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ABSTRACT

DAVID BURLINSON. THE ROLE OF SYMBOL CLOSURE IN VISUAL
ENCODING: FROM PERCEPTION TO VISUAL ANALYSIS OF SYNTHETIC

AND REAL-WORLD DATA. (Under the direction of DR. KALPATHI
SUBRAMANIAN)

Symbols and shapes are commonly employed to represent data in visualizations

such as scatterplots. Practitioners, scientists, and automated visualization tools are

reliant on empirical analyses of visual encoding strategies, taking into account the

influence of data characteristics and visual features, to produce effective charts and

graphs. In pursuit of this goal, the following questions were considered: (1) Are

shapes that share bounded or unbounded structures members of a feature category

that influences how they are processed and perceived? (2) Do open/closed feature

categories differ in how they are processed? (3) How do shape encodings interact with

characteristics of the data and types of tasks in visualization contexts? In this work

I investigated the implications of perceptual categories of commonly used charting

symbols sharing bounded (closed) or unbounded (open) structures using a series of

experiments from low-level attentional allocation to high-level task performance in

ensemble displays. Flanker and same/different tasks were used to explore the per-

ceived similarity among open and closed symbols; participants responded to closed

symbols more quickly and accurately, and discriminations within a feature category

took longer than between categories, supporting the categorical distinctiveness of

symbols with and without boundaries. Three relative judgment tasks (mean posi-

tion, numerosity, and linear correlation) were implemented using exemplars of these
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shape categories as encodings in multiclass scatterplots in order to test whether per-

formance differences due to categorical features would subsume differences among

symbols. Each task was reliably harder when marks were encoded with shapes shar-

ing open or closed features, and conditions with closed targets received more influence

from distractor features, i.e. both facilitation with different-featured distractors and

inhibition with same-featured distractors. A follow-up study with a larger symbol

palette and systematic variation of the level of overlap among marks in numerosity

and linear correlation tasks found similar results; open target sets took significantly

longer and induced significantly more errors than closed targets, regardless of overlap

or distractor features. The final study incorporated more realistic displays, with data

sampled from the Toxics Release Inventory, a dataset on industrial usage of toxic

chemicals, and chart axes and labels. Participant performance on relative judgment

tasks differed across pairs of symbols used as mark encodings, but pairs sharing open

or closed bounding features always took longer than pairs differing in that feature,

and displays with closed targets were always faster and less erroneous than displays

with more numerous open targets, comporting with the findings from the previous

studies. Overall, the categorical relationship between open and closed symbols and

the perceptual preference for closed symbols was clear in all the experiments, and

persisted across relative judgment tasks, when overlap among marks was systemati-

cally varied, and with palettes of symbols containing different exemplars from both

feature categories. This sequence of results has implications for visualization designs

in which shapes are used as categorical encodings, and also poses new questions for

the vision science and visualization communities. Further studies can model the role
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of shape encodings with a wider variety of data types and distributions, in tandem

with more extensive tasks, and supporting more comprehensive encoding strategies

involving redundant visual channels. Future work will also be required to understand

the mechanisms underpinning shape perception and to explain the apparent salience

of bounded symbols.
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CHAPTER 1: INTRODUCTION

1.1 Visualization Design

Visualization is the study and art of communicating in a visual medium. Data is

represented with visual stimuli on a page or a screen so that an observer can interpret

relevant characteristics of the data using the affordances of the human visual system.

Sometimes those observers are business leaders, politicians, or military commanders,

and the decisions they make bear weighty implications for economic prosperity, the

social landscape, and human life. Scientists and domain experts need to understand

complex relationships in large volumes of data, and they often rely on visual displays

to present the results of their experiments, shape their interpretations, and inform fu-

ture studies and analyses. In other cases, visualizations are designed to communicate

information to laypeople and students, guiding their comprehension and learning in

the classroom and everyday life. While all these cases entail specific considerations

and nuance, each visualization used must represent its underlying data as faithfully

and robustly as possible to support observers in whatever tasks they are pursuing.

Design decisions in this space include the visual primitives, such as the shapes,

marks, and colors used; the visual metaphors, from simple graphs like bar charts,

pie chart, and scatterplots, to more esoteric stream graphs and chord graphs; and

more complex analytics systems coordinating multiple dynamically linked views. A
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great number of books and papers have been written on the creation of information-

rich charts and diagrams. Bertin’s seminal Semiology of Graphics [9] was one of the

earliest methodological approaches to mapping data into visual forms, and Tufte’s

Envisioning Information [122] and Munzner’s Visualization Analysis and Design [88]

are also indispensable resources for visualization students and practitioners, organiz-

ing key conceptual components and design factors to take into account. Rensink’s On

the Prospects for a Science of Visualization [95] makes a compelling argument for a

rigorous, quantitative science of visualization, backed by perception and vision science

paradigms and operating in parallel to a more qualitative, design-focused approach.

Two general metrics are used to assess a visualization: effectiveness – how well the

capabilities of the display medium and human visual and intellectual capabilities are

harnessed – and expressiveness – how well the underlying information is represented

with graphical primitives and their combinations [84]. Much work has been done

to bolster decision-making in creating and analyzing effective visualization strategies

on the back of these metrics. Cleveland et. al. [28] demonstrated the influence

of axis scale on perceptual inference of correlation in scatterplot displays, showing

just how easily a chart can mislead an observer, hampering both expressiveness and

effectiveness. Brath [16] presented a variety of metrics related to designing effective

visualizations in a 3D context, many of which are relevant to visualizations in general,

such as number of data points and dimensionality, identifiability and occlusion of

points, and cognitive overhead.

If brevity is the soul of wit, then perhaps simple, functional charts are the heart

of visual communication; indeed many experts have decried artistic embellishments,
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or ’chart junk’ [123]. However, evidence suggests that people may find these adorn-

ments make charts more appealing and memorable in the long run [7]. Clearly there

is no one-size-fits-all solution in such a large design space, so how can researchers

and practitioners investigate better and worse decisions? In some cases, new visual

idioms are required. When presented with the challenge of visualizing large quanti-

ties of hierarchical information, like directory structures in a file system, Johnson and

Schneiderman [59] created Tree-maps to take better advantage of spatial judgments

and make maximal use of space. In an effort to visualize relationships among vari-

ables in an otherwise unintuitive high-dimensional space, Inselberg [57] popularized

parallel coordinates. Tree-maps and parallel coordinates have now become widely

used charting idioms. In other cases, it is valuable to return to more common chart

styles and run careful experiments to understand how people view and interpret them.

Skau and Kosara [109] examined the humble pie chart and systematically isolated arc

length, center angle, and slice area, finding that, contrary to all expectations, internal

angle is their least important feature. Whether it is appropriate to revisit and study

existing charts or design exciting new ones, the deeper one digs the more critical it

becomes to consider the foundations of human visual capacities and cognitive faculties

to understand how people see a chart and reason about the information it displays.

1.2 Vision

The human visual system is a complex structure with numerous functional subsys-

tems that all combine to produce the phenomenological experience of sight. At the

lowest level, light signals with wavelengths between 370 and 730 nanometers are fo-
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cused onto the eye’s retina by a series of precise contractions of muscle groups around

each eye’s lens. These signals are transduced into neuronal action potentials and fed

into the visual cortex, which is roughly divided into topologically organized functional

areas, each of which synthesizes more and more exhaustive representations of a visual

scene. Local spatial frequencies and orientations cause activation in retinotopically

mapped neurons’ receptive fields, whose signals are combined to produce inference of

edge boundaries spanning larger regions of the visual field. Information from the pri-

mary visual areas are streamed to brain regions responsible for object and categorical

recognition, and spatial awareness and movement tracking.

