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Abstract 

Claudio Owusu. INCORPORATING MULTILEVEL GEOCODING AND SPATIAL 

MODELING TECHNIQUES TO PREDICT THE RISK OF WATER 

CONTAMINATION FOUND IN PRIVATE WELLS ACROSS GASTON COUNTY, 

NORTH CAROLINA (Under the direction of Dr. Eric Delmelle) 

 

Water is an important basic need for human survival. Many Americans obtain 

water from public water systems, however, about 45 million Americans use private wells 

for drinking water. When water is contaminated, it becomes unsafe for consumption and 

can cause many poor health outcomes. As a result, many environmental hazards present 

in water are regulated in public water systems, however, private well owners are not 

required to test, disinfect or treat their water.  

In Gaston County, North Carolina, private wells provide the primary water supply 

for approximately 42% of the residents. Since 1989, well permits issued for new wells 

have been stored primarily on paper. Lack of digitization has hindered the ability of 

researchers and public health officials to access private well information. Further, lack of 

well testing data including arsenic and coliform has also made it difficult to determine 

groundwater quality in wells. No studies exist that describe spatial variation of arsenic 

and coliform bacteria presence in wells in Gaston County, that is within the NC Piedmont 

geologic belt. 

The main objective of the dissertation is to incorporate multilevel geocoding and 

spatial modeling techniques to predict the risk of arsenic and coliform bacteria in private 

wells. To achieve this goal, first a GIS database of private wells is created using 

geocoding. Because the positional accuracy of private wells in GIS can affect the spatial 
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analysis results, global positioning system (GPS) coordinates were obtained at 1035 wells 

to compare differences in the results of rooftop, parcel and street geocoding techniques. 

Second, the multilevel geocoding approach was used to determine the geographic 

coordinates of arsenic samples from 2011 to 2017. The sampled arsenic information, data 

on geology, pH, and well depth were used to estimate the probability of having arsenic at 

or above detectable levels (≥ 5 µg/L) in wells across the county. This threshold was used 

because low levels of arsenic, even below the drinking water standard of 10 µg/L set by 

the United States Environmental Protection Agency, are still detrimental to human health 

and most of the arsenic detections in the study are between 5-10 µg/L. Third, coliform 

samples from private wells, well characteristics, parcel size, and soil ratings for the 

leachfield are examined to estimate the probability of having coliform bacteria in a well.  

A multilevel geocoding approach improved match rate of permit addresses from 

38.0% (n = 3,318) to 98.9% (n = 8,616). Addresses that were re-engineered during 

geocoding accounted for 50.9% (n = 4,439) of the matched records in the GIS database. 

There were significant differences (p < 0.05) in positional accuracy for rooftop, parcel, 

and street geocodes of private wells in the GIS database; positional accuracy was highest 

for rooftop geocodes. 

 Private wells set in mica schist (ꞒZms) were associated with arsenic at detectable 

levels, suggesting a local-scale geologic source influence of arsenic in the county. In 

addition, pH (median = 7.1) was positively associated with the presence of arsenic in well 

water, indicating arsenic ≥ 5 µg/L was predominantly associated with pH > 7.3. An area 

in the northwestern section (8.4 km2) of the county was identified as having more than 50 
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percent likelihood of arsenic concentrations ≥ 5 µg/L. This area was found in the inner 

Piedmont of North Carolina belt and coincide with the mica schist geologic rock.  

The multivariate logistic regression model results indicate that bored and older 

wells are more likely to have a high probability of coliform bacteria. The lack of 

significant association between poorly rated soils for a leachfield and probability of 

having coliform bacteria suggests that contamination is not a result of pathogens in 

household wastewater. There was no association between well depth and probability of 

having coliform in a well suggesting that contamination may come from runoff water. 

Overall, the advanced geocoding approach can be used to improve geocoding 

match rate of input addresses for analytical purposes and develop a GIS database of 

private wells. The analysis of arsenic data in combination with geology, well depth and 

pH can provide preliminary insight into causes of long-term exposure to arsenic in 

groundwater. There was a higher chance of finding coliform bacteria in bored older 

wells. Because older wells (average well age = 19 years) were significantly likely to 

contain coliform bacteria suggest that those constructed before well standards was 

enforced may have a higher issue with coliform bacteria.  

GIS maps can now be leveraged for targeted interventions to affected private 

wells in Gaston County. The present study is applicable to other regions interested in 

developing a GIS database of private wells, and towards advance understanding of spatial 

analysis of water hazards when few samples are taken in the field. This study provides a 

holistic approach that can be adopted for other regions facing similar groundwater 

exposure to environmental hazards in private wells.  
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Environmental hazards 

The World Health Organization (WHO) estimates that nearly one-quarter of all 

global deaths are due to environmental hazards (WHO 2016). Environmental hazards are 

chemical, biological and physical factors which have the potential to pose a threat to 

human health (Briggs, 2000). Examples of environmental hazards can include chemical 

factors such as arsenic in drinking water or soil, biological factors such as the presence of 

respiratory viruses in the air (e.g. Coronavirus), and physical factors related to access to 

clean drinking water, flooding and earthquakes.  

Sometimes, the exposure to the environmental hazards may occur over a prolong 

period before the individual can experience any health effect (Briggs, 2000). For 

example, Li et al. 2013 found that individuals exposed to arsenic levels < 10 µg/L for 

more than 10 years through drinking water experience an increased risk of hypertension 

and type 2 diabetes. Similarly, long term exposure to radiation have been related to 

increase for thyroid cancer and other neoplasms (Schneider & Sarne, 2005). Also, acute 

exposure to environmental hazards can be dangerous to human health. For example, 

direct exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the 

air can cause Coronavirus disease 2019 (COVID-19), which can lead to severe illness and 

death (Dyal, 2020; Heinzerling et al., 2020).   

The conditions that put people at risk for environmental hazards vary over space 

and time, which translates into geographic variation in vulnerability to environmental 

hazards and health effects (Maantay and McLafferty 2011). Individual mobility and 



 

 

 

2 

 

space-time variation of hazards create patterns of exposure and risk. Cromley and 

McLafferty (2011) reiterate that geography can provide valuable insights into how 

environmental factors influence health.  

Health geography attempts to understand the interaction between people and their 

environment, which includes environmental health hazards (Dummer 2008). As a result, 

the relationship between environment and health is conceptualized into three distinct 

links: the environment, the population, and health (Briggs, 2000). To understand the 

interconnected links, it is important to understand that certain environmental factors 

create the hazards. When people encounter hazards and become exposed, their health 

deteriorate. And a population health effects can also be described when the exposed 

individuals live within close geographic areas.  Health problems are then analyzed from a 

spatial perspective to understand how geographic context of a space and connection 

between places plays a major role in shaping environmental risks and health outcomes 

(Macintyre et al. 2002; Cutchin, 2007; Lu and Delmelle 2019).  

Due to the emphasis on space and location, geographic information systems (GIS) 

and spatial methods are uniquely suited to environmental hazards research (Maantay and 

McLafferty 2011). For example, GIS has long been used in mapping the distribution and 

magnitude of environmental hazards (Cromley and McLafferty 2011). Also, GIS and 

spatial methods has been used in evaluating the potential risk to human health, either by 

estimating the numbers of people exposed to the environmental hazard or estimating the 

likely health burden (He et al., 2020) Further, GIS can be used in mapping the actual 

health outcome which can be attributed to exposures to the environmental hazards of 

interest (Meliker et al., 2010). 
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The analysis of environmental hazards that affect water quality is an important 

theme in health geography because of the many health benefits derived from drinking 

clean water. For example, water helps to get rid of waste in the form of urine from the 

body and is essential for cooking food. Arsenic and coliform are two common hazards 

regulated in public drinking water sources due their significant health impacts in both 

acute and chronic exposure in drinking water. For example, arsenic has been identified as 

a known carcinogen that causes several cancers (International Agency for Research on 

Cancer, 2004). On the other hand, coliform in drinking water may indicate that harmful 

pathogens are present, and these microorganisms may cause waterborne diseases 

including cholera, polio and typhoid fever (Centers for Disease Control and Prevention 

(CDC), 2016). 

 Many studies have found high levels of arsenic in groundwater sources compared 

to surface water sources of drinking water (Pippin 2005; Ayotte et al. 2006; Harden et al. 

2009). This is due to groundwater interaction with arsenic sources including the geology. 

On the other hand, whereas coliform occur naturally in the environment in soils and 

plants and in humans and animals, they may be found in groundwater when wastewater 

leaks into the groundwater. The presence of coliform in groundwater may suggests that 

contamination sources are nearby the drinking water (Gerba 2009; Cabral 2010). This 

study is to understand the potential factors and spatial patterns of arsenic and coliform in 

an area with high usage of groundwater for drinking water.  

1.2 Public Water Systems and Private Wells  

Safe drinking water is essential for maintaining good health and reducing 

mortality from consuming untreated water (Centers for Disease Control and Prevention 
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(CDC) 2019). Access to clean water is related to many factors including where you live 

and socioeconomic status. For example, spatial analysis of the Flint water crises in 2014 

showed that exposure to elevated blood lead levels was associated with living in low 

socioeconomic neighborhoods (Hanna-Attisha et al. 2016). Further, access to clean water 

may be impeded by having environmental hazard sources in proximity to water systems 

including public water systems and private wells. The later however, is prone to 

environmental hazards because the source comes from groundwater.   

In order to protect the public from exposure to elevated levels of environmental 

hazards in drinking water in the United States (U.S.), the U.S. Environmental Protection 

Agency (U.S. EPA) under the Safe Drinking Water Act (SWDA) of 1974 must regulate 

public water systems (PWS) (U.S. EPA 2019a). To qualify as a PWS, drinking water 

must be supplied to at least 25 people. Under the SWDA, operators of PWS are required 

to schedule frequent testing of the quality of the water to ensure compliance with the 

maximum contaminant levels (MCL) set by the USEPA, but the regulations do not apply 

to private wells (Tiemann 2014).  

Although most Americans drink water from PWS, about 13 million households 

(45 million Americans) rely on unregulated private wells for drinking water (USEPA 

2019a). Compared to the rest of the U.S., some mid-west states (Michigan, Wisconsin, 

and Illinois), some northeast states (Pennsylvania, New Hampshire, Vermont, and Maine) 

and Montana have more than 25 percent of their population using private wells (Figure 

1.1a). Other states such as Idaho, Wyoming, south Atlantic states (Maryland, West 

Virginia, South Carolina and North Carolina) as well as Minnesota, and Connecticut have 
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from 21 to 25 percent of the population using private wells for drinking water wells 

(Figure 1.1a).  

 
Figure 1.1:The percentage of people using private wells a) per state in conterminous 

United States, and b) per county in North Carolina (Data source: Dieter et al., 2018). 

 

Compared to the rest of North Carolina, most counties in the western, northern 

and southern parts of North Carolina have more than one-fourth of their residents using 

private wells for drinking water (Figure 1.1b). Counties with ≤ 20 percent of population 

using private wells are in the east part of North Carolina (Figure 1.1b). Because private 

wells are unregulated, users are solely responsible for the safety of their drinking water. 
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In North Carolina, new private wells must be tested for bacteria and chemical 

contaminants at the time of construction (MacDonald Gibson and Pieper 2017; North 

Carolina Department of Health and Human Services 2019), and while further 

contaminant testing is encouraged, it is not required.  

Several studies have reported that well owners infrequently test for contaminants 

(Knobeloch et al. 2013; Swistock et al. 2013; Pieper et al. 2015). Yet, private wells are at 

risk of exposure to environmental hazards found naturally in rocks or soils, septic 

systems, hazardous sites, landfills, pesticides and many other sources (USEPA 2015). 

Yet, private well owners are not required to monitor environmental hazards (Fox et al. 

2016).  

On a national scale, the United States Geological Survey (USGS) produces 

reports of groundwater quality every year; however, their analysis does not include data 

from private wells (Maupin et al. 2014). Instead, water quality from sentinel wells is used 

in the report. Sentinel wells are established to maximize the information provided, which 

is different from sampling household wells. For example, numerous sentinel wells may 

surround a hazardous waste site, instead of household residential area. This study is an 

advance towards having a comprehensive understanding of groundwater quality in an 

area with large usage of private wells.   

1.3 GIS-based Surveillance Systems 

Many existing inventories of private wells in the U.S. lack digital geographic 

coordinates, and county-level permitting system often store information in paper copies 

(MacDonald Gibson and Pieper 2017). This creates two main challenges; (1) inability to 
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determine locations of private wells, and by extension (2) inability to characterize the 

spatial and space-time pattern of environmental contaminants. To overcome these 

challenges, linkages of electronic database of permits and laboratory chemical and 

biological test results from private wells are needed. This can be facilitated by using a 

Geographic Information System (GIS).  

GIS-based surveillance of private wells can enable the storing, querying, and 

estimation levels of environmental hazards across an area (Cromley and McLafferty 

2011). This is possible by integrating and analyzing data on sources of contaminants and 

locations of private wells in GIS. Because GIS data of private wells mostly represents 

individual residences, the population affected by the contamination can also be accurately 

estimated. 

 Several studies have utilized GIS techniques in exposure assessment (Christakos 

and Serre 2000; Reif et al. 2003; Sanders et al. 2012; Navoni et al. 2014). For example, 

GIS can be employed in the preliminary steps of delineating a target population in an 

exposure assessment process (Elliott et al. 2001; Cockings et al 2004; Weis et al. 2005). 

Similarly, a population’s exposure to arsenic-contaminated water can be defined using 

geographic boundaries stored in GIS databases. GIS-based techniques can be used to 

specify both potentially exposed and control groups, especially in studies requiring 

individual analysis over an extensive focus area (Elliott et al. 2001; Nuckols et al. 2011). 

Further, web-based GIS tools have been used in volunteer data collection to reduce 

sampling bias and monitor lead (Pb) levels in Flint Michigan (Goovaerts, 2017a, 2017b; 

Abokifa, Katz, & Sela, 2020).  
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These examples further show that GIS can be useful in getting geographic 

coordinates, integrating data in different formats (e.g., satellite image, shapefile) from 

multiple sources, help with planning sampling, monitoring levels of contamination in 

environmental hazards assessments. The research conducted in this dissertation is to 

understand a systematic approach to generate geographic coordinates from paper records, 

integrate multiple datasets on sources and factors that account for the high likelihood of 

arsenic and coliform in wells. As a result, regular update of the data and results in this 

study is an advance towards the creation of a GIS-based surveillance system to monitor 

groundwater quality.  

1.4 Arsenic Contamination 

Arsenic contamination is a major global human health problem, and it is 

estimated that 140 million people are currently at risk of arsenic-related diseases as a 

result of drinking contaminated water (World Health Organization (WHO) 2019). In 

2019, arsenic was ranked as the first substance of priority in the U.S. based on the known 

or suspected toxicity and potential for human exposure (Agency for Toxic Substances 

and Disease Registry (ATSDR) 2020). Among the 45 million Americans using private 

wells, 2.1 million individuals use water above the drinking water arsenic standards of 10 

µg/L set by the USEPA (Ayotte et al. 2017).  

Immediate ingestion of arsenic into the body causes some enzymes to be inactive, 

particularly those involved in cellular pathways, DNA synthesis, and immune formation 

(Ren et al. 2010; Flora and Medicine 2011). Lifetime chronic exposure to arsenic at 

elevated levels (>10 µg/L ) in water has been related to several types of cancers including 

prostate (Benbrahim-Tallaa and Waalkes 2008), lung (Heck et al. 2009; Dauphiné et al. 
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2013), bladder (Steinmaus et al. 2003), kidney (Yuan et al. 2010), and skin (Karagas et 

al. 2015).  

Recent studies have suggested that even low levels of arsenic (≤ 10 µg/L) in 

drinking water may impact fetal development (Bloom et al. 2016; Almberg et al. 2017), 

increase odds of diabetes (Li et al. 2013), and cause heart diseases (Bräuner et al. 2014; 

James et al. 2015). These studies have suggested that lowering the regulatory limit of 

arsenic may reduce the potential effects on human health when consumed at low levels. 

Unnoticed long-term and short-term exposure to arsenic in wells has the potential to lead 

to adverse health outcomes and is a public health concern (Ayotte et al. 2017).  

The spatial distribution of arsenic in well water is often concentrated in distinct 

geographic regions or areas (Sanders et al. 2012). For instance, using data compiled from 

31,000 groundwater samples by the USGS, it is clear that compared to the rest of the 

U.S., the western states have higher levels of arsenic concentrations greater than 10 µg/L 

(Figure 1.2a). Also, parts of the Midwest states have arsenic greater than 10 µg/L in the 

groundwater (Figure 1.2a). From the map (Figure 1.2a)., it appears that arsenic 

concentrations is lower in the southeast of the U.S., but this may be due to the small 

amount of samples collected from this area. For example, the map of North Carolina in 

Figure 1.2b appears to show that most areas have lower than 10 µg/L arsenic 

concentrations in groundwater.  
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Figure 1.2: Arsenic in groundwater for, a) conterminous United States, and  b) North 

Carolina showing the physiographic regions (Data source: Data.Gov, 2020) 

 

Further research in North Carolina using detailed samples indicate that the 

Piedmont of North Carolina, which includes part of Gaston County, has elevated levels of 

arsenic (Pippin 2005; Reid et al. 2005). In aquifers of the Piedmont of North Carolina, 

elevated arsenic concentrations have been related to metavolcanic or metavolcaniclastic 

rocks (Pippin 2005; Harden et al. 2009). Chapman et al. (2013) have also found 

associations between elevated arsenic in well water and metamorphosed clastic 

sedimentary rocks. Arsenic dissolves out of the bedrocks when groundwater levels drop 
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through evaporation (Centers for Disease Control and Prevention (CDC), 2015). 

Chapman et al. (2013) also found that elevated arsenic concentrations were positively 

associated with pH (measure of the acidity - low pH or alkalinity – high pH) in well 

water. When water is at a high pH, the formation of soluble ions can increase arsenic 

mobilization through desorption processes (Ayotte et al. 2003; 2006).  

Well depth has also been identified as a significant predictor of elevated arsenic 

concentrations, particularly for wells within welded tuffs and quartz units and those close 

to transition zones (Kim et al. 2011). The studies above have generated evidence that 

geologic sources, pH, and well depth may influence the arsenic concentration in wells. 

Due to the complexity of geologic units within North Carolina, it is expected that 

geographic distribution of arsenic concentration varies at a local scale of a county. This 

study is to understand the factors that influence arsenic levels in wells and characterize 

areas at risk of having significant high likelihood of detecting arsenic ≥ 0.5 µ/L due to the 

health effects at chronic exposure even at this low level.  

1.5 Coliform Bacteria 

Coliform bacteria are microorganisms found in humans and animals feces and in 

the environment (Farrell-Poe et al. 2010). Although some coliform bacteria may not be 

harmful, generally their presence in drinking water can indicate contamination with 

human or animal waste, and harmful pathogens could also be present (Gerba 2009; 

Cabral 2010; Pandey et al. 2014). Pathogenic microorganisms can cause diseases if the 

water is not adequately treated (Wallender et al. 2014; Beer et al. 2015; Benedict et al. 

2017). Illnesses that result from consuming pathogenic contaminated water includes acute 

gastrointestinal illness, acute respiratory illness, and neurologic illnesses (Benedict et al. 
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2017). Waterborne diseases may even lead to early death (Cortese and Parashar 2009; 

Morgan et al. 2015). For example, Chaudhry et al. (2015) found that the presence of 

hepatitis E in drinking water of pregnant women increased their risk of fulminant 

hepatitis, deaths and may be fatal to the unborn baby. 

 To reduce health risks associated with drinking pathogenic contaminated water, 

public water systems must regularly test for total coliform in the U.S. (USEPA 2017). 

However, no testing is required for private wells even when they are close to pollution 

from septic systems (Kaplan 2014; USEPA 2015), and landfills (Charrois 2010), raw 

manure (Sadeghi and Arnold 2002) and animal grazing (Hubbard et al. 2004; Fairbrother 

and Nadeau 2006).  

Several studies have found that within communities with a high density of septic 

systems, areas with small parcels are more likely to test positive for coliform bacteria in 

well water compared to wells in areas with large parcels (Patterson 1999; Knierim et al. 

2015). This is because putting many leachfields next to each other above the same aquifer 

in an area with small parcels can increase the risk of incomplete removal of contaminants 

and impurities from wastewater in the soil (Yates 1985; McQuillan 2004; Swartz et al. 

2006).   

Furthermore, the removal of contaminants and impurities from wastewater in 

leachfields have been found to be efficient in soils with good purification abilities (Beal 

et al. 2005). The USDA Natural Resources Conservation Service (2019) includes it in the 

computation of soil rating for a leachfield. The soil rating for a leachfield may serve as an 

essential variable to understand pathways of contamination in private wells but has not 
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been yet examined in studies which attempt to predict the probability of having coliform 

bacteria in well water.  

Previous studies have provided valuable insights that well age is positively 

associated with wellhead failures and may serve as a route of entry for surface 

contamination (Gonzales 2008; Sarkar et al. 2012). Moreover, coliform bacteria are more 

likely to occur in bored wells (Conboy and Goss 2000; Olabisi et al. 2008; Maran et al. 

2016). Bored wells may have a higher likelihood of having coliform bacteria present in 

the water because they tap groundwater from the shallow unconsolidated material which 

is encountered by dirty runoff water when it rains (Mesner 2012). This dissertation 

attempts to capitalize on all the various factors to predict the probability that coliform 

bacteria is present in a private well.   

