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ABSTRACT

ISHTIAK SIKDER. Optimal Override Policy for Chemotherapy Scheduling
Template via Mixed-Integer Linear Programming. (Under the direction of DR.

GUANGLIN XU)

Owing to treatment complexity in chemotherapy administration, nurses are usually

required at the beginning, end, and at certain times during treatment to ensure high-

quality infusion. It is, thus, critical for an outpatient chemotherapy unit to design

a scheduling template that can effectively match nursing resources with treatment

requirements.

The template contains appointment slots of different lengths and thus allows sched-

ulers to place patients into these appointment slots according to the provider’s order.

As the template is often used over a period of several months, there usually exists a

mismatch between the daily patient mix and the fixed structure of the given template.

Hence, override policies must be employed to adjust to demand. However, these

policies are often manually performed by schedulers.

A Mixed-Integer Linear Programming (MILP) model has thus been proposed in

this thesis to systematically develop optimal override policies in place of the manual

process to improve template utilization while maintaining template stability. Numer-

ical experiments based on real-life data from a chemotherapy unit are conducted to

demonstrate the effectiveness of the proposed approach.
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PREFACE
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CHAPTER 1: INTRODUCTION

Healthcare is a significant industry all over the world, as it protects normal func-

tioning which in turn protects the range of opportunities open to individuals [6].

To provide some context, on average the United States spends more than 2 trillion

or 16% of its GDP on Healthcare each year [3]. Common challenges in health care

administration often revolves around ensuring efficient resource distribution for pro-

viding adequate treatment to patients, which makes it a relevant focus for operations

research studies. A common application of OR in health care is to develop scheduling

templates for outpatient appointments, with related operations research work going

as far back as the early 1950s [1].

An outpatient service usually serves patients on a daily basis based on pre-scheduled

appointments. Unlike inpatient services, this mode of treatment allows the patient to

come in, receive treatment, and leave within the same day without having to enroll

for an extended stay. The advancement in medicare has made outpatient treatment

services possible for Chemotherapy administration, which solely relied on inpatient

treatment in the past. Due to the nature of Chemotherapy treatment, such an out-

patient service centre typically deals with patients requiring varying time lengths of

treatment; which can be anything between 30 minutes and 6 hours or more. Op-

timized solutions abound to propose appointment scheduling templates that match

available nursing resources with scheduled patients for safe infusion. But managing

the uncertainty of the daily patient influx to utilize the template to its maximum ca-

pacity while meeting nursing resource constraints - presents an optimization problem

in itself, which has largely remained unsolved.
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The scheduling template typically has allotments for different types of patients

according to the treatment length required for them. For example, if the working

day is divided into 15 minute time slots then an appointment slot for an outpatient

requiring a 30 minute chemotherapy infusion will take up (30/15=) 2 time slots on the

scheduling template and said patient can be labeled as a 30 minute patient. Same is

true for a 60 minute patient or a 120 minute patient and so forth. Having established

that, a chemotherapy outpatient service can either have more or less number of a

given type of patient on a given day than what is allotted in the scheduling template,

i.e (n+2) number of 30 minute patients and (n-1) number of 60 minute patients. It

is to be noted that the scheduling template is designed to accommodate necessary

nursing resources for scheduled patients. Thus, having less patients of a given type

(i.e (n-1) 60 min patients) would mean a wastage of allotted nursing resources; which

could possibly serve extra patients of another type (i.e 2 extra 30 minute patients for

an influx of (n+2) 30 minute patients) if said extra patients could be accommodated.

This can provide a brief outlook to the challenge with the variability of the daily

patient influx.