The fovea, the high-acuity region at the center of the visual field, is associated

with an outsized proportion of neurons in early vision areas in the brain, and vision

researchers often design experiments so as to keep relevant stimuli within foveal vision

when measuring response latency as a dependent variable. In more natural viewing

conditions, the foveal region is shifted rapidly and automatically between salient

locations in the visual field. This saccadic motion is made several times per second,

and visual information is suppressed for its duration. Peripheral vision, the rest of

the visual field outside foveal fixation, is marked by significantly reduced clarity and

susceptibility to crowding effects; research on peripheral vision [101, 100, 113] aims

to tune more general models of vision to account for these factors.

1.2.1 Perceptual Organization

Many theoretical models of vision [60, 134, 119, 118, 127] suggest that features of

objects in the visual field are segmented and processed well before the influence of
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attentional focus then re-organized into meaningful units of perception. Such ’pre-

attentive’ features include basic characteristics such as hue, motion, curvature, and

line endings. Large enough differences in these features can be discerned effectively

and instantaneously in the visual field.

Perceptual organization of visual information from low-level preattentive features

into topological figures and grounds is mediated in part by closure, or at least per-

ceived closure, of detected edges [65]. Some models of vision treat closure itself as a

feature [119], while alternate theories have purported that line segments, crossings,

and endings are the more meaningful signals [60, 61]. In either case, it is well estab-

lished that detection and recognition of objects, which are themselves composed of

various low-level features, rely on the relative salience of the items and the expecta-

tions and top-down influences of the observer [134].

Chen [24, 26, 25] has argued for an opposing interpretation of early vision and

perceptual organization involving topological characteristics such as connectedness

and closedness. His models suggest a global-to-local topological model in perception

of shapes, whereby ’wholes are coded prior to perceptual analysis of their separable

properties or parts.’ Evidence from his studies support potential explanations for the

relative distinctiveness of simple shapes and symbols, which can differ in terms of

these basic topological properties.

Not only do the bottom-up and topological characteristics of the visual field in-

fluence what is seen at a given point in time, but expectations and goals exert a

top-down influence to refine the preferential selection of visual characteristics in any

given moment [134].
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1.2.2 Ensemble Coding

In addition to rapid processing of objects and their distinctive features, the vi-

sual system is tuned to quickly assess statistical summaries of certain types of in-

formation across spatially distributed objects, including lower-level features such as

average size and orientation, and higher-level features such as the mean emotion of

a crowd of faces or the distributional structure of a set of data points in a visual-

ization [3, 49, 129, 55, 115, 124]. Human reasoning and inference are underpinned

by assumptions regarding the statistical regularities of the world around us, so it

is no surprise that our visual system has developed powerful mechanisms to exploit

that regularity to extract meaning quickly and with a surprising degree of accuracy.

Szafir and colleagues [115] enumerate four areas where ensemble coding is relevant

for tasks in visualization displays, including identification, summarization, segmenta-

tion, and structure estimation, but they are quick to note that this is an area ripe for

investigation, and crucially, collaboration among visualization and visual perception

researchers.

This coarse overview outlines important peaks on the landscape of visual perception

literature, but elides many nuances that can be taken into account when thinking

about the design of effective visual displays. Visual illusions such as change blindness,

dominance of particular visual channels like hue, the role of task and cognitive load on

attentional allocation, and rapid extraction of statistical properties in foveal vision, in

the periphery, or across the entire visual field all play a role in a holistic understanding

of human vision and its application in visualization contexts.
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1.2.3 Marks and Channels

One area of overlap between visual perception research and visualization design is

the study of marks and channels, the visual primitives available for use in represent-

ing information. Marks include basic graphical elements like points, lines, areas, and

volumes, and channels describe how marks can vary, such as position, size, shape,

orientation, color [88]. In one example, Cleveland and McGill [29] recommended an

ordering of efficacy, later validated in crowdsourcing studies by Heer and Bostock

[56], for encoding categorical relationships: spatial region (related to Gestalt group-

ing [127]) is the most effective, and hue, shared direction of motion, and shape (all

related to Gestalt similarity [127]) follow with less and less effectiveness. Making

good design choices with respect to categorical attributes allows effective grouping

of marks in a visual display so that a viewer can selectively attend to one class or

another, and make relative judgments among classes in aggregate across the display.

This is concretized in multi-class scatterplots, where marks from multiple categorical

classes are differentiated by careful selection of an identity channel encoding, and

high-level summary statistics, such as variance and clusters, can be computed and

compared with little effort from an observer.

Channels differ in terms of how discriminable exemplars are, and how many differ-

ent exemplars a viewer can readily distinguish [88]. Channels can also be utilized in

tandem to varying degrees of success, roughly characterized in terms of their separa-

bility. Channels such as hue and position are reasonably independent, but pairings of

size with shape or color have an influence above and beyond differences in either one
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of the channels [110, 114]; the relationship among these channels have been the focus

of recent scrutiny. Redundant encoding, combinations of channels such as shape and

hue, was sanctioned with some caveats by Tufte [122], and recent studies [90] support

the notion that it can be useful in segmenting and grouping visual items.

1.3 Computational Modeling

Building upon the theories of salience and allocation of attention, researchers have

constructed computational models of vision attempting to predict fixations and sac-

cades in natural scenes [58, 50, 51]. Computational models of gaze prediction have

also been examined for graphical and statistical displays. Harrison and colleagues

[52] demonstrated that current models of bottom-up salience can predict fixations at

marginally above-chance rates in statistical graphs, but that incorporating top-down

factors, while difficult, is crucial for increasing accuracy.

Recent work by Tsotsos and colleagues [133, 121] and Peters and Itti [94] attempted

to model temporal sequences of fixations in a way that incorporates top-down influ-

ences, including task goals and previous fixations, moving beyond saliency maps and

bottom-up features alone. It is not yet clear how these types systems will fare in ar-

tificial contexts such as visualizations. Harrison et. al. point out that models trained

on natural scenes tend to give significant weight to chart labels and text rather than

the marks and channels encoding the data in the chart, suggesting that the spatial

frequencies and requirements differ significantly between natural and artificial dis-

plays [52]. In addition, the top-down influences brought to bear in visual analysis

contexts are complex, and may be hard to capture parsimoniously.
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1.4 Automated Visualization Design and Encoding

A long-term goal among visualization researchers and practitioners is to automate

larger portions of the pipeline from raw data to graphical representations in order

to incrementally encode state-of-the-art wisdom for combinations of tasks, visual

channels, and data types [84, 85]. Bertini et. al. [12] and Tatu et. al. [116]

described the difficulty in selecting, automatically or otherwise, the most appropriate

two-dimensional projections when dealing with high-dimensional data, and explored

techniques and metrics to pare down that decision space using perceptual judgments

of scatterplot clusters. Tools such as Pixnostics [106], Voyager [135], and SeekAView

[66] aim to streamline the process of selecting relevant subsets, projections, and visual

encodings of data by permuting the parameter space and automatically suggesting

the most relevant views. The increasing intrigue in data science and visualization

has propelled the rise of web-based toolkits such as D3 [15] and Vega [105], and

statistical packages like R’s ggplot2 [131], which facilitate the creation of charts and

graphs with a bit of coding expertise, and other commercial software like Tableau and

PowerBI support flexible data exploration and creation of visualizations through nice

interfaces. The utility of these tools is contingent upon user expertise and automated

heuristics to produce effective and expressive visual displays.

Research supporting the automation of visualization design aims to incorporate

tasks and models of visual encoding strategies to refine the heuristics underpinning

such systems and provide general guidelines for practitioners. For example, Amar and

colleagues [2] constructed a taxonomy of low-level analysis tasks for arbitrary data,
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and Sarikaya and Gleicher [104] reviewed the literature on scatterplots and built a

framework of tasks and designs to standardize the language and explore tradeoffs in

that particular type of chart. Saket and colleagues [103] examined how well a set

of simple visualization types, including line, bar, and pie charts, and scatterplots,

supported a set of tasks, including cluster and correlation detection, characterizing a

distribution, assessing outliers and extremum, and so on. In similar fashion, Kim and

Heer [64] explored four low-level analysis tasks and a variety of data distributions and

encoding strategies, demonstrating an interplay of visual channels such as color and

size, and a significant role of data density or overplotting in determining appropriate

visualization approaches. Szafir and Smart built models to begin accounting for the

interaction among visual channels in visualization displays, such as the effect of chart

area on color perception [114] and the asymmetric interaction of shape, size, and color

channels [110]. Modeling these perceptual factors, and the relationship between visual

characteristics and task needs, are crucial pieces of the larger puzzle of automated

visualization design, and work is underway to bridge from high-level analysis goals to

low-level sub-tasks and encodings [67].

