qualified

(1.053, 0.2)
Extreme

low-quality

Figure 3.5: The service latency vs the IOU.

The proposed Data Collector is responsible for recording and storing the user-

side, network-side, and server-side data, to facilitate the other three components. The

user-side data required to be recorded and stored for the mth video frame includes

k2
m and γ. The functions of the proposed MEC Resource Tracker are estimating

the wireless link quality, Hm,n, Im,n and Hz,a, Iz,a, and the available computational

resource, fm,n, using the information provided by the data collector. There are two

components in the MEC resource tracker: the wireless link quality tracker and server

resource tracker. Since sometimes a user may stay at a location for a while and

the wireless link quality may not change much, executing the resource tracker and

offloading engine frequently will drain the battery and consume lots of computa-

tional resources of the mobile device. To address this issue, a Tracking Window

Controller is proposed to dynamically adjust the frequency of executing the MEC

resource tracker (i.e., tracking window size) and the offloading engine. The core com-

ponent of the proposed scheme is the Offloading Engine which determines when a

user should switch its video frame analytics from its associated DC to the AC. Based

on the different sources of the link quality decline, the offloading engine provides the

corresponding offloading scheme. Besides determining the timing of switching, the

offloading engine can also quantify the number of frames that need to be offloaded

27

to the AC based on the constraints of the LTE monetary cost and the battery drain.

Therefore, the proposed offloading engine is able to not only dynamically mitigate

the wireless link quality decline, but also guarantee a low energy consumption and

monetary cost for the mobile device.

Data Collector

T
rac

k
in

g
 W

in
d
o
w

 C
o
n
tro

lle
r

Noise Filter

Link Quality

Estimator

Server Resource

Estimator

MEC Resource Tracker

Offloading Engine

Data

Offloading

Decisions

MAR Device

Dominating MEC

Assistant MEC

mLA

, ,m m mH I f

g

,m nI

,m nH

i

mRSS

mRSS

, ,cp

m m mLA LA c

, cp

m mLA LA

mc

cp

mLA

2 ,m mk RSS

2
mk

Data Collector

T
rac

k
in

g
 W

in
d
o
w

 C
o
n
tro

lle
r

Noise Filter

Link Quality

Estimator

Server Resource

Estimator

MEC Resource Tracker

Offloading Engine

Data

Offloading

Decisions

MAR Device

Dominating MEC

Assistant MEC

mLA

, ,m m mH I f

g

,m nI

,m nH

i

mRSS

mRSS

, ,cp

m m mLA LA c

, cp

m mLA LA

mc

cp

mLA

2 ,m mk RSS

2
mk

Figure 3.6: Overview of the proposed handoff trigger scheme.

3.4.1 Offloading Engine

The core component of our proposed handoff trigger scheme in MEC is the of-

floading engine which determines when an MAR device should switch its video frame

analytics from its associated DC to the AC. And based on the different sources of

the link quality decline, the offloading engine provides the corresponding offloading

scheme. Besides determining the timing of switching, the offloading engine can also

quantify the number of frames that need to be offloaded to the AC based on the

constraints of the LTE monetary cost and the battery drain. Therefore, our proposed

offloading engine can not only dynamically mitigate the wireless link quality decline,

but also guarantee a low energy consumption and monetary cost for the mobile device.

The offloading engine is executed when LAm is not smaller than a threshold LAtg.

We use three types of triggers to determine the major source of the wireless quality

decline.

28

Case 1: user-mobility-incurred case. (Channel gain trigger Htg) In wireless

networks, channel gain is a critical metric to estimate the wireless link quality between

two communication nodes. It may vary with time, due to fading and node mobility.

The value of channel gain is an applicable metric to estimate the level of user-mobility-

incurred latency. In our designed offloading engine, when Hm,n ≤ Htg, the MAR

device is triggered to switch its analytics tasks to the AC to maintain a small staleness.

Meanwhile, the MAR user will re-associate with a nearby DC i ∈ D(Lm) for a better

DC service, where we define this process as a DC handoff.

Case 2: temporary link quality decline case. (Radio interference trigger Itg)

Radio interference is another important metric to estimate the wireless link quality.

We classify radio interference into two categories: inter-DC and non-802.11 interfer-

ence. (i) Any traffic of the nearby DCs on the same channel or adjacent channels is

defined as the inter-DC interference, where it may vary with time due to the user mo-

bility. (ii) DCs are operated in the 2.4 or 5 GHz shared ISM band. The 2.4 GHz band

is shared with other non-802.11 devices, such as microwave ovens and baby monitors,

which could lead to a significant amount of interference. Therefore, the increase of

the DC’s radio interference may be permanent (inter-DC interference) or temporary

(non-802.11 interference). In our designed offloading engine, when Im,n ≥ Itg, the

MAR user is triggered for a switching but no DC handoffs.

Case 3: temporary server resources exhausted case. (Available DC com-

putational resource trigger ftg) The service latency also may be badly impacted by

the computation latency because the available computational resources fm,n at the

associated DC n is little. Similar to the non-802.11 interference, we design that when

fm,n ≤ ftg, the MAR user is triggered for a switching but no DC handoffs.

After determining the timing of switching, we next quantify the number of frames

that need to be offloaded to the AC, which is denoted as λ. As stated above, there are

two different switching scenarios: (i) switching with DC handoffs and (ii) switching

29

without DC handoffs. For scenario (i), the MAR user keeps offloading video frames

to the AC during a DC handoff. Since the latency of a DC handoff is long, around

3s, the MAR user suffers a long period without DC services during the DC handoff

process. For scenario (ii), we build a model to calculate the number of frames that

need to be offloaded to the AC, based on the constraints of the LTE monetary cost

and the battery drain. The lower and upper bound of λ, (i.e., λmin and λmax) are

calculated by:

Pc
λmink2γ

R(Hz,a, Iz,a)
+ 2esw ≤ Pw

λmink2γ

R(Hm,n, Im,n)
, (z,m ∈M) (3.8)

qλmaxk2γ ≤ Q, (3.9)

where (3.8) says that the battery drain of offloading after switching to the AC can-

not exceed that of maintaining the link with the DC, and (3.9) says that the LTE

monetary cost cannot exceed the maximum target Q ($); Pw and Pc are the transmit

power of the WiFi and cellular interface of MAR devices, respectively; k2γ is the

average data size of the video frames that have already been offloaded; Hz,a, Iz,a and

Hm,n, Im,n are the latest recorded estimation results of AC a and DC n, respectively,

extracted from the MEC resource tracker (describe in Section 3.4.2); esw is the energy

consumption of conducting a switching; and q is the LTE monetary cost ($/bit). If

the calculated λmin > 0, Hm,n, Im,n are the current estimated wireless link quality

of the associated DC n, and they are less accurate for representing the future link

quality if the MAR user moves fast and frequently. In order to make the calculated

λ more accurate, we choose λ based on the value of the tracking window size g which

is extracted from the tracking window controller (described in Section 3.4.3):

λ = λ(g), λ ∈ [λmin, λmax]. (3.10)

30

For example, when g is small indicating that the MAR user is moving fast and fre-

quently and R(Hm,n, Im,n) might change fast, we choose a relatively small value of

λ; and vice versa. If the calculated λmin ≤ 0, the offloading engine reduces the

transmit latency via decreasing the resolution of the next offloaded frame or executing

existing computation-based solutions [18, 19]. The details of our designed offloading

engine are given in Algorithm 1.

Algorithm 1: Offloading Engine
Input: LAm, esw, Hm,n, Im,n, fm,n, Hz,a, Iz,a, LAtg, Htg, Itg, ftg, Pw, Pc, k2

mγ, q, Q, g
Output: g and λ.

1 if Tracking Window Controller triggered = true then
2 if LAm ≥ LAtg then
3 j ← 0; /* Case 1. */
4 if Hm,n ≤ Htg then
5 DC handoffs start← true; (awm,n, a

c
m,a)← (0, 1);

6 while True do
7 j ← j + 1; λ← j; /* Offloading frames to AC a. */
8 if DC handoffs complete = true then

/* Switch to DC i. */
9 (awm+λ,i, a

c
m+λ,a)← (1, 0), i ∈ D(Lm);

10 break;

/* Case 2 and 3. */
11 else if Hm,n > Htg&&(Im,n ≥ Itg||fm,n ≤ ftg) then
12 Calculate λmin, λmax, λ via (3.8), (3.9), (3.10);
13 if λmin > 0 then
14 (awm,n, a

c
m,a)← (0, 1); /* Switch to AC a. */

15 while True do
16 j ← j + 1; /* Offloading frames to AC a. */
17 if j = λ then

/* Switch back to DC n. */
18 (awm+λ,n, a

c
m+λ,a)← (1, 0);

19 break;

20 else if λmin ≤ 0 then
21 k2

m+1 ← kmin × kmin; /* Decrease the frame resolution or other existing
solutions. */

22 g ← 1; /* Reset the tracking window size. */

23 return g, λ

31

3.4.2 MEC Resource Tracker

The functions of the MEC resource tracker are estimating the wireless link quality,

Hm,n, Im,n and Hz,a, Iz,a, and the available computational resource, fm,n, using the

information provided by the data collector (describe in Section 3.4.4). There are two

components in the MEC resource tracker: the wireless link quality tracker and server

resource tracker.

Wireless link quality tracker: (1) Noise filter: raw RSS data are passed to

a noise filter to filter out the noise first. Usually, RSS samples collected by the radio

interfaces on smart devices contain noise due to reasons such as multi-path effects.

Noise may introduce errors in estimating wireless link qualities and thus, needs to

be filtered out. We use the Nadaraya-Watson estimator [162, 165], which is a kernel

regression approach, for the noise filter. Typically, it models the RSS samples within

a window as a series of random variables from a joint Probability Density Function

(PDF): RSSim = φm(i)+ εim, (i = 1, · · · , n), where RSSim is the collected RSS at time

i within the mth video frame and φm(·) is a function for the corrected RSS. The error

{εim} satisfies: E(εim) = 0, V (εim) = σ2, Cov(εim, ε
j
m) = 0 (i 6= j). The estimation

ˆRSSim after filtering can be expressed as follows:

ˆRSSim =

∑n
j=1Kh(i, j)RSS

i
m∑n

j=1Kh(i, j)
, (3.11)

where Kh(i, j) is the kernel function with a window size h for pairwise values (i, j).

We choose Radial Basis Function (RBF) kernel for Kh and h is chosen adaptively. (2)

Link quality estimator: this component is responsible for estimating the wireless

link quality using the filtered RSS, the user-side data, and the network-side data in the

data collector. We use two metrics to represent the wireless link quality: (i) channel

gain Hτ
m and (ii) interference Iτm. We define Hm and Im as the average channel gain

and interference of the mth video frame, respectively. The filtered ˆRSSim is used for

32

calculating Hm, where

Hm = 10
∑n
i=1

ˆ
RSSim

10·n −3 · (awm,nPw + acm,aPc)
−1. (3.12)

Then based on Shannon’s Theorem we have:

Im =
(awm,nPw + acm,aPc) ·Hm

2
k2γ

LAtrm·(awm,nBw+acm,aBc) − 1

− (awm,nσ
2
w + acm,aσ

2
c), (3.13)

where k2
m and γ are extracted from the data collector; and LAtrm = LAm − LAcpm. In

addition, we assume that the background noise of DC, σ2
w, and AC, σ2

c , are constant.

Server resource tracker: this component is responsible for estimating the avail-

able computational resources of the MEC server. fm is calculated as: fm = cm
LAcpm

,

where LAcpm is extracted from the data collector and cm is calculated via the compu-

tation latency model.

3.4.3 Tracking Window Controller

Since sometimes an MAR user may stay at a location for a while and the wireless

link quality may not change much, executing the resource tracker and offloading

engine frequently will drain the battery and consume lots of computational resources

of the MAR device. To address this issue, we design a tracking window controller to

dynamically adjust the frequency of executing the MEC resource tracker (i.e., tracking

window size) and the offloading engine.

We choose to use the variation of the wireless link quality to dynamically determine

the tracking window size, since the variation of the available computational resources

of the MEC server is unpredictable (i.e., the number of MAR users who will connect

with the server is unpredictable) and does not have a direct correlation with the user-

mobility. In addition, according to our findings in Section 3.1, we only execute the

tracking window controller when the MAR user is offloading its video frames to the

33

DC. We define
−−→
Φm,n = (Hm,n, Im,n) and

−−→
Φj,n = (Hj,n, Ij,n) as the wireless link state

vector of the MAR user connected with DC n at location Lm and Lj, respectively.

Φ
′
m,n =

‖
−−−→
Φm,n−

−−→
Φj,n‖

g
and Φ

′′
m,n = Φ

′
m,n−Φ

′
j,n are defined for describing the wireless link

quality variation rate and the variation trend, respectively, where m− j = g and g is

the tracking window size with an initial value 1.

Algorithm 2: Adjusting the Tracking Window Size g.
Input: The channel gain Hm,n, the interference overlineIm,n, the wireless link state vector

−−→
Φj,n, the link variation rate ˙Φj,n, the tracking window size g, the MEC association
indicator (awm,n, a

c
m,a), the rate threshold δ.

Output: The updated tracking window size g, the wireless link state vector
−−−→
Φm,n, the link

variation rate ˙Φm,n.
/* Check if the mth video frame is offloaded to the DC. */

1 if (awm,n, a
c
m,a) = (1, 0) && m− j = g then

/* Calculate the wireless link quality variation rate. */
2

−−−→
Φm,n ← (Hm,n, Im,n);

3 ˙Φm,n ← ‖
−−−→
Φm,n−

−−→
Φj,n‖

g ;

/* Check the variation rate. */
4 if ˙Φm,n ≤ δ then
5 g ← g + 1; /* Increase the tracking window size. */

6 else
/* Check the variation trend. */

7 ¨Φm,n ← (˙Φm,n − ˙Φj,n);
8 if ¨Φm,n ≤ 0 then
9 g ← g; /* Keep the tracking window size. */

10 else if Φ̈n > 0 && g > 1 then
11 g ← θ(g); /* Reduce the tracking window size. */

12 ˙Φj,n ← ˙Φm,n, ¨Φj,n ← ¨Φm,n;
13 return g, ˙Φm,n, ¨Φm,n

The details of dynamically adjusting the tracking window size is shown in Algorithm

2. First, the tracking window controller checks if (i) the mth video frame is offloaded

to DC n; (ii) m − j is equal to the current window size g. The tracking window

controller then extracts the channel gain Hm,n and the interference Im,n from the data

collector if the mth video frame satisfies the above two requirements. The tracking

window size g is increased by 1 if the calculated wireless link quality variation rate

Φ
′
m,n is not larger than a preset rate threshold δ, which indicates that the current

34

wireless link quality does not vary much. Increasing the window size will decrease

the tracking frequency and thus, save the MAR device’s battery and computational

resource. Otherwise, we keep the window size if the current link variation trend

Φ
′′
m,n ≤ 0 (i.e., the current link variation rate is decreasing) or we reduce g according

to a preset regression function θ(g) if Φ
′′
m,n > 0 (i.e., the current link variation rate is

increasing).

3.4.4 Data Collector

The Data Collector is responsible for recording and storing the MAR user-side,

network-side, and server-side data, to facilitate the other three components. The

user-side data required to be recorded and stored for the mth video frame includes

k2
m and γ. The network-side data includes (i) the continuous RSS of the wireless

link within each video frame transmitting period RSSτm, τ ∈ [0, LAtrm] (e.g., from the

moment that the MAR user starts transmitting the mth video frame to the moment

of finishing the transmission); (ii) the service latency LAm. The server-side data

includes LAcpm and cm.

3.5 The System Implementation and Experiments

In this section, we implement the cloudlet-based MAR system on a testbed, shown

in Figure 3.7, which consists of three components: the MAR client with Explorer,

cloudlet servers, and emulated network. We conduct experiments based on the im-

plementation to validate the performance of Explorer.

3.5.1 The Cloudlet-based MAR System Implementation

MAR client with Explorer : The MAR client is built in a HP Z820 workstation.

It sends real-world captured video frames to a cloudlet server and overlays the received

information on its corresponding objects. The frame resolution of the video is 640×

480. Four functional modules are implemented in the MAR client. The first one is

a data collector that records the information of the MAR user, including the frame

35

WiFi Link

WiFi Link

LTE link

NS-3 Emulated Network

LTE Node
LTE

TapAC

(Jetson Tx2)

DC 1

(Jetson Tx2)

AP1 Node

AP2 Node

MAR client with

Explorer (HP Z820)

DC 2

(Jetson Tx2)

AP2

Tap

AP1

Tap

Client

Tap

MAR Client

Node

(Jetson Tx2)

(Jetson Tx2)

(Jetson Tx2)

NS-3 Emulated Network

MAR Client

Node

Client

Tap

LTE Node

AP1 Node

AP2 Node
AP2

Tap

AP1

Tap

LTE

Tap

AC

DC1

DC2
 (HP Z820)

Cloudlet ServersMAR Client

LTE link

WiFi Link

WiFi Link

Explorer

Real-world Wireless Network Traces

Tap-bridge Model

YOLOv3 Framework

(Jetson Tx2)

(Jetson Tx2)

(Jetson Tx2)

NS-3 Emulated Network

MAR Client

Node

Client

Tap

LTE Node

AP1 Node

AP2 Node
AP2

Tap

AP1

Tap

LTE

Tap

AC

DC1

DC2
 (HP Z820)

Cloudlet ServersMAR Client

LTE link

WiFi Link

WiFi Link

Explorer

Real-world Wireless Network Traces

Tap-bridge Model

YOLOv3 Framework

Figure 3.7: The cloudlet-based MAR testbed.

resolution, service latency, and transmission latency of each offloaded frame. The

second one is a cloudlet resource tracker which dynamically estimates the wireless

channel quality using the recorded service latency and transmission latency. The

third module contains a tracking window controller and an offloading engine. It is

responsible for triggering an AC switching or DC handoff according to Algorithm 1.

The fourth module is a data communication module responsible for streaming the

video frames to an assigned server selected by the offloading engine and receiving the

analytics results from the server.

Cloudlet servers: There are three cloudlet servers in our testbed, one AC and

two DCs. These three cloudlet servers are implemented on three NVIDIA Jetson TX

development kits. They are developed to process the offloaded video frames and send

the analytics results back to the MAR user. Two major modules are implemented on

each server. The first one is the service connection module which establishes a socket

connection with the MAR client and sends analytics results to the MAR client. The

second one is the object analytics module performs the object analytics. The object

analytics module is designed based on the YOLOv3 framework [164].

Emulated network: The wireless network connecting the cloudlet servers and

the MAR client are emulated using NS-3. The MAR client and three cloudlet servers

are connected to their corresponding tap nodes in the emulated network via the tap-

36

bridge model of NS-3. In order to emulate the variations of the wireless link quality

when the MAR user is moving, we record 10 real-world wireless network traces in

our campus building. The measured data includes the ping delay and throughput

variations while user is moving. NS-3 takes the traces as input, and dynamically

varies the quality of the emulated wireless network while transmitting video frames

from the MAR client to the selected cloudlet server.

Reasons for using NS-3 emulated network: (i) emulation allows us to compare

Explorer with other solutions under reproducible wireless network conditions; (ii) it

is hard for us to implement a BS-attached cloudlet in real-world.

3.5.2 Performance Evaluation

Figure 3.8 shows the IOU comparison during a handoff process under Explorer

and other solutions. The baselines include: (i) LTE-only solution: all frames are

offloaded to the BS-attached cloudlet server (LTE-C); (ii) WiFi-only solution: all

frames are offloaded to AP-attached cloudlet servers (WiFi-C); (iii) groundtruth: all

frames are directly computed at server without offloading. The sampling period is ev-

ery 6 frames. Handoff trigger in IEEE 802.11 commercial WiFi products is to count

the number of continuously missed beacons, or when the RSSI is below a certain

threshold [151]. However, as shown in Figure 3.8, this triggering mechanism is not

sensitive to the performance of MAR and makes the IOU significant low during the

handoff triggering, whereas the triggering mechanism in Explorer, as described in Al-

gorithm 1, maintains good MAR and offloading performance, such as high IOU, low

device’s energy consumption, and low monetary cost. Table 3.2 shows the experimen-

tal results of the average IOU summarized from the experiments shown in Figure 3.8.

Explorer achieves significant IOU improvement as compared to LTE-C and WiFi-C.

Also, Explorer guarantees that qualified IOU (i.e., IOU > 0.5) is supported when the

user is moving around.

37

0 5 10 15 20 25 30 35 40
Time (s)

0

0.2

0.4

0.6

0.8

1.0

Explorer trigger

Switch to the AC

Commercial WiFi trigger

Switch to DC 2

 Explorer

 Groundtruth

 LTE-C

 WiFi-C

 Explorer

 Groundtruth

 LTE-C

 WiFi-C

No service

0 5 10 15 20 25 30 35 40
Time (s)

0

0.2

0.4

0.6

0.8

1.0

Explorer trigger

Switch to the AC

Commercial WiFi trigger

Switch to DC 2

 Explorer

 Groundtruth

 LTE-C

 WiFi-C

No service

Figure 3.8: Sampled measurement IOU.

Table 3.2: Experimental results

Average IOU IOU ≤ 0.5 IOU ≤ 0.2
LTE-C 0.58 7.6% 0%
WiFi-C 0.62 17.5% 6.8%
Explorer 0.71 0% 0%

Groundtruth 0.94 0% 0%

3.5.3 Limitations of Our Testbed

The NS-3 emulated network only allows varying the wireless link quality every

1s. This limitation restricts us to evaluate Explorer in more complex and frequent

link quality variation scenarios. However, implementing a large-scale deployment of

cloudlets is very costly. Thus, some improvements obtained by Explorer cannot be

validated through our testbed. Therefore, we resort to large-scale simulations in order

to better understand our proposed Explorer’s behavior.

3.6 Extensive Large-scale Simulations

In this section, we first seek to understand our proposed Explorer ’s behavior in

a large-scale simulation deployment. Second, we want to understand the impacts

of various factors on the performance of Explorer. To the best of our knowledge,

this is the first work that explicitly considers decreasing the MAR offloading service

latency from the communication perspective, as well as the impact of the user-mobility-

incurred wireless network quality decline on the offloading strategy.

38

3.6.1 Simulation Setup

Network setup. We simulate a cloudlet-based MAR network with 36 DCs that

are regularly distributed in a square area, and one AC located at the center of the

simulation area. The length of the simulation area is 840m. Each DC and the AC

have circular transmission ranges, and their radii are 120m and 800m, respectively.

In other words, the AC can provide services to MAR users at any location in this

simulation area. In addition, the wireless channel gain of the WiFi and LTE are

modeled as Hm,n = −20.4 + 60 × log(d) and Hm,a = 131.1 + 42.8 × log
(

d
1000

)
, re-

spectively. d is the distance between the AP/BS and the MAR user. The simulated

channel interference is composed of two parts: one is the inter-cell interference which

is proportional to the distance between the AP/BS and the MAR user; the other is

a random instant interference which represents the instant channel quality decline or

the non-802.11 interference. The data rate of DC is determined by the calculated

Signal-to-Interference-plus-Noise Ratio (SINR). The channel quality is changed ev-

ery 1ms. The maximum data rate of the LTE is set to 20 Mbps. Besides, channel

bandwidth Bw = Bc = 20 MHz, noise power σ2
w = σ2

c = 1× 10−12 watt, and transmit

power Pw = 0.1 watt and Pc = 0.5 watt.

Servers and video frames setup. We adopt ψ(k2
m) as the computation complex-

ity cm of analyzing a km × km video frame. In simulations, the computing capacities

of DCs and the AC are set to 2 and 4 TFLOPS, respectively. The default video frame

resolution is 90000 pixels (300× 300).

MAR user setup. 100 MAR users follow the Random Waypoint model. We

select three average speed values: 1.4m/s, 2.8m/s, and 4.2m/s, to represent three

states of the user-mobility: walking, walking fast, and running, respectively. Besides,

LTE monetary cost q = 1 × 10−8bits/$, Q = 0.5$, esw = 0.038J, handoff energy

consumption 4.366J, and handoff latency 3.06s [151].

39

0

1000

2000

3000

4000

5000

6000

V
id

eo
 F

ra
m

es

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

Latency (s)

handoffs

0

1000

2000

3000

4000

5000

6000

V
id

eo
 F

ra
m

es

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

LTE-C
WiFi-C
Explorer

Latency (s)

handoffs

(a)

1.0
0

1000

2000

3000

4000

5000

6000

V
id

eo
 F

ra
m

es

LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IOU

1.0
0

1000

2000

3000

4000

5000

6000

V
id

eo
 F

ra
m

es

LTE-C
WiFi-C
Explorer

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IOU

(b)

Figure 3.9: Comparison of the service latency and IOU. (a) Service latency; (b) IOU.

3.6.2 Performance Evaluation

3.6.2.1 Explorer vs. Baselines

Figure 3.9 illustrates the results of the service latency and IOU performance within

1000s. IOU is calculated based on the measurement results from our experiments, as

shown in (3.7). The Y -axis represents the offloaded video frame index within 1000s,

and the X-axis represents the service latency and IOU of each offloaded video frame,

respectively. As shown in Figure 3.9a, Explorer offloads around 5900 video frames

within 1000s, which is significantly more than the frames offloaded through WiFi-C,

4742 frames, and LTE-C, 3218 frames. This denotes that Explorer obtains the lowest

average service latency. Meanwhile, the user-mobility-incurred latency increasing

(e.g., frequent handoffs occurred in WiFi-C, depicted as the big red spikes in Figure

3.9a) is efficiently mitigated in Explorer. Figure 3.9b shows the comparison of each

frame’s IOU. It is obvious that Explorer obtains a much better IOU performance than

the other two baselines. The detailed results are recorded in Table 3.3. The Explorer

decreases the unexcellent ratio from 86.9% (LTE-C) and 27.4% (WiFi-C) to 26.5%,

as well as the unqualified ratio from 1.0% (LTE-C) and 4.4% (WiFi-C) to 0.02%.

Figure 3.10 evaluates the performance of Explorer under different frame resolutions.