An obvious solution can be to accommodate extra patients into available empty

time slots, i.e the two extra 30 minute patients can be accommodated into the empty

60 minute appointment slot for an influx of (n+2) 30 minute patients and (n-1) 60

minute patients. This allotment practice is termed as an "Override" and is often ap-

plied manually by chemotherapy outpatient appointment schedulers. But the manual

application leaves room for a lot of scheduling errors. The schedulers usually pri-

oritize accommodating as many extra patients into empty slots as possible without

regarding nursing resource constraint violations, and even if they wanted to look out

for resource constraints it would be too complex to manually override for a scheduling

template containing up to 7 or more different types of Chemotherapy outpatients. A

systematic approach is thus necessary to solve this problem.
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This study introduces a novel optimization scheme to generate optimal override

policies that may be applied to assign appointment slots in a fixed template to accom-

modate patients requiring different treatment lengths. Particularly, a mixed-integer

linear programming model for determining the optimal override policies has been pro-

posed and solved by using an off-the-shelf solver. Numerical experiments on real data

from a chemotherapy unit are conducted to demonstrate the effectiveness of the pro-

posed approach. This is the first study to utilize mixed-integer linear programming

techniques to derive optimal policies in the context of chemotherapy appointment

scheduling.

The remaining chapters are organized as follows. Chapter 2 reflects on relevant

literature regarding appointment scheduling and process variability in Chemother-

apy administration. Chapter 3 discusses the chemotherapy appointment scheduling

template and the override policies, and propose an MILP model to optimally ap-

ply the override policies. Chapter 4 discusses the design of the numerical experi-

ments to demonstrate the effectiveness of the proposed approach over real-life data

from a chemotherapy unit. Finally, concluding remarks and future extensions for

optimization-based override policy problems are discussed in Chapter 5.



CHAPTER 2: LITERATURE REVIEW

The safe administration of chemotherapy is paramount and, therefore, the optimal

management of workflows in the chemotherapy units has become a major focus for

any practical setting [13]. In the past decades, chemotherapy administration has

gradually shifted from the inpatient setting to the outpatient setting due to the ad-

vanced development in medical delivery methods, drug and prescription innovation,

and side effect management [23]. In general, outpatient service involves patients com-

ing into the hospital to obtain essential health care and leaving within the day after

receiving the service. The standard method of scheduling outpatient appointments is

to apply a policy that accounts for appointment block size and intervals; see e.g., [4].

Appointment scheduling has been an extensively studied research area in operations

research and management science [1], [10], [19], [20], since it has applications in a wide

range of fields such as outpatient scheduling [9], [12], [16], [18], surgery planning [7],

call-center staffing [11], and cloud computing server operations [22]. It often aims

to efficiently allocate scarce resources to satisfy requirements against some physical

and/or economic constraints. For instance, the primary operational objective of many

appointment systems is to design scheduling templates for appointments to optimize

the overall benefit or costs of the system. Generally, there are two typical types of

appointment systems: single- and multi-server systems; see [15], [24].

One of the main challenges to develop a flexible appointment scheduling system,

regardless of the type, is the process variability, of which there are several. First,

although the allotted time for a patient in the scheduling template is fixed, the actual
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appointment length is typically unknown. For instance, the treatment length of a

patient may depend on their health state, which has to be observed on the fly. There

is also uncertainty due to the requirement of urgent appointments, walk-ins, and

the occurrence of patients not showing for appointments. Random no-shows cause

poor resource utilization and unanticipated loss of revenue for health care providers,

which may, in turn, compromise service quality [2]. Furthermore, the varying patient

mix also causes dramatic modeling challenges for the scheduling system, especially

in chemotherapy treatment facilities. In fact, tackling this type of variability is the

main focus of this research. Stochastic programming [17] and simulation are generally

utilized as solution methods to solve scheduling problems with uncertainties; see

e.g., [8], [21], and [5].

In practice, treatment plan schedules for chemotherapy may vary depending on the

type of cancer, the associated treatment regimen and its goal, as well as the patients’

state of health. An oncologist decides the choice of a particular regimen, but modifi-

cations in drug dosage and schedules are often necessary due to the variability in the

health status of a patient. Therefore, a scheduling template must be determined to

consist of appointment slots that can accommodate a patient mix requiring various

treatment lengths. In other words, the appointment slots in the template should be of

different lengths based on the patient mix with various treatment requirements. How-

ever, a fixed scheduling template may not be able to accommodate varying patient

mix on a daily basis. To this end, override policies should be employed to modify the

existing appointment slots to accommodate patients. In particular, multiple appoint-

ment slots can be combined into one to serve a patient requiring a longer treatment.