Perception of correlation is a specific area that has received much thought, with

multiple studies assessing correlation judgments across visual encodings [53, 62, 75,

28], and particular focus by Rensink on modeling perception of correlation using

psychophysical laws [97] and positing the nature of this regularity in terms of ensemble

judgments of entropy [96]. Rensink has been a leading proponent of studying simple

visualizations in controlled environments to shed light on the underlying perceptual

and cognitive mechanisms we use to interpret them, in addition to his more general
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call for a rigorous science of visualization mentioned earlier.

Automated visualization design and encoding have already inspired powerful tools

to explore and present data, but a great deal of work needs to be done to fully take

into account the effects and interactions of separable and integral channels, redundant

encoding of marks, the influence of data and various distributional effects, and tasks

and high-level analysis goals. It is my goal to help inform this area of inquiry and

contribute meaningfully to the growing body of literature on perceptual factors in

visualization design.

1.4.1 Overplotting

Directly visualizing large datasets becomes challenging as the number of data points

increases, and is next to impossible when the data size approaches and exceeds the

number of pixels in the display. Vis designers will run into issues even more quickly

when multiple categorical variables are required, because distinct marks will generally

require multiple pixels. One particular issue that arises in these circumstances is

overdraw or overplotting, in which data points are drawn closely enough together that

some are obscured or partially hidden [16], potentially leading to biases in analysis

tasks [31].

A number of techniques have been proposed to address this issue, including filtering,

reducing, or binning the data, augmenting charts with marginal distributions along

the primary axes, and creating new charts by aggregating data into contour plots or

splatterplots. Sarikaya and Gleicher [104] provide a framework for mapping various

tasks and data characteristics into a space of scatterplot design options. Ellis and Dix
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[36] enumerate a taxonomy of clutter reduction techniques, Cottam et. al. [30] provide

an efficient implementation of a variety of approaches for combatting overplotting,

Chen et. al. [23] have preliminary work on utilizing animation to combat overdraw,

and Keim et. al. [63] present generalized scatterplots as a solution to the overdraw

problem.

Aside from circumstances in which aggregations and new charts are required, there

are still better and worse design decisions for combatting overdraw. Conventional

wisdom and various charting software packages suggest a few techniques – avoid filled

shapes because they occupy more space (default in Tableau and R’s ggplot2 package),

use alpha blending to mitigate occlusion [87], reduce the size of the marks, and so

on. These approaches can be effective but do have their downsides, and more work

is required to fully model the design space for designers and automated visualization

tools. Smart recently demonstrated how size and color are asymmetrically influenced

by symbol choice, and built models to predict their perceptibility in scatterplot dis-

plays, but crucially, as with much other work in this domain, did not account for

overlap among symbols [110].

Bertini and Santucci developed models for quantifying visibility in scatterplots

with large sets of points and improving visibility by sampling points while preserving

overall densities and distributions [10, 11]. Their published methods are designed for

single-pixel encodings though, and they point out a number of potential difficulties in

extending results to shape encodings. Urribarri and Castro built upon those models

by defining a visibility index based on the percentage of encoded data symbols not

fully covered by other symbols, and explored semiautomatic recommendations for
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glyph size [125]. However, they only utilized filled square glyph areas, leaving aside

differences in features and space consumed by symbols within that square bounding

region in order to focus on the general question of relative size differences.

Few [41] recommends using shapes that are not shaped like containers, such as

X instead of a circle. Most other discussions on overplotting only cursorily consider

the shapes or glyphs involved, generally dismissing them as uninformative for the

broader question of overplotting in very large datasets. Some data, task, and display

constraints can certainly preclude the use of individual point encodings, particularly

very large numbers of points and increasing numbers of classes [104]. Point encodings

can be useful for many other combinations of these constraints though, and the work

in this document, particularly in later chapters, is designed to explore the influence

of overplotting on symbols with open and closed features.

1.5 Color Space

There are few concepts more derided among visualization researchers than the

rainbow color map [14, 99, 80]. Color is one of the most dominant visual channels

[29], and many visualizations use color to represent continuous or categorical data, so

what is so wrong with the rainbow mapping? In short, the rainbow color map does

not comport with a linear perception of the colors it contains. In other words, two

points an arbitrary distance apart on the rainbow map are not guaranteed to seem

as similar or dissimilar perceptually as any other two equidistant points; this can be

misleading in a visualization that claims to represent continuous data.

Multiple alternatives have been built to support visualization designers [54, 1], and
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an entire color space – CIELAB – was developed to account for perceptual differ-

ences in lightness, green/red, and blue/yellow values [83]. Unlike the rainbow color

map, colors sampled from uniform steps along each of those three dimensions or from

arbitrary locations in CIELAB’s continuous color space will have predictable per-

ceptual qualities, allowing visualization designers to map differences in data values

to perceived color differences with a high degree of accuracy. Stone and colleagues

[112] modeled CIELAB color differences as a function of size for uniform display

swatches and found that smaller sizes require larger differences in color to achieve the

same level of perceptual similarity. Szafir [114] extended this model to account for

noticeable color differences across various marks common to visualizations, such as

bars, lines, and points, and worked with Smart [110] to measure the interaction with

multiple categories of filled and unfilled symbols. This type of modeling has imme-

diate and wide-reaching importance for visualization designers and automated visual

encoding systems, as the continuous nature of these color spaces and their relative

stability across viewers (not accounting for color deficiencies, which can affect a non-

trivial proportion of individuals) support computationally inexpensive measurements

of perceptual color similarity and difference.

1.6 Shape Space

In contrast to the brief discussion of color perception above, reasoning about sym-

bols and shapes is not nearly as straightforward. Nobody has contributed a ’shape

space’ comparable to CIELAB color space, nor does there appear to be a nice continu-

ous representation of symbols from which to sample. Some attempts to quantitatively
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analyze general shapes and symbols have focused on mathematical and gestalt repre-

sentations, [4, 32, 81] and there is a degree of overlap with the study of the complexity

of symbols in language [93, 22, 128]. One of the common findings across these investi-

gations is that there is no single straightforward measure; instead symbol perception

is influenced by a number of complementary, perhaps overlapping mechanisms at dif-

ferent stages of visual processing. Research from the vision sciences community has

uncovered an illusory size effect, in which simple objects missing parts of their bound-

aries are reliably seen as larger than the same fully bounded shapes [86]. Further,

summary statistic models of peripheral vision predict sensitivity to shapes with open

and closed features, with differing degrees of underestimation of the numerosity of

points for both shape types in comparison to normal dot displays [6].

Another interesting domain is that of shape skeletons, which are theorized to under-

pin biological form perception and similarity judgments in two- and three-dimensional

contexts [117]. Feldman and Singh [40] proposed a probabilistic bayesian approach

to compute a shape’s skeletons, sidestepping some of the issues in previous deter-

ministic methods, which were sensitive to local perturbations. Firestone and Scholl

[42] demonstrated the primacy of shape skeletons with an interesting crowdsourced

approach - people were instructed to tap a shape anywhere they liked, and the dis-

tribution of touches aligned with the medial-axis skeleton in a variety of shapes.

Despite the complexities involved in representing their complexity and similarity,

symbols have long been utilized in visualizations, particularly as visual encodings for

marks in scatterplot displays, supporting discrimination and comparison of categorical

relationships. Some researchers discount the utility of shapes for visualizations on
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the basis that they are only useful for certain multivariate glyph-based approaches

or categorical encodings, where they are outperformed by differences in hue [64, 91,

46]. Some notable exceptions include attempts to understand perceptual orderings of

shapes [27], similarity metrics from different shapes [33, 77] and in sets of glyphs [73],

and incorporation of shape and size into models of optimal color differences [114].