1.6 Study Area 

Gaston County, North Carolina (Figure 1.3B) has a landmass of 364 mi² or 

942km² and is a fast-growing county of nearly 225,000 residents (2019) in the South-

Central Piedmont section of North Carolina. The county is bounded on the east by the 

Catawba River and Mecklenburg County, on the west by Cleveland County, on the north 

by Lincoln County and on the south by York County, South Carolina. Gaston County 

enjoys a temperate climate with moderate temperature variations and humidity.  The 

topography of the County is gently rolling to hilly, with several pronounced ridges. 

Elevations above sea level range from 587 feet (179 meters) in the southeast corner to 

1,705 feet (520 meters). 

The CDC recently reported that 42% of residents in the county use private wells 

(CDC 2019). From 1989, the Gaston County authorities required a well owner to duly be 
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approved a permit before a private well is constructed (The Gaston County Board of 

Health 2011). Noteworthy is that private wells constructed prior to 1989 did not require 

permits as a result most of them may not have the same construction standards introduced 

in the Gaston County well ordinance (The Gaston County Board of Health 2011).  

 Private well permits issued from 1989 to date by the Gaston County Department 

of Health & Human Services (GC-DHHS) are kept as paper copies. Private wells 

information prior to 1989 are unknown because issue of a well construction permit was 

not required. Geocoding the addresses on paper permits is critical for the creation of a 

GIS database of private wells, but the paper nature of the permits presents many 

challenges to the digitization process. Some of the paper permits were particularly 

challenging to digitize and geocode due to damaged paper, missing or non-specific 

address information, directional addresses, and illegible handwriting.  

 



 

 

 

15 

 

 
 Figure 1.3: Map of the study area (A: Gaston County; B: spatial distribution of geocoded 

wells) 

 

These types of challenges present difficulties in the development of GIS databases 

of private wells needed across the U.S. to monitor groundwater quality influenced by 

disparate hazard sources. This study uses a multistage-geocoding approach to determine 

the geographic coordinates of the wells from the paper permits. As shown in Figure 1.3B, 

are the geocoded locations of the private wells. Most of the private wells are found 

outside the urban areas suggesting that rural residents use private wells for drinking water 

compared to urban residents (Figure 1.3B). This is because most urban residents rely on 

public water systems in the county.  

 Gaston County is representative of the many rural counties in the US where a 

variety of pollution sources affect groundwater quality for millions of Americans that use 
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private wells as drinking water source. The results of this dissertation are therefore 

portable to other areas in the country where development of a GIS database is 

foundational to subsequent geographic analysis of environmental hazards in private 

wells.  

1.7 Limitations of Previous Work and Contributions of the Dissertation to GIScience and 

Health Geography  

The application of geographic methods has long been a core component of 

environmental hazards research (Maantay and McLafferty 2011). For example, hazard 

sources are classified by the geography of discharge process using GIS (Cromley and 

McLafferty 2011). Using GIS, the discharge from a single location can be shown as a 

point, and nonpoint discharge sources as lines or area features in GIS (Nuckols et al. 

2004). GIS can be used to locate the origin of water pollution such as arsenic and 

subsequently trace the various pathways of exposure towards determining individual 

exposure levels (Reif et al. 2003; Navoni et al. 2014). Because the reliability of 

geographic analysis depends on the quality of input data (Zandbergen 2009), there has 

been a consistent effort to improve GIS data.  

Further, because studies vary in terms of context – for example, the scale of 

analysis can vary among studies, thus existing methods may need to be retested with new 

data. Nonetheless, new methods evolve over time to advance the field of GIScience and 

health geography. This dissertation identifies gaps in geographic studies in geocoding, 

uncertainty (focus on positional accuracy) and application of existing spatial techniques 

in environmental hazard assessment of groundwater quality in private wells. Further 
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discussion on the research gaps and contributions of the dissertation in the geographic 

field are outlined in the sections below.  

1.8 Geocoding  

Most GIS-based studies geocoded data, global positioning system (GPS) collected 

data and, digitized data from public agencies and aerial images for spatial analysis 

(Cromley and McLafferty 2011). Due to cost and time, the most widely used approach to 

acquire spatial data is address geocoding (Goldberg et al., 2013). Address geocoding is 

the process of converting location information in the form of addresses into geographic 

coordinates of longitude and latitude (Goldberg et al. 2007). The method is available in 

most commercial GIS software’s and as a result, the individual address is becoming a 

standard level of analysis for spatial investigations such as exposure assessment (Meliker 

et al. 2010), healthcare services (Delmelle et al. 2013) and identifying vulnerable areas of 

diseases (Owusu et al. 2018).  

Because of the dependence on address geocoding for analytical purposes, 

decisions made based on such research may be impacted by having many ungeocoded 

records (Zimmerman, 2008). Ha et al.  (2016) found that excluding ungeocoded records 

in the analysis reduces the sample size and may weaken the generalization of the 

analytical results due to selection bias. Many geographers have approached this problem 

from different viewpoints. Hart and Zandbergen (2013) have suggested the number of 

geocoded records can be improved by varying the spelling sensitivity of street names 

during geocoding. A drawback of this approach may be potentially selecting a wrong 

match address. Another widely used approach involves combining different reference 

datasets for geocoding the input addresses. Murray et al. (2011) combined street network 
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and parcel data in geocoding to increase the match rate of the addresses of sex offenders 

in Ohio from 80 to 90 percent. This multi-stage geocoding approach involves arranging 

the reference data (i.e., rooftop centroids, parcel, and street networks) in a hierarchical 

order based on their spatial accuracy (Sonderman et al. 2012). Goldberg (2011) has also 

suggested that when only the street network data are available for geocoding, one can 

search for the probable address within a set of nearby candidates. This approach can be 

performed by utilizing online geocoding systems and through the manual placement of 

geocodes within GIS (McDonald et al. 2017).  

Although these approaches have contributed to strategies that can improve the 

geocoding match rate, they fail to explore problems that could be inherent in the input 

addresses. For example, none of the studies proposed an approach to deal with missing or 

incomplete addresses. Data for geocoding often contain addresses and may also have 

additional attributes that can be linked to other reference datasets (e.g., parcels) to extract 

address information. This process can be facilitated by using a data-matching algorithm 

called probabilistic record linkage (PRL). PRL is used to match two datasets with similar 

attributes by assigning weights based on the degree of similarity (Randall et al. 2013). 

High weights suggest a higher probability of a match (Schmidlin et al. 2015). PRL has 

been used in health services research on birth outcomes and hospitalization records 

(Bentley et al. 2012). In this dissertation, the missing address on the paper permits were 

re-engineered using PRL. Because the utility of PRL could lead to improving input 

addresses, in this dissertation, the hypothesis is that it would translate into improving the 

geocoding match rate of private wells. Achieving a high match rate would mean that 

selection bias is reduced when results are used in further analysis, such as sending field 
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teams to gather data on coliform bacteria in this dissertation. Reducing the gap in 

knowledge with regards to improving input addresses from public records is a critical 

contribution of this dissertation to GIScience. 

1.8.1 Uncertainty 

An emerging theme in the field of geography is the concept of uncertainty. 

Uncertainty is the difference between the digital representation of an object in the real 

world and the object itself (Zhang and Goodchild 2002). Goodchild (2009) identified 

sources of uncertainty to include errors, accuracy, and vagueness in definitions used in 

the compilation of geographic data. Many geographers have recognized that output from 

GIS based address geocoding has inherent error when compared to the actual position of 

homes and property boundaries on the ground (Bonner et al. 2003; Ward et al. 2005; 

Zimmerman et al. 2007; Zandbergen 2009; Jacquez 2012;). Error assessment in this 

situation is also referred to as positional accuracy and tends to differ by the reference 

dataset used in geocoding. The three main types of reference datasets used to convert an 

input address into longitude and latitude are rooftop points (i.e., rooftop centroid), parcels 

(i.e., parcel centroid), and street networks (Zandbergen 2008). As shown in  Figure 1.4, 

the variation in the reference datasets, which translates to differences in the placement of 

the final geocoded output – result in differences in positional accuracy. 
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Figure 1.4: The 3 types of reference datasets:  rooftop centroid in blue (most accurate), 

parcel centroid (reasonably accurate) and street centerline (less accurate) 

 

Positional accuracy has been examined for cancer records (Rushton et al., 2006), 

locations of air traffic-related air pollution (Whitsel et al., 2004, Zandbergen, 2007), and 

sex-offenders records (Zandbergen and Hart 2009). Mazumdar et al. (2008) found that 

disease rates were poorly characterized when street geocodes were used compared to 

rooftop geocodes. Jacquez (2012) further iterates that differences in positional accuracy 

for different geocoding techniques in environmental health analysis lead to exposure 

mischaracterization. This can affect the reliability of spatial analysis and modeling 

estimates which are critical in decision making (Cressie and Kornak 2003; Zandbergen 

2009). Presently, there are few literatures on predicting geocoding errors for private 

wells. This gap in knowledge is critical since the magnitude and variance of geocoding 

positional accuracy has also been found to vary geographically, with urban areas having 
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better accuracy than in rural areas (Cayo and Talbot 2003; Zimmerman and Li 2010; 

Rosu and Chen 2016).   

Although, Owusu et al. (2017) examined positional accuracy of private wells in 

Gaston County, and found that positional accuracy was high for parcel geocodes 

compared to street geocodes, the analysis was for only 287 wells and the true location 

was assumed to be rooftop geocodes. By the time of this dissertation GPS coordinates 

were used as the true location to determine positional accuracy of rooftop, parcel and 

street geocodes for 1075 private wells (sample size in October 2019) in Gaston County. 

The findings from this study can inform the choice of reference data to use to improve 

positional accuracy and contributes new evidence of uncertainty in GIScience.  

1.9 Geographic Approaches in Environmental Hazard Assessments 

In environmental hazards assessment, geographic methods can enhance 

understanding on areas at risk, exposure populations and hazard sources. Geographic 

approaches for estimating levels of environmental hazards often involve spatial modeling 

and geostatistics (Gaus et al. 2003; Goovaerts et al. 2005; Meliker et al. 2008; Kim et al. 

2011; Dummer et al. 2015). For example, Sanders et al. (2012) used a spatial model to 

estimate arsenic concentrations at the county-level in North Carolina. When the arsenic 

concentration is reported below a detection limit or reporting limit (e.g., < 5 µg/L)  many 

studies have utilized geostatistical approach such as indicator kriging to estimate the 

occurrence of arsenic (Goovaerts et al. 2005; Lee et al. 2008; Goovaerts 2009; Hassan 

and Atkins 2011; Antunes and Albuquerque 2013). However, this approach does not 

incorporate confounding factors.  



 

 

 

22 

 

Some studies have utilized logistic regression with confounding factors (geology, 

well characteristics, hydrochemical factors) to predict the presence of arsenic at or above 

the reporting limit (Ayotte et al. 2006; VanDerwerker et al. 2018), but ordinary logistic 

regression does not account for spatial effects. Because arsenic values in an area may 

vary, ignoring spatial effects may result in a biased and under-performing model (Bo et 

al. 2014). Autologistic regression could be used to alleviate this problem (Griffith 2004; 

Dormann 2007; Fu et al. 2013; Bo et al. 2014). 

 An autologistic regression is a model that incorporates spatial autocorrelation 

(autocovariate) variable into a logistic regression model to obtain robust inference of the 

dependent variable (Griffith 2004; Dormann 2007; Fu et al. 2013; Bo et al. 2014). The 

autocovariate variable introduced in an autologistic regression reflects the first law of 

geography, suggesting near things are more related than distant things (Tobler 1970; 

Tobler 1979; Miller 2004). Although the autologistic regression has been applied to study 

distribution in plant species (Wu and Huffer 1997), hand, foot and mouth disease (Bo et 

al. 2014), we did not find a study of any environmental contaminant. In this dissertation, 

the autologistic regression was used to predict the presence of arsenic at or above 

detectable limits (≥ 5 µg/L). 

Furthermore, in this dissertation, a non-spatial multivariate logistic regression 

model would be used to predict the probability of having coliform bacteria in wells. GIS 

maps would also be used to supplement the results of the multivariate logistic regression 

modeling to understand the extent of the problem of water contamination in private wells 

which might have been disjointed if only one approach was used. Overall, the 
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contributions of this dissertation to the field of GIScience and health geography are 

presented in three research objectives discussed in the next section. 

1.10  Research Objectives  

The dissertation emanates from a broader project (Healthy Wells) to develop an 

accessible digital database of private wells for Gaston County, North Carolina. Free water 

sampling for coliform bacteria was administered as part of the Healthy Wells project. 

Results of arsenic samples were obtained from the North Carolina Department of Health 

and Human Services (NCDHHS), Division of State Laboratory of Public Health.  The 

goal of this dissertation is to incorporate multilevel geocoding and spatial modeling 

techniques to predict the risk of arsenic and coliform bacteria in private wells. To achieve 

the goal, the research objectives and hypotheses are stated below. 

1. Develop an enhanced approach to geocode private wells data and evaluate the 

positional accuracy of the geocoded data from field-collected global positioning 

system (GPS) coordinates.  

Hypothesis 1. Using multiple reference datasets, probabilistic record linkage (data 

matching technique) in a multi-stage approach may not improve geocoding match rate. 

Hypothesis 2. There is no variation in the positional accuracy of rooftop, parcel and 

street geocodes of private wells. 

2. Evaluate if the geology, pH, and well depth can improve our ability to predict the 

presence of arsenic at or above detectable levels (≥ 5 µg/L) found in private wells 

using an autologistic regression model. 



 

 

 

24 

 

Hypothesis 1. The geology, pH and well depth cannot predict the likelihood of arsenic 

being present in wells at or above detectable levels. 

Hypothesis 2. There are no discernable spatial patterns in the probability of arsenic being 

present in wells.  

3. Identify whether the type of well, well age, well depth, parcel size, and soil 

ratings for a leachfield can predict coliform bacteria presence in wells using 

multivariate logistic regression. 

Hypothesis.  The type of well, well age, well depth, well, parcel size and soil rating for a 

leachfield cannot predict the probability of coliform bacteria being present in wells. 

1.11 Contributions 

This dissertation attempts to develop a novel approach to geocode addresses even 

when there missing or incomplete information. The findings can be adopted to increase 

geocoding match rate while ensuring most geocodes have good positional accuracy in the 

development of GIS data of private wells. The geocoding approach and GIS data were 

critical for creating predictive models for arsenic and coliform bacteria. The three 

objectives inform and complement each other – filling in knowledge gaps that would be 

apparent if each study was treated separately. In objective 1, a systematic approach to 

develop a GIS database of private wells with good positional accuracy is presented.  

In objective 2, the geocoding approach developed in objective 1 is used to obtain 

geographic coordinates of arsenic samples for samples with no GPS coordinates. Data on 

geology, well depth and pH were evaluated to predict arsenic at or above detectable 

levels using a spatial autologistic model. This model has not been applied to study 
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environmental hazards with many non-detects and this dissertation bridges this gap in the 

literature. In objective 3, using the GIS data obtained from objective 1, student teams 

were sent to collect water samples and test for the presence of coliform bacteria. . The 

percentage of positive samples with a 1 kilometer is assessed to determine spatial patterns 

of contamination. The use of GIS maps and multivariate logistic regression modeling in 

the analysis of the coliform data can complement each other to understand the extent and 

causes of coliform bacteria in wells. 

This dissertation provides a framework to develop an accurate GIS database, 

while testing and evaluating the utility of spatial autologistic regression for the analysis 

of environmental contaminants with samples below a reporting limit. In addition, 

complementing multivariate logistic regression modeling with GIS maps provides an 

effective and informative approach to answer questions on where, why and what factors 

contribute to the presence of coliform bacteria in wells. Although Objectives 2 and 3 are 

not directly linked, they both offer a good overview of the water quality in private wells 

and reiterate the need for clear and accurate methods for digitizing paper records.  

1.12 Outline of the Dissertation 

The remainder of the dissertation is organized as a collection of three papers. 

Each article addresses an objective using different methods. As shown in Figure 1.5, the 

structure of the dissertation showing the major processes to achieve each objective.   
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Figure 1.5: Workflow for the various components in the three objectives 

 

In Chapter 2, multiple reference datasets are used to develop a multi-stage 

geocoding approach to geocoded permits data. Positional accuracy of the geocodes are 

evaluated from field collected GPS coordinates. Kriging interpolation are then used and 

results for rooftop, parcel and street positional accuracy are compared. The manuscript 

detailing the methods and results is currently under review in the Journal of 

Environmental Health.  
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In Chapter 3, the multi-stage geocoding approach developed in chapter 1 was 

used to extract geographic coordinates for arsenic data. Well depth information is then 

merged from the permit data, but for those with missing depth, the depths are estimated 

from an interpolation surface. Next, the geology information is appended to the arsenic 

samples which also have pH and well depth information. Then, the geology, well depth, 

and pH are examined using autologistic regression model to predict the probability of 

arsenic being present at or above detectable levels. Model results are examined for spatial 

patterns using kriging. The manuscript detailing the methods and results is under review 

in the Journal of Health and Exposure.  

In Chapter 4, coliform bacteria samples are merged with well attributes (well age, 

well depth, type of well), soil ratings for a leachfield, and parcels. This data serves as 

input parameters to predict the probability of coliform being present using multivariate 

logistic regression Chapter 5 provides the overall conclusion from the three manuscripts, 

how the studies are related, recommendations, and future research directions.  
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CHAPTER 2: A MULTI-STAGE GEOCODING APPROACH FOR THE 

DEVELOPMENT OF PRIVATE WELLS DATABASE, GASTON COUNTY, NORTH 

CAROLINA1 

 

Abstract 

Many existing inventories of private wells in the United States lack digital geographic 

coordinates, and county-level permitting system often store information in paper copies. 

We developed a GIS database of private wells from paper permits issued since 1989 in 

Gaston County, North Carolina (n = 8,721) using a multi-stage geocoding approach. We 

then assessed the positional accuracy of the geocodes from the field-collected GPS 

location of these wells. In total, 98.9% of permits were successfully geocoded, and 12.3% 

were secured with GPS devices. There were significant differences (p < 0.05) in 

positional accuracy for rooftop, parcel, and street geocodes of private wells in the GIS 

database, but positional accuracy was high for rooftop geocodes. Our approach is 

portable to other regions interested in the development of a digital private wells inventory 

digitally with GIS to aid in monitoring water quality and planning accurate public health 

interventions. 

 

Keywords: Private well, geocoding, GIS, database, positional accuracy 

 

 
1  Owusu, C., Delmelle, E., Tang, W., Silverman G.S, Dye, S. Under review in Journal of 

Environmental Health 
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2.1 Introduction 

Although most Americans drink water from public water systems, about 13 

million households (45 million Americans) rely on unregulated private wells for drinking 

water (United States Environmental Protection Agency, 2019). Private wells use 

groundwater which is prone to contamination. Sources of pollution to groundwater 

include leaks from coal ash ponds (Huggins, Senior, Chu, Ladwig, & Huffman, 2007), 

underground storage tanks (Fabro, Ávila, Alberich, Sansores, & Camargo-Valero, 2015), 

landfills, septic systems (Schaider, Ackerman, & Rudel, 2016), and excessive fertilizer 

application and animal waste (Messier, Kane, Bolich, & Serre, 2014). Groundwater 

contamination can also originate from native rocks. For example, the native rocks in the 

Piedmont region, including Gaston County, North Carolina, is associated with high levels 

of arsenic in groundwater (Harden, Chapman, & Harned, 2009; Pippin, 2005). 

In North Carolina, local health departments issue permits, and test for bacteria and 

inorganic chemical contaminants after the construction of a new private well (MacDonald 

Gibson & Pieper, 2017). Copies of the permits are kept on file by most counties in paper 

formats. For example, Mecklenburg County (Mecklenburg County Health Department, 

2019) has developed digital geographic information system (GIS) database showing the 

geographic locations of their private wells, but for many other counties this is 

unavailable. The lack of geographic coordinates of private wells pose challenges in 

modeling exposure to contaminants with GIS and communicating risk to well users.  

In order to develop a GIS database of private wells, geocoding techniques can be used to 

convert location information in the form of addresses into geographic coordinates of 

longitude and latitude (Owusu, Lan, Zheng, Tang, & Delmelle, 2017). Geocoding an 
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address requires spatially explicit reference datasets of road, parcels, or rooftop (i.e., 

rooftop centroid) to convert the address information to longitude and latitude of the 

reference data. These reference datasets also define the three-geocoding techniques 

available in GIS.  

Two measures of geocoding data quality that are well recognized in the literature 

are match rate and positional accuracy (Goldberg, Wilson, & Knoblock, 2007; Zhan, 

Brender, Lima, Suarez, & Langlois, 2006). Geocoding match rate is the number of 

successful matched results, and it depends on the availability of up-to-date reference data 

(Goldberg et al., 2013). An approach to improve geocoding match rates is to combine 

multiple reference datasets and use hierarchical rules in a multi-stage approach. For 

instance, multi-stage geocoding using street and parcel datasets improved geocoding 

match rate of sex offenders in Hamilton, Ohio, to 90 percent (Murray, Grubesic, Wei, & 

Mack, 2011). Sonderman et al. (2012) incorporated multiple base-references from 

commercial vendors and United States Postal Services address points reference data to 

improve geocoding match rate to 99 percent. The geocodes can also be placed manually 

when nearby features are known (Goldberg, 2011; McDonald, Schwind, Goldberg, 

Lampley, & Wheeler, 2017). However, this approach is time-consuming.  

Most studies employing geocoding suffer from incomplete or missing input data. 

