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ABSTRACT 

 

 

CHEN LIU.  A cut-cell based ghost fluid method for multi-component compressible 

flows.  (Under the direction of DR. PRAVEEN RAMAPRABHU) 

 

 

 Multi-material compressible flows are observed in several applications of practical 

relevance including combustion, cavitation and shock lithotripsy. To solve such flows 

numerically with improved efficiency and accuracy, the use of the Ghost Fluid Method 

(GFM) and its derivatives have been adopted widely. However, certain drawbacks of the 

ghost fluid approach such as overheating errors, and the appearance of unphysical 

oscillations of density and pressure are well known and have been documented in the 

literature. In this work, a cut-cell based GFM approach is proposed to accurately solve for 

the fluid state at the multi-material interface, while the location of the interface is tracked 

by a second-order level set scheme. The modified GFM was implemented in IMPACT, a 

multi-material, shock-physics code. The improvements to the GFM are validated through 

a wide range of simulations including multi-material flow problems, 1D shock problems, 

2D shock-induced bubble collapse in water/air and the 2D Richtmyer-Meshkov instability. 

In addition, the efficiency of the numerical solver is improved with the implementation of 

a blocked-structured Adaptive Mesh Refinement (AMR) scheme. We find the AMR 

implementation enhances computational efficiency, while improving the mass 

conservation properties of the level set scheme. 
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CHAPTER 1:  INTRODUCTION 

 

 

1.1 Objective 

Multi-material compressible flows are observed in several applications of practical 

relevance including combustion [1, 2], cavitation [3, 4] and shock lithotripsy [5, 6]. In 

recent years, significant effort has been expended in solving the governing equations 

associated with such flows with increasing efficiency and accuracy. In particular, the use 

of Ghost Fluid Method (GFM) [7] and its derivatives to accurately obtain the fluid state on 

the interface have been adopted widely. However, certain drawbacks of the ghost fluid 

approach such as overheating errors [7, 8], and the appearance of unphysical oscillations 

of density and pressure [9, 10] are well known and have been documented in the literature. 

In addition, the Level Set Method (LSM) [11], which is often used as the interface-tracking 

scheme under the GFM, can also have a critical impact on the quality of multi-medium 

interface. Specifically, the area-conservation error and the accuracy of the interface can 

depend on the choice of different reinitialization approaches in the LSM [12, 13, 14]. In 

this thesis, modifications to the GFM have been proposed, and the following questions are 

investigated using a range of high-fidelity simulations: 

1. How do the different ghost fluid methods affect the numerical behavior of the solutions 

in simulations of multimedium compressible flows? 

2.  To what extent do the reinitialization schemes of different orders of accuracy affect 

the quality of the multi-material interface in the simulation of compressible flows? 

To answer question 1, a cut-cell based ghost fluid method will be proposed in this thesis. 

The above study will be conducted using IMPACT, an in-house CFD code developed to 

describe shock-driven, multi-material compressible flows.  
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1.2 The Ghost Fluid Method 

The definition of interfacial boundary conditions plays a key role in the accuracy of 

numerical simulations of multi-medium compressible flows. In the Original GFM (OGFM) 

[7] approach, a ghost region is defined as a band of cells across a multi-medium interface 

from the real flow region. Within the ghost region, pressure and velocity are extrapolated 

directly from the corresponding real fluid, while the density is defined through a procedure 

called an isobaric fix [7]. The OGFM, however can exhibit strong oscillations in pressure 

while misplacing wave and interface positions, when it is employed in solving multi-

medium flows with large density/pressure differences [9]. A remedy for such issues was 

suggested in [9], where the ghost state is instead determined from solving a multi-medium 

Riemann problem across the interface. The solution to the Riemann problem is then copied 

to the interfacial cells before each fluid is advected. A series of variants to the GFM have 

been proposed in [9, 15, 16, 17, 18] and based on the above notions.  

The above approaches involve converting the multidimensional interfacial Riemann 

problems into a 1D Riemann problem parallel to the interface. In particular, in the 

Riemann-GFM (R-GFM) [17] approach, the interfacial Riemann problem is strictly 

constructed along the normal direction to the interface. Implementations of R-GFM in 

simulating multimedium compressible flows can be found in [17, 19]. In a recent study 

[20], the R-GFM was successfully extended to simulate 3D droplet evaporation with 

surface tension and viscosity. However, the R-GFM is only first-order accurate (as shown 

in the solution of a 2D Rayleigh bubble collapse problem [21]) and more dissipative 

compared with other approaches. For instance, when R-GFM is applied to solve a gas-gas 

shock bubble problem [17], the growth of the resulting interfacial instabilities are 



 3 

dissipated to a larger extent when compared with corresponding solutions from the front-

tracking method [22] or artificial diffusivity schemes [23]. In R-GFM, copying the 

interface solution to nearby Cartesian grids can also result in the misplacement of waves. 

In multi-dimensions, this behavior leads to the so-called ‘staircase effect’ [24]. 

In this work, an area-averaging procedure based on a cut-cell approach is introduced to 

be combined with the original R-GFM, and is qualitatively similar to the strategy proposed 

by Hu and Khoo [24]. The difference between the proposed approach and the strategy of 

[24] is that in multidimensions, the averaging procedure is applied to the normal velocity 

component only, while the tangential velocity component is still calculated though constant 

extrapolation. This ensures the free slip boundary condition is enforced at the multimedium 

interface. From the wide range of numerical tests reported in this thesis, we will show the 

modified R-GFM, when combined with a high-order level set approach [13] demonstrates 

improved performance in describing interfacial instabilities, while limiting mass 

conservation errors compared with the original R-GFM approach. 

1.3 The Level Set Method  

In numerical simulations of multi-medium compressible flows, the interface can be 

subjected to frequent topology changes and the emergence of topologically complex 

features such as sharp corners. The Level Set Method (LSM) [11] has been widely used in 

the simulation of flows with such complex features and involving interfaces separating 

multiple media. The LSM computes the interface as the zero level set of an implicit higher-

dimensional function, that is forced to satisfy:  

𝜙(𝑥, 𝑦):  |∇𝜙| = 1 (1.1) 
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where 𝜙(𝑥, 𝑦)  is the level set function and 𝜙(𝑥, 𝑦) = 0  represents the multi-medium 

interface. In practice [25], solving the above level set advection equation within a narrow 

band of cells flanking the interface has been shown to be sufficient. Hence, compared with 

other sharp interface approaches, there are two major advantages to the level set approach: 

1. Topology changes, such as mergers or break-up, are naturally expressed by the 

level set function without recourse to explicit interface tracking or reconstruction 

procedures. 

2. Properties of the interface, such as the interface normal direction and curvature, can 

be easily computed as derivatives of the level set function. 

 The LSM (and GFM when coupled with it) requires the definition of 𝜙 over a band of 

cells. In practice, a constant band width on either side of the interface can be achieved in 

time, by requiring 𝜙  to be a signed distance function [26]. To maintain the level set 

function as a signed distance function, a reinitialization step is introduced in the solution 

scheme at every timestep, once the level set function is advanced by the external velocity 

field. The reinitialization equation used is given by [26],  

∂𝜙

∂𝜏
+ sgn(𝜙0)(|𝛻𝜙| − 1) = 0 (1.2) 

    Here, 𝜏 is a fictitious time, and the above equation is solved iteratively to steady state. 

Typically, the reinitialization equation is discretized with a third-order Runge-Kutta 

scheme [27] in time, and a fifth-order WENO scheme [28] in space, which is commonly 

referred to as the HJ-WENO discretization. Despite the use of high order schemes, 

implementations of the original HJ-WENO scheme have been shown to be first-order 

accurate in the interface error terms [29]. Since the spatial discretization of 𝜙 does not 
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include information on the zero level set function, the computed interface can be shifted 

by up to one mesh width as the iterations reach steady state [12]. To resolve this issue, the 

authors of [12] suggested approximating the first derivative of 𝜙  using the following 

equation: 

𝐷𝑥
+𝜙𝑖 = ±

𝜙𝑖
|𝐷𝑖|

 ,     𝑖𝑓  𝜙𝑖 ∙ 𝜙𝑖±1 < 0 (1.3) 

    The distance from ith grid to the interface 𝐷𝑖, is obtained from cubic interpolation. The 

above first-order upwind approximation is based on the fact that 𝜙 = 0 at the interface. As 

a result, the level set value adjacent to the interface will eventually converge to the signed 

distance of the interface. 

    Similarly, Min and Gibou [13] developed a second-order reinitialization approach, in 

which the distance 𝐷𝑖 in equation (1.3) is computed using a quadratic interpolation. The 

scheme is also compatible with adaptive mesh refinement (AMR), and was shown to be 

third-order accurate near the interface and second-order accurate for both static and 

dynamic sharp interface problems. This second-order reinitialization approach constitutes 

the primary reinitialization scheme employed in IMPACT. To achieve higher order 

accuracy, Chéné et. al also developed a fourth-order reinitialization scheme [30], in which 

the intersection points between the interface and the Cartesian grid are approximated using 

cubic interpolants, while spatial derivatives are computed using fourth-order divided 

differences. However, it is not clear if the fourth-order scheme can be applied to highly 

dynamic problems, since the cubic interpolation might result in numerical oscillations, 

particularly in the presence of features such as kinks near the interface [13]. 
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In addition to the above strategies, schemes that avoid the multimedium interface being 

altered by the reinitialization have been suggested. For instance, Hu and Khoo proposed 

the I-GFM approach [8], in which the reinitialization process is applied only to non-

interfacial cells. Terashima and Tryggvason merged the ghost fluid method with front 

tracking method [22], where the unknown normal vector on non-interfacial ghost cells are 

calculated through extrapolating the known normal vectors near the interface. As a result, 

the use of the level set function is avoided. Both schemes have been successfully applied 

in simulating gas-liquid compressible flows.  

1.4 The Governing Equations 

    The hyperbolic conservation form of the governing equations is used to describe each 

distinct fluid in this work. Consider a rectangular box filled with two fluids A and B 

(FIGURE 1.1). The governing equations are solved in conservation form: 

𝜕𝑼

𝜕𝑡
+
𝜕𝑭

𝜕𝑥
+
𝜕𝑮

𝜕𝑦
= 0  , (1.4) 

   where  𝑼 =

(

 
 
  

𝜌

𝜌𝑢

𝜌𝑣

𝐸

  

)

 
 

 , 𝑭 =

(

  
 
  

𝜌

𝜌𝑢2 + 𝑝

𝜌𝑢𝑣

(𝐸 + 𝑝)𝑢

  

)

  
 

 ,  𝑮 =

(

  
 
  

𝜌

𝜌𝑢𝑣

𝜌𝑣2 + 𝑝

(𝐸 + 𝑝)𝑣

  

)

  
 

 . 

In the above equation, 𝜌 is the density, (𝑢, 𝑣) are the fluid velocity components in the 

(𝑥, 𝑦) directions respectively, 𝑝 is pressure and 𝐸 is the total energy. The problem is closed 

using the stiff gas equation of state, 

𝑝 = 𝜌𝑒(𝛾 − 1) − 𝑝∞, (1.5) 

where 𝑒 is the internal energy and 𝑝∞ is the ambient pressure. In this work, the following 

material properties for water have been used: 𝛾𝑤 = 4.4, 𝑝∞ = 6 × 108 𝑃𝑎. In IMPACT, 
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spatial derivatives are obtained using fifth-order WENO reconstruction [31], while time 

integration is handled with a third-order TVD Runge-Kutta scheme [27]. For gas–gas 

multimedium flows, the Roe-solver [32] is used to obtain numerical fluxes at the inter-cell 

boundaries, while the Lax-Friedrich solver [33] is used for gas-liquid flows.  