Commonalities among the palettes of shapes have tended toward the use of basic

geometric and radially symmetric elements such as circles, squares, plus signs, and

other simplistic arrangements of line segments. More complex combinations of these

primitives have been used when larger collections of symbols have been desirable.

The chosen shapes generally don’t confer meaning in the semiotic sense, but rather

serve as distinctive sets of categorical encodings so viewers can readily distinguish

among points related to particular variables of interest. Glyph-based visualization

is an interesting tangential domain in which symbols and their attributes are more

closely tied to particular features and meaning of the underlying data. See Borgo

et. al. [13] for a state of the art report on glyphs, and Legg et. al. [72], who

proposed a quasi-Hamming distance to quantify the perceptual similarity of glyph

sets and explored methods for creating and validating these measures as well as their

application for icons in file systems.

Work in the statistical charting community built upon emerging models of vision

such as Texton theory [60] and Feature Integration Theory [118, 119] to evaluate

charting symbols with differing curvature, fill, and line endings [120]. Lewandowsky

and Spence [74] investigated visual encoding strategies involving shape, color, amount

of fill, letters, and oriented lines using relative correlation judgments between multiple
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categorical strata in scatterplot displays. They found that hue was the most useful

encoding strategy followed by shape, amount of fill, then confusable letters, although

certain discriminable letters introduced similar performance to that of shapes. They

also underscored the importance of examining response latency as well as error rates

when studying performance with statistical graphs.

Experiments by Demiralp et. al. [33] and Li et. al. [77, 76] focused in on the

relative discriminability of simple shapes. The former constructed normalized kernels

of pairwise similarity among common symbols, sizes, and colors using subjective tasks

including Likert scales, triplet matching, and spatial alignment. The latter gathered

quantitative data from a series of tasks and modeled an internal separation space

using a modified Power Law [111] and multidimensional scaling; they also provided

evidence for the distinctiveness of bounded geometric shapes and shapes composed

of radially symmetric line segments.

For visualization practitioners, it may well be sufficient to provide a black box,

where one can ask for a set of categorical symbols, a range of ordinal shapes, or a

set of shapes x units apart in some perceptual space. For vision scientists, and for

the more fundamentally curious, I suspect that black box would be too simple even

if it were to exist. In any case, the wide difference between the approaches to the

same fundamental questions underscores the complexity of this topic, and there is

more work to be done to synthesize knowledge on shapes as such and as encoding

strategies.
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1.7 Contributions

There are better and worse ways to create scatterplots, and practitioners are better

served relying on well-supported recommendations rather than artistic intuitions or

unverified norms. The visual attributes used to encode marks vary in their effective-

ness, particularly in contexts where the amount of information does not preclude a

one-to-one mapping from data to marks and where a goal of the plot involves attend-

ing to specific marks, as well as supporting summary judgments about the overall

data features and distribution. Research in this domain illustrates the primacy of

color encodings. While prior work addresses additional encodings such as shape and

size, there remain a number of unanswered questions regarding the influence and in-

teraction of these elements, especially in conjunction with analysis tasks. The shapes

commonly used in scatterplot visualizations tend to be simple, symmetric, and rela-

tively distinguishable from each other. Studies indicate that such shapes tend to be

clustered into filled or unfilled bounded geometric shapes and unbounded collections

of line segments, and that this categorization both reflects their distinctiveness in

terms of low-level visual features and provides a useful starting point for encoding

categorical variables in practice.

The overarching goal of the work detailed in this document has been to find em-

pirical evidence for design decisions related to the shapes and glyphs used to carry

information and convey categorical distinctions in visualization contexts. The studies

described mesh paradigms from the vision science community and tasks and displays

from the visualization community in an attempt to further that aim and expand the
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current state of knowledge of categorical shape encoding, support more robust au-

tomated visual encoding systems, and help practitioners develop more effective and

expressive charts.

My investigations have explored the role of the topological or gestalt closure for

shape encodings in multiclass scatterplot displays, and the findings I will expound

throughout the rest of this document comport with many of the previously mentioned

findings, such as the categorical distinctiveness of polygonal and texton-like shapes

[19, 77, 76, 120] and the seeming perceptual preference for processing symbols with

closed boundaries, which have been shown to be discriminated [35] and recognized

[45] more easily than their open counterparts in other contexts. I also show that

pairwise measures of similarity among symbols do not fully predict the performance

of those symbols in relative judgment tasks in ensemble displays, and that symbols do

not make a difference on task performance when judgments are made in side-by-side

plots.

The successive chapters follow the temporal and investigative sequence undertaken

during my studies at UNC Charlotte.

In chapters 2, 3, and 4, I describe methods from psychological sciences for ex-

amining the influence of symbol discriminability from the perspective of perceptual

awareness and attentional allocation, including spatial cuing, and Flanker and Same-

Different tasks.

Chapter 2 details a preliminary attempt to investigate symbols using liminal per-

ception of spatial cues. Color cues had been shown to produce benefits when sharing

a primed color and appearing in the same location as a target singleton, and produce



20

costs when differing in that color [69]. I was not successful in replicating the results

of that earlier work though, so was unable to explore whether the same results would

hold true for shape cues.

Chapter 3 describes an alternate approach to the questions from the liminal per-

ception study, with a flanker task presenting target shapes alongside distractor shapes

with varying featural similarities and differences. Compatibility effects arose, with

differences in performance between compatible trials (in which distractors and tar-

gets were the same shape) and incompatible trials (in which targets and distractors

differed), and these effects varied based on the features of symbols primed in the

attentional set for each block of trials. Blocks in which both primed targets shared

boundary closure (or both lacked it) were not mediated by the systematic varying of

cognitive load, supporting the categorical distinctiveness of shapes with a bounding

edge (closed shapes) and unbounded shapes (open shapes). In addition, closed shapes

were processed more quickly and accurately, and discriminations within a category

took longer than between categories.

Chapter 4 discusses a same/different task, a more straightforward procedure used

to extend the symbol palette and test the results from the Flanker study. Participants

indicated whether the symbols present in each display were the same or not, with the

delay in reaching that determination varying depending on the relative similarity

among the symbols and their features. Results in this experiment supported the

findings from the Flanker study, with closed shapes outperforming open ones, and

differences between open and closed symbols significantly outperforming differences

within either feature category.
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Chapter 5 presents a first pass at extending the results from low level paradigms

into visualization displays and analysis tasks involving higher-level judgments. Par-

ticipants performed tasks involving average value, numerosity, and linear relationship

judgments among multiple categorical variables in synthetic displays. The results

lend further credence to the relative effects of using open and closed shapes to encode

marks, and find that closed symbols are more influenced by distractor features. Per-

formance also varied significantly among the tasks: judgments of linear trends and

numerosity were much more automatic than judgments of the average position of sets

of symbols.

Chapter 6 represents a continuation of the visual summary task approach from

chapter 5 with an increased symbol palette and a particular focus on varying amounts

of overlap among symbols in synthetic displays. Continued support was found for

the categorical nature of bounded and unbounded symbols and for the processing

preference of closed symbols. Response latency increased linearly and error rates

increased quadratically with the proportion of symbols overlapping other symbols.

Chapter 7 presents the final experiment, in which a real-world dataset of toxic

chemical usage was sampled to produce realistic displays with chart axes and a larger

number of data points than the studies in the preceding chapters. Participants made

relative numerosity judgments supported by various shape encodings from a sim-

plified symbol palette. Support was found for the processing preference of closed

symbols, and mixed support was found for the role of bounded and unbounded fea-

ture categories. The variation in performance between pairs of symbol encodings

has implications for the limits of pairwise similarity measures. Some symbol pairs
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comported with subjective measures of pairwise similarity in the literature [33], but

other pairs did not adhere to differences predicted in that work, suggesting that en-

semble mechanisms and task-based constraints exert further influence on perceptual

judgments.

