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ABSTRACT

THOMAS A. COOK. On the spectral theory of 1-D Schrödinger operator with
random sparse potential. (Under the direction of DR. STANISLAV MOLCHANOV)

The goal of this dissertation is to develop a spectral theory for the Schrödinger

operator with sparse random potential. To do this, we will first reformulate theories

for sparse deterministic potentials. This includes a general development of the spec-

tral measure µ and the use of a generalized Fourier transform for the development

of µ will also be discussed. The interpretation would be that the support of µ is

the spectrum Σ. The development of a unitary operator known as the monodromy

operator will be discussed as well as the fascinating connection to the spectrum of the

Schrödinger operator. We will construct an example to show that for sparse poten-

tials the Bargmann estimate is too “rough” of an estimate for the number of negative

eigenvalues. Lastly, we will show that there is a spectral transition from singular con-

tinuous to pure point spectrum of certain Schrödinger operators with random sparse

potentials.
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CHAPTER 1: DETERMINISTIC SPARSE POTENTIALS

1.1 A General Summary

The Schrödinger operator is one of the most studied topics in mathematical physics.

Here, we are interested in the spectral properties of the Schrödinger operator,

H = − d2

dx2
+ V (x). (1)

The goal is to study the phenomenon of multiscattering on the so-called sparse po-

tentials either on the full axis or the half-axis. If we consider the problem on the

half-axis, we must impose the boundary conditions at x = 0:

ψ(0) sin θ0 − ψ′(0) cos θ0 = 0, θ0 ∈ [0, π)

where θ0 is called the initial boundary phase of the solution ψ(λ, x) of the spectral

problem Hψ = λψ, with initial data ψ(0) = cos θ0, ψ
′(0) = sin θ0.

In the classical scattering theory case, the potential V (x) is bounded from below and

tends to 0 if |x| → ∞. We have to understand the boundedness of the generalized

potential V (x) =
∞∑
i=1

σiδ(x− xi) in Birman’s sense

∫ x+1

x

|V−(z)|dz ≥ c0 >∞, |x| → ∞. (2)
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Here V−(x) = min{0, V (x)}. We say that V (x)→ 0 in Birman’s sense if

∫ x+1

x

|V−(z)|dz → 0, x→∞.

For example, if

V (x) =
∞∑
n=1

σnδ(x− xn), xn →∞,

then V (x)→ 0 in Birman’s sense if |σn| → 0. Under the condition (2) the operator H

is essentially self-adjoint in either L2(R) or L2(R+), where R+ is the positive half-axis.

This means that there is a unique spectral measure µH(dλ). The spectrum Σ(H) is

the support of the spectral measure (i.e. the minimal closed set whose complement

has zero µ measure) which contains, in our case, the continuous spectrum [0,∞) and

the discrete spectrum λi < 0 with possible accumulation point λ = 0. It should be

noted that the term “continuous spectrum” is misleading: the spectral measure for

a slowly decreasing potential V (x) can be pure point, i.e. there exists the dense set

on [0,∞) of eigenvalues λi > 0 with eigenfunctions ψi(x) ∈ L2. Let us now define

an invariant spectrum is called the essential spectrum denoted as Σess. While there

is no clear way to calculate the essential spectrum, we are able to locate the essential

spectrum with a theorem due to Weyl:

Lemma 1 (Weyl’s Theorem). Let ψn be the solution to the spectral problem Hψn =

λψn. If for each ψn:

1. ‖ψn‖ = 1 ∀ n,

2. ψn ⇀ 0 ∀ n,

3. ‖Hψn − λψn‖ → 0,
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then λ ∈ Σess(H).

Remark 1. Weyl’s theorem essentially states that if there is such a λ such that for the

conditions listed, then λ is contained in the essential spectrum. The eigenfunctions

ψn are known as “almost” eigenfunctions. A more indirect approach to the definition

of Σess(H) is the complement of the discrete spectrum, i.e. Σess(H) = Σ(H) \Σd(H).

If we consider the case where V (x) ∈ L1(R) or L2(R+), then the spectral measure

µH(dλ) is purely absolutely continuous on [0,∞) (in the case V ∈ L2 for a.e. θ0 ∈

[0, π)). To guarantee that the discrete negative spectrum is finite, we’ll assume that

∫
R
(|x|+ 1)|V (x)| dx <∞, (3)

which is known as Bargmann’s condition. Let’s introduce the basic definitions and

formulas of the spectral theory, first on the half-axis [0,∞) and then on the Hilbert

space H = L2([0,∞), dx).

For a given λ and θ0 ∈ [0, π) let’s define the kernel ψλ(x):−ψ′′λ + V ψ = λψ, x ≥

0, ψλ(0) = cos θ0, ψ
′
λ(0) = sin θ0. Here θ0 is the initial phase of the solution ψλ(x),

introduced above. This solution can be presented in the polar coordinates of the form

ψλ(x) = ρλ(x) sin θλ(x), ψ′λ(x) = ρλ(x) cos θλ(x).

It is well known that phase θλ(·) and magnitude ρλ(·) satisfy the equations

dθλ
dx

= cos2 θλ(x) + (λ− V (x)) sin2 θλ(x), (4)

dρλ
dx

=
1

2
sin 2θλ (1 + λ− V (x)) . (5)
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Consider in the beginning the spectral problem

Hψ(x) = −ψ′′ + V (x)ψ = λψ (6)

on [0, L] with the boundary conditions

ψ(0) cos θ0 − ψ′(0) sin θ0 = 0,

ψ(L) cos θL − ψ′(L) sin θL = 0.

Then the spectral measure of this problem (which depends on θ0, θL ∈ [0.π)) is given

by the formula

µ
(θ0,θL)
L (dλ) = dλ

∑
n

δ(λ− λn,L)∫ L
0
ψ2
λn,L

(x)dx
. (7)

Here λn,L are the roots of the equation θλ(L) mod π = θL. If L→∞ then under mild

conditions (say,
∫ x+1

x
V (x)dx ≥ C0, that is Birman’s condition) the spectral measure

µ
(θ0,θL)
L (dλ) converges weakly (independently of θL!) to the limiting spectral measure

µθ0(dλ) which is independent on the selection of the sequence Ln, θLn ∈ [0, π).

The generalized Fourier transform

f̂(λ) =

∫ ∞
0

ψλ(x)f(x)dx

can be defined in the beginning for the compactly supported function f(·) ∈ C∞0 ([0,∞)).

For such functions one can also introduce the inverse generalized Fourier transform

f(x) =

∫
R
ψλ(x)f̂(λ)µθ0(dλ) = l.i.m

Λ

∫ Λ

−Λ

ψλ(x)f̂(λ)µ(dλ),

in L2 sense (i.e. limit in mean) and later these definitions can be extended to
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L2([0,∞), dx) and L2(R, µθ0(dλ)) like in the usual Plansherel form of the Fourier

analysis on L2(R). The isomorphism between L2([0,∞), dx) and L2(R, µθ0(dλ)) is

given by Parseval’s identity:

∫ ∞
0

f(x)g(x)dx =

∫
R
f̂(λ)ĝ(λ)µθ0(dλ). (8)

In the future, we will use two general theorems (see [4]):

Theorem 1. If V ∈ L1([0,∞), dx), i.e.

∫ ∞
0

|V |dx <∞, then for arbitrary θ0 ∈ [0, π)

and λ = k2 > 0

ψλ(x) = α(λ) cos kx+ β(λ) sin kx+ o(1), x→∞ (9)

and

µθ0(dλ) =
dλ

π
√
λ(α2(λ) + β2(λ))

. (10)

That is, the spectral measure is absolutely continuous for λ = k2 > 0.