 

FIGURE 1.1 Typical configuration of a 2D computational domain. 

 

1.5 Organization of the Thesis 

This thesis is organized as follows: The level set method is described in greater detail 

along with a review of different high-order level set methods in Chapter 2. The accuracy 

of HJ-WENO, second-order and fourth-order reinitialization approaches are also verified 

with static and dynamic tests. The modified Riemann-GFM is introduced in Chapter 3, 

along with a simplified approach to approximate the area fraction of the cut-cell. In Chapter 

4, the implementation of the block-structured mesh refinement toolkit PARAMESH to the 

multimedium flow solver IMPACT is covered. Finally, the validation of the modified 

Riemann-GFM approach implemented in IMPACT using multiple test cases in 1D and 2D 

is described in Chapter 5. The major focus of this chapter is a comparison between the 

original R-GFM and the modified R-GFM, as well as the performance of different 

reinitialization schemes in simulating 2D gas–gas compressible flows. A summary of 

results and avenues for future work are discussed in Chapter 6.  
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CHAPTER 2:  THE LEVEL SET METHOD 

 

 

        The Level Set Method (LSM) is used to track the location of the multi-material 

interface in IMPACT. In the LSM approach [11], the interface is described implicitly by 

the signed distance function 𝜙, where 𝜙 > 0 and 𝜙 < 0 represent the distinct fluids in a 

two-fluid system, while 𝜙 = 0 represents the interface. In the interest of computational 

efficiency, the LSM uses flow variables (velocity and normal direction) from a band of 

cells that are adjacent to the interface. In this work, the band width was chosen to be 6∆𝑥, 

which was the band size employed in the implementation of the ghost fluid method as well.   

2.1 Advection of Level Set Function 

   The level set approach is composed of an advection step and a reinitialization step. The 

equation that governs the motion of the interface is given by [11]: 

𝜕𝜙

𝜕𝑡
+ 𝑼 ∙ 𝛁𝝓 = 0, (2.1) 

where 𝑼 is the external velocity field. As suggested in [34], equation (2.1) can be written 

alternatively in terms of its motion in the normal direction as follows, 

𝜕𝜙

𝜕𝑡
+ 𝑐 𝑈𝑛 |𝛁𝝓| = 𝟎 , (2.2) 

with 

   𝑐 =

{
 
 

 
 

1,                                  if  |𝜙| ≤ 𝛽        
 

(|𝜙| − 𝛾)2  (2|𝜙| + 𝛾 − 3𝛽)

(𝛾 − 𝛽)3
,    if   𝛽 < |𝜙| < 𝛾                    
 

0,                                  if   |𝜙| >  𝛾.      

 (2.3) 
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     In equation (2.2), 𝑈𝑛 is the projection of the external fluid velocity onto the interface 

normal direction, while the cutoff function c, is introduced to ensure a smooth transition 

between the inner (𝛽 = 3 𝑑𝑥) and outer (𝛾 = 6 𝑑𝑥) regions of the computational band. 

Equation 2.2 is integrated in time in IMPACT using a third-order RK-TVD scheme [27], 

while a fifth-order WENO reconstruction to represent spatial derivatives [28]. The normal 

direction to the interface, 𝒏 = 𝛁𝝓/|𝛁𝝓|, is computed using a fourth-order central finite 

difference scheme in IMPACT. Note that 𝛁𝝓  is approximated by the Godunov-

Hamiltonian scheme [26]: 

|𝜵𝝓| = 𝐻𝐺(𝜙)

=

{
 
 
 
 

 
 
 
 
√𝑚𝑎𝑥 (|(𝐷𝑥

𝑢𝑝𝜙) +|
2
, |(𝐷𝑥

𝑑𝑜𝑤𝑛𝜙)
−
|
2
) +𝑚𝑎𝑥 (|(𝐷𝑦

𝑢𝑝𝜙)
+
|
2
, |(𝐷𝑦

𝑑𝑜𝑤𝑛𝜙)
−
|
2
) ,

 
if   𝑈𝑛 > 0

 

√𝑚𝑎𝑥 (|(𝐷𝑥
𝑢𝑝𝜙) −|

2
, |(𝐷𝑥

𝑑𝑜𝑤𝑛𝜙)
+
|
2
) + 𝑚𝑎𝑥 (|(𝐷𝑦

𝑢𝑝𝜙)
−
|
2
, |(𝐷𝑦

𝑑𝑜𝑤𝑛𝜙)
+
|
2
) ,

if   𝑈𝑛 ≤ 0

 

(2.4) 

with (𝐷)+ = 𝑚𝑎𝑥(𝐷, 0) and (𝐷)− = 𝑚𝑖𝑛(𝐷, 0). 

2.2 Reinitialization of the Level Set Function 

    As the interface evolves, the level set function 𝜙 may deviate from its initialization as a 

signed distance function. As a result, a reinitialization step is often required [26], after each 

timestep to ensure |∇𝜙| = 1 . In practice, this is enforced by iteratively solving the 

following equation to steady-state [26]: 

∂𝜙

∂𝜏
+ 𝑠𝑔𝑛(𝜙0)(|𝜵𝝓| − 1) = 0, (2.5) 
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where the smoothed sign function 𝑠𝑔𝑛(𝜙0) is further defined as: 

𝑠𝑔𝑛(𝜙0) =
𝜙0

√𝜙02 + 𝑑𝑥2
 

(2.6) 

The superscript 𝜙0 denotes the value of ϕ at the first iteration. A typical choice for the 

fictitious time step 𝑑𝜏 , is 𝑑𝜏 = 𝑑𝑥/2 [34], since it has been observed to provide fast 

convergence rates for commonly used iterative schemes, while |𝜵𝝓| is estimated from 

equation (2.4). 

2.2.1 Second-order reinitialization 

We briefly review the numerous approaches available to compute the reinitialization 

step of the level set calculation [12, 13, 35, 29]. A relatively simple strategy to solving 

equation (2.5) is to use the same discretization scheme in time and space as for the 

advection equation described in Section 2.1, an approach called the Hamilton Jacobi-

WENO scheme (HJ-WENO) [26]. The HJ-WENO scheme is second-order accurate in 

approximating the zero level set function [30], and exhibits a tendency for the interface to 

move towards the adjacent Cartesian mesh [12]. To predict the interface location more 

accurately, Smereka [12] suggested that the location of zero level set should be included 

when calculating the first derivative of 𝜙. Although their scheme is first-order accurate at 

the interface, it achieves second-order accuracy globally.  

In IMPACT, we adopt the reinitialization scheme proposed by Min and Gibou [13], who 

extended the above idea to second order accuracy at the interface on an adaptive mesh. In 

their framework, the first derivative of 𝜙 inside the computational band (not adjacent to 

the interface) is estimated through the second-order divided difference: 
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𝐷𝑥
+𝜙𝑖 =

𝜙𝑖+1 −𝜙𝑖
𝑑𝑥

−𝑚𝑖𝑛𝑚𝑜𝑑(𝐷𝑥𝑥𝜙𝑖 , 𝐷𝑥𝑥𝜙𝑖+1) (2.7) 

𝐷𝑥
−𝜙𝑖 =

𝜙𝑖−𝜙𝑖−1

𝑑𝑥
+𝑚𝑖𝑛𝑚𝑜𝑑(𝐷𝑥𝑥𝜙𝑖 , 𝐷𝑥𝑥𝜙𝑖−1). (2.8) 

    The second derivative 𝐷𝑥𝑥
0 𝜙𝑖 , is approximated by the central difference scheme, 

provided that all cells inside the band are located on the finest grid. In the cells immediately 

adjacent to the interface, the approximation of the first derivative is slightly modified with 

the requirement that 𝜙 = 0 along the interfacial points [13]: 

𝐷𝑥
+𝜙𝑖 =

0 − 𝜙𝑖
𝑠𝐼

−𝑚𝑖𝑛𝑚𝑜𝑑(𝐷𝑥𝑥
0 𝜙𝑖 , 𝐷𝑥𝑥

0 𝜙𝑖+1) (2.9) 

𝐷𝑥
−𝜙𝑖 =

𝜙𝑖 − 0

𝑠𝐼
+𝑚𝑖𝑛𝑚𝑜𝑑(𝐷𝑥𝑥

0 𝜙𝑖 , 𝐷𝑥𝑥
0 𝜙𝑖−1) (2.10) 

Here, 𝐷𝑥𝑥
0 𝜙𝑖+1 is used instead of 𝐷𝑥𝑥

0 𝜙𝑆𝐼, since the latter formulation causes instability 

when the interface moves too close to the nearby grid point [13]. 

    The intersection between the interface and Cartesian grid, s𝐼 , is captured through a 

quadratic interpolation of 𝜙0. For an interface intersecting the horizontal mesh between 

points 𝑥𝑖 and 𝑥𝑖+1, the quadratic function to approximate the interfacial location is given 

by [13]:   

𝜙0(𝑥) = 𝑐2𝑥
2 + 𝑐1𝑥 + 𝑐0,   (𝑐0, 𝑐1, 𝑐2) =

{
 
 

 
 𝑐2 =

1

2
𝑚𝑖𝑛𝑚𝑜𝑑[𝐷𝑥𝑥

0 𝜙𝑖 , 𝐷𝑥𝑥
0 𝜙𝑖+1]

 
𝑐1 = (𝜙𝑖+1

0 −𝜙𝑖
0)/𝑑𝑥                    
  

𝑐0 = (𝜙𝑖+1
0 +𝜙𝑖

0)/2 − 𝑐0𝑑𝑥
2/4 

. (2.11) 

    The origin of the cut-cell function, 𝜙0(𝑥), is located at the midpoint between 𝑥𝑖 and 𝑥𝑖+1. 

When |c2| < 10
−6, s𝐼 is computed assuming the interface cuts linearly through the grid, 
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i.e. s𝐼 = 𝑑𝑥/2 − 𝑐0/𝑐1 . Higher order schemes, such as the unidirectional cubic 

interpolation are an alternative in some cases [30]. However, the quadratic interpolation 

demonstrates better stability when there is a kink near the interface [13] and it is therefore 

used as the primary interpolation scheme to capture the intersection between the interface 

and the numerical mesh in IMPACT. 

    For the above iterative scheme to be stable, it has been shown that the fictitious step size 

for the interfacial grids 𝑑𝜏, should be selected based on the location of the intersection [12, 

13]: 

𝑑𝜏 = 𝑚𝑖𝑛 (𝑑𝑥, 𝑑𝑦,  𝑠𝐼𝑥 , 𝑠𝐼𝑦) /2. (2.12) 

   Since a steady-state solution is pursued, it is feasible to use an adaptive step size for grids 

at different locations. For non-interfacial points, we still choose 𝑑𝜏 = 𝑑𝑥/2. Compared 

with using a globally uniform 𝑑𝜏 , applying the adaptive step size can increase the 

convergence rate of the iterations considerably (this improvement is demonstrated in 

Section 2.3.1).  