Chapter 8 summarizes the findings from all of the experiments in more detail

and addresses methodological considerations among the studies. Avenues for future

refinement of this work and areas where additional research will be valuable are

discussed.



CHAPTER 2: LIMINAL PERCEPTION STUDY

Prior research on the limits of unconscious processing has convincingly shown that

subliminal primes are capable of affecting responses to subsequent targets in timed

visual search exercises. Lamy et al. [69, 68] showed that there is a dissociation

between attention and conscious perception, and found that capture of spatial at-

tention is largely independent of conscious perception of a subliminal prime. Their

studies indicated that subliminal color singletons strongly captured attention when

their color matched the target-defining feature, providing evidence for same-location

benefit when the cue and target appeared in the same location on the screen. On

the other hand, when the subliminal cue’s color differed from the target, it did not

capture attention, yet still incurred a same-location cost when appearing in the same

location as the target. They concluded that this reflects the temporal cost of updat-

ing an object’s episodic representation in visual memory, suggesting that conscious

perception of a visual object may be required in order to create an object file for that

object.

The plan for this first study was to validate Lamy and colleagues’ results by per-

forming a similar set of trials, and then extend their research on updating object files

and same-location cost and benefit by exploring some simple shape features. I set

out to test whether cues and targets comprised of bounded and unbounded shapes

would mirror the temporal cost or benefits found with color singletons. For exam-
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ple, whether circles would provide effective cues for colocated target circles, whether

squares would incur same-location costs when cuing plus signs, and how effects such

as these would interact with participants’ conscious awareness.

The hypotheses for this study were as follows:

H1 Color cues appearing in the same position as a target will produce same-location

costs when differing from the cued target color and same-location benefits when

sharing the target color

H2 Shape cues will follow the same trend as colors; shapes appearing in the same

position as a target will produce same-location costs when differing in structure

from the cued target symbol, and same-location benefits when sharing structure

2.1 Methodology

2.1.1 Participants

Thirty-five participants were recruited from the UNCC SONA system, and awarded

one research credit for 35-45 minutes of their time. Participants were at least 18 years

old with 20/20 or corrected to 20/20 vision and no history of visual impairment.

2.1.2 Stimulus Materials

The visual stimuli were presented on an iMac computer with a 17” flat screen LCD

monitor. Stimuli were created using Javascript and SVG on the same computer to

guarantee uniform spacing, positioning, and color effects. Stimulus presentation and

data collection were controlled by SuperLab 4.0.

Within each trial, participants were sequentially presented with a fixation display,
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a cue display, the same fixation display, and then a target display. The first fixation

display was shown until each trial began, the cue was displayed for 40 ms, the inter-

stimulus fixation display was shown for 110 ms, then the target display was presented

for 150 ms. The fixation display had a black background with a white fixation cross

at the center to orient the participant’s gaze (See figure 2.1).

(a) (b)

Figure 2.1: (a) Cue display with green color cue and (b) target display with red target
from the Liminal Perception study. For a more comprehensive set of stimuli, refer to
Appendix B.1 and B.2

In the first set of trials, the cue and target displays featured unfilled white circles

on a black background at one of four equidistant locations around the center of the

visual field. For each of the displays, one of the circles changed border thickness and

color. For the second set of trials, the cue and target displays featured white dots

at the equidistant locations around the center of the visual field. For each of the

displays, one of the dot locations was replaced with either a filled or unfilled shape.

The shapes chosen for this study were diamonds, triangles, squares, and circles.

In part one, half of the color group had either red or green, and the other half had
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either yellow or blue as the possible colors for cues and targets in a given trial. For

part two, the shape group was to be divided evenly between the four shapes for their

cues and targets so that each person would have only one shape to look for in all

trials to determine if it is open or closed.

The locations of the cues and targets were distributed as evenly as possible between

the four possible locations. Cues were present in 80% of trials and targets were present

in 100% of trials.

Each participant’s 400 trials were split evenly among the four experimental condi-

tions yielding 100 trials within each of the following conditions: 1) Same cue/target

color - same target/cue location 2) Same cue/target color - different target/cue loca-

tion 3) Different cue/target color - same target/cue location 4) Different cue/target

color - different target/cue location

2.1.3 Procedure

Participants were positioned 60 cm from the computer screen in a well-lit room.

Each participant read and signed an informed consent document and learned which

color possibilities they would be presented with (Red/Green, Yellow/Blue). Partici-

pants went through 40 practice trials at the beginning of the study to become familiar

with the procedure and the stimuli. Each participant then performed 400 trials. Par-

ticipants pressed either the f or j key to indicate whether the target was red or

green, or yellow or blue, respectively. They were instructed to respond as quickly and

accurately as possible.

Once the target response was logged for each trial, participants pressed the space
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key to indicate if they were aware of having seen the color cue. Once they completed

each trial, they pressed the enter key to begin the next trial.

2.2 Analysis and Results

Overall, eight participants were excluded from the analyses due to invalid responses,

high false positive rates, or high cue awareness. Participants reported not seeing the

cue on 85% of cue- absent trials and on 42% of cue-present trials. Trials with errors

(9.4% of all trials) and RT outliers (3.1% of all trials with correct responses) were

excluded from all analyses. Preliminary analyses showed no effect involving target

color, and the data were therefore collapsed across target-color conditions. The results

conformed to our predictions: the three-way interaction among cue awareness, cue

color (same as target vs. different from target), and target location (same as cue vs.

different from cue) was significant, (F(4, 45) = 13.74, p < .0001).

Follow-up analyses on location effects showed that on same-color trials, attentional

capture was as large when the cue had been consciously perceived (M = 104 ms, SE

= 11 ms), (F(1, 45) = 75.66, p < .0001, Cohen’s d = 2.55), as when it had been

invisible (M = 104 ms, SE = 12 ms), (F(1, 45) = 84.25, p < .0001, Cohen’s d = 2.41).

There was no difference between these two location effects (F < 1). On different-color

trials, there was a significant same location benefit when the cue was invisible (M =

43 ms, SE = 13 ms), (F(1, 45) = 9.95, p < .003, Cohen’s d = 0.90), but not when

the cue was consciously perceived (M = 8 ms, SE = 13 ms), (F < 1, Cohen’s d =

0.17). The difference between these two effects approached significance, (F(1, 45) =

3.92, p < .055). Similar analyses on error rates showed only a significant main effect
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of location, (F(1, 12) = 28.30, p < .0001), with higher accuracy on same- than on

different-location trials. No other effect approached significance.

RTs to the target were again slower following visible cues (M = 793 ms, SE = 34

ms) than following invisible cues (M = 723ms, SE = 34ms), (F(1,12) = 11.29, p <

.0001), but they were more accurate (visible cues: M = 88.5% correct, SE = 1.8%;

invisible cues: M = 85.86% correct, SE = 1.6%), (F(1, 11) = 5.01, p < .05), which

suggests that there was a speed/accuracy trade-off.

2.3 Discussion

Overall, support was found for Lamy et. al.’s conclusions about same location

benefits for same color singletons and costs for different color singletons, but some

significant effects for the theorized interactions of attentional capture did not repli-

cate. Participants also displayed high variance in their reports of conscious awareness

of the cues. In addition, I encountered difficulty in reliably rendering the color cue

display at liminal rates; in some pilot tests I found the cues to be perfectly superlim-

inal at the fastest possible exposure speeds (even pushing down to the refresh rate of

the monitor, 17ms for 60Hz).

The best option for continuing this investigation was to seek alternative paradigms

less reliant on rendering barely liminal stimuli and supporting a more direct route to

exploring the open vs closed shape relationship.



CHAPTER 3: FLANKER STUDY

In order to address the same fundamental questions as the liminal shape study –

how features of bounded and unbounded shapes interact with visual attention – while

sidestepping some of the methodological pitfalls reported in chapter 2, I adopted

the flanker task paradigm. The experiment remained centered on the relationship

between open and closed shapes. Basic charting symbols have been shown to differ

in their discriminability and affect performance in prior research [120, 77, 76], and

symbols with open and closed features appeared to be more distinct from each other.