If λ = −k2 < 0, then the spectrum is discrete and bounded below and can contain

only on accumulation point λ0 = 0.

If ∫ ∞
0

x|V (x)|dx <∞, (11)

(Bargmann’s bound, which is much stronger than the condition V ∈ L1) thenN0(V ) =

#{λi < 0} <∞ and furthermore ∀(θ0 ∈ [0.π)), N0(V ) ≤ 1 +
∫∞

0
x|V (x)|dx

In the case of the full axis L2(R, dx), the equation Hψ(x) = −ψ′′(x) +V (x)ψ(x) =

λψ(x) has two solutions (similar, for λ > 0, to cos
√
λx and sin

√
λx√
λ

) ψ1(λ, x), ψ2(λ, x)



6

with conditions at x = 0:

ψ1(λ, 0) = 1 ψ′1(λ, 0) = 0

ψ2(λ, 0) = 0 ψ′2(λ, 0) = 1.

Using these two solutions, one can define the (vector-valued) generalized Fourier

transform in this way: For any function f(x) ∈ C2
0 , we define the Fourier transforms

f̂ (1)(λ) =

∫
R
ψ1(λ, x)f(x)dx

f̂ (2)(λ) =

∫
R
ψ2(λ, x)f(x)dx.

There exists a matrix-valued spectral measure µ11(dλ) µ12(dλ)

µ21(dλ) µ22(dλ)

 = µ(dλ). (12)

Note that the spectral measure is not in general unique. However, if the potential is

bounded from below or if

∫ x+1

x

|V−(x)|dx ≤ C0 <∞, then

f(x) =

∫
R
(ψ1(λ, x), ψ2(λ, x))µ(dλ)f̂(λ), (13)

where

f̂(λ) =

 f̂ (1)(λ)

f̂ (2)(λ)

 .
This formula is not very efficient, except when the potential is even. In this case, we

are able to write f(x) = feven(x) + fodd(x) where, for x ≥ 0,

feven(x) =
f(x) + f(−x)

2
, (14)

fodd(x) =
f(x)− f(−x)

2
. (15)
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But ψ1(λ, x) is odd and ψ2(λ, x) is even. This means that

f̂ (1)(λ) =

∫
R
ψ1(λ, x)f(x)dx =

∫
R
ψ1(λ, x)fodddx (16)

f̂ (2)(λ) =

∫
R
ψ2(λ, x)f(x)dx =

∫
R
ψ2(λ, x)fevendx (17)

and the spectral measure becomes

µ(dλ) =

 µ(N)(dλ) 0

0 µ(D)(dλ)

 ,
if

∫
R
|V |dx <∞, V (x) = V (−x). See details in [4].

Let’s describe the classical scattering theory. If V (x) ∈ L1(R), then one can prove

that for λ = k2 > 0, there exists the fundamental system of solutions ψ1,2(·) of the

equation

Hψ = −ψ′′ + V (x)ψ = λψ

such that for x→ −∞, ψ1(k, x) = eikx + o(1) and ψ2(k, x) = ψ1(k, x) = e−ikx + o(1).

In addition, ψ′1(k, x) = ikeikx + o(1) and ψ′2(k, x) = −ike−ikx + o(1). For positive

x→∞

ψ1(k, x) = a(k)eikx + b(k)e−ikx + o(1)

ψ2(k, x) = a(k)e−ikx + b(k)eikx + o(1)

, (18)

and a similar formula for ψ′1,2(k, x),

ψ′1(k, x) = ika(k)eikx − ikb(k)e−ikx + o(1)

ψ′2(k, x) = −ika(k)e−ikx + ikb(k)eikx + o(1)

(19)
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The Wronskian of the system ψ1(k, x), ψ2(k, x)

W(k) =

∣∣∣∣∣∣∣∣
ψ1 ψ2

ψ′1 ψ′2

∣∣∣∣∣∣∣∣
is independent of x. For x→ −∞, W(k) = −2ik. But for x→∞, we have

W(k) =

∣∣∣∣∣∣∣∣
a(k)eikx + b(k)e−ikx + o(1) a(k)e−ikx + b(k)eikx + o(1)

ika(k)eikx − ikb(k)e−ikx + o(1) −ika(k)e−ikx + ikb(k)eikx + o(1)

∣∣∣∣∣∣∣∣ , (20)

= −2ik(|a|2 − |b|2) + o(1),

i.e. |a|2 = 1+|b|2. This is one of the forms of the conservation of energy law. Similarly,

one can find the system of the solutions ϕ1(k, x), ϕ2(k, x) such that, for x→∞

ϕ1(k, x) = eikx + r(k)e−ikx + o(1), ϕ2(k, x) = t(k)eikx + o(1)

ϕ′1(k, x) = ikeikx − ikr(k)e−ikx + o(1), ϕ′2(k, x) = ikt(k)eikx + o(1).

(21)

We call r(k) the reflection coefficient and t(k) the transmission coefficient for the

given frequency k =
√
λ > 0, λ > 0. Then calculation of the Wronskian for x→ ±∞

gives

|r(k)|2 + |t(k)|2 = 1. (22)

The functions r(k) and t(k) are meromorphic on the upper half plane =(k) > 0. The

functions a(k) and b(k) above are also the transmission and reflection coefficients in

the Jost form and

r(k) =
b(k)

a(k)
, t(k) =

1

a(k)
. (23)

For λ = −k2 < 0, we can find (under Bargmann condition) at most finitely many
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eigenvalues and corresponding eigenfunctions. If the potential V (x) is non-negative,

then there are no negative eigenvalues. If V (x) < 0 then (for full axis or half axis

with Dirichlet boundary conditions) there is at least one negative eigenvalue. For

potentials with positive and negative values, the negative eigenvalues are not always

present. This is known as the screening phenomenon. The following Lemma 2 and

examples illustrates these facts.

Lemma 2. Consider the eigenvalue problem

−ψ′′(x)− σδ(x− a)ψ(x) = λψ(x),

λ = −k2 < 0, x ∈ [0,∞)

(24)

with solutions that satisfy the Dirichlet boundary conditions at the origin ψ(0) = 0

and ψ(a) = 1.

1. If σa < 1, then there is no negative eigenvalue.

2. If σa ≥ 1, then there is a negative eigenvalue.

Lets illustrate the above statements by examples:

Example 1 (Single Positive Bump on half-axis). Let V (x) = σδ(x−a), x ∈ [0,∞), σ >

0. For this potential, the operator H is positive definite, hence we have no nega-

tive eigenvalues. It follows from the variational principle: if Hψ = λψ, λ < 0 ⇒

(Hψ,ψ) = λ < 0. But

(Hψ,ψ) =

∫
R
(ψ′)2dx+

∫
R
V ψ2dx > 0.

This leads to a contradiction. Lets study the absolutely continuous spectrum for

λ = k2 > 0. Consider the Dirichlet boundary condition: ψ(0) = 0, ψ′(0) = 1. For
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Figure 1: Single positive potential on the positive half-axis.

x ≤ a, ψλ(x) =
sin kx

k
and for x > a, ψλ(x) = c1

sin k(x− a)

k
+ c2 cos k(x− a). We

glue the two solutions together to get

c1 = cos ka+
σ sin ka

k
, (25)

c2 =
sin ka

k
. (26)

We are then able to write the solution for x > a as

ψλ(x) =
sin k(x− a)

k

(
cos ka+

σ sin ka

k

)
+ cos k(x− a)

(
sin ka

k

)
,

= α(λ) cos kx+ β(λ) sin kx

(27)

where

α(λ) = −σ sin2
√
λa

λ

and

β(λ) =
1√
λ

+
σ cos

√
λa sin

√
λa

λ
.