Figure 3.10a shows that Explorer obtains both the lowest average latency and latency

40

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

200x 300x 400x
80

160

240

320

400

480
S

T
D

Resolution

LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
o

n
et

ar
y

 C
o

st
/F

ra
m

e
(U

S
D

) LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v
er

ag
e

L
at

en
cy

 (
m

s)

20

40

60

80

100

R
atio

 (%
)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
n

er
g

y
 C

o
n

su
m

p
ti
o

n
/F

ra
m

e
(J

)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
n

er
g

y
 C

o
n

su
m

p
ti
o

n
/F

ra
m

e
(J

)

LTE-C
WiFi-C
Explorer

S
T

D

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560
LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560

S
T

D

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560
LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v
er

ag
e

L
at

en
cy

 (
m

s)

20

40

60

80

100

R
atio

 (%
)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v
er

ag
e

L
at

en
cy

 (
m

s)

20

40

60

80

100

R
atio

 (%
)

(a)

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

L
at

en
c

y
 (

m
s)

Video Frames

LTE-C
WiFi-C
Explorer

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

L
at

en
c

y
 (

m
s)

Video Frames

LTE-C
WiFi-C
Explorer

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

200x 300x 400x
80

160

240

320

400

480

S
T

D

Resolution

LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

200x 300x 400x
80

160

240

320

400

480

S
T

D

Resolution

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
n

er
g

y
 C

o
n

su
m

p
ti
o

n
/F

ra
m

e
(J

)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
o

n
et

ar
y

 C
o

st
/F

ra
m

e
(U

S
D

) LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v
er

ag
e

L
at

en
cy

 (
m

s)

20

40

60

80

100

R
atio

 (%
)

LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v
er

ag
e

L
at

en
cy

 (
m

s)

20

40

60

80

100

R
atio

 (%
)

LTE-C
WiFi-C
Explorer

(b)

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

200x 300x 400x
80

160

240

320

400

480

S
T

D

Resolution

LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v
er

ag
e

L
at

en
cy

 (
m

s)

20

40

60

80

100

R
atio

 (%
)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
n

er
g

y
 C

o
n

su
m

p
ti
o

n
/F

ra
m

e
(J

)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
n

er
g

y
 C

o
n

su
m

p
ti
o

n
/F

ra
m

e
(J

)

LTE-C
WiFi-C
Explorer

S
T

D

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560
LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560

S
T

D

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560
LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v

er
ag

e
L

at
en

cy
 (

m
s)

20

40

60

80

100

R
atio

 (%
)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v

er
ag

e
L

at
en

cy
 (

m
s)

20

40

60

80

100

R
atio

 (%
)

200x 300x 400x
Resolution

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
o

n
et

ar
y

 C
o

st
/F

ra
m

e
(U

S
D

) LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
o

n
et

ar
y

 C
o

st
/F

ra
m

e
(U

S
D

) LTE-C
WiFi-C
Explorer

(c)

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

200x 300x 400x
80

160

240

320

400

480

S
T

D

Resolution

LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
o

n
et

ar
y

 C
o

st
/F

ra
m

e
(U

S
D

) LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v
er

ag
e

L
at

en
cy

 (
m

s)

20

40

60

80

100

R
atio

 (%
)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
n

er
g

y
 C

o
n

su
m

p
ti
o

n
/F

ra
m

e
(J

)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
n

er
g

y
 C

o
n

su
m

p
ti
o

n
/F

ra
m

e
(J

)

LTE-C
WiFi-C
Explorer

S
T

D

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560
LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560

S
T

D

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

100

200

300

400

500

A
v

er
ag

e
L

at
en

cy
 (

m
s)

600

80

160

240

320

400

480

560
LTE-C
WiFi-C
Explorer

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v

er
ag

e
L

at
en

cy
 (

m
s)

20

40

60

80

100

R
atio

 (%
)

LTE-C
WiFi-C
Explorer

200x 300x 400x
Resolution

0

150

300

450

600

A
v

er
ag

e
L

at
en

cy
 (

m
s)

20

40

60

80

100

R
atio

 (%
)

(d)

Figure 3.10: Performance comparisons among LTE-C, WiFi-C, and Explorer. (a)
Average service latency and STD; (b) Average energy cost per frame; (c) Average
monetary cost per frame; (d) Average service latency and the ratio of frames LAm ≥
200ms.

STD with these three frame resolutions. Also, as shown in Figure 3.10b, MAR devices

offloading one video frame consumes much less energy than the other two baselines.

In addition, as illustrate in Figure 3.5, only when the latency is less than 200ms (i.e.,

the IOU is larger than 0.9), the staleness performance is excellent. We extract the

frames with the service latency larger than 200ms, and compare the average latency

and the ratio of these frames to the total number of offloaded frames. As shown in

Figure 3.10d, Explorer achieves the lowest average latency and ratio except when the

frame resolution is 400× 400.

41

Table 3.3: Staleness results (IOU)

≤ 0.9 ≤ 0.8 ≤ 0.6 ≤ 0.5 ≤ 0.2 = 0
LTE-C 86.9% 43.1% 6.4% 1.0% 0% 0%
WiFi-C 27.4% 15.4% 5.7% 4.4% 2.1% 1.1%
Explorer 26.5% 11.0% 0.09% 0.02% 0% 0%

A
v

er
ag

e
L

at
en

cy
 (

m
s)

100

150

200

250

300

A
v

er
ag

e
L

at
en

cy
 (

m
s)

A
v

er
ag

e
L

at
en

cy
 (

m
s)

A
v
er

ag
e

L
at

en
cy

 (
m

s)

100

150

200

250

300

100

150

200

250

300

180

185

190

195

200

205

A
v

erag
e T

rack
in

g
 W

in
d

o
w

 S
ize

0

1

2

3

4

200x 300x 400x
Resolution

A
v
erag

e T
rack

in
g
 W

in
d
o
w

 S
ize

0

1

2

3

4

1.4 2.8 4.2
Average mobile speed (m/s)

A
v

erag
e T

rack
in

g
 W

in
d

o
w

 S
ize

0

1

2

3

4

1.4 2.8 4.2
Average mobile speed (m/s)

0.022

0.024

0.026

0.028

0.030

0.032 E
n
erg

y
 C

o
n

su
m

p
tio

n
/F

ram
e (J)

0.5 1 2 4 8
Channel gain trigger ()tgH 1010−Channel gain trigger ()tgH 1010−

1()g 2 ()g 3()g 1()g

2 ()g

3()g

1()g

2 ()g

3()g

91 10 −=
92 10 −=
93 10 −=

Energy Consumption
Latency

(a)

A
v

er
ag

e
L

at
en

cy
 (

m
s)

100

150

200

250

300

A
v

er
ag

e
L

at
en

cy
 (

m
s)

A
v
er

ag
e

L
at

en
cy

 (
m

s)

A
v
er

ag
e

L
at

en
cy

 (
m

s)

100

150

200

250

300

100

150

200

250

300

180

185

190

195

200

205

A
v

erag
e T

rack
in

g
 W

in
d

o
w

 S
ize

0

1

2

3

4

200x 300x 400x
Resolution

A
v
erag

e T
rack

in
g
 W

in
d
o
w

 S
ize

0

1

2

3

4

1.4 2.8 4.2
Average mobile speed (m/s)

A
v

erag
e T

rack
in

g
 W

in
d

o
w

 S
ize

0

1

2

3

4

1.4 2.8 4.2
Average mobile speed (m/s)

0.022

0.024

0.026

0.028

0.030

0.032 E
n
erg

y
 C

o
n

su
m

p
tio

n
/F

ram
e (J)

0.5 1 2 4 8
Channel gain trigger ()tgH 1010−Channel gain trigger ()tgH 1010−

1()g 2 ()g 3()g 1()g

2 ()g

3()g

1()g

2 ()g

3()g

91 10 −=
92 10 −=
93 10 −=

Energy Consumption
Latency

(b)

Figure 3.11: The impact of some factors on the system performance. (a) System
performance vs θ(g); (b) System performance vs δ.

3.6.2.2 The Impact of Some Factors

First, we evaluate the impact of different function θ(g) on the latency and the

average tracking window size g, since different θ(g) may vary the regression rate of

the window size. We define three θ(g) functions in our simulations, where θ1(gpre) =

gpre − 1, (1 < gpre ≤ 2), = gpre − 2, (2 < gpre ≤ 6), = gpre − 6, (6 < gpre ≤ 10),

= gpre−10, (gpre > 10); θ2(gpre) = gpre−1; and θ3(gpre) = 1. As shown in Figure 3.11a,

different θ(g) has little impact on the average service latency, however, it significantly

varies the average tracking window size. As stated in Section 3.4.3, small window

size will increase the frequency of executing the cloudlet resource tracker and the

offloading engine, which incurs excessive battery and computation resources of mobile

devices. Therefore, selecting a θ(g) with a lower regression rate, e.g., θ2(g), is good for

saving mobile devices’ resources. Second, as shown in Figure 3.11b, we compare the

system performance under different user-mobility speed and δ. We observe that higher

42

user-mobility speed increases the latency and reduces the average tracking window

size. This is because a higher user-mobility speed may accelerate the wireless quality

variation and thus, increases the frequency of switching to the AC and triggering the

tracking window size regression. Therefore, since the average service latency varies

little, selecting a relatively large δ, e.g., δ = 3 × 10−9, will help the mobile devices

save local resources.

CHAPTER 4: PROPOSED RADIO-SERVICE HANDOFF PROTOCOLS IN MEC

NETWORKS

4.1 The Proposed Fast Radio-Service Hanoff Protocol

In this section, the proposed fast radio-service handoff protocol for MEC-based real-

time mobile AR applications is described in detail. First, we introduce the key ideas of

our protocol. Second, an overview of the proposed protocol is presented. Finally, we

show the proposed feature database training strategy and feature mapping algorithm

in the proposed protocol, respectively.

4.1.1 Key Ideas

During a radio-service handoff process, a mobile user has to identify the AP that

it will hand off to first, in order to make a further decision on where its offloading

service should be rebuilt. Thus, during a service rebuilding process, the radio handoff

can not be performed in parallel with the service handoff, which makes the total

service rebuilding time long. To overcome this problem, we can accurately predict

the target MEC before the mobile user is triggered a radio handoff. Furthermore, in

order to accelerate the service handoff speed, it is necessary to select an encapsulation

mechanism which is lightweight enough for performing a fast service handoff and can

provide an isolated running environment for the offloading service on the MEC.

The first key idea of our proposed protocol is to predict a mobile user’s target MEC

by leveraging the features that are extracted from the mobile device’s camera captured

frames. Almost all mobile users who play MEC-based mobile AR applications need

to offload camera captured frames to the connected MEC, in order to match those

frames against a pre-existing image database in real-time, or achieve the camera’s 6D

44

transformation by computing the frame difference of two adjacent offloaded frames.

In other words, after receiving offloaded frames, the MEC needs to extract every

unique feature in each frame using a computer vision algorithm, such as SIFT. These

extracted features are used for achieving different computation results based on user

offloading services. Therefore, those already extracted features on the source MEC

provide an excellent resource for us to predict the mobile user’s target MEC without

any additional cost at the mobile user side. Although some previous work [130–133]

proposed several radio handoff prediction approaches in traditional wireless networks,

they all are limited to the network environment without the aid from captured frames.

To the best of our knowledge, our work is the first one that proposes using the captured

frame features to predict mobile users’ target MEC.

The second key idea of our proposed protocol is encapsulating offloading services

via Docker which is a composing container engine on MEC. Docker satisfies the re-

quirements for a suitable encapsulation mechanism in MEC. Firstly, it provides an

isolated environment based on OS-level virtualization for running applications. Sec-

ondly, Docker is a lighter-weight encapsulation mechanism compared with VMs. Since

Docker enables layered storage inside containers, which supports copy-on-write (CoW)

strategy. Each Docker image references a list of read-only layers that represent file-

system differences. Layers are stacked on top of each other to form a base for a

containers root file-system. The Docker storage driver, e.g., advanced multi-layered

unification file-system (AUFS), is responsible for stacking these layers and providing

a single unified view. When we create a new Docker container, we add a new and thin

writable layer on top of the underlying stack of layers present in the base docker im-

age. All changes made to the running container, such as creating new files, modifying

existing files or deleting files, are written in this thin writable container layer. There-

fore, we only need to transfer this thin container layer and the run-time memory state

during the service handoff. Furthermore, all the Docker images are available through

45

the public centralized image server, such as Docker Hub. Therefore, before initiating

the service handoff, application container base image layers can be downloaded from

the public image server first. Both of these Docker’s properties may speed up the

service rebuilding process. As far as we know, only one prior research paper [129]

discussed the efficiency of using the Docker container for the MEC service handoff.

However, this paper only considered the latency of the service handoff, not the whole

service rebuilding process.

4.1.2 Overview of the Proposed Protocol

Figure 4.1 shows the overview of the proposed fast radio-service handoff protocol for

MEC-based mobile AR applications, as well as multiple processing stages described

below:

(S1) Service rebuilding preparation triggered on source MEC. Once a mobile user

is associated with a MEC, a Docker container is created on this MEC. We call the

MEC which processes the offloading workloads, the source MEC. Then the mobile

user starts sending its captured frames and offloading computation to the Docker

container running on the source MEC. When the mobile user moves away from the

source MEC, the RSS at the mobile user gradually goes down. A request for service

rebuilding preparation is then triggered at the source MEC when the user’s RSS is

below a threshold γ1, i.e., the mobile user is at location a as shown in Figure4.1.

(S2) Match extracted features against pre-categorized features in database. After

the source MEC is triggered a request for service rebuilding preparation, a feature

mapping process is initiated. In the mapping process, features extracted from the

latest frames that the mobile user offloads to the source MEC are matched against

the pre-categorized features in database.

(S3) Predict target MEC. The source MEC achieves the prediction result through

our proposed feature mapping algorithm. We explain the proposed feature mapping

algorithm in detail in Section 4.1.4.

46

(S4) Download base images through Docker Hub. After achieving the predicted

target MEC, the source MEC sends a downloading request to it. Then, the target

MEC starts downloading the base images through Docker Hub.

(S5) Radio handoff and service handoff triggered. When the mobile user reaches

location b, a radio handoff is triggered at the associated AP since the RSSI is below

the threshold γ2. Meanwhile, a service handoff is triggered at the source MEC.

(S6) Snapshot run-time memory and stop container. Upon initiating the service

handoff, the source MEC snapshots the latest run-time memory states and stops the

container. From this point, the container stops running on the source MEC and the

mobile user loses the offloading service provided by the source MEC.

(S7) Transfer container layer and run-time memory to the target MEC. After we

stop the container that runs on the source MEC, its writable container layer will

not be changed. Thus, we transfer the container layer contents to the target MEC.

Simultaneously, the run-time memory are also transferred to the target MEC.

(S8) Restore the offloading service on the target MEC. After finishing all transfers,

the container is restored on the target MEC. In other words, the service handoff has

finished in this moment. If the mobile user has been already associated with the AP

that is attached to the target MEC, it can start to be served. Otherwise, the target

MEC has to wait for the mobile user completing its radio handoff.

(S9) Remove container on source MEC. Finally, we need to clean up the footprint

of the offloading service on the source MEC by removing the container. And the

whole process of the service rebuilding is completed.

In addition, our proposed fast radio-service handoff protocol can be utilized in both

stateful service rebuilding and stateless service rebuilding scenarios, where the former

contains all stages in the proposed protocol, while the latter contains all stages except

S6.

47

Signal Coverage of APs/BSs

location a
location blocation c

S1. Service Rebuilding Preparation Triggered

Docker Daemon

Container Layer

Base Image

Layers

Docker Daemon

Container Layer

Base Image

Layers

Source MEC

Docker Daemon

Container Layer

Base Image

Layers

Target MEC

S2. Match Extracted

Features

S3. Predict Target

MEC

S7. Transfer Container Layer

S4. Download Base Images

S5. Radio Handoff & Service Handoff Triggered

S6. Snapshot

Memory

S8. Restore Container

S9. Remove

Container

Docker HubDocker Hub

AP/BS 1

AP/BS 2

AP/BS 3

AP/BS 4 AP/BS 5

Feature

Database

Feature

Database

Feature

Database

Feature

Database

Feature

Database

S3. Send a Message S9. Send a Message

& Run-time MemoryWireless

Networks

Signal Coverage of APs/BSs

location a
location blocation c

S1. Service Rebuilding Preparation Triggered

Docker Daemon

Container Layer

Base Image

Layers

Source MEC

Docker Daemon

Container Layer

Base Image

Layers

Target MEC

S2. Match Extracted

Features

S3. Predict Target

MEC

S7. Transfer Container Layer

S4. Download Base Images

S5. Radio Handoff & Service Handoff Triggered

S6. Snapshot

Memory

S8. Restore Container

S9. Remove

Container

Docker Hub

AP/BS 1

AP/BS 2

AP/BS 3

AP/BS 4 AP/BS 5

Feature

Database

Feature

Database

S3. Send a Message S9. Send a Message

& Run-time MemoryWireless

Networks

Figure 4.1: Overview of the proposed fast radio-service handoff protocol.

4.1.3 Strategy for Feature Database Training

Before the MEC is able to provide the target MEC prediction service for mobile

users, we need to first train a feature database in each MEC. Our proposed feature

database training strategy is shown in Figure4.2. We assume N target MECs are

around a source MEC. The training process is divided into three stages, including

triggering, caching, and categorizing.

Firstly, since RSSI on a mobile user indicates how well the mobile user can hear its

remote connected AP. RSSI is an efficient resource for the source MEC to estimate

if associated users have trends for requiring a service rebuilding service. Thus, we

choose RSSI as the trigger for initiating the training service on the source MEC. In

other words, when a mobile user’s RSSI is below the threshold γ1, the source MEC

starts training its feature database. Secondly, the source MEC caches all the extracted

features from mobile users’ offloaded frames, until mobile users are triggered service

handoffs (i.e., RSSI ≤ γ2). We define the area with RSSI in the range of [γ2, γ1]

as the feature caching area and the area with RSSI larger than γ1 as the safe area.

Thirdly, after mobile users complete service rebuilding and start being served on the

48

target MECs, the source MEC categorizes these cached features according to the

corresponding mobile users’ target MECs. The categorization result is described as

a set C = [c1, ..., cN].

MAR Applications Video Frames

MUMU

CameraCamera

MEC ServerMEC Server

AP

BS

TriggeringCategorizingFeature

Database
Caching

AR Gaming

Object Recognition

MAR Applications Video Frames

MU

Camera

MEC Server

AP

BS

TriggeringCategorizingFeature

Database
Caching

AR Gaming

Object Recognition

Figure 4.2: Feature database training process.

However, there exist some issues when implementing our proposed feature database

training strategy in practical scenarios. Firstly, if a mobile user’s feature caching time

duration is too long, it may cause the training result being inaccurate. For example,

as shown in Figure4.3, Path 1 is a moving path of a mobile user, where the user is

associated with the source MEC originally. After being triggered a service rebuilding,

its offloading service is finally handed off to target MEC 1. And all the cached features

are categorized as the benchmark used for indicating that mobile users whose offloaded

frames contain the same features have trends to handoff to target MEC 1. However,

some features, such as feature 1, that are cached much earlier than mobile users being

triggered service handoffs, might mislead target MEC predictions. To overcome this

issue, we set a time period T1, where database only categorizes features that are

cached within this time period, depicted as the red dashed line in Figure4.3. Features

that are cached T1 period before triggering service handoffs would be abandoned.

Secondly, as shown in Figure4.3, features in the purple area seem to belong to both

target MEC 1 and target MEC 2, intuitively. But, because mobile devices usually

are associated with the AP with higher RSSI and the feature categorization time is

49

limited by T1. The actual training result of feature databases is shown as Figure4.4.

…

Path 1

Feature 1

Target

Server 1

Target

Server 2

Source

Server

Training Start

Training

Complete

…

Path 1

Feature 1

Target

Server 1

Target

Server 2

Source

Server

Training Start

Training

Complete

Figure 4.3: Basic training result

𝛾1

…

𝛾2
Path 2

𝑇1
Source

Server

Target

Server 1

Target

server 2

𝑐1

𝑐2

Path 3Path 3

Figure 4.4: Advanced training result

4.1.4 Proposed Feature Mapping Algorithm

When a MEC has a completed trained feature database, it can offer target MEC

prediction services to its attached mobile users. We design a feature mapping algo-

rithm which is shown in Algorithm 3.

We assume the mapping iteration is executed every T0 ms, periodically. At each

iteration, the algorithm first checks the mobile user’s RSSI. If it is below the threshold

γ1, the source MEC will trigger a target MEC prediction service for the mobile user.

We use flag1 to represent that the user is initiated a prediction service and α to

represent the number of executed prediction iterations. Then, the source MEC collects

a feature set F that are extracted in the latest user-offloading frames. F will be

matched against the source MEC feature database D. After completing the matching

process, the algorithm calculates a ratio matrix R = [r1, ..., rN], which represents that,

for example, the proportion of features that belong to c1 in F is r1. If there exists a

MEC i, where ri is not less than a fix ratio β, the prediction result in this iteration

will be MEC i. Then i is recorded in the set Φ. Since we set β ≥ 0.5, there is only

one predicting target MEC in each iteration.

Furthermore, in our proposed mapping algorithm, prediction iteration would be

stopped in two scenarios. The first one is the moment when the mobile user’s RSSI

50

Algorithm 3: Feature Mapping
1 flag1 = 0, f lag2 = 0, α = 0,Φ = ∅, φ = 0
2 for every T0 ms do

/* Check the RSSI of the mobile user */
3 if RSSI ≤ γ1 ∧ flag2 = 0 then

/* Start a prediction */
4 if flag1 = 0 then
5 flag1 = 1

6 α = α+ 1
7 Save the latest extracted features in F
8 Match F against database D
9 Calculate ratio matrix R = [r1, ..., rN]

10 if ∃ MEC i s.t. ri ≥ β then
/* Prediction result in this iteration is MEC i */

11 Φ (α+ 1) = i

12 if RSSI ≤ γ3 then
/* 1st scenario of stopping prediction iterations */

13 flag2 = 1
/* Target MEC */

14 φ = j s.t. MEC j with the largest prediction number in Φ

15 else
16 if α ≥ λ1 then

/* 2nd scenario of stopping prediction iterations */
17 if ∃ MEC k s.t. the prediction number within Φ [α+ 1− λ1, α+ 1] is larger

than λ2 then
18 flag2 = 1

/* Target MEC */
19 φ = k

20 else if RSSI > γ1 ∧ flag1 = 1 then
/* The mobile user goes back to the safe area */

21 flag1 = 0, f lag2 = 0, α = 0,Φ = ∅, φ = 0

is below the threshold γ3, where γ2 ≤ γ3 ≤ γ1. And the algorithm choose the MEC

with the largest prediction number in set Φ as the final prediction result. Another

scenario is that the number of prediction iterations for the mobile user is larger than

the threshold λ1. And also, there exists a MEC k whose prediction number within

Φ [α + 1− λ1, α + 1] is larger than the threshold λ2. In order to achieve no more than

one prediction result, we set λ2 ≥ 0.5λ1. In addition, we use flag2 to indicate the

mobile user completes its prediction service on the source MEC.

There exists a special case that is depicted as Path 3 in Figure4.4. After the mobile

51

user being triggered a target MEC prediction service, it goes back to the safe area.

We use the prediction initialized flag, flag1, and RSSI to identify mobile users in this

special case. For these users, the source MEC just abandons its previous prediction

result and waits for the next prediction service being triggered for them.

4.1.5 Analysis

In the proposed fast radio-service handoff protocol, some parameters might affect

the performance of the service rebuilding process.

Camera

Features

𝜃 𝑓

Camera
𝜃

𝑐2 𝑐1

Figure 4.5: Effect of camera’s properties

Camera

Features

𝜃 𝑓

Camera
𝜃

𝑐2 𝑐1

Figure 4.6: Effect of feature ratio β

First, currently most mobile devices support digital or optical zoom. Thus, in real

world, what features and the number of features can be extracted from the user-

offloading frames usually depends on the focus, ρ, and the angle of view, θ, of the

mobile device’s camera, as shown in Figure4.5. When a mobile user operates different

AR applications or the same AR application running in different scenarios, camera’s

focus and angle of view might be changed. A good feature mapping algorithm should

be able to maintain a high prediction precision and a short prediction time within

different values of camera’s focus and angle of view.

Second, the prediction time is influenced by the requirements of stopping prediction

iterations, i.e., λ1, λ2, and γ3. With larger λ1 and λ2, or γ3, the mobile user may

achieve a higher prediction precision, but it may spend much more prediction time.

Therefore, even though we obtain a accurate predicted target MEC, the time left for

52

preparing the offloading service on the target MEC, e.g., downloading base images,

may be not enough.

Third, the feature ratio β also may affect the prediction precision and latency in

some cases. For example, in Figure4.4, a mobile user is moving through path 2. If β

is set with a large value (e.g., 0.9), the mobile user may not get prediction results in

some iterations or, even worse, in every iterations until reaching the threshold γ3 and

stopped prediction service. Since its extracted features contains very close number of

features in both c1 and c2, as shown in Fig4.6, where neither r1 nor r2 is larger than

β. Thus, the prediction time may be increased dramatically and the mobile user may

not get a predicted target MEC in the end of the prediction. However, if β is set with

a small value, the prediction precision may be lower.

4.1.6 Performance Evaluation

In this section, we evaluate the performance of the proposed service rebuilding

scheme. We first implement our proposed scheme on a testbed and demonstrate the

reduction of the service rebuilding latency. Since evaluating the performance of the

proposed feature mapping algorithm in multiple different scenarios needs a relatively

huge number of mobile users, which is very costly, we use extensive simulations to

evaluate the prediction accuracy and latency of the proposed feature mapping algo-

rithm.

4.1.6.1 Experimental Setup and Results

Our testbed consists of five components, a mobile user and two cloudlets attached

with two APs, as shown in Figure4.7. Firstly, we use Intel NUC kits as the mobile

user, which continues offloading a pre-captured video to the source cloudlet. Secondly,

two Nvidia Jetson TX2 kits are conducted as a source cloudlet and a target cloudlet,

respectively, and both of them are attached with a Linksys N900 access point for

communicating with the mobile user. A stateless application, YOLO, runs in the

53

Mobile User ScreenSource Cloudlet Screen

AP 1 AP 2Target

CloudletSource

Cloudlet

Mobile

User

Figure 4.7: Testbed implementation.

source cloudlet which offers an object recognition service for the mobile user. We

implement the proposed feature mapping algorithm in the Nvidia Jetson TX2 kits

and pre-trained a small feature database in the source cloudlet. Because of the time

limitation, we do not implement the Docker container in our testbed.

We plot the experimental results in Figure4.8. Figure4.8a and Figure4.8b show

the service rebuilding latency of the conventional service rebuilding process and the

service rebuilding process with our proposed scheme, respectively, where the latency

of the mobile user re-achieving its offloading service on the target cloudlet is around

41.2sec and 14.1sec, respectively. Our proposed scheme decreases the whole service

rebuilding latency by around 65.8% compared with the conventional way. As shown

in Figure4.8b, since the source cloudlet gets a predicted target cloudlet ahead of the

mobile user triggered a radio handoff, the target cloudlet could start preparing the

service environment for the mobile user before connecting with it. And also, the

service handoff is performed in parallel with the radio handoff, during the service

rebuilding process.

54

5 100 15 20 25 30 35 40 45
Seconds since service rebuilding start

Trigger

Scanning

Auth and Re-assoc

Downloading

Compiling

Loading

TCP

Radio handoff

Service handoff

-24 6 11 16 21
Seconds since service rebuilding start

Downloading

Compiling

Loading

Trigger

Scanning

Auth and Re-assoc

TCP

-19 -14 -9 -4 1

Mobile user

loses the service

Mobile user re-

achieves the service

Mobile user

loses the service

Mobile user

re-achieves

the service

Achieve a predicted

target cloudlet

14.1 sec

(a)

5 100 15 20 25 30 35 40 45
Seconds since service rebuilding start

Trigger

Scanning

Auth and Re-assoc

Downloading

Compiling

Loading

TCP

Radio handoff

Service handoff

-24 6 11 16 21
Seconds since service rebuilding start

Downloading

Compiling

Loading

Trigger

Scanning

Auth and Re-assoc

TCP

-19 -14 -9 -4 1

Mobile user

loses the service

Mobile user re-

achieves the service

Mobile user

loses the service

Mobile user

re-achieves

the service

Achieve a predicted

target cloudlet

14.1 sec

(b)

Figure 4.8: Experimental service rebuilding latency. (a) Conventional service rebuild-
ing process; (b) Proposed service rebuilding scheme.