A data-matching algorithm called probabilistic record linkage (PRL) can be used to re-

engineer addresses, as long as secondary information (e.g., name, parcel number) of the 

records are provided. PRL is used to match two datasets with similar attributes by 

assigning weights based on the degree of similarity (Randall, Ferrante, Boyd, & 

Semmens, 2013). High weights suggest a higher probability of a match (Schmidlin, 
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Clough-Gorr, & Spoerri, 2015). PRL has been used in health services research of birth 

outcomes and hospitalization records (Bentley, Ford, Taylor, Irvine, & Roberts, 2012), 

but the utility to improve geocoding match rates by re-engineering residential addresses 

has not yet been tested or evaluated. The application of PRL to improve match rates is 

critical since excluding non-geocoded records will likely reduce sample size and weakens 

the generalization of the analytical results due to selection bias (Ha et al., 2016; 

Zandbergen, 2009; Zimmerman, 2008). 

Another metric for the quality of geocoding results is positional accuracy, and it 

refers to the distance between the position of the geocode and its true location (Bonner et 

al., 2003; Ward et al., 2005). The smaller the error distance, the higher the accuracy of 

the geocode. Differences in positional accuracy in environmental health assessments may 

lead to exposure mischaracterization and can affect the reliability of spatial modeling 

estimates (Zandbergen, 2009). For instance, when geocoded data of contaminated private 

wells are analyzed, larger error distances can affect the estimate for contaminants 

characterized by small ranges beyond which spatial autocorrelation vanishes. 

   In this article, we describe a multi-stage geocoding approach used to develop a 

GIS database of private wells. We then assess the positional accuracy of the geocodes in 

our GIS database using field-collected GPS locations of private wells. The study provides 

a novel approach to increase geocoding match rate that goes beyond using multiple 

reference datasets to implementing PRL technique. The approach is portable to other 

counties in need of a digital database of private wells to aid in spatial modeling of 

exposure to contaminants, monitoring water quality, and planning public health 

interventions.   
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2.2 Study Area and Data 

Private wells data were retrieved from Gaston County, North Carolina (Figure 

2.1). Since 1989, a total of 8,721 permits have been issued by the Gaston County 

Department of Health & Human Services (GC-DHHS). A typical permit contains a 

unique permit number, information on the well owner, type of well, size, depth, casing 

depth, residential address, parcel tax location codes, and site sketch of the well. Some of 

the historical paper permits were particularly challenging to digitize and geocode due to 

damaged paper, missing address information, directional addresses, and illegible 

handwriting. 

 
Figure 2.1: a) Location of geocoded private wells in Gaston County (Geocoding approach 

described in the methodology section) 
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2.3 Reference Data 

Spatially explicit reference datasets for rooftop centroid, parcels, and road 

networks from Gaston County were retrieved from a variety of sources (Table 2.1). Other 

non-spatial reference data included deed records, property tax information, paper copies 

of laboratory test results for total coliform, and inorganic chemical laboratory test results. 

The paper copies of total coliform and inorganic chemical laboratory test results were 

limited to private wells since 2008 when North Carolina mandated laboratory testing 

once a new well is constructed (North Carolina Department of Health and Human 

Services, 2019).  

 Table 2.1: Reference data and source used in this study 

Reference Data Year Source 

Rooftop 

centroid data 
2016 Gaston County IT-GIS Department 

Parcel data 

2012, 

2014, 

2015, 

2016 

Gaston County Department of Planning & 

Development Service 

County roads 
2002, 

2016 
Gaston County IT & GIS Department 

Tigerline roads 
1992, 

2000 
U.S. Census Bureau 

Copies of 

Coliform and 

Inorganic 

chemical test 

results 

2008 - 

2016 

Gaston County Dept. of Health & Human 

Service 

Deeds records 

2012, 

2014, 

2015, 

2016 

Gaston County Dept. of Planning & 

Development Service 

Property tax 

information 

2012, 

2014, 

2015, 

2016 

Gaston County Dept. of Planning & 

Development Service 
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2.4 Parsing and Address Cleaning 

Incomplete address information and lack of address standardization may prohibit 

geocoding automation (Rushton et al. 2006; Goldberg 2011; Murray et al. 2011; 

Sonderman et al. 2012; Rosu and Chen 2016). Initial steps were taken to standardize and 

evaluate the raw addresses. The raw addresses were parsed into usable components, 

including street number, prefix direction (e.g., “S”), street name, type, and suffix 

direction (e.g., “SE”) when available. Common data entry errors such as (e.g., STRET”, 

“CIRCL”) were corrected. Other manual data cleaning strategies such as sorting and 

filtering by common street names helped correct typographical errors. However, more 

than half of the input permit addresses were postal box entries (e.g., “PO Box 101), 

missing, or directional descriptions. 

2.5 Methodology 

2.5.1 Multi-Stage Geocoding 

Due to the inherent uncertainty of some input permit addresses, we developed a 

multi-stage geocoding to increase the number of successfully geocoded private wells. The 

major components were the input permit and reference data, the geocoding procedure, 

and output geocoded private wells (Figure 2.1). The geocoding procedure consisted of 

two stages: automation and improvement. 
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Figure 2.2: The multi-stage geocoding workflow for private well permits in Gaston 

County, NC 

 

2.5.2 Automation Stage 

During the automation stage, rooftop, parcel, and road geocoding techniques were 

combined hierarchically based on their spatiotemporal accuracy into a composite address 

locator (using ESRI ArcGIS 10.6). An address locator is a model used to create geometry 

for input addresses during geocoding. In the composite address locator, the input permit 

addresses would first attempt to geocode them with rooftop geocoding. Unsuccessful 

input addresses were then considered at the parcel geocoding level. However, when the 

input addresses were not geocoded in parcel geocoding, they were considered for street 

geocoding. The input permit addresses that were not geocoded after the first geocoding 

trial were considered in the improvement stage (Figure 2.2).  

2.5.3 Improvement Stage 

The first approach in the improvement stage was to replace the 

missing/incomplete permit addresses with re-engineered addresses from copies of total 
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coliform or inorganic chemical tests that were linked using the unique permit numbers. 

The new re-engineered addresses were then transferred to the automation stage to be 

geocoded using the composite address locator. Permits not geocoded were then 

considered for the PRL approach.  

PRL data matching technique was implemented (using LinkageWiz TM 2016) as a 

second approach in the improvement stage to link the permit data (source) with the parcel 

data (reference). Parcel attributes such as tax location codes, parcel owner information 

(surname, middle name, first name), parcel street name, parcel size, lot number, and 

subdivision name were paired with corresponding attributes available on the private well 

permits. PRL results are evaluated by the weight scores associated with a potential match 

based on the field agreements, disagreements, and missing values during the linkage 

(Bentley, Ford, Taylor, Irvine, & Roberts, 2012; Randall, Ferrante, Boyd, & Semmens, 

2013; Schmidlin, Clough-Gorr, & Spoerri, 2015). The weights are derived from the 

logarithm of the frequency ratio of the common attributes being examined and is 

expressed as; 

𝑊𝑒𝑖𝑔ℎ𝑡 = log2 (
Frequency of agreement in LINKED pairs 𝑖𝑛 𝑠1 ,𝑟1 

Frequency of agreement in UNLINKED pairs in 𝑖𝑛 𝑠1 , 𝑟1 
)          (1)             

with 𝑠1 , 𝑟1  as the common attributes in the permit and parcel data, respectively. 

The total weight scores were evaluated for potential and false-positive linkages. A 

higher value corresponds to a good potential match, while a low value may signal a false 

match. We accepted linkage pairs with weight scores above 30 because there was a 

natural break in the distribution of weights beyond the score, but manually reviewed 

those below this score before a potential linkage was accepted. The corresponding 
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addresses associated with the parcels were used to replace the incomplete or directional 

addresses in the permit data. Re-engineered addresses were transferred back to the 

automation stage. Permits not geocoded were transferred to the final approach in the 

improvement stage.  

The final approach was to manually inspect only the permits that were not 

geocoded after PRL by comparing them with information in deeds, and parcel data to 

trace any record of change in ownership that could help identify the addresses on these 

permits. Once a permit was found to have corresponding information in the deed or 

parcel data during the manual inspection, the incomplete or directional address on the 

permit was replaced accordingly with the address in the deed or parcel data. The new re-

engineered addresses were then transferred to the automation stage to be geocoded using 

the composite address locator. Permit addresses not geocoded after this approach were 

excluded from the GIS database of private wells.  

2.5.4 Field Data Collection of GPS Coordinates of Private Well  

We organized students from University of North Carolina at Charlotte (UNC 

Charlotte) into a two-member team to get the coordinates at the actual well sites (using 

Mesa TM handheld GPS) and compare them to the geocoded locations. In order to 

minimize the drive-time to the locations, we used the database and GIS network analysis 

to develop optimized route schedules for each team. In some instances, student teams 

also sampled private wells along a street when the route schedules were not appropriate. 

The county’s environmental health department provided the necessary training to the 

students, and in collaboration with UNC Charlotte coordinated the field data collection of 

the private well locations, and also offered free water sampling for total coliform. Using 
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the unique permit identification numbers assigned when it is issued, the field determined 

GPS coordinates data were merged to the GIS database of private wells.  

2.5.5 Assessing Positional Accuracy 

The error distance between the field measured GPS coordinates and geocodes 

obtained from rooftop, parcel, and street geocoding of the private wells were calculated 

as an indicator of positional accuracy. Because only 12.3% of well owners agreed to 

securing the GPS coordinates of their private well, for this study, we used kriging 

interpolation techniques to estimate the positional accuracy of the geocodes at unsampled 

locations. Kriging is based on the geostatistical theory of regionalized variables, which 

states that variables in an area exhibit both random and spatially structured properties 

(Goovaerts, 2000; Pyrcz & Deutsch, 2014). The resulting interpolated surface obtained 

from kriging error distances were mapped and visually compared to ascertain the 

geographic variation in positional accuracy of rooftop, parcel, and street geocodes.  

The skewed error distances for rooftop, parcel for street geocoded results were 

log-transformed before kriging so the data were normally distributed, and the results later 

back-transformed for interpretation purposes. We fitted the kriging semivariograms with 

an exponential model because it yielded the smaller sum of squared errors for rooftop and 

parcel error distances. Although the sum of squared errors for street error distances was 

small for Gaussian model fitting, we used an exponential model in order to compare the 

predictions for rooftop, parcel, and street geocoding. 
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2.6 Results 

From October 2016 to September 2019, a total of 8,721 permits were digitized. 

Only 3,207 (38.0%) of these permits were geocoded automatically at the first attempt. 

The remaining permits had incomplete or missing address information. The improvement 

stage approaches to re-engineer permit addresses yielded an additional 5,298 (60.7%) 

geocodes in the private wells GIS database. Individually, PRL added more re-engineered 

addresses (2,054 (23.6%)) compared to substituting addresses on copies of laboratory 

reports of coliform or inorganic chemical tests (1,917 (22.0%))  and manual inspection 

interventions (1,327 (15.2%)) (Table 2.2). A total of 105 (1.1%) of the private well 

permits were not geocoded because of paper damage, illegible handwriting, or directional 

addresses. Geocoded permits were more likely to be at the rooftop level (92.3%) 

compared to parcel (3.5%) and street level (3.1%). 

Table 2.2: Summary of results for different geocoding stages. 

 

Rooftop 

geocoding 

Parcel 

geocoding 

Street 

geocoding 

Total 

Stage 
n (%) n (%) n (%) n (%) 

Original permit 3115 (35.7) 46 (0.5) 157 (1.8) 

3318 

(38.0) 

Re-engineered 

addresses     

From copies of 

coliform/inorganic 

chemical test 1824 (20.9) 14 (0.2) 79 (0.9) 

1917 

(22.0) 

PRL 1875 (21.5) 179 (2.1) -- 

2054 

(23.6) 
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Manual inspection 1235 (14.2) 59 (0.7) 33 (0.4) 

1327 

(15.3) 

 Total match = 8,616 (98.9) 

PRL = Probabilistic record linkage 

2.6.1 Positional Accuracy 

From October 2017 to September 2019, 1,075 households agreed to have their 

private well locations secured with GPS. The field teams reported reasons for not 

securing the GPS coordinates as: 1) owners were not at home (n = 3,877); 2) property 

could not be entered because of notices such as no trespassing, beware of dogs or private 

property (n = 2,039); 3) residents declined to participate (n =1,083); 4) residents were at 

home but unavailable, residents asked to have their well locations taken later (n = 240); 

house was serviced by city water (n = 107) and house was on community well (n = 31).  

A total of 164 well owners requested not to have their well locations identified by GPS. 

Positional accuracy was statistically different (p < 0.05) for rooftop, parcel, and 

street geocodes. The rooftop was best (mean = 26m, standard deviation = 15 m), followed 

by parcel (mean = 44m, standard deviation = 44 m), and then street geocodes (mean = 

72m, standard deviation = 61 m).  Median positional accuracy for rooftop, parcel, and 

street geocoding were 24m, 32m and 52m, respectively. The cumulative frequency 

distribution (Figure 2.3) shows that 95% of the rooftop positional accuracy was within 52 

meters, with 95% of parcel positional accuracy within 130m, and 95% of the street 

positional accuracy within 190m. 
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Figure 2.3: Cumulative distribution of positional accuracy (in meters) of rooftop, parcel, 

and street geocoded locations of private wells to GPS measured positions (n = 1,075). 

 

The kriging maps for rooftop geocodes (Figure 2.4a), parcel geocodes (Figure 

2.4b), and street geocodes (Figure 2.4c) show geographic variations indicating 

differences in positional accuracy across the county. For example, whereas the map for 

rooftop shows that positional accuracy does not exceed 60m, the parcel kriging map 

shows that some parts of the county have positional accuracy greater than or equal to 

120m. Cross-examination of parcel sizes in these sections revealed that the area has 

larger parcel sizes (mean = 28,059 m2) than in other parts of the county. Nonetheless, the 

kriging map for street positional accuracy shows more areas with values greater than or 

equal to 120m. 
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Figure 2.4: Kriging-based prediction of private well positional accuracy from geocodes 

obtained from: a) rooftop, b) parcel, and c) street geocoding techniques in the GIS 

database, Gaston County.   

 

2.7 Discussion 

Developing a GIS database of private wells presented several challenges; the key 

among them was dealing with paper permits and improving the geocoding match rate 

from permits with missing or incomplete address. This was resolved by identifying 

missing addresses from other data sources such as laboratory test results. Additionally, 

our PRL approach connected information such as tax location codes on private wells 

permits with GIS parcel data to help identify missing addresses. These approaches 

improved our geocoding match rate from 38.0% to 98.9%. Our high match rate helps 

show the potential of this approach to other institutions interested in developing a GIS 

database of private wells. 
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Although we could not geocode 105 (1.1%) permits into the GIS database, the 

high geocoding match rate was enough to meet the health department's needs of showing 

the geographic locations of their private wells. Information on coliform or chemical 

measurements at the well can be integrated into the GIS database to aid in monitoring 

water quality. For example, the developed digital database of private wells allows 

identification of potentially contaminated wells from an easily accessible dataset.      

Our positional accuracy assessment shows that rooftop geocoding outperforms 

parcel and street geocoding in the spatial representation of a private well. This may be 

because rooftop geocoding outputs are to the centroid of a building rooftop, and private 

wells are mostly constructed near the residence. In environmental exposure assessment, 

GPS coordinates serve as the best spatial data in modeling exposure to the private well 

(Cromley & McLafferty, 2011). However, when the GPS coordinates are unavailable, 

rooftop geocodes can be used.   

A limitation of the multi-stage geocoding approach employed in this study may 

result from inputting inaccurate addresses from existing permits. For example, data entry 

errors from the paper permits could have a significant impact on the final geocoded data. 

The PRL approach also is limited by the availability of common attributes in the permit 

and parcel data. Even though PRL application is popular in health services research, 

privacy issues may arise from linking data with sensitive information (Schmidlin, 

Clough-Gorr, & Spoerri, 2015). In this study, only publicly available parcel data were 

used as a reference during the linkage. The major strength of our approach was the use of 

multiple reference datasets and techniques to augment the geocoding rate of permit 

addresses in the development of a GIS database of private wells.  
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2.8 Conclusions 

An accurate private well GIS database is critical to evaluations of local 

environmental factors associated with groundwater contamination and threats to rural 

drinking water quality. We were successful in creating such a database for Gaston 

County, North Carolina, using a multi-stage technique that should be practical for many 

health departments or other agencies currently limited to paper file records of domestic 

wells. We built our database first from paper files that often were damaged, missing 

address information, using directional addresses, or illegible. We supplemented this 

initial information by obtaining addresses from well water testing done on a limited basis 

by the State laboratory. Lastly, for those locations for which reliable addresses were still 

unavailable, we employed probabilistic record linkage, and used three distinct geocoding 

databases: rooftop, parcel, and street. An important finding was that rooftop geocoding 

was the most accurate technique, negating the need for using the other two databases for 

most foreseeable applications. 

Potential applications of the database include the production of maps showing the 

locations of private wells and identifying the relative risk of contamination on an areal 

basis. This information could be useful to support decision-making, for instance, when to 

alert county residents of the risks posed by contaminated groundwater in their vicinity, or 

where to conduct additional sampling in areas deemed at risk. A variety of other public 

health interventions could be facilitated through the spatial identification of local wells, 

and the accessibility of digitally available data.  

 



 

 

 

45 

 

CHAPTER 3: A SPATIAL AUTOLOGISTIC MODEL TO PREDICT THE PRESENCE 

OF ARSENIC IN PRIVATE WELLS ACROSS GASTON COUNTY, NORTH 

CAROLINA USING GEOLOGY, WELL-DEPTH, AND PH2 

 

Abstract 

Chronic exposure to arsenic-contaminated drinking water is detrimental to human health. 

We develop an autologistic regression model to evaluate if the geology, pH, and well 

depth can improve our ability to predict the presence of arsenic at and above detectable 

levels (≥ 5 µg/L) found in private wells. We use arsenic samples measured in private well 

water across Gaston County, North Carolina, from 2011 to 2017. We use kriging to map 

the probability of arsenic at detectable levels across Gaston County. Arsenic at detectable 

levels was reported at 78 private wells. The median pH for samples containing detectable 

levels of arsenic was 7.3 and for samples with arsenic < 5 µg/L was 7.1. Our spatial 

autologistic model suggests that arsenic at detectable levels is positively associated with 

pH. In addition, private wells set in Mica schist (ꞒZms) were associated with arsenic, 

suggesting a local-scale geologic source influence of arsenic in the county. Our kriging 

map shows that the northwestern section of the county has more than a 50 percent 

probability to have arsenic at detectable levels. In conclusion, based on our results, we 

recommend increased testing for wells in the Mica schist area. The map of probability of 

arsenic at and above detectable levels can be used to implement cost-effective targeted 

interventions.  

 

 Keywords: Arsenic, Autologistic Regression, Geology, GIS, Private Wells, Water 

 
2 Owusu, C., Silverman, G.S, Vinson, D., Bobyarchick, A., Paul, R., Delmelle, E. (2020) 

Journal of Health and Exposure. https://doi.org/10.1007/s12403-020-00373-6 
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3.1 Background and Rationale 

Chronic exposure to elevated arsenic levels (>10 µg/L) in drinking water has been 

associated with several types of cancers including prostate (Benbrahim-Tallaa and 

Waalkes 2008), lung (Heck et al. 2009; Dauphiné et al. 2013), bladder (Steinmaus et al. 

2003), kidney (Yuan et al. 2010), and skin (Karagas et al. 2015). Recent studies have 

suggested that even low levels of arsenic (<10 µg/L) in drinking water may impact fetal 

development (Bloom et al. 2016; Almberg et al. 2017), increase odds of diabetes 

(Mahram et al. 2013), and cause an elevated risk of heart disease (Bräuner et al. 2014; 

James et al. 2015).  

In the United States (U.S.) alone, among the 44.1 million Americans using private 

wells, 2.1 million individuals use groundwater above the drinking water arsenic standard 

of 10 µg/L set by the U.S. Environmental Protection Agency (USEPA) (Ayotte et al. 

2017). Yet, private wells are not regulated in the U.S (MacDonald Gibson and Pieper 

2017). In Gaston County, North Carolina (the focus of our study; Figure 3.1), nearly 42% 

of residents rely on private well water (Centers for Disease Control and Prevention 

(CDC) 2019). The accurate prediction of the spatial and/or vertical variation of arsenic in 

groundwater systems is critical to water supply management. 

Arsenic has been found at elevated levels in aquifers across North Carolina, US 

(Sanders et al. 2012), China (He et al. 2020a), Bangladesh (Hossain and Sivakumar 

2006), Nepal (Gurung et al. 2005) and many other regions (Smedley and Kinniburgh 

2012). In North Carolina, some studies have underlined possible associations between 

elevated arsenic concentrations and metavolcanic or metavolcaniclastic rocks (Pippin 

2005; Harden et al. 2009), and metamorphosed clastic sedimentary rocks (Chapman et al. 
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2013). Reid et al. (2005) have suggested that the occurrence of arsenic in groundwater in 

the Piedmont of North Carolina could be related to fracture coatings in iron-manganese 

filled borehole cores from oxidized zones. The northwestern part of Gaston County, 

North Carolina (Figure 3.13.1) is within the area described as the physiographic and 

general geologic Piedmont of North Carolina. Chapman et al. (2013) suggested that 

elevated arsenic concentrations in groundwater from rock units are positively correlated 

with pH of 7.2 or greater in the Piedmont of North Carolina. At elevated pH, the 

formation of soluble oxyanions can increase arsenic mobilization through desorption 

processes (Ayotte et al. 2003; 2006).  

Most private wells in the Piedmont of North Carolina obtain water by drilling into 

bedrock, but a few wells tap water from the regolith at shallow depth (Daniel and Dahlen 

2002). Two studies have examined the relationship between arsenic concentration and 

well depth in bedrock aquifers in the Piedmont of North Carolina. Kim et al. (2011) 

found associations between elevated arsenic levels and deep wells within welded tuffs 

and quartz units that were close to the transition zones between primarily pyroclastic and 

primarily volcaniclastic sedimentary rocks. Chapman et al. (2013) found that arsenic 

concentrations in crystalline lithologies were positively correlated with well depth. 