The spectral measure is given by

µ(D) =
dλ

π
√
λ (α2(λ) + β2(λ))

, (28)
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where

α2(λ) + β2(λ) =
1

λ
+ 2

σ

λ
3
2

cos
√
λa sin

√
λa+

σ2 sin2
√
λa

λ2
.

Example 2 (Single positive bump on full axis). Now consider the same problem with

Nuemann boundary condition: ψ(0) = 1, ψ′(0) = 0. For this problem, we have the

two equations: for x ≤ a, ψλ(x) = cos kx and for x > a, ψλ(x) = c1 cos k(x− a) +

c2 sin k(x− a). As before, we glue the two solutions together to obtain the coefficients:

c1 = cos ka, (29)

c2 = sin ka+
σ

k
cos ka. (30)

We can write the solution for x > a as

ψλ(x) = cos k(x− a) cos ka+ sin k(x− a)
(

sin ka+
σ

k
cos ka

)
,

= α(λ) cos kx+ β(λ) sin kx,

(31)

where

α(λ) = cos2
√
λa− sin2

√
λa− σ√

λ
sin
√
λa cos

√
λa

and

β(λ) = 2 cos
√
λa sin

√
λa+

σ√
λ

cos2
√
λa.

The spectral measure is

µ(N) =
dλ

π
√
λ (α2(λ) + β2(λ))

, (32)

where

α2(λ) + β2(λ) = 1 +
σ2

λ
cos2
√
λa+ 2

σ√
λ

sin
√
λa cos

√
λa.

For the full axis problem, we consider the transmission and reflection coefficients. In
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this regard, we have the solutions for x < 0

ψ1(k, x) = e−ikx + b(k)eikx,

and for x > 0,

ψ2(k, x) = c(k)e−ikx.

Because the potential V (x) is the generalized function, we have a discontinuous first

derivative of the solution ψ(k, x). After integration, we obtain,

ψ′(−0)− ψ′(+0) = −σψ(0),

and then consider the behavior of the solution as ε→ 0. The problem now becomes

finding the coefficients b(k) and c(k) that satisfies our conditions. It boils down to

solving the system

1 + b(k)− c(k) = 0,

ik − ikb(k)− ikc(k) = −σ.
(33)

We calculate the following scattering data:

b(k) =
iσ

2k
c(k) = 1 +

iσ

2k

r(k) =
σ√

4k2 + σ2
t(k) =

√
4k2

4k2 + σ2

Example 3. Consider first the problem

Hψ = −ψ′′ − σδ(x− a)ψ = λψ, (34)

with a > 0 with Dirichlet boundary conditions; ψ(0) = 0, ψ′(0) = 1. Then for
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λ = k2 > 0,

ψλ(x) =
sin kx

k
, (35)

ψλ(x) = c1
sin kx

k
+ c2 cos kx. (36)

When we glue together the solutions, and noting that the derivative is not continuous

and has a jump ψ′(a− ε)− ψ′(a+ ε) = σ, we get the coefficients

c2 =
sin ka

k

c1 = cos ka− σ sin ka

k
.

That is, we can write the solution for x > a as

ψλ(x) =
sin k(x− a)

k

(
cos ka− σ sin ka

k

)
+

sin ka

k
cos k(x− a),

= sin kx

(
1

k
− σ cos ka sin ka

k2

)
+ cos kx

(
σ sin2 ka

k2

)
,

(37)

where

α(λ) =
1

k
− σ cos ka sin ka

k2
,

and

β(λ) =
σ sin2 ka

k2
.

Then the spectral measure is

µ(dλ) =
dλ

π
√
λ(α2(λ) + β2(λ))

, (38)
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with

α2(λ) + β2(λ) =

(
1

k
− σ cos ka sin ka

k2

)2

+

(
σ sin2 ka

k2

)2

,

=
1

λ
− σ sin 2

√
λa

λ
3
2

+
σ2 sin2

√
λa

λ2
.

Now consider negative energies λ = −k2 < 0.

−ψ′(a+ ε) + ψ′(a− ε) = σψ(a). (39)

We have the solutions

ψλ(x) =
sinh kx

k
, x ≤ a, (40)

ψλ(x) =
sinh ka

k
exp [−k(x− a)], x > a. (41)

We consider the solution of the equation under certain conditions

k
cosh ka

sinh ka
+ k = σ. (42)

We rearrange

2eka

eka − e−ka
=
σa

ka
.

We let ka = x and σa = A. So we rewrite the equation as

ex − e−x

2ex
=
x

A
, (43)

⇒ 1− e−2x =
2x

A
.

Let y = 2x and rewrite the equation as

e−y = 1− y

A
. (44)
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We look for the conditions when the equation is satisfied, since that gives us the

conditions of when a negative eigenvalue exists. When
1

A
≥ 1, then we would have

no solution and hence no negative eigenvalue. However, if
1

A
< 1⇒ A > 1, then we

would have a solution and hence the existence of a negative eigenvalue. Note that since

A = σa that this agrees with the Bargmann estimate as calculated in equation (11).

We just proved the Lemma 2. We have the same type of conditions on the interval

[0, L] when we have following the solutions ψ1(x) =
sinh kx

sinh ka
, ψ2(x) =

sinh k(L− x)

sinh k(L− a)
.

We would need the following equation satisfied

coth2 x− 1

cothx− cothB
=
A

x
, (45)

where x = ka, A = σa, and B = kL. Just as in the lemma, we have a solution when

A > 1, hence the existence of a negative eigenvalue. We can see easily that λ0 = −σ
2

4
.

However, when A < 1, there is no solution and hence, no negative eigenvalue.

Now we consider the same equation (24) with Neumann boundary conditions. In this

case, we have the solutions

ψ1(x) = cosh kx, ψ2(x) = cosh (ka)e−k(x−a).

From a similar calculation as earlier, we have the equation

k + k tanh ka = σ. (46)

After manipulations and letting y = ka, A = σa, we obtain the following equation:

ey

cosh y
=
A

y
. (47)
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A solution exists to equation (47) if A > 0, thus illustrating Lemma 2.

We now turn our attention to the same potential on the whole axis. We wish to know

the reflection and transmission coefficients of the problem

−ψ′′ − σδ(x) = −k2ψ.

Without loss of generality, we may shift the potential back to the origin. Then we

find the reflection and transmission coefficients through solving the system:

1 + b(k)− c(k) = 0,

ik − ikb(k)− ikc(k) = σ.

(48)

We solve this through very similar calculations as before. We obtain the reflection

and transmission coefficients

b(k) =
−iσ
2k

c(k) = 1− i σ
2k

r(k) =
σ√

4k2 + σ2
t(k) =

√
4k2

4k2 + σ2
.

Example 4. Let V (x) = σ1δ(x + x1) + σ1δ(x − x1), σ1 > 0 on R and λ = −k2 < 0.

Let also x1 > 0. We are interested in understanding the conditions on x1 and σ1

that gives a negative eigenvalue or none at all. Firstly, it can easily be seen that the

potential is even. This means that the eigenfunctions have the property of parity, i.e.

the solutions can be separated into even functions and odd functions. So we consider

the problem on the positive half line in which we only consider the bump located at

x = x1; hence, the problem reduces to that of the previous example.

Example 5. Now we consider the same form of the potential on R+ with V (x) =

−σ1δ(x−x1)−σ1δ(x−x2). The goal now is to show that there are three possibilities
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for the number of negative eigenvalues on the half axis. Our tool for this analysis will

be the the number of zeros of ψ0(x), i.e. the solutions to the eigenvalue problem

Hψ = −ψ′′(x)− σδ(x− x1)ψ(x)− σδ(x− x2)ψ(x) = 0. (49)

In this case, the solutions are linear functions and we are interested in the function

values of these functions at the δ-potentials {xi}. We come to the following conclu-

sions:

1. If
x2

x2 − x1

> σ and x1, x2 is small, then there will be no negative eigenvalues.