4.1.6.2 Simulation Setup and Results

The simulation setting is as follows. We consider a cloudlet-based mobile AR

environment with 8 target cloudlets around a source cloudlet, where they are regularly

distributed in a square area. The length of the simulation area is 450m. 1000 mobile

users who are playing cloudlet-based mobile AR applications move randomly within

the area following the Random Waypoint model. The moving speed of each mobile

users is in the range of [1, 2]m/s. In addition, we use the indoor path-loss model

which is express as

PL = 20 log10 f + 10n log10 d− 28(dB), (4.1)

55

(𝜃, 𝜌)
(110,114) (94,20) (84,24) (75,25) (63,35) (46,50)
23

23.2

23.4

23.6

23.8

24

 S
av

ed
 t

im
e
 (

s)

Saved time

Prediction precision

Saved time

Prediction precision

0.9

0.92

0.94

0.96

0.92

1 P
red

ictio
n

 p
recisio

n

β = 0.6

𝑇0 = 0.1s

𝜆1 = 20

 𝜆2 = 15

𝛾3 = −79dB

 (𝜃, 𝜌)
(110,114) (94,20) (84,24) (75,25) (63,35) (46,50)
23

23.2

23.4

23.6

23.8

24

 S
av

ed
 t

im
e
 (

s)

Saved time

Prediction precision

0.9

0.92

0.94

0.96

0.92

1 P
red

ictio
n

 p
recisio

n

β = 0.6

𝑇0 = 0.1s

𝜆1 = 20

 𝜆2 = 15

𝛾3 = −79dB

𝛾3 = −79dB

23

23.2

23.4

23.6

23.8

24

 S
av

ed
 t

im
e
 (

s)

(𝜃, 𝜌)
(110,114) (94,20) (84,24) (75,25) (63,35) (46,50)

0.8

0.85

0.9

0.95

1 P
red

ictio
n
 p

recisio
n

Saved time

Prediction precision

Saved time

Prediction precision

β = 0.6

𝑇0 = 0.1s

𝜆1 = 20

𝜆2 = 15

(°,𝑚𝑚)

𝛾3 = −79dB

23

23.2

23.4

23.6

23.8

24

 S
av

ed
 t

im
e
 (

s)

(𝜃, 𝜌)
(110,114) (94,20) (84,24) (75,25) (63,35) (46,50)

0.8

0.85

0.9

0.95

1 P
red

ictio
n
 p

recisio
n

Saved time

Prediction precision

β = 0.6

𝑇0 = 0.1s

𝜆1 = 20

𝜆2 = 15

(°,𝑚𝑚)

(a)

𝑇0 (s)

0.1 0.3 0.5 0.8 1
16

18

20

22

24

 S
av

ed
 t

im
e
 (

s)

0.8

0.85

0.9

0.95

1 P
red

ictio
n
 p

recisio
n

Saved time

Prediction precision

Saved time

Prediction precision

 𝜃, 𝜌 = (110,114) 𝜆1 = 20

𝜆2 = 15

𝛾3 = −79dB

β = 0.6

𝑇0 (s)

0.1 0.3 0.5 0.8 1
16

18

20

22

24

 S
av

ed
 t

im
e
 (

s)

0.8

0.85

0.9

0.95

1 P
red

ictio
n
 p

recisio
n

Saved time

Prediction precision

 𝜃, 𝜌 = (110,114) 𝜆1 = 20

𝜆2 = 15

𝛾3 = −79dB

β = 0.6

𝑇0 (s)

𝛾3 = −79dB

0.1 0.3 0.5 0.8 1

16

18

20

22

24

 S
av

ed
 t

im
e
 (

s)

0.9

0.92

0.94

0.96

0.98

1 P
red

ictio
n

 p
recisio

n

Saved time

Prediction precision

Saved time

Prediction precision

 𝜃, 𝜌 = (110,114) 𝜆1 = 20

𝜆2 = 15

β = 0.6

 𝑇0 (s)

𝛾3 = −79dB

0.1 0.3 0.5 0.8 1

16

18

20

22

24

 S
av

ed
 t

im
e
 (

s)

0.9

0.92

0.94

0.96

0.98

1 P
red

ictio
n

 p
recisio

n

Saved time

Prediction precision

 𝜃, 𝜌 = (110,114) 𝜆1 = 20

𝜆2 = 15

β = 0.6

(b)

15

20

25

 S
av

ed
 t

im
e
 (

s)

0.8

0.85

0.9

0.95

1
P

red
ictio

n
 p

recisio
n

Saved time

Prediction precision

Saved time

Prediction precision

 𝜃, 𝜌 = (110,114)

β = 0.6

 𝑇0 = 0.1s

(10,6,-78) (20,15,-79) (50,40,-81) (80,65,-82) (120,100,-84)
(𝜆1, 𝜆2, 𝛾3)

15

20

25

 S
av

ed
 t

im
e
 (

s)

0.8

0.85

0.9

0.95

1
P

red
ictio

n
 p

recisio
n

Saved time

Prediction precision

 𝜃, 𝜌 = (110,114)

β = 0.6

 𝑇0 = 0.1s

(10,6,-78) (20,15,-79) (50,40,-81) (80,65,-82) (120,100,-84)
(𝜆1, 𝜆2, 𝛾3)

(c)

Figure 4.9: Simulation results. (a) Impact of the properties of device’s camera; (b)
Impact of the prediction iteration period; (c) Impact of the prediction iteration stop
requirements.

where PL is the RF signal propagation path-loss based on distance d between the

source cloudlet and the mobile user, f is the carrier frequency in MHz, and n is

the path-loss exponent. In our simulation environment, n = 6 and f = 2400 MHz.

Furthermore, we trained a categorized feature database used for feature mapping in

the source cloudlet, which contains 10 thousand unique features.

Figure4.9 shows the simulation results. The left Y -axis represents the time period

from the moment when a mobile user achieves a predicted target cloudlet to the

moment when the mobile user is really triggered a radio handoff, and we call this

time period as saved time. Obviously, the shorter prediction latency the longer saved

time the target cloudlet obtains to prepare mobile users’ offloading services. The

right Y -axis represents the prediction precision.

Figure4.9a illustrates the robustness of the proposed algorithm under different mo-

bile device’s camera properties, focus ρ and angle of view θ. when ρ and θ are changed,

our proposed algorithm can still achieve a high prediction precision, over 80% and

56

a long saved time, around 24sec. Figure4.9b depicts the impact of the prediction

iteration period T0 on the performance of the proposed prediction algorithm. When

the period of the prediction iteration increases, the prediction precision increases but

the length of the saved time decreases. Since, under the same prediction stop re-

quirements, increasing the period of the prediction iteration indicates that the source

cloudlet might spend a longer time for prediction and achieve more efficient captured

features. Figure4.9c shows the impact of the prediction iteration stop requirements.

Simulation results confirm our analyses in Section 4.2.4.

4.2 The Proposed Energy-Efficient Radio-Service Hanoff Protocol

In this section, an energy-efficient and seamless radio-service handoff protocol is

proposed for MEC-based real-time mobile AR applications is described in detail. Ulti-

mately, the reason for MUs consuming a lot of energy for mobility management service

is performing frequent and periodic scans. Since the signal coverage and capacity of

a single AP is considerably limited, MUs have to frequently and periodically update

their knowledge of surrounding APs and switch between different APs to maintain

their wireless connections. For example, consider that an MU is hanging out in a

shopping mall, and a WLAN is deployed as shown in Figure 4.10(a). A mobility

management service is triggered when the MU walks across the signal boundary of

APs, which is depicted as colored circles in Figure 4.10(a). When the MU moves, for

instance, walking from the TOYS R US store (up left corner) to the SEARS store

(down right corner), the MU has to perform at least two handoffs, including chan-

nel scans, to maintain its wireless connection. However, in practical scenarios, users’

path may not just follow a straight line. They may erratically visit the stores they are

interested in one by one. Hence, MUs might perform much more number of scans and

handoff attempts, which may consume a lot of energy of mobile devices and badly

affect user experience because of the high handoff latency and load transfer delay.

We have conducted an energy consumption measurement study of mobile devices

57

AP

AP

AP

AP

AP

AP

MAP
MAP

CPAP

MAP

MAP

MAP

MAP
MAP

CPAP

MAP

MAP

MAP

(a)

AP

AP

AP

AP

AP

AP

MAP
MAP

CPAP

MAP

MAP

MAP

MAP
MAP

CPAP

MAP

MAP

MAP

(b)

Figure 4.10: Comparison of WLAN deployments. (a) Conventional WLAN deploy-
ment; (b) Proposed BELL deployment.

during roaming, including scanning and handoff, using Motorola Nexus 6p smart

phones. The measurement shows that performing a successful handoff with one scan-

ning attempt consumes approximate 1.5 Joule. This energy consumption may dra-

matically increase if the Nexus 6p attempts to scan channels for more than once,

i.e., the first scanning attempt fails to capture an appropriate AP to connect to. We

then utilize this measurement result to conduct a trace-driven simulation, where 500

MUs walk in an area with 36 APs deployed for 5.5 hours. Each mobile device is

attached with a 3000mAh battery and follows the Random Waypoint model. Figure

4.11 depicts the energy consumption of performing mobility management services.

Each device’s total energy consumption is sorted from low to high as shown in the

X-axis. From the figure we can see that most devices consume approximate 8% of

the total battery life for performing mobility management. Some mobile devices with

high mobility consume a whopping 13.4% of the total battery life, 400mAh, for these

two WLAN management services, which is equivalent to the battery drain for watch-

ing video around 1 hour. Therefore, reducing the energy consumption of mobility

management services is crucial and will help MUs survive longer within the WLAN

environment.

58

0 50 100 150 200 250 300 350 400 450 500

Mobile Devices

50

100

150

200

250

300

350

400

Energy consumption for the mobility

management service

E
n

er
g

y
 C

o
n
su

m
p

ti
o
n

(m
A

h
)

12%

9%
7%
5%
3%

0 50 100 150 200 250 300 350 400 450 500
38

40

42

44

46

E
n

er
g

y
 C

o
n
su

m
p

ti
o
n

(m
A

h
)

Mobile Devices

Energy consumption for the load

balance service

1.5%

1.3%

1.4%

Figure 4.11: Mobile devices’ energy consumption for mobility management services.

To overcome the above issue, we propose BELL that virtually extends the signal

coverage of a single AP. As shown in Figure 4.10(b), the signal coverage of the AP

located in the center is extended by the support of other APs around it. These APs

are called mirror access points (MAPs) for the central one. They have the same SSID

and MAC address with the center AP, named copied physical access point (CPAP).

APs that generate these MAPs are called host physical access points. MAPs and the

CPAP compose the proposed novel WLAN system, BELL. Since an MU would not

filter out beacons that are generated from APs obtaining the same SSID and MAC

address with its associated AP, the MU can receive beacons broadcast by MAPs and

the CPAP in a BELL without scanning. In other words, MUs in a BELL would

consider they are always in a single AP. Based on BELL, we propose an energy-

efficient mobility management service, BELL-handoff.

4.2.1 AP-side Handoff Protocol

At the heart of the proposed BELL-handoff is to create an evenly spaced periodic

schedule of beacon periods for MAPs and the CPAP. Consider a BELL system that

has (N + 1) number of APs (i.e., N MAP and a CPAP). The CPAP is operating in

channel v, and its beacon is broadcast at time φcpap ∈ [0, T], periodically, where T is

the beacon interval. Each MAP has an index number i ∈ {1, . . . , N} which is allotted

clockwise. Let MAPs with an odd index operate in channel p and MAPs with an even

59

index operate in channel q. Channel v, p, q are three non-overlapping channels (e.g.,

{v, p, q} = {1, 6, 11} in the 2.4 GHz band). If N is even, then

φi =

φcpap + T

χ
, if i = 2n+ 1

φcpap + (χ− 1) · T
χ
, otherwise

where n ∈ {0, . . . , N−1
2
}, φi denotes the beacon broadcasting time of MAP i, and χ

denotes the number of segments in the beacon interval. If N is odd,

φi =

φcpap + T

χ
, if i = 2n+ 1

φcpap + (χ− 1) · T
χ
, if i = N

φcpap + (χ− 2) · T
χ
, otherwise

where n ∈ {0, . . . , N−2
2
}. Furthermore, when N is even, χ = 3 (i.e., the total number

of operating channels in the BELL), otherwise χ = 4.

Example 1. Consider a BELL system with even number of MAPs (e.g., N = 4

in this example) operating in the 2.4 GHz band, as shown in Figure 4.12(b). APs’

physical signal transmission range is depicted as the solid circles, and BELL-handoff

triggering range is depicted as the dashed circles. Assume the CPAP, MAP {1, 3},

and MAP{2, 4} are operating in channel 1, 6, and 11, respectively. χ = 3, φcpap = 0.

All the APs in the BELL are set for T = 102ms. Therefore, their beacon broadcasting

time is set to be {34, 68}ms, as shown in Figure 4.12(a). Furthermore, there would

be no collision for different MAPs broadcasting beacons at the same time, since they

do not have overlapping coverage area.

Example 2. Consider a BELL system with odd number of MAPs (e.g., N = 5 in

this example) operating in the 2.4 GHz band, as shown in Figure 4.13(b). Assume

that the CPAP, MAP {1, 3, 5}, and MAP{2, 4} are operating in channel 1, 6, and 11,

60

Beacon

Beacon

Beacon

Beacon

Beacon

time (ms)

CH 1

CH 6

CH 11

CPAP

MAP1

MAP3

MAP2

MAP4

34 68 1020

Beacon

Beacon

Beacon

Beacon

Beacon

time (ms)

CH 1

CH 6

CH 11

CPAP

MAP1

MAP3

MAP2

MAP4

34 68 1020

(a)

CPAP

MAP1

MAP2

MAP3

MAP4 CPAP

MAP1

MAP2

MAP3

MAP4

(b)

Figure 4.12: Example of a BELL with even number of MAPs. (a) BELL deployment;
(b) Beacon broadcast schedule.

Beacon

Beacon

Beacon

Beacon

Beacon

time (ms)

CH 1

CH 6

CH 11

CPAP

MAP1

MAP3

MAP2

MAP4

25.5 51 76.50

BeaconMAP5

102

(a)

CPAP

MAP4 MAP3

MAP2

MAP1

MAP5

CPAP

MAP4 MAP3

MAP2

MAP1

MAP5

(b)

Figure 4.13: Example of a BELL with odd number of MAPs. (a) BELL deployment;
(b) Beacon broadcast schedule.

respectively. χ = 4, φcpap = 0, and T = 102ms. Therefore, their beacon broadcasting

time is set to be {25.5, 51, 76.5}ms, as shown in Figure 4.13(a).

4.2.2 User-side Protocol

MUs in BELL perform our proposed energy-efficient BELL-handoff. Consider an

MU u currently located in MAP i (1 < i < N) and a BELL-handoff is triggered

since the received signal strength (RSS) at the MU is below a threshold γ. The

possible candidate AP set for MU u to connect to is {MAP i+1, MAP i−1, CPAP}.

Therefore, MU u only needs to switch to the corresponding channels one by one,

61

and waits for the beacon at each beacon broadcasting time according to the BELL

beacon schedule. MU u stops this channel switching when successfully receives a

beacon frame. For example, consider a BELL system as deployed in Figure 4.12.

Assume a BELL-handoff is triggered when MU u is in MAP 3 at time t0. It first

switches its channel to CH 11 and completes its BELL-handoff if it receives a beacon

frame at (t0 + 34)ms. Otherwise, it switches its channel again to CH 1 and waits for

receiving the beacon broadcast at (t0 +68)ms. Therefore, MUs can successfully roam

in BELL without performing scanning, achieving energy-efficient handoffs. Note that

although after a BELL-handoff, an MU may be handed off to an MAP with RSSI

below γ, it can trigger another BELL-handoff soon and connect to an MAP with

better RSSI.

4.2.3 Implementation Challenges

There exist some issues when implementing our presented BELL system both in

APs and in user devices.

Challenge 1. To have an accurate beacon schedule over long time scales, it is nec-

essary to overcome the clock drift that exists in each AP.

We address this issue by proposing an AP clock synchronization (CS) protocol. In

the proposed CS protocol, all the MAPs in a BELL adjust their clock every ψ, by

synchronizing its local Timing Synchronization Function (TSF) timer with a common

clock which is the local TSF timer of the CPAP. ψ is an integral multiple of the beacon

interval T . Assume that the CPAP always broadcast its beacons first in every beacon

interval. In addition, at time σ, MAP i and the CPAP have a local TSF value of

ti(σ) and tcpap(σ), respectively. Therefore, if N is even, then

tioffset(σ) =

|ti(σ)− tcpap(σ)| − T

χ
, if i = 2n+ 1

|ti(σ)− tcpap(σ)| − (χ−1)·T
χ

, otherwise

62

where n ∈ {0, . . . , N−1
2
}, tioffset(σ) denotes the timing offset value for MAP i at time

σ. If N is odd, then

tioffset(σ) =

|ti(σ)− tcpap(σ)| − T

χ
, if i = 2n+ 1

|ti(σ)− tcpap(σ)| − (χ−1)·T
χ

, if i = N

|ti(σ)− tcpap(σ)| − (χ−2)·T
χ

, otherwise

where n ∈ {0, . . . , N−2
2
}. Then,

t̄i(σ) = ti(σ)− tioffset(σ), (4.2)

where t̄i(σ) denotes the corrected TSF for MAP i at time σ.

Challenge 2. How does an MU acquire enough MAPs’ information to achieve a

successful BELL-handoff?

In the proposed BELL system, MUs do not need to know the index of a particular

MAP. Instead, acquiring BELL’s beacon broadcasting schedule and its corresponding

channels is enough for performing a successful BELL-handoff. For example, consider

a BELL as deployed in Figure 4.12 and an MU is in MAP 3. The MU only knows

it is currently in channel 6. After a BELL-handoff is triggered, the MU just jump

to channel 11 and channel 1 in order according to the beacon broadcasting schedule.

Therefore, we only ask each MU acquiring a beacon broadcasting schedule while

joining BELL, which is simple enough to implement.

Furthermore, the deployment of the BELL presented above is based on an assump-

tion that, MAPs with an even index or an odd index can operate in the same channel

and have the same beacon broadcast time, only if they do not have overlapping cov-

erage area. For example, in Figure 4.12, MAP1 and MAP3 operating in the same

channel and having the same beacon broadcast time do not have any overlapping cov-

63

erage area. However, if the density of MAPs in a BELL is increased, two neighboring

MAPs with an even index or an odd index may have overlapping coverage area. To

avoid the interference, their beacons need to broadcast at different time or they need

to operate in different channels. Therefore, there exists a limitation of the maximum

number of MAPs in a BELL: the minimal gap in time between two beacons that

broadcast by different MAPs has to be larger than the MU’s channel switching delay,

i.e., T
χ
> tcs, where tcs is the MU’s channel switching delay.

4.2.4 Analysis

1. Energy efficiency: MUs roaming in BELL do not perform scanning, which indi-

cates that they do not need to send or receive probe request and response for the

purpose of scanning. Therefore, the proposed BELL provides a more energy-

efficient mobility management service than conventional WLAN (C-WLAN).

2. Handoff latency: the handoff latency in BELL is equal to the delay of waiting for

the beacon frame, plus the delay for authentication and re-association which is

the same as in traditional handoff. Excluding authentication and re-association

delay,

PLS =

{T
χ
, (χ− 1) · T

χ
}, if N is even

{T
χ
, (χ− 2) · T

χ
, (χ− 1) · T

χ
}, otherwise

where PLS is the the possible handoff latency set. In our cases, T is set to be

102ms. Thus, ideally, the maximum handoff latency, excluding authentication

and re-association delay, is 68ms, if N is even, and it is 76.5ms, if N is odd.

4.2.5 Mutiple BELL Zones Scenario

In the mutiple BELLs scenario, several BELL WLANs coexist in a certain area.

Each AP can be a CPAP, which indicates that a host physical AP would generate

multiple different MAPs in it, as illustrated in Figure 4.14. The number of MAPs

generated in a host physical AP is equal to the number of MAPs in this BELL.

64

Different BELL systems can have the same channel set. In addition, MUs roaming

between different BELL WLANs perform conventional handoffs.

AP-2
AP-1AP-1

CPAP-1

MAP-2MAP-2

MAP-3MAP-3

AP-3

Multiple BELLs

Figure 4.14: Multiple BELL zones.

4.2.6 Performance Evaluation

In this section, we evaluate the performance of the proposed BELL. We first im-

plement our proposed BELL-handoff mobility management service on a testbed and

demonstrate MUs’ roaming performance improvement in BELL, including handoff en-

ergy consumption and latency, as compared to the conventional WLANs (C-WLANs).

Since implementing a large-scale deployment of MAPs is very costly, we conduct ex-

tensive simulations to evaluate the performance of BELL-2M and mobile devices’

battery life within a large-scale deployment of BELL.

4.2.6.1 Testbed and Experimental Setup

Our testbed is composed of three subsystems, MU and energy measurement sys-

tem, BELL including a CPAP and an MAP, and AP clock synchronization system.

Firstly, in the MU and energy measurement system, we use KEYSIGHT N6705B DC

Power Analyzer for powering and measuring the energy consumption of a Raspberry

Pi Model 3 connected with an ALFA AWUS036NHA USB Wi-Fi adapter, which is

conducted as a test MU. The Wi-Fi adapter is driven by an open-source hardware

driver, ath9k, and its MAC functionality is handled by the protocol driver mac80211,

65

CPAP

MAP

Clock Synchronization System

Local

TSF

Local TSF

MU and Energy Measurement System

HP Z820 Workstaion

Corrected TSF

KEYSIGHT J7211A Attenuator

TP-LINK N150

Wireless Card

Raspberry Pi

Alfa AWUS036NHA Wi-Fi Adapter

KEYSIGHT N6705B Power Analyzer

BELL-

handoff

Laptop with

METAGEEK Eye P.A.

AirPcap Nx

Figure 4.15: Testbed hardware architecture.

Userspace hostapd Set up MAP and CPAP

APInl80211Kernel

cfg80211

cfg80211-ops API

mac80211

ieee80211-ops API

ath9k

Linux 802.11 configuration API

Hardware driver

 BELL-handoff /TSF synchronization

Figure 4.16: Testbed driver software structure.

which is where we implement BELL-handoff. We update our modified mac80211 to

the Linux kernel which is then embedded into the test Raspberry Pi. Secondly, the

tested BELL is setup with a CPAP and an MAP. These two are built in two work-

stations with the Linux operating system. Both workstations are connected with a

TP-LINK N150 PCI-Express wireless card driven by ath9k and mac80211. Then,

we use hostapd in userspace to set the configuration of these two APs. KEYSIGHT

J7211A attenuator is used for emulating the mobility of the MU, e.g., decreasing

the transmission signal strength of the CPAP emulates the case when an MU gradu-

ally moves away from the CPAP. Furthermore, to implement our AP’s CS protocol,

we modify ath9k by adding a function interface to rewrite the register that stores

the dynamic local TSF of APs. Lastly, we use Airpcap Nx and its client software,

66

METAGEEK Eye P.A., for capturing control frames at the MAC layer and extracting

local TSF values of the CPAP and the MAP to conduct the clock synchronization.

The testbed hardware architecture and driver software structure are shown in Figure

4.15 and Figure 4.16, respectively.

We set the beacon interval of APs in BELL to be 102ms. Thus, the beacon broad-

cast time of the CPAP and the MAP are 0 and 51ms, respectively. Both APs operate

in the 2.4 GHz band. The CPAP operates in channel 1 and the MAP operates in chan-

nel 6. Furthermore, the test Raspberry Pi is powered by 5.2V and its BELL-handoff

threshold is set to be −80dB.

4.2.6.2 Mobility Management Service Performance

Energy Efficiency. We plot experimental results in Figure 4.17. The measure-

ment current of the test Raspberry Pi without connecting any peripherals is approx-

imately fixed at 0.21A. After connecting a USB Wi-Fi adapter, the Raspberry Pi’s

current is increased to around 0.3A, as shown in Figure 4.17a. This indicates that the

Wi-Fi adapter consumes an approximately fixed current of 0.09A in idle state. Figure

4.17a shows the current measurement result of the Raspberry Pi within 250sec. We

find that in approximately every 120sec, the mac80211 driver will trigger a periodic

full channel scanning, which lasts around 9sec, as shown in Figure 4.17b. Each spike

represents one scan on a channel. Since the MU still has a good-quality connection

with its current associated AP, it switches back to the original channel to maintain

its connection after scanning each channel. Figure 4.17c and Figure 4.17d compare

the current of performing the 802.11 standard handoff within C-WLAN and the pro-

posed BELL-handoff within BELL. Obviously, both the current value and duration of

performing the proposed BELL-handoff is much smaller than that of performing the

802.11 standard handoff, which indicates that the proposed BELL provides energy-

efficient mobility management service for MUs.

The calculated energy consumption during handoffs is depicted in Table 4.1. The

67

Table 4.1: Handoff energy consumption results

Overall Breakdown

C-WLAN
(periodic scanning) 10.138J

C-WLAN Trigger 0.902J

(802.11 standard handoff) 4.366J Scan 2.809J
Auth and re-assoc 0.655J

BELL (BELL-handoff) 0.748J
Channel switching 0.038J

Idle 0.050J
Auth and re-assoc 0.660J

Table 4.2: Handoff latency Results

Overall Breakdown

C-WLAN Trigger 0.41sec

(802.11 standard handoff) 3.06sec Scan 2.62sec
Auth and Re-assoc 24ms

BELL (BELL-handoff) 75.6ms
Channel switching < 1ms

Idle 51ms
Auth and Re-assoc 24ms

proposed BELL-handoff decreases the energy consumption by around 82.9% as com-

pared with the 802.11 standard handoff protocol. Furthermore, we find that, in

802.11 standard handoff protocol, the handoff trigger is a number of continuously

missed beacon frames instead of a fixed RSSI value. Therefore, it would consume an

additional energy of 0.902J for triggering. The periodic scanning in 802.11 standard

protocol consumes 10.138J energy. This would aggravate MUs’ energy drain. How-

ever, in BELL, MUs perform neither periodic scanning nor scanning within mobility

management services, which significantly reduces the handoff energy consumption of

MUs.

Latency. The experimental results are shown in Table 4.2. The proposed BELL-

handoff decreases the overall handoff latency from 3.06sec to 75.6ms, as compared

with C-WLANs. We can see that, in C-WLANs, the scanning latency, 2.62sec, is

the largest portion of the total handoff latency. In addition, since the handoff trigger

68

mechanism for the 802.11 standard handoff is to count the number of continuously

missed beacons, the trigger delay, which is measured as 0.41sec, increases the total

handoff latency. However, the delay of BELL-handoff is from three parts: the MU’s

channel switching delay, which is less than 1ms, the time for waiting for the new

beacon, around 51ms, which depends on the beacon scheduling in BELL, and authen-

tication and re-association delay, around 24ms. In total, the proposed BELL-handoff

decreases the handoff latency by around 97.5%, as compared with the C-WLAN.