However, to date there is no predictive model of the presence of arsenic to guide well 

planning in Gaston County, even though the county-level analysis suggests most private 

wells exceed the U.S. EPA drinking water standards for arsenic (Sanders et al. 2012). The 

complex spatial distribution of geologic formations make it difficult to assume that 

arsenic concentrations would be evenly distributed in the county.  



 

 

 

48 

 

Spatial modeling and geostatistics have received considerable attention for the 

prediction of arsenic in groundwater (Gaus et al. 2003; Goovaerts et al. 2005; Meliker et 

al. 2008; Kim et al. 2011; Dummer et al. 2015). When most of the data contain arsenic 

values that are reported as below the reporting limit, researchers have relied on 

geostatistical techniques such as indicator kriging to estimate the occurrence of arsenic 

(Goovaerts et al. 2005; Lee et al. 2008; Goovaerts 2009; Hassan and Atkins 2011; 

Antunes and Albuquerque 2013), yet these approaches typically do not incorporate 

predictor variables. Some studies have used logistic regression with various predictors 

(geologic and anthropogenic sources of arsenic, geochemical processes, hydrogeologic, 

and land-use factors) to model the occurrence of arsenic ≥ 5 µg/L (Ayotte et al. 2006; 

Bretzler et al. 2017). The ordinary logistic regression is based on the assumption that the 

relationship between the presence of arsenic and potential confounding factors would not 

change across a region. However, spatial autocorrelation, defined as a measure of the 

similarity in values for nearby observations (Griffith 1987), is frequently present in 

environmental data. For example, there are different geologic regions in Gaston County, 

and samples taken from those distinct regions may exhibit strong similarities, violating 

the assumption of spatial stationarity. Therefore, ignoring spatial effects in ordinary 

logistic regression could result in a biased and under-performing model (Bo et al. 2014). 

Autologistic regression could be used to alleviate this problem (Griffith 2004; Dormann 

2007; Fu et al. 2013; Bo et al. 2014; Seeley et al. 2019). 

 The autologistic regression is a spatial model that incorporates a spatial 

autocorrelation (autocovariate) variable into a logistic regression model to obtain robust 

inference (Griffith 2004; Dormann 2007; Fu et al. 2013; Bo et al. 2014; Liu et al. 2018). 
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The autocovariate variable introduced in an autologistic regression reflects the first law of 

geography that near things are more related than distant things (Tobler 1970; Tobler 

1979; Miller 2004). In this study, we assumed that the probability of arsenic occurrence 

in a private well is higher if it is also present in nearby private wells, because wells 

located in the same rock type are more likely to have a similar elevated arsenic than 

comparison with a randomly selected well. The autologistic regression has gained 

attention in ecological studies (Wu and Huffer 1997; Dormann 2007; Tsuyuki 2008), 

transportation research (Liu and Sharma 2019), but have not been applied to model the 

occurrence of arsenic. 

We develop a spatial autologistic regression model to evaluate if the geology, pH, 

and well depth can improve our ability to predict the presence of arsenic at and above 

detectable levels (≥5 µg/L) in private wells. We used this threshold because all arsenic 

concentration data in our study used EPA method 200.8 that has a detection limit of 5 

µg/L (USEPA 1994; North Carolina Department of Health and Human Services 2020). 

Also, we used this threshold because lifetime exposure to even relatively low arsenic 

concentration can have adverse health effects. 

3.2 Study Area and Geologic Setting 

Gaston County, North Carolina (364 mi² or 942km²) is a fast-growing county of 

nearly 225,000 residents (2019) in the South-Central Piedmont section of North Carolina. 

The county is bounded on the east by the Catawba River and Mecklenburg County, on 

the west by Cleveland County, on the north by Lincoln County and on the south by York 

County, South Carolina. Gaston County is characterized by a temperate climate with 

moderate temperature variations and humidity. The topography of the County is gently 
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rolling to hilly, with several pronounced ridges. Elevations above sea level range from 

587 feet (179 meters) in the southeast corner to 1,705 feet (520 meters). 

Gaston County, North Carolina, is composed of the Inner Piedmont (1), Kings 

Mountain (2), and Charlotte (3) geologic belts (Figure 3.1) (North Carolina Department 

of Environmental Quality 2020). Gaston County sits astride the Central Piedmont suture 

zone (a complex tectonic boundary) that joins the Carolina terrane to the Cat Square 

terrane in the Inner Piedmont (Huebner et al. 2017). Huebner et al. (2017) described the 

Cat Square terrane as a remnant of an early Paleozoic ocean basin.  

 
Figure 3.1: Spatial distribution of arsenic concentrations in well water samples in Gaston 

County, North Carolina (Geologic data source: North Carolina Department of 

Environmental Quality, 2020) 

 

The geologic belts contain bedrock of varying ages and formations. A geologic 

formation is a fundamental unit in the classification of rocks based on similar 

characteristics in mineral composition, grain size, and color (Carter et al. 2002). The 

geologic formations in the Inner Piedmont consist of amphibolite and biotite gneiss, 

Cherryville granite, metamorphosed granitic rock, and mica schist (Figure 3.1). The mica 
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schist formation consists of units abbreviated ꞒZs and ꞒZms. ꞒZs is a “white-mica 

schist” that, depending on locality, contains layers of biotite gneiss, quartz-mica schist, 

micaceous quartzite, and rare amphibolite. In Gaston County, much of the ꞒZms unit 

appears to be a country-rock to the Mississippian Cherryville granite (Mc in Figure 3.1) 

(Goldsmith et al. 1988). Following the interpretation of Goldsmith et al. (1988), the 

ꞒZms unit in this study forms a suite of mainly stratified groups of similar age and thus 

related source environments. The Cherryville Granite is a late- to post-metamorphic two-

mica granite that is associated with elevated radon (Waldron et al. 2007; Werner et al. 

2009). 

The geologic formations in the Charlotte belt consist of granitic rock, 

metamorphosed granitic rock, metamorphosed quartz diorite, gabbro of concord plutonic 

suite, and felsic metavolcanic rock. The Kings Mountain belt consists of metamorphic 

rocks in the Battleground Formation, Blacksburg Formation, foliated to massive granitic 

rock, Cherryville granite, and metamorphosed quartz diorite (Goldsmith et al. 1988). The 

Battleground Formation consists of protoliths formed during the Late Proterozoic and 

later metamorphosed to form a combination of quartz-sericite schist with metavolcanic 

rocks, quartz-pebble metaconglomerate, and kyanite-sillimanite quartzite. The 

Blacksburg Formation consists of sericite schist with graphite, phyllite, amphibolite, and 

calc-silicate rocks formed in the late Proterozoic-Cambrian. 

3.3 Material and Methods     

3.3.1 Arsenic Concentration in Well Water 

Arsenic data for private wells was obtained from the Gaston County Department 

of Health and Human Services (GC-DHHS) for 2011 through 2017. The data also 
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contained information on the permit number, owner’s name, residential address, 

collection date, sampling point, pH, and other inorganic chemicals. We used a GIS to 

geocode residential addresses to determine their geographic coordinates (Owusu et al. 

2017). Some of the records represent repeated sampling of the same well – e.g., when 

separatewater samples are taken from the kitchen sink and at the well. We therefore 

retained only the maximum recorded value from the location with the multiple tests to 

reflect potential groundwater concentration, which reduced our samples to 1082. This 

method has been used in similar studies to preserve the number of samples above the 

reporting limit (Ayotte et al. 2006; Kim et al. 2011; Gross and Low 2013; Ayotte et al. 

2017; VanDerwerker et al. 2018). We also excluded 92 records because the pH values 

were missing, which reduced our final sample set to 990. 

3.3.2 Determining Well Depth and Geologic Information 

 We obtained a digital copy of Gaston County’s private wells permit data from 

GC-DHHS to get well depth information to associate with the arsenic data (Figure 3.2). 

The well depth does not accurately reflect the depth of the water sample, because 

topography, groundwater flow and precipitation can affect the level of the water table. In 

this study, we relied on the well depth because the actual depth of the water sample was 

not available. 

Out of the 990 samples, we were able to merge 509 arsenic samples to the permit 

data using either the permit numbers, residential address, or name to extract the well 

depth information (Figure 3.2). For the remaining 481 sampled wells that were not 

merged to the permit data due to missing data, we imputed the well depth information 



 

 

 

53 

 

using an inverse distance weighting (IDW), an interpolation technique (Figure 3.2). The 

IDW surface was developed from 7837 well depths in the permit data. 

Ethan and Xiao-Ming (2018) have suggested that the depth from the regolith to 

the bedrock aquifer frequently tapped by shallow wells ranges from 0 to 150 feet in 

Orange County, which is also in the Piedmont region. We assumed this could also be the 

case in Gaston County and classified the well depths into three groups; 1) shallow (≤ 150 

feet), 2) moderate (151 – 300 feet), and deep (≥ 301 feet) to evaluate the differences in 

risk of arsenic in private wells. It was appropriate to categorize well depth into three 

groups (shallow, moderate, and deep) because the relationship between probability of 

arsenic concentration ≥ 5 µg/L and well depth may not be linear due to differences in 

well construction relative to the depths at which water enters the well. The well depth 

groups can therefore help to understand the real relationships and differences in the 

probability of arsenic concentration ≥ 5 µg/L considering that the characteristics of the 

sampled private wells are not provided in the data. 
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Figure 3.2: Workflow to obtain well depth for 509 samples and estimate well depth for 

481 samples that have no depth information in the permit data  

 

We obtained the geologic data for Gaston County from the North Carolina online 

GIS Portal. The NC Department of Environmental Quality Division of Land Resources, 

NC Geological Survey, and NC Center for GIS developed the digital data at a scale of 1: 

250,000 miles. We spatially joined the sampled arsenic locations to the geologic data 

using a GIS. 

3.3.3 Development of the Autologistic Regression Model 

Similar to Ayotte et al. (2006), we converted the arsenic concentration to 1 if ≥ 5 

µg/L and 0 if < 5 µg/L because 912 samples were marked as ‘< 5 µg/L’ and 78 samples 

were reported arsenic concentrations. Because of the small number of samples with 

arsenic concentration ≥ 5 µg/L, we did not split the datasets into train and validation data. 

Instead, we used all the data in the model development to allow for a better model. We 

used an autologistic regression model to predict locations where the presence of arsenic 

concentration is ≥ 5 µg/L in private wells. The assumption for the autologistic regression 

is that relationships between the presence of arsenic and the explanatory factors are 
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similar for nearby private wells than distant wells. We estimated the probability of 

elevated arsenic concentration at a location i using the autologistic function (Tsuyuki 

2008). 

𝑝𝑖 =
1

1 + 𝑒𝑥𝑝[−(𝛽0 + 𝛽1𝑥1,𝑖+. . 𝛽𝑛𝑥𝑛,𝑖 + 𝐶(𝑎𝑢𝑡𝑜 𝑐𝑜𝑣𝑖))]
                                           (1)   

i is the location of the private well, 𝑥1 … 𝑥𝑛 are the covariates,  𝛽0, 𝛽1, 𝛽𝑛 𝑎𝑛𝑑 𝐶  are the 

estimated coefficients. The introduction of the autocovariate variable in the autologistic 

regression penalizes the regression constant and reduces the contribution of the residuals 

to produce robust predictions (Griffith 2004; Dormann 2007; Fu et al. 2013; Bo et al. 

2014). The autocovariate variable for a location i is calculated using Equation 2.  

𝐴𝑢𝑡𝑜 𝑐𝑜𝑣𝑖 =
∑ 𝑤𝑖𝑗�̂�𝑗 

𝑘
𝑗=1

∑ 𝑤𝑖𝑗
𝑘
𝑗=1

                                                                                             (2)                                                                                       

The autocovariate variable (𝑎𝑢𝑡𝑜 𝑐𝑜𝑣) is a weighted average of the probabilities of 

arsenic concentration ≥ 5 µg/L of a set of nearby private wells j (𝑗 = 1 … 𝑘) to the private 

well at i. The weight between private wells i and j is 𝑤𝑖𝑗 =  
1

𝑑𝑖𝑗
, where 𝑑𝑖𝑗 is the 

Euclidean distance between private wells i and j, and �̂�𝑗 probability of arsenic 

concentration ≥ 5 µg/L at j. We determined that the minimum Euclidean distance 

(bandwidth) at which no private well had zero neighbors was 1976 meters and used this 

value (𝑑𝑖𝑗) in the analysis.  

We used the “spatialEco” package in R/R Studio version 3.6 (Evans and Ram 

2020) to implement the spatial autologistic regression model. We assessed the overall 

model performance by computing the receiver operating characteristic (ROC) area under 

curve (AUC) value. This value is a ratio of the true positive rate to the false positive rate, 
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integrated over a range of probability thresholds, and indicates model fit (Hamel 2009). 

AUC values range from 0.5 to 1; where 0.5 means that the model is no better than 

predicting the outcome by a random chance, 0.7 is a good model; 0.8 is a robust model, 

and 1 is a perfect model (Hamel 2009). We also report the percentage of the correctly 

classified and the Chi-Square test for goodness of model fit.  

3.3.4 Development of an Interpolated Probability Surface 

Our model results return the probability of arsenic concentrations ≥ 5 µg/L that 

we mapped to reveal spatial patterns throughout Gaston County, along with the residuals 

using Kriging. Kriging is an interpolation method to estimate the values of a variable at 

unsampled locations using observations from known sites (Hengl 2009; Li and Heap 

2011; 2014). The interpolation surface allows for delineating areas with a high 

probability of arsenic concentration ≥ 5 µg/L in well water in Gaston County. The kriging 

interpolation was developed with the Gstat R statistical package (Pebesma et al. 2019). 

3.4 Results 

3.4.1 Distribution of Arsenic Concentration 

Out of the 990 arsenic measurements, a total of 912 samples contained arsenic 

concentrations < 5 µg/L; 78 samples were ≥ 5 µg/L. Out of 78 samples with detectable 

arsenic (≥ 5 µg/L), 42 samples had concentrations from 5 to 6 µg/L (Figure 3.3). The 

maximum reported arsenic concentration in well water was 81 µg/L in the Kings 

mountain geological belt (Figure 3.1). The pH in well water samples ranged from 5.1 to 

9.7. The median pH in well water samples was 7.1. Sampled wells that contained arsenic 

concentrations ≥ 5 µg/L had an average pH of 7.3, while those at lower levels (< 5 µg/L) 
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had a pH of 7.1. The average well depth was 242 feet with a standard deviation of 134.2. 

The average prediction error for the IDW was -3.1 ft and the RMSE was 125 ft. 

 
Figure 3.3: Distribution of arsenic for the 78 samples at or above detectable levels (5 

µg/L) (samples marked as ‘< 5 µg/L’ in the data had a frequency of 912- not included in 

the histogram)  

 

As shown in Figure 3.1, the spatial distribution of the presence of arsenic and the 

geologic units in Gaston County suggest that most of the samples with arsenic 

concentration ≥ 5 µg/L were in the northwestern part of the county, which is an area 

primarily within the ꞒZms - Mica schist geologic unit. Specifically, within the ꞒZms - 

Mica schist unit, 28% (n = 26) of the samples in that unit exhibited arsenic concentration 

≥ 5 µg/L (Table 3.1). Noteworthy, 15.1% (n = 8) of samples with arsenic concentration ≥ 

5 µg/L were found in private wells identified as being located within the Mc - Cherryville 

Granite. 

Table 3.1: Samples with arsenic concentration (≥ 5 µg/L) in geologic units in Gaston 

County, North Carolina 

Geologic unit Total (N) 

(n) 

(≥ 5 µg/L) 

% 

(≥ 5 µg/L) 

ꞒZab - Amphibolite and biotite gneiss 7 1 14.3 

ꞒZbg - Mica schist 4 0 0 
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ꞒZbl - Blacksburg Formation 57 5 8.8 

ꞒZfv - Felsic metavolcanic rock 58 3 5.2 

ꞒZg - Metamorphosed granitic rock 39 2 5.1 

ꞒZms - Mica schist 93 26 28 

DOg - Granitic rock 52 4 7.7 

Mc - Cherryville Granite 53 8 15.1 

OꞒg - Metamorphosed granitic rock 2 0 0 

PPmg - Foliated to massive granitic rock 199 13 6.5 

PzZq - Metamorphosed quartz diorite 279 10 3.6 

Zbt - Battleground Formation 147 6 4.1 

 

We summarized the number and percent of samples with arsenic concentration ≥ 

5 µg/L for the different geologic belts in Gaston County (Table 3.2). Overall, arsenic 

concentrations values ≥ 5 µg/L were found in the Inner Piedmont Belt. 

Table 3.2: Samples with arsenic concentration (≥ 5 µg/L) for geologic belts in Gaston 

County, North Carolina 

Geologic belt Total (N) 

(n) 

(≥ 5 µg/L)   

% 

(≥ 5 µg/L) 

Charlotte  409 17 4.2 

Inner Piedmont 154 34 22.1 

Kings Mountain  427 27 6.3 

 

We also examined the number and percent of samples with ≥ 5 µg/L arsenic 

concentration by different well depth group (Table 3.3) 

Table 3.3: Samples with arsenic concentration (≥ 5 µg/L) for different well depths (data 

includes known and simulated well depths) in Gaston County, North Carolina 

Depth (feet) Total (N) 

(n) 

(≥ 5 µg/L)   

% 

(≥ 5 µg/L) 

≤ 150 94 7 7.5 

151 to 300 629 41 6.5 

≥ 301 267 30 11.2 
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3.4.2 Model Results for Arsenic Concentration ≥ 5 µg/L 

The results of the autologistic regression model adjusted for confounding factors 

suggests that the ꞒZms - Mica schist and pH are associated with the presence of arsenic ( 

≥ 5 µg/L) in well water (Table 3.4). The presence of arsenic ≥ 5 µg/L is significantly 

associated with private wells located in ꞒZms - Mica schist formation, (OR = 2.99, with 

95% confidence interval: (1.37 - 6.52).  When adjusted for potential confounding 

variables, the odds of arsenic > 5 µg/L in wells on ꞒZms - Mica schist was 2.99 times 

that of other wells. We found that one unit increase in pH in well water, the log odds of 

arsenic concentrations ≥ 5 µg/L increased by 0.75, when adjusted for other confounding 

factors. An OR= 2.11 with 95% CI: (1.31 – 3.38), indicated that arsenic concentration 

significantly increased with pH levels. The positive autocovariate coefficient (C= 2.80) 

characterizes the inherent spatial effect in the model residuals. A positive value indicates 

that the spatially nearby locations have similar risk patterns of arsenic concentrations 

being greater than 0.5. This residual spatial autocorrelation term (autocovariate) in the 

spatial autologistic regression helps in more accurate standard error estimates for 

regression coefficients. 

Table 3.4: Results of significant (p < 0.05) variables in the spatial autologistic regression 

model. Positive coefficient suggests an increased probability of arsenic ≥ 5 µg/L 

Variable Coefficient (β) Odds Ratio (OR) 95% CI of OR 

ꞒZms - Mica schist 1.09 2.99 1.37 - 6.52 

pH 0.75 2.11 1.31 - 3.38 

Autocovariate (C) 2.80 16.48 4.58 – 59.15 

 

The model correctly classified 90.1% of the arsenic concentrations ≥ 5 µg/L 

(sensitivity) and 93.1% of the arsenic concentration < 5 µg/L (specificity). Overall, our 
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model classification accuracy was 93.0%. The chi-square goodness of fit was significant 

(p < 0.05), which indicates that the model was better than a null model. The model AUC 

was 0.8, which indicates it is reliable 80% of the time in predicting the presence of 

arsenic concentrations ≥ 5 µg/L across Gaston County, North Carolina. 

3.4.3 Spatial Autocorrelation (Autocovariate) of Arsenic Concentration ≥ 5 µg/L 

 The spatial distribution of the autocovariate variable represents the residual spatial 

autocorrelation in the autologistic regression model. The values indicate the strength of 

the correlation between the wells with arsenic concentrations ≥ 5 µg/L as a function of 

the distance separating the samples. These values range from -1 to 1, with 1 indicating 

areas with strong positive autocorrelation (spatial clustering), -1 indicating areas with 

strong negative autocorrelation, and 0 indicating a random spatial pattern with no spatial 

autocorrelation. As shown Figure 3.4, areas with negative values can be observed in the 

central part of the county (dispersion of arsenic concentrations ≥ 5 µg/L), and a large 

proportion of the county with zero values (random spatial pattern). We observed areas 

with positive spatial autocorrelation ≥ 0.41 in the northwest, northeast, and southeast 

areas in the county indicating samples with arsenic concentrations ≥ 5 µg/L are near each 

other. Having many samples with arsenic concentrations ≥ 5 µg/L near each other in the 

northwest, northeast, and southeast areas in the county may suggest a possible common 

arsenic occurrence is within the area. These areas may have a poor groundwater quality 

compared to other parts of the county with spatial autocorrelation <0.41. The areas with 

spatial autocorrelation ≥ 0.41 are consistent with the pattern in Figure 3.3 showing 

locations with arsenic concentrations ≥ 5 µg/L particularly in the northwest of the county. 
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Figure 3.4: Distribution of the spatial autocorrelation (autocovariate variable) 

 

3.4.4 Spatial Probability of Arsenic Concentration ≥ 5 µg/L 

Using the model, we generated a kriging map of the probability of arsenic 

concentrations ≥ 5 µg/L (Figure 3.5). A probability higher than 0.5 indicated that well 

water was predicted to have arsenic concentration ≥ 5 µg/L, considering the combined 

effects of geology, pH, and well depth. Although the map shows that most places in the 

county have a low likelihood of arsenic concentration ≥ 5 µg/L, we can observe a high 

probability (> 0.5) in the northwest section of the county (Figure 3.5). This area covers 

about 8.4 km2, and our model predicts that wells contained within the area have a high 



 

 

 

62 

 

chance of containing arsenic concentration ≥ 5 µg/L.