2. If σ < 1, and x2 is large, then there is one eigenvalue.

3. If
x2

x2 − x1

< σ and x2 − x1 is large, then there are two eigenvalues.

Thus, for two potential wells it is possible to obtain either zero, one, or two eigen-

values. The tools used here will be very helpful when constructing certain potentials

with properties that will be extended from this example. In fact, the zeros of the

solution ψ0(x) will be considered in more detail in the next section. First, however,

is another interesting example of an even potential.

Example 6. Let V (x) = σ1δ0(x + 1) + σ1δ0(x − 1) − σδ0(x) on R. In this situation

the calculations are a little more involved. We now have four regions to consider. We

have x < −1, − 1 < x < 0, 0 < x < 1, and x > 1. So we have the coefficients that

represent the reflection and transmission coefficients from each of the δ-potentials.

We will consider the eigenvalue problem of each bump,

Hnψ = −ψ′′(x) + Vn(x)ψ(x) = λn,iψ(x),
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with n = 1, 2, 3. For each bump, the reflection and transmission coefficients were

calculated. For instance, for the ith potential, bi(k) is the reflection coefficient and

ci(k) is the transmission coefficient. To solve each equation, we scale the solutions

to be equal to unity at each boundary. Again, we follow a very similar method of

calculation from the previous two examples. We obtain the following scattering data

b1(k) = i
σ1

2k
c1(k) = 1 + i

σ1

2k

b2(k) = −i σ
2k

c2(k) = 1− iσ1 + σ

2k

b3(k) = i
σ1

2k
c3(k) = 1 + i

2σ1 + σ

2k

r1(k) = σ1√
4k2+σ2

1

t1(k) =
√

4k2

4k2+σ2
1

r2(k) = σ√
4k2+(σ1+σ)2

t2(k) =
√

4k2

4k2+(σ1+σ)2

r3(k) = σ1√
4k2+(2σ1+σ)2

t3(k) =
√

4k2

4k2+(2σ1+σ)2

The solution for x < −1 being ψ(k, x) = eikx − −iσ1

2k
e−ikx and the solution for x > 1

being ψ(k, x) =

(
1− i2σ1 + σ

2k

)
eikx. Consider the conditions on which negative

eigenvalues exist. If the operator H = − d2

dx2
+ (σ1δ0(x + 1) + σ1δ0(x − 1) − σδ0(x))

is positive definite, i.e. (Hψ,ψ) > 0, then there are no negative eigenvalues. This

means that if 2σ1 > σ, then there are no negative eigenvalues despite a negative

component to the potential. This is an interesting case physically. In this case, we

have a screening effect on the quantum particle. This results in the absence of a

localized state. And even though there is a negative component in V (x), we have a

scattering state of the quantum particle. On the other hand, if

∫
R
(ψ′)2 ≤ σ − 2σ1
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and |σ| > 1, then we have at least one negative eigenvalue and hence, a localized

state.

1.2 Borderline examples

In this section, we will present the series of example which will illustrate the transi-

tion from the empty negative spectrum to the infinite one. In all examples, the δ-like

potentials are negative, tends to zero near +∞ and

∫ ∞
0

x|V (x)|dx =∞. (50)

The examples illustrate the point that (at least for the sparse potentials) the classical

Bargmann’s estimate is too rough. We’ll use mainly the Dirichlet boundary conditions

and the study of the funtion ψ0(x): the solution of equation

−ψ′′(x)− V (x)ψ = 0,

V (x) =
∞∑
i=1

σiδ(x− xi), σi ≥ 0,

ψ0(0) = 0, ψ′0(0) = 1.

The number of positive zeros is exactly equal to N0(V ) = #{λi < 0}.

Solution ψ0(x) is a piesewise continuous linear function and the gluing condition for

each bump at the point xi has the following form

−ψ′(xi + ε) + ψ′(xi − ε) = σiψ(xi).

Let’s denote ψ′0(xi+0) = ki (the slope of the finction ψ0(x) on the interval (xi, xi+1)).

In all “solvable” examples below, we have the following conditions:
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1. ψ(xj) = cj, xn = qn, n ≥ 1(x0 = 0), q > 1,

2. xn − xn−1 = qn−1(q − 1),

3. kn = cn+1−cn
qn(q−1)

= ψ′0(xn + 0).

The gluing condition gives

kn−1 − kn = ψ′0(xn − 0)− ψ′0(xn + 0) = σnψ0(xn) = σncn

For our potential, the Bargmann bound is

N0 ≤
∫ ∞

0

x|V (x)|dx =
∞∑
n=1

xnσn =
∞∑
n=1

qnσn. (51)

We will show that this bound is “too rough”. We calculate the slope as

cn − cn−1

xn − xn−1

= αn.

Using

−ψ′(xi + ε) + ψ′(xi − ε) = σ,

we derive the second order difference equation

(q + 1)cn − cn+1 − qcn−1 = qn(q − 1)σncn. (52)

Put σn =
αn
qn

. This gives

cn+1 − (q + 1− αn(q − 1))cn + qcn−1 = 0, c0 = 0, c1 = 1. (53)

First, let αn ≡ β > 0. Then we have the equation

cn+1 − (q + 1− β)cn − qcn−1 = 0. (54)
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Suppose that cn = ρn, then we will have the characteristic equation

ρ2 − (q + 1− β(q − 1))ρ+ q = 0, (55)

which has the solutions

ρ1,2 =
(q + 1− β(q − 1))±

√
(q + 1− β(q − 1))2 − 4q

2
. (56)

Put ∆ = (q− 1)2(1 + β2)− 2β(q+ 1)(q− 1). The general solution of equation (55) if

∆ 6= 0 equals

cn =
ρn1 − ρn2
ρ1 − ρ2

, n ≥ 0 (57)

Lets study the discriminate ∆ as a function of β for fixed q > 0. The equation

∆(β) = 0. The equation 1 + β2 + 2β
q + 1

q − 1
= 0 has two roots:

β1,2 =
q + 1

q − 1
±

√(
q + 1

q − 1

)2

− 1

=
q + 1

q − 1
±

2
√
q

q − 1
.

That is,

β1 =
(1 +

√
q)2

q − 1
=

√
q + 1
√
q − 1

> 1,

β2 =
1

β1

=

√
q − 1
√
q + 1

< 1.

If β > β1 or β < β2, then the roots ρ1,2 are real and have the same sign. Note that

ρ1 + ρ2 = q + 1− β(q − 1) > 0,

for β <
q + 1

q − 1
and ρ1 + ρ2 < 0 for β >

q + 1

q − 1
. However,

q + 1

q − 1
=

1

2
(β1 + β2) = β0.
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As a result, for small β < β2 =

√
q − 1
√
q + 1

, the roots λ1,2 are positive. For β > β1 =
√
q + 1
√
q − 1

the roots are negative. Finally, for β2 < β < β1, the roots are complex and

conjugated. Lets consider all possibilities:

1. If ρ1 > ρ2 > 0 (that is β <

√
q − 1
√
q + 1

) then

ρ1 =
(q + 1− β(q − 1)) +

√
(q + 1− β(q − 1))2 − 4q

2
,

ρ2 =
q

ρ1

.