I wanted to determine whether exemplars of these classes of shapes would be rapidly

and automatically segmented in the pipeline of object perception. This would lend

support to some of the reports from Tremmel [120] and Li et. al. [77, 76], and help

explain an important mechanism underlying visual perception of shapes in general.

Flanker tasks involve timed identification of a target presented briefly at one of a

number of specific locations in a display while a distractor appears elsewhere in the

display [43]. One common approach is to use a circular array of target positions to

provide uniform distance between any given target position and the fixation point at

the center of the display, keeping all targets within foveal vision. The flanker, which

is the distractor item, is positioned just outside attentional focus, generally to the

left or right of the central array of target locations. Reaction time (RT) responses

to the target are typically found to be influenced by the flanker compatibility – the
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relationship between the visual forms of the targets and flanking distractors [38, 39].

For each block of trials in this study, two shapes comprised the set of possible

targets and participants were required to discriminate between them. The flanker

was a shape that varied in compatibility with the target in one of the following

ways. Compatible flankers used the same shape as the target, incompatible flankers

used the other shape in the target set, and neutral flankers were a shape that was

unrelated to the target item. By measuring the flanker compatibility effect, the

difference in target RTs when presented together with compatible and incompatible

flankers, participants’ ability to selectively attend to the target shape and ignore

the flanker can be assessed. Compatible flankers should facilitate target responses,

while incompatible flankers should interfere due to the flanker shape’s importance in

the attentional set. Neutral flankers should neither facilitate nor hinder the speeded

response, as they are not part of the attentional set of potential targets.

To begin extending these results to visualization displays, I incorporated percep-

tual load as a variable, similar to Normand et al. [89], in order to study selective

attention with sparse and cluttered displays. Compatibility effects are found to be

much stronger with low load than high load contexts, as high perceptual load miti-

gates the interference introduced by distractors [43, 71, 70]. In this experiment, low

load displays included only the target and a flanker, while high load displays filled

the remaining locations in the circular array of possible target locations with random

non-target shapes to signify a cluttered display.

A comparison of open and closed shapes was studied by varying across each block of

trials whether the target pair consisted of exemplars of the same or different category
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of open/closed shapes. Each block used two particular shapes as potential targets,

and primed a participant’s attentional set to favor these symbols. Same feature pairs

for the open category were star and asterisk, and, for the closed category, square and

triangle. Different feature pairs include one item from each of the two categories.

I hypothesized that differences in the compatibility effect would arise as a func-

tion of same/different-feature pairs and open/closed target/flanker pairs. If the

open/closed features represent a relevant perceptual category, then target RTs should

vary in response to open and closed shapes and this variable should interact with

flanker compatibility and/or load.

The specific hypotheses for this study were as follows:

H1 Compatible flankers will produce shorter RTs and incompatible flankers will

lengthen RTs

H2 High load displays will weaken compatibility effects and low load displays will

strengthen them

H3 Open vs closed features will drive differences in the compatibility effect; targets

and flankers sharing either feature will cause larger compatibility effects

3.1 Methodology

3.1.1 Participants

Forty-three (seven male and thirty-four female) student volunteers were recruited

from UNC Charlotte, and awarded class credit for participating in approved research

studies where relevant. The inclusion criteria required all participants to be over
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the age of 18, with 20/20 (or corrected to 20/20) vision and no history of visual

impairment.

3.1.2 Stimulus Materials

The visual stimuli were presented on an iMac computer with a 17” flat screen LCD

monitor. Stimulus presentation and data collection were controlled by SuperLab 4.0.

All Stimuli were created using Javascript and SVG on the same computer to guarantee

uniform display properties.

The four shapes assigned as targets were square, triangle, asterisk, and plus sign,

two open and two closed shapes. For a given trial, the flanker that appeared with the

target could be compatible, incompatible, or neutral. In the compatible condition

both the target and the flanker were the same (either square, triangle, asterisk, or

plus-sign); while in the incompatible condition the flanker was the other member of

the target set (i.e., square target with triangle, asterisk, or plus-sign flanker; triangle

target with square, asterisk, or plus-sign flanker). Neutral flankers incorporated one

of the two feature categories but with a shape not used as a target (i.e., square target

with circle or × flanker, or plus sign target with circle or × flanker).

Other than instructional material, the two forms of visual stimuli utilized in each

trial were fixation and target displays. The fixation displays had a black background

with a white fixation dot at the center to orient the participant’s gaze, and appeared

for 500, 600, 700, 800, 900, or 1000 milliseconds (See Fig. 3.1). The target display

featured six positions, marked by dots, spaced equally around the center of the screen

within foveal vision (1.5◦), and a flanker position placed 3◦ to the left or right of the



33

fixation point, just outside the focus of attention. A target shape was placed in one

of the six target locations, and a flanker shape appeared in one of the two flanker

positions. Display locations were based on previous research with this paradigm [39].

(a) (b) (c)

Figure 3.1: Displays for the flanker test trials. (a) fixation display (b) low-load
condition (c) high-load condition. Participants were shown a fixation display for 500
to 1000 ms, the target display for 100 ms, then a post-stimulus fixation display until
a keypress response was made. For a more comprehensive set of stimuli, refer to
Appendix B.3 and B.4

In the low load condition, the target was presented in one of six locations on a

circular array and the other locations were marked by a decimal point. However, in

the high load conditions, the non-target locations were filled with a mixture of shapes

from the open and closed feature categories: diamonds, pentagons, and hexagons for

the closed shapes, and symbols with three or five equidistant radial line segments at

various rotational positions for the open shapes. None of the filler shapes were used

for the target set of items.

Target and flanker pairs were presented in blocks of trials, and there were six

blocks of trials – two same-feature blocks (triangle/square, asterisk/plus) and four

different-feature blocks (square/asterisk, square/plus, triangle/asterisk, and trian-

gle/plus). Each block contained 120 experimental trials, split evenly among high

and low-load trials. Each set of sixty high and low-load trials in each block included
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twenty compatible, incompatible, and neutral trials, with targets, flankers, and filler

distractors distributed as evenly as possible between all possible locations. Within

each block of trials the target and flanker locations were random, but they appeared

an equal number of times at each of the possible locations. As shown in Fig. 3.1,

target, flanker, and filler shapes were presented as white against a black background.

In total, there were six blocks of 120 trials for a total of 720. A Latin Square

was used to balance the presentation order of the six blocks to account for effects of

presentation order and sensitization; participants were randomly assigned to one of

the six orders.

3.1.3 Procedure

Participants were run individually in 40-minute sessions. After filling out an in-

formed consent sheet, they were positioned 60 cm from a computer screen in a well-lit

room. They participated in six blocks of trials in one of six presentation orders.

For each trial, participants were sequentially presented with a fixation display, a

target display, and a post-stimulus fixation display. The first fixation display was

shown until each trial began, randomly for 500, 600, 700, 800, 900, or 1000 millisec-

onds, then the target display was presented for 100 ms, followed by the post-stimulus

display which was terminated by the participant’s keypress.

Prior to participation in each block of trials, participants were shown the two shapes

in the target set and the two response keys used to indicate the target shape. There

were twenty practice trials to familiarize the participants with the key press responses

that were associated with each of the shapes in the target set. They were instructed
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to keep their index fingers over the two response keys and to indicate as quickly and

accurately as they could which of the two target shapes appeared on each trial. They

were also told to ignore all other shapes in the display. After the practice trials, the

participants began the experimental trials for that block. Each block was followed by

a brief break.

3.2 Analysis

Response times were trimmed if they exceeded 2.5 standard deviations from each

individual’s mean, and data from participants were removed prior to the analysis if

there were error rates in excess of 50% in at least two conditions. For the remaining

thirty seven participants, mean correct RTs were computed across the trials in each

of the experimental conditions. The mean trimmed correct RTs and proportion of

incorrect responses were analyzed with separate repeated measures analysis of vari-

ances (ANOVAs). A significance level of 0.05 was used for all statistical tests, and

the Greenhouse–Geisser correction was made to the p-value where appropriate to pro-

tect against possible violations of assumptions of sphericity. When appropriate, the

analysis on the RTs also included a between-subjects effect of counterbalanced group.