2.2.2 Fourth-order reinitialization 

The fourth-order reinitialization scheme of Chéné [30] has also been implemented in 

IMPACT, and is described here briefly. When compared with the second-order scheme 

discussed in § 2.2.1, this scheme uses fourth-order divided difference to approximate the 

one-sided first derivative. The corresponding upwind/downwind scheme for the first 

derivative of 𝜙 is: 

𝐷𝑥
±𝜙(𝑥𝑖) = 𝐷−1

2
±
1

2

1 +𝑀𝑖𝑛𝑀𝑜𝑑(𝐷±1
2 , 𝐷0

2) ∗ (𝑥𝑖 − 𝑥𝑖±1) + 𝑎±, (2.12) 
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where 

𝑎± = {
(𝑥𝑖 − 𝑥𝑖±1) ∗ (𝑥𝑖 − 𝑥𝑖±2) ∗ 𝑀𝑖𝑛𝐴𝑏𝑠 (𝐷1

2
±
1

2

3 ,   𝐷1
2
±
3

2

3 )    𝑖𝑓|𝐷±1
2 | < |𝐷0

2|  
 

(𝑥𝑖 − 𝑥𝑖±1) ∗ (𝑥𝑖 − 𝑥𝑖∓1) ∗ 𝑀𝑖𝑛𝐴𝑏𝑠(𝐷0
3,   𝐷1

3)    𝑖𝑓 |𝐷±1
2 | > |𝐷0

2|

.  

The first-order approximation for derivative 𝐷𝑘
𝑚 at point 𝑥𝑖 is defined as: 

𝐷𝑘
𝑚 =

{
 
 

 
 𝐷𝑘

𝑚−1−𝐷𝑘−1
𝑚−1

𝑥𝑖+𝑘+1−𝑥𝑖−𝑘−1+𝑚
   𝑖𝑓  𝑚 > 0  
 
 

        𝜙(𝑥𝑖+𝑘+1)          𝑖𝑓  𝑚 = 0

.  

The corresponding seven-point computational stencil for the spatial derivative at point 𝑥𝑖, 

is shown in FIGURE 2.1. If the distance between the interface and the Cartesian grid is less 

than 3𝑑𝑥  in the horizontal direction, the intersection point will be included in the 

computational stencil.      

    Note that in the fourth-order scheme, it is difficult to apply the stabilizer for the second-

derivative, as was done in equations (2.9) and (2.10). This is because in equation (2.9), the 

interface information is stored in the first term, namely 
0−ϕ𝑖

s𝐼
. If the grid is not adjacent to 

the interface, but still located inside the computation stencil (e.g., FIGURE 2.1), 

substituting 𝐷1
2
±
1

2

1  in equation (2.12) will result in a loss of the interface information. As a 

result, the fourth-order scheme will become unstable when the interface moves too close 

to the mesh. 
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FIGURE 2.1: Computational stencil for the fourth-order reinitialization [30] of the  

first derivative of ϕ at point xi. 

 

2.3 Numerical Tests of the Reinitialization Scheme 

    The accuracy and efficiency of different reinitialization methods implemented in 

IMPACT were investigated with static and dynamic test problems. The dynamic case, in 

particular, demonstrates the capability of different reinitialization schemes in preserving 

the interface information, when the interface is subjected to a vortical velocity field, which 

frequently occurs in simulations of real-flow applications. The evaluation of the different 

reinitialization schemes when coupled with more complicated external flow fields is 

presented in Chapter 5. The major focus in this section is to demonstrate the order of 

accuracy of these reinitialization schemes. All the simulations have been performed with 

the adaptive mesh refinement toolkit PARAMESH that was implemented in IMPACT as 

part of this thesis work. While the finest refinement level in the simulations may vary, the 

coarsest mesh was fixed at 1/32. 
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2.3.1 Reinitialization of a 2D exponential function 

Consider the square domain 𝛺 = [0,2]2, in which the initial level set function before 

reinitialization is given by: 

𝜙0(𝑥, 𝑦) = 𝑒𝑥𝑝 (√(𝑥 − 1)2 + (𝑦 − 1)2 − 0.2313) − 1 (2.12) 

As the iterations proceed, 𝜙 will asymptote to a signed distance function on 𝛺 (since the 

zero level set 𝜙0(𝑥, 𝑦) = 0 is a function of a circle, the initial exponential function is 

eventually shaped into a cone). The simulation was stopped after 200 iterations. The mesh 

convergence of the max norm of error of 𝜙 near the interface ( |𝜙(𝑥, 𝑦)| < 1.2𝑑𝑥) is 

reported in TABLE 2-1. The max norm of error 𝐿∞, is defined as, 

𝐿∞ = max
|𝜙(𝑥,𝑦)|<1.2𝑑𝑥

|𝜙(𝑥, 𝑦) − 𝜙𝑒𝑥𝑎𝑐𝑡(𝑥, 𝑦)| (2.12) 

    As indicated by the numerical results, the HJ-WENO reinitialization is second-order 

accurate for this case. The nominally second order reinitialization scheme on the other hand, 

demonstrates third order accuracy near the interface, which is reported in the literature [13] 

as well. 

FIGURE 2.2 shows the convergence rate for the second-order scheme with different 

fictitious step sizes, where the finest mesh for the problem was 𝑑𝑥 = 1/128. From the plot, 

the adaptive time marching scheme requires fewer than 10 steps to reach steady state, 

although the convergence rate could depend on the complexity of the 𝜙 function prior to 

reinitialization [13]. The uniform step size, in contrast requires greater than 100 iterations 

to achieve steady state. For dynamic cases, where the reinitialized level set function was 

shifted by a small amount after each RK-3 sub-step, around 5 steps were required for the 

iterations to reach steady state. As a consequence, using an adaptive fictitious step size for 
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the second-order reinitialization can achieve faster convergence rate than using a constant 

one. 

 

TABLE 2.1: Max norm of reinitialization error for a 2D cylindrical function. 

𝑁𝑥 × 𝑁𝑦 𝐿∞ Order of Accuracy 

322 3.60 × 10−5  

642 7.30 × 10−6 2.30 

1282 1.95 × 10−6 1.90 

2562 3.71 × 10−7 2.39 

 

(a) HJ-WENO reinitialization 

𝑁𝑥 × 𝑁𝑦 𝐿∞ Order of Accuracy 

322 3.02 × 10−3  

642 4.63 × 10−4 2.71 

1282 5.70 × 10−5 3.02 

2562 7.48 × 10−6 2.93 

 

(b) Second-order reinitialization 

𝑁𝑥 × 𝑁𝑦 𝐿∞ Order of Accuracy 

322 1.55 × 10−4  

642 1.10 × 10−5 3.81 

1282 4.70 × 10−7 4.54 

2562 6.32 × 10−8 2.89 

 

(c) Fourth-order reinitialization 
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FIGURE 2.2: Convergence rate corresponding to different fictitious time marching 

schemes for the second-order reinitialization scheme. 

 

2.3.2 Circle deformation in a rotational velocity field 

A circle of radius 0.15 is placed at (0.5, 0.75) in the 2D square domain Ω = [0,1]2, and 

embedded in an external velocity field defined as follows: 

𝑢(𝑥, 𝑦) = −𝑠𝑖𝑛2(𝜋𝑥)𝑠𝑖𝑛 (2𝜋𝑦) (2.13) 

𝑣(𝑥, 𝑦) = 𝑠𝑖𝑛2(𝜋𝑦)𝑠𝑖𝑛 (2𝜋𝑥) (2.14) 

The RK3-TVD scheme is used for time integration for this case, with a fixed time step 

size of 𝑑𝑡 = 𝑑𝑥𝑓𝑖𝑛𝑒𝑠𝑡/2 . In [13], the authors suggested using a second-order, semi-

Lagrangian scheme for the advection equation. Although the scheme is unconditionally 

stable, it is less accurate and is more computationally expensive, since a bilinear 

interpolation is required for obtaining the departure point of the cartesian grid at each time 

step. For computational efficiency, adaptive mesh refinement was employed, where the 

coarsest mesh size for all cases was 𝑑𝑥 = 1/32 (all the grids within the band for advection 

equation were refined to the finest level). 
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Results from this set of simulations are shown in FIGURE 2.3, and summarized in 

TABLE 2.2. The circle evolves in time by stretching and deforming under the influence of 

the imposed background velocity field. For 𝑡 > 1.0, the direction of the velocity field was 

reversed in the simulations. The interface contour at 𝑡 = 1.0 is plotted at different mesh 

resolutions in FIGURE 2.3. It is clear that the fourth-order reinitialization scheme is 

capable of preserving more details of the head and tail structures of the interface, compared 

with the second-order reinitialization and the HJ-WENO schemes. In addition, the fourth-

order scheme is associated with the least mass conservation errors at all mesh resolutions 

(as shown in TABLE 2.2). Both the second-order reinitialization scheme and the traditional 

HJ-WENO scheme display second-order accuracy in mass conservation. However, at 𝑡 =

1.0, the second-order reinitialization predicts the location of head and tail more accurately 

than the HJ-WENO reinitialization, according to FIGURES 2.3 (a) and (b).  

2.3.3 Conclusions 

     The performance of three reinitialization schemes, which are commonly used to 

maintain the level set function as the signed distance, is examined in this chapter. As 

demonstrated by the numerical tests, the fourth-order reinitialization scheme [30] is the 

most accurate in limiting the area-conservation error and predicting the location of the 

interface. The second-order reinitialization [13] and the HJ-WENO reinitialization [26] 

show comparable performance in solving a 2D dynamic problem. In contrast, the second-

order reinitialization is able to reach third-order accuracy locally when used to solve a 2D 

static problem, whereas the HJ-WENO reinitialization is only second-order accurate near 

the interface. 
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TABLE 2.2: Loss of mass at t = 2.0 for circle deformation problem (in %). 

 642 1282 2562 

HJ-WENO 

(Order of Accuracy) 

21.6 4.50 1.00 

− (2.26) (2.17) 

Second-order 

(Order of Accuracy) 

15.4 3.47 0.96 

− (2.15) (1.85) 

Fourth-order 

(Order of Accuracy) 

-6.73 -0.681 0.012 

− (3.3) (5.8) 

             (∗ Negative sign indicates a gain in area) 
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(a) HJ-WENO reinitialization 

 
(b)  Second-order reinitialization 

 
(c)  Fourth-order reinitialization 

FIGURE 2.3: Interface contours at t=1 s for the circle deformation problem.  
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CHAPTER 3:  THE MODIFIED RIEMANN-GHOST FLUID METHOD 

 

 

3.1 The Riemann-Ghost Fluid Method (R-GFM) 

    In IMPACT, the Ghost Fluid Method (GFM) is used to enforce the boundary conditions 

at a multi-medium interface. Consider a two-fluid (material A and material B) Riemann 

problem; the Original GFM (OGFM) separates the computational domain into two regions, 

and treats each material individually through the introduction of a ghost fluid [7]. For 

computations involving material A, the domain occupied by material B is replaced with a 

ghost region which has the same equation of state as material A: the pressure and the 

normal velocity inside the ghost region are copied directly from material B, while the 

entropy is defined through a constant extrapolation from the region containing material A 

across the interface [7]. Since wave structures obtained from single-medium, real-ghost 

configurations do not always correspond to the two-medium interactions of interest, 

incorrect interface locations and strong oscillations in the pressure wave are observed when 

the OGFM is used to solve strong shock interaction problems [9].  

    An alternative approach that mitigates the above issues is the Riemann Ghost Fluid 

Method (R-GFM) suggested in [17]. In the R-GFM approach, the state of fluid (density, 

normal velocity and pressure) on the interface, is obtained directly from solving a multi-

medium Riemann problem before being extrapolated across the interface. The Riemann 

problem is constructed across the interface by defining a numerical ‘probe’ in the interface-

normal direction (FIGURE 3.1). Then, the ‘left’ and ‘right’ states for the Riemann problem 

are obtained from interpolation to points located at a distance 1.5∆𝑥 from the interfacial 

point and along the direction of the probe. From the exact solution to the interfacial 



 22 

Riemann problem, the star states are obtained and copied to the interfacial grid points, 

while the ghost cells are populated using a constant extrapolation approach. 