A slot may also be broken into multiples to serve those patients requiring shorter

treatments; as well as longer appointment slots being divided into shorter ones. In

practice, it is challenging to implement these override policies manually.
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In this research, an MILP model has been developed to derive optimal override

policies. More specifically, assuming that a fixed template and a patient mix are

given, the MILP model selects existing appointment slots to treat patients via pre-

determined override policies (see Section 2.0.1). The model can provide schedulers

with flexibility in the preference of the override policies. The MILP model has been

verified over a real-life data set collected from a chemotherapy unit at the Mayo Clinic.

The result from numerical experiments illustrates the effectiveness of the proposed

approach.

It is to be noted that although many literature articles also study methods to ad-

dress mismatch between the template and patient mix, they focus mainly on design-

ing flexible templates. This research marks the first initiative to develop optimization

methods to modify the pre-determined template to accommodate varying patient mix

on the daily basis.



CHAPTER 3: PROBLEM FORMULATION

This chapter discusses the override policies that are used to modify appointment

time to handle potential mismatch between the existing template with appointment

of fixed lengths and the daily patient mix requiring different treatment lengths. To

search for the optimal override policies, an MILP model is proposed that can be

solved by using off-the-shelf solvers such as Gurobi or CPLEX. In what follows, it

is assumed that a given scheduling template is deployed at the chemotherapy unit

and that the patient mix of different types are available when the scheduler sets the

appointments.

Chemotherapy units often utilize a template over a period of several months or

even years. To ensure that a template accounts for nursing resource needs during

patient treatments, a fixed template is often proposed. The template incorporates

certain numbers of each patient type. Here patient types are categorized based on

their required treatment lengths. The treatment length of each patient type is usually

designed to have enough buffer to account for activities in addition to administering

chemo drugs. This buffer also includes the time to clean the chemo space. No

additional time is needed between appointments, even though the distribution of the

different types of incoming patients varies on a daily basis. This phenomenon leads

to a mismatch between the appointment slots designed by the template and patients

who require different treatment lengths. To handle this mismatch, the scheduler

often manually follows override policies to modify the appointment template in order

to accommodate patients in the current practice at Mayo Clinic [14]. This manual
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process is time-consuming and often increases workload for nurses if it is not done

properly. Hence, a systematic approach with objectives that attempt to align with

the scheduling template is beneficial to maintaining template efficiency.

3.1 Override policies for chemotherapy scheduling template

In this section, three override policies are proposed that are applied to guide the

modification of the template in the presence of mismatches between the patient mix

and the designed appointment slots. By the clinic requirement, the override should

incorporate the following three policies:

• Policy 1: A patient is placed in a longer appointment when the designated

appointment slot is no longer available. For example, a patient requiring a 2-

hour appointment slot can be scheduled in a 3-hour appointment slot or any

appointment slots longer than two hours.

• Policy 2: Two subsequent appointment slots are combined to create an appoint-

ment slot that is equal to or greater than the required treatment length. For

example, if a chair/ bed has a 1-hour appointment slot from 7:45 AM to 8:45

AM and a 2-hour appointment slot from 8:45 AM to 10:45 AM, then these can

be combined to serve a patient requiring a 3-hour appointment slot from 7:45

AM to 10:45 AM.

• Policy 3: A longer appointment slot is broken into two shorter appointment

slots. For example, a 6-hour appointment slot can be used for two 3-hour

appointment slots or a 2-hour appointment slot and a 4-hour appointment slot.

It can also be used for two 2-hour appointment slots or a 2-hour appointment slot

and a 3-hour appointment slot. It is not preferred to break a longer appointment

slot into more than two shorter appointment slots as the nursing resource is not
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fully considered. For a 6-hour appointment slot to be used for assigning two

3-hour appointment slots, the nursing resource is not planned at the end of the

first 3-hour patient appointment slot and the beginning of the second 3-hour

patient appointment slot. In this example, resource constraint violations are

increased by two.