 

Figure 3.5: Spatial distribution of the probability of arsenic concentration ≥ 5 µg/L in 

private wells – model results from autologistic regression. 

 

3.5 Discussion 

Our results suggest the presence of arsenic ≥ 5 µg/L concentration in well water is 

related to the geologic formation and pH. We found 26.5% of the sampled wells in the 

Mica schist (ꞒZms) formation contained arsenic concentrations ≥ 5 µg/L. This high 

percentage of samples with arsenic concentration ≥ 5 µg/L supports our results of the 

spatial autologistic regression model; private wells located in Mica schist (ꞒZms) were 

predicted to have a threefold likelihood of having arsenic concentrations ≥ 5 µg/L after 

controlling for other confounding factors. Mica schist (ꞒZms) formation consists of 

metamorphic rocks including quartz schist, micaceous quartzite, phyllite, and calc-silicate 

rock (Goldsmith et al. 1988; North Carolina Department of Environmental Quality 2020).  
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Previous studies have identified high arsenic levels in these rocks with similar 

assemblages of silicate rock-forming minerals (Smedley and Kinniburgh 2002; Garelick 

et al. 2009). The Mica schist (ꞒZms ) formation is also part of the Inner Piedmont belt of 

North Carolina, a region that has been found to contain elevated arsenic concentrations (≥ 

10 µg/L)  in groundwater supplies due to geologic sources (Pippin 2005; Reid et al. 2005; 

Harden et al. 2009; Chapman et al. 2013). Our study corroborates these findings.  

The 8.4 km2 area with a probability ≥ 0.5 for the presence of arsenic 

concentration ≥ 5 µg/L (Figure 3.5), coincides with the mica schist (ꞒZms ) formation. 

Further, we observed a positive spatial autocorrelation ≥ 0.41 in the northwest (Figure 

3.4) to support evidence of a possible common arsenic source related to the geology in 

the area. From the GIS permit database, we found that there were 75 private wells within 

that area, and 12 were sampled during this study period. Out of the 12 sampled private 

wells in the area, 75% (n=9) contained arsenic concentration ≥ 5 µg/L. The average 

arsenic concentration for the 9 sampled private wells was 16 µg/L. Given that lifetime 

exposure to even lower levels of arsenic concentration can be detrimental to human 

health (Mahram et al. 2013; Bräuner et al. 2014; James et al. 2015; Bloom et al. 2016; 

Almberg et al. 2017), all well users should be encouraged to monitor well water quality. 

We found evidence that sampled wells with arsenic concentration ≥ 5 µg/L in the 

water had an average pH of 7.3, which may indicate slightly alkaline conditions that 

could increase arsenic mobilization in well water. The potential for arsenic mobilization 

to occur as a result of ion exchange-related increases in pH could be due to interactions 

between geologic minerals and aquifer waters (Ayotte et al. 2003; Ayotte et al. 2006). 

The pH values greater than 7.2 have closely been related to high arsenic concentrations in 
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groundwater aquifers in the Piedmont of North Carolina (Chapman et al. 2013). Our 

findings corroborate these studies. 

Our model results indicate no statistically significant relationship between the 

presence of arsenic and well depth after adjusting for other confounding factors. 

Similarly, we found a depth-arsenic relationship L when using data for the 509 samples 

with known well depth, however this relationship was statistically not significant. 

Previous studies have found an association between deeper wells and elevated arsenic 

levels (Sun 2004; Focazio et al. 2006; Kim et al. 2011; Chapman et al. 2013). Yet, our 

model results did not corroborate findings from these studies. We found 10.6% of 

sampled wells with depth ≥ 301 feet had arsenic concentration ≥ 5 µg/L. Subsequently, 7 

out of 12 sampled wells in the northwestern area with an estimated 50% chance of having 

arsenic concentration ≥ 5 µg/L had well depth ≥ 301 feet. Given the small sample size in 

the most affected area, we recommend that future studies obtain more samples to 

determine whether there could be a relationship between arsenic concentration ≥ 5 µg/L 

and deeper wells.  

We used publicly available data in the analysis. Thus, our approach can be 

applied to other areas where geologic data is available and with existing data on private 

wells' water quality. Also, we used a spatial autologistic regression model rather than the 

commonly used ordinary logistic regression model because our dependent and predictor 

variables were inherently spatial. The spatial autologistic regression model was used 

because it adjusts for spatial autocorrelation in prediction residuals due to spatial effects, 

which is not rectified in the non-spatial ordinary logistic regression (Tsuyuki 2008; Bo et 

al. 2014). A limitation of our study is that we imputed well depth information for 481 
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sampled wells from an IDW interpolated surface of all wells in the county. Interpolated 

values may not reflect the actual well depth, but we selected this approach because 

excluding these samples would have reduced our sample size by 49 percent. This would 

have affected the model statistical power and reduced our ability to find spatial patterns 

of the probability of arsenic concentration ≥ 5 µg/L. If we ignored the wells with 

interpolated depth, we would have in fact removed 31 samples with arsenic concentration 

≥ 5 µg/L. Also, no significant relationship would have been found between the 

probability of arsenic concentration ≥ 5 µg/L and the mica schist layer using the 509 

samples with known well depth. Another weakness of this study is that the number of 

samples that had arsenic concentration ≥ 5 µg/L was only 78. As a result, we did not split 

the data into training and testing during model development. We recommend additional 

sampling of arsenic data in the future to validate our results (Rogerson et al. 2004, 

Delmelle 2009). 

Further, our model could be improved by the addition of other variables, 

including distance to potential anthropogenic arsenic sources (e.g., coal ash, landfills), 

geochemical, and hydrogeological conditions. Also, a more detailed geologic map such 

as that produced by Goldsmith et al. (1988), could allow for incorporating finer geologic 

information and improve the model. However, this map could not be used in this study 

because it was unavailable in a GIS usable format. 

3.6 Conclusions 

Out of 990 sampled wells, 78 contained arsenic concentration ≥ 5 µg/L, and the 

highest reported level was 81 µg/L. The average pH of well water in all the samples was 

7.1 and ranged between 5.1 to 9.7. However, private wells with arsenic concentration ≥ 5 
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µg/L had an average pH of 7.3. The pH value of well water was positively associated 

with an increased probability of arsenic concentration ≥ 5 µg/L after controlling for 

confounding factors. Furthermore, the presence of arsenic ≥ 5 µg/L in well water was 

primarily related to private wells located in the Mica schist (ꞒZms) formation after 

controlling for other confounding factors. 

 The model results can be used to explain factors that are influencing arsenic 

occurrence at and above detectable levels. For example, the model results were utilized to 

investigate “where are the risk areas of arsenic at or above detectable levels?” To answer 

this question, kriging was used to estimate probabilities of arsenic at and above detectable 

levels at unsampled locations across Gaston County. From the kriging map, we identified 

an area in the northwestern part of Gaston County has a 50% chance of having arsenic at 

and above the detection limit. Further, we found a positive spatial autocorrelation ≥ 0.41 

suggesting a spatial clustering of samples with arsenic concentration ≥ 5 µg/L in the 

northwest, northeast and southeast parts of the county which may suggest a possible 

common contamination source within these areas.  

Our analysis further reveals that, the northwest area with spatial clustering arsenic 

concentration ≥ 5 µg/L and with a 50% chance of reporting elevated levels of arsenic 

coincided with the Mica schist (ꞒZms) formation. Our maps offer two relevant practical 

use cases - 1) private wells in the “hot spot” area can be targeted for interventions, and 2) 

the map can be shared with the community so well owners can take action to reduce their 

risk of drinking unsafe water. The model results improve our ability to predict the 

presence of arsenic because the area we identified as a hotspot coincide with the Mica 

schist and 9 out of the 12 samples in the area were at and above 5 µg/L. The model 
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results provide evidence to warrant additional testing of wells for arsenic across Gaston 

County (Delmelle and Goovaerts 2019).   
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CHAPTER 4: PREDICTING COLIFORM PRESENCE IN PRIVATE WELLS AS A 

FUNCTION OF WELL CHARACTERISTICS, PARCEL SIZE AND LEACHFIELD 

SOIL RATING 3 

 

Abstract 

Public water systems must test for pathogens in the water regularly, yet no testing or 

disinfection is required for private wells. The purpose of this study is to identify whether 

well age, type of well, well depth, parcel size, and soil ratings for a leachfield can predict 

the probability of detecting coliform bacteria in private well water using a multivariate 

logistic regression model. Well water samples from 1163 private wells were analyzed for 

the presence of coliform bacteria between October 2017 and October 2019 across Gaston 

County, North Carolina. The maximum well age in the data was 30 years and this reflects 

when the Gaston County enforced standards on well construction. The median well age 

for bored and drilled wells was 24 and 19 years respectively. Bored wells were shallower 

(mean depth = 59.2 feet) compared to drilled wells (mean depth = 259.3 feet). We found 

coliform bacteria in 329 samples, 290 of which were drilled wells and 39 bored wells. 

Using geographic information systems (GIS), we identified two areas within a 1-

kilometer search radius in the northeastern part of the county in which 60 percent of 8 

samples were positive for coliform bacteria. The high positive rate within the area may 

suggests a possible common coliform-bacteria source. The logistic regression model 

results showed bored wells were 4.76 times more likely to contain bacteria compared to 

drilled wells. In addition, we found that the likelihood of coliform bacteria significant 

increased with well age (average well age in data = 19 years) suggesting that those 

 
3 Owusu, C., Silverman, G. S, Vinson, D., Paul, R., Delmelle, E. To be submitted to 

Journal of Science of the total Environment 
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constructed before well standards was enforced may be at a higher risk of coliform 

bacteria. We found no significant association between poorly rated soils for a leachfield, 

well depth, parcel size and the likelihood of having coliform in wells. In conclusion, we 

can generalize that bored and older wells are most vulnerable to possible pathogenic 

contamination. These findings and our GIS maps can be leveraged to determine areas of 

concern to encourage well users to take action to reduce their risk of ingesting coliform 

bacteria. 

Keywords: Coliform Bacteria, Contamination, GIS, Private Wells, Water 
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4.1 Introduction 

 Water contaminated with pathogens can cause illness if ingested without 

appropriate treatment (Wallender et al. 2014; Beer et al. 2015; Benedict et al. 2017). 

Illnesses that result from consuming pathogenic contaminated water includes acute 

gastrointestinal illness, acute respiratory illness, and neurologic illnesses (Benedict et al. 

2017). Waterborne diseases may even lead to early death (Cortese and Parashar 2009; 

Morgan et al. 2015). For example, Chaudhry et al. (2015) found that the presence of 

Hepatitis E in drinking water of pregnant women increased their risk of fulminant 

hepatitis, deaths and may be fatal to the unborn baby.   

Between 2013 and 2014, 33.3% of the total 42 waterborne disease outbreaks in 

public water systems in the United States (U.S.) were associated with consuming water 

drawn from groundwater sources (Benedict et al. 2017). These estimates do not include 

data on private wells; hence the actual prevalence of waterborne illness for people using 

groundwater sources in the U.S. is unknown (CDC 2016). As part of measures to reduce 

waterborne illness, the CDC recommends that well users annually test their well water for 

the presence of pathogens (CDC 2009). Yet, few people test their well water for 

contamination (Knobeloch et al. 2013; Swistock et al. 2013; Ridpath et al. 2016).  

Moreover, it is virtually impossible to monitor every possible pathogen that could 

be in water (Toze 1999). For this reason, coliform bacteria are commonly used to indicate 

the possible presence of pathogens in drinking water (Toze 1999; USEPA 2017b). 

Coliform bacteria are microorganisms that reside in humans and animal's intestines to 

facilitate the breakdown of food and they are also present in soils to help with 

decomposition of plant materials (Farrell-Poe et al. 2010). The presence of coliform 



 

 

 

71 

 

bacteria in drinking water can indicate its contamination with human or animal waste 

(Gerba 2009; Cabral 2010; Pandey et al. 2014). Public water systems must regularly test 

for total coliform in the U.S. (USEPA 2017b). However, no testing is required for private 

wells which at times are found in proximity pollution from septic systems (Kaplan 2014; 

USEPA 2015), landfills (Charrois 2010), raw manure (Sadeghi and Arnold 2002) and 

animal farms (Hubbard et al. 2004; Fairbrother and Nadeau 2006). 

In North Carolina, approximately 48.5 percent of homes rely on septic systems to 

dispose of human waste (National Environmental Services Center 2019). An estimated 

30,810 septic systems are used in Gaston County, North Carolina (the focus of this study, 

Figure 4.1) (National Environmental Services Center 2019). The widespread use of these 

systems in the County makes them a substantial potential contamination source. 

Noteworthy, septic systems are prone to failure, and effluents may go directly into an 

aquifer without sufficient time remove contaminants and impurities from the wastewater 

in a leachfield (USEPA 2015; Schaider et al. 2016).  

The purification abilities of the soil for a leachfield, including absorption and 

filtration, dictates the detention time for pathogen removal from the wastewater (Beal et 

al. 2005). Absorption and filtration are influenced by the texture, porosity, and thickness 

of the soil layer (United States Department of Agriculture Natural Resources 

Conservation Service 1999). Karathanasis et al. (2006) found that course-textures soil 

was not as effective as fine-textured soil in removing fecal bacteria from septic system 

effluent.  Soil suitability for a leachfield is a critical parameter to reduce contamination 

(USDA Natural Resources Conservation Service 2019). Furthermore, putting many 

leachfields next to each other (small parcels) above the same aquifer can increase the risk 
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of incomplete wastewater treatment resulting in contamination of private wells (Yates 

1985; McQuillan 2004; Swartz et al. 2006).  

Many of the wells that test positive for coliforms are bored compared to drilled 

wells (Conboy and Goss 2000; Olabisi et al. 2008; Maran et al. 2016). Generally, bored 

wells are not deep compared to drilled wells (United States Geological Survey 2018). 

Several studies have found correlations between the presence of coliforms and shallow 

wells (<100 feet) (Hossain and Sivakumar 2006; Gonzales 2008; Olabisi et al. 2008; 

Nwachukwu et al. 2010). Shallow wells draw groundwater from the unconsolidated 

material that is infiltrated quickly by polluted surface water (Mesner 2012). Moreover, 

older wells are more likely to have thinned and pitted casing (Mesner 2012). Well age has 

also been positively correlated with wellhead failures and may present a route of entry for 

surface contamination (Sarkar et al. 2012). This study attempts to capitalize on all the 

various factors to predict the probability that coliform bacteria is present in a private well.   

The purpose of this study is to identify whether well age, type of well, well depth, 

parcel size, and soil ratings for a leachfield can predict the probability of detecting 

coliform bacteria in private well water using a multivariate logistic regression model. Our 

paper is structured as follows: In Section 2, we describe our field data collection for water 

samples and how we secured GPS locations of the wells. Next, we describe the process to 

integrate well construction information (type of well, well depth, casing depth, and well 

age), soil ratings for leachfields, parcel size into our well sample data. We then introduce 

the multivariate logistic regression function to estimate the probability of finding 

coliform bacteria in well water. We present model results for data that include drilled and 

bored wells and data with only drilled wells. In Section 3, we report the results and 
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discuss the consistency of the findings to existing studies. In Section 4, we recommend 

suggestions for future studies, and end with a conclusion on key implications of the 

findings to overall literature and study area.    

Materials and Methodology 

4.2 Well Sampling and Testing  

Student teams from the University of North Carolina at Charlotte (UNC 

Charlotte) visited every permitted private well in Gaston County, North Carolina (Figure 

4.1), from October 2017 to October 2019. The household’s information was retrieved 

from the Geographic Information Systems (GIS) database of all private wells in the 

county (see Owusu et al. 2017 for a thorough review on the GIS database). A total of 

1,302 participants consented to have their well water collected for this study. Using GIS, 

we would summarize the total samples and percentage of positive coliform samples into a 

one-kilometer grid with a bivariate map. The only purpose for this map is to explore the 

extent of positive coliform samples across Gaston County. 

 The student teams also collected geographic coordinates at the well using Mesa 

TM handheld GPSs (typical accuracy 2 – 5 meters)4. The Gaston County Department of 

Health and Human Services, Division of Environmental Health analyzed the water 

samples for the presence of coliforms within 24 hours from the time of collection using 

the USEPA Colisure method (USEPA 2017a).  

 
4 https://www.junipersys.com/Products/Mesa-Rugged-Tablet 
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Figure 4.1: Location of positive and negative coliform samples and the homes visited 

from October 2017 – October 2019 in Gaston County, North Carolina 

 

 

4.2.1 Incorporating Explanatory Variables into the Sampled Data for Analysis 

We integrated well construction information on the type of well, well depth, and 

grout date into our sampled data. The well age was estimated by subtracting the grout 

date from the sampling date. Further, we obtained parcel data from the Gaston County 

Department of Planning and Development Service and extracting parcel size (acres) at 

each sample location. Data on 2019 soil ratings for a leachfield were obtained in GIS 

from the USDA Natural Resources Conservative Service for Gaston County. The soil 

ratings were developed from data on soil properties that affect the absorption of 

wastewater, the cost of construction and the replacement cost of the septic system (USDA 

Natural Resources Conservation Service 2019). The ratings are grouped into 1) not 

limited, 2) somewhat limited, and 3) very limited for use as a leachfield. In Gaston 

County, from the total area of 941 km2, 320 km2 of the soils are rated as “very limited”, 

583 km2 as “somewhat limited”, and 38 km2 has not yet been rated for a leachfield. The 
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county has no soil rated as “not limited” as at the time of this study. We spatially joined 

the sample locations to the soil suitability for leachfield data to extract the soil rating at 

each sample location. We excluded 139 samples because information on the type of well 

and age was missing. 

4.3 Bivariate Statistics and Regression Modeling 

We used a Chi-square statistic to test the relationships between the presence of 

coliform bacteria in well water and types of wells and soil ratings for a leachfield. We 

also examined the relationships between the presence of coliform bacteria in well water 

results and parcel size, well age and well depth using the Welch two-sample independent 

test. Next, we used multivariate logistic regression to evaluate whether the type of well, 

well age, well depth, parcel size, and soil ratings for a leachfield can predict the 

probability of finding coliform bacteria in well water. We utilized multivariate logistic 

regression because our response variable is binary and allows for modeling the 

relationships of all our input parameters to predict the probability of finding coliform 

bacteria in well water.  

Because most of our samples were taken from drilled wells with very few samples 

from bored wells, we performed two statistical analysis. We first used all the data (both 

bored and drilled wells) in one analysis, and then also performed a second analysis with 

only coliform samples from drilled wells. For each analysis, we randomly selected 80% 

of the total data in model development and the remaining 20% for model validation 

purposes. We develop the multivariate logistic regression model with the Analysis of 

Overdispersed Data (AOD) package in R statistical software (Lesnoff et al. 2010).  
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4.3.1 Model Assessment 

We evaluated the overall performance of the multivariate logistic regression 

model to predict coliform bacteria in wells using the receiver operating characteristic 

(ROC) area under the curve (AUC) value. This value is a ratio of the true positive rate to 

the false positive rate, integrated over a range of probability thresholds, and indicates 

model fit (Hamel 2009). AUC values range from 0.5 to 1; where 0.5 means that the 

model is no better than predicting the outcome by a random chance, 0.7 is a good model; 

0.8 is a robust model, and 1 is a perfect model (Hamel 2009). We also reported the 

percentage of correctly classified in the model.  

We also checked for spatial autocorrelation, which is a measure of the degree of 

similarity (Getis 2010) in model residuals. We tested for the presence of spatial 

autocorrelation using global Moran’s I, available in the ‘Spdep’ package in R (Bivand 

2009; Getis 2010).  The null hypothesis for the global Moran’s I states that the response 

variable is randomly distributed in the study area (Anselin 2019). A Moran’s I value 

(range: -1 to 1), where negative values represent weak spatial autocorrelation, zero means 

no spatial autocorrelation and positive values signifies the presence of spatial 

autocorrelation. 

4.4 Results 

In the present study, the maximum well age in the data was 30 years and this 

reflects period when Gaston County enforced standards on well construction from 1989. 

Samples were obtained from 1091 drilled wells and 72 bored wells. We found well age 

for bored wells (median well age = 24 years) were significantly (p < 0.05) older than 
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drilled wells (median age = 19 years). As shown in Figure 4.2 is the distribution of well 

age by the type of well.  

 
Figure 4.2: Box plot showing the distribution of well age by the type of well (median = 

black center line) 

 

The median well depth for the entire data set was 230 feet. We found well depths 

for bored wells (median depth = 57 feet) were significantly (p < 0.05) shallower than 

drilled wells (median depth = 240 feet). As shown in Figure 4.3 is the distribution of well 

depth by the type of well. 
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Figure 4.3: Box plot showing the distribution of well depth by the type of well (median = 

black center line) 

 

Out of the total 1,163 samples, 329 (28.3%) private wells were found to be 

positive for coliform bacteria. The positive coliform samples were reported in 290 drilled 

wells and 30 bored wells. Compared to the rest of the county, a greater number of bored 

wells that were positive for coliform bacteria were in the northwest section of the county 

but appear to be evenly spaced(Figure 4.4). In contrast, drilled wells that were positive 

coliform were found in most townships of the county, but appear to be closer to each 

other particularly in the northeastern part of Gaston County.  
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Figure 4.4:The locations of positive coliform samples by type of well  

 

The bivariate map showing the relationship between the total number of samples 

and the percentage of positive samples within a 1-kilometer grid indicate that most 

samples were gathered in northing townships (Figure 4.5). Within the 1-kilometer area, 

the average number of samples were two, and in some cases one of the wells was positive 

for coliform bacteria. Compared to the rest of Gaston County, we observed two areas in 

the northeastern of the county that had >60 percent of total samples as positive coliform 

(Figure 4.5).  
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Figure 4.5: Bivariate map of percent positive coliform and total samples within a 1-

kilometer grid 

 

The characteristics of the coliform samples are shown in Table 4.1. There were 

significant differences between the type of wells and the presence of coliform in private 

wells, and wells that tested positive for coliform were likely to have been built at least 20 

years ago. 