 
FIGURE 3.1: Construction of the interfacial Riemann problem for interfacial cell 

PA, using the R-GFM approach suggested in [17]. 

 

3.2 The Modified R-GFM 

Early simulation results of gas-gas compressible flows [17, 19] have shown the R-GFM 

numerical scheme can result in inaccuracies in multi-medium problems. For instance, the 

growth rate of the Richtmyer-Meshkov instability is underpredicted by the original R-GFM 

[10], and when compared with other numerical schemes [36, 22]. A common issue 

associated with GFM-related correction techniques stems from copying the solution to the 
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interfacial Riemann problem to the nearby interfacial cells, which can result in the 

misplacement of waves associated with the solution, and in oscillations of the interface 

(referred as the ‘stair steps’ effect [24]). FIGURE 3.2 demonstrates the ‘stair steps’ effect 

observed in simulations using the R-GFM scheme. Consider two fluids in a rectangular 

domain separated by an inclined interface as shown. The ‘left’ and ‘right’ states of the 

interface are uniformly defined as 𝑾𝑳/𝑹 (𝑾 = {𝜌, 𝑈𝑛, 𝑝}) initially. If the resulting wave 

structure from solving the interfacial Riemann problem is a rarefaction wave, the same 

solution is assigned to all interfacial points on one side of the interface, e.g. for points 𝑃1, 

𝑃2 in FIGURE 3.2, 𝑾𝐼𝑃1𝐿
∗ = 𝑾𝐼𝑃2𝐿

∗ . However, the solution states at 𝑃1 and 𝑃2 should be 

treated differently, since their distances to the interface are not identical. If the solution 

satisfies 𝑾𝐼𝑃1𝐿
∗ > 𝑾𝐿, copying the interfacial star state to its corresponding interfacial cell 

point results in an overestimation of the real state [FIGURE 3.2 (b)]. 

 
         (a)                                                                  (b)  

FIGURE 3.2: The staircase effect observed in solutions obtained using the original 

R-GFM. 
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Following [24], we propose the correction step in the original R-GFM should be applied 

only to the ghost portion of the interfacial cell, while the real portion of the interfacial cell 

is unaffected by the R-GFM fix. Since 𝑾𝑝 denotes the geometric average between the real 

state and the ghost state inside interfacial cell P, we propose the following refined 

correction technique applied to the interfacial cells: 

𝑾𝑛𝑒𝑤 = 𝛼𝑟𝑒𝑎𝑙𝑾𝑟𝑒𝑎𝑙 + (1 − 𝛼𝑟𝑒𝑎𝑙)𝑾𝑔ℎ𝑜𝑠𝑡 , (3.1) 

with                   𝛼𝑟𝑒𝑎𝑙 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑓𝑙𝑢𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑐𝑢𝑡−𝑐𝑒𝑙𝑙 

𝑑𝑥∙𝑑𝑦
 (3.2) 

    Here 𝛼𝑟𝑒𝑎𝑙  is the area fraction of the real fluid portion of an interfacial cell, 𝑾𝑟𝑒𝑎𝑙  is the 

state of the interfacial cells before applying the R-GFM fix, and 𝑾𝑔ℎ𝑜𝑠𝑡  is the state of ghost 

region obtained from the original-RGFM approach. 

A significant difference between the above proposed approach and the original R-GFM 

scheme [17] is that in our scheme, the correction step is applied to both the real interfacial 

cells and the ghost interfacial cells, whereas in the original R-GFM approach the correction 

is applied only to the real interfacial cells. As a result, different definitions of 𝑾𝑔ℎ𝑜𝑠𝑡  are 

used in real and ghost interfacial cells – in real interfacial cells, 𝑾𝑔ℎ𝑜𝑠𝑡  is populated with 

star state values obtained from the exact Riemann solver, while the ghost interfacial cell 

values of 𝑾𝑔ℎ𝑜𝑠𝑡  are populated with primitive variables obtained through constant 

extrapolation. Note that the real region corresponding to a ghost interfacial cell is normally 

undefined at the beginning of the simulation. However, for the correction technique above 

to be valid, the interfacial ghost cells, which include a portion of the real region must be 

defined through a one-layer extrapolation initially.  
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3.3 Correction to the Interfacial Normal Velocity 

    In GFM, the free-slip boundary condition is enforced at the multi-material interfaces [7]. 

Applying equation (3.1) directly to the vertical/horizontal component of the velocity will 

violate such a condition. As a result, we only perform the area averaging correction on the 

normal component of the interfacial velocity. In practice, once the velocity field on the 

ghost region is defined through extrapolation, the normal component of the 

vertical/horizontal velocity is replaced with the area-averaged value, i.e., 

𝑢𝑛𝑒𝑤 = 𝑢𝑔ℎ𝑜𝑠𝑡 − |𝑼𝒏𝒈𝒉𝒐𝒔𝒕| 𝑛𝑥 + |𝑼𝒏𝒏𝒆𝒘|𝑛𝑥 (3.2) 

    Here 𝑛𝑥  is the horizontal component of the unit normal to the interface. |𝑼𝒏| is the 

magnitude of the interfacial normal velocity, which satisfies the following, 

|𝑼𝒏| = 𝑛𝑥𝑢 + 𝑛𝑦𝑣 (3.3) 

    The averaged normal velocity 𝑼𝒏𝒏𝒆𝒘, is obtained in the same manner as described by 

equation (3.1). Combining equations (3.1) and (3.2), the horizontal component of the 

interfacial velocity can be further expressed as followed,  

𝑢𝑛𝑒𝑤 = 𝑢𝑔ℎ𝑜𝑠𝑡 + 𝑛𝑥𝛼𝑟𝑒𝑎𝑙  (|𝑼𝒏𝒓𝒆𝒂𝒍| − |𝑼𝒏𝒈𝒉𝒐𝒔𝒕|). (3.4) 

The vertical component of the interfacial velocity can be obtained similarly. The above 

correction scheme is summarized in the flow chart shown in FIGURE 3.5. Compared with 

the original R-GFM [17], the modified scheme proposed here requires more memory, and 

is computationally more expensive.  
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3.4 Area Fraction of the Interfacial Cells 

The level set based cut cell method has been successfully used in the numerical 

simulations of both compressible and incompressible flows [37, 38, 39]. In these methods, 

the area fraction of the interfacial cells 𝛼, is calculated assuming the interface cuts through 

the cell linearly. The linear interface cut cell function, 𝑦 = 𝑓(𝑥) (with the origin located at 

the cell center, as shown in FIGURE 3.3), can be represented using a point on the curve 

(−𝜙𝑃𝑛𝑥, −𝜙𝑃𝑛𝑦) and the slope ( −
𝑛𝑥

𝑛𝑦
 ): 

 
𝑦+𝜙𝑃𝑛𝑦

𝑥+𝜙𝑃𝑛𝑥
=

−𝑛𝑥

𝑛𝑦
. (3.4) 

From the cut cell function, the corresponding intercepts on the cell borders are obtained 

as 𝐴: (𝑓−1 (
𝑑𝑦

2
) ,

𝑑𝑦

2
) , 𝐵: (−

𝑑𝑥

2
, 𝑓 (−

𝑑𝑥

2
)) ,𝐶: (𝑓−1 (−

𝑑𝑦

2
) , −

𝑑𝑦

2
) , 𝐷: (

𝑑𝑥

2
, 𝑓 (

𝑑𝑥

2
))  In 

IMPACT, six different types of cut cells are considered and shown in FIGURE 3.4. With 

the intersection points known, the minor area portion of an interfacial cell, 𝛼: (𝛼 <
1

2
), can 

be computed from simple geometric calculations, i.e.  

𝛼 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
   
1

2
(
𝑑𝑥

2
+ 𝑥𝐴) (

𝑑𝑦

2
− 𝑦𝐵) , 𝑖𝑓  |𝑥𝐴| <

𝑑𝑥

2
 𝑎𝑛𝑑 |𝑦𝐵| <

𝑑𝑦

2
  

 
1

2
(
𝑑𝑥

2
− 𝑥𝐴) (

𝑑𝑦

2
+ 𝑦𝐷) , 𝑖𝑓  |𝑥𝐴| <

𝑑𝑥

2
 𝑎𝑛𝑑 |𝑦𝐷| <

𝑑𝑦

2 
1

2
(
𝑑𝑥

2
+ 𝑥𝐶) (

𝑑𝑦

2
− 𝑦𝐷) , 𝑖𝑓  |𝑥𝐶| <

𝑑𝑥

2
 𝑎𝑛𝑑 |𝑦𝐷| <

𝑑𝑦

2
 

1

2
(
𝑑𝑥

2
− 𝑥𝐶) (

𝑑𝑦

2
+ 𝑦𝐵) , 𝑖𝑓  |𝑥𝐶| <

𝑑𝑥

2
 𝑎𝑛𝑑 |𝑦𝐵| <

𝑑𝑦

2 

      (𝑑𝑥 − |𝑥𝐴 + 𝑥𝐶|)
𝑑𝑦

2
, 𝑖𝑓  |𝑥𝐴| <

𝑑𝑥

2
 𝑎𝑛𝑑 |𝑥𝐶| <

𝑑𝑥

2
 

      (𝑑𝑦 − |𝑦𝐵 + 𝑦𝐷|)
𝑑𝑥

2
, 𝑖𝑓 |𝑦𝐵| <

𝑑𝑦

2
 𝑎𝑛𝑑 |𝑦𝐷| <

𝑑𝑦

2

 (3.5) 
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and 

𝛼𝑟𝑒𝑎𝑙 = {  
𝛼, for ghost interfacial cells 

 
1 − 𝛼,   for real interfacial cells   

 (3.6) 

    For the interfacial real cell which is not intercepted by the interface (i.e. 𝛼𝑟𝑒𝑎𝑙 = 1), the 

correction step in the original R-GFM will not be applicable, although it is still involved in 

solving for the interfacial star state. Similar criteria for correction are applied to the 

interfacial ghost cell where 𝛼𝑟𝑒𝑎𝑙 = 0. 

 

 

FIGURE 3.3: Construction of the cut-cell function for a given interfacial cell. 

 

 

FIGURE 3.4: Six typical types of cut cells considered in IMPACT in 2D. 
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3.5 Test Case: 2D Explosion Problem 

The 2D axisymmetric explosion problem is a useful test case to demonstrate the ‘stair 

steps’ effect observed in the GFM and its remediation using the above correction. The 

initial state of the problem [33] is defined as: 

            (𝜌, 𝑢, 𝑣, 𝑝 ) = 

{
   1.0 ,   0.0,   0.0,   1.0,    for √(𝑥 − 0.5)2 + (𝑦 − 0.5)2 < 0.2 

 
0.125,   0.0,   0.0,   0.1,        (elsewhere)                              

 

(3.7) 

    The contact discontinuity has been treated with the ghost fluid method, although the 

problem comprises a single material. For computational efficiency, two levels of adaptive 

mesh refinement with the finest mesh being ∆𝑥 = 1/256 were used. The mesh is relatively 

coarse, so that numerical errors are easier to observe. The second order reinitialization 

scheme is adopted to smooth the level-set function near the interface.  