(58)

At the same time ρ1ρ2 = q ⇒ ρ2
1 = q, ρ1 =

√
q. The solution

cn =
ρn1 − ρn2
ρ1 − ρ2

> 0

for all n. This gives N0(V ) = 0 since there are no zeros of the solution (see

figure 2). Lets call β2 =
√
q−1
√
q+1

= β
(1)
cr . If β = β

(1)
cr , then ρ1 = ρ2 =

√
q and the

general solution of (55) has the form

cn = a1ρ
n
1 + a2nρ

n
1 . (59)

The particular solution for c0 = 0, c1 = 1 equals

cn = n(
√
q)n−1. (60)

Again, in this case, N0(V ) = 0.

2. If β >
√
q+1
√
q−1

= β
(2)
cr then for ρ1, ρ2 < 0,

cn =
ρn1 − ρn2
ρ1 − ρ2

, |ρ1| > |ρ2| (61)
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Figure 2: The graph of ψ0(x) where N0(V ) = 0.

This sequence has alternating signs in any interval [qn, qn+1]. If

β =

√
q + 1
√
q − 1

then c(n) = n(−√q)n−1 and we have for c(n) alernating signs (figure 3).

3. If β
(1)
cr < β < β

(2)
cr then

cn = q
n−1
2

sinnφ

sinφ
, φ ∈ (0, π) (62)

Assume that φ
2π

is a irrational number. Then the sequence θn = nφ mod π is

uniformly distributed on [0, 2π), a classical result due to Wyel. The sequence
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Figure 3: Graph of ψ0(x) when N0(V ) =∞.

sin θn
sinφ

changes sign if π−φ < θn < π or 2π−φ < θn < 2π, i.e. fraction of n such

that sinnφ sin (n+ 1)φ < 0 equals φ
2π

. If β < β
(1)
cr and it is close to β

(1)
cr , then this

fraction is small (the situation is close to the absence of negative eigenvalues).

If, on the other hand, β > β
(2)
cr and β is close to β

(2)
cr then the function ψ0(x)

changes sign for the majority of the intervals (qn, qn+1) (see figure 4).

However, the Bargmann estimate in each of these cases gives

∞∑
n=1

βqn

qn
=∞. (63)

In the third case, we note that the number of sign changes of cn is highly dependent
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Figure 4: The case where β
(1)
cr < β < β

(2)
cr .
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on the argument φ. Using the variational principle, we can formulate the following

corollaries

Proposition 2. 1. Let V (x) =
∞∑
n=1

αn
qn
δ(x − qn)+ (Dirichlet boundary conditions)

and αn < β
(1)
cr . Then N0(V ) = 0.

2. If αn > β
(1)
cr + ε for n ≥ n0(ε), ε > 0 then N0(V ) =∞.

As mentioned above, if φ is small, then n would have to be large for there to be a

sign change. From the characteristic equation of the second order difference equation,

our first root would be ρ1 = rn−1eiφ, with r = 2
√
q and

tanφ =

√
4q − (q + 1− β)2

q + 1− β
.

When sin (nπφ) = 0, then nφ = k, with n, k ∈ Z. So this requires

n =
k

tan−1

(√
4q−(q+1−β)2

q+1−β

) .

If n is large, then tan−1

(√
4q−(q+1−β)2

q+1−β

)
is small, i.e. when the expression

√
4q − (q + 1− β)2

q + 1− β

is small. We formulated the lemma

Lemma 3. Let the solution of the characteristic equation 55 be

ρ1,2 =
q + 1− β ± i

√
4q − (q + 1− β)2

2

then the general solution is cn = rn−1 sinnπφ

sin πφ
. The number of negative eigenvalues is
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the integer value of

k =

[
n tan−1

(√
4q − (q + 1− β)2

q + 1− β

)]
(64)

1.3 General results for the spectral theory for sparse potentials

The multiscattering can be presented in the following naive form: the incident

sinusoidal wave (starting from x = 0) interacts with the first bump and is split

into two parts. The first one is reflected from the bump and the second one is

transmitted through the bump. The energy of the wave is distributed between these

parts proportionally to |r(k)|2 and |t(k)|2 (if we neglect the interaction with the other

bumps which are far away). The transmitted wave interacts with the second bump

and so on. It is clear (at least on the level of physical intuition) that the quantum

particle will propagate to infinity if the reflection coefficient rn(k) of the distant nth

bump are small. Such propagation is the manifestation of the absolute continuous

spectral measure. These sentences can be transformed into mathematical theorems.

The next three results are from [2].

Theorem 3. Consider the operator (1) on L2(R+) with the boundary conditions

ψ(0) sin θ0 − ψ′(0) cos θ0 = 0, θ0 ∈ [0, π).

Assume that the bumps ϕn(·) satisfies the condition

|ϕn(z)| ≤ c

1 + |z|α
, α > 2, z ∈ R,

and
∞∑
n=1

xn
xn+1

<∞. Consider the interval ∆ on the energy k-axis k =
√
λ > 0 and let
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∞∑
n=1

|bn(k)|2 =∞ where bn(k) is the Jost reflection coefficient for the individual bump

ϕn(·) (i.e. the reflection coefficient for the scattering problem

Hnψ = −ψ′′ + ϕnψ = λψ, λ = k2 > 0 on L2(R).

Then the spectral measure µ(dλ) is pure singular continuous.

Theorem 4. If under the same conditions, we have instead
∑
n

|bn(k)|2 <∞ a.e. then

the spectral measure is pure absolutely continuous on ∆ for a.e. θ0 ∈ [0, π).

Theorem 5. Assume that for n ≥ 1, the operator Hn with the potential ϕn(·) has

nonempty set of negative eigenvalues λn,i. Then for a.e. θ0 ∈ [0, π) operator 1 has

infinite set of negative eigenvalues and the corresponding eigenfunctions are exponen-

tially decreasing.

Remark 2. The results on the a.c. of the spectral measure µ(dλ) on [0,∞) (theorem

4) or exponential localization (theorem 5) has the following meaning: On the set

of boundary phase θ0 of 0-measure, the singular continuous spectrum can appear in

theorem 4. Similarly the pure point (p.p.) spectrum from theorem 5 can disappear

on the set of zero measure (in both cases we consider the Lebesgue measure on [0, π))

(see [2] for details).

At the physical level of intuition one can expect that in the case of the strong enough

reflection (theorem 3) that the spectrum of H must be p.p. (i.e. localization). It is

not clear how to prove such a result in the deterministic situation (compared with

the Fourier analysis case where there were no results behind the lacunary series case

up to resolution of the L2-conjecture).
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But we have the possibility to consider the random sparse potentials. Here we expect

to find new phase transitions: from the singular continuous measure to p.p. measure

or the continuation of the p.p. and si

ngular continuous components of the spectral measure.

It is the main topic of this dissertation. Lets describe our models. Again the central

object to this study is the same: operator 1 on the half-axis with the sparse potentials

V (x) =
∑

n ϕn(x − xn) where k ∈ R (or R+). However the sequence of the central

points of the bumps {xn, n ≥ 1} now is the random one. Typical assumptions is

that xn+1 − xn = ξnLn, n ≥ 0, x0 = 0 where Ln → ∞ and ξn are i.i.d. r.v. with

the piece-wise continuous compactly supported density p(x) such that Supp(p(·)) ⊂

[a, b], 0 < a < b <∞. For instance, {ξn, n ≥ 1} are uniformly distributed on [a, b].

For {Ln, n ≥ 1}, we consider three possibilities.

1. Ln = eτn, τ > 0. This is the most interesting case. We’ll prove several particular

situations that instead of pure singular continuous spectral measure, one has for

λ ∈ [0,∞) the coexistence of the p.p. spectral measure (for small k =
√
λ > 0)

and singular continuous measure (for large k).