69

0 50
0.2

250100 150 200

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

Periodic scanning Periodic scanning

802.11 standard

handoff
802.11 standard

handoff

Periodic scanning

C
u
rr

en
t

(A
)

(a)

C
u
rr

en
t

(A
)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12

Start periodic

scanning

Stop periodic

scanning

Channels

Time (s)

(b)

0 1 10

Time (s)
2 3 4 5 6 7 8 9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
u
rr

en
t

(A
)

Periodically receiving

beacons Authentication and re-association

Stop

scanning

Start

scanning
802.11 standard handoff

triggered (miss beacons)

(c)

0 100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

C
u
rr

en
t

(A
) Beacon from the CPAP BELL-handoff triggered (received

beacon RSSI < -80 dBm)
Switch

channel

Beacon from the MAPAuthentication and re-association

Time (ms)

(d)

Figure 4.17: Measured current of MU. (a) Current of the test Raspberry Pi connect-
ing a USB Wi-Fi adapter within C-WLAN; (b) Current of the test Raspberry Pi
for performing a periodic full channel scanning within C-WLAN; (c) Current of the
test Raspberry Pi for performing one 802.11 standard handoff within C-WLAN; (d)
Current of the test Raspberry Pi for performing one BELL-handoff within BELL.

CHAPTER 5: PROPOSED RESOURCE ALLOCATION PROTOCOLS IN MEC

NETWORKS

5.1 The Proposed Single Edge Server Resource Allocation Protocol

A single edge server radio resource allocation protocol, E-Auto, based on IEEE

802.11 to enable fast, stable, and accurate edge-assisted autonomous driving services

for connected vehicles within any road conditions (e.g., high speed or traffic conges-

tion) is proposed in this section. The parameters used in our analysis are listed in

Table 5.1. We consider an edge-based connected vehicle network environment with

an RSU server a and N connected vehicles that always have network activities. De-

note Ndown as the number of connected vehicles with downloading traffic (DCVs) (i.e.,

downloading entertainment videos) and Nup as the number of connected vehicles with

uploading traffic (UCVs) (i.e., offloading their real-time camera captured video frames

for object detection purpose), respectively. In addition, Ndown+Nup ≥ N , and a con-

nected vehicle may have downlink and uplink traffic simultaneously. N , Ndown, and

Nup are denoted as sets of all connected vehicles, DCVs, and UCVs, respectively.

5.1.1 Key Factors in Edge-assisted Autonomous Driving

In this subsection, we define three key factors in an edge-assisted autonomous

driving system. They can help us design the proposed E-Auto scheme.

Speed of Connected Vehicles: consider a UCV n ∈ Nup, and denote V ti
n as its

moving speed at time ti, as shown in Figure 5.1. UCVs are all equipped with a video

camera with θ◦ horizontal field of view and l meter 3-D measurement range. When

the UCV moves after a time period τ , the area of the surroundings that its camera

can capture will change, which is denoted as ∆Stin = (2l− θ · dtin) ·V ti
n . Obviously, the

71

Table 5.1: Notations used in E-Auto

Variable Description
V Speed of a connected vehicle (m/s)
fps Frame rate (frames/sec)
∆S The area of camera captured different surroundings (m2)
k × s Frame resolution of the offloaded video frame (pixels)
k̄ × s̄ Frame resolution of the downloaded video frame (pixels)
γ The number of bits carried by one pixel (bits)
LU Wireless network latency for offloading a video frame (s)
LD Wireless network latency for downloading a video frame (s)
Ptr Wireless transmit power of a connected vehicle (watt)
Prev Wireless receive power of a connected vehicle (watt)
EU Energy consumption for offloading a video frame (J)
ED Energy consumption for downloading a video frame (J)

l

Camera Camera

UCV n at time 0 UCV n at time

it

nV

it

nS

it

nd

Figure 5.1: The area change of camera captured video frames during autonomous
driving.

area of the camera newly captured surroundings is determined by the speed of the

UCV. Consider two UCVs n,m ∈ Nup at time ti. We define that

σti(n,m) =
∆Stin
∆Stim

=
(2l − θ · dtin) · V ti

n

(2l − θ · dtim) · V ti
m

, (5.1)

where, dtin = V ti
n · τ , dtim = V ti

m · τ .

Frame Rate: the frame rate, denoted as fps, is the number of frames that a

UCV/DCV offloads/downloads to/from the RSU server per second for object detec-

tion/entertainment. For UCVs: When the speed of a UCV is high, the UCV must

72

offload more captured frames for a fast and accurate autonomous driving, since it

obtains a large ∆Stin . Consider two UCVs n,m ∈ Nup at time ti, and let fpstin and

fpstim be the minimum acceptable frame rate for maintaining their autonomous driv-

ing services, respectively. Thus, if we know the value of fpstin , fpstim can be calculated

by

fpstim =
1

σti(n,m)

· fpstin . (5.2)

For DCVs: A higher frame rate can maintain a smoother watching experience.

Denote ¯fps0 as the lowest frame rate that human beings can accept. A higher data

rate is needed in order to download more frames in a second.

Frame Resolution: for UCVs: We assume that, at time ti, the camera captured

video of UCV n is preprocessed into video frames with the resolution of ktin ×stin pixels.

γ is denoted as the color depth of a frame which is the number of bits required to

represent the information carried by one pixel. The data size of the offloaded video

frame at time ti can be calculated as ktin × stin × γ bits. Thus, the offloading latency

experienced by the video frame at time ti is modeled as

LU ti
n =

ktin × stin × γ
Rti
n

, (5.3)

where Rti
n is the offloading data rate of UCV n at time ti. Therefore, the offloading

latency is determined by the frame resolution and wireless data rate. For instance, if

the wireless data rate is low, the UCV can reduce the frame resolution of its offloaded

camera captured video frames, in order to acquire a faster object detection response.

However, the accuracy of the object detection highly depends on the resolutions of

UCV’s offloaded video frames. A lower video frame resolution always results in a

worse mean average precision of an object recognition function [166]. Thus, a UCV

with a high moving speed must keep offloading captured frames with a high frame

resolution, in order to guarantee the accuracy of object detection and the safety of

73

autonomous driving. In addition, since the data size of object detection results is

usually small, we do not consider the latency caused by transmitting the results in

this paper.

For DCVs: Consider a DCV g ∈ Ndown. We assume that, at time ti, the frame

resolution of the requested entertainment video is k̄tig × s̄tig pixels. Similar to the

UCV case, the downloading latency experienced by the video frame at time ti can be

modeled as

LDti
g =

k̄tig × s̄tig × γ
Rti
g

, (5.4)

where Rti
g is the downloading data rate of DCV g at time ti.

Offloading/Downloading Energy Consumption: the energy consumption for

UCV n ∈ Nup or DCV g ∈ Ndown offloading/downloading a frame at time ti can be

modeled as

EU ti
n = Ptr · LU ti

n , (5.5)

EDti
g = Prev · LDti

g , (5.6)

where Ptr and Prev are the wireless transmit power and receive power of a connected

vehicle, respectively.

5.1.2 Key Idea

The moving speed of UCVs determines the amount of data (i.e., the number of

captured frames and the frame resolution) that needs to be offloaded to the RSU

server, in order to maintain an accurate, fast, and safe autonomous driving service.

Thus, the key idea of our proposed E-Auto edge-assisted autonomous driving scheme

is that the RSU server periodically allocates a dedicated offloading period

(DOP) to each associated UCVs by leveraging the values of their real-time

moving speeds. The length of UCV n’s (n ∈ Nup) allocated DOP is with respect to

74

its instantaneous speed V ti
n , where DOPn = ψ(V ti

n). In other words, the UCV with a

higher instantaneous speed will be allocated a larger DOP due to the requirements of

high frame rate and high frame resolution. In addition, since the instantaneous speed

of connected vehicles varies frequently, the RSU server conducts the allocation once

every T ms. In E-Auto, we set T to be a Beacon Interval, which is the period for an

access point (AP) broadcasting its beacon frames (usually its value is a multiple of 102

ms). Furthermore, each associated DCV is also allocated a dedicated downloading

period (DDP). Since the download data size is irrelevant to the instantaneous speed

of the corresponding DCV, every allocated DDP within T is of the same length and

can be calculated by

DDPg =
T −

∑Nup
n=1(DOPn)

Ndown

, n ∈ Nup, g ∈ Ndown. (5.7)

5.1.3 Proposed Algorithms in E-Auto

Based on the above presented key idea, we design the E-Auto scheme. As shown in

Figure 5.2, there are two components in the proposed E-Auto. One is the RSU-server-

side algorithm, which determines the DOPs and DDPs of each connected vehicle

in N periodically. The other is the connected-vehicle-side algorithm, which selects

the frame resolution of the offloaded camera captured frames or the downloaded

entertainment videos based on the length of the DOPs or DDPs.

RSU-server-side algorithm. We assume that the instantaneous speed of each

UCV is constant within T ms. The UCV Speed Vector, ~v = {vx1 , . . . , v
y
Nup
} (x, y ∈

Nup), is defined as an Nup-tuple consisting of the instantaneous speed of each UCV

in Nup within T , where UCVs are sorted by their instantaneous speed values in a

decreasing order (i.e., vx1 = Vx). Within each T , the RSU server allocates DOPs ac-

cording to the order of UCVs in ~v. For instance, the RSU server first allocates DOPx

to UCV x who has the highest instantaneous speed vx1 . Furthermore, as mentioned in

75
UCVs DCVs RSU Server

Object detection

RSU server-side

E-Auto algorithm

Camera feed

Detection result

Connected vehicle-

side E-Auto algorithm

Connected vehicle-

side E-Auto algorithm

UCVs DCVs RSU Server

Object detection

RSU server-side

E-Auto algorithm

Camera feed

Detection result

Connected vehicle-

side E-Auto algorithm

Connected vehicle-

side E-Auto algorithm

Figure 5.2: Overview of the proposed E-Auto scheme.

Section 5.1.1, the UCV with a higher instantaneous speed has tougher autonomous

driving requirements, such as a higher frame rate, frame resolution, and object detec-

tion accuracy. Therefore, our proposed E-Auto scheme guarantees that the UCV with

the highest instantaneous speed occupies the best offloading resources including the

longest allocated DOP, denoted as DOPx = DOPmax, the highest offloading frame

resolution, denoted as kx × sx = kmax × smax, and a guaranteed frame rate, denoted

as fps0. We define that DOPmax is calculated as

DOPmax = DOPx =
kmax × smax × γ

Rn

· fps0

T
. (5.8)

The rest of UCVs in Nup are allocated with their own DOPs based on the order in ~v.

For a particular UCV n ∈ Nup, its allocated DOP can be calculated by

DOPn = ψ(Vn) =
1

σti(x,n)

·DOPmax. (5.9)

Therefore, the E-Auto RSU server-side algorithm guarantees that the UCV with a

higher instantaneous speed will always be allocated a longer DOP. We define
−−−→
DOP

as the set of RSU server assigned DOPs of each UCVs in Nup within T . In addition,

in order to better classify the UCVs under complex speed conditions, we define three

76

Algorithm 4: E-Auto RSU-server-side algorithm
Input: The UCV speed vector ~v, κ1, κ2, κ3, the data rate of each connected vehicle R, Nup,

Ndown, T , fps0, kmax × smax.
Output: The set of RSU server allocated DOPs

−−−→
DOP , the set of RSU server allocated DDPs−−−→

DDP .
1 T0 ← T ;
2 if κ2 > 0 then

/* Special case 2) */
3 DOPn∈K2

← calculate via (5.11); T0 ← T0 −
∑κ2

1 DOPn∈K2
;

4 if κ1 ≥ 2 then
5 Find Rmin; /* Special case 1) */
6 DOPmax ← calculate via (5.10); T0 ← T0 − κ1 ·DOPmax;
7 if κ3 > 0 then
8 DOPn∈K3 ← calculate via (5.9); /* Special case 3) */
9 T0 ← T0 −

∑κ3

1 DOPn∈K3
;

10 for n = κ1 + 1 to Nup do
/* Allocate DOPs based on the order in ~v. */

11 DOPn ← calculate via (5.9);
12 if T0 ≤ DOPn then
13 DOPn ← T0; T0 = 0; break;

14 T0 ← T0 −DOPn;

15 else
16 DOPmax ← calculate via (5.8); T0 ← T0 −DOPmax;
17 if κ3 > 0 then
18 DOPn∈K3

← calculate via (5.9); /* Special case 3) */
19 T0 ← T0 −

∑κ3

1 DOPn∈K3
;

20 for n = 2 to Nup do
21 DOPn ← calculate via (5.9);
22 if T0 ≤ DOPn then
23 DOPn ← T0; T0 = 0; break;

24 T0 ← T0 −DOPn;

25 if T0 > 0 then
26 for g = 1 to Ndown do
27 DDPg ← calculate via (5.7);

28
−−−→
DOP ← DOPn;

−−−→
DDP ← DDPg;

29 return
−−−→
DOP ,

−−−→
DDP

special cases:

1. Vhighway is the speed trigger to judge if a UCV is driving on highway (e.g.,

usually Vhighway = 60 mph in the United States of America). Denote κ1 as the

number of UCVs whose instantaneous speeds are over Vhighway, and K1 as the

set of these UCVs. Considering the safety for driving on highway, we allocate

77

all the UCVs in K1 with the same length of DOP, DOPmax. Additionally, in

order to guarantee that UCVs in K1 can complete offloading camera captured

frames with conditions of kn × sn = kmax × smax and fps0 within a DOPmax,

the DOPmax is calculated as

DOPmax =
kmax × smax × γ

Rmin

· fps0

T
, (5.10)

where Rmin is the minimum data rate among all UCVs in K1.

2. V = 0 denotes that the corresponding UCVs are stopping due to traffic conges-

tion or the red traffic light. Denote κ2 as the number of UCVs under this case,

and K2 as the set of these UCVs. In addition, for each UCV under this special

case, it just needs to periodically offload a frame to check if the vehicle in front

of it starts moving or the traffic light turns green, where the checking period is

defined as α · T . The allocated DOP is calculated by

DOPn∈K2 =
kn × sn × γ

Rn

. (5.11)

3. Some UCVs are not allocated with one DOP within a continuous β · T . Denote

κ3 as the number of UCVs under this case, and K3 as the set of these UCVs.

For UCVs in this case, E-Auto gives them the highest allocation priority, except

the UCV that has the highest speed or the UCVs in K1.

Furthermore, allocated DDP is calculated by (5.7). We define
−−−→
DDP as the set of

RSU server assigned DDPs of each DCV in Ndown within T . The details of E-Auto

RSU-server-side algorithm are shown in Algorithm 4.

Connected-vehicle-side algorithm. As mentioned above, E-Auto guarantees

that the UCV with the highest instantaneous speed or the UCVs with instantaneous

speed over Vhighway can obtain the highest offloading frame resolution kmax × smax.

78

For other UCVs/DCVs, their offloading/downloading frame resolutions are selected

between the higher one kmax× smax/ ¯kmax× ¯smax and the lower one klow× slow/ ¯klow×

¯slow, via the connected-vehicle-side algorithm based on the length of the allocated

DOPs/DDPs. In addition, a lower frame resolution is selected if a UCV is under the

special cases 2) and 3). The details are given in Algorithm 5.

Algorithm 5: E-Auto connected-vehicle-side algorithm
Input: The set of RSU server allocated DOPs

−−−→
DOP , the set of RSU server allocated DDPs−−−→

DDP , kmax × smax, klow × slow, ¯kmax × ¯smax, ¯klow × ¯slow, fps0, ¯fps0, R.
Output: The selected offloading frame resolution kn × sn, the selected downloading frame

resolution k̄g × s̄g.
1 for n = 1 to Nup do
2 if Rn ×DOPn ≥ fps0 × kmax × smax × γ then
3 kn × sn ← kmax × smax;
4 else
5 kn × sn ← klow × slow;

6 for g = 1 to Ndown do
7 if Rg ×DDPg ≥ ¯fps0 × ¯kmax × ¯smax × γ then
8 k̄g × s̄g ← ¯kmax × ¯smax;

9 else
10 k̄g × s̄g ← ¯klow × ¯slow;

11 return kn × sn, k̄g × s̄g

Therefore, our proposed E-Auto scheme not only guarantees the variant require-

ments of autonomous driving based on UCVs’ speed, but also improves the channel

utilization comparing to IEEE 802.11 Enhanced Distributed Channel Access (EDCA),

as shown in Figure 5.3.

5.1.4 Performance Evaluation

In this section, we evaluate our proposed E−Auto scheme through network simula-

tions. We simulate a connected vehicle network with a RSU server and 10 connected

vehicles that have network activities during the whole simulations. Connected ve-

hicles follow the Random Waypoint model, where the instantaneous speed of each

vehicles is in the range of [20, 65] mph, and each vehicles may stop a period in the

79

RSU

UCV1

UCV2

DCV1

AIFS[i]

AIFS[j]

AIFS[j]

Data ACK

Channel Busy

Channel Busy

Defer Access

Defer Access

AIFS[i]

AIFS[j]

AIFS[j]

Backoff Backoff

Backoff

Backoff

RSU

UCV1

UCV2

DCV1

AIFS[i]

AIFS[j]

AIFS[j]

Data ACK

Channel Busy

Channel Busy

Defer Access

Defer Access

AIFS[i]

AIFS[j]

AIFS[j]

Backoff Backoff

Backoff

Backoff

RSU

UCV1

UCV2

DCV1

ACKData

DOP1

Channel Busy ACKData

DOP2

Channel Busy Data

DDP1

ACKRSU

UCV1

UCV2

DCV1

ACKData

DOP1

Channel Busy ACKData

DOP2

Channel Busy Data

DDP1

ACK

(a)

RSU

UCV1

UCV2

DCV1

AIFS[i]

AIFS[j]

AIFS[j]

Data ACK

Channel Busy

Channel Busy

Defer Access

Defer Access

AIFS[i]

AIFS[j]

AIFS[j]

Backoff Backoff

Backoff

Backoff

RSU

UCV1

UCV2

DCV1

AIFS[i]

AIFS[j]

AIFS[j]

Data ACK

Channel Busy

Channel Busy

Defer Access

Defer Access

AIFS[i]

AIFS[j]

AIFS[j]

Backoff Backoff

Backoff

Backoff

RSU

UCV1

UCV2

DCV1

ACKData

DOP1

Channel Busy ACKData

DOP2

Channel Busy Data

DDP1

ACKRSU

UCV1

UCV2

DCV1

ACKData

DOP1

Channel Busy ACKData

DOP2

Channel Busy Data

DDP1

ACK

(b)

Figure 5.3: Comparison of channel access. (a) EDCA channel access; (b) E-Auto
channel access.

range of [2, 10] sec. In addition, we use the path-loss model which is expressed as

PL = 20 log10 f + 10n log10 d− 28(dB), (5.12)

where PL is the RF signal propagation path-loss based on distance d between the RSU

server and a connected vehicle, f is the carrier frequency in MHz, and n is the path-loss

exponent. In our simulation environment, n = 6 and f = 2400 MHz. To determine

the data rate of the connection between the RSU server and a connected vehicle, the

Signal-to-Noise Ratio (SNR) is calculated and the data rate is chosen according to

Table 5.2. The parameters of the stereo video camera deployed on connected vehicles

are θ = 50◦, l = 55 m. fps0 = 10 Hz [167, 168]. kmax × smax = 640 × 480 pixels,

¯kmax × ¯smax = 480× 320 pixels, and ¯klow × ¯slow = 320× 240 pixels.

Table 5.2: Data rate table of 802.11n (4 spatial streams)

Min. SNR (dBm) 2 5 9 11 15 18 20 25
Data rate (Mbps) 29 58 87 116 173 231 260 289

In the simulation, we compare the proposed E-Auto with two categories of schemes

summarized in Table 5.3. 1) Same AIFS (SA): In this category, the RSU and con-

nected vehicles acquire the same AIFS. 2)Different AIFS (DA): The RSU acquires

a shorter AIFS than connected vehicles. We simulate maximum accuracy (maxA) and

minimum latency (minL) schemes which adopt the highest frame resolution and the

80

lowest frame resolution, respectively, in both SA and DA.

Table 5.3: Scheme comparison

frame resolution channel access
fixed dynamically selected contend scheduled

E-Auto x x
SA (MaxA) x x
SA (MinL) x x
DA (MaxA) x x
DA (MinL) x x

Simulation results of connected vehicles acquired average frame rate.

We evaluate the performance of average frame rate through varying the value of low

frame resolution, klow×slow, in this simulation. As shown in Figure 5.4a, our proposed

E-Auto scheme obtains a higher average frame rate for both UCVs and DCVs. Since

varying klow×slow does not impact the DDP and download latency, the average frame

rate of DCVs will not change as klow × slow increases, as shown in Figure 5.4b.

E-Auto
DA(MaxA)

DA(MinL)

SA(MaxA)

SA(MinL)

200x200 250x250 300x300 350x350 400x400
0

5

10

15

20

25

30

The low frame resolution

E-Auto
DA(MaxA)

DA(MinL)

SA(MaxA)

SA(MinL)

200x200 250x250 300x300 350x350 400x400
0

5

10

15

20

25

30

The low frame resolution

E-Auto

DA(MaxA)

DA(MinL)

SA(MaxA)

SA(MinL)

200x200 250x250 300x300 350x350 400x400
0

5

10

15

20

25

30

The low frame resolution

E-Auto

DA(MaxA)

DA(MinL)

SA(MaxA)

SA(MinL)

200x200 250x250 300x300 350x350 400x400
0

5

10

15

20

25

30

The low frame resolution

(a)

E-Auto
DA(MaxA)

DA(MinL)

SA(MaxA)

SA(MinL)

200x200 250x250 300x300 350x350 400x400
0

5

10

15

20

25

30

The low frame resolution

E-Auto
DA(MaxA)

DA(MinL)

SA(MaxA)

SA(MinL)

200x200 250x250 300x300 350x350 400x400
0

5

10

15

20

25

30

The low frame resolution

E-Auto

DA(MaxA)

DA(MinL)

SA(MaxA)

SA(MinL)

200x200 250x250 300x300 350x350 400x400
0

5

10

15

20

25

30

The low frame resolution

E-Auto

DA(MaxA)

DA(MinL)

SA(MaxA)

SA(MinL)

200x200 250x250 300x300 350x350 400x400
0

5

10

15

20

25

30

The low frame resolution

(b)

Figure 5.4: Acquired average frame rate vs. klow × slow. (a) UCVs acquired average
offloading frame rate; (b) DCVs acquired average downloading frame rate.

Simulation results of connected vehicles’ energy efficiency. In addition, we

evaluate the energy efficiency of connected vehicle’s wireless interface. Three different

states of the connected vehicle’s wireless interface are define as follows:

81

1. TX/RX. The connected vehicle is transmitting (offloading) or receiving (down-

loading) a frame.

2. Sleep. The connected vehicle’s wireless interface is put to sleep.

3. Idle listening. A state other than the above two. This includes sensing the

channel, waiting for incoming frames, etc.

The power consumption for connected vehicle in these three states follows: Ptx =

127 mW, Prx = 223.2 mW, PIl = 219.6 mW, and Psleep = 10.8 mW [169]. As depicted

in Figure 5.3, Since E-Auto let the RSU schedule a fixed communication period for

each associated connected vehicles, a connected vehicle can directly go to the sleep

mode when it is not in its DOP/DDP. However, connected vehicle with other two

schemes, DA and SA, have to keep in the idle listening state for channel sensing and

contention. Therefore, our proposed E-Auto obtains higher energy efficiency. The

simulation results are shown in Table 5.4, where our proposed E-Auto dramatically

improves the energy efficiency of both DCV’s and UCV’s wireless interfaces. For

example, as compared with the SA (MaxA), E-Auto reduces about 97.8% energy

consumption for DCVs, and 98.8% energy consumption for UCVs.

Table 5.4: Energy efficiency results

DCV (J/frame) UCV (J/frame)
E-Auto 0.0012 0.0009

SA (MaxA) 0.0546 0.0771
SA (MinL) 0.0205 0.0100
DA (MaxA) 0.0300 0.6540
DA (MinL) 0.0112 0.0852

5.2 The Proposed Multiple Edge Servers Resource Allocation Protocol

5.2.1 Problem Statement

Balancing the load on APs is a primary way for MUs obtaining a fair service. How-

ever, the definition of the load of an AP is fuzzy. Thus, determining an appropriate

82

load definition is necessary. Intuitively, the load of an AP needs to reflect its inability

to satisfy the requirements of its associated users and as such it should be inversely

proportional to the average bandwidth that they use. We present our load definition

in WLANs which captures the above summary.

Assume that the proposed BELL system has a set of MAPs, denoted by A. N

denotes the number of MAPs in the system. The MAPs having the maximal load are

called the load-heaviest MAPs and their load is denoted as ymax. In addition, without

loss of generality, in our BELL-2M, we only reserve one MAP as the load-heaviest

one at each iteration. Let U denote the set of all MUs in the BELL coverage area

and M denote the number of MUs.

Definition 1 (The Load of an MAP). Consider an MAP a ∈ A, and let Ua be the set

of MUs associated with MAP a. The load of MAP a, denoted by ya, is the aggregate

period of time that takes MAP a to provide a unit of traffic volume to all associated

MUs u ∈ Ua. Thus,

yUaa∈A =
∑
u∈Ua

(
1

ra,u
), (5.13)

where ra,u is the wireless link bit rate between MAP a and MU u.

Definition 2 (BELL-2M Load-Balanced Vector). We define the BELL load vector

as ~Y = {yU1
1 , . . . , yUNN }, which is BELL-2M balanced when the load of any MAP can

not be reduced only if increasing another MAP load with the same or higher load.

We can show that the problem of finding a BELL-2M load-balanced vector is NP -

hard, by proving that even the simplest scenario, e.g., only two MAPs in the BELL,

is NP -hard.

Proof. Consider a case with only two MAPs. Each MU u ∈ U can be covered by both

MAPs. Therefore, to obtain the BELL-2M load-balanced vector ~Y equals to find a

subset U ′ ⊆ U that satisfies

yU
′

1 = yU−U
′

2 . (5.14)

83

By restricting the problem to 1
r1,u

= 1
r2,u

, the problem can be a reduction from

the partition problem. The partition problem is the task of deciding whether a given

multiset S of positive integers can be partitioned into two subsets S1 and S2 such that

the sum of the numbers in S1 equals the sum of the numbers in S2, which is a known

NP -hard problem.

BELL-2M aims to iteratively find an optimal BELL-2M load-balanced vector ~Y in

polynomial time.

5.2.2 BELL-2M Algorithm

The basic idea is that, at each iteration, g, we reduce the load of the load-heaviest

MAP a at this stage by transferring some of its associated MUs to its neighboring

MAPs. Furthermore, MUs with lower RSSI have a higher priority to be transferred.

In other words, we define the RSSI vector
−−→
URa = {µ1, . . . , µm} to be an m-tuple

consisting of the RSSI of each MU in MAP a sorted in an increasing order, where m

is the total number of MUs in MAP a. MAP a always first transfers the MU with

the lowest order in
−−→
URa.

MAP 2

MAP 1

CPAP

MAPN MAPN

𝜇𝑚𝑖𝑛

𝜇𝑚𝑎𝑥

MAP 2

MAP 1

CPAP

MAPN

𝜇𝑚𝑖𝑛

𝜇𝑚𝑎𝑥

Figure 5.5: Only MUs with RSSI in [µmin, µmax] might have chance to be transferred.

However, there are two algorithmic challenges for the above problem:

Challenge 3. Not every MU in MAP a is covered by another neighboring MAP. In

BELL, as shown in Figure 5.5, MUs located within the blue shadow area have no

chance to be successfully transferred to neighboring MAPs.