    FIGUREs 3.6 – 3.8 show the 3D view, 2D slices and closeup views respectively of the 

interface position at 𝑡 = 0.25  of the 2D explosion test problem, where the interface 

(contact discontinuity) has been approximated through a cubic interpolation of the level set 

function. As the initial interface is axisymmetric, the shock wave should propagate strictly 

outward as a circle. However, the staircase effect is clearly observed in the R-GFM 

simulation, especially at locations where the interface is parallel to the horizontal or the 

vertical axis. Similar oscillations in the waves and interface were also reported in the 

OGFM [40]. In contrast, the interface appears smoother when computed using the modified 

R-GFM [FIGURE 3.7 (b)]. Oscillations in the density are similarly dampened by the 

modified R-GFM scheme, as shown in FIGURE 3.6. Moreover, even at the coarser 
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resolution of 𝑁𝑥 = 128 used here, the modified R-GFM reproduces smoother density 

distributions when the results are compared with reported results of the OGFM computed 

with 𝑁𝑥 = 200 in [40]. 
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ii. Store a copy of flow properties (density, pressure 

and normal velocity) at the interfacial cell 

iii.  Define the interfacial Riemann problem; use the 

exact Riemann solver to obtain the interfacial star state 

iv.  Populate the ghost region through constant 

extrapolation across the interface   

vi.  Solve 2D single-medium Riemann problem for each 

material; update the location of interface; apply 

reinitialization after one full RK3 step     

v.  Calculate area-averaged values on the interfacial 

cells using the result from steps ii and iv    

i.  Apply initial conditions; define the ghost region 

through one-layer extrapolation 

RK3  

Sub-step 

FIGURE 3.5: Flowchart for the modified R-GFM proposed in this work. Highlighted 

text in red indicate modifications from the original R-GFM. 
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(a) Original R-GFM 

 

(b) Modified R-GFM  

FIGURE 3.6: Density profiles of a cylindrical shock propagation with two levels of 

mesh refinement. 
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(a) Original R-GFM 

   

(b) Modified R-GFM  

 FIGURE 3.7: Location of contact discontinuity for the cylindrical shock 

propagation problem using the R-GFM [17] and the modified R-GFM schemes.  
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(a) Original R-GFM 

 

(b) Modified R-GFM  

FIGURE 3.8: Closeup view of the location of the contact discontinuity for the 

cylindrical shock propagation problem. 
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CHAPTER 4:  BLOCK-STRUCTURED MESH REFINEMENT 

 

 

    The adaptive mesh refinement (AMR) has been a popular choice to reduce the 

computational cost associated with simulating compressible flows and has been 

implemented in IMPACT. To resolve the fluid motion adequately, a fine mesh is used only 

in regions with sharp gradients in the solution field. The use of AMR to solve compressible 

flows was first suggested by Berger [41]. Subsequently, numerous variations on AMR 

approaches have been developed and reported in [42, 43, 44, 45]. In IMPACT, the block-

structured AMR toolkit PARAMESH [43, 46, 47], is used for mesh refinement and 

integrated with the flow solver. When used in a parallel computation, PARAMESH [43, 

46, 47] also enforces load balancing between the different processors. To further adapt 

PARAMESH for multi-medium compressible flows, the duo-criteria refinement is adopted. 

4.1 The block-structured adaptive mesh refinement 

PARAMESH employs a block-structured meshing framework in which the mesh is 

defined in terms of N by N (in 2D) so-called ‘blocks’, that are aligned with the grid. 

Simulations in PARAMESH are initialized with one block, and mesh refinement leads to 

a hierarchical block structure using a quad-tree structure in 2D, or an oct-tree structure in 

3D [43]. When field variables within a block satisfy the criteria for refinement, the parent 

block is evenly divided into four child blocks, each with half the size of the parent block, 

while the mesh number is maintained the same. Similarly, if all four child blocks meet the 

de-refinement criteria, they are merged into their parent block and subsequently removed. 

At each time step, the refinement and de-refinement procedures are performed recursively, 

until all blocks are properly nested. 
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FIGURE 4.1 illustrates an example of the process of refinement of a block-structured 

mesh. Consider a portion (bottom left in FIGURE 4.1 (a)) of the computational domain 

that meets the refinement criteria, where the refinement levels are set to 2 to 4. This will 

lead to the eventual distribution of blocks shown in FIGURE 4.1(b). A total of 10 child 

blocks are generated in this case, where the grid spacing on the finest blocks (3, 4, 5, 6) are 

each 𝑑𝑥𝑓𝑖𝑛𝑒𝑠𝑡 = 𝑑𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙/2
3. In addition, all blocks are labelled according to ‘Morton’s Z-

route’ rule [48], i.e., all child blocks which belong to the same parent block are labelled 

sequentially in a ‘Z’ shape, a strategy that makes it easier to identify neighboring blocks. 

 In IMPACT, the grid size of each block is chosen as (4 × 4). The block size cannot be 

less than the number of boundary guard cells, which ensures no extra communication is 

needed to update the boundary cells. Consequently, a larger block size will result in a larger 

buffer zone between the fine and coarse meshes, which is less memory efficient. Compared 

with the traditional AMR approaches, the blocked-structured refinement demands more 

memory, although the memory overhead is usually < 30% [43]. 

           

(a)  Initial block                  (b)  Refined blocks 

FIGURE 4.1: A typical block-structured mesh refinement process [43], with ‘Z-

route’ labelling for child blocks. 
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4.2 Prolongation and Restriction 

     Once the new blocks are formed, restriction (fine to coarse) and prolongation (coarse to 

fine) operators are used to map the physical variables onto the new blocks. An arithmetic 

average is used for the restriction operators in IMPACT, where the conservative variables 

on a parent block, 𝑈(𝑥,𝑦)
𝑝𝑎𝑟𝑒𝑛𝑡

 are constructed in 2D as follows: 

𝑈(𝑥,𝑦)
𝑝𝑎𝑟𝑒𝑛𝑡 =

1

4
 (𝑈(𝑥+𝑑𝑥,𝑦+𝑑𝑦)

𝑐ℎ𝑖𝑙𝑑 +𝑈(𝑥−𝑑𝑥,𝑦+𝑑𝑦)
𝑐ℎ𝑖𝑙𝑑 + 𝑈(𝑥+𝑑𝑥,𝑦−𝑑𝑦)

𝑐ℎ𝑖𝑙𝑑 + 𝑈(𝑥−𝑑𝑥,𝑦−𝑑𝑦)
𝑐ℎ𝑖𝑙𝑑 ) (4.1) 

To prolong the data from a coarse mesh to a fine mesh, a 2D Lagrangian interpolation is 

used. The algorithm guarantees a smooth variation of physical quantities, which would be 

adequate only when waves (or discontinuities) do not locate on the fine-coarse mesh 

boundary. In other words, the refinement criteria must ensure that the waves dwell in the 

finest mesh and do not travel beyond the fine–coarse mesh boundary during one timestep. 

In IMPACT, this requirement is achieved through adding a buffer layer to the second 

derivative-based refinement criteria discussed below.  

4.3 Refinement criteria 

The refinement criteria are critical in mesh refinement since they determine the eventual 

grid structure in the simulation. In the context of multi-medium compressible flows, higher 

resolutions are needed where discontinuities of physical quantities are present, such as 

shocks and interfaces. In IMPACT, we choose the second derivative of density as the 

conditioned variable for applying the refinement criterion. The pressure and velocity are 

not selected since they are smooth across contact discontinuities in single-medium 
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compressible flows. Specifically, the Löhner’s estimator for the second derivative is used 

[49], where the refinement criteria 𝑐𝑟𝑒𝑓𝑖𝑛𝑒 is written as, 

𝑐𝑟𝑒𝑓𝑖𝑛𝑒 =

{
 
 

 
 

∑ (
𝜕2𝑢

𝜕𝑥𝑝𝜕𝑥𝑞
)
2

𝑝𝑞

∑ [
1

2∆𝑥𝑝
(|
𝜕𝑢
𝜕𝑥𝑝

|
𝑖𝑞+1

+ |
𝜕𝑢
𝜕𝑥𝑝

|
𝑖𝑞−1

) + 𝜖
|𝑢𝑝𝑞̅̅ ̅̅ ̅|
∆𝑥𝑝∆𝑥𝑞

]𝑝𝑞

2

}
 
 

 
 
1/2

. (4.2) 

    In the above equation, 𝑝, 𝑞  represent the horizontal and vertical axis directions 

respectively, while a small disturbance 𝜖 = 0.01 is added to avoid division by zero. The 

estimator is the normalized second-order central finite difference approximation of the 

second derivative of the variable considered for refinement. Unless otherwise mentioned, 

the refinement threshold employed in this work was 0.1, while a de-refinement threshold 

of 0.02 was used. 

For the second refinement criterion, all cells within the computational band of the zero 

level set (±6∆𝑑𝑥 in IMPACT) were tagged for refinement. The two-criteria refinement has 

been successfully applied in the simulation of multi-material flows [10]. There are two 

reasons for adding such a criterion. First, as a fourth-order scheme is used for 

reinitialization and calculating the normal directions, applying the second order 

prolongation scheme described in Section 4.2, will result in a loss of the higher order of 

accuracy, thereby affecting the extrapolation and interfacial Riemann problem in R-GFM 

approach. Secondly, the first refinement criterion solely captures regions with highly 

discontinuous density profiles, so that only the cells adjacent to the interface will be tagged 

for refinement. Moreover, as pointed out in [36], de-refining a cell previously occupied by 

the interface will likely result in instabilities due to the generation of negative pressure. To 



 38 

address this issue, the authors of [36] suggested using the Natural Neighbor Interpolation 

(NNI) in place of the regular restriction operator at the interface. Alternatively, leaving a 

band of cells residing in the finest mesh can circumvent the issue as well, and is the 

approach used in IMPACT.  

The logic diagram for the implementation of the two-criteria refinement in IMPACT is 

shown in FIGURE 4.2. A block that satisfies either criterion for refinement will be tagged 

for refinement. On the other hand, a block is de-refined only if it meets both de-refinement 

criteria. 

 
 

FIGURE 4.2: Logic flowchart for two-criteria mesh refinement. 

 

In rare instances, it is possible that a block meets the refinement criterion while all of its 

child blocks meet the de-refinement criterion. This will result in the block being refined 

and de-refined repeatedly at every time step, adding to the computational overhead. 

PARAMESH avoids such difficulties by applying the same refinement criteria to both the 
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finest blocks and their parents, while making prioritizing the refinement over the de-

refinement: e.g. FIGURE 4.3 shows a simple 1D hierarchical block structure (2 × 1). The 

numbers in red represent the density in each cell, while the density inside the parent block 

is calculated according to equation (4.1). If the central finite difference scheme is used to 

approximate the first derivative of density, the right cell inside Parent 1 will meet the 

refinement criteria whereas the blocks Child 1 and Child 2 will meet the de-refinement 

criteria. Under such circumstances, Child 1 and Child 2 will not be de-refined in 

PARAMESH. As a result, an extra restriction operator is always needed to acquire the 

quantity of interest on the parental blocks, before applying the refinement criteria. 

 
FIGURE 4.3: An example of recursive mesh refinement. 