2. There could be the situation where Ln = eτn
τ1 , 0 < τ1 < 1. In this case, for

λ = k2 > 0, the spectral measure is p.p. This is known as fractional exponential

growth.

3. For λ = −k2 < 0, like in the deterministic situation, the spectral measure is

p.p. for a.e. θ0 ∈ [0, π); however, this is a different situation from part 1. For

λ > 0, the eigenfunctions of the p.p. spectrum are decreasing much slower
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than exponentially (only power decay in the first case). At the same time, for

negative λ, the eigenfunctions are decreasing exponentially fast.

Lets now describe the several classes of elementary bumps (potentials) that we will

study.

1. The δ-like potentials ( compare to examples 4, 5, and 6)

V (x) =
∞∑
k=1

Ykδ(x− xk), xk = X1 + · · ·+ Xk.

Here, the set {Yk, k ≥ 1} are i.i.d. r.v. (with positive and negative values,

since we want the existence of the non-trivial spectrum for λ < 0), and the set

{ξk, k ≥ 1} was defined earlier.

2. V (x) =
∞∑
n=1

ϕ(n−xn), xn = ξ1+· · ·+ξn and the ϕk(z) are 1-soliton reflectionless

potentials, say,

ϕk(z) =
−2κ2

k

cosh2 κkz
.

3. Instead of δ-potentials in 1), we consider compactly supported sums, say

V (x) =
∞∑
k=1

YkI[xk,xk+1](x).

The above classes of potentials will be of interest to us in the next chapter where

random sparse potentials will be studied. In which case, we will consider the different

types of exponential growth of the bumps and how the spectrum of the operator is

affected.



CHAPTER 2: RANDOM SPARSE POTENTIALS

2.1 The monodromy operator Mk

In this chapter, we study the following spectral problem:

Hψ = −ψ′′(x) + V (x)ψ(x) = λψ(x), (65)

V (x) = −
∞∑
n=1

Xnδ(x− xn), (66)

xn+1 − xn = ξnLn. (67)

Here, ξn are non-negative i.i.d. r.v. with bounded continuous distribution density

and the boundary conditions depend on the boundary phase θ0 as

ψ(0) cos θ0 − ψ′(0) sin θ0 = 0, θ0 ∈ [0, π). (68)

In some cases we’ll put Xn ≡ X0 = const. To investigate the spectral theory for

random Schrödinger operators, it is necessary to calculate the Prüffer form of the

so-called monodromy operator Mk for λ = k2 > 0. The monodromy operator is also

known as the fundamental matrix. It is a unimodular 2× 2 matrix function where, if

x2 > x1, we have

−∂
2Mk

∂x2
2

+ V (x2)Mk = λMk, where Mk(x1, x1) = I2. (69)



32

The monodromy operator will be of the form

Mk(0, xn) =

 ψ1(xn)
ψ′1(xn)

k

ψ2(xn)
ψ′2(xn)

k

 . (70)

Note that Mk(x1, x2)Mk(x2, x3) = Mk(x1, x3) and Mk(x1, x1) = I2. More specifically, ψ′(x)

ψ(x)

 = Mk(0, x)

 ψ′(0)

ψ(0)

 (71)

An important aspect of the calculations is the use of Iwasawa decompostion M = OT ,

whereO is an orthongoal matrix and T is an upper triangular matrix. The next lemma

is a fundamental result.

Lemma 4. If ξn are independently identically uniformly distributed random variable

with continuous distribution density p(ξ), ξ ∈ [a, b], 0 < a < b <∞ and xn+1−xn =

Lnξn then the matrix

On =

 cos kLnξn − sin kLnξn

sin kLnξn cos kLnξn

 =

 cosϕn − sinϕn

sinϕn cosϕn

 (72)

have the densities of πn(ϕ) which tends to
1

2π
if n→∞.

Proof. Assume that the r.v. ξn have C1 distribution density p(ξ). The r.v. θn = kLnξ

mod 2π (which are the arguments for cos kLnξ and sin kLnξ) have the densities (for
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ξ ∈ [0, 2π))

πn(ξ) =
1

kLn

∞∑
m=0

P

(
2mπ

kLn
+

ξ

kLn

)

=
1

2π

2π

kLn

∞∑
m=0

P

(
2mπ

kLn

)
+

1

(kLn)2

∞∑
m=0

[
P ′
(

2mπ

kLn

)
+ o

(
1

kLn

)]

=
1

2π

∫ ∞
0

P (ξ)dξ + o

(
1

Ln

)
=

1

2π
+ o

(
1

Ln

)
(73)

(uniformly in ξ ∈ [0, 2π)). For sufficiently smooth P (·) one can get the better estimate

using the Poisson summation formula.

We put ψk(x) = rk(x) cos tk(x) ⇒ ψ′k(x) = krk(x) sin tk(x). The function r±k (n) =

rk(xn ± 0) is given as rk(x) = rk(0) exp

(
1

2k

∫ x

0

sin (2tk(z))V (z)dz

)
. We note that

due to lemma, we also have r−k (n) = r+
k (n− 1) and

ψk(x
−
n ) = r+

k (n− 1) cosϕn (74)

ψ′k(x
−
n )

k
= r+

k (n− 1) sinϕn, (75)

where ϕn is asymptotically uniformly distributed on [0, 2π].

2.2 Mk inside δ-potential

Here, we solve the problem (65) inside the potential. We come to the following

lemma.

Lemma 5. The monodromy Mk(x
−
n , x

+
n ) has the form 1 −Xn

k

0 1

 . (76)
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Proof. Consider the potential in the interval (−ε, ε) and then take ε→ 0. For this we

get the following monodromy operator

Mk(−ε, ε) =

 cosh 2ε
√
Xn
2ε
− k2

√
Xn
2ε
−k2 sinh 2ε

√
Xn
2ε
−k2

k
,

k sinh 2ε
√
Xn
2ε
−k2√

Xn
2ε
−k2

cosh 2ε
√
Xn
2ε
− k2

 . (77)

Passing the limit, we obtain the desired result.

Remark 3. This is the upper triangular matrix from the Iwasawa decomposition men-

tioned above. The upper off-diagonal entry is the effect of the potential.

2.3 The free operator Mk

Now we consider the portion of the interval in between two successive bumps of

V (x) in which the electron is free, i.e. V (x) ≡ 0 on the interval (x+
i , x

−
i+1). So we

have the equation

−ψ′′(x) = k2ψ(x) (78)

ψ1(0) = 1 ψ′1(0) = 0 (79)

ψ2(0) = 0 ψ′2(0) = 1 (80)

Lemma 6. For equation (78), the monodromy operator takes the form

Mk(x
+
n−1, x

−
n ) =

 cos k(x+
n−1, x

−
n ) − sin k(x+

n−1, x
−
n )

sin k(x+
n−1, x

−
n ) cos k(x+

n−1, x
−
n )

 . (81)

Proof. By direct calculation, we have two different boundary conditions. We have

that ψ1(x) = cos kx and ψ2(x) = sin kx. Then plugging these solutions into the

monodromy operator Mk, we have the form as shown.
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We are interested in the case where xn+1−xn = ξnLn →∞, where ξn are i.i.d. r.v.

(perhaps uniformly distributed) and Ln ≈ exp (τnτ1) with τ1 ∈ [0,∞).