The current manual override process at Mayo Clinic is highly driven by patient prefer-

ences. Schedulers sometimes manipulate the template and deviate from the override

policies by making allocations to fit as many patients as possible in a single tem-

plate block; even if there are other times available in a day. Thus, policy 3 is often

used to accommodate patients, especially those who require a shorter treatment. For

override simplicity, schedulers prefer policy 1 over policy 3 and policy 3 over policy 2

since policy 2 requires finding the right appointment slots to combine, which could be

time-consuming. In the current state, schedulers are not restricted to deviate from

the override policies. For example, schedulers may break an appointment slot to treat

three patients, which is a violation of policy 3. Schedulers may also combine three

appointment slots to treat a patient, which is a violation of policy 2. Hence, the need

for a systematic approach is paramount.

3.2 Mixed-integer linear programming formulation

In this section, an MILP model has been developed to optimize the use of the

override policy. More specifically, given a particular mix of patient arrival, the MILP

model searches for the optimal patient assignments.

Overall, variables and constraints have been defined to characterize the set of fea-

sible assignment of the appointment slots to the patient mix requiring different treat-

ment lengths. The objective function is defined to prioritize the appointment slot

assignment over the override policies.
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To simplify the formulation, two necessary index sets have been defined which

are specified for ease of exposition. However, the sets can be specified by different

requirements.

Sets:

• Set of 15 minute time intervals throughout a working day T = {1, 2, . . . , 40}.

• Set of different patient types I = {30, 60, 120, 180, 240, 300, 360},where the ele-

ments in I denote patient treatment lengths, e.g., 30 indicates that the treat-

ment of this type takes 30 minutes.

Parameters:

• pi: Number of type i patients for all i ∈ I.

• ci,t: Number of appointments for type i patients that start at time t for all i ∈ I

and for all t ∈ T . It is to be noted that the parameters ci,t are determined by

the given scheduling template.

• d: The length of the appointment slot. In the thesis, d = 15 has been considered.

• λk k = 1, . . . , 5: Weight parameters that are used in the objective function.

Variables:

Now the following binary variables are defined to represent an assignment where

a type i′ appointment slot is used to treat a type i patient (i ≤ i′). First, a set

[ci,t] := {1, . . . , ci,t} is defined to contain all type i appointments that start from time

t. Here type i appointments are denoted as the appointments that are planned to

treat type i patients in the designed template.
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• xi,i′,j′,t: Binary variable, equals 1 if the j′th appointment slot for a type i′ patient

at time t is used to accommodate a type i patient (i ≤ i′) ; and 0 otherwise.

The following binary variables are then defined to represent an assignment where

an appointment slot for type i′ and an appointment slot for type i′′ are combined to

treat a patient of type i (i ≤ i′ + i′′).

• yi,i′,i′′,j′,j′′,t: Binary variable, equals 1 if the j′th appointment slot for a type i′

patient at time t and the j′′th appointment slot for a type i′′ patient at time

t+ i′/d are combined to treat a type i patient (i ≤ i′ + i′′); and 0 otherwise.

• zi,i′,j′,t: Binary variable, equals 1 if the j′th appointment slot for a patient of

type i′ at time t is used to start the treatment of a type i patient (i > i′) ; and

0 otherwise.

• wi,i′,j′,t: Binary variable, equals 1 if the j′th appointment slot for a patient of

type i′ at time t is used to complete the treatment of a type i patient (i > i′) ;

and 0 otherwise.

Next, the following binary variables are defined to represent an assignment where

an appointment slot of type i′ is split into two smaller appointment slots of types i

and i′′ which can be used to treat two patients.

• vi,i′′,i′,t,j′ : Binary variable, equals 1 if the j′th appointment slot for a patient of

type i′ at time t is divided into two blocks to serve a type i patient and a type

i′′ patient where (i+ i′′ ≤ i′) ; and 0 otherwise.

Finally, the following auxiliary variables are defined to help model necessary equality

constraints.
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• ui,t: Integer variable, represents the number of type i patients who can be

treated at time t.

• u0i,t: Integer variable, represents the number of type i patients who are treated

by using overrides at time t.

• qi: Integer variable, represents the number of type i patients who have not been

served.