 

4.4  An example on grid structure  

In this section, a simple test problem used to verify the effectiveness of the AMR 

implementation in IMPACT is described. The initial conditions of the physical problem 

are given in detail in Section 5.2.2. A total of five levels of mesh refinement were used for 

the problem, with a finest grid spacing of 1/1024. FIGURE 4.4 shows the adaptive mesh 

overlaid on the numerical Schlieren image. Regions containing the multimedium interface 

and the transmitted wave in both water and air are refined to the finest levels validating the 
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choice of refinement criteria employed. To quantitatively describe the efficiency of the 

adaptive mesh, the percentage Occupancy Ratio is used [10]. The OR is defined as the ratio 

of the number of cells used in an AMR simulation at a specific time step to the number of 

cells used in a uniform mesh corresponding to the finest mesh in the AMR simulation: 

𝑂𝑅 =
[𝑁𝑐𝑒𝑙𝑙𝑠(𝑡)]𝐴𝑀𝑅

(𝑁𝑐𝑒𝑙𝑙𝑠)𝑓𝑖𝑛𝑒𝑠𝑡
. (4.3) 

    For the numerical test above, the number of blocks at the time of plotting was 

approximately 11,000, and the resulting OR is 16.7%, which indicates a significant 

reduction on the computational cost. 

 

 
 

 

FIGURE 4.4: Grid structure showing adaptive mesh refinement for a 2D gas-water 

shock interaction problem. 
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CHAPTER 5:  NUMERICAL EXAMPLES 

 

 

In this chapter, we report on several numerical test cases that serve to validate the 

improvements made to IMPACT. The focus of 1D test cases is to demonstrate 

quantitatively, the improved performance of the modified R-GFM when compared with 

the original R-GFM [17]. The 2D tests involve a wider range of comparisons, and serve to 

evaluate the relative performances of (i) second-order reinitialization vs. HJ-WENO 

reinitialization, and the (ii) modified R-GFM vs. the original R-GFM [17]. Collectively, 

these test cases will show the combination of modified R-GFM and second-order 

reinitialization produces the most accurate results, characterized in terms of the quality of 

material interfaces, wave locations and global fidelity to mass conservation.  

5.1 1D Shock tube problems 

5.1.1 Gas-gas shock interactions 

Weak shock interactions: A 1D shock tube with unit length is considered, and includes 

air (left) and helium (right) sections separated by a diaphragm in the middle. The 

dimensionless initial conditions, taken from [17], are given as follows: 

( 𝜌,   𝑢,   𝑃,   𝛾) = {
   (1.0,   0.0,   1.0,   1.4),             𝑓𝑜𝑟 𝑥 ≤ 0.5,

 
    (0.125,   0.0,   0.1,   1.667),   𝑓𝑜𝑟 𝑥 > 0.5.

 (5.1) 

    The simulation was performed with AMR and three levels of mesh refinement, where 

the mesh density at the highest refinement level was 𝑑𝑥 = 1/512. The WENO-5/Roe 

scheme was chosen as the single-phase Riemann solver. The density and pressure profiles 

at t = 0.16, are shown in FIGURE 5.1. There is no visible differences in the interface 

locations between the modified R-GFM and the analytical solutions. However, the location 
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of the transmitted shock is slightly overpredicted by both the R-GFM and to a lesser extent 

by the modified R-GFM, according to the magnified plots shown in FIGUREs 5.1(b) and 

(d). Furthermore, the over-heating error observed at the interface is slightly reduced with 

the modified R-GFM. 

Strong shock interactions: The ability of IMPACT to handle strong shock interactions is 

examined here. The initial conditions for this case are from [50], where the dimensionless 

initial values for left/right states are: 

( 𝜌,   𝑢,   𝑃,   𝛾) = {
   (1.0,   0.0,   500,   1.6),   𝑓𝑜𝑟 𝑥 ≤ 0.5,

 
    (1.0,   0.0,   0.2,   1.4),   𝑓𝑜𝑟 𝑥 > 0.5.

 (5.2) 

    The pressure ratio of left/right state was 2500:1, corresponding to a Mach 31 transmitted 

shock travelling to the right. Numerical results at 𝑡 =  0.01 are shown in FIGURE 5.2. 

Similar to the previous case, the modified R-GFM proposed in this work demonstrates 

improved performance in capturing the transmitted shock and reducing the overheating 

errors. The improvement is more evident here than in the previous weak-shock case. 

Furthermore, when compared with numerical schemes reported elsewhere [36, 51, 52], we 

find our GFM approach generates fewer oscillations in pressure near the rarefaction wave. 

Although more accurate GFM schemes have been reported with improved performance in 

handling overheating errors for 1D (e.g. I-GFM [8]), we emphasize the strength of our 

approach lies in the enhanced quality of the interface in 2D flows. 

    The comparison of density profiles between the uniform and AMR meshes is shown in 

FIGUREs 5.1 (e) and 5.2 (e) for the weak and strong shock interactions respectively. In 

both cases, the results are in agreement, while regions containing sharp gradients in density 

and pressure are refined to the finest level. The occupancy ratios for the weak/strong shock 
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problems at the end of the simulations were 36.7% / 31.4%, indicating significant savings 

in computational costs. 
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(a)                                                            (b) 

 
 

                                    (c)               (d) 

 
      (e) 

FIGURE 5.1: Numerical solutions for 1D air-helium shock interactions at t = 0.16. 
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                                      (a)                                                                  (b) 

 

 
                                      (c)                                                                 (d) 

    
                                       (e)                                                                     

FIGURE 5.2: Numerical solutions for 1D air-helium strong shock interactions at t = 

0.01. 

0

1

2

3

4

5

6

7

0.3 0.4 0.5 0.6 0.7 0.8

D
e

n
s
it

y

x

Analytical

Modified R-
GFM

0

1

2

3

4

5

6

7

0.58 0.63 0.68

D
e

n
s
it

y

x

Analytical

R-GFM

Modified 
R-GFM

-100

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8

P
re

s
s
u

re

x

Analytical

Modified R-
GFM

-100

0

100

200

300

400

500

0.6 0.62 0.64 0.66 0.68 0.7

P
re

s
s
u

re

x

Analytical

R-GFM

Modified R-GFM

0

1

2

3

4

5

6

7

0.58 0.6 0.62 0.64 0.66 0.68

D
e

n
s
it

y

x

Uniform mesh

Non-uniform 
mesh



 46 

 

5.1.2 Gas-water shock interactions  

The 1D gas–water shock interaction discussed here involved a large density jump at the 

material interface, while the stiffened gas equation was used to determine the pressure in 

water. The initial conditions for the problem were from [53], and written as:  

( 𝜌,   𝑢,   𝑃,   𝛾,   𝑝∞)

= {
  (1000kg/𝑚3,   0𝑚/𝑠,   109 𝑃𝑎,   4.4,   6.0 × 108 𝑃𝑎),   𝑓𝑜𝑟 𝑥 ≤ 0.7𝑚,

 
    (50kg/𝑚3 ,   0 𝑚/𝑠,   105 𝑃𝑎,   1.4,   0 𝑃𝑎),   𝑓𝑜𝑟 𝑥 > 0.7𝑚.

 

(5.3) 

    The finest mesh used for this simulation was 𝑑𝑥 = 1/768. Density and pressure profiles 

at 𝑡 =  0.24 𝑚𝑠 are shown in FIGURE 5.3 and demonstrate excellent agreement between 

the modified R-GFM and the exact solution. In addition, the modified R-GFM predicts the 

locations of the interface and shock more accurately than the original R-GFM. 
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                                     (c)                                                                  (d) 

 

FIGURE 5.3: Numerical solutions for 1D air-water shock interactions at t = 0.24 ms. 

 

5.2 2D Shock bubble cases 

5.2.1 Mach 1.22 air–helium shock bubble interaction 

Results from the canonical 2D air–helium shock bubble interaction problem are 

presented in this section. The problem definition is based on the experiments of Hass and 

Sturtevant [54], which were later used as a benchmark case in several numerical papers 

[55, 56, 17, 23, 57]. Consider a stationary cylindrical helium bubble placed at the center of 

a rectangular box in quiescent air. The configuration of the 2D computational domain is 

demonstrated in FIGURE 5.4, with the geometric parameters defined as follows: 

            𝑎 = 44.5 𝑚𝑚, 𝑏 = 356 𝑚𝑚, 𝑐 = 50 𝑚𝑚, 𝑑 = 150 𝑚𝑚, 𝑒 = 25 𝑚𝑚  

-1.0E+8

1.0E+8

3.0E+8

5.0E+8

7.0E+8

9.0E+8

1.1E+9

0 0.2 0.4 0.6 0.8 1

P
re

s
s
u

re
, 

P
a

x (m)

Analytical

Modified R-GFM

-5.0E+6

0.0E+0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

0.77 0.79 0.81 0.83 0.85 0.87

P
re

s
s
u

re
, 

P
a

x (m)

Analytical

R-GFM

Modified R-
GFM



 48 

 
FIGURE 5.4: Problem setup for the shock bubble problem. 

 

The initial states for the helium bubble and the surrounding air are: 

      ( 𝜌,   𝑢,   𝑝,   𝛾) = 

{
 
 

 
 
   1.78 kg/m3 ,   − 110.63 𝑚/𝑠,   159060 Pa,   1.4,   for post − shocked air

 
1.29kg/m3,   0.0 𝑚/𝑠,   101325 Pa,   1.4,   for pre − shocked air

  
0.235 kg/m3,   0.0 𝑚/𝑠,   101325 Pa,   1.648,   for helium bubble

 

(5.4) 

    The top/bottom boundaries were treated as periodic, while the left/right boundary 

surfaces were treated as zero-gradient surfaces. A total of four levels of adaptive mesh 

refinement were used, corresponding to a finest mesh size of 216 Points Per bubble Radius 

(p.p.r.). The refinement thresholds for the case were set to: 𝑐𝑟𝑒𝑓𝑖𝑛𝑒 = 0.1, 𝑐𝑑𝑒𝑟𝑒𝑓𝑖𝑛𝑒 = 0.02, 

while the CFL parameter was chosen to be 0.4. 

The numerical Schlieren images of the density gradients associated with the helium 

bubble at different times are shown in TABLE 5.1, where a comparison between the 

modified R-GFM with other numerical methods [57] is included. In the figures in TABLE 
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5.1, the instance of shock impingement on the bubble is taken as 𝑡 = 0 𝜇𝑠. Note that the 

finest mesh used in the study reported in [57] was 500 p.p.r. As shown in the plots, the 

locations of the transmitted and reflected waves are in good agreement with results from 

[57]. During the early stages of the simulation, oscillations in the density field are observed 

near the top and bottom of the helium bubble when computed using the original R-GFM. 

In contrast, significant attenuation of these oscillations is observed when the modified R-

GFM is instead employed. Also, Richtmyer-Meshkov (RM) [58] and Kelvin-Helmholtz 

(KH) [59] instabilities can be clearly observed with the modified R-GFM at 𝑡 = 427𝜇𝑠,

983 𝜇𝑠, due to the sufficiently large mesh size and the higher fidelity of the method. Even 

at slightly lower grid resolutions (108 p.p.r. vs. 112 p.p.r. in [17]), the modified R-GFM is 

capable of revealing more details associated with the interfacial instabilities, as shown in 

FIGURE 5.6 (a). 

FIGURE 5.5 is a plot of the time evolution of the locations of three distinct features of 

the helium bubble: the downstream, upstream and jet locations. Overall, the results from 

IMPACT are in good agreement with other numerical approaches [22, 23, 18]. The data 

from the original R-GFM and the modified R-GFM are in agreement initially, while the 

deformed bubble computed by the original R-GFM moves slightly faster at late times (the 

difference in the positions of the interface near the end of the simulation is around 2%). 