Table 4.1: Characteristics of presence and absence of coliform samples in Gaston County    

         Characteristic 

Presence 

 (n = 329) 

Absence 

 (n = 834) 

Count or 

mean % 

Count or 

mean % 

 Well Type (count) * 329  834  
 Mean well depth (feet) 251.8 -- 244.9 -- 

    Mean well age (years)* 19.7 -- 18.7 -- 

    Mean parcel size (acres) 3.3 -- 3.2 -- 

Soil suitability for leachfield rating      
              Somewhat limited (n = 958) 278 83.7 680 81.8 

              Very limited (n = 205) 51 16.3 154 18.2 

* is p < 0.05 
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As shown in Table 4.2, considering only the data for drilled wells, we found that 

the positive coliform samples were significantly associated with wells with deep wells 

(mean well depth = 277.7 ft) compared to those with no coliform (mean well depth = 

252.6 ft). There was a significant difference in age for drilled wells that were positive for 

coliform bacteria (mean well age = 19.3 years) compared to those that had no coliform 

(mean well depth = 18.5).  

Table 4.2: Characteristics of the sampled drilled wells with presence and absence of 

coliform reported in Gaston County 

Characteristic 

Presence 

 (n = 290) 

Absence 

 (n = 801) 

Count or 

mean % 

Count or 

mean % 

 Mean well depth (feet)* 277.7 -- 252.6 -- 

 Mean well age (years)* 19.3 -- 18.5 -- 

 Mean parcel size (acres) 3.4 -- 3.2 -- 

 Soil suitability for leachfield 

rating      
      Somewhat limited (n = 894) 241 83.1 653 81.5 

              Very limited (n = 197) 49 16.9 148 18.5 

* is p < 0.05 

 

4.4.1 Results of the Multivariate Logistic Regression    

The results of the multivariate logistic regression analyses for the two datasets; 1) 

data includes both drilled and bored wells (Model 1), and 2) data on only drilled wells 

(Model 2) are shown in Table 4.3. Overall, the type of well, and well age were significant 

predictors of coliform bacteria in well water, after controlling for other explanatory 

variables (Table 4.3). Bored wells were 3.16 times more likely to have coliform 

compared to drilled wells. A one-year increase in well age was expected to result in a 4% 
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increase in the odds of coliform bacteria being present in wells. This relationship was 

evident when we used all the data (both drilled and bored wells) and when drilled wells 

were used alone.   

 

Table 4.3: Significant predictors of the probability of detecting coliform bacteria in well 

water  

 Model 1 Model 2 

Predictor  

Odds 

Ratio 95% CI 

Odds 

Ratio 95% CI 

Well Type (Drilled)     
        Bored 4.73* 2.22 - 10.19   

            Age (years) 1.03* 1.01 - 1.06 1.04* 1.01 - 1.06 

* is p < 0.05; CI = confidence interval 

Model 1 – data includes drilled and bored wells 

Model 2 – data was only for drilled wells 

 

4.4.2 Model Accuracy and Performance 

We correctly classified 63.8% of the total data containing bored and drilled wells 

that had coliform bacteria (sensitivity), and 72.7% of those that had no coliform bacteria 

(specificity). Overall, the model classification accuracy was 70.6% for the data that 

include both drilled and bored wells. The performance of this model given by the AUC of 

0.60 indicates that the model is reliable 60% of the time in classifying whether coliform 

bacteria is present or absent in a well. The AUC for the model that used data on drilled 

wells alone was 0.58, suggesting that the model is reliable 58% of the time in classifying 

whether coliform bacteria is present or absent in a sample well. However, the model did 

not classify any of the drilled wells to have a probability >0.5 in predicting coliform 

bacteria. As a result, this model should not be used in predicting coliform bacteria in 

wells.   
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4.4.3 Checking for Spatial Autocorrelation in the Model Residuals 

The spatial pattern of model residuals was random, as shown by the significant (p < 

0.05), for the data with bored and drilled wells and using only drilled wells was 0.01. 

Although, a positive value may signal the presence of spatial autocorrelation suggesting a 

need to analyze the data with a spatial model, the value of 0.01 is relatively small (values 

nearing 1 means higher spatial autocorrelation). The weak spatial autocorrelation in the 

residuals suggest that the models are not underestimating the variance of the regression 

coefficients to necessitate using a spatial model to account for the spatial effects 

(Rogerson 2019). Thus, multivariate logistic regression models were adequate to 

establish the relationships between the presence of coliform in well water and the 

predictor variables. 

4.4.4 Trends in the Probability of Coliform Bacteria in Wells  

We summarize the relationships between the types of wells, the ratio of casing 

depth to well depth and age of the well, and coliform bacteria in well water in Figures 3 

to 5. Out of the 1091 drilled wells, 725 (66.5%) had a probability of ≤ 0.3 of detecting 

coliform bacteria well water (Figure 4.6). Out of the 72 bored wells, 40 (55.6%) had a 

probability of ≥ 0.5 of detecting coliform bacteria well water. 
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Figure 4.6: Boxplot of the probability of finding coliform bacteria in well water by types 

of private well using Model 1 (red central mark = median, and the bottom and top edges 

of the box are the 25th and 75th percentiles, respectively. The whiskers extend to the 

most extreme data points not considered outliers; outliers plotted with the red '+' symbol.) 

 

  Figure 4.7 is a summary of the probability of detecting coliform bacteria in well 

water by well age. Overall, there was a significant positive association between the well 

age and the probability of detecting coliform bacteria in well water in both models. 

Nearly 29% of the variability in probability of detecting coliform bacteria in well water 

was explained by well age in the model results that used both bored and drilled wells 

(Figure 4.7a). In comparison, 45% of the variability in the probability of detecting 

coliform bacteria was explained by the age of the drilled well (using only sampled drilled 

wells (Figure 4.7b).  

 



 

 

 

85 

 

  
Figure 4.7: Probability of detecting coliform bacteria in well water by the ratio of casing 

depth to well depth, for models 1 and 2. 

 

4.5 Discussion 

Coliform bacteria was reported in 290 drilled wells and 39 bored wells. Coliform 

bacteria was more likely to occur in older wells. A high proportion of bored wells that 

were positive for coliform bacteria were found in the northwestern part of the county. 

Compared to bored wells, drilled wells that were positive for coliform bacteria were 

closer to each other. In some instances, out of more than nine samples within a 1-

kilometer area in the northeastern parts of the county, 60 percent of the samples were 

positive for coliform bacteria. The high positive rate in such areas may suggests a 

possible common coliform-bacteria source.  

Out of a total of 72 bored wells, 39 (54.2%) had coliform bacteria. Bored wells 

were 3.16 times more likely to have coliform bacteria compared to drilled wells after 

adjusting for all other confounding variables. Our finding corroborates other studies 

suggesting that bored wells are more likely to test positive for coliform than drilled wells 
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(Olabisi et al. 2008; Hynds et al. 2012; Maran et al. 2016). Our results are also consistent 

with other studies that have found that bored are at elevated likelihood of being 

contaminated because the wells are shallow as shown by the presence of coliform 

(Godfrey et al. 2006; Gonzales 2008; Olabisi et al. 2008; Nwachukwu et al. 2010; Maran 

et al. 2016). Our results highlight the need to evaluate the appropriateness of issuing well 

construction permits for bored wells.  

Private wells that contained coliform were more likely to have a mean age of 20 

years compared to mean age of 19 years for those with no coliforms. older. In addition, 

there was a positive association between well age and the probability of detecting 

coliform after controlling for all other confounding factors. The effect of well age on the 

presence of coliform may be due to failures of the wellhead, well screens, and well 

casings as they become older (Mesner 2012; Sarkar et al. 2012). Our results collaborate 

with these findings. Older wells may need to be tested often because of an increased risk 

of contamination.   

We did not find any association between the presence of coliform bacteria in well 

water and parcel size and soil ratings for a leachfield. One hypothesis why parcel size 

may not be associated with the presence of coliform bacteria in well water for the present 

study could be the enforcement of a private well ordinance in Gaston County, North 

Carolina, since 1989. The law only permits setting a leachfield at least 100 feet from a 

private well (The Gaston County Board of Health 2011). Enforcement of this ordinance 

may have played a role in not locating septic tanks near one another, thus reducing the 

risk of coliform bacteria in private wells. The soil rating for a leachfield may not be the 

best variable to determine whether coliform bacteria were present wells. The lack of 
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significant relationships may suggest that the presence of coliform in wells may come 

from runoff water. Also, because the ratings are based on more than one variable, future 

studies should examine the wealth of the variable used in computation of the ratings.  For 

example, neural networks can be used to determine whether there are more complex 

relationships than were originally anticipated in the variables used to derive the ratings. 

In addition, there was no significant association between well depth and coliform 

presence in wells. 

The major strength of our study is we combine GIS maps and multivariate logistic 

regression model to uncover the extent of positive rate of coliform samples across the 

county and identify significant predictors of coliform bacteria. For example, the 

northeastern part of the county where within a 1-kilometer area, out of more than 9 wells, 

60% of the wells were positive for coliform bacteria indicate a possible common 

contamination source. From our model results we identified that well age, and bored 

wells are significant predictors of coliform bacteria being present which are consistent 

with past studies.   

Despite an improved understanding of potential factors associated with the 

presence of coliform bacteria in the study area, additional data such as the conditions of 

the wellhead and well screens may account for some variation in risk, but this data was 

not available for inclusion in our analysis. Another limitation of our study is that we did 

not include measures of the proximity of sampled wells to other possible sources of 

biological contamination, including landfills, poultry, and dairy farms. Including more 

variables in the analysis in future studies may ultimately lead to finding discernable 

spatial patterns in coliform bacteria present in well water across the county. 
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 Furthermore, private wells database in Gaston County does not include wells 

installed prior to 1989. This is because well construction permit requirement was required 

from 1989 after the enactment of the well ordinance (The Gaston County Board of Health 

2011). Although far older wells (> 30 years) may be at a higher risk of having coliform 

bacteria than the wells considered in this study, the lack of data on these wells is a 

limitation of this study.  

4.6 Conclusions 

We found evidence of groundwater contamination with regards to the U.S. EPA 

standards for the presence of coliform bacteria in water. More than one-fourth of private 

wells were identified to have coliform bacteria. We identified that within a 1-kilometer 

search radius, there are two areas in the northeastern part of the county in which 6 out of 

8 samples being positive for coliform. This may suggest a possible common coliform-

bacteria source nearby. However, in this study, we could not determine the possible 

coliform bacteria source due to lack of available data at the scale of our analysis. 

The positive rate of coliform bacteria samples was more for bored wells (54.2%) 

compared to drilled wells (26.6%). The multivariate logistic regression indicates that 

bored wells were 4.73 times more likely to have coliform bacteria compared to drilled 

wells. Our finding that bored wells are highly predictive of the presence of coliform 

bacteria in well water is consistent with past studies. Older wells were significantly 

related to the probability of detecting coliform in well water. Bored wells (median well 

age = 24 years) were significantly older than drilled wells (median well age = 19 years).   
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The present study shows that data analysis of the presence of coliform bacteria in 

combination with well age, type of well, well depth, parcel size, and soil ratings for a 

leachfield using multivariate logistic regression and GIS maps can provide preliminary 

insight on causes and extent of groundwater contamination in the county. Private well 

users should be mindful of the increased risk of possible pathogenic contamination when 

using bored wells. The appropriateness of issuing permits for bored wells may need to be 

considered to protect human health. Older and bored wells need to be tested often 

because of higher probability of coliform bacteria being present so appropriate actions 

can be taken to prevent consuming unsafe water.   
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CHAPTER 5: GENERAL DISCUSSION AND CONCLUSIONS 

The goal of this dissertation was to incorporate multilevel geocoding and spatial 

modeling techniques to predict the risk of arsenic and coliform bacteria in wells. As a 

result, a multi-stage approach to geocoding was to re-engineer input addresses using 

probabilistic record linkage, secondary address information on past coliform and 

chemical test results and geocode the addresses with rooftop, parcel and street geocoding 

techniques. The approach improved the geocoding match rate from 38.0% to 98.9%. If 

the input addresses were not re-engineered, 50.9% of the total records would have been 

removed from the GIS database. The hypothesis that improving input addresses translates 

into an increase match rate is duly justified. The approach is relevant to studies concerned 

with utilizing address geocoding as a key research methodology to select samples for 

further analysis.  

Further, GPS coordinates were acquired from 1075 private wells to evaluate the 

positional accuracy of rooftop, parcel, and street geocodes. The results indicated that 

there are significant differences in the positional accuracy for rooftop, parcel, and street 

geocoding. The results suggest when the GPS coordinates are unavailable, rooftop 

geocodes (mean positional accuracy = 26 meters) may offer a better representation of the 

location of a private well, followed by parcel geocodes (mean positional accuracy = 44 

meters) before considerations are given to street geocodes (mean positional accuracy = 72 

meters). The differences clearly show there is inherent uncertainty in the position of 

geocodes relative to the actual ground.  

The findings show that positional uncertainty in geocodes may be reduced if 

rooftop geocoding is used, contributing to the growing concern for geographers and GIS 
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scientists to access spatial data uncertainty. In this dissertation, 93% of GIS data on 

private wells were obtained from rooftop geocoding, 3.5% from parcel geocoding, and 

3.1% from street geocoding – suggesting positional uncertainty was minimized for a bulk 

of the geocoded private wells in GIS database.  

The goal of Chapter 3 was to evaluate if the geology, pH, and well depth can 

improve the prediction of arsenic at or above detectable levels (≥ 5 µg/L) found in private 

wells. A spatial autologistic regression model was developed because the arsenic 

distribution exhibited spatial patterns. The results indicated that the presence of arsenic 

was significantly associated with private wells located in ꞒZms - mica schist formation. 

The mica schist formation consists of assemblages of silicate rock-forming minerals 

known to contain high levels of arsenic. Further, there was a significant positive 

association between pH and the arsenic presence in wells, which may suggest possible 

desorption of arsenic from metal or clayey minerals. This is the first study of its kind to 

apply spatial autologistic regression to predict arsenic presence. The model results can be 

used to explain questions related to “why,” “where,” and “what” factors are influencing 

arsenic occurrence at or above detectable levels. For example, the model results were 

utilized to investigate “where are the risk areas of arsenic detectable levels?” To answer 

this question, kriging was used to estimate probabilities of arsenic at or above detectable 

levels across Gaston County. The kriging map identified that an area (8.4 km2) in the 

northwestern section of the county has 50% chance of having arsenic at or above the 

detection limit.  The map offers two relevant practical use cases - 1) private wells in the 

“hot spot” area can be targeted for interventions, and 2) the map can be shared with the 

community so well owners can take action to reduce their risk of drinking unsafe water. 



 

 

 

92 

 

In addition, compared to the RMSE from the indicator kriging results, the spatial 

autologistic regression produced a smaller RMSE (0.252. This may be due to the addition 

of explanatory variables in the spatial autologistic regression which helps reduce the 

uncertainty in model prediction when few samples with arsenic concentration ≥ 5 µg/L 

are found in an area. In such instances, combine effect of the explanatory variable can 

help attenuate errors in the prediction to produce robust estimates.    

Chapter 4 was to identify whether well characteristics, parcel size, and soil ratings 

for a leachfield can predict the probability of detecting coliform bacteria in wells using 

multivariate logistic regression. The results indicated that bored and older wells are more 

likely to have coliform bacteria. The specific coliform bacteria source was not 

determined from this study due to lack of available data on pollution sources. The models 

in Chapter 4 can be used to explain “why” and “what” factors are influencing coliform 

bacteria presence in wells.  

The geocoding approach and results obtained in Chapter 2 were crucial for 

Chapters 3 and 4. For instance, the geocoding approach in Chapter 2 was adopted for 

Chapter 3 to obtain geographic coordinates of private wells in the arsenic data, yielding a 

match rate of 100% (n = 990). These coordinates were from rooftop geocodes (n = 956), 

and parcel geocodes (n = 34), suggesting geographic coordinates were adequate to 

perform further spatial analysis in Chapter 3 since rooftop geocodes are good 

representation of private wells in GIS. Subsequently, well depth information was 

obtained for modeling arsenic presence by joining records in arsenic data, and the GIS 

database developed in Chapter 2. Furthermore, in this dissertation, student teams were 

sent to the geocoded addresses in the GIS database of private wells (results of chapter 2) 
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to administer free water sampling for coliform bacteria. Samples gathered for that 

exercise translated to the data used in the coliform analysis in Chapter 4. The well 

characteristics parameters used in developing the model for coliform bacteria presence in 

Chapter 4 were obtained from the GIS database of private wells. In summary, it is 

imperative to create an accurate GIS database of private wells to facilitate groundwater 

quality analysis. 

Analyzing both arsenic and coliform bacteria risk in private wells allowed for 

shedding light on the different pathways for well water to become unsafe for drinking. 

Detectable levels of arsenic were associated with natural sources of arsenic in the 

geology and pH, and the presence of coliform bacteria was associated with well 

characteristics (well age and depth). The results capture the complexities of how 

environmental contaminants can enter wells. Yet, private wells are not regulated 

anywhere in the U.S. This dissertation may facilitate discourse on why regulations on 

private wells might be useful.  

Further, the results show the appropriateness for issuing permits for bored wells 

needs to be evaluated. This is because bored wells were more than fourfold at-risk of 

coliform bacteria compared to drilled wells, and this is consistent with past studies. It can 

therefore be assumed that people obtaining water from bored wells would possibly be 

exposed to contamination sometime during their lifetime use of the well. It may also be 

appropriate to consider the incorporation of well type in real estate disclosures, providing 

new homeowners with information on the risks and mitigation strategies associated with 

bored wells.  



 

 

 

94 

 

Moreover, an area in the northwestern section (8.4 km2) of the county was found 

to have an average arsenic concentration of 16 µg/L. High concentrations in this region 

are significantly associated with geology. Given that it is virtually impossible to remove 

the bedrock to reduce the burden, perhaps, expanding a neighboring municipal water 

system or providing open taps in neighboring communities could decrease dependence on 

wells in this area and help provide safe drinking water for the residents.  

The success of the analysis in this dissertation was due to the development of a 

GIS database. The results of this database would be shared with public health officials 

and their ability to frequently update the database with test results may eventually lead to 

a reliable surveillance data of private wells, which is critical to monitoring water quality. 

In order to achieve this, the workforce may need to be trained on GIS operations in 

geocoding new permits and update attribute information with test results.  

Most important, educating well owners on potential contamination sources and 

risk of exposure may have an impact on their willingness to test their wells frequently. 

Based on the results of this dissertation, targeted educational programs are needed 

immediately for the well owners in the northwestern area with a high probability of 

arsenic with the Mica schist formation. Well owners in the area could be encouraged to 

install treatment systems to remove arsenic from their drinking water. Also, all bored 

well users should be encouraged to take action to reduce their risk of exposure to possible 

pathogenic contamination.    

Although results are useful to improving water quality in Gaston County, and may 

be adopted to other areas, this study also had limitations that should be address in future 
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studies. To begin, a holistic approach to examine environmental hazard is to determine 

the hazard-exposure-dose-response process (National Research Council 1991). 

Specifically, the source of contamination (hazard), health outcome (exposure), the 

quantity of the contaminant in the human body (dose), and time for symptoms to show 

(response) are modeled as a series of interconnected processes. However, the present 

study did not include health information to account for exposure, dose, and response. 

This could be a major limitation on the validity of the results considering that point of a 

sample of water was at the well, and owners may use treatment systems to filter the 

contaminants. To validate model results for arsenic, health data on residents in the county 

should be examined in relation to exposure to arsenic and coliform bacteria in private 

wells. Also, the spatial autologistic regression used in modeling arsenic at or above 

detectable levels did not allow for incorporating temporal information in the analysis. 