Follow-up Bonferroni comparisons (at the p < .05 level of significance) were also used

when main effects were found to be significant. Counterbalanced group was not found

to be significant, nor did it interact with any of the variables of experimental interest.

For this experiment, two% of the trials were trimmed on average, and data from six

participants were removed prior to the analysis because they responded incorrectly to

more than half of the trials in at least two conditions. The ANOVAs for the remaining
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thirty-seven participants were averaged across the twenty trials within each condition

to test for load (high, low), compatibility (compatible, incompatible, neutral), and

block effects (two same-feature four different-feature).

Figure 3.2: Mean correct response times for flanker compatibility by load. RTs from
compatible and neutral trials were similar within each load condition. Incompatible
flankers lengthened RTs, demonstrating response competition from distractor shapes
when they were part of participants’ attentional sets.

3.2.1 Reaction Times

As expected, load and compatibility main effects were consistent with past research.

Target identification took longer with high load or cluttered displays than with low

load or sparse displays (F(1,31) = 136.267, p < 0.001, η2
p = 0.815). Means were 756

ms and 660 ms, respectively. A significant effect of flanker compatibility (F(2, 62)

= 47.372, p < 0.001, η2
p = 0.604) also arose. Follow-up Bonferroni comparisons (at

the p < .05 significance level) showed incompatible trial response times greater on

average (M = 727 ms) than those of compatible (M = 697 ms) or neutral (M = 700

ms) trials. Importantly, the interaction between load and flanker compatibility was
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also significant (F(2,62) = 4.377, p = 0.017, η2
p = 0.124).

This analysis also found a significant effect of block (F(5, 155) = 13.503, p < 0.001,

η2
p = 0.303); Table 3.1 presents the average RTs and error rates for the target pairs

that were used in each block. Follow-up Bonferroni comparisons (p < .05) showed

that RTs in the same-feature block with the two closed targets were significantly

shorter in comparison to all other blocks and RTs were significantly longer in the

same-feature block with the two open targets in comparison to all other blocks. RTs

to the different-feature blocks were in between the two same-feature conditions with

some minor differences. Block 5 differed from 2 and 4, and the difference between

blocks 3 and 4 was also significant, otherwise there were no significant RT differences

among the 4 blocks of different-feature target pairs.

Block also interacted with load (F(5,155) = 12.281, p < 0.001, η2
p = 0.284) and in a

significant three-way interaction with load, flanker, and block (F(10,310) = 2.870, p =

0.013, η2
p = 0.085). To understand these complex effects, I calculated the compatibility

effect, the difference between incompatible and compatible trials for each combination

of load and block, and reanalyzed the data by looking at the effect of block and load.

The analysis on the compatibility effect showed that block was not significant (p =

0.121), however load (F(1,36) = 6.843, p = 0.013, η2
p = 0.160) and block by load

interactions (F(5, 180) = 4.702, p = 0.002, η2
p = 0.116) were significant.

Fig 3.3 presents the compatibility effect for each of the experimental conditions

together with 95% confidence intervals. What is compelling about these data is the

fact that the compatibility effect for the two same-feature blocks do not show the

same load effects as the other blocks with the exception of square and plus. In three
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(a) (b)

Figure 3.3: Flanker compatibility (the difference between mean incompatible and
compatible response times) for each block in (a) low load and (b) high load conditions.
Error bars show 95% confidence intervals.

of the four different-feature blocks, the strong compatibility effects evident in the low

load conditions are diminished under high load or cluttered displays. With the two

same-feature displays, however, compatibility effects are similar under the two load

conditions

3.2.2 Errors

The average proportion of errors was moderately low in the experimental condi-

tions, varying from 2.9% to 17.297% with a mean of 7.38%. The ANOVA on average

error proportions yielded a significant effect of flanker compatibility (F(2,62) = 8.438,

p = 0.001, η2
p = 0.214), with mean error proportions in the incompatible condition

at 8.67%, and the compatible and neutral conditions slightly lower at 6.39% and

6.72% respectively. Follow-up Bonferroni comparisons showed that the mean error

proportion for the incompatible condition was significantly different from both the

compatible (p = 0.010) and neutral (p = 0.007) conditions, but the two latter condi-
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Table 3.1: Breakdown of response time and error rate differences across the blocks.
Same-feature pairs with closed features had the fastest RTs and fewest errors, and
same-feature pairs with open features took the longest and induced the most errors.
Different-feature pairs were stratified in between.

Block Feature/ RT SD Error

Shapes (ms) (ms) Rate SD

1 Same(∗/+) 752 20 11.19% 1.00%

2 Different(∗/4) 718 18 8.35% 1.01%

3 Different(∗/�) 699 22 6.48% 0.78%

4 Different(4/+) 738 22 6.96% 0.75%

5 Different(�/+) 685 17 6.35% 0.87%

6 Same(4/�) 655 17 4.24% 0.45%

tions did not differ significantly from each other (p = 1.000).

Load exerted a significant effect on error proportions (F(1,31) = 56.12, p < 0.001,

η2
p = 0.644); mean error in high load trials was 9.5% compared to 5.02% in low load

trials. Load effects were also found to vary by block (F(5, 155) = 4.638, p = 0.001,

η2
p = 0.130). It was greatest in the same-feature, open condition, smaller in the

different-feature blocks, and nonexistent in the same-feature, closed condition.

I also found a significant effect of block on error proportions (F(5,155) = 13.320, p

< 0.001, η2
p = 0.301) and the mean error rates, shown in Table 3.1, display a pattern

among the blocks that is similar to the RT data. Both the same-feature blocks were

outliers; the same-feature block with open shapes had the highest error rate while the

closed, same-feature shapes yielded the lowest error rates.
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3.3 Discussion

These findings show that when the target set included shapes from different feature

categories, interference from response incompatible flankers presented outside the fo-

cus of attention was much stronger in low load or uncluttered displays than when

high load or cluttered displays were used. However, when the target set included

shapes from the same feature category, response interference was consistent irrespec-

tive of perceptual load. In other words, blocks with shapes sharing open or closed

features caused participants difficulty even under the conditions that usually mitigate

those difficulties. The influence of load and flanker compatibility effects were success-

fully replicated, but the extent of these effects depended on open and closed feature

categories and whether target sets included same or different feature categories.

Response time differences between compatible trials and neutral trials were not

statistically significant whereas differences between incompatible and neutral were.

These data and the significant effect of flanker compatibility suggests that, rather than

having compatible flankers facilitate response times, incompatible flankers seem to

cause response competition, in accordance with Forster and Lavie [43] and Normand

et al. [89].

Important evidence in support of the hypothesis of open/closed feature categories

was the significant differences in the speed and accuracy of performance across the

6 blocks of trials. When both items in the target set were closed shapes, responses

were faster and more accurate than all other blocks. When both were open shapes,

attentional selection took the longest and was most prone to errors. When the target
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set included one item from each of the two feature categories, performance in the

attentional selection task fell in between the two same-feature target pairs.

Participants’ ability to focus on the target (and ignore the flanker) varied with

open and closed shapes, and also varied with blocks of same and different feature

combinations. Some shapes and combinations were harder to ignore than others.

Still under question, however, was whether these findings could be replicated with

other perceptual tasks and when the stimulus set was expanded to include other

exemplars of the open and closed categories. It is possible that low-level feature

differences among the four exemplars used as targets could have contributed to the

finding of differences in RTs between open and closed shapes. However, replication of

the findings with more varied exemplars of open/closed shapes and another perceptual

paradigm would help to refute that interpretation.