2.4 The Lyapunov exponent

Kotani (1986) ([5]) showed the connection between the spectrum of an operator

and the Lyapunov exponent, γ(k). Here, we calculate the Lyapunov exponent of the

spectral problem (65) using a theory originally due to Furstenberg. Furstenberg stud-

ied the asymptotic behavior of a product of noncommunitive random matricies. In

our program, these noncommunitive random matrices are our monodromy operators

from SL(2,R) with Iwasawa decomposition. We have the important theorem due to

Furstenberg (see [1]):

Theorem 6. Let A1, . . . , An be independent, identically distributed elements of the

linear group SL(2,R) of the real unimodular 2×2 matrices, suppose also the ‖An‖ <

∞ (a.s.) and that they have common bounded distribution density with respect to

the Haar measure on the group SL(2,R). Then for fixed initial vector e0 ∈ R2, with

probability 1 the quantity

lim
n→∞

ln |e0A1 · · ·An|
n

= γ > 0, (82)

where e0 = (cosϕ, sinϕ) is the form of the initial vector.

First, we give two examples to illustrate the importance of each hypothesis. For it

is not difficult to show the existence of the limit, rather it is that the limit is strictly

positive. Each of the next two examples is from [1].

Example 7. In this example, we weaken the independence of the matrices. Let
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B1, B2, . . . , Bn, . . . be independent uniformly bounded elements of SL(2,R) with

bounded density, with bounded support. Define

A1 = B1B
−1
2 , A2 = B2B

−1
3 , . . . , An = BnB

−1
n+1.

The matrices {Ai} are uniformly bounded, has good distribution density, and station-

ary. However, each Ai is weakly dependent. We calculate the Lyapunov exponent

as

xn = x0A1A2 . . . An = x0B1B
−1
n+1,

‖xn‖ ≤ c1 <∞,
ln ‖xn‖
n

→ 0 as n→∞

Example 8. Let A ∈ SL(2,R) be a fixed matrix. Suppose that each Ai are indepen-

dent and takes the values A and A−1 with probability 1
2
. Then,

xn = x0A1A2 . . . An = x0Aνn ,

where νn is the difference between the number of “success” and “failures” in n

Bernoulli tests with success probability 1
2
. Then we calculate the Lyapunov expo-

nent as

‖x0‖ ≤ |x0| · ‖A‖νn ,

νn
n
→
n→∞

0,

ln ‖xn‖
n

→
n→∞

γ = 0

This example illustrates the necessity of assuming absolute continuity of the distri-

bution of Ai.
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In theorem 6, we can consider the matrix A1 as the propagator through the first

bump, A2 as the propagator through the sencond, and so forth to n. Hence, we

can write A1 as the product of Mk(0, x
−
1 )Mk(x

−
1 , x

+
1 ). From the decomposition of

Iwasawa and the orthogonality of Mk between bumps, we can write Ai as the product

Ai = Mk(x
+
i−1, x

−
i )Mk(x

−
i , x

+
i ), where Mk(x

+
i−1, x

−
i ) is the orthogonal matrix and

Mk(x
−
i , x

+
i ) is upper triangular. We calculate the operator norm for e0A1 · · ·An as:

ln |e0A1A2 · · ·An| = ln |e0|+
n∑
i=1

ln |eiAi|

= ln |e0|+
n∑
i=1

ln |eiMk(x
−
i , x

+
i )|

(83)

We need to estimate the norm of the monodormy operator Mk within the potentials.

It can be shown, through elementary linear algebra, that for any orthogonal matrix

O and upper triangular matrix T , that

‖OT‖O = ‖T‖O

We consider the norm, for ei = (cosϕi, sinϕi),

‖eiMk(x
−
i , x

+
i )‖2 = cos2 ϕi +

(
1 +
X 2
i

k2

)
sin2 ϕi −

2Xi
k

cosϕi sinϕi, (84)

where ri(k) = ‖eiMk(x
−
i , x

+
i )‖ is the Prüffer transformation of equation 5, that is

rk(x) = exp

(
1

2k

∫ x

0

V (z) sin 2tk(z)dz

)
. (85)

We calculate the expectation of ln ‖eiMk(x
−
i , x

+
i )‖ using some basic transformation

of the integral

1

4π

∫ 2π

0

ln

(
cos2 ϕ+

(
1 +
X 2

k2

)
sin2 ϕ− 2X

k
cosϕ sinϕ

)
dϕ, (86)
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i.e. the transformation

∫ 2π

0

ln (a+ b cosx)dx = π ln
a+
√
a2 − b2

2
.

Then the integral (86) has the following form after transformation,

1

2π

∫ 2π

0

ln |eiMk(x
−
i , x

+
i )| = 1

2
ln

(
2 + Tr

[
Mk(x

−
i , x

+
i )MT

k (x−i , x
+
i )
]

4

)

=
1

2
ln

(
1 +
X 2

0

4k2

) (87)

This is the Lyapunov exponent γ(k) in equation (87) for fixed X0. In general, γ(k) is

the expectation 〈ln
(

1 + X 2

4k2

)
〉

2.5 Spectral theory of random sparse potentials

We now move to the ultimate goal of this study of the Schrödinger operator. We

consider the spectral problem (65). The monodromy operator outside the δ-potential

wells becomes

Mk(x
−
n , x

+
n ) =

 1 −Xn
k

0 1

 (88)

and the monodromy operator outside the δ-potential wells becomes the orthogonal

matrix

Mk(x
+
n−1, x

−
n ) =

 cos kLn − sin kLn

sin kLn cos kLn

 . (89)

For some x ∈ [x+
n , x

−
n+1], we have the operator

Mk(0, x) = Mk(0, x
−
1 )Mk(x

−
1 , x

+
1 ) · · ·Mk(x

−
n , x

+
n )Mk(x

+
n , x

−
n+1). (90)

This is a product of matrices with random entries in each Mk(x
−
i , x

+
i ) and thus, the

theory of Furstenberg is needed ([10]). We let Ai = Mk(x
+
i−1, x

−
i )Mk(x

−
i , x

+
i ), and
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consider the random product

‖e0A1A2 · · ·An‖ = rn(k), (91)

with initial vector e0 describing the boundary conditions of the spectral problem. We

can now calculate the coefficient ln rn(k) as

lim
n→∞

ln rn(k)

n
= γ(k) =

1

2
ln

(
1 +
X 2

0

4k2

)
. (92)

Let’s calculate γ(k) in the case where Xn are i.i.d. r.v. uniformly distributed on

[a, b], 0 < a < b <∞. Due to (92)

E
[
ln

(
1 +
X 2

4k2

)]
=

1

b− a

∫ b

a

ln

(
1 +

x2

4k2

)
dx (93)

since E[τ ] = τ . The integral has the solution

b ln

(
1 +

b2

4k2

)
− a ln

(
1 +

a

4k2

)
− b

2k
tan−1

(
b

2k

)
+

a

2k
tan−1

( a
2k

)
+

C

4k2
, (94)

where C is

b

2k
tan−1

(
b

2k

)
− 1

2
ln

(
1 +

b2

4k2

)
− a

2k
tan−1

( a
2k

)
− 1

2
ln

(
1 +

a2

4k2

)
. (95)

The Furstenberg theorem also gives the estimate of

‖Mk(0, x)‖2
HS = ‖Mke0‖2 + ‖Mke1‖2, (96)

i.e. for x ∈ (x+
n , x

−
n+1),

‖Mk(0, x)‖2 = 2 expn ln

(
1 +
X 2

0

4k2

)
= 2 exp 2γn (97)
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From the general theory from [2], [15], and [16], the integral of ‖Mk(0, x)‖−2 deter-

mines the spectrum of the problem (65). That is, if we consider the integral∫ ∞
0

‖Mk(0, x)‖−2dx =
∞∑
n=0

∫ xn+1

xn

dx

‖Mk(0, x)‖2

≥
∞∑
n=0

∫ xn+1

xn

dx

exp 2γn

=
∞∑
n=0

Ln
exp 2γn

(98)

The final summation over n diverges if (for some ε > 0)

lnLn > 2nγ + ε, (99)

and converges if

lnLn < 2nγ − ε, (100)

From general theory (see [2]) that the conditions

∫ ∞
0

dx

‖Mk(0, x)‖2
=∞, lim

x→∞
‖Mk(0, x)‖ =∞,

then the spectrum for the Shrödinger operator H is singular continuous for λ = k2 >

0. At the same time, convergence of the last integral P-a.s.

∫ ∞
0

dx

‖Mk(0, x)‖2
<∞ (101)

leads to the localization theorem: operator Hθ0 (with the boundary conditions

ψ(0) sin θ0 − ψ′(0) cos θ0 = 0, θ0 ∈ [0, π)

for a.e. θ0) and P-a.s. has for λ > 0 has the pure point spectrum (which is dense on

[0, π)).
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Theorem 7. If Ln = ecn
τ1 →∞ superexponentially (τ1 > 1), then the spectral problem

(65) has singular continuous spectrum for λ = k2 > 0 and pure point spectrum for

λ = −k2 < 0 for a.e. θ0 ∈ [0, π). Moreover, the eigenfunctions decay exponentially.