With the sets, parameters, and variables defined above, we are ready to outline the

following constraints of the MILP model.

Constraints:

The following constraints enforce that each appointment slot in the template can

be used for a maximum of one task (e.g., equal assignment, larger assignment, com-

bination, and breaking). More specifically, for all i′ ∈ I, for all t ∈ T , and for all

j ∈ [ci′,t] := {1, . . . , ci′,t}, we have

∑
i:i≤i′

xi,i′,j′,t +
∑
i:i>i′

zi,i′,j′,t +
∑
i:i>i′

wi,i′,j′,t +
∑

(i,i′′)∈E

1

2
vi,i′′,i′,t,j′ ≤ 1 (3.1)

where
∑

i:i≤i′
denotes the shorthand of notation

∑
i∈I:i≤i′

, and E is defined as follows:

E :=
{
(i, i′′) : i < i′, i′′ < i′, i+ i′′ ≤ i′

}
.

Note that the set E is defined to filter out unnecessary variables. For instance, break-

ing assignments vi,i′′,i′,j,t′ can never happen for the corresponding indices in E , which

is the complement set of E .

The following constraints are used to ensure the policy to combine two appoint-
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ments with one of type j and the other of type j′ to treat a patient.

yi,i′,i′′,j′,j′′,t ≤ zi,i′,j′,t ∀ (i, i′, i′′, j′, j′′, t) ∈ Ey (3.2)

yi,i′,i′′,j′,j′′ ,t ≤ wi,i′′,j′′,t+i′ ∀ (i, i′, i′′, j′, j′′, t) ∈ Ey (3.3)

yi,i′,i′′,j′,j′′,t ≥ zi,i′,j′,t + wi,i′′,j′′,t+i′ − 1 ∀ (i, i′, i′′, j′, j′′, t) ∈ Ey (3.4)

∑
i′∈I

∑
j′∈[ci′,t−i′/d]

yi,i′,i′′,j′,j′′,t−i′/d ≤ 1 ∀ (i, i′′, j′′, t) ∈ Ew (3.5)

∑
i′′∈I

∑
j′′∈[ci′′,t]

yi,i′,i′′,j′,j′′,t ≤ 1 ∀ (i, i′, j′, t) ∈ Ez (3.6)

where Ey, Ew, and Ez are respectively defined as

Ey :=


(i, i′, i′′, j′, j′′, t) :

i ∈ I, i′ ∈ I, i′′ ∈ I

j′ ∈ [ci′,t], j
′′ ∈ [ci′′,t+i′/d]

i′ < i, i′′ < i, i′ + i′′ ≥ i

t+ (i′ + i′′)/d ∈ T


,

Ew :=

(i, i′′, j′′, t) :
i ∈ I, i′′ ∈ I, i > i′′

t ∈ T , j′′ ∈ [ci′′,t]

 ,

Ez :=

(i, i′, t, j′) :
i ∈ I, i′ ∈ I, i > i′

t ∈ T , j′ ∈ [ci′,t]

 .
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The following constraints ensure the implementation of the breaking policy where

a larger appointment slot is used to treat two patients. For all i ∈ I, for all t ∈ T ,

and for all j′ ∈ [ci′,t], we have

∑
i′∈I

∑
i′′∈I

vi,i′′,i′,t,j′ ≤ 1. (3.7)

Next, we define the following equations which will help establish the objective

function. For all i ∈ I and for all t ∈ T , we define

uit =
∑

i′:i′≥i

∑
j′∈[ci,t]

xi,i′,j′,t +
∑

(i′,i′′)∈E ′

∑
j′∈[ci′,t]

∑
j′′∈[ci′′,t]

yi,i′,i′′,j′,j′′,t

+
∑

(i,i′′)∈E

∑
j∈[ci,t]

vi,i′′,i′,t,j′ ,
(3.8)

and
u0it =

∑
i′:i′>i

∑
j′∈[ci,t]

xi,i′,j′,t +
∑

(i′,i′′)∈E ′

∑
j′∈[ci′,t]