These findings have two important implications for visualization tasks. There are

differences in processing open and closed shapes when used as symbols and these

differences are particularly evident with cluttered rather than sparse or low load

displays. Secondly, it is easier to focus attention on a target shape and ignore other

distractor shapes when the target is from a different open or closed feature category

than the other shapes in the display.



CHAPTER 4: SAME-DIFFERENT STUDY

In order to test the validity of the findings from the flanker study in the previ-

ous chapter and examine whether they were tied specifically to the task or shapes

used therein, a Same-Different paradigm was introduced. Focus was maintained on

the open/closed shape feature categories by testing more varied examples of shapes

from both categories and pairing them with a larger number of same and different

combinations.

The Same-Different paradigm is even more straightforward than the flanker paradigm,

with the added benefit of moving this work closer to visualization displays and

paradigms by providing a more direct comparison between shapes. In a Same-

Different task, each trial features a set of shapes organized at the center of the screen,

and participants simply indicate with a keypress whether all the shapes in the display

are the same or whether there are differences. Variance in response times reflects the

degree of difficulty participants face in discerning the homogeneity or heterogeneity

of the presented objects.

In this same-different study, performance was expected to be fastest for trials in

which all shapes were the same; the human visual system rapidly computes summary

statistics across the field of vision prior to attentional allocation, and differences in

certain channels (curvature, closure, orientation, etc) ’pop out’ from uniform distrac-

tors. However, based on findings from the previous study, I expected that closed
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shapes would be associated with faster RTs and fewer errors than trials with open

shapes. Because discrimination between perceptual categories is quicker than discrim-

ination within a category [47], support for that hypothesis would be found if trials

with different stimulus elements took longer when the shapes still shared the same

open or closed category when compared to stimuli from different feature categories.

Specifically, the hypotheses for this study were as follows:

H1 Same-shape trials will be faster and less prone to errors than different-shape

trials

H2 Different-shape trials will be faster and less prone to errors when the shapes

differ in boundary closure

H3 Same- and different-shape trials with two closed shapes will be faster and less

error-prone than those with open shapes

4.1 Methodology

4.1.1 Participants

Forty-two student volunteers (thirty-one female, eleven male) were recruited from

UNC Charlotte and awarded class credit for participating in approved research studies

where relevant. The inclusion criteria required all participants to be over the age of

18, with 20/20 (or corrected to 20/20) vision and no history of visual impairment.

4.1.2 Stimulus Materials

The visual stimuli were presented on an iMac computer with a 17” flat screen LCD

monitor. Stimulus presentation and data collection were controlled by SuperLab 4.0.
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All Stimuli were created using Javascript and SVG on the same computer to guarantee

uniform display properties.

Each trial consisted of fixation and target displays. The background and foreground

colors were inverted from the first two experiments to use black targets on white back-

grounds, simulating a more common characteristic of visualization displays. Fixation

displays had a white background with a black fixation cross at the center to orient

the participant’s gaze. Target displays featured either two or three shapes positioned

along the central horizontal axis and spaced equally around the fixation point. Two-

shape trials featured shapes 1.25◦ to either side of the fixation cross, and three-shape

trials featured a shape at the center and 2.5◦ to each side so all shapes had uniform

spacing across two- and three-shape trials.

(a) (b)

Figure 4.1: Displays for the same/different test trials. (a) Two-shape condition with
two closed shapes; (b) three-shape condition with open and closed shapes. Partic-
ipants were shown a fixation display for 500 to 1000 ms, then the stimulus display
was presented until a keypress response was made. For a more comprehensive set of
stimuli, refer to Appendix B.5, B.6, and B.7

The shapes representing each of the feature categories was expanded from that of

the flanker task (Chapter 3) to include the following six shapes: circle, square, and

triangle for the closed shapes, and asterisk, ×, and plus sign for the open shapes. For

any given trial, the shapes were either exactly the same, or two different shapes were
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selected. For trials with three elements in the different-shape condition, the middle

shape was always the position differing from the other two.

Each block contained 192 experimental trials split evenly among same-shape and

different-shape trials. Different-shape trials were split evenly between different-feature

and same-feature trials. Each block contained either only two-shape trials or only

three-shape trials, as pilot tests suggested mixing the number of elements caused

confusion within a block. The trials distributed the shape combinations and locations

as evenly as possible. In order to maintain an even number of trials between shape

conditions, same-shape trials were oversampled with ninety-six trials per block while

different feature category and different item same feature category each had forty-

eight trials.

In total, there were four blocks of 192 trials for a total of 768 trials. The presen-

tation order of the blocks was counterbalanced so that some participants began with

two-shape blocks and others began with three- shape blocks. The blocks alternated

between two and three elements until the participant finished all the trials.

4.1.3 Procedure

Participants were tested individually in 40-minute sessions. They were given an

informed consent form and then positioned 60 cm from the computer screen in a

well-lit room. Each participant completed all four blocks of trials.

Within each trial, participants were sequentially presented with a fixation display

and target display. The fixation display was shown for 500, 600, 700, 800, 900, or 1000

milliseconds, then the target display was presented until the participant responded
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with a keypress. Stimuli remained on the screen rather than being presented briefly

as in the flanker task, both to simulate more realistic visualization scenarios and so

that participants could take as much time as necessary to respond.

Each participant began with twenty practice trials to familiarize themselves with

the response keys and the association with ‘same’ and ‘different’ responses. They

were instructed to use the ‘f’ and the ‘j’ key to indicate whether the shapes on the

screen in each trial were the same or different shapes. A note at the bottom of the

screen reminded the participants of the keys associated with each of the responses.

Participants were told to respond as quickly and accurately as possible. Experimental

trials for the first block followed the practice trials and each block was followed by a

brief break before the next block began.

4.2 Analysis

On average, 2.6% of trials were removed for each participant, and the largest trim

proportion was 4%. Data from four participants were removed from the final anal-

ysis due to error rates in excess of fifty percent in at least two conditions. For the

remaining thirty-eight participants, the ANOVAs tested for feature category (open

or closed shapes), condition (same-shape, different-shape/same-feature, and different-

shape/different-feature), and block effects (two or three shapes). Since there was not

a significant block effect when two or three shapes were used (p = 0.376) and the

number of shapes was not found to interact with the other conditions of interest,

the two-and three-shape trials were combined, and the ANOVAs tested for overall

differences across feature category and conditions.
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Figure 4.2: The interaction between feature and condition on RTs. Same shape was
significantly easier, different-shape/different-feature were close across both features,
and different-shape/same-feature trials took the longest. Error bars show 95% confi-
dence intervals.

4.2.1 Reaction Times

The analysis revealed a strong main effect of same/different condition (F(2,74) =

55.234, p < 0.001, η2
p = 0.599). Same-shape trials had the fastest mean RTs (M

= 651 ms), different-item/different-feature trials were the second fastest (M = 675

ms), and different-item/same-feature trials took the longest (M = 709 ms). Follow-up

Bonferroni comparisons (p < .05) showed that each was significantly different from

the other.

Consistent with the findings from the flanker task in the previous chapter, feature

category was also significant (F(1, 37) = 40.099, p < 0.001, η2
p = 0.520), with faster

RTs (M = 668 ms) for closed shapes than for open shapes (M = 689 ms). The

interaction between condition and feature presented in Figure 4.2 was significant

(F(2,74) = 6.902, p = 0.004, η2
p = 0.157), with closed shapes faster than open shapes,

except for the different-shape/different feature trials (which was not significant). Since
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different shape/different feature trials included items from both feature categories it

was arbitrary which feature category the paired items were assigned to. When this

category was excluded from the analysis, however, the two-way interaction between

same/different condition and feature category was not significant (p = .077).

To further understand the feature differences for individual shapes and pairwise

relationships between the shapes, I examined the trials for each condition separately

and compared RTs for each of the individual shapes.

In the same-shape condition, there were significant differences in RTs among the

six shapes (F(5, 185) = 20.836, p < .001, η2
p = 0.360); follow-up Bonferroni com-

parisons (at p < .05 level of significance) showed that all three of the open items

had significantly longer RTs than the three closed items. Moreover