84

Challenge 4. The Ping-Pong effect of load-balancing decision.

Example 3. Consider a BELL with two MAPs, as shown in Figure 5.6, denoted as

v1 and v2, and two MUs u1 and u2. u1 can only connect to v1 and it yields a load of

0.2. u2 can connect to both v1 and v2 and yields a load of 0.6 on its connected MAP.

Both u1 and u2 first connect to v1, and the RSSI vector of v1 is
−−−→
URv1 = {µu2 , µu1}.

As shown in Figure 5.6(a), the loads of v1 and v2 are 0.8 and 0, respectively. To

balance the load, a greedy algorithm first lets v1 transfer u2 to v2. Now the loads of

the two MAPs are 0.2 and 0.6, respectively, as depicted in Figure 5.6(b). Then, the

algorithm lets v2 reduce its load, since it is the load-heaviest MAP at this stage. Thus,

v2 transfers u2 back to v1, and the algorithm repeats the above indefinite iterations,

which obviously can not obtain an optimal solution.

MAP 1

MAP 2
MU 1

MU 2

0.2
0.6

(a)

MAP 1

MAP 2
MU1

MU 2

0.2
0.6

(b)

Figure 5.6: Example of the Ping-Pong effect of a simple greedy algorithm. (a) Original
MU-MAP connection; (b) MU-MAP connection after an iteration.

Our BELL-2M algorithm resolves the above two challenges by, firstly, introducing

a maximal transfer RSSI µmax and a minimal transfer RSSI µmin. As shown in

Figure 5.5, we ask the MU with RSSI larger than µmax (those MUs only covered

by its associated MAP) not to be transferred. On the other hand, let µmin be the

RSSI corresponding to the MAP’s transmission range. Thus, only MUs with RSSI

in the range of [µmin, µmax] might have chances to be triggered with a load transfer.

Secondly, to overcome Challenge 4, we define a set of fixed MAPs, D, whose loads

85

have already been determined by previous iterations. At the beginning, the set D is

empty, and after each iteration, a new MAP is added to it, until D = A. Therefore,

BELL-2M only searches the set of the non-fixed MAPs, {A−D}, for the load-heaviest

MAP at each stage.

The proposed BELL-2M load-balancing algorithm is shown in Algorithm 6. At

each iteration, the algorithm first finds the load-heaviest MAP α0 and preserves its

load ymax in θ. Then MAP α0 checks MUs from its farthest possible MUs whose

RSSI are in the range of [Kα0 , Kα0 + β], where Kα0 is initialized with µmin and β is a

step value. If these MUs exist, MAP α0 will evaluate the load transfer result of them

one by one: i.e., if after transferring an MU, none of the fixed MAPs’ load increases,

and the new load-heaviest MAP’s load is smaller than that of the previous stage, the

checked MU will be confirmed to transfer. Otherwise, the MU will not be transferred.

After all MUs are checked, Kα0 is incremented by β in each iteration. The evaluation

stops if Kα0 = µmax. Then, MAP α0 joins the fixed MAP set as well as its load value.

Finally, the algorithm stops when D = A, which means that all the MAPs’ load has

been fixed.

We now prove that the proposed algorithm always finds a BELL-2M load-balanced

vector for BELL.

Proof. Each iteration starts with the load-heaviest MAP with Kα0 = µmin and stops

when Kα0 = µmax. MUs are transferred only if ymax is decreased after this transfer.

Therefore, at the end of the gth iteration, ymax is not larger than its value at the

beginning of the gth iteration. The corresponding MAP is added in the fixed MAP

set D after the gth iteration. Since the definition of the load-heaviest MAP is the

non-fixed MAP that has the maximal load at this stage, ymax at the (g+1)th iteration

is smaller than that at the gth iteration. Also, MUs can only be transferred to the

non-fixed MAPs, which means that the load of MAPs in D is not affected in the

(g + 1)th iteration. Therefore, the algorithm keeps reducing ymax and stops at an

86

Algorithm 6: BELL-2M Load Balancing Algorithm
1 D = ∅
2 while D 6= A do

/* Find and record the load-heaviest MAP α0 and its load yα0 */
3 α = α0 s.t. yα0

= max
α0∈{A−D}

{yα0
}

4 θ = ymax = yα0

5 Kα0 = µmin
6 while Kα0 < µmax do
7 c = the number of MUs with RSSI in [Kα0 ,Kα0 + β]
8 Kα0

= Kα0
+ β

/* Check if exist MUs with RSSI in this range */
9 if c > 0 then

10 for i = 1 to c do
11 MUi performs BELL-handoff

/* Find and record the load-heaviest MAP α0 and its load yα0 */
12 α0 s.t. yα0

= max
α0∈{A−D}

{yα0
}

13 ymax = yα0

/* Check if fixed MAPs’ load was not increased and a better load vector was
found */

14 if (@α0 ∈ D s.t. yα0
> ¯yα0

) ∧ (ymax < θ) then
15 θ = ymax
16 α = α0

17 D = D ∪ {α}
18 ȳα = yα

optimal solution. The algorithm stops when D = A, in other words, all the MAPs

become load fixed MAPs. Therefore, ymax cannot be reduced further. According to

Definition 2, the BELL-2M load-balanced vector is found.

5.2.3 Performance Evaluation

5.2.3.1 Simulation Setup

The simulation setting is as follows. 9 APs are regularly distributed in a square are.

The length of the simulation area is 600m. Each AP has a circular transmission range,

and its radius is 145m. In BELL, the operating channel of the CPAP, MAPs with

odd index, and MAPs with even index are 1, 6, and 11 in 2.4 GHz band, respectively.

In C-WLAN, the operating channel of the APs are chosen randomly in 2.4 GHz band.

To determine the bit rate of the connection between an MU and an AP, Signal-to-

87

Original load

Load after BELL-2M

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

MAP

L
o

ad

(a)

1 2 3 4 5 6 7 8

MAP

0.5

1

1.5

2

2.5

3

3.5

L
o

ad

Original load

Load after BELL-2M

(b)

Figure 5.7: Load comparison. (a) M = 100; (b) M = 300.

Noise Ratio (SNR) is computed and the bit rate is chosen accordingly. We set each

AP’s transmission power to be 20 dBm and the value of ∆ to be 5. To simulate an

indoor environment, we use the indoor path-loss model which is expressed as

PL = 20 log10 f + 10n log10 d− 28(dB), (5.15)

where PL is the RF signal propagation path-loss based on distance d between the AP

and the MU, f is the carrier frequency in MHz, and n is the path-loss exponent. In

our simulation, n = 6 and f = 2400 MHz. The background noise level is set to be

−90 dBm. In the simulation of evaluating BELL-2M load balancing performance,

the number of M MUs are randomly positioned in the simulation area and they are

assumed to follow the saturated traffic model and quasi-static. In the simulation of

evaluating the battery drain of mobile devices, 500 MUs follow the Random Waypoint

model and walk in the simulation area for 5.5 hours.

5.2.3.2 Simulation Results

Load Balancing Performance. Figure 5.7 shows the simulation results of the

load balancing performance. The Y -axis represents the load of MAPs ya and the

X-axis represents MAP index. MAPs are sorted by their load values in a decreas-

ing order. In Figure 5.7a and Figure 5.7b, we obtain their load values by running

simulations at least 500 times. In other words, each load value, ya is obtained by

88

0 50 100 150 200 250 300 350 400 450 500
38

40

42

44

46

E
n

er
g

y
 C

o
n
su

m
p

ti
o
n

(m
A

h
)

Mobile Devices

Energy consumption for the load

balance service

1.5%

1.3%

1.4%

0 50 100 150 200 250 300 350 400 450 500
38

40

42

44

46

E
n

er
g

y
 C

o
n
su

m
p

ti
o
n

(m
A

h
)

Mobile Devices

Energy consumption for the load

balance service

1.5%

1.3%

1.4%

4

6

8

10

12

14

2
0 50 100 150 200 250 300 350 400 450 500

Mobile Devices

Mobility management service

Load balance service

0 50 100 150 200 250 300 350 400 450 500
20

40

60

80

100

120

140

160

180

200

Mobile Devices

B
at

te
ry

 D
ra

in
 (

m
A

h
)

Mobility management service

Load balance service
B

at
te

ry
 D

ra
in

 (
m

A
h

) (a)

0 50 100 150 200 250 300 350 400 450 500
38

40

42

44

46

E
n

er
g

y
 C

o
n
su

m
p

ti
o
n

(m
A

h
)

Mobile Devices

Energy consumption for the load

balance service

1.5%

1.3%

1.4%

0 50 100 150 200 250 300 350 400 450 500
38

40

42

44

46

E
n

er
g

y
 C

o
n
su

m
p

ti
o
n

(m
A

h
)

Mobile Devices

Energy consumption for the load

balance service

1.5%

1.3%

1.4%

4

6

8

10

12

14

2
0 50 100 150 200 250 300 350 400 450 500

Mobile Devices

Mobility management service

Load balance service

0 50 100 150 200 250 300 350 400 450 500
20

40

60

80

100

120

140

160

180

200

Mobile Devices

B
at

te
ry

 D
ra

in
 (

m
A

h
)

Mobility management service

Load balance service

B
at

te
ry

 D
ra

in
 (

m
A

h
)

(b)

Figure 5.8: Battery drain comparison. (a) Battery drain within C-WLAN; (b) Battery
drain comparison.

averaging the 500 simulation load results. The red dotted line represents the original

load of BELL, and the blue solid line represents the load of BELL after performing

our BELL-2M load-balancing protocol. It is confirmed that BELL-2M can improve

the load-balancing performance of BELL.

Mobile Devices’ Battery Drain. Figure 5.8 illustrates the simulation results of

mobile devices’ battery drain for WLAN management services within 5.5 hours. The

Y -axis represents the battery drain of mobile devices and the X-axis represents MU

index. Comparing Figure 5.8a and Figure 5.8b, it is shown that MUs in BELL drain

94% and 90% less battery life for mobility management service and load balancing

service, respectively, than MUs in C-WLAN.

CHAPTER 6: PROPOSED ENERGY-AWARE CONFIGURATION

ADAPTATION ALGORITHM IN MEC NETWORKS

6.1 A Comprehensive Experimental Study

In order to better investigate and understand the relationship between the en-

ergy consumption and the performance of deep learning-based applications, following

questions are proposed:

1. How is energy consumed when a deep learning-based application is executed lo-

cally?

2. Does smartphone’s computation capacity impact the energy consumption when

a deep learning-based application is executed locally? It is intuitive that the

smartphone with higher computation capacity can achieve a lower inference

latency. However, the energy consumption is more complicated to analyze.

This is because, for example, the smartphone with more powerful processors

may drain its battery faster.

3. Does transferring all the computation data to a powerful infrastructure signif-

icantly decrease the energy consumption and latency? When a deep learning-

based application is executed remotely, communication latency is non-negligible

and unstable, especially in wireless networks. Previous work [151] shows that

smartphone’s radio interfaces account for up to 50% of the total power bud-

get. In addition, improved communication speeds generally come at the cost of

higher power consumption [170].

4. Besides the network condition, what impact the energy consumption and latency

90

Table 6.1: Smartphones used in our study.

Manufacturer Samsung Google Asus

Model Galaxy S5 Nexus 6 ZenFone AR
OS Android 6.0.1 Android 5.1.1 Android 7.0
SoC Snapdragon 801 (28 nm) Snapdragon 805 (28 nm) Snapdragon 821 (14 nm)
CPU 32-bit 4-core 2.5GHz Krait 400 32-bit 4-core 2.7GHz Krait 450 64-bit 4-core 2.4GHz Kryo

GPU 578MHz Adreno 330 600MHz Adreno 420 653MHz Adreno 530

RAM 2GB 3GB 6GB
WiFi 802.11n/ac 802.11n/ac 802.11n/ac/ad
Release date April 2014 November 2014 July 2017

Table 6.2: Classifications of the tested smartphones.

Smartphone S5 Nexus 6 ZenFone AR
CPU score 36871 37521 58531
GPU score 6678 18063 67286

Image processing score 3103 6862 11321
Total score 66414 80047 173472

Class Low-end Low-end High-end

when executed remotely, and how?

6.1.1 Experimental Methodology

6.1.1.1 Hardware Setup

Our study was performed using three different smartphones. We summarize their

characteristics in Table 6.1. We classify them into two classes, low-end and high-end

smartphones, according to their general hardware performance tested by using an

Antutu benchmark [171]. The testing results are shown in Table 6.2. In addition,

we emulate an edge server with an Nvidia Jetson AGX Xavier, which connects to a

WiFi access point (AP) through a 1Gbps Ethernet cable. Details of our equipped

edge server are shown in Table 6.1.

6.1.1.2 Software Implementation

Edge server side. The edge server is developed to process the video frames

and send the detection results back to smartphones. We implement two major mod-

91

Light

Camera

Lens

Image

sensor

Bayer

filter

Image signal

processing

Scale & crop

Image buffer

YUV_420_888

Surface

Texture

Image

Reader

Sensor parameters

control

Convert YUV to

RGB & crop

Return detection results

Screen

rendering

Image generation

Image conversion

MAR

Client
E

d
g

e S
erv

er

Image

transmission

Wireless connection

CNN

Figure 6.1: Processing pipeline of the deep CNN optimized object detection applica-
tion implemented in this section.

ules on the edge server. The first one is the communication service handler module

which performs authentication and establishes a socket connection with smartphones.

This module is also responsible for dispatching the detection results to correspond-

ing smartphones. The second one is the object detection module which is designed

based on a custom framework called Darknet [172] with GPU acceleration and runs

YOLOv3 [164], a large neural network model with 24 convolutional layers. The

YOLOv3 model used in our experiments is trained on COCO dataset [173] and can

detect 80 classes.

Smartphone side. We implement two scenarios for our experimental study. The

first one is executing deep learning on smartphones, defined as local execution. In this

scenario, the Android implementation is based on a light framework called Tensor-

flow Lite [174] which is TensorFlow’s lightweight solution for embedded and mobile

devices. It runs a small neural network model, called MobileNetv1 [175]. In order to

run MobileNetv1 with different frame resolutions in Tensorflow Lite on smartphones,

we convert a pre-trained MobileNetv1 SSD model to the FlatBuffers format. The

second one is executing deep learning on our equipped edge server, defined as remote

execution. In this scenario, a smartphone transfers the converted RGB frames to the

edge server through a socket connection in real time. To avoid having the server

process stale frames, the smartphone sends the latest captured frame to the server

and waits to receive the detection result before sending the next frame for processing.

92

The detailed processing pipeline is shown in Figure 6.1.

6.1.1.3 Power Measurement Setup

To measure the power consumption, we use an external power monitor, a Mon-

soon Power Monitor, to provide power supply for the smartphone. Different from

old smartphone models, modern smartphones like Nexus 6 have very tiny battery

connectors, making it very challenging to connect the power monitor to them. To

solve this problem, we modify the battery connection of Nexus 6 by designing a cus-

tomized circuit and soldering it to the smartphone’s power input interface. In addi-

tion, the power measurements are taken with the screen on, with the Bluetooth/LTE

radios disabled, and with minimal background application activity, ensuring that the

smartphone’s base power is low and does not vary unpredictably over time. For the

measurements of the power consumption in local execution, base power is defined as

the power consumed by the smartphone when its WiFi interface is turned off. For the

measurements of the power consumption in remote execution, base power is defined

as the power consumed when the smartphone is connected to the AP without any

data transmission activity [151,152].

6.1.2 Experimental Results

In this section, we describe our efforts towards measuring and understanding the

energy consumption and the performance of running deep CNNs on both high-end

and low-end smartphones.

6.1.2.1 Key metrics

Currently, object detection applications focus on the following two critical metrics:

Latency/frames per second (FPS). Latency is the total time needed to ob-

tain the detection results on one video frame (i.e., usually shown as one or multiple

bounding boxes that identify the location and classification of the objects in a frame).

In this paper, it is defined as the time period from the moment the Image Reader

93

acquiring one camera captured image frame to the moment the bounding boxes are

drawn on the smartphone’s screen, as depicted in Figure 6.1. In local execution, the

per frame total latency includes the time used for converting the YUV frame to the

RGB frame, cropping the frame to the fitted resolution k × k, and executing deep

learning, defined as inference latency, on the smartphone. In remote execution, the

per frame total latency includes, besides the convert and crop latency that are both

executed locally on the smartphone, the communication latency (i.e., transmitting

the frame and receiving the results) and the inference latency on the edge server.

Accuracy. The mean average precision (mAP) is a commonly used performance

metric in object detection. Better performance is indicated by a higher mAP value.

Specifically, the average precision [176] is computed as the area under the preci-

sion/recall curve through numerical integration. The mAP is the mean of the average

precision across all classes.

6.1.2.2 Local Execution vs. Remote Execution

We first evaluate the object detection performance of both local execution and

remote execution in terms of latency, FPS, accuracy, and energy consumption, as

shown in Figure 6.2 and 6.3. The preview resolution is set to k1 × k2 = 640 × 480

pixels. In remote execution, we use a WiFi 5 GHz channel and TCP socket connection

to transfer data between smartphones and the edge server.

Local execution. First, we examine the total latency of executing object detection

with different frame resolutions, from 100 × 100 to 600 × 600 pixels, in our three

smartphones. The experimental results are shown in Figure 6.2a. We find that (1)

a higher frame resolution always results in a higher per frame total latency. For

example, for Nexus 6, the per frame total latency surges from 569.8 ms to 2378.7

ms when the frame resolution increases from 100× 100 to 600× 600 pixels. (2) The

high-end smartphone achieves a significantly lower per frame total latency compared

to the low-end smartphones. For example, when the frame resolution is 300 × 300

94

500

1000

1500

2000

2500

00

2

4

6

8

10
Galaxy S5, Total latency per frame

Nexus 6, Total latency per frame

ZenFone AR, Total latency per frame

Galaxy S5, FPS
Nexus 6, FPS
ZenFone AR, FPS

100
Frame resolution (pixels x pixels)

200 300 400 500 600

500

1000

1500

2000

2500

00

2

4

6

8

10
Galaxy S5, Total latency per frame

Nexus 6, Total latency per frame

ZenFone AR, Total latency per frame

Galaxy S5, FPS
Nexus 6, FPS
ZenFone AR, FPS

100
Frame resolution (pixels x pixels)

200 300 400 500 600

mAP = 19.3

(a)

Galaxy S5, Inference latency

Nexus 6, Inference latency

Galaxy S5, Convert latency
Nexus 6, Convert latency

ZenFone AR, Convert latency

2000

100
Frame resolution (pixels x pixels)

200 300 400 500 600

1600

1200

800

400

0

 ZenFone AR, Inference latency

Galaxy S5, Inference latency

Nexus 6, Inference latency

Galaxy S5, Convert latency
Nexus 6, Convert latency

ZenFone AR, Convert latency

2000

100
Frame resolution (pixels x pixels)

200 300 400 500 600

1600

1200

800

400

0

 ZenFone AR, Inference latency

(b)

100
Frame resolution (pixels x pixels)

0

2

4

6

8

10

12

14

16

18

200 300 400 500 600

Image generation, preview
Inference
Convert
Base
Others

(c)

generation,
Image

preview

Base
Convert

Inference

Others

(d)

Figure 6.2: Experimental results for local execution. (a) Total latency per frame and
FPS; (b) Convert and inference latency per frame; (c) Average energy consumption
per frame breakdown (Nexus 6); and (d) Average percentage breakdown of energy
consumed in executing 300× 300 MobileNetv1 SSD model (Nexus 6).

pixels, the per frame total latency of ZenFone AR is only 20.7% and 22.9% of that of

Nexus 6 and Galaxy S5, respectively.

Second, we measure the latency of each phase in the processing pipeline. We show

the latency of the two highest time-consuming phases, convert and inference latency,

in Figure 6.2b, which comes up to 95% of the per frame total latency. We find that (1)

for both high-end and low-end smartphones, the convert latency does not vary much

when the frame resolution increases. This is because no matter what the frame reso-

lution k × k is configured, every YUV frame is converted to an RGB frame with the

preview resolution k1×k2 first. After the convert is completed, the RGB frame will be

95

0

200

400

600

800

1000

1200

1400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100
Frame resolution (pixels x pixels)

200 300 400 500 600 700

mAP = 51.5

(a)

Galaxy S5, Inference latency
Nexus 6, Inference latency
ZenFone AR, Inference latency
Galaxy S5, Communication latency
Nexus 6, Communication latency
ZenFone AR, Communication latency

0

100

200

300

400

500

600

100
Frame resolution (pixels x pixels)

200 300 400 500 600 700

Galaxy S5, Inference latency
Nexus 6, Inference latency
ZenFone AR, Inference latency
Galaxy S5, Communication latency
Nexus 6, Communication latency
ZenFone AR, Communication latency

0

100

200

300

400

500

600

100
Frame resolution (pixels x pixels)

200 300 400 500 600 700

(b)

128
Frame resolution (pixels x pixels)

224 320 416 512 608
0

2

4

1

3

5 Communication
Convert
Base
Others

Image generation, preview

128
Frame resolution (pixels x pixels)

224 320 416 512 608
0

2

4

1

3

5 Communication
Convert
Base
Others

Image generation, preview

(c)

Convert

Base

Communication

Others

generation,
Image

preview

(d)

Figure 6.3: Experimental results for remote execution. (a) Total latency per frame
and FPS; (b) Inference and communication latency per frame; (c) Average energy
consumption per frame breakdown (Nexus 6); and (d) Average percentage breakdown
of energy consumed in executing 320× 320 YOLOv3 model (Nexus 6).

resized to k×k pixels. (2) For low-end smartphones, the largest time-consuming phase

is converting a YUV frame to an RGB frame when the frame resolution is smaller

than 300× 300 pixels. In contrast, when the frame resolution is larger than 300× 300

pixels, inference becomes the largest latency source. For example, for Nexus 6, the

convert latency is 85.6% of the per frame total latency when the frame resolution is

100×100 pixels; whereas the inference latency is 80.2% of the per frame total latency

when the frame resolution is 600× 600 pixels. This is rather significant because most

of the previous work that evaluates the per frame latency of object detection exe-

cuted in smartphones only consider the inference latency. However, our experimental

96

results indicate that the convert latency is non-negligible and sometimes larger than

the inference latency. (3) Interestingly, when the frame resolution is small, the infer-

ence latency of the high-end and low-end smartphones are comparable. However, the

convert latency of the high-end smartphone is always considerably smaller than that

of the low-end smartphones. For example, when the frame resolution is 100 × 100

pixels, the inference latency of ZenFone AR and Nexus 6 are 62.5 ms and 81.3 ms,

respectively, whereas the convert latency of ZenFone AR is 41.2 ms which is only

8.4% of the convert latency of Nexus 6. This result indicates that when the frame

resolution is low, converting a YUV frame to an RGB frame is more computation-

intensive than running a small CNN in smartphones and low-end smartphones are

unable to generate the same convert performance as high-end smartphones in terms

of the convert latency.

Third, to dissect the energy drain through different processing pipeline phases, we

first break down the per frame total energy consumption as follows: image generation,

preview, inference, convert, base, and others. We make the following observations

from Figure 6.2c and 6.2d. (1) The image generation and the preview always con-

tribute the highest energy consumption in the smartphone and grows significantly as

the frame resolution increases. Specifically, in Nexus 6, when the frame resolution is

300×300 pixels, on average a whopping 45.5% of the per frame total energy consump-

tion is from the image generation and preview. The reason why the image generation

process consumes considerably high energy is executing the 3A (i.e., auto-focus (AF),

auto-exposure (AE), and auto-white-balance (AWB)) and multiple fine-grained im-

age post processing algorithms (e.g., noise reduction (NR), color correction (CC),

and edge enhancement (EE)) on image signal processor (ISP). These sophisticated

algorithms are designed to make an image that is captured by the smartphone camera

look perfect. However, is it always necessary for the camera captured frame to be pro-

cessed by all of those energy-hungry image processing algorithms in order to achieve a

97

successful object detection result? In addition, the number of frames captured by the

camera per second is a fixed value (e.g., 24 or 30 frames/second) or in a range (e.g.,

[7, 30] frames/second), which is controlled by the AE algorithm. However, for low-end

smartphones, even if the frame resolution is small, the detection FPS is still less than

2, as shown in Figure 6.2a, which is far slower than the camera capture frame rate.

Furthermore, the CNN always extracts the latest captured frame, which indicates

that, from the perspective of the energy efficiency of the object detection pipeline, cap-

turing frames with a fast rate is unnecessary and energy-inefficient. (2) The inference

energy consumption grows dramatically as the frame resolution increases. For exam-

ple, it accounts for 4.1% and 33.9% of the per frame total energy consumption when

the frame resolution is 100× 100 and 600× 600 pixels, respectively.

Remote execution. We next compare against the remote execution scenario

where the CNN is run on the implemented edge server with a 5GHz WiFi link to the

smartphone. Note that we conduct our measurements in different network conditions

(e.g., the Received Signal Strength Indicator (RSSI) at the tested smartphones or

the network bandwidth gradually drops down). However, due to the page limitation,

we only present our experimental results obtained in an excellent network condition

(i.e., the RSSI is in the range of −15 and −20 dBm). First, we compare the latency

and FPS, as shown in Figure 6.3a and 6.3b, and make the following observations.

(1) For the high-end smartphone, the per frame total latency (FPS) is larger (lower)

than that of the local execution scenario when the frame resolution is smaller than

512 × 512 pixels (note that this observation may differ depending on how powerful

the server’s GPU is). This observation supports the fact that lots of recently released

smartphones with high computation power possess the capability to run a small CNN

model. However, the mAP of the large CNN model on the server is better than that

of the small CNN model on the smartphone (e.g., mAP = 51.5 on the server and

mAP = 19.3 on the smartphone when the frame resolution is around 300 × 300

98

pixels). Generally, different implementation cases have variant latency/accuracy re-

quirements. For example, the AR cognitive assistance case where a high-end wearable

device helps visually impaired people to navigate on a street may need a low latency

but can tolerate a relatively high number of false positives (i.e., false alarms are fine

but missing any potential threats on the street is costly) [177]. In contrast, an AR

used for recommending products in shopping malls or supermarkets may tolerate a

long latency but require high detection accuracy. Therefore, choosing the appropriate

execution approach (i.e., local or remote) in different implementation cases is critical.

Furthermore, (2) for the low-end smartphones, the per frame total latency (FPS) is

slightly lower (higher) than that of the local execution scenario. The reason why the

latency does not decrease significantly is the high convert latency which is executed by

the smartphone in both local and remote execution cases. This observation is rather

significant for deciding what computation tasks should be transferred to the server.

Most of the existing works simply consider transferring the converted RGB frames to

the server. However, for low-end smartphones, only executing the CNN in the server

is inadequate to achieve an acceptable FPS. Converting YUV to RGB frames remotely

is also desirable. (3) Interestingly, as shown in Figure 6.3c, the frames transmitted

by ZenFone AR obtain less inference latency than the frames transmitted by Galaxy

S5 under the same conditions (i.e., the same frame resolution and camera view). We

repeated these measurements several times and got the same results although, until

now, we do not have a definite explanation for this result.

In addition, Figure 6.3c and 6.3d analyze the energy drain of the smartphone by

different processing pipeline phases in the remote execution case, including image

generation, preview, communication, convert, base, and others. Compared to the

local execution scenario, we have the following observations. (1) Similar to the local

execution, image generation and preview are the biggest energy consuming phases.