Future studies should examine whether the model could be extended to account for 

temporal variation in arsenic samples. Furthermore, proximity measures to other possible 

sources of arsenic and coliform bacteria not examined in this dissertation should be 

considered in future studies to improve the models. Subsequently, the accuracy of the 

geological map may affect the results of this study and future studies should examine this 

issue in detail. Future studies in the area can also consider other environmental hazards 

(e.g. benzene, lead, sulphur) and take full advantage of available data on underground 

storage tanks, locations of facilities on the national toxic release inventory (TRI) to enrich 

the understanding of groundwater contamination in the county. More work is necessary 

from a 'qualitative' perspective to better understand the barriers that exist to access clean 

water in private wells.  
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APPENDIX 1: R CODES FOR POSITIONAL ACCURACY ESTIMATION USING 

KRIGING IN CHAPTER 2 

```{R} 

###Created by: Claudio Owusu 

 

##Install required packages## 

#install.packages("latticeExtra") 

#install.packages("lattice") 

#install.packages("sp") 

#install.packages("splancs") 

#install.packages("rgdal") 

#install.packages("gstat") 

#install.packages("RColorBrewer") 

#install.packages("rgeos") 

#install.packages("spatstat") 

#install.packages("maptools") 

#install.packages("GISTools", dependencies = TRUE) 

#install.packages("raster") 

#install.packages("tmap") 

#install.packages ("constrainedKriging") ## back transforms lognormal krigig 

#install.packages ("automap") 

 

 

##load the required spatial libraies 

library(RColorBrewer) 

library(latticeExtra) 

library(splancs) 

library(gstat) 

library(rgdal) 

library(rgeos) 

library(spatstat) 

library(maptools) 

library(GISTools) 

library(raster) 

library(tmap) 

library(constrainedKriging) 

library(fishmethods) ## functions to back transform 

 

 

##set working directory## 

setwd("C:/Users/clowu/Documents/UNCC Dissertation/Chapter 

1_Geocoding_Manuscript/Data_For_Analysis/Exposure Misclassification") 

 

##load the required datasets for the analysis 
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reference <-read.csv ("reference.csv", header=TRUE, sep=",") 

parceldata <-read.csv ("parceldataF.csv", header=TRUE, sep=",") 

addresspointsdata <-read.csv ("addresspointsdataF.csv", header=TRUE, sep=",") 

streetdata <-read.csv ("streetdataF.csv", header=TRUE, sep=",") 

 

 

 

## creating a spatial objects from the datasets 

coordinates(reference) <- ~xloc +yloc 

coordinates(addresspointsdata) <- ~xloc +yloc 

coordinates(parceldata) <- ~xloc +yloc 

coordinates(streetdata) <- ~xloc +yloc 

 

##load the spatial boundary of Gaston 

shp <- readOGR(".", "GC_Boundary") 

summary(shp) 

 

#Assign a projection from the boundary shapefile (shp) to all the datasets the datasets 

 

proj4string(addresspointsdata) <- CRS("+proj=lcc +lat_1=34.33333333333334 

+lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.2192024384 

                             +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")  

plot(addresspointsdata, col='red', cex=0.7) 

 

proj4string(parceldata) <- CRS("+proj=lcc +lat_1=34.33333333333334 

+lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.2192024384 

                             +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")  

plot(parceldata, col='black', cex=0.7) 

 

proj4string(streetdata) <- CRS("+proj=lcc +lat_1=34.33333333333334 

+lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.2192024384 

                                  +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m 

+no_defs")  

plot(streetdata, col='grey', cex=0.7) 

 

 

 

# A fuction to develop a grid from a dataset with xyz locations 

#Npts is the approximate number of points to generate 

##This function was borrowed from Dr. Aston Shortbridge## 

build.convex.grid <- function (x, y, npts) { 

  library(splancs) # for gridding and inout functions 

  # First make a convex hull border (splancs poly) 

  ch <- chull(x, y) # index for pts on convex hull  

  ch <- c(ch, ch[1]) 

  border <- cbind(x[ch], y[ch])  # This works as a splancs poly 
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  # Now fill it with grid points 

  xy.grid <- gridpts(border, npts) 

  return(xy.grid) 

} 

 

 

### Create a surface for prediction and visualization from xyz that approximates Gaston 

County ### 

 

cm <- coordinates(reference) 

grid <- data.frame(build.convex.grid(cm[,1], cm[,2], 20000)) 

names(grid) <- c('Xloc', 'Yloc') 

gridded(grid) <- ~Xloc+Yloc 

plot(grid, add=TRUE, pch=1, cex=0.4) # add this to the points plot 

 

##Assign the same projection in the data to the grid 

proj4string(grid) <- CRS("+proj=lcc +lat_1=34.33333333333334 

+lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.2192024384 

                         +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")  

 

 

#Convert the Gaston boundary into SpatialPolygons object and make it the same 

projection as the data 

shp <- shp@polygons 

shp <- SpatialPolygons(shp, proj4string=CRS("+proj=lcc +lat_1=34.33333333333334 

+lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.2192024384 

                                            +y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m 

+no_defs")) #make sure the shapefile has the same CRS from the data, and from the 

prediction grid. 

plot(shp) 

 

#Clip the prediction grid with the shapefile 

clip_grid <- grid[!is.na(over(grid, shp)),] 

plot(clip_grid, add=TRUE, pch=1, cex=0.4) 

 

##CREATE NORTH ARROW AND SCALE BAR FOR THE CHARTS### 

l2 = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(392000,162000),  

          scale = 2500) 

l3 = list("SpatialPolygonsRescale", layout.scale.bar(), offset = c(390000,160000),  

          scale = 5000, fill=c("transparent","black")) 

l4 = list("sp.text", c(390000,161000), "0") 

l5 = list("sp.text", c(394000,161000), "5000 m") 

 

 

######1.ANALYSING THE DATA Geocoded using addresspoints####### 



 

 

 

120 

 

 

### Variogram analysis 

addresspoints_error.vg <- variogram(Error2~1, addresspointsdata, width = 100, cutoff = 

2000) 

 

##The output and plot of the observed variogram 

addresspoints_error.vg 

plot(addresspoints_error.vg) 

 

 

##Check Anisotrophy using variogram maps 

vgm.map1 = variogram(Error2~1, addresspointsdata, width = 100, cutoff = 2000, map = 

TRUE) 

plot(vgm.map1, threshold = 10) 

### Using the Automap to generate the fitting parameters 

##library (automap) 

#autoAP <- autofitVariogram(Error2~1, addresspointsdata) 

#summary(autoAP) 

 

 

##Choose a best Fitting theoretical variogram using the kappa criteria 

options(warn = -1) ##don't print warnings 

addresspoints_error.vg.mod <- fit.variogram(addresspoints_error.vg, model=vgm("Sph"))  

addresspoints_error.vg.mod 

attr(addresspoints_error.vg.mod,"SSEr") 

resultsAS<- summary(addresspoints_error.vg.mod) 

 

##Write output to a text 

sink("addresspointsmodel.txt") 

print(resultsAS) 

sink() 

 

#Plot the variogram 

png("cex-axis.png") 

main<-par(cex.axis= 10.0, cex.lab = 5.0) 

plot(addresspoints_error.vg, addresspoints_error.vg.mod, xlab ="Distance (m)", 

main=main) 

dev.off() 

 

 

 

##The predictions 

#addresspoints.ok <- krige(Error2~1, addresspointsdata, clip_grid, 

model=addresspoints_error.vg.mod, nmax = 5) 

#spplot(addresspoints.ok["var1.pred"]) 

#summary(addresspoints.ok) 
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##CHECKING for ANISOTRPY 

#addresspoints_error.vg.dir=variogram(Error2~1, addresspointsdata, width = 100, 

cutoff = 2000,alpha=c(0,45,90,135)) 

#addresspoints_error.vg.dir 

#plot(addresspoints_error.vg.dir) 

#addresspoints_error.vg.mod<-fit.variogram(addresspoints_error.vg,model = 

vgm(0.033, "Sph", 650, 0.0192, anis=c(45,0.5))) 

#plot(addresspoints_error.vg.dir,addresspoints_error.vg.mod, as.table = TRUE) 

#addresspoints_error.vg.mod 

#attr(addresspoints_error.vg.mod,"SSEr") 

 

 

### Predicting the addressPointserrors### 

mapcolor <-colorRampPalette(brewer.pal(9, "YlOrRd")) (100) 

legendArgs <- list(fun = draw.colorkey, 

                   args = list(key = args), 

                   corner = c(0.05,.75)) 

addresspoints.ok <- krige(Error2~1, addresspointsdata, clip_grid, 

model=addresspoints_error.vg.mod, nmax=5) 

spplot(addresspoints.ok["var1.pred"], 

sp.layout=list(l2,l3,l4,l5),col.regions=mapcolor,scales=list(draw=FALSE), 

       colorkey = list(space = "right", height = 1.0))+ 

  layer(sp.polygons(shp, lwd = 1.5)) 

 

summary(addresspoints.ok) 

 

##Export output to raster using the rgdal 

writeGDAL(addresspoints.ok["var1.pred"], "pred.addresspointsErr2.tif") 

 

##Export variance to raster using the rgdal 

writeGDAL(addresspoints.ok["var1.var"], "variance.addresspointsVar2.tif") 

 

 

######2.ANALYSING THE DATA Geocoded using Parcel####### 

 

### Variogram analysis 

parcel_error.vg <- variogram(Error2~1, parceldata, width = 100, cutoff = 2000) 

##The output and plot of the observed variogram 

parcel_error.vg 

plot(parcel_error.vg) 

 

##Check Anisotrophy using variogram maps 

vgm.map2 = variogram(Error2~1, parceldata, width = 100, cutoff = 2000, map = TRUE) 

plot(vgm.map2, threshold = 10) 
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##Choose a best Fitting theoretical variogram using the kappa criteria 

options(warn = -1) ##don't print warnings 

parcel_error.vg.mod <- fit.variogram(parcel_error.vg, vgm("Sph")) 

parcel_error.vg.mod 

attr(parcel_error.vg.mod,"SSEr") 

resultsAS<- summary(addresspoints_error.vg.mod) 

 

##Write output to a text 

sink("parcelsmodel.txt") 

print(resultsAS) 

sink() 

 

plot(parcel_error.vg, parcel_error.vg.mod, xlab ="Distance (m)")##, cex.axis= 2.0, 

cex.lab = 2.0) 

 

 

### Predicting the parcelserrors### 

mapcolor <-colorRampPalette(brewer.pal(9, "YlOrRd")) (100) 

legendArgs <- list(fun = draw.colorkey, 

                   args = list(key = args), 

                   corner = c(0.05,.75)) 

parcel.ok <- krige(Error2~1, parceldata, clip_grid, model=parcel_error.vg.mod, nmax=5) 

spplot(parcel.ok["var1.pred"], 

sp.layout=list(l2,l3,l4,l5),col.regions=mapcolor,scales=list(draw=FALSE), 

       colorkey = list(space = "right", height = 1.0))+ 

  layer(sp.polygons(shp, lwd = 1.5)) 

 

summary(parcel.ok) 

 

##Export output to raster using the rgdal 

writeGDAL(parcel.ok["var1.pred"], "pred.parcelErr2.tif") 

 

##Export variance to raster using the rgdal 

writeGDAL(parcel.ok["var1.var"], "variance.parcelVar2.tif") 

 

 

######3.ANALYSING THE DATA Geocoded using street####### 

 

### Variogram analysis 

street_error.vg <- variogram(Error2~1, streetdata, width = 100, cutoff = 2000) 

 

##The output and plot of the observed variogram 

street_error.vg 

plot(street_error.vg) 
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##Check Anisotrophy using variogram maps 

vgm.map = variogram(Error2~1, streetdata, width = 100, cutoff = 2000, map = TRUE) 

plot(vgm.map, threshold = 10) 

 

 

##Choose a best Fitting theoretical variogram using the kappa criteria 

options(warn = -1) ##don't print warnings 

street_error.vg.mod <-fit.variogram(street_error.vg,vgm("Sph"))  

street_error.vg.mod 

attr(street_error.vg.mod,"SSEr") 

resultsAS<- summary(street_error.vg.mod) 

##Write output to a text 

sink("streetmodel.txt") 

print(resultsAS) 

sink() 

 

 

jpeg(file="streetMod.jpg",bg="white", res=300, pointsize = 16, width = 1200, height = 

1200, quality = 100) 

 

plot(street_error.vg, plot.number=F, model = street_error.vg.mod, ylim=c(0.04, 0.08), col 

="black", cex.axis = 1.5) 

##Plot semivariogram 

plot(street_error.vg, street_error.vg.mod, xlab ="Distance (m)", cex.axis= 0.7, cex.lab = 

1.5, font.axis = 3) 

 

 

### Predicting the streeterrors### 

### Predicting the parcelserrors### 

mapcolor <-colorRampPalette(brewer.pal(9, "YlOrRd")) (100) 

legendArgs <- list(fun = draw.colorkey, 

                   args = list(key = args), 

                   corner = c(0.05,.75)) 

parcel.ok <- krige(Error2~1, parceldata, clip_grid, model=parcel_error.vg.mod, nmax=5) 

spplot(parcel.ok["var1.pred"], 

sp.layout=list(l2,l3,l4,l5),col.regions=mapcolor,scales=list(draw=FALSE), 

       colorkey = list(space = "right", height = 1.0))+ 

  layer(sp.polygons(shp, lwd = 1.5)) 

 

summary(parcel.ok) 

 

 

### Predicting the streeterrors### 

mapcolor <-colorRampPalette(brewer.pal(9, "YlOrRd")) (100) 

legendArgs <- list(fun = draw.colorkey, 

                   args = list(key = args), 
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                   corner = c(0.05,.75)) 

street.ok <- krige(Error2~1, streetdata, clip_grid, model=street_error.vg.mod, nmax=5) 

spplot(street.ok["var1.pred"], 

sp.layout=list(l2,l3,l4,l5),col.regions=mapcolor,scales=list(draw=FALSE), 

       colorkey = list(space = "right", height = 1.0))+ 

  layer(sp.polygons(shp, lwd = 1.5)) 

 

 

##Export output to raster using the rgdal 

streetPre<-writeGDAL(street.ok["var1.pred"], "pred.streetErr2.tif") 

#StreetPre2 <-raster(streetPre) 

#streetpre3 <-bt.log() 

 

##Export variance to raster using the rgdal 

writeGDAL(street.ok["var1.var"], "variance.streetVar2.tif") 

``` 
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APPENDIX 2: R CODES FOR AUTOLOGISTIC MODEL FOR CHAPTER 3 

##ARSENIC DATA ANALYSIS 

```{r} 

#install.packages("ggplot2") 

#install.packages("sp") 

#install.packages("lctools") 

#install.packages("spdep") 

#install.packages("spatialEco") 

library(spatialEco) 

library(sp) 

library(ggplot2) 

library(spdep) 

library(ggpubr) 

library(caret) 

theme_set(theme_pubr()) 

 

``` 

 

 

```{r} 

setwd("C:/Users/clowu/Documents/UNCC Dissertation/Chapter 

2_Arsenic/Arsenic_Analysis/StatisticalModels_New") 

mydata <- read.csv("Final_Arsenic_DataNew2.csv", sep = ',') 

colnames(mydata) 

 

##select only the variables important for the modelling 

ArsenicData = subset(mydata, select = c(1,14,27:37)) 

head(ArsenicData) 

 

###transform the data into factors 

ArsenicData$Arsenic_Detect2 = as.factor(ArsenicData$Arsenic_Detect2) 

levels(ArsenicData$Arsenic_Detect2) = c('No','Yes') 

colnames(ArsenicData) 

 

###transform categorical variables into factors 

ArsenicData$Depth = as.factor(ArsenicData$Depth) 

ArsenicData$Bedrock = as.factor(ArsenicData$Bedrock) 

ArsenicData$BedrockNew = as.factor(ArsenicData$BedrockNew) 

attach(ArsenicData) 

head(ArsenicData) 

colnames(ArsenicData) 

 

``` 

 

##Summary table 
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```{r} 

summaryvar = summary(ArsenicData) 

summaryvar 

write.csv(summaryvar, file = "summary.csv") 

``` 

 

**Plotting histograms of the variables** 

```{r} 

 

pHplot = ggplot(ArsenicData, aes(x=pH))+ geom_histogram(binwidth=1, bins = 14, 

color="darkblue", fill="skyblue3")+ scale_x_continuous(name="pH Level", breaks = 

c(0,2, 4, 6, 8, 10, 12,14)) + scale_y_continuous(name="Frequency")+ theme_pubclean() 

 

pHplot 

 

 

Rocktypeplot = ggplot(ArsenicData, aes(Bedrock)) + geom_bar(color="darkblue", 

fill="skyblue3") + theme_pubclean() + labs(y="Frequency") 

 

Rocktypeplot 

 

 

Depthplot = ggplot(ArsenicData, aes(Depth)) + geom_bar(color="darkblue", 

fill="skyblue3") + theme_pubclean() + labs(y="Frequency") 

 

Depthplot 

 

 

colnames(ArsenicData) 

``` 

 

 

**Model Development** 

```{r} 

##Ordinary logistic regression 

lmodel =logistic.regression(ArsenicData, y = 'Arsenic_Detect', x = 

c('BedrockNew','Depth', 'pH'), penalty = TRUE) 

lmodel$model 

lmodel$diagTable 

lmodel$coefTable 

lmodel_pred = predict(lmodel$model, type = 'fitted.ind') 

 

 

##Spatial autologistic regression 

coordinates(ArsenicData) = ~xloc + yloc 
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lmodel2 = logistic.regression(ArsenicData, y = 'Arsenic_Detect', x = 

c('BedrockNew','pH','Depth'), autologistic = TRUE, coords = 

coordinates(ArsenicData),longlat = FALSE, penalty = TRUE) 

 

lmodel2$model 

    lmodel2$diagTable 

      lmodel2$coefTable 

      lmodel2$bandwidth 

       

lmodel2_pred = predict(lmodel2$model, type = 'fitted.ind') 

autocovariate = lmodel2$AutoCov 

residuals2 = lmodel2$Residuals 

 

 

##write results to csv for mapping 

model_arsenic = data.frame(DataID,lmodel2_pred, Arsenic_Detect,autocovariate, 

residuals2, xloc, yloc) 

 

write.csv(model_arsenic, file = "model_arsenic.csv") 

 

``` 

 

##ROC Curve 

```{r} 

#install.packages("ROCR") 

library(ROCR) 

library(pROC) 

 

arsenic_chk = ArsenicData$Arsenic_Detect2 

 

#par(pty ="s") 

 

#roc(arsenic_chk, lmodel_pred, plot = TRUE, legacy.axes = TRUE, xlab = "1-specificity 

(False positive rate)", ylab = "Sensitivity (True positive rate)", col="#de2d26", lwd=1, 

print.auc = TRUE) 

 

#plot.roc(arsenic_chk, lmodel2_pred,col="#377eb8", lwd=1, print.auc = TRUE, add= 

TRUE, print.auc.y=0.4) 

#legend("bottomright", legend = c("non-spatial", "spatial"), col = 

c("#de2d26","#377eb8" ), lwd = 1) 

 

##Area Under the Receiver Operator Characteristic Curve (AUROC) 

chkroc1 = pROC::roc(ArsenicData$Arsenic_Detect2,lmodel2_pred) 

chkroc1 

ci.auc(chkroc1) 
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##Checking accuracy of predictions 

lmodel2_pred0 = rep("No",990) 

lmodel2_pred0[lmodel2_pred>.5] ="Yes" 

table(lmodel2_pred0, ArsenicData$Arsenic_Detect2) 

mean(lmodel2_pred0==ArsenicData$Arsenic_Detect2) 

 

summary(ArsenicData$Arsenic_Detect2) 

##Checking the mean squared errors for the testing data set 

n0=length(ArsenicData$Arsenic_Detect) 

sse10 = sum((ArsenicData$Arsenic_Detect - lmodel2_pred)^2) 

mse10 = sse10 / (n0 - 2) 

mse10 

 

 

``` 
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APPENDIX 3: R CODES FOR KRIGING MAPS IN CHAPTER 3 

 

###KRIGING ANALYSIS### 

```{r} 

##Install required packages## 

#install.packages("latticeExtra") 

#install.packages("lattice") 

#install.packages("splancs") 

#install.packages("rgdal") 

#install.packages("gstat") 

#install.packages("RColorBrewer") 

#install.packages("rgeos") 

#install.packages("spatstat") 

#install.packages("maptools") 

#install.packages("GISTools", dependencies = TRUE) 

#install.packages("raster") 

#install.packages("tmap") 

#install.packages("sf") 

 

##load the required spatial libraies 

library(RColorBrewer) 

library(latticeExtra) 

library(splancs) 

library(gstat) 

library(rgdal) 

library(rgeos) 

library(spatstat) 

library(maptools) 

library(GISTools) 

library(raster) 

library(tmap) 

library(sf) 

 

``` 

 

 

 

**3.Spatial autologistic regression probs interpolation ** 

```{r} 

 

modelresults = read.csv("model_arsenic.csv", sep = ",") 

 

## creating a spatial objects from the datasets 

coordinates(modelresults) <- ~xloc +yloc 
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setwd("C:/Users/clowu/Documents/UNCC Dissertation/Chapter 

2_Arsenic/Arsenic_Analysis/StatisticalModels_New/Kriging") 

##load the required datasets for the analysis 

addresspoints <-read.csv ("addresspoints.csv", header=TRUE, sep=",") 

 

## creating a spatial objects from the datasets 

coordinates(addresspoints) <- ~xloc +yloc 

 

 

#Assign a projection from the boundary shapefile (shp) to all the datasets the datasets 

proj4string(modelresults) <- CRS("+proj=lcc +lat_1=34.33333333333334 

+lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.2192024384 

+y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")  

 

##load the spatial boundary of Gaston 

shp <- readOGR(".", "GC_BoundaryF") 

summary(shp) 

 

# A fuction to develop a grid from a dataset with xyz locations 

#Npts is the approximate number of points to generate 

build.convex.grid <- function (x, y, npts) { 

  library(splancs) # for gridding and inout functions 

  # First make a convex hull border (splancs poly) 

  ch <- chull(x, y) # index for pts on convex hull  

  ch <- c(ch, ch[1]) 

  border <- cbind(x[ch], y[ch])  # This works as a splancs poly 

   

  # Now fill it with grid points 

  xy.grid <- gridpts(border, npts) 

  return(xy.grid) 

} 

 

 

### Create a surface for prediction and visualization from xyz that approximates Gaston 

County ### 

cm <- coordinates(addresspoints) 

grid <- data.frame(build.convex.grid(cm[,1], cm[,2], 10000)) 

names(grid) <- c('Xloc', 'Yloc') 

gridded(grid) <- ~Xloc+Yloc 

plot(modelresults, col='blue', cex=0.7) 

plot(grid, add=TRUE, pch=1, cex=0.4) # add this to the points plot 

 

 

 

##Assign the same projection in the data to the grid 
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proj4string(grid) <- CRS("+proj=lcc +lat_1=34.33333333333334 

+lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.2192024384 

+y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")  

 

 