∑
j′′∈[ci′′,t]

yi,i′,i′′,j′,j′′,t

+
∑

(i,i′′)∈E

∑
j∈[ci,t]

vi,i′′,i′,t,j′ ,
(3.9)

For all i ∈ I, we define

qi = (pi −
∑
t∈T

ui,t)+. (3.10)

Finally, we formulate the mixed-integer linear programming model as follows:

min λ1
∑
i∈I

qi + λ2
∑
i∈I

∑
t∈T

u0i,t + λ3
∑
i∈I

∑
i′:i′>i

∑
j′∈[ci,t]

∑
t∈T

xi,i′,j′,t

+λ4
∑

(i,i′,i′′,j′,j′′,t)∈Ey
yi,i′,i′′,j′,j′′,t + λ5

∑
(i,i′,i′′,t,j)∈Ev

vi,i′′,i′,t,j′
(3.11)

s.t. eqns (3.1) to (3.10)
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Two remarks are made as follows. First, the objective function is used to com-

prehensively balance the number of unassigned patients and the usage of different

policies. Second, the parameters λi are used as the priorities of the appointment

slot assignments. In particular, λ1 prioritizes the accommodation of maximum possi-

ble number of patients, through either equal assignments or overrides; λ2 prioritizes

equal assignments, which assign appointment slots to patients who require the same

treatment length; λ3 prioritizes patient accommodation through overrides by policy

1; λ4 prioritizes patient accommodation through overrides by policy 2; and finally λ5

prioritizes patient accommodation through overrides by policy 3.



CHAPTER 4: NUMERICAL EXPERIMENTS

In this chapter, the MILP model is validated by using real-life data collected from

a chemotherapy unit at the Mayo Clinic. All the experiments were implemented in

Python 3.7 using Gurobi 8.0 as the MILP solver and were performed on a Macintosh

OS X Yosemite system with a quad-core 3.20GHz Intel Core i5 CPU and 8 GB RAM.

4.1 Experimental setup

The experiments were conducted on an actual patient scheduling data set collected

from the Andreas Cancer Center, which is situated in Mankato, Minnesota and oper-

ated under the Mayo Clinic Health System. Particularly, the data set includes clinical

visits from seven different types of patients, which are categorized by the treatment

lengths: 30, 60, 120, 180, 240, 300, and 360 minutes. Twenty-two working-day obser-

vations were selected in the data set; see Table 4.1. The chemotherapy unit utilizes

a fixed template, which is visualized in the left panel in Figure 4.1. The template

adopts 14 chairs/beds to accommodate chemotherapy patients on each working day

from 7:00 AM to 5:00 PM. Particularly, the template has a total capacity of 61 ap-

pointment slots; where 23, 8, 10, 11, 6, 2 and 1 slot(s) have lengths of 30, 60, 120,

180, 240, 300, and 360 minutes respectively.

As shown in Table 4.1, the daily patient mix significantly varies (see, specifically,

columns corresponding to patient number). Therefore, the scheduler must adopt over-

ride policies to accommodate patients’ requirements while ensuring their treatment

quality. Although the schedulers at Andreas Cancer Center were given instructional
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policies on how to override template appointment slots [14], it was fairly challenging

to follow these policies manually to ensure optimal patient assignments so as to max-

imize the utilization of the appointment slots. Therefore, the proposed MILP model

will be compared with the manual implementations at the Center. Five priority pa-

rameters of the model were defined as follows λ1 = 50, λ2 = 4, λ3 = 1, λ4 = 2, λ5 = 3

to control optimal patient assignments over the fixed template. Under this setting,

the model gives the highest priority (λ1 = 50) to allocate appointment slots to treat

patients. Moreover, when there is no equal assignment for a patient, the model would

have the following preference orders: the larger assignment, the combining override

policy, and the breaking override policy (λ3 = 1 < λ4 = 2 < λ5 = 3). The experience

of using these policies varies among schedulers. The consensus in terms of how long

it takes to perform each policy is approximately one minute for policy 1, five minutes

for policy 2, and three minutes for policy 3. In addition, to ensure the template’s

intention of conserving the nurses’ availability for the treatment of incoming patients,

the impact of breaking an appointment slot (policy 3) on the nurse time is also mea-

sured for comparison. Each time an appointment slot is broken to accommodate two

appointments, increases two extra appointment slots (∼ 30 minutes) which require

nurse resource.