For example, it comes up to 56.0% of the per frame total energy consumption when

99

the frame resolution is 320×320 pixels. (2) Transmitting one frame and receiving the

result consume less energy than our expectation, when the wireless network condition

is excellent. For example, on average it only accounts for 2.4% of the per frame

total energy consumption when the frame resolution is 320 × 320 pixels. (3) The

remote execution saves approximately 53% energy per frame on average when the

frame resolution is larger than 128 × 128 pixels. However, it consumes 12.9% more

energy per frame than the local execution when the frame resolution is 128 × 128

pixels. This observation is rather significant, which demonstrates that running deep

learning remotely does not always consume less energy than the local execution, even

when the network quality is excellent.

6.1.2.3 Power Consumption of the Image Generation and Preview

As we observed above, the image generation and the preview are the most energy-

consuming phases in both local and remote execution cases. Thus, to reduce the

energy consumption of the object detection processing pipeline, we must improve

the energy efficiency of these two phases. We seek to understand the interactions

between the power consumption and various factors (e.g., the preview resolution, 3A,

and several image post processing algorithms) as follows.

Preview resolution vs. power consumption. We first examine how the pre-

view resolution influences the power consumption of the image generation and preview

phases, as shown in Figure 6.4a. We find that as the preview resolution grows, the

power consumption increases dramatically. Therefore, a preview with a higher frame

resolution on the smartphone provides a better quality preview for users, but at the

expense of battery drain, which is applicable for both local and remote execution

cases.

Image post processing and 3A algorithms vs. power consumption. We

next examine the effect of multiple image post processing and 3A algorithms on the

power consumption of the image generation and preview phases, as shown in Figures

100

3000

3500

4000

4500

5000

5500

Power consumption of image

generation and preview phases

Preview resolution (pixels x pixels)

(a)

0

500

1000

1500

2000

2500

3000

3500

(b)

800

1200

1600

2000

2400

2800

3024151052

Power consumption of image

generation and preview phases

Camera capture frame rate (frames/second)

(c)

0

1

2

3

4

All on,

30 frame rate

All off,

30 frame rate

All off,

5 frame rate

(d)

Figure 6.4: Power consumption analyses of the image generation and preview phases.
(a) Preview resolution vs. power consumption; (b) 3A and image post processing al-
gorithms vs. power consumption; (c) Camera capture frame rate vs. power consump-
tion; and (d) Comparison of the energy consumption per frame (remote execution).

6.4b and 6.4c. Note that when the AE is disabled, we manually set the camera ISO

and exposure time to 400 and 20 ms, respectively. We observe that (1) disabling the

3A, NR, CC, and EE algorithms decreases the power consumption by 14.8%. We con-

duct another experiment to understand if disabling these algorithms would impact

the object detection performance. As shown in Figure 6.5, the detection performance

does not degrade. (2) Accelerating the camera capture frame rate significantly in-

creases the power consumption. As we discussed above, the maximum detection FPS

that the low-end smartphones can obtain is around 2; a capture rate larger than 2

frames/second is unnecessary and energy-inefficient from the perspective of energy

101

(a) (b)

Figure 6.5: Comparison of the object detection results (remote execution). (a) All
enabled; (b) All disabled.

efficiency. Furthermore, we compare the per frame energy consumption among three

cases, as depicted in Figure 6.4d: all enabled with camera capture frame rate 30, all

disabled with camera capture frame rate 30, and all disabled with camera capture

frame rate 5. We find that (3) the per frame energy consumption of the second and

the third cases decreases by approximately 10% and 27%, respectively, compared to the

first case.

6.2 The Proposed Energy-Aware Configuration Adaptation Algorithm

In this section, a user preference based energy-aware edge-based MAR system is

designed [178]. The novel contributions are summarized as follows:

1. An edge-based MAR system to analyze the interactions between MAR con-

figurations and the client’s energy consumption is designed and implemented.

Based on the experimental study, several insights that can potentially guide the

design of energy-aware MAR systems are summarized.

2. A comprehensive energy model is proposed, which identifies (i) the tradeoffs

among the energy consumption, service latency, and detection accuracy, and

(ii) the interactions among MAR configuration parameters (i.e., CPU frequency

and computation model size), user preferences, camera sampling rate, network

102

bandwidth, and per frame energy consumption for a multi-user edge-based MAR

system.

3. An energy-efficient optimization algorithm named LEAF is proposed, which

guides MAR configuration adaptations and radio resource allocations at the

edge server, and minimizes the per frame energy consumption while satisfying

variant clients’ user preferences.

6.2.1 Experimental Results on Factors Affecting MAR Client Energy Efficiency

In this section, we describe our preliminary experiments to evaluate the impact

of various factors on the energy efficiency of an MAR client, service latency, and

detection accuracy in an edge-based MAR system. Specifically, these experimental

results provide (i) observations on interactions between energy consumption and MAR

configuration parameters, such as MAR client’s CPU frequency, computation model

size, camera sampling rate, and user preference, (ii) bases of modeling the energy

consumption of an MAR client, and (iii) insights on designing an energy-efficient

optimization algorithm.

6.2.1.1 Testbed Setup

Our testbed consists of three major components: MAR client, edge server, and

power monitor. Note that this paper focuses on the MAR application in which an

MAR client captures physical environmental information through the camera and

sends the information to an edge server for object detection. The detailed processing

pipeline is shown in Figure 6.1.

Edge Server. The edge server is developed to process received image frames

and to send the detection results back to the MAR client. We implement an edge

server on an Nvidia Jetson AGX Xavier, which connects to a WiFi access point

(AP) through a 1Gbps Ethernet cable. The transmission latency between the server

and AP can be ignored. Two major modules are implemented on the edge server:

103

(i) the communication handler which establishes a TCP socket connection with the

MAR device and (ii) the analytics handler which performs object detection for the

MAR client. In this paper, the analytics handler is designed based on a custom

framework called Darknet [172] with GPU acceleration and runs YOLOv3 [164], a

large Convolutional Neural Networks (CNN) model. The YOLOv3 model used in our

experiments is trained on COCO dataset [173] and can detect 80 classes.

MAR Client. We implement an MAR client on a rooted Nexus 6 smartphone

which is equipped with Qualcomm Snapdragon 805 SoC (System-on-Chip). The CPU

frequency ranges from 0.3 GHz to 2.649 GHz. The MAR client transfers the converted

RGB frames to the edge server through a TCP socket connection. To avoid the

processing of stale frames, the MAR client sends the latest camera captured frame

to the server and waits for the detection result before sending the next frame for

detection.

Power Monitor. The power monitor is responsible for measuring the power

consumption of the MAR client. We use Monsoon Power Monitor [179], which can

sample at 5000 Hz, to provide power supply for the MAR device.

Key Performance Metrics. We define three performance metrics to evaluate

the MAR system:

• Per frame energy consumption: The per frame energy consumption is the total

amount of energy consumed in an MAR client by successfully performing the

object detection on one image frame. It includes the energy consumed by cam-

era sampling (i.e., image generation), screen rendering (i.e., preview), image

conversion, communication, and operating system.

• Service latency: The service latency is the total time needed to derive the

detection result on one image frame. It includes the latency of image conversion,

transmission, and inference.

104

• Accuracy: The mean average precision (mAP) is a commonly used performance

metric to evaluate the detection accuracy of a visual object detection algorithm

[176], where a greater accuracy is indicated by a higher mAP.

6.2.1.2 The Impact of CPU Frequency on Power Consumption and Service

Latency

In this experiment, we seek to investigate how the CPU frequency impacts the

power consumption of the MAR device and the service latency. We set the test de-

vice to the Userspace Governor and change its CPU frequency manually by writing

files in the /sys/devices/system/cpu/[cpu#]/cpufreq virtual file system with root

privilege. The results are shown in Figure 6.6. The lower the CPU frequency, the

longer service latency the MAR client derives and the less power it consumes. How-

ever, the reduction of the service latency and the increase of the power consumption

is disproportional. For example, as compared to 1.03 GHz, 1.72 GHz reduces about

2% service latency but increases about 15% power consumption. As compared to

0.3 GHz, 0.72 GHz reduces about 60% service latency, but only increases about 20%

power consumption.

Insight: This result advocates adapting the client’s CPU frequency for the service

latency reduction by trading as little increase of the per frame energy consumption as

possible, where the per frame energy consumption is calculated by the power multiplies

the service latency.

6.2.1.3 The Impact of Computation Model Size on Energy Consumption and

Service Latency

In this experiment, we implement six object detection algorithms based on the

YOLOv3 framework [164] with different computation model sizes. The test device

works on the default CPU governor, Interactive. Increasing the model size always

results in a gain of mAP. However, the gain on mAP becomes smaller as the increase

105

(a) (b)

Figure 6.6: CPU frequency vs. power and service latency (computation model size:
3202 pixels).

(a)

mAP = 51.5

(b)

Figure 6.7: Computation model size vs. energy consumption and service latency.

of the model sizes [148]. In addition, the per frame energy consumption and the

service latency boost 85% and 130%, respectively, when the model size increases

from 1282 to 6082 pixels, as shown in Figure 6.7.

Insight: This result inspires us to trade mAP for the per frame energy consumption

and service latency reduction when the model size is large.

6.2.1.4 The Impact of Camera FPS on Power Consumption

In this experiment, we vary the MAR client’s camera FPS to explore how it impacts

the device’s power consumption, where the camera FPS is defined as the number of

frames that the camera samples per second. Figure 6.8a shows that a large camera

FPS leads to a high power consumption. However, as shown in Figure 6.1, not every

106

(a) (b)

Figure 6.8: Camera FPS vs. power and sampling efficiency (computation model size:
3202 pixels).

camera captured image frame is sent to the edge server for detection. Because of the

need (i) to avoid the processing of stale frames and (ii) to decrease the transmission

energy consumption, only the latest camera sampled image frame is transmitted to

the server. This may result in the MAR client expending significant reactive power

for sampling non-detectable image frames. In Figure 6.8b, we quantify the sampling

efficiency with the variation of the camera FPS. As we expected, a large camera FPS

leads to a lower sampling efficiency (e.g., less than 2% of the power is consumed for

sampling the detectable image frames when the camera FPS is set to 30). However,

in most MAR applications, users usually request a high camera FPS for a smoother

preview experience, which is critical for tracking targets in physical environments.

Interestingly, increasing CPU frequency can reduce the reactive power for sampling,

as shown in Figure 6.8b.

Insight: This result demonstrates that when a high camera FPS is requested, in-

creasing CPU frequency can promote the sampling efficiency but may also boost the

power consumption. Therefore, finding a CPU frequency that can balance this tradeoff

is critical.

107

6.2.1.5 User Preference

An MAR client may have variant preferences in different implementation cases,

including:

• Latency-preferred. The MAR application of cognitive assistance [15], where

a wearable device helps visually impaired people to navigate on a street, may

require a low service latency but can tolerate a relatively high number of false

positives (i.e., false alarms are fine but missing any potential threats on the

street is costly).

• Accuracy-preferred. An MAR application for recommending products in

shopping malls or supermarkets may tolerate a long latency but requires high

detection accuracy and preview smoothness.

• Preview-preferred. The MAR drawing assistant application [180], where a

user is instructed to trace virtual drawings from the phone, may tolerate a long

latency (i.e., only needs to periodically detect the position of the paper where

the user is drawing on) but requires a smooth preview to track the lines that

the user is drawing.

Insight: This observation infers that the user preference’s diversity may signifi-

cantly affect the tradeoffs presented above. For instance, for the accuracy-preferred

case, trading detection accuracy for the per frame energy consumption or service la-

tency reduction works against the requirement of the user.

6.2.2 Proposed System Architecture

Based on the above insights, we propose an edge-based MAR system that can re-

duce the per frame energy consumption of MAR clients by dynamically selecting the

optimal combination of MAR configurations (i.e., CPU frequency and computation

model size) and radio resource allocations according to user preferences, camera FPS,

108

and available radio resources at the edge server. To derive the optimal MAR configu-

rations and radio resource allocations, we propose an optimization algorithm (LEAF)

that supports low-energy, accurate, and fast MAR applications. LEAF can jointly

optimize the CPU frequency, computation model size, and radio resource allocation

(explained in detail in Section 6.2.4).

Figure 6.9 shows the overview of our proposed system. In the first step, MAR clients

send their service requests and selected camera FPS and user preferences to an edge

server. In the second step, according to the received camera FPS and user preferences,

the edge server determines the optimal CPU frequency, computation model size, and

allocated radio resource for each MAR client using our proposed LEAF algorithm.

The determined CPU frequency and computation model size are then sent back to

corresponding MAR clients as MAR configuration messages. In the third step, MAR

clients set their CPU frequency to the optimal value and resize their latest camera

sampled image frames based on the received optimal computation model size. After

the CPU frequency adaptation and image frame resizing, MAR clients transmit their

image frames to the edge server for object detection. In the final step, the edge server

returns detection results to corresponding MAR clients.

However, designing such a system is challenging. From the presented insights in

the previous section, the interactions among the MAR system configuration variables,

user preference, camera FPS, and the per frame energy consumption are complicated.

(i) Some configuration variables improve one performance metric but impair another

one. For example, a lower computation model size reduces the service latency but

decreases the detection accuracy. (ii) Some configuration variables may affect the

same metric in multiple ways. For example, selecting a higher CPU frequency can

decrease the per frame energy consumption by increasing the sampling efficiency, but

it increases the CPU power, which conversely increases the per frame energy consump-

tion. Unfortunately, there is no analytical model for characterizing these interactions

109

Camera FPS,

User Preference

Pipeline

1. Service Request

CPU Frequency

Model Size

LEAF

Radio Resource

CPU Frequency

Frame Resolution

MAR Configurations

CNN

2. Configurations

3. Image Frames

4. Detection Results

W
ir

el
es

s
In

te
rf

ac
e

W
ireless In

terfaceM
A

R
 C

li
en

t E
d

g
e S

erv
er

Figure 6.9: Overview of the proposed edge-based MAR system.

in the MAR system and it is not possible to design a prominent optimization algo-

rithm without thoroughly analyzing these interactions.

6.2.3 Proposed Analytical Model and Problem Formulation

In this section, we thoroughly investigate the complicated interactions among the

MAR configuration parameters, user preference, camera FPS, and the key perfor-

mance metrics presented in Section 6.2.1. We first propose a comprehensive analytical

model to theoretically dissect the per frame energy consumption and service latency.

The proposed model is general enough to handle any MAR device and application.

Then, using the proposed model, we further model multiple fine-grained interactions,

whose theoretical properties are complex and hard to understand, via a data-driven

methodology. Finally, based on the above proposed models, we formulate the MAR

reconfiguration as an optimization problem.

6.2.3.1 Analytics-based Modeling Methodology

We consider an edge-based MAR system with K MAR clients and one edge server,

where clients are connected to the edge server via a single-hop wireless network.

Denote K as the set of MAR clients. The per frame service latency of the kth MAR

client can be defined as

Lk = Lkcv + Lktr + Lkinf , (6.1)

110

Image

generation

Preview
Preview Preview Preview Preview Preview Preview Preview

Image

generation

Image

generation

Image

generation

Image

generation

Image

generation

Image generation Image generation

 GHz GHz GHz GHz GHz GHz GHz GHz

Figure 6.10: The impact of CPU frequency on the power consumption of image
generation and preview.

where Lkcv is the image conversion latency caused by converting a buffered camera

captured image frame from YUV to RGB; Lktr is the transmission latency incurred

by sending the converted RGB image frame from the kth client to its connected edge

server; and Lkinf is the inference latency of the object detection on the server. Accord-

ing to the MAR pipeline depicted in Figure 6.1, the per frame energy consumption

of the kth MAR client can be defined as

Ek = Ek
img + Ek

cv + Ek
com + Ek

bs, (6.2)

where Ek
img is the image generation and preview energy consumption incurred by

image sampling, processing, and preview rendering; Ek
cv is the image conversion energy

consumption; Ek
com is the wireless communication energy consumption, which includes

four phases: promotion, data transmission, tail, and idle; and Ek
bs is the MAR device

base energy consumption.

The Model of Image Generation and Preview. Image generation is the

process that an MAR client transfers its camera sensed continuous light signal to a

displayable image frame. Preview is the process of rendering the latest generated

image frame on the client’s screen. As these two processes are executed in parallel

with the main thread, their execution delays are not counted in the per frame service

latency.

As depicted in Figure 6.7a, the energy consumption of image generation and pre-

view is the largest portion of the per frame energy consumption. To understand how

111

energy is consumed in image generation and preview and what configuration variables

impact it, we conduct a set of experiments. We find that the power consumption of

image generation and preview highly depends on the CPU frequency. Figure 6.10

shows the power consumption of image generation and preview under different CPU

frequencies, where the camera FPS is set to 15. A higher CPU frequency results in

a higher average power consumption. In addition, the image generation delay is also

closely related to the CPU frequency, where a higher CPU frequency always leads to

a shorter delay. However, the delay of rendering a preview is only related to the GPU

frequency, which is out of the scope of this paper. Thus, we consider the preview

delay as a fixed value with any CPU frequencies. We model the energy consumption

of the kth MAR client’s image generation and preview within a service latency as

Ek
img =

(∫ tkgt(fk)

0

P k
gt(fk) dt+

∫ tprv

0

P k
prv(fk) dt

)
· fpsk · Lk, (6.3)

where P k
gt, P k

prv, tkgt, tprv are the power consumption of image generation, preview, the

delay of image generation, and preview, respectively; fk is the CPU frequency; fpsk

is the camera FPS; P k
gt, P k

prv, and tkgt are functions of fk.

The Model of Image Conversion. Image conversion is processed through the

MAR client’s CPU; hence, the conversion latency and power consumption highly de-

pend on the CPU frequency. We define Lkcv and Ek
cv a function of fk. Therefore, the

major source of the power consumption of the image conversion is the CPU computa-

tion. The power consumption of mobile CPUs can be divided into two components,

P k
cv = Pleak + P k

dynamic [158], where Pleak is independent and P k
dynamic is dependent

upon the CPU frequency. (i) Pleak is the power originating from leakage effects and

is in essence not useful for the CPU’s purpose. In this paper, we consider Pleak a

constant value ε. (ii) P k
dynamic is the power consumed by the logic gate switching at fk

and is proportional to V 2
k fk, where Vk is the supply voltage for the CPU. Due to the

DVFS for the power saving purpose, e.g. a higher fk will be supplied by a larger Vk,

112

each fk matches with a specific Vk, where Vk ∝ (α1fk+α2); α1 and α2 are two positive

coefficients. Thus, the energy consumption of converting a single image frame of the

kth MAR client can be modeled as

Ek
cv = P k

cvL
k
cv = (α2

1f
3
k + 2α1α2f

2
k + α2fk + ε) · Lkcv(fk). (6.4)

The Model of Wireless Communication and Inference. Intuitively, the

wireless communication latency is related to the data size of the transmitted image

frame (determined by the frame resolution) and wireless data rate. As the data

size of detection results is usually small, we do not consider the latency caused by

returning the detection results [148]. In this paper, we use s2
k (pixels) to represent

the computation model size of the kth MAR client. The client must send image

frames whose resolutions are not smaller than s2
k to the edge server to obtain the

corresponding detection accuracy. Thus, the most efficient way is to transmit the

image frame with the resolution of s2
k to the server. Denote σ as the number of bits

required to represent the information carried by one pixel. The data size of an image

frame is calculated as σs2
k bits. Let Bk be the wireless bandwidth derived by the kth

MAR client. We model the transmission latency of the kth client as

Lktr =
σs2

k

Rk

, (6.5)

where Rk is the average wireless data rate of the kth client, which is a function of Bk.

In addition to the computation model size and wireless bandwidth, the transmission

latency is also determined by the MAR client’s CPU frequency. This is because

the image transmission uses TCP as the transport layer protocol, and TCP utilizes

substantial CPU capacity to handle congestion avoidance, buffer, and re-transmission

requests. For example, when the CPU frequency is low, the remaining CPU capacity

may not be adequate to process the TCP task; thus, the TCP throughput is decreased.

113

Promotion

Data

transmission

Tail

(a) (b)

Figure 6.11: MAR client’s wireless interface power consumption.

Therefore, Rk is also a function of fk, i.e., Rk(Bk, fk). In this paper, Rk(Bk, fk) is

defined as

Rk(Bk, fk) = rmaxk (Bk) · r∗k(fk), (6.6)

where rmaxk (Bk) is the network throughput, which is not affected by the variation of

the MAR client’s CPU frequency, and is only determined by the bandwidth (more

comprehensive model of this part can be found in [150], which is out of the scope of this

paper); r∗k(fk) represents the impact of the CPU frequency on the TCP throughput.

In WiFi networks, when transmitting a single image frame, the MAR client’s wire-

less interface experiences four phases: promotion, data transmission, tail, and idle.

When an image transmission request comes, the wireless interface enters the promo-

tion phase. Then, it enters the data transmission phase to send the image frame to

the edge server. After completing the transmission, the wireless interface is forced

to stay in the tail phase for a fixed duration and waits for other data transmission

requests and the detection results. If the MAR client does not receive the detection

result in the tail phase, it enters the idle phase and waits for the feedback from its

associated edge server. Figure 6.11 depicts the measured power consumption of the

MAR client that transmits a 3840× 2160 pixel image with different throughput. We

114

find that the average power consumption of the data transmission phase increases as

the throughput grows. However, the average power consumption and the duration

of promotion and tail phases are almost constant. Therefore, we model the energy

consumption of the kth MAR client in the duration that starts from the promotion

phase to obtaining the object detection result as

Ek
com = P k

tr(Rk(Bk, fk))L
k
tr + P k

idlet
k
idle + Pprotpro + Ptailttail, (6.7)

where P k
tr, P k

idle, Ppro, and Ptail are the average power consumption of the data trans-

mission, idle, promotion, and tail phases, respectively; tkidle, tpro, and ttail are the

durations of the idle, promotion, and tail phases, respectively;

P k
idlet

k
idle =

0, Lkinf (s

2
k) ≤ ttail,

P k
bs · (Lkinf (s2

k)− ttail), Lkinf (s
2
k) > ttail,

(6.8)

where P k
bs is the MAR device’s base power consumption; Lkinf (s2

k) is the inference

latency on the edge server, which is determined by the computation model size [148].

Note that our proposed wireless communication model can also be used in other

wireless networks (e.g., LTE).

The Model of Base Energy. In this paper, the base energy consumption is

defined as the energy consumed by the MAR clients’ CPU without any workloads,

except running its operating system, and the energy consumed by the screen without

any rendering. Because the screen’s brightness is not a critical factor that affects the

object detection performance, it is considered as a constant value in our proposed

power model. Thus, the base power consumption is only a function of the CPU

frequency. We model the base energy consumption of the kth MAR client within a

service latency as

115

Ek
bs =

P k
bs(fk) · Lk, Lkinf (s

2
k) ≤ ttail,

P k
bs(fk) · (Lk − Lkinf (s2

k) + ttail), Lkinf (s
2
k) > ttail.

(6.9)

6.2.3.2 Regression-based Modeling Methodology

As shown above, some interactions or functions in our proposed analytical models

still cannot be expressed clearly in an analytic form. This is because of (i) the lack

of analytic understandings of some interactions and (ii) specific coefficients/functions

that may vary with different MAR device models. For example, in (6.4), the specific

coefficients in P k
cv(fk) are unknown due to the lack of theoretical knowledge and vary

with different MAR device models.

Therefore, we propose a data-driven methodology to address the above challenge,

where those interactions with inadequate analytic understandings can be modeled

and trained offline via empirical measurements and regression analyses. Note that

regression-based modeling methodology is one of the most widely used approaches

in developing mobile CPU’s property models (e.g., CPU power and temperature

variation modeling) and has shown to be effective in estimating CPU properties

[143, 156, 157]. We use our testbed to collect measurements. The test MAR de-

vice is selected to work at 18 different CPU frequencies ranging from 0.3 to 2.649

GHz. In addition, in order to obtain fine-grained regression models and eliminate

the interference among different workloads on the device power consumption, we de-

velop three Android applications; each is applied with a specific function of the MAR

client, which includes image generation and preview, image conversion, and image

transmission applications. The developed regression models are shown in Figure 6.12

and Table 6.3. Note that to obtain a statistical confidence in the experimental results,

each data point in Figure 6.12 is derived by generating, transmitting, and detecting

1000 image frames and calculating the average values. The root mean square error

116

(a) (b) (c)

(d) (e) (f)

(g)

128x
224x

320x
416x

512x

608x

(h) (i)

Figure 6.12: The proposed regression-based models.

(RMSE) is applied for calculating the average model-prediction error in the units of

the variable of interest [181].

6.2.3.3 Problem Formulation

Based on the above proposed models, we formulate the MAR reconfiguration as a

multi-objective optimization problem [182]. We aim to minimize the per frame energy

consumption of multiple MAR clients in the system while satisfying the user preference

of each. We introduce two positive weight parameters λk1 and λk2 to characterize the

117

Table 6.3: The proposed regression-based models.

Proposed models RMSE
Egt(f) −0.01071f 3 + 0.06055f 2 − 0.1028f + 0.107 0.002
Eprv(f) 0.01094f + 0.04816 0.002
Pcv(f) 0.1124f 3 + 0.01f 2 + 0.2175f + 0.04295 0.041
Lcv(f) −0.145f 3 + 0.8f 2 − 1.467f + 0.996 0.025
rmax(B) 0.677B 2.403
r∗(f) 0.07651f 3 − 0.4264f 2 + 0.7916f + 0.4489 0.013
Ptr(R) 0.01821R + 0.7368 0.052
Linf (s

2) 0.07816s2 + 0.08892 0.838
Pbs(f) 0.07873f + 0.5918 0.015

user preference of the kth MAR client, where λk1 and λk2 can be specified by the client.

We adopt the weighted sum method [183] to express the multi-object optimization

problem as

P0 : min
{fk,sk,Bk,∀k∈K}

Q =
∑
k∈K

(Ek + λk1L
k − λk2Ak)

s.t. C1 :
∑
k∈K

Bk ≤ Bmax;

C2 : Lk ≤ Lkmax,∀k ∈ K;

C3 : Fmin ≤ fk ≤ Fmax, ∀k ∈ K;

C4 : sk ∈ {smin, ..., smax},∀k ∈ K;

(6.10)

where Ak is an object detection accuracy function in terms of the kth MAR client

selected computation model size s2
k (e.g., A(s2

k) = 1− 1.578e−6.5×10−3sk [148]); Lkmax is

the maximum tolerable service latency of the kth client; Bmax is the maximum wireless

bandwidth that an edge server can provide for its associated MAR clients. In practical

scenarios, an edge server may simultaneously offer multiple different services for its

associated users, e.g., video streaming, voice analysis, and content caching. Hence,

the edge server may reallocate its bandwidth resource based on the user distribution.

In this paper, we assume that Bmax varies with time randomly. The constraint C1

118

represents that MAR clients’ derived bandwidth cannot exceed the total bandwidth

allocated for the MAR service on the edge server; the constraint C2 guarantees that

the service latency of MAR clients are no larger than their maximum tolerable latency;

the constraints C3 and C4 are the constraints of the MAR device’s CPU frequency

and computation model size configurations, where sk is a discrete variable and its

values depend on the available computation models in the MAR system.