Theorem 8. If Ln = ecn then the spectral problem (65) has a transition from singular

continuous if λ > λcr > 0 and pure point spectrum if λcr > λ > 0. The eigenfunctions

have power decay. For λ = −k2 < 0 the spectrum is pure point and eigenfunctions

decay exponentially.

Theorem 9. If Ln = ecn
τ1 → ∞ subexponentially (0 < τ1 < 1), then the spectrum is

pure point for all λ.

We will illustrate these theorems through an example. First, however, we give an

interesting example of a reflectionless potential. Details of the calculations can be

found in [2].

Example 9. Let

V (x) =
∞∑
n=1

−κ2
n

cosh2 κn(x− xn)
. (102)

In this case, we have the linear combination of 1-soliton which are a solution to the

KdV equation ut + 6uxu+ xxxx = 0. The spectral problem of one bump

Hnψ = −ψ′′ − κ2
n

cosh2 κn(x− xn)
ψ = λnψ, (103)

has one negative eigenvalue λn,1 = −κ2
n and zero as the reflection coefficient. If the set

{κn} is dense in, say the interval [1, 2], then the essential spectrum would be on the

set [−4,−1] ∪ [0,∞). For some initial phase ϕ ⊂ C0, it is known that the spectrum

on [−4,−1] would be singular continuous and for typical ϕ the spectrum would be
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pure point. For positive energies, the spectrum on [0,∞) is absolutely continuous.

Furthermore, the singular continuous spectrum on this interval is completely absent.

If the set {κn} are random on the interval, say, [1, 2], then the essential spectrum

would be random on the corresponding interval.

Example 10. Now consider the potential

V (x) =
∞∑
n=1

Ynδ(x− xn), (104)

where each Yn are i.i.d. r.v., i.e. uniformly distributed on a finite interval [a, b].

For λ = −k2 < 0, the spectrum will be discrete. For positive λ = k2 > 0, we can

use the monodromy operator to obtain the spectrum. For simplicity, first consider

the value of the solution ψ(xn) = e−γn and the geometric progression of the bumps

xn− xn−1 ≈ cn(c− 1). It is well known that since the monodromy operator is a 2× 2

matrix then there is a negative Lyapunov exponent. In this case, we calculate the

L2-norm and find conditions for different spectra. Everything depends on the series,

∑
n

e−2γncn(c− 1). (105)

The convergence of this sum gives pure point spectrum. The condition for convergence

means that

−2γn+ n ln c < 0,

⇒ γ >
ln c

2
.

Since γ(k) =

〈
ln

(
1 +
Y2

4k2

)〉
, then for small λ = k2 the spectrum is pure point.

Since ‖Mk(0, x)‖ → ∞ as x→∞, there is no absolutely continuous spectrum. So for
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large values of λ = k2, the spectrum becomes singular continuous. Thus, we have a

transition of the spectrum from pure point to singular continuous for increasing values

of k. It is easily seen that if Ln ≈ eτn, τ > 0, that the condition for convergence of

the series (105) becomes

τ

2
< γ(k) =

1

2

〈
ln

(
1 +
Y2

4k2

)〉
.

The same conditions for the spectral transition applies. We have a transition from

pure point spectrum for small values of λ to singular continuous spectrum for large

values of λ.

If τ1 > 1, then

nτ1−1

2
> γ(k). (106)

Therefore, for τ1 > 1, the spectrum is singular continuous. On the other hand, for

τ1 < 1, then

1

2n1−τ1
< γ(k), (107)

hence a pure point spectrum.

From the previous example, we demonstrated the coexistence of spectra that de-

pends on the value of k; thus proving theorems (7), (8), and (9). It can eas-

ily be seen that if τ1 ∈ (0, 1), then the spectrum is pure point because Ln <

exp

[
n

〈
ln

(
1 +
X 2
n

4k2

)〉]
and the integral (98) converges. Thus, we have a transi-

tion from pure point spectrum to singular continuous spectrum as
√
λ = k increases

for constant τ . We have shown the above statements by discussing the behavior of

γ(k) with each potential mentioned at the end of chapter 1.



CHAPTER 3: CONCLUSION AND FUTURE WORK

3.1 Conclusion

We have demonstrated the following results, some of which are new. First, for

sparse potentials with centers that increase with geometric progression, the Bargmann

estimate is too rough. We constructed a series of potentials that give an unbounded

Bargmann estimate on the number of negative eigenvalues. In reality, we have zero

negative eigenvalues in some cases. That is, when there are no zeros to the homoge-

neous spectral problem

Hψ(x) = −ψ′′(x) + V (x)ψ(x) = 0 (108)

Secondly, we considered the case where, despite having a negative potential, there

would be no negative eigenvalues. Physically speaking, this is known as quantum

screening. Some of the conditions on the strength and position of potentials were

discussed. In addition, we considered the case where we had a series of two negative

δ-potentials, we demonstrated the conditions where we had either: 1) no negative

eigenvalues, 2) only one negative eigenvalue existed, or 3) we had at most two negative

eigenvalues. In each case, we discussed the conditions on the strength of the potentials

and the distance between each potential and again considered the number of zeros of

the homogeneous solution to the operator H. Lastly, for random sparse potentials,

we demonstrated, through carefully constructed examples, the coexistence of different
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spectra. This coexistence of different spectra is dependent on the value of k and the

behavior of the sequence {xn} of bump centers. It was calculated that for increasing

values of k, the spectrum transformed from pure point to singular continuous.

It is important to note that the spectrum of an operator is a set. This means that

in the context of a continuous spectrum, it is the measure of µ(dλ) that is continuous

and not Σ itself. General theories of the spectrum of an operator gives the energies

of a quantum system. The energies that correspond to discrete spectrum correspond

to bound states. More information about the general properties of the Schrödinger

operator and the spectrum of the operator can be found in Landau and Lifshitz

Volume 3 of A Course in Theoretical Physics.

3.2 Future Work

We have shown that the Bargmann estimate is too rough for sparse potentials. In

the future, I would like to modify the Bargmann bound in order to obtain a useful

estimate of the number of negative eigenvalues for sparse potentials.

I would also like to explore spectral theory for nonlinear Schrödinger operators. Ul-

timately leading to a spectral theory for nonlinear Schrödinger operators with sparse

random potentials. In addition, I would like to weaken the boundedness requirement

on the potentials for the Schrödinger operator and determine changes, if any, in the

spectrum. Just as in the case for the double δ-potential wells, I would like to as-

sess the effect that the boundedness property of the potential has on the possible

transition of the spectrum.
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