The time-averaged velocity of the upstream interface (144.4 m/s), the downstream interface 

(174.9 m/s) and the jet (220.1 m/s) from the modified R-GFM were all found to agree with 

the data from the experiments of [54] within the experimental uncertainty (the velocities 

of different bubble locations were obtained in the same manner as described in TABLE 2 

from [57]). 
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Comparison between second-order reinitialization and HJ-WENO reinitialization 

schemes: A comparative study between the different reinitialization schemes was also 

carried out, and the resulting bubble contours at 𝑡 =  427 𝜇𝑠, 674 𝜇𝑠, 983 𝜇𝑠 are shown 

in FIGURE 5.6. We find the choice of reinitialization scheme does not affect the wave 

locations as the shock propagates through the bubble. However, interfacial instabilities 

appear more dominant when the second-order reinitialization is used, due to the fact that 

the interface is fixed through a quadratic interpolation. Such a phenomenon is consistent 

with the numerical tests reported in Section 2.3.2, where the second-order reinitialization 

scheme was capable of preserving greater details of the interfacial structures at the same 

resolution as the HJ-WENO reinitialization. Furthermore, the second-order scheme also 

demonstrates improved symmetry compared with the HJ-WENO reinitialization, 

particularly during the early stages of the simulation. 
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TABLE 5.1: Numerical Schlieren images of the density gradient for the air-helium 

shock bubble interaction simulation and comparison with results from [57]. 

Time 
Modified R-GFM, 

IMPACT, 216 p.p.r. 

R-GFM,  

IMPACT, 216 p.p.r. 
Coralic [57], 500 p.p.r. 

102 𝜇𝑠 

   

245 𝜇𝑠 

   

427 𝜇𝑠 

   

983 𝜇𝑠 
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FIGURE 5.5: Time evolution of downstream, upstream and jet locations for Air-

Helium shock bubble problem. 
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(a) 

  

(b) 

   

(c) 

FIGURE 5.6: Numerical Schlieren images showing the time evolution of the air-

helium shock bubble problem. Left panel: 427 μs, Middle panel: 674 μs, Right 

panel: 983 μs. (a) Second-order reinitialization (108 p.p.r.) (b) Second-order 

reinitialization (216 p.p.r.) (c) HJ-WENO reinitialization (216 p.p.r.). 
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5.2.2 Air-R22 shock bubble interaction  

Results from IMPACT simulation of an air-R22 shock-bubble interaction problem are 

presented in this section. The setup of the computational domain is identical to the air-

helium problem discussed earlier (FIGURE 5.4), while the initial states of the R22 bubble 

and the surrounding air are specified as follows: 

      ( 𝜌,   𝑢,   𝑝,   𝛾) = 

{
  
 

  
 
   1.66kg/m3 ,   − 114 𝑚/𝑠,   159080 Pa,   1.4,   for post − shocked air 

 
1.2062 kg/m3,   0.0 𝑚/𝑠,   101325 Pa,   1.4,   for pre − shocked air

  

3.5965
kg

m3
,   
0.0𝑚

𝑠
,   101325 Pa,   1.1847,   for R22 bubble.

        

 

(5.5) 

    The finest mesh used for this case was 432 p.p.r. (corresponding to 1536 cells along the 

y-direction). An adaptive time step was chosen to satisfy 𝐶𝐹𝐿 = 0.4. 

The time evolution of the density gradient contours are shown in FIGURE 5.7. The 

locations and shapes of the air-R22 interface and the acoustic waves are in good agreement 

with both experimental [54] and numerical results [52, 60]. A step-by-step description of 

the mechanism of air-R22 shock bubble deformation was provided in [60]. Since the speed 

of sound is higher in the R22 bubble, the incident shock speed in air is faster than that of 

the refracted shock in R-22. Such differences in velocity on the multi-material interface 

results in the counter-clockwise (clockwise) KH instability observed on the upper(lower)-

half of the R22 interface. Due to the high resolution employed here, the RM and KH 

instabilities are clearly observed with the modified R-GFM. Compared with the numerical 

results from the original R-GFM presented in [19], the modified R-GFM captures more 

structures while generating fewer oscillations in density at the same resolution.  
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(a) 135 𝝁𝒔 

 

(b) 247 𝝁𝒔 

 

(c) 417 𝝁𝒔 

FIGURE 5.7: Numerical Schlieren images of shock-induced R22 bubble collapse in 

air. 
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5.2.3 Mach 1.43 water-air shock-bubble interaction: 

In this test problem, a Mach 1.43 shock originating in water impinges on an air bubble 

and serves to verify the ability of IMPACT in simulating multiphase compressible flows. 

The Weber number is calculated based on the maximum jet speed behind the air bubble 

and the width of the water jet [61]. For this problem in particular, the Weber number 

exceeds 103 [62, 61], therefore surface tension forces do not play a significant role. The 

computational domain is parametrized similar to the previous case (FIGURE 5.4), with the 

following geometric parameters defining the locations of the bubble and the shock:  

      𝑎 = 1 𝑚𝑚, 𝑏 = 2 𝑚𝑚, 𝑐 = 1 𝑚𝑚, 𝑑 = 0.1 𝑚𝑚, 𝑒 = 0.4 𝑚𝑚 . 

To minimize boundary effects on wave structures and interfaces, all boundary 

conditions in the problem were set to zero gradient conditions. The initial conditions used 

are detailed below: 

   ( 𝜌,   𝑢,   𝑝,   𝛾) = 

{
 
 

 
 
 1233.4kg/m3 ,   − 439.8 𝑚/𝑠,   1.02 × 109 Pa,   for post − shocked water

 
1000.0 kg/m3 ,   0.0 𝑚/𝑠,   1.0 × 105 Pa,   for pre − shocked water

  
1.0 kg/m3 ,   0.0 𝑚/𝑠,   1.0 × 105 Pa,   for air bubble

        

 

(5.6) 

    The simulations were performed at mesh resolutions of 256 p.p.r. and 384 p.p.r. (which 

correspond to Ny = 1024 and 1536 respectively), while four levels of refinement were used 

for both simulations. The refinement thresholds were set as 𝑐𝑟𝑒𝑓𝑖𝑛𝑒 = 0.04, 𝑐𝑑𝑒𝑟𝑒𝑓𝑖𝑛𝑒 =

0.005 and the timestep was constrained to satisfy CFL = 0.4. The single-medium Riemann 

problem was solved using the WENO-5/Lax-Fredrich scheme.  
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Schlieren images of the density gradient at different simulation times are shown in 

FIGURE 5.8. The interface contours are in qualitative agreement with those reported in the 

literature [39, 63]. However, the locations of the wave structure in the current study are 

closer to Hawker’s [63] results, who used 400 p.p.r combined with a front-tracking scheme. 

From [63], the wave oscillations can be attributed to the use of component-wise WENO 

reconstruction. In contrast, event at the slightly lower resolutions employed here, IMACT 

is capable of accurately capturing the wave and interface structure with fewer oscillations. 

A detailed description of the mechanism of 1Gpa air-water shock interaction can be 

found in [63], and briefly reviewed here in the context of our results. Three phases of 

bubble evolution can be identified: The transition between phases 1 and 2 appear to be 

marked by the formation of the water-hammer shock seen in FIGURE 5.8 (c), while phases 

2 and 3 are separated by the complete passage of the water hammer shock through the air 

bubble [FIGURE 5.8 (f)]. The large density ratio between the fluids enhances baroclinic 

vorticity deposition, but suppresses KH instabilities in accordance with linear theory [64]. 

As a result, the use of different reinitialization schemes does not significantly impact fine-

scale features on the interface. When the transverse water jet breaches the upstream portion 

of the air bubble, the simulation enters the second stage, where the water-hammer shock is 

predominant. Two sheet-jets are also formed shortly following the emergence of the water-

hammer shock and penetrate through the air bubble. At the start of this second phase, the 

maximum pressure due to the water-hammer shock reaches ~3.36 𝐺𝑝𝑎. This extremely 

large pressure ratio and the presence of the sharp interface near the tip of the sheet jet 

increases the likelihood of negative pressures in both water and air, leading to the 

simulation using original R-GFM becoming numerically unstable. Quantitative parameters 
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from the above transition are reported in TABLE 5.2, where the results from IMPACT are 

compared with the literature [63, 18].  

Numerical Schlieren images in FIGURE 5.9 depict in detail the moment the water-

hammer shock first forms. Compared with numerical results obtained from [10], our 

implementation of the R-GFM shows significantly reduced oscillations in the density field 

behind the water jet. Furthermore, the original R-GFM and the modified R-GFM show 

good agreement in the shape of the interface and the locations of waves, with the exception 

of slight density oscillations visible near the irregular refraction wave. These results are 

also in qualitative agreement with the simulation results from the front tracking scheme in 

[63]. Note that the original R-GFM transitions to the second stage slightly earlier than the 

area-averaged R-GFM (666 ns vs. 668 ns). This slight discrepancy is attributed to the way 

the interfacial ghost points are defined in each case: in the original R-GFM, the interfacial 

cells are corrected once a wave enters the region within 1.5𝑑𝑥 of the interface, whereas in 

the modified R-GFM, the correction step is applied to the ghost potion of the interfacial 

cells only. 

The mass conservation error of the air bubble at any time instant, 𝑇 = 𝑡, is defined as 

follows: 

𝐸𝑟𝑟𝑜𝑟 =
(𝑀𝑎𝑠𝑠𝑎𝑖𝑟|𝑇=𝑡 −𝑀𝑎𝑠𝑠𝑎𝑖𝑟|𝑇=0)

𝑀𝑎𝑠𝑠𝑎𝑖𝑟|𝑇=0
 (5.7) 

    The evolution of mass conservation errors is shown in FIGURE 5.10 (a) for the modified 

R-GFM at different mesh resolutions. The error increases dramatically at two instants: (i) 

the moment when the water hammer shock is formed, and (ii) when the secondary jet first 

appears. Peaks in the reported mass conservation error at different effective meshes are 
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24.2% at 128 p.p.r., 12.7% at 256 p.p.r. and 9.0% at 384 p.p.r. A comparison with the mass 

conservation error from the original R-GFM [17] is plotted in FIGURE 5.10 (b). For the 

same resolution, this figure shows the modified R-GFM is able to reduce the conservation 

error by approximately 50% from the original R-GFM approach. Compared with other 

sharp interface approaches, such as the Characteristic-Based Method (CBM) of [36], the 

modified R-GFM reveals larger mass conservation errors during the early stages of the 

simulation. However, at late times the bubble mass in the modified R-GFM is restored 

shortly after the formation of the secondary jets, whereas the mass of the bubble continues 

to increase when computed using the CBM [36]. 

 

TABLE 5.2: Quantitative data during the transition stage of a 1Gpa water-air shock 

interaction, with comparison with the front tracking method [63] and grid-aligned 

GFM [18]. 

 
Modified R-

GFM 
Hawker [63] Nikolaos [18] 

Resolution (p.p.r.) 256 400 400 

First stage time (ns) 668 675 680 

Jet speed at impact (m/s) 2111 2278 2131 

Water hammer pressure (Gpa) 3.36 3.00  3.48  
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(a) 230 𝑛𝑠 ∶ Phase 1 (b) 545 n𝑠 ∶ Phase 1 

  

(c) 665 𝑛𝑠 ∶ Transition to Phase 2 (d) 725 n𝑠 ∶ Phase 2 

  

(e) 775 n𝑠 ∶ Phase 2 (f) 875 n𝑠 ∶ Transition to Phase 3 

 

FIGURE 5.8: Numerical Schlieren images of the interaction between a 1 Gpa water 

shock and an air bubble. 
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(a) Hawker [63], 675 ns, 400 p.p.r.  