4.2 Solution analysis

In this section, the experimental results are analyzed. Out of the 22 working days,

the proposed optimal assignments from the MILP model can completely accommodate

the patient influx for 20 working days except for day 13 and day 21. For both of

these days, the total patient volume was 62 which translated to 6,840 and 6,780 in

total minutes. The volumes exceed the maximum possible number of 61 available

appointment slots designed into the template. The total number of required minutes

also exceed the maximum number of minutes available, which is 6,750 minutes. In
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summary, the average daily patient volume was 52.1 with a standard deviation of

6.1. The 22-day data and patient assignments under policy 1, 2, and 3 (from current

manual operation and MILP model) are outlined in table 3.1.

Table 3.1 also summarizes the override policy usage for these days. On average,

policy 1 has been suggested 2.1 times under the optimal method compared to 3.1

times under the manual method; which shows a 35% reduction in corresponding

usage. Policy 2 has been performed 1.2 times on average under the optimal method

compared to 2.4 times on average under the manual method, which shows an average

reduction of 48% in corresponding overrides. And lastly, policy 3 has been suggested

1.2 times on average under the optimal method compared to 7.9 times on average

under the manual method. Policy 3 is the most undesirable override and the optimal

method has been able to reduce it by 85%. In overall, the optimal method outperforms

the current manual process by 67%, where the override usages have been reduced from

13.4 times to 4.5 times on average. Overall, the results indicate that the proposed

MILP model can save 30-minute override time for the schedulers, and 3 work hours

for nurses on a regular day.

Figure 3.1 demonstrates via day 16 on how manual (middle panel) and optimal

(right panel) methods work. The manual method results in 3 overrides under policy

1, one under policy 2 and 12 under policy 3. For example, a 1-hour appointment

is scheduled at 9:30 am in a 3-hour appointment slot starting at 9:15 am on chair

14 ; which meets the criteria for policy 1. On chair 13, the 5-hour appointment slot

starting at 9:00 am is combined with a part of 2-hour slot starting at 2:00 pm to

be a 6-hour appointment under policy 2. As for policy 3, the 3-hour appointment

slot starting at 8:30 am on chair 9 has been broken into a 2-hour (8:30 am) and a

1-hour (10:30 am) appointment. The most undesirable manual override case is found

on chair 5 where a 3-hour appointment slot starting at 10:00 am has been broken into
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three appointments (two 30-minute and one 1-hour). This case often occurs when

schedulers attempt to fit patients according to the patients’ preference. On the other

hand, the optimal method results in 3 overrides under policy 1, one under policy

2, and six under policy 3. This optimal method systematically caps the freedom of

breaking an appointment slot while suggests other options for schedulers in order to

honor the template design for protecting nurse’s time. The average computational

time to run the optimization model is approximately 10 seconds over the 22-day data

set.

4.3 Sensitivity analysis on the parameters

In this section, sensitivity analysis is conducted on the parameters that are em-

ployed to prioritize the override policies in the objective function. In addition to the

basic setting for λi in Section 4.1, the following settings are also considered.

The sensitivity of λ1 is investigated first. In the experiment, λ2 = 4, λ3 = λ4 = λ5 =

1 are considered while value of λ1 is varied in the set of {10, 30, 50}. It is to be noted

that a higher value of λ enforces more penalty for not accommodating a patient. As

depicted in Figure 4.2(a), the percentage of patients not accommodated decreases as

the value of λ1 increases. Next, the sensitivity of λ3 is investigated. In the experiment,

λ3 is varied in the set {1, 5, 10} and λ1 = 50, λ2 = 4, λ4 = λ5 = 1 are maintained. To

be noted that a higher value of λ3 enforces more penalty on applying policy 1. As

depicted in Figure 4.2(b), the average number of overrides by policy 1 decreases as

the value of λ3 increases. It can be also observed that the number of overrides by

policy 2 remains fairly constant while the number of overrides by policy 3 slightly

increases. These results are consistent with the expectation as increasing λ1 enforces

using policies 2 and 3 over policy 1. Sensitivity analysis on λ4 is then conducted.