6.2.4 Proposed LEAF Optimization Algorithm

As shown in the previous section, problem P0 is a mixed-integer non-linear pro-

gramming problem (MINLP) which is difficult to solve [184]. In order to solve this

problem, we propose the LEAF algorithm based on the block coordinate descent

(BCD) method [185].

To solve problem P0, we relax the discrete variable sk into continuous variable ŝk.

The problem is relaxed as

P1 : min
{fk,ŝk,Bk,∀k∈K}

Q =
∑
k∈K

(Ek + λk1L
k − λk2Ak)

s.t. C1, C2, C3

Ĉ4 : smin ≤ ŝk ≤ smax,∀k ∈ K.

(6.11)

According to the BCD method, we propose the LEAF algorithm which solves Prob-

lem P1 by sequentially fixing two of three variables and updating the remaining one.

We iterate the process until the value of each variable converges.

∇y(x) is denoted as the partial derivative of function y corresponding to variable x.

Denote ProjX (x) as the Euclidean projection of x onto X ; ProjX (x) , arg minv∈X‖x−

v‖2.

The procedure of our proposed solution is summarized as:

• Given ŝk and Bk, we can derive a new fk according to

119

f
(j+1)
k = ProjXf

(
f

(j)
k − γk∇Qk

(
f

(j)
k

))
,∀k ∈ K; (6.12)

where γk > 0 is a constant step size and Xf is the bounded domain constrained

by C3. Based on the BCD method, we repeat (6.12) until the derived fk is

converged and then update fk.

• Given fk and Bk, we can derive a new ŝk according to

ˆ
s

(j+1)
k = ProjXŝ

(
ŝk

(j) − ηk∇Qk

(
ŝk

(j)
))

,∀k ∈ K; (6.13)

where ηk > 0 is a constant step size and Xŝ is the bounded domain constrained

by Ĉ4. Based on the BCD method, we repeat (6.13) until the derived ŝk is

converged and then update ŝk.

• Given fk and ŝk, the problem is simplified to

min
{Bk,∀k∈K}

Q =
∑
k∈K

(Ek + λk1L
k − λk2Ak)

s.t. C1 :
∑
k∈K

Bk ≤ Bmax;

C2 : Lk ≤ Lkmax, ∀k ∈ K;

(6.14)

where constraints C3 and Ĉ4 are irrelevant to this problem.

The Lagrangian dual decomposition method is utilized to solve the above problem,

where the Lagrangian function is

L(Bk, µ,β) =
∑
k∈K

(Ek + λk1L
k − λk2Ak)

+ µ(
∑
k∈K

Bk −Bmax) +
∑
k∈K

βk(L
k − Lkmax),

(6.15)

120

where µ and β are the Lagrange multipliers, (i.e., β is a Lagrange multiplier vector),

corresponding to constraints C1 and C2, respectively. The Lagrangian dual problem

can therefore be expressed as

max
{µ,β}

g(µ,β) = min
{Bk,∀k∈K}

L(Bk, µ,β)

s.t. µ ≥ 0,β ≥ 0.

(6.16)

Here, g(µ,β) is concave with respect to Bk.

Lemma 1. The problem P1 is convex with respect to Bk.

Proof. For any feasible Bi, Bj,∀i, j ∈ K, we have

∂2Q

∂Bi∂Bj

=

0, i 6= j,

Ψi · ∂
2(1/rmax)
∂Bi∂Bj

, i = j,

(6.17)

where Ψi =
[fpsi(Egt(fi)+Eprv(fi))+P

i
tr(0)+Pbs(fi)+λ

i
1]σs2i

r∗i (fi)
which is positive, and ∂2(1/rmax)

∂Bi∂Bj
=

2
0.677B3

i
> 0. Thus, the Hessian matrix H =

(
∂2Q

∂Bi∂Bj

)
K×K

is symmetric and positive

definite. Constraint C1 is linear and C2 is convex with respect to Bk. Constraints C3

and C4 are irrelevant to Bk. Therefore, P1 is strictly convex with respect to Bk.

Therefore, based on the Karush-Kuhn-Tucker (KKT) condition [186], the sufficient

and necessary condition of the optimal allocated bandwidth for the kth MU can be

expressed as

B∗k =

√
Φ(fk, sk, βk)

0.677µ
, (6.18)

where Φk =
[fpsi(Egt(fi)+Eprv(fi))+P

i
tr(0)+Pbs(fi)+λ

i
1+βk]σs2i

r∗i (fi)
.

Next, the sub-gradient method [186] is used to solve the dual problem. Based on

the sub-gradient method, the dual variables of the kth MAR clients in the (j + 1)th

iteration are

121

µ

(j+1)
k = max

{
0,
[
µ(j) + ϑµk∇g(µ(j))

]}
,∀k ∈ K;

β
(j+1)
k = max

{
0,
[
β

(j)
k + ϑβk∇g(β

(j)
k)
]}

, ∀k ∈ K;
(6.19)

where ϑµk > 0 and ϑβk > 0 are the constant step sizes.

Based on the above mathematical analysis, we propose an MAR optimization al-

gorithm, LEAF, which can dynamically determines the CPU frequency of multiple

MAR devices, selects the computation model sizes, and allocates the wireless band-

width resources. The pseudo code of the proposed LEAF MAR algorithm is presented

in Algorithm 7. First, the LEAF is initialized with the lowest CPU frequency, the

smallest computation model size, and evenly allocated bandwidth resources among

MAR devices. We then iteratively update fk, ŝk, and Bk until the LEAF converges

(i.e., line 7-8 in Algorithm 7). In addition, ŝk is a relaxed value of the computation

model size. Thus, it may not match any pre-installed computation model in a real

system. In this case, the LEAF selects the computation model size sk that is the

closest to the relaxed one ŝk (i.e., line 10 in Algorithm 7). Since the LEAF MAR

algorithm is developed based on the BCD method and follows the convergence results

in [185], we claim that the LEAF converges to a local optimal solution.

Algorithm 7: The LEAF MAR Algorithm
Input: λk1, λk2, Lkmax, Bmax, fpsk, and τ , ∀k ∈ K.
Output: fk, sk, and Bk, ∀k ∈ K.

1 Bk ← Bmax/|K|, ŝk ← smin, ∀k ∈ K, i← 1;
2 while True do
3 fk ← solving P1 with fixed ŝk and Bk;
4 ŝk ← solving P1 with fixed fk and Bk;
5 Bk ← solving P1 with fixed fk and ŝk;
6 Qi ←

∑
k∈K(Ek + λk1L

k − λk2Ak)
7 if |(Qi −Qi−1)/Qi| ≤ τ then
8 break; . Converges

9 i← i+ 1;

10 sk = arg min
s∈{smin...smax}

|s− ŝk|, ∀k ∈ K;

11 return fk, sk, and Bk, ∀k ∈ K.

122

Table 6.4: Power and duration of promotion & tail phases.

Ppro (W) tpro (s) Ptail (W) ttail (s)
1.97± 0.08 0.034± 0.004 1.61± 0.15 0.21± 0.02

6.2.5 Performance Evaluation

In this section, we evaluate both the proposed MAR analytical energy model and

LEAF algorithm. We first validate our analytical model by comparing the estimated

energy consumption with the physical energy measurement (obtained from our de-

veloped testbed described in Section 6.2.1). The Mean Absolute Percentage Error

(MAPE) is used for quantifying the estimation error. Then, we evaluate the per

frame energy consumption, service latency, and detection accuracy of the proposed

LEAF algorithm under variant bandwidth and user preferences through data-driven

simulations.

6.2.5.1 Analytical Model Validation

The measured power and duration of promotion and tail phases in WiFi are shown

in Table 6.4 (note that LTE has different values [187]). As shown in Figure 6.13, we

validate the proposed analytical model with respect to MAR client’s CPU frequency,

computation model size, allocated bandwidth, and camera FPS. Each measured data

is the average of the per frame energy consumption of 1000 image frames. The

calculated MAPE of these four cases are 6.1% ± 3.4%, 7.6% ± 4.9%, 6.9% ± 3.9%,

and 3.7% ± 2.6%, respectively. Therefore, our proposed energy model can estimate

the MAR per frame energy consumption very well.

6.2.5.2 Performance Evaluation of LEAF

We simulate an edge-based MAR system with an edge server and multiple MAR

clients. Each MAR client may select a different camera FPS, which is obtained

randomly in the range of [1, 30] frames. The default user preference is λ1 = 0.3 and

123

0.30 0.72 1.03 1.49 1.72 2.26 2.64

CPU frequency (GHz)

0

1

2

3

4

P
er

 f
ra

m
e

 e
n

er
g

y
 (
J)

Image gen. & prev.

Image conversion

Communication

Base

Measured ModeledMeasured Modeled

(a)

Computation model size (pixels)

P
er

 fr
am

e
 e

n
er

g
y

 (
J) Image gen. & prev.

Image conversion

Communication

Base

Measured ModeledMeasured Modeled

(b)

5 25 45 65 85

Bandwidth (Mbps)

0

2

4

6

P
er

 f
ra

m
e

 e
n

er
g

y
 (
J) Image gen. & prev.

Image conversion

Communication

Base

Measured ModeledMeasured Modeled

(c)

5 10 15 20 25 30

Camera FPS (frames)

0

1

2

3

4

P
er

 f
ra

m
e

 e
n

er
g

y
 (
J) Image gen. & prev.

Image conversion

Communication

Base

Measured ModeledMeasured Modeled

(d)

Figure 6.13: Measured data vs. estimated data from our proposed analytical model.

λ2 = 1.8. We compare our proposed LEAF algorithm with two other algorithms

summarized as follows:

• FACT + Interactive: It uses FACT [148] to select the computation model

size, which is optimized for the tradeoff between the service latency and the de-

tection accuracy. As FACT does not consider the MAR client’s CPU frequency

scaling and radio resource allocation at the edge server, we use Interactive to

conduct CPU frequency scaling and the radio resource is allocated evenly. Note

that FACT does not consider the energy efficiency of MAR clients either.

• Energy-optimized only solution: It selects the optimal CPU frequency,

computation model size, and bandwidth allocation by minimizing the per frame

energy consumption of MAR clients in the system without considering user

124

(a) (b)

Figure 6.14: Optimality. (a) Q vs. Max. bandwidth; (b) Q vs. user preference.

preferences, which is named as MINE.

Optimality. We first validate the optimality of our proposed LEAF algorithm.

As shown in Figure 6.14, LEAF always obtains the minimal Q compared to the other

two algorithms under variant maximum available bandwidth and user preference.

Comparison under Variant Max. Bandwidth. We then evaluate the impact

of the maximum available bandwidth on the performance of the proposed LEAF.

In practical environments, the maximum bandwidth at an edge server for serving its

associated MAR clients may vary with the user distribution. For each MAR client, the

value of the allocated bandwidth directly impacts not only the service latency and the

per frame energy consumption but also the detection accuracy. The evaluation results

are depicted in Figure 6.15. (i) Compared to FACT, the proposed LEAF decreases up

to 40% per frame energy consumption and 35% service latency with less than 9% loss

of object detection accuracy when the Max. bandwidth is 300 Mbps. The performance

gap between LEAF and FACT is due to the gain derived through optimizing the

clients’ CPU frequency and the server radio resource allocation. (ii) Compared to

MINE, the proposed LEAF significantly improves the detection accuracy at the cost

of a slightly increase of the service latency and per frame energy. The performance

gap between LEAF and MINE reflects the gain derived through considering the user

preference.

125

(a)

Service

latency Accuracy

(b)

Figure 6.15: System performance vs. Max. bandwidth.

(a)

Service

latency

Accuracy

(b)

Figure 6.16: System performance vs. user preference.

Comparison under Variant User Preferences. Finally, we evaluate the impact

of the user preference on the performance of the proposed LEAF by varying the value

of λ2/λ1, as shown in Figure 6.16. User preference impacts the tradeoffs among the

per frame energy consumption, service latency, and detection accuracy. When λ2/λ1

grows, the MAR client emphasizes on the detection accuracy by trading the service

latency and per frame energy. Since MINE does not consider the user preference,

the variation of λ2/λ1 does not change its performance. (i) Compared to FACT, the

proposed LEAF reduces over 20% per frame energy consumption while maintaining

the same detection accuracy (λ2/λ1 = 100). (ii) Compared to MINE, the proposed

LEAF is able to enhance over 50% accuracy while ensuring similar per frame energy

and service latency (λ2/λ1 = 2). Figure 6.16 also shows that, as compared to FACT,

the proposed LEAF offers more fine-grained and diverse user preference options for

126

MAR clients.

CHAPTER 7: CONCLUSION

7.1 Completed Work

In this dissertation, fast and energy-efficient mobility management in MEC net-

works is investigated. Link-instability and user-mobility incurred challenges in MEC

are addressed from four steps. First, an intelligent handoff trigger mechanism is de-

signed to achieve a fast and accurate trigger for seamless mobility support in MEC

networks. Second, after a handoff is triggered at a mobile client in MEC networks,

the mobile client’s application/service that is under processing on an MEC server

must be migrated or rebuilt on a new MEC server. The service rebuilding process

in MEC networks has two components: radio handoff and service handoff. Most

existing mobility management solutions in MEC investigate radio and service hand-

offs separately. Thus, these handoffs are performed in sequence, which leads to long

service rebuilding delay with high energy consumption. Therefore, a service rebuild-

ing design jointly considering radio and service handoffs is proposed. In addition, to

minimize performance degradation during mobility caused by radio resource alloca-

tion unfairness, single and multiple edge servers radio resource allocation protocols

to impartially allocate the uplink and the downlink radio resources in MEC networks

are proposed. Lastly, a dynamic configuration adaptation algorithm is proposed for

mobile clients to achieve energy-efficient offloading in MEC networks while satisfying

variant clients’ user preferences.

Explorer, a novel MAR offloading solution for cloudlet-based MAR systems, is pro-

posed to mitigate the analytics staleness caused by the wireless link quality variation,

especially the user-mobility-incurred wireless network quality decline. To the best

of our knowledge, this is the first formal study of reducing the MAR service latency

128

from the communication perspective. In addition, Explorer is complementary to all

existing computation-based MAR offloading solutions to further reduce the MAR

service latency. The performance of Explorer is validated by both experiments and

large-scale simulations.

A smart service rebuilding scheme is proposed, which seamlessly restores offloading

services on the target cloudlet while the mobile user is moving. The service rebuilding

process includes the radio handoff stage and service handoff stage. A seamless ser-

vice rebuilding process is achieved via predicting user’s target cloudlet before being

triggered a radio handoff, by leveraging extracted features from the captured frames

of the mobile user’s camera. Furthermore, based on the proposed service rebuilding

scheme, we design a feature mapping algorithm to achieve a high prediction precision

and a short prediction latency. We implement our scheme on a testbed and con-

duct experiments using real world AR applications. The experimental results show

that our proposed scheme decreases the service rebuilding latency by around 65.8%,

as compared with the conventional rebuilding process. In addition, we conduct ex-

tensive simulations to evaluate the performance of our proposed feature mapping

algorithm. Simulation confirms that our algorithm is robust and can predict users’

target cloudlet with high precision and low latency.

A novel WLAN system, BELL, is proposed to reduce mobile devices’ energy con-

sumption for performing management services. First, an energy-efficient mobility

management service, BELL-handoff, is proposed under BELL deployment. We im-

plemented BELL-handoff on a testbed and evaluated its performance. Experimental

results show BELL-handoff decreases not only the handoff energy consumption but la-

tency, as compared with C-WLAN. Then, we proposed a user-friendly load balancing

service, BELL-2M. We conducted extensive simulations to evaluate BELL-2M per-

formance and mobile devices’ battery life within a large-scale deployment of BELL.

Simulation results show that BELL-2M can balance APs’ load in BELL and MUs in

129

BELL drain less battery life than in C-WLAN.

E-Auto, a novel communication scheme, is proposed to enable fast, stable, and

accurate edge-assisted autonomous driving service for connected vehicles within any

road types (e.g., driving on highway with very high speed or local roads with slow

speed due to the traffic congestion). In addition, as two key components of the pro-

posed E-Auto scheme, a service period allocation algorithm and a frame resolution

selection algorithm are designed to guarantee a sufficient frame rate for connected ve-

hicles acquiring either uplink application (offload camera captured frames to the edge

server) or downlink application (download entertainment videos). Through network

simulations, we evaluate the performance of the proposed E-Auto scheme. Simula-

tion results demonstrate that E-Auto can provide a high frame rate and low energy

consumption autonomous driving service for connected vehicles.

The first detailed experimental study of the energy consumption and the perfor-

mance of a deep CNN optimized object detection application on a variety of smart-

phones is conduct. Both local and remote execution cases are examined. We found

that the performance of the object detection is heavily affected by different genera-

tions of smartphones. Although executing deep learning on remote edge servers is one

of the most commonly used approaches to assist low-end smartphones in improving

their energy efficiency and performance, contrary to our expectation, remote execu-

tion does not always consume less energy and obtain lower latency, as compared to

local execution, even when the network quality is excellent. Overall, we believe that

our findings give great insights and guidelines to the future design of energy-efficient

processing pipeline of CNN optimized object detection.

A user preference based energy-aware edge-based MAR system is proposed, which

can reduce the per frame energy consumption of MAR clients without compromis-

ing their user preferences by dynamically selecting the optimal combination of MAR

configurations and radio resource allocations according to user preferences, camera

130

FPS, and available radio resources at the edge server. To the best of our knowledge,

this is the first analytical energy model for thoroughly investigating the interactions

among MAR configuration parameters, user preferences, camera sampling rate, and

per frame energy consumption in edge-based MAR systems. Based on the proposed

analytical model, the LEAF optimization algorithm is proposed to guide the optimal

MAR configurations and resource allocations. The performance of the proposed ana-

lytical model is validated against real energy measurements from our testbed and the

LEAF algorithm is evaluated through extensive data-driven simulations.

7.2 Future Work

Based on the proposed mobility management designs, two issues can be considered

in the future work:

• Current CPU governors cannot achieve energy-efficient object detection on

smartphones. A CPU governor specifically designed for CNN-based object de-

tection applications is critical. I plan to well utilize the proposed analytic models

to design a specific CPU governor for CNN-based object detection applications.

• A special offloading protocol for MAR applications will be proposed to cooperate

with the proposed mobility management protocols. This protocol is used to

mitigate the trade-off between the energy consumption and service staleness for

MAR offloading in MEC networks.

7.3 Published and Submitted Work

The following list is a summary of my publications.

1. Haoxin Wang and Jiang Xie, “User Preference Based Energy-Aware Mobile AR

System with Edge Computing," in Proc. IEEE International Conference on

Computer Communications (INFOCOM), Apr. 2020, pp.1379–1388.

2. Haoxin Wang and Jiang Xie, “Energy Drain of the Object Detection Processing

131

Pipeline: Analysis and Implications," submitted to IEEE Transactions on Green

Communications and Networking, 2020.

3. Haoxin Wang, Tingting Liu, BaekGyu Kim, Chung-Wei Lin, Shinichi Shi-

raishi, Jiang Xie, and Zhu Han, “Architectural Design Alternatives based on

Cloud/Edge/Fog Computing for Connected Vehicles," accepted by IEEE Com-

munications Surveys and Tutorials, 2020.

4. Haoxin Wang, Siqi Huang, BaekGyu Kim, Jiang Xie, Han Zhu, and Tao Han,

"You Can Enjoy Augmented Reality While Moving Around: A Cloudlet-based

Mobile AR System," submitted to IEEE Transactions on Mobile Computing,

2020.

5. Haoxin Wang and Jiang Xie, “Edge-based Energy-aware Object Detection for

Mobile Augmented Reality," submitted to IEEE Transactions on Networking.

6. Haoxin Wang, BaekGyu Kim, Jiang Xie, and Zhu Han, “How is Energy Con-

sumed in Smartphone Deep Learning Apps? Executing Locally vs. Remotely,"

in Proc. IEEE Global Communications Conference (GLOBECOM), Dec. 2019,

pp.1-6.

7. Haoxin Wang, BaekGyu Kim, Jiang Xie, and Zhu Han "E-Auto: A Communica-

tion Scheme for Connected Vehicles with Edge-Assisted Autonomous Driving,"

Proc. IEEE International Conference on Communications (ICC) Feb. 2019,

pp.1-6.

8. Haoxin Wang, Jiang Xie, and Xingya Liu "Rethinking Mobile Devices’ Energy

Efficiency in WLAN Management Services," Proc. IEEE SECON, Jun. 2018,

pp.1-9.

9. Haoxin Wang, Jiang Xie, and Tao Han, "A Smart Service Rebuilding Scheme

132

Across Cloudlets via Mobile AR Frame Feature Mapping," Proc. IEEE ICC,

May 2018, pp.1-6.

10. Haoxin Wang, Jiang Xie, and Tao Han, "V-Handoff: A Practical Energy Effi-

cient Handoff for 802.11 Infrastructure Networks," Proc. IEEE ICC, May 2017,

pp.1-6.

133

REFERENCES

[1] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, and A. Neal, “Mobile-
edge computing introductory technical white paper,” White Paper, Mobile-edge
Computing (MEC) industry initiative, 2014.

[2] H. Wang, B. Kim, J. Xie, and Z. Han, “How is energy consumed in smartphone
deep learning apps? Executing locally vs. remotely,” in Proc. IEEE Globecom,
pp. 1–6, 2019.

[3] I. . W. Group, “IEEE standard for information technology–telecommunications
and information exchange between systems local and metropolitan area
networks–specific requirements part 11: Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications,” IEEE Std 802.11-2012 (Revi-
sion of IEEE Std 802.11-2007), pp. 1–2793, March 2012.

[4] V. Mhatre and K. Papagiannaki, “Using smart triggers for improved user per-
formance in 802.11 wireless networks,” in Proc. 2006 ACM the 4th international
conference on Mobile systems, applications and services, pp. 246–259, 2006.

[5] H. Wu, K. Tan, Y. Zhang, and Q. Zhang, “Proactive scan: Fast handoff with
smart triggers for 802.11 wireless LAN,” in Proc. IEEE INFOCOM, pp. 749–
757, 2007.

[6] P. Khadivi, T. D. Todd, and D. Zhao, “Handoff trigger nodes for hybrid
IEEE 802.11 WLAN/cellular networks,” in Proc. 2004 IEEE First International
Conference on Quality of Service in Heterogeneous Wired/Wireless Networks
(QSHINE), pp. 164–170, 2004.

[7] H. Wang, J. Xie, and T. Han, “V-handoff: A practical energy efficient handoff
for 802.11 infrastructure networks,” in Proc. IEEE ICC, 2017.

[8] K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and M. Satyanarayanan,
“Adaptive VM handoff across cloudlets,” tech. rep., CMU-CS-15-113, CMU
School of Computer Science, 2015.

[9] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading: How much
can WiFi deliver?,” IEEE/ACM Transactions on Networking (ToN), vol. 21,
no. 2, pp. 536–550, 2013.

[10] A. Detti, M. Pomposini, N. Blefari-Melazzi, S. Salsano, and A. Bragagnini,
“Offloading cellular networks with information-centric networking: The case of
video streaming,” in Proc. 2012 IEEE International Symposium on World of
Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–3, 2012.

[11] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou, “Mi-
crocast: Cooperative video streaming on smartphones,” in Proc. 2012 ACM

134

the 10th international conference on Mobile systems, applications, and services,
pp. 57–70, 2012.

[12] S. Dimatteo, P. Hui, B. Han, and V. O. Li, “Cellular traffic offloading through
WiFi networks,” in Proc.2011 IEEE 8th International Conference on Mobile
Adhoc and Sensor Systems (MASS), pp. 192–201, 2011.

[13] V. A. Siris, M. Anagnostopoulou, and D. Dimopoulos, “Improving mobile video
streaming with mobility prediction and prefetching in integrated cellular-WiFi
networks,” in Proc. International Conference on Mobile and Ubiquitous Sys-
tems: Computing, Networking, and Services, pp. 699–704, Springer, 2013.

[14] C. Vallati, A. Virdis, E. Mingozzi, and G. Stea, “Mobile-edge computing come
home connecting things in future smart homes using LTE device-to-device com-
munications,” IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 77–83,
2016.

[15] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan, “Towards
wearable cognitive assistance,” in Proc. ACM SenSys, 2014.

[16] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “LAVEA: latency-aware
video analytics on edge computing platform,” in Proc. ACM/IEEE SEC, p. 15,
2017.

[17] P. Jain, J. Manweiler, and R. Roy Choudhury, “Low bandwidth offload for
mobile AR,” in Proc. ACM CoNEXT, pp. 237–251, 2016.

[18] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A mobile deep
learning framework for edge video analytics,” in Proc. IEEE Infocom, 2018.

[19] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator for
mobile augmented reality,” in Proc. IEEE Infocom, 2018.

[20] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mo-
bile edge computing: The communication perspective,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[21] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,
no. 1, pp. 30–39, 2017.

[22] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A
survey,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2018.

[23] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On
multi-access edge computing: A survey of the emerging 5G network edge cloud
architecture and orchestration,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, pp. 1657–1681, 2017.

135

[24] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and
computation offloading,” arXiv preprint arXiv:1702.05309, 2017.

[25] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “Mobile edge comput-
ing: Survey and research outlook,” arXiv preprint arXiv, 2017.

[26] M. T. Beck, M. Werner, S. Feld, and S. Schimper, “Mobile edge computing:
A taxonomy,” in Proc. of the Sixth International Conference on Advances in
Future Internet, pp. 48–55, Citeseer, 2014.

[27] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey
on mobile edge networks: Convergence of computing, caching and communica-
tions,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[28] K. Dolui and S. K. Datta, “Comparison of edge computing implementations:
Fog computing, cloudlet and mobile edge computing,” in Proc. IEEE Global
Internet of Things Summit (GIoTS), (Geneva, Switzerland), Jun. 2017.

[29] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili, “Collaborative mobile edge
computing in 5G networks: New paradigms, scenarios, and challenges,” IEEE
Communications Magazine, vol. 55, pp. 54–61, Apr. 2017.

[30] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportunities,”
IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

[31] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts, applications and
issues,” in Proc. the 2015 ACM workshop on mobile big data, pp. 37–42, 2015.

[32] G. I. Klas, “Fog computing and mobile edge cloud gain momentum open fog
consortium, ETSI MEC and cloudlets,” 2015.

[33] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing: A key technology towards 5G,” ETSI white paper, vol. 11, no. 11,
pp. 1–16, 2015.

[34] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49,
no. 5, pp. 78–81, 2016.

[35] ETSI, “Mobile edge computing (MEC); technical requirements,” Mar. 2016.

[36] X. Ma, C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of computation
offloading for cloudlet-based mobile cloud computing,” in Proc. the 18th ACM
International Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, pp. 271–278, 2015.

[37] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, “Collaborative multi-
bitrate video caching and processing in mobile-edge computing networks,” in
Proc. 2017 IEEE 13th Annual Conference on Wireless On-demand Network
Systems and Services (WONS), pp. 165–172, 2017.

136

[38] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. Lau, “Dynamic virtual
machine management via approximate markov decision process,” in Proc. 2016
IEEE The 35th Annual International Conference on Computer Communications
(INFOCOM), pp. 1–9, 2016.

[39] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: Enabling
remote computing among intermittently connected mobile devices,” in Proc.
the thirteenth ACM international symposium on Mobile Ad Hoc Networking
and Computing, pp. 145–154, 2012.