 

(b) R-GFM IMPACT, 666 ns, 256 p.p.r. 

              

(c) Modified R-GFM IMPACT, 668 ns, 256 p.p.r. 

FIGURE 5.9: Closeup view of density gradient contours when water-hammer shock 

is formed: Comparison between different numerical schemes. 

 



 62 

 

(a)  Mass conservation error at different mesh sizes. 

 

(b)  Comparison with the original R-GFM.  

FIGURE 5.10: Mass conservation errors for the 1.0 Gpa water shock impinging on 

an air bubble problem. 
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5.2.4 The Richtmyer-Meshkov instability 

The Richtmyer-Meshkov instability (RMI) occurs when two fluids separated by a 

perturbed interface are impulsively accelerated [58]. In particular, the special case of a 

planar shock impinging on a sinusoidal material interface separating air and SF6 is 

investigated. The computational domain is shown in FIGURE 5.11, with the following 

geometric parameters: 

𝑎 = 0.5, 𝑏 = 11, 𝑐 = 0.35, 𝑑 = 0.5 

 

FIGURE 5.11: The computational domain and geometric parameters for 

Richtmyer-Meshkov instability simulation (not to scale). 

 

The initial states for the air and SF6 streams are 

 ( 𝜌,   𝑢,   𝑝,   𝛾) = 

{
 
 

 
 
   0.6708 kg/m3 , 161.7 𝑚/𝑠, 1.513 × 105 Pa, 1.4, for post − shocked air 

 
0.5kg/m3 ,   0.0𝑚/𝑠, 1.0 × 105 Pa, 1.4, for pre − shocked air

  
2.5 kg/m3 ,   0.0 𝑚/𝑠, 1.0 × 105 Pa, 1.093, for SF6

 

 

(5.8) 
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    The Atwood number is defined as,  

𝐴 =
(𝜌𝑆𝐹6 − 𝜌𝑎𝑖𝑟)

(𝜌𝑆𝐹6 + 𝜌𝑎𝑖𝑟)
 (5.9) 

    The corresponding pre-shock Atwood number for this problem was 𝐴− = 2/3. The 

WENO-5/Roe solver was used as the single-medium flow solver. The simulation was 

performed at two levels of the finest mesh:  
𝑑𝑥

𝜆
≈

1

256
,
1

512
, while the coarsest mesh was 

fixed at 
𝑑𝑥

𝜆
≈

1

64
, where 𝜆 = 1𝑚 is the perturbation wavelength. The time step size was 

adaptively chosen to satisfy 𝐶𝐹𝐿 = 0.5. As suggested in [65], the simulation time was non-

dimensionalized using,  

𝜏 =  𝑉0
2𝜋

𝜆
𝑡 (5.10) 

where 𝑉0 = 𝑉𝑖𝑛𝑡
2𝜋

𝜆
ℎ0𝐴

+ denotes the initial linear growth rate of the interface assuming 

the flow is largely devoid of compressible effects, 𝑡 is the actual simulation time, ℎ0 is the 

post-shock amplitude of the interface, 𝐴+ is the post-shock Atwood number and 𝑉𝑖𝑛𝑡 =

107.6 𝑚/𝑠  is the velocity of the unperturbed interface (obtained from a companion 

simulation with ℎ0 = 0). 

Density profiles at two time instants 𝜏 = 5, 10 are shown in FIGURE 5.12 and for 

different resolutions. Since the WENO-5 approach is less dissipative at higher resolutions 

[66], the mushroom structures appear to be more unstable at the higher resolutions (and at 

late times) and hence fragment. For the same reason, the secondary Kelvin-Helmholtz 

instability near the mushroom stem is observed only at the finer mesh. A common issue 

with multimedium flow solvers is that in the absence of diffusion (e.g. level set/front 
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tracking method), the shape of the spike will either become too pointed [22] or too flat [36, 

10]. Similar shortcomings are also observed in our implementation of the original R-GFM 

(TABLE 5.3, third row). In contrast, the modified R-GFM does not exhibit such artefacts 

in the spike shape, which indicates the assignment of the solution from the two-fluid 

Riemann problem directly to the interfacial cell might be responsible for this behavior. 

5.2.4.1  Comparison between the different reinitialization schemes 

The performances of different reinitialization schemes are compared in TABLE 5.3. In 

the early stages (𝜏 ≤ 3), the interfacial contours from the HJ-WENO reinitialization and 

the second-order reinitialization are nearly identical. At later times (𝜏 = 5), the second-

order reinitialization allows the tip of the mushroom structure to grow further. Additionally, 

there is no visible difference in the locations of spikes and bubbles, indicating the growth 

rates of these features are unaffected by the choice of the different reinitialization schemes.  

The interfacial contours obtained from the fourth-order reinitialization scheme [30] is 

shown in FIGURE 5.13 (a) for 𝜏 = 5. When the fourth-order scheme is used, the tip of the 

mushroom structure extends further without merging with nearby portions of the interface. 

If the cubic interpolation to obtain the intersection between the interface and the Cartesian 

mesh is replaced with a quadratic interpolation [FIGURE 5.13 (b)] as discussed in Section 

2.2.1, the interface behavior is similar to the results obtained from the HJ-WENO 

reinitialization. This suggests the second-order reinitialization is sufficient to capture all 

details of the interface evolution.   
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                                 (a)                                                                       (b) 

     

                                 (c)                                                                       (d) 

FIGURE 5.12: Density contours from the Air-SF6 RMI simulation at (a) τ=5, 

dx/λ=1/256, (b) τ=10, dx/λ=1/256, (c) τ=5, dx/λ=1/512, (d) τ=10, dx/λ=1/512. 
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TABLE 5.3 Density contours of the 2D Air-SF6 Richtmyer-Meshkov instability 

(dx/λ=1/256). 

Scheme 𝜏 = 3 𝜏 = 5 

Modified R-

GFM with 

second-order 

reinitialization 

  

Modified R-

GFM with HJ-

WENO 

reinitialization 

  

Original R-GFM 

with second-

order 

reinitialization 
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FIGURE 5.13: Interface contours from the 2D Air-SF6 RMI simulation with fourth-

order reinitialization of the level set function ( dx/λ=1/256 ) and (a) cubic 

interpolation and (b) quadratic interpolation. 

 

5.2.4.2  RMI growth rates 

The growth rate of the RM interfacial perturbation obtained from the numerical 

simulations is compared with the nonlinear model of Dimonte and Ramaprabhu [65]. The 

model of [65] has been demonstrated to be valid over a wide range of Atwood numbers 

and perturbation amplitudes, under the proviso that the flow can be assumed to be 

incompressible. The spike and bubble growth rates are given by [65], 

𝑉𝑏𝑢/𝑠𝑝 = 𝑉0
1 + (1 ∓ |𝐴+|) 𝜏

1 + 𝐶𝑏𝑢/𝑠𝑝 𝜏 + (1 ∓ |𝐴
+|) (1 ± |𝐴+|) 𝜏2

 (5.11) 

with  𝐶𝑏𝑢/𝑠𝑝 =  𝑉0
4.5±|𝐴+|+(2∓|𝐴+|)|𝑘ℎ0

+|

4
. The post-shock Atwood number and perturbation 

amplitudes for this case were 𝐴+ = 0.6960, 𝑘ℎ0
+ = 0.4159. FIGURE 5.14 shows the time 

evolution of the perturbation growth rates from the original and modified R-GFM 

approaches, and a comparison with equation (5.11). The mesh size used for both cases was 

𝑑𝑥

𝜆
=

1

512
, and was chosen to ensure convergence of key global quantities. From the plots 

in FIGURE 5.14, the modified R-GFM demonstrates good agreement with equation (5.11) 
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for the bubble and spike growth rates, whereas the original R-GFM slightly overpredicts 

the growth rate of the spike. The corresponding growth rates at different mesh resolutions 

(  
𝑑𝑦

𝜆
=

1

256
,

1

512
 ) are shown in FIGURE 5.15. For the mesh resolutions employed here, the 

RMI bubble and spike growth rates appear to be converged in FIGURE 5.15, with the 

results at 
𝑑𝑦

𝜆
=  

1

512
 showing slightly fewer oscillations.  
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            (a)  

   
(b)  

FIGURE 5.14: (a) Spike and (b) bubble growth rates from simulations of the Air-

SF6 RMI problem using the original and modified versions of R-GFM. 
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           (a)  

   
(b)  

 

FIGURE 5.15: (a) Spike and (b) Bubble growth rates from IMPACT simulations 

using the modified R-GFM approach and showing convergence with respect to the 

mesh. 
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CHAPTER 6:  CONCLUSIONS 

 

 

   A multimedium compressible flow solver, featuring a modified Riemann-ghost fluid 

method, the second-order level set approach and block-structured mesh refinement has 

been presented in this thesis. Preliminary results show the solver is capable of accurately 

simulating gas-gas and gas-liquid compressible flows with sharp interfaces and complex 

topology changes. Such problems are relevant to several practical applications in 

engineering and to naturally occurring flow phenomena.  

The central contribution of this work is a modification to the Riemann ghost fluid 

method (R-GFM [17]) that improves upon the performance of that original approach in 

resolving interfaces and computing the locations of wave fields generated in such flows. In 

the proposed scheme, primitive variables on interfacial cells are adjusted based on the area 

fraction of the ghost/real volumes, determined through a cut-cell approach. Compared with 

the original R-GFM approach, unphysical oscillations of the interface and the density field 

are significantly mitigated, as verified through various multimedium gas-gas compressible 

flow simulations. In addition, the higher fidelity of the approach is evident as more 

pronounced growth of interfacial instabilities (KH, RM) for the same resolution as the 

original R-GFM scheme. Moreover, the modified R-GFM approach demonstrates 

improved performance in limiting mass conservation errors in simulations of both gas-gas 

and gas-liquid compressible flows.  

Three different reinitialization schemes of the level set method were also evaluated. The 

second-order reinitialization [13] demonstrates the best performance in predicting the 

evolution of multimedium interfaces in terms of robustness and accuracy. The fourth-order 

reinitialization [30], in spite of its high accuracy, does not accurately predict topology 



 73 

changes of the interface (such as breakup or merging), when it is applied to solve complex 

multi-component flow problems. This is attributed to the use of cubic interpolation in 

acquiring the interface location. A more robust and higher-order scheme should be 

explored to accurately capture the intersection between the interface and the mesh. 

Future work: 

We identify two directions worthy of further exploration:  

1. The modified R-GFM approach achieves improved accuracy by preserving physical 

quantities in the real portions of interfacial cells. However, the ghost portion of the 

interfacial cell is still defined through constant extrapolation, which leads to first order of 

accuracy of the scheme in 2D. To achieve higher orders of accuracy on the interfacial 

boundary conditions, the primitive variables within the ghost region should be defined 

through a higher-order extrapolation [67].  

2. It was pointed out in [68] that the original R-GFM might fail in handling complex 

geometries, when the cell used for bilinear interpolation lies in the ghost region. We find 

the when the modified R-GFM is used in our flow solver to simulate air-water shock 

interactions at high resolution, the simulation is numerically unstable. To resolve the issue, 

the authors of [68] suggested using a dynamic probe length in combination with the M-

GFM or R-GFM approaches (e.g. in regions with complex geometries, the modified-GFM 

[16] is used instead of R-GFM). It remains to be seen, if a combination of the cut-cell 

method suggested here and the hybrid-GFM approach further improves the stability of the 

numerical solver.   
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