λ4 ∈ {1, 5, 10} and λ1 = 50, λ2 = 4, λ3 = λ5 = 1 are maintained. To be noted
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Figure 4.1: The template which is deployed at the chemotherapy unit (left) manual
override (middle) and optimal override (right) for day 16.
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Figure 4.2: Effect of λ1 on overrides (a), effect of λ3 on overrides (b), effect of λ4 on
overrides (c), effect of λ5 on overrides (d)

that a higher value of λ4 enforces more penalty on applying policy 2. As depicted in

Figure 4.2(c), the average number of overrides by policy 2 decreases as the value of λ4

increases which enforce policies 1 and 3 to accommodate more patients and the average

number of overrides by all policies decreases as λ4 increases. Finally, sensitivity

analysis on λ5 is conducted. λ5 ∈ {1, 5, 10} and λ1 = 50, λ2 = 4, λ3 = λ4 = 1 are

maintained in the experiment. To be noted that a higher value of λ5 enforces more

penalty on applying policy 3. As depicted in Figure 4.2(d), the average number of

overrides by policy 3 decreases as λ5 increases. It can also be observed that the

average number of overrides by policies 1 and 2 increase slightly and that the average

number of overrides by all policies increases as λ5 increases. Furthermore, the total

number of overrides is increasing as well.
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Table 4.1: 22 days scheduling data from Andreas Cancer Centre at the Mayo Clinic
and override results from manual operations and the MILP model.
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CHAPTER 5: CONCLUSION AND FUTURE PLANS

In this thesis, override policies are introduced for using a fixed chemotherapy

scheduling template to accommodate the varying daily patient mix. In particular, a

mixed-integer linear programming model is proposed to determine the optimal over-

ride policies, which may significantly mitigate schedulers’ work by reducing operating

time to find the best appointment slot assignments to patients. Numerical exper-

iments were conducted to demonstrate the effectiveness of the proposed approach.

Experimental results also indicated the efficiency of the computation. Furthermore,

sensitivity analysis was conducted to demonstrate the flexibility of the proposed ap-

proach. Schedulers may tune the parameters to accommodate different preferences

for using the model.

It is to be noted that this research considered an existing scheduling template being

used at a Chemotherapy Outpatient service and proposed a systematic way for apply-

ing optimal overrides. Said template was built from an optimization approach where

available nurse distribution was considered as resource constraints, with minimizing

nursing resource violations being the primary objective. As already discussed, the

variability of the daily patient influx proposes a great challenge in this approach and

create nursing resource violations while performing overrides to use this fixed template

at maximum possible capacity. The proposed MILP model can thus be employed to

evaluate the performance of a given scheduling template and can be incorporated into

a high-level optimization problem to determine an optimal scheduling template.

While performing manual overrides, the schedulers are often resorted to apply
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override policy 3 when patients prefer to be scheduled as early as possible in the

day. In other words, they populate the empty available slots early in the day to

accommodate as many extra patients as they can, which leads to nursing resource

violations. Our proposed MILP model, while efficient in applying minimal overrides to

accommodate maximum number of patients, is still limited while taking the patient’s

appointment scheduling preferences into account. In other words, the model can not

override a patient assignment as early as possible in the day to minimize their wait

time in queue if said override violates the established override policies. This obviously

leaves room for further updates.

As such, an extension of this research can be to build a dynamic model that takes

a training data of daily patient influxes and cross checks with available nurse dis-

tribution to propose a template with minimal nursing resource violations against

applied overrides to reach maximum possible capacity. A two-stage stochastic opti-

mization model can serve this approach well. Constraints can also be introduced to

take patient’s scheduling preferences into account while also maintaining the estab-

lished override policies. Thus, the model can produce templates which are already

designed to incur minimal resource violations based on provided training data, before

being applied against actual patient influx over an extended period of time when over-

rides will be applied to reach maximum possible capacity and according to schduling

preferences of incoming patients.
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