[40] A. Mtibaa, K. A. Harras, and A. Fahim, “Towards computational offloading
in mobile device clouds,” in Proc. 2013 IEEE 5th International Conference on
Cloud Computing Technology and Science (CloudCom), vol. 1, pp. 331–338,
2013.

[41] T. Nishio, R. Shinkuma, T. Takahashi, and N. B. Mandayam, “Service-oriented
heterogeneous resource sharing for optimizing service latency in mobile cloud,”
in Proc. the first international workshop on Mobile cloud computing & network-
ing, pp. 19–26, ACM, 2013.

[42] K. Habak, M. Ammar, K. A. Harras, and E. Zegura, “Femto clouds: Leveraging
mobile devices to provide cloud service at the edge,” in Proc. 2015 IEEE 8th
International Conference on Cloud Computing (CLOUD), pp. 9–16, 2015.

[43] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing resource-
poor mobile devices with powerful clouds: Architectures, challenges, and appli-
cations,” IEEE Wireless communications, vol. 20, no. 3, pp. 14–22, 2013.

[44] T. Taleb and A. Ksentini, “An analytical model for follow me cloud,” in Proc.
2013 IEEE Global Communications Conference (GLOBECOM), pp. 1291–1296,
2013.

[45] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for mobile
computing,” in Proc. 2016 IEEE The 35th Annual International Conference on
Computer Communications (INFOCOM), pp. 1–9, 2016.

[46] C. M. Huang, M. S. Chiang, D. T. Dao, W. L. Su, S. Xu, and H. Zhou,
“V2V data offloading for cellular network based on the software defined net-
work (SDN) inside mobile edge computing (MEC) architecture,” IEEE Access,
vol. 6, pp. 17741–17755, 2018.

[47] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler, H. Feussner,
and A. Schneider, “Enabling real-time context-aware collaboration through 5G
and mobile edge computing,” in Proc. IEEE 12th International Conference on
Information Technology - New Generations, (Las Vegas, NV, USA), pp. 601–
605, Apr. 2015.

137

[48] C.-Y. Chang, K. Alexandris, N. Nikaein, K. Katsalis, and T. Spyropoulos,
“MEC architectural implications for LTE/LTE-A networks,” in Proc. 2016 ACM
the Workshop on Mobility in the Evolving Internet Architecture, pp. 13–18, 2016.

[49] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-
edge computing architecture: The role of MEC in the Internet of Things,”
IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84–91, 2016.

[50] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun, “Fog computing:
Focusing on mobile users at the edge,” arXiv preprint arXiv:1502.01815, 2015.

[51] I. Stojmenovic, “Fog computing: A cloud to the ground support for smart
things and machine-to-machine networks,” in Proc. 2014 IEEE Australasian
Telecommunication Networks and Applications Conference (ATNAC), pp. 117–
122, 2014.

[52] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi, and
P. Narasimhan, “The case for mobile edge-clouds,” in Proc. 2013 IEEE 10th In-
ternational Conference on Ubiquitous Intelligence & Computing and 10th Inter-
national Conference on Autonomic & Trusted Computing (UIC/ATC), pp. 209–
215, 2013.

[53] I. Giannoulakis, E. Kafetzakis, I. Trajkovska, P. S. Khodashenas,
I. Chochliouros, C. Costa, I. Neokosmidis, and P. Bliznakov, “The emergence
of operator-neutral small cells as a strong case for cloud computing at the mo-
bile edge,” Transactions on Emerging Telecommunications Technologies, vol. 27,
no. 9, pp. 1152–1159, 2016.

[54] F. Lobillo, Z. Becvar, M. A. Puente, P. Mach, F. L. Presti, F. Gambetti,
M. Goldhamer, J. Vidal, A. K. Widiawan, and E. Calvanesse, “An architecture
for mobile computation offloading on cloud-enabled LTE small cells,” in Proc.
2014 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), pp. 1–6, 2014.

[55] M. A. Puente, Z. Becvar, M. Rohlik, F. Lobillo, and E. C. Strinati, “A seamless
integration of computationally-enhanced base stations into mobile networks to-
wards 5G,” in Proc. 2015 IEEE 81st Vehicular Technology Conference (VTC
Spring), pp. 1–5, 2015.

[56] Z. Becvar, M. Rohlik, P. Mach, M. Vondra, T. Vanek, M. A. Puente, and F. Lo-
billo, “Distributed architecture of 5G mobile networks for efficient computation
management in mobile edge computing,” 5G Radio Access Networks: Central-
ized RAN, Cloud-RAN and Virtualization of Small Cells, vol. 29, 2017.

[57] S. Wang, G.-H. Tu, R. Ganti, T. He, K. Leung, H. Tripp, K. Warr, and M. Zafer,
“Mobile micro-cloud: Application classification, mapping, and deployment,” in
Proc. Annual Fall Meeting of ITA (AMITA), 2013.

138

[58] K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der Merwe, and K. Webb,
“Mobiscud: A fast moving personal cloud in the mobile network,” in Proc. the
5th Workshop on All Things Cellular: Operations, Applications and Challenges,
pp. 19–24, ACM, 2015.

[59] T. Taleb and A. Ksentini, “Follow me cloud: Interworking federated clouds and
distributed mobile networks,” IEEE Network, vol. 27, no. 5, pp. 12–19, 2013.

[60] T. Taleb, A. Ksentini, and P. Frangoudis, “Follow-me cloud: When cloud ser-
vices follow mobile users,” IEEE Transactions on Cloud Computing, 2016.

[61] A. Aissioui, A. Ksentini, and A. Gueroui, “An efficient elastic distributed SDN
controller for follow-me cloud,” in Proc. 2015 IEEE 11th International Con-
ference on Wireless and Mobile Computing, Networking and Communications
(WiMob), pp. 876–881, 2015.

[62] J. Liu, T. Zhao, S. Zhou, Y. Cheng, and Z. Niu, “CONCERT: a cloud-based
architecture for next-generation cellular systems,” IEEE Wireless Communica-
tions, vol. 21, no. 6, pp. 14–22, 2014.

[63] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network design op-
timization,” IEEE/ACM Transactions on Networking (TON), vol. 25, no. 3,
pp. 1818–1831, 2017.

[64] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman, “Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration
architecture,” in Proc. IEEE ISCC, pp. 59–66, 2012.

[65] Y. Liu, J. E. Fieldsend, and G. Min, “A framework of fog computing: Architec-
ture, challenges, and optimization,” IEEE Access, vol. 5, 2017.

[66] M. Chen, Y. Hao, Y. Li, C.-F. Lai, and D. Wu, “On the computation offloading
at ad hoc cloudlet: architecture and service modes,” IEEE Communications
Magazine, vol. 53, no. 6, pp. 18–24, 2015.

[67] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency opti-
mal task assignment for resource-constrained mobile computing,” IEEE Trans-
actions on Mobile Computing, vol. 16, no. 11, pp. 3056–3069, 2017.

[68] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation task
scheduling for mobile-edge computing systems,” in Proc. 2016 IEEE Interna-
tional Symposium on Information Theory (ISIT), pp. 1451–1455, 2016.

[69] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic computation of-
floading,” IEEE Communications Letters, vol. 18, no. 10, pp. 1779–1782, 2014.

[70] Y. Zhang, D. Niyato, and P. Wang, “Offloading in mobile cloudlet systems with
intermittent connectivity,” IEEE Transactions on Mobile Computing, vol. 14,
no. 12, pp. 2516–2529, 2015.

139

[71] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for
mobile-edge computing with energy harvesting devices,” IEEE Journal on Se-
lected Areas in Communications, vol. 34, no. 12, pp. 3590–3605, 2016.

[72] X. Sun and N. Ansari, “Latency aware workload offloading in the cloudlet net-
work,” IEEE Communications Letters, vol. 21, no. 7, pp. 1481–1484, 2017.

[73] H. Guo and J. Liu, “Collaborative computation offloading for multiaccess edge
computing over fiber wireless networks,” IEEE Transactions on Vehicular Tech-
nology, vol. 67, pp. 4514–4526, May 2018.

[74] S. Melendez and M. P. McGarry, “Computation offloading decisions for reducing
completion time,” in Proc. 2017 14th IEEE Annual Consumer Communications
& Networking Conference (CCNC), pp. 160–164, 2017.

[75] S. E. Mahmoodi, R. Uma, and K. Subbalakshmi, “Optimal joint scheduling and
cloud offloading for mobile applications,” IEEE Transactions on Cloud Com-
puting, 2016.

[76] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Joint allocation of radio and com-
putational resources in wireless application offloading,” in Proc. 2013 Future
Network and Mobile Summit (FutureNetworkSummit), pp. 1–10, 2013.

[77] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan,
and Y. Zhang, “Energy-efficient offloading for mobile edge computing in 5G
heterogeneous networks,” IEEE access, vol. 4, pp. 5896–5907, 2016.

[78] J. Dolezal, Z. Becvar, and T. Zeman, “Performance evaluation of computation
offloading from mobile device to the edge of mobile network,” in Proc. 2016
IEEE Conference on Standards for Communications and Networking (CSCN),
pp. 1–7, 2016.

[79] W. Labidi, M. Sarkiss, and M. Kamoun, “Energy-optimal resource scheduling
and computation offloading in small cell networks,” in Proc. 2015 22nd Inter-
national Conference on Telecommunications (ICT), pp. 313–318, 2015.

[80] W. Labidi, M. Sarkiss, and M. Kamoun, “Joint multi-user resource scheduling
and computation offloading in small cell networks,” in Proc. 2015 IEEE 11th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pp. 794–801, 2015.

[81] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge computing:
Partial computation offloading using dynamic voltage scaling,” IEEE Transac-
tions on Communications, vol. 64, no. 10, pp. 4268–4282, 2016.

[82] O. Muñoz, A. P. Iserte, J. Vidal, and M. Molina, “Energy-latency trade-off
for multiuser wireless computation offloading,” in Proc. 2014 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW), pp. 29–
33, 2014.

140

[83] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya, P. Pad-
manabhan, and M. Satyanarayanan, “You can teach elephants to dance: Agile
VM handoff for edge computing,” in Proc. ACM SEC, 2017.

[84] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-based service
migration procedure for follow me cloud,” in Proc. 2014 IEEE International
Conference on Communications (ICC), pp. 1350–1354, 2014.

[85] X. Sun and N. Ansari, “PRIMAL: Profit maximization avatar placement for
mobile edge computing,” in Proc. 2016 IEEE International Conference on Com-
munications (ICC), pp. 1–6, 2016.

[86] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung, “Mobility-
induced service migration in mobile micro-clouds,” in Proc. 2014 IEEE Military
Communications Conference (MILCOM), pp. 835–840, 2014.

[87] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung, “Dynamic
service migration in mobile edge-clouds,” in Proc. 2015 IEEE IFIP Networking
Conference (IFIP Networking), pp. 1–9, 2015.

[88] A. Nadembega, A. S. Hafid, and R. Brisebois, “Mobility prediction model-based
service migration procedure for follow me cloud to support QoS and QoE,” in
Proc. 2016 IEEE International Conference on Communications (ICC), pp. 1–6,
2016.

[89] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung, “Dynamic
service placement for mobile micro-clouds with predicted future costs,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1002–1016,
2017.

[90] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung, “Dy-
namic service migration and workload scheduling in edge-clouds,” Performance
Evaluation, vol. 91, pp. 205–228, 2015.

[91] S. Secci, P. Raad, and P. Gallard, “Linking virtual machine mobility to user
mobility,” IEEE Transactions on Network and Service Management, vol. 13,
no. 4, pp. 927–940, 2016.

[92] Z. Becvar, J. Plachy, and P. Mach, “Path selection using handover in mobile
networks with cloud-enabled small cells,” in Proc. 2014 IEEE 25th Annual In-
ternational Symposium on Personal, Indoor, and Mobile Radio Communication
(PIMRC), pp. 1480–1485, 2014.

[93] J. Plachy, Z. Becvar, and P. Mach, “Path selection enabling user mobility and
efficient distribution of data for computation at the edge of mobile network,”
Computer Networks, vol. 108, pp. 357–370, 2016.

141

[94] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource alloca-
tion for mobile-edge computation offloading,” IEEE Transactions on Wireless
Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[95] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation for mobile
edge computing-based augmented reality applications,” IEEE Wireless Com-
munications Letters, vol. 6, no. 3, pp. 398–401, 2017.

[96] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading
for mobile-edge cloud computing,” IEEE/ACM Transactions on Networking,
no. 5, pp. 2795–2808, 2016.

[97] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and
computational resources for multicell mobile-edge computing,” IEEE Transac-
tions on Signal and Information Processing over Networks, vol. 1, no. 2, pp. 89–
103, 2015.

[98] P. Di Lorenzo, S. Barbarossa, and S. Sardellitti, “Joint optimization of ra-
dio resources and code partitioning in mobile edge computing,” arXiv preprint
arXiv:1307.3835, 2013.

[99] O. Munoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and computa-
tional resources for energy efficiency in latency-constrained application offload-
ing,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4738–
4755, 2015.

[100] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimization and
resource allocation in C-RAN with mobile cloud,” IEEE Transactions on Cloud
Computing, vol. 6, no. 3, pp. 760–770, 2018.

[101] M. Molina Pena, O. Muñoz Medina, A. Pascual Iserte, and J. Vidal Manzano,
“Joint scheduling of communication and computation resources in multiuser
wireless application offloading,” in Proc. 2014 IEEE International Symp. on
Personal Indoor and Mobile Radio Comm. (PIMRC), pp. 1093–1098, 2014.

[102] Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and cpu time alloca-
tion for mobile edge computing,” in Proc. 2016 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6, 2016.

[103] A. Al-Shuwaili and O. Simeone, “Optimal resource allocation for mo-
bile edge computing-based augmented reality applications,” arXiv preprint
arXiv:1611.09243, 2016.

[104] C. You and K. Huang, “Multiuser resource allocation for mobile-edge com-
putation offloading,” in Proc. 2016 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, 2016.

142

[105] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Power-delay tradeoff in multi-user
mobile-edge computing systems,” in Proc. 2016 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6, 2016.

[106] X. Guo, R. Singh, T. Zhao, and Z. Niu, “An index based task assignment policy
for achieving optimal power-delay tradeoff in edge cloud systems,” in Proc. 2016
IEEE International Conference on Communications (ICC), pp. 1–7, 2016.

[107] V. Di Valerio and F. L. Presti, “Optimal virtual machines allocation in mobile
femto-cloud computing: An MDP approach,” in Proc. 2014 IEEE Wireless
Communications and Networking Conference Workshops (WCNCW), pp. 7–11,
2014.

[108] S. S. Tanzil, O. N. Gharehshiran, and V. Krishnamurthy, “Femto-cloud for-
mation: A coalitional game-theoretic approach,” in Proc. 2015 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6, 2015.

[109] J. Oueis, E. C. Strinati, S. Sardellitti, and S. Barbarossa, “Small cell clustering
for efficient distributed fog computing: A multi-user case,” in Proc. 2015 IEEE
82nd Vehicular Technology Conference (VTC Fall), pp. 1–5, 2015.

[110] J. Oueis, E. C. Strinati, and S. Barbarossa, “The fog balancing: Load dis-
tribution for small cell cloud computing,” in Proc. 2015 IEEE 81st Vehicular
Technology Conference (VTC Spring), pp. 1–6, 2015.

[111] M. Vondra and Z. Becvar, “QoS-ensuring distribution of computation load
among cloud-enabled small cells,” in Proc. 2014 IEEE 3rd International Con-
ference on Cloud Networking (CloudNet), pp. 197–203, 2014.

[112] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-component
applications in edge computing environments,” IEEE Access, vol. 5, pp. 2514–
2533, 2017.

[113] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource allocation exploit-
ing mobility prediction in mobile edge computing,” in Proc. 2016 IEEE 27th
Annual International Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC), pp. 1–6, 2016.

[114] X. Sun, N. Ansari, and Q. Fan, “Green energy aware avatar migration strategy
in green cloudlet networks,” in Proc. 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom), pp. 139–146, 2015.

[115] X. Sun and N. Ansari, “Green cloudlet network: A distributed green mobile
cloud network,” IEEE Network, vol. 31, no. 1, pp. 64–70, 2017.

[116] J. Xu and S. Ren, “Online learning for offloading and autoscaling in renewable-
powered mobile edge computing,” in Proc. 2016 IEEE Global Communications
Conference (GLOBECOM), pp. 1–6, 2016.

143

[117] P. Mach and Z. Becvar, “Cloud-aware power control for cloud-enabled small
cells,” in Proc. IEEE Globecom Workshops (GC Wkshps), pp. 1038–1043, 2014.

[118] P. Mach and Z. Becvar, “Cloud-aware power control for real-time application
offloading in mobile edge computing,” Transactions on Emerging Telecommu-
nications Technologies, vol. 27, no. 5, pp. 648–661, 2016.

[119] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A
survey,” in International conference on wireless algorithms, systems, and appli-
cations, pp. 685–695, Springer, 2015.

[120] B. Liang, Mobile edge computing. Cambridge University Press, 2017.

[121] I. Stojmenovic and S. Wen, “The fog computing paradigm: Scenarios and se-
curity issues,” in Proc. 2014 IEEE Federated Conference on Computer Science
and Information Systems (FedCSIS), pp. 1–8, 2014.

[122] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog.: A survey
and analysis of security threats and challenges,” Future Generation Computer
Systems, vol. 78, pp. 680–698, 2018.

[123] ETSI, “Executive briefing - mobile edge computing (MEC) initiative.”

[124] ETSI, “Mobile-edge computing (MEC): Service scenarios.”

[125] ETSI, “Mobile-edge computing (MEC): Framework and reference architecture.”

[126] S. Antipolis, “ETSI first mobile edge computing proof of concepts at MEC world
congress,” Sep. 2016.

[127] N. Sprecher, J. Friis, R. Dolby, and J. Reister, “Edge computing prepares for a
multi-access future,” in Proc. MEC World Congress, 2016.

[128] G. Brown, “Mobile edge computing use cases and deployment options,” Juniper
White Paper, pp. 1–10, 2016.

[129] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers via docker
container migration,” in Proc. ACM SEC, 2017.

[130] L. Dimopoulou, G. Leoleis, and I. Venieris, “Fast handover support in a WLAN
environment: challenges and perspectives,” IEEE network, vol. 19, no. 3, 2005.

[131] B.-J. Chang and J.-F. Chen, “Cross-layer-based adaptive vertical handoff with
predictive RSS in heterogeneous wireless networks,” IEEE Transactions on ve-
hicular technology, vol. 57, no. 6, 2008.

[132] B.-J. Chang, J.-F. Chen, C.-H. Hsieh, and Y.-H. Liang, “Markov decision
process-based adaptive vertical handoff with RSS prediction in heterogeneous
wireless networks,” in Proc. IEEE WCNC, pp. 1–6, 2009.

144

[133] W. Wanalertlak, B. Lee, C. Yu, M. Kim, S.-M. Park, and W.-T. Kim, “Behavior-
based mobility prediction for seamless handoffs in mobile wireless networks,”
Wireless Networks, vol. 17, pp. 645–658, 2011.

[134] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proc. ACM NSDI,
pp. 273–286, 2005.

[135] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast Transparent Migration for Virtual
Machines,” in Proc. USENIX ATC, pp. 391–394, 2005.

[136] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge services
leveraging container layered storage,” IEEE Transactions on Mobile Computing,
2018.

[137] X. Xu, J. Liu, and X. Tao, “Mobile edge computing enhanced adaptive bitrate
video delivery with joint cache and radio resource allocation,” IEEE Access,
vol. 5, pp. 16406–16415, 2017.

[138] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing,” IEEE
Access, vol. 5, pp. 11255–11268, 2017.

[139] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation offloading
and resource allocation in wireless cellular networks with mobile edge comput-
ing,” IEEE Transactions on Wireless Communications, vol. 16, no. 8, pp. 4924–
4938, 2017.

[140] M. J. Chang, Z. Abichar, and C.-Y. Hsu, “WiMAX or LTE: Who will lead the
broadband mobile Internet?,” IEEE IT professional, vol. 12, no. 3, pp. 26–32,
2010.

[141] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close
examination of performance and power characteristics of 4G LTE networks,” in
Proc. ACM the 10th international conference on Mobile systems, applications,
and services, (Low Wood Bay, Lake District, UK), pp. 225–238, June 2012.

[142] W. L. Tan, W. C. Lau, O. Yue, and T. H. Hui, “Analytical models and per-
formance evaluation of drive-thru internet systems,” IEEE Journal on Selected
Areas in Communications, vol. 29, pp. 207–222, January 2011.

[143] W. Hu and G. Cao, “Energy-aware CPU frequency scaling for mobile video
streaming.,” in Proc. IEEE ICDCS, pp. 2314–2321, 2017.

[144] W. Hu and G. Cao, “Energy optimization through traffic aggregation in wireless
networks,” in Proc. IEEE INFOCOM, pp. 916–924, 2014.

145

[145] H. Wang, B. Kim, J. Xie, and Z. Han, “E-auto: A communication scheme for
connected vehicles with edge-assisted autonomous driving,” in Proc. IEEE ICC,
pp. 1–6, 2019.

[146] Y. Geng, Y. Yang, and G. Cao, “Energy-efficient computation offloading for
multicore-based mobile devices,” in Proc. IEEE INFOCOM, pp. 46–54, 2018.

[147] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in Proc. IEEE INFOCOM,
pp. 1421–1429, 2018.

[148] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator for
mobile augmented reality,” in Proc. IEEE Conference on Computer Communi-
cations (INFOCOM), pp. 756–764, 2018.

[149] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski, “Latency and throughput characterization of convolutional neu-
ral networks for mobile computer vision,” in Proc. 9th ACM Multimedia Systems
Conference, pp. 204–215, 2018.

[150] Y. Xiao, Y. Cui, P. Savolainen, M. Siekkinen, A. Wang, L. Yang, A. Ylä-Jääski,
and S. Tarkoma, “Modeling energy consumption of data transmission over Wi-
Fi,” IEEE Transactions on Mobile Computing, vol. 13, no. 8, pp. 1760–1773,
2013.

[151] H. Wang, J. Xie, and X. Liu, “Rethinking mobile devices’ energy efficiency in
WLAN management services,” in Proc. IEEE SECON, pp. 1–9, 2018.

[152] A. M. Srivatsa and J. Xie, “A performance study of mobile handoff delay in
IEEE 802.11-based wireless mesh networks,” in Proc. IEEE ICC, pp. 2485–
2489, 2008.

[153] X. Liu and J. Xie, “A practical self-adaptive rendezvous protocol in cognitive
radio ad hoc networks,” in Proc. IEEE INFOCOM, pp. 2085–2093, 2014.

[154] U. Narayanan and J. Xie, “Signaling cost analysis of handoffs in a mixed
IPv4/IPv6 mobile environment,” in Proc. IEEE GLOBECOM, pp. 1792–1796,
2007.

[155] H. Wang, J. Xie, and T. Han, “A smart service rebuilding scheme across
cloudlets via mobile AR frame feature mapping,” in Proc. IEEE ICC, pp. 1–6,
2018.

[156] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures,” in
Proc. IEEE/ACM International Symposium on Microarchitecture, pp. 168–178,
2009.

146

[157] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang, B. M. Al-
Hashimi, and G. V. Merrett, “Accurate and stable run-time power modeling for
mobile and embedded CPUs,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 36, no. 1, pp. 106–119, 2016.

[158] K. DeVogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “Modeling the tem-
perature bias of power consumption for nanometer-scale CPUs in application
processors,” in Proc. IEEE International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIV), pp. 172–180,
2014.

[159] F. Xu, Y. Liu, Q. Li, and Y. Zhang, “V-edge: Fast self-constructive power
modeling of smartphones based on battery voltage dynamics,” in Proc. USENIX
Symposium on Network Systems Design and Implementation (NSDI), pp. 43–
55, 2013.

[160] Speedtest. https://www.speedtest.net/reports/united-states/2018/
Mobile/.

[161] N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice, “Characteriz-
ing and modeling the impact of wireless signal strength on smartphone battery
drain,” in Proc. ACM SIGMETRICS, 2013.

[162] Y. Zhang, J. Wang, Y. He, X. Ji, Y. Kang, D. Liu, and B. Li, “Furion: To-
wards energy-efficient WiFi offloading under link dynamics,” in Proc. 13th IEEE
SECON 2016, pp. 1–9, 2016.

[163] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE CVPR, 2016.

[164] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv,
2018.

[165] E. A. Nadaraya, “On estimating regression,” Theory of Probability & Its Appli-
cations, vol. 9, no. 1, pp. 141–142, 1964.

[166] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy trade-
offs for modern convolutional object detectors,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.

[167] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars,
“The architectural implications of autonomous driving: Constraints and ac-
celeration,” in Proc. ACM the 23th International Conference on Architectural
Support for Programming Languages and Operating Systems, (Williamsburg,
VA), pp. 751–766, March 2018.

147

[168] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
kitti vision benchmark suite,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), (Providence, RI), pp. 3354–3361, June 2012.

[169] X. Zhang and K. G. Shin, “E-mili: energy-minimizing idle listening in wireless
networks,” IEEE Transactions on Mobile Computing, vol. 11, pp. 1441–1454,
Sept. 2012.

[170] S. K. Saha, P. Deshpande, P. P. Inamdar, R. K. Sheshadri, and D. Koutsoniko-
las, “Power-throughput tradeoffs of 802.11 n/ac in smartphones,” in Proc. IEEE
INFOCOM, pp. 100–108, 2015.

[171] “Antutu benchmark.” https://www.antutu.com/en/.

[172] J. Redmon, “Darknet: Open source neural networks in C.” http://pjreddie.
com/darknet/, 2013–2016.

[173] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dol-
lár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Proc.
European Conference on Computer Vision, 2014.

[174] “Tensorflow lite.” https://www.tensorflow.org/lite/.

[175] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[176] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International Journal of Computer
Vision, vol. 88, no. 2, pp. 303–338, 2010.

[177] X. Ran, H. Chen, Z. Liu, and J. Chen, “Delivering deep learning to mobile de-
vices via offloading,” in Proc. ACM Workshop on Virtual Reality and Augmented
Reality Network, pp. 42–47, 2017.

[178] H. Wang and J. Xie, “User preference based energy-aware mobile AR system
with edge computing,” in Proc. IEEE INFOCOM, pp. 1379–1388, 2020.

[179] “Monsoon power monitor.” https://www.msoon.com/.

[180] “SketchAR.”

[181] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (MAE)
over the root mean square error (RMSE) in assessing average model perfor-
mance,” Climate Research, vol. 30, no. 1, pp. 79–82, 2005.

[182] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms, vol. 16.
John Wiley & Sons, 2001.

148

[183] R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective
optimization: new insights,” Structural and Multidisciplinary Optimization,
vol. 41, no. 6, pp. 853–862, 2010.

[184] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Maha-
jan, “Mixed-integer nonlinear optimization,” Acta Numerica, vol. 22, pp. 1–131,
2013.

[185] L. Grippo and M. Sciandrone, “On the convergence of the block nonlinear gauss–
seidel method under convex constraints,” Operations Research Letters, vol. 26,
no. 3, pp. 127–136, 2000.

[186] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[187] W. Hu and G. Cao, “Energy-aware video streaming on smartphones,” in Proc.
IEEE INFOCOM, pp. 1185–1193, 2015.