#Convert the Gaston boundary into SpatialPolygons object and make it the same 

projection as the data 

shp <- shp@polygons 

shp <- SpatialPolygons(shp, proj4string=CRS("+proj=lcc +lat_1=34.33333333333334 

+lat_2=36.16666666666666 +lat_0=33.75 +lon_0=-79 +x_0=609601.2192024384 

+y_0=0 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")) #make sure the 

shapefile has the same CRS from the data, and from the prediction grid. 

plot(shp) 

 

#Clip the prediction grid with the shapefile 

clip_grid <- grid[!is.na(over(grid, shp)),] 

plot(clip_grid, add=TRUE, pch=1, cex=0.4) 

 

##CREATE NORTH ARROW AND SCALE BAR FOR THE CHARTS### 

l2 = list("SpatialPolygonsRescale", layout.north.arrow(), offset = c(392000,162000),  

          scale = 2500) 

l3 = list("SpatialPolygonsRescale", layout.scale.bar(), offset = c(390000,160000),  

          scale = 5000, fill=c("transparent","black")) 

l4 = list("sp.text", c(390000,161000), "0") 

l5 = list("sp.text", c(394000,161000), "5000 m") 

 

``` 

 

 

#Semivariogram for predicted probabilities in the model 

```{r} 

modelresults$probs <- (modelresults$lmodel2_pred) * 1 

PredMod<- variogram(probs~1, modelresults,boundaries = seq(0,20000, l=51)) 

 

##The output and plot of the observed variogram 

PredMod 

plot(PredMod) 

 

 

PredMod.vg.mod= fit.variogram(PredMod, vgm(c("Gau", "Exp","Sph"))) 

PredMod.vg.mod 

 

plot(PredMod, model=PredMod.vg.mod) 

 

``` 

 



 

 

 

132 

 

```{r} 

### Local neighborhood Indicator OK on high counts of positive test of coliform ### 

mapcolor <-colorRampPalette(brewer.pal(9, "YlOrRd")) (100) 

legendArgs <- list(fun = draw.colorkey, 

                   args = list(key = args), 

                   corner = c(0.05,.75)) 

SpatialAuto.pred <- krige(probs~1, modelresults, clip_grid, model=PredMod.vg.mod, 

nmax = 3) 

spplot(SpatialAuto.pred["var1.pred"], 

sp.layout=list(l2,l3,l4,l5),col.regions=mapcolor,scales=list(draw=FALSE), 

       colorkey = list(space = "right", height = 1.0), at = seq(0, 1, .01))+ 

  layer(sp.polygons(shp, lwd = 1.5)) 

 

summary(SpatialAuto.pred) 

 

##Export output to raster using the rgdal 

writeGDAL(SpatialAuto.pred["var1.pred"], "pred.SpatialLogNew.tif") 

 

##Export variance to raster using the rgdal 

writeGDAL(SpatialAuto.pred["var1.var"], "variance.SpatialLogNew.tif") 

 

``` 

 

 

#Semivariogram for autocovariate variable in the model 

```{r} 

modelresults$autocov <- (modelresults$autocovariate) * 1 

autocovMod<- variogram(autocov~1, modelresults,boundaries = seq(0,20000, l=51)) 

 

##The output and plot of the observed variogram 

autocovMod 

plot(autocovMod) 

 

 

autocovMod.vg.mod= fit.variogram(autocovMod, vgm(c("Gau", "Exp","Sph"))) 

autocovMod.vg.mod 

 

plot(autocovMod, model=autocovMod.vg.mod) 

 

``` 

 

```{r} 

### Predicting the probabilities ### 

mapcolor <-colorRampPalette(brewer.pal(9, "YlOrRd")) (100) 

legendArgs <- list(fun = draw.colorkey, 

                   args = list(key = args), 
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                   corner = c(0.05,.75)) 

autocov.pred <- krige(autocov~1, modelresults, clip_grid, model=autocovMod.vg.mod, 

nmax = 3) 

spplot(autocov.pred["var1.pred"], 

sp.layout=list(l2,l3,l4,l5),col.regions=mapcolor,scales=list(draw=FALSE), 

       colorkey = list(space = "right", height = 1.0), at = seq(0, 1, .01))+ 

  layer(sp.polygons(shp, lwd = 1.5)) 

 

summary(autocov.pred) 

 

##Export output to raster using the rgdal 

writeGDAL(autocov.pred["var1.pred"], "pred.autocovNew.tif") 

 

##Export variance to raster using the rgdal 

writeGDAL(autocov.pred["var1.var"], "variance.autocovNew.tif") 

 

``` 

 

 

#Semivariogram for residuals in the model 

```{r} 

modelresults$residualterm <- (modelresults$res) 

residualtermMod<- variogram(residualterm~1, modelresults,boundaries = seq(0,20000, 

l=51)) 

 

##The output and plot of the observed variogram 

residualtermMod 

plot(residualtermMod) 

 

 

residualtermMod.vg.mod= fit.variogram(residualtermMod, vgm(c("Gau", "Exp","Sph"))) 

residualtermMod.vg.mod 

 

plot(residualtermMod, model=residualtermMod.vg.mod) 

 

``` 

 

##Ordinary kriging of the model residuals 

```{r} 

 

mapcolor <-colorRampPalette(brewer.pal(9, "YlOrRd")) (100) 

legendArgs <- list(fun = draw.colorkey, 

                   args = list(key = args), 

                   corner = c(0.05,.75)) 

residualterm.pred <- krige(residualterm~1, modelresults, clip_grid, 

model=residualtermMod.vg.mod, nmax = 5) 
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spplot(residualterm.pred["var1.pred"], 

sp.layout=list(l2,l3,l4,l5),col.regions=mapcolor,scales=list(draw=FALSE), 

       colorkey = list(space = "right", height = 1.0), at = seq(0, 1, .01))+ 

  layer(sp.polygons(shp, lwd = 1.5)) 

 

summary(residualterm.pred) 

 

##Export output to raster using the rgdal 

writeGDAL(residualterm.pred["var1.pred"], "pred.residualterm.tif") 

 

##Export variance to raster using the rgdal 

writeGDAL(residualterm.pred["var1.var"], "variance.residualterm.tif") 

 

``` 
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APPENDIX 4: R CODES FOR MULTIVARIATE LOGISTIC REGRESSION 

MODELS IN CHAPTER 4 

#LOGISTIC REGRESSION 

##COLIFORM BACTERIA DATA ANALYSIS 

 

```{r} 

#install.packages("sjPlot") 

#install.packages("tidyr") 

#install.packages("caret") 

#install.packages("jtools") 

#install.packages("ggsci") 

#install.packages("pROC") 

#install.packages("ggpubr") 

library(ggpubr) 

library(pROC) 

library(ggsci) 

library(jtools) 

library(caret) 

library(tidyr) 

library(sjPlot) 

library(sjmisc) 

library(sjlabelled) 

 

#install.packages("car") 

#install.packages("aod") 

#install.packages("ggplot2") 

#install.packages("sp") 

#install.packages("lctools") 

#install.packages("spdep") 

#install.packages("spatialEco") 

#install.packages("caret") 

library(caret) 

library(aod) 

library(ggplot2) 

library(sp) 

#library(lctools) 

library(spdep) 

library(spatialEco) 

library(car) 

``` 

 

 

```{r} 

##Set the working directory & read the file 

setwd("C:/Users/clowu/Documents/UNCC Dissertation/Chapter 3_Total 

Coliform/Coliform_Analysis/StatisticalModelNew") 
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#setwd("E:/StatisticalModelNew") 

mydataAll <- read.csv("PathogenData.csv", sep = ',') 

colnames(mydataAll) 

 

##select only the variables important for the modelling 

PathogenData = subset(mydataAll, select = c(1,19:30)) 

attach(PathogenData) 

head(PathogenData) 

 

###transform categorical data into factors 

##1. pathogen 

PathogenData$Pathogen2 <-as.factor(PathogenData$Pathogen2) 

levels(PathogenData$Pathogen2 )<-c('No','Yes') 

head(PathogenData) 

 

##2.welltype  

PathogenData$WellType = as.factor(PathogenData$WellType) 

head(PathogenData) 

 

##3. Septic Tank Absorption Field 

PathogenData$SepTankAF = as.factor(PathogenData$SepTankAF) 

head(PathogenData) 

 

##4. MUSYM 

PathogenData$MUSYM = as.factor(PathogenData$MUSYM) 

head(PathogenData) 

 

PathogenData$CatWellDepth = cut(WellDepth, breaks = c(0, 150, 300, 1025 ), labels = 

c("1", "2", "3")) 

 

PathogenData$CatWellDepth = as.factor(PathogenData$CatWellDepth) 

 

#cut(WellDepth, breaks = c(0, 150, 300, 1025 ), labels = c("1", "2", "3")) 

 

PathogenData$RatioDepthCasing1 = (CasingDepth/WellDepth) ## ratio of the casing to 

the well depth  

 

attach(PathogenData) 

``` 

 

 

**Summary and correlation tables** 

```{r} 

summaryvar = summary(PathogenData) 

summaryvar 

#write.csv(summaryvar, file = "summary.csv") 
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colnames(PathogenData) 

correlationtable = round (cor(PathogenData[,c(5:9)]), 3) 

correlationtable 

#write.csv(correlationtable, file = "correlationtable.csv") 

 

``` 

 

**Plotting histograms of the variables** 

```{r} 

par(mfrow = c(3,2)) 

 

hist(Age, xlab = "Age (years)", main = " Histogram of age of well", col='skyblue3') 

 

hist(WellDepth , xlab = "Well Depth(ft)", main = " Histogram of Well depth", 

col='skyblue3') 

 

hist(ParcelSize, xlab = "parcel size (acres)", main = " Histogram of parcel size (acres)", 

col='skyblue3') 

 

hist(CasingDepth, xlab = "Casing depth", main = " Histogram of Casing depth", 

col='skyblue3') 

 

#barplot(prop.table(table(WellType))) 

#ggplot(mydata, aes(x=WellType)) 

``` 

 

**perform significant testing categorical variables** 

```{r} 

##1.Well type 

#create a contigency table 

WellType_Chisq = table(PathogenData$WellType, PathogenData$Pathogen2) 

WellType_Chisq  

#Chi-squared test 

chisq.test(WellType_Chisq) 

 

##2.Septic tank absorption field rating from USDA 

#create a contigency table 

SepTankAF_Chisq = table(PathogenData$SepTankAF, PathogenData$Pathogen2) 

SepTankAF_Chisq  

#Chi-squared test 

chisq.test(SepTankAF_Chisq) 

 

#create a contigency table 

#PathogenData$CatWellDepth = as.factor(PathogenData$CatWellDepth) 

#CatWellType_Chisq = table(PathogenData$CatWellDepth, PathogenData$Pathogen2) 
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#CatWellType_Chisq  

#Chi-squared test 

#chisq.test(CatWellType_Chisq) 

``` 

 

 

**perform siginificant independent t-test of means for continuous variables** 

```{r} 

##perform Welch Two Sample t-test of continuous variables 

t.test(WellDepth ~ Pathogen1, data = PathogenData) 

t.test(RatioDepthCasing1 ~ Pathogen1, data = PathogenData) 

t.test(Age ~ Pathogen1, data = PathogenData) 

t.test(ParcelSize ~ Pathogen1, data = PathogenData) 

``` 

 

```{r} 

##randomized the data sample 

#set.seed(123468) 

set.seed(123689) 

##split the data into partition 

partitionRule <- createDataPartition(PathogenData$Pathogen2, p = 0.8, list = F) 

trainingSet <- PathogenData[partitionRule,] 

testingSet <- PathogenData[-partitionRule,] 

 

summary(trainingSet) 

``` 

 

**Using the the logit model**  

```{r} 

##Prediction with logistic regression 

model1 = glm(Pathogen1 ~ WellType + RatioDepthCasing1 + Age + ParcelSize + 

SepTankAF, data=trainingSet, family = "binomial") 

summary(model1) 

tab_model(model1) 

 

round(exp(coef(model1)),3) ## odds ratios only 

round(exp(confint(model1)),3) ##CI for odds ratio 

 

summary(model1)$coef 

model1.probs = predict(model1, type = "response") ##predicted probabilities 

AIC(model1) 

resi.model1 = residuals(model1) 

 

##Check multicolinearity 

viftable =round(vif(model1), 3) 

viftable 
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write.csv(viftable, file = "viftable.csv") 

``` 

 

**Model Validation** 

```{r} 

##for testing set 

summary(testingSet) 

model1.probs = as.numeric(unlist(predict(model1, testingSet,type = "response"))) 

 

##accuracy check for testing data set 

model1.pred = rep("No",231) 

model1.pred[model1.probs>.5] ="Yes" 

table(model1.pred, testingSet$Pathogen2) 

mean(model1.pred==testingSet$Pathogen2) 

 

##Area Under the Receiver Operator Characteristic Curve (AUROC) 

chkroc1_test = pROC::roc(testingSet$Pathogen2,model1.probs) 

chkroc1_test 

 

 

###For training set 

summary(trainingSet) 

model1.probs2 = as.numeric(unlist(predict(model1, trainingSet,type = "response"))) 

 

##accuracy check for testing data set 

model1.pred2 = rep("No",932) 

model1.pred2[model1.probs2<.5] ="Yes" 

table(model1.pred2, trainingSet$Pathogen2) 

mean(model1.pred2==trainingSet$Pathogen2) 

 

##Area Under the Receiver Operator Characteristic Curve (AUROC) 

chkroc1_train = pROC::roc(trainingSet$Pathogen2,model1.probs2) 

chkroc1_train 

 

residual.model1 = as.numeric(unlist(residuals(model1))) 

 

``` 

 

**Model diagnostics** 

```{r} 

 

##Make predictions for total data sets 

model1.probsF = as.numeric(unlist(predict(model1, PathogenData,type = "response"))) 

 

resi.Model1 = PathogenData$Pathogen1 - model1.probsF 
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model1_diagnostics = data.frame(SortID,model1.probsF,Pathogen1, Pathogen2, 

resi.Model1,WellType, WellDepth, CasingDepth,RatioDepthCasing1, Age, SepTankAF, 

ParcelSize, xCoord, yCoord) 

 

write.csv(model1_diagnostics, file = "model1_diagnostics.csv") 

``` 

 

##plot the prediction with significant variables 

```{r} 

ModelPred = read.csv("model1_diagnostics.csv",sep = ",", header = TRUE) 

attach(ModelPred) 

 

##probablities and well type 

welltype_boxplot = ggplot(ModelPred, aes(x=WellType, y= model1.probsF))+ 

geom_boxplot(aes(fill=WellType)) + scale_color_gradientn(colors = c("#00AFBB", 

"#E7B800", "#FC4E07"))+ theme_classic()+theme(legend.position = "none") + 

theme(legend.position = "none")+ labs(y="") 

welltype_boxplot 

 

Age_pointplot = ggplot(ModelPred, aes(x=Age, y=model1.probsF, colour = 

model1.probsF))+ geom_point(size = 3, alpha = 0.6)+ scale_color_gradientn(colors = 

c("#00AFBB", "#E7B800", "#FC4E07"))+ theme_classic()+theme(legend.position = 

"none") + theme(legend.position = "top")+ labs(y="") 

Age_pointplot 

 

RatioDepthCasing1_pointplot = ggplot(ModelPred, aes(x=RatioDepthCasing1, 

y=model1.probsF, colour = model1.probsF))+ geom_point(size = 3, alpha = 0.6)+ 

scale_color_gradientn(colors = c("#00AFBB", "#E7B800", "#FC4E07"))+ 

theme_classic()+theme(legend.position = "none") + theme(legend.position = "top")+ 

labs(y="") 

RatioDepthCasing1_pointplot 

 

 

``` 

 

 

##plot the model residuals 

```{r} 

residmodel1 = read.csv("model1_diagnostics.csv") 

summary(residmodel1) 

ggplot(residmodel1, aes(xCoord, yCoord, colour =resi.Model1 )) + 

  viridis::scale_color_viridis()+ 

  geom_point(size = 3) 

``` 

 

***2. FOR DRILLED WELLS*** 
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```{r} 

##Set the working directory & read the file 

setwd("C:/Users/clowu/Documents/UNCC Dissertation/Chapter 3_Total 

Coliform/Coliform_Analysis/StatisticalModelNew/DrilledWells") 

 

#setwd("E:/StatisticalModelNew/DrilledWells") 

myDrilledWells <- read.csv("DrilledWells.csv", sep = ',') 

colnames(myDrilledWells) 

 

##select only the variables important for the modelling 

myDrilledWells = subset(myDrilledWells, select = c(1,18:29)) 

attach(myDrilledWells) 

head(myDrilledWells) 

 

###transform categorical data into factors 

##1. pathogen 

myDrilledWells$Pathogen2 <-as.factor(myDrilledWells$Pathogen2) 

levels(myDrilledWells$Pathogen2 )<-c('No','Yes') 

head(myDrilledWells) 

 

##2.welltype  

#PathogenData$WellType = as.factor(PathogenData$WellType) 

#head(PathogenData) 

 

##3. Septic Tank Absorption Field 

myDrilledWells$SepTankAF = as.factor(myDrilledWells$SepTankAF) 

head(myDrilledWells) 

 

 

myDrilledWells$RatioDepthCasing2 = CasingDepth/WellDepth## ratio of the casing to 

the well depth  

 

attach(myDrilledWells) 

``` 

 

**Summary and correlation tables** 

```{r} 

summaryvar = summary(myDrilledWells) 

summaryvar 

#write.csv(summaryvar, file = "summary.csv") 

 

colnames(myDrilledWells) 

correlationtable = round (cor(myDrilledWells[,c(5:9)]), 3) 

correlationtable 

#write.csv(correlationtable, file = "correlationtable.csv") 

``` 



 

 

 

142 

 

 

 

**perform significant testing categorical variables** 

```{r} 

##1.Septic tank absorption field rating from USDA 

#create a contigency table 

SepTankAF_Chisq = table(myDrilledWells$SepTankAF, myDrilledWells$Pathogen2) 

SepTankAF_Chisq  

#Chi-squared test 

chisq.test(SepTankAF_Chisq) 

 

``` 

 

**perform siginificant independent t-test of means for continuous variables** 

```{r} 

##perform Welch Two Sample t-test of continuous variables 

t.test(RatioDepthCasing2 ~ Pathogen1, data = myDrilledWells) 

t.test(Age ~ Pathogen1, data = myDrilledWells) 

t.test(ParcelSize ~ Pathogen1, data = myDrilledWells) 

 

``` 

 

 

```{r} 

##randomized the data sample 

#set.seed(123468) 

set.seed(123689) 

##split the data into partition 

partitionRule <- createDataPartition(myDrilledWells$Pathogen2, p = 0.8, list = F) 

trainingSet1 <- myDrilledWells[partitionRule,] 

testingSet1 <- myDrilledWells[-partitionRule,] 

 

summary(trainingSet1) 

``` 

 

**Aply Prior and bias correction becasue of small number of events than non-events** 

```{r} 

model2<- glm(Pathogen1 ~ RatioDepthCasing2 + Age + ParcelSize + SepTankAF, 

data=trainingSet1, family = "binomial") 

summary(model2) 

tab_model(model2) 

 

round(exp(coef(model2)),3) ## odds ratios only 

round(exp(confint(model2)),3) ##CI for odds ratio 

 

summary(model1)$coef 



 

 

 

143 

 

model2.probs = predict(model2, type = "response") ##predicted probabilities 

AIC(model2) 

resi.model2 = residuals(model2) 

 

##Check multicolinearity 

viftable2 =round(vif(model2), 3) 

viftable2 

write.csv(viftable2, file = "viftable2.csv") 

``` 

 

**Model Validation** 

```{r} 

summary(testingSet1) 

probsModel2 = as.numeric(unlist(predict(model2, testingSet1,type = "response"))) 

 

##accuracy check for testing data set 

model2.pred = rep("No",218) 

model2.pred[probsModel2>.5] ="Yes" 

table(model2.pred, testingSet1$Pathogen2) 

mean(model2.pred==testingSet1$Pathogen2) 

 

 

##Area Under the Receiver Operator Characteristic Curve (AUROC) 

chkroc2_test = pROC::roc(testingSet1$Pathogen2,probsModel2) 

chkroc2_test 

 

resiModel2 = as.numeric(unlist(residuals(model2))) 

 

##correct classified for traininfset1 

summary(trainingSet1) 

probsModel2_train = as.numeric(unlist(predict(model2, trainingSet1,type = "response"))) 

 

##accuracy check for testing data set 

model2.pred_train = rep("No",873) 

model2.pred_train[probsModel2_train>.5] ="Yes" 

table(model2.pred_train, trainingSet1$Pathogen2) 

mean(model2.pred_train==trainingSet1$Pathogen2) 

 

 

##Area Under the Receiver Operator Characteristic Curve (AUROC) 

chkroc2_train = pROC::roc(trainingSet1$Pathogen2,probsModel2_train) 

chkroc2_train 

``` 

 

 

**Model diagnostics** 
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```{r} 

 

##Make predictions for total data sets 

##making prediction with trainig data set 

model2ProbsF = as.numeric(unlist(predict(model2, myDrilledWells,type = "response"))) 

 

resiModel2 = myDrilledWells$Pathogen1 - model2ProbsF 

model2_diagnostics = data.frame(SortID,model2ProbsF,Pathogen1, Pathogen2, 

resiModel2, WellDepth, CasingDepth,RatioDepthCasing2, Age, SepTankAF, ParcelSize, 

xCoord, yCoord) 

 

write.csv(model2_diagnostics, file = "model2_diagnostics.csv") 

``` 

 

```{r} 

d = read.csv("model2_diagnostics.csv") 

summary(d) 

ggplot(d, aes(xCoord, yCoord, colour =resiModel2 )) + 

  viridis::scale_color_viridis()+ 

  geom_point(size = 3) 

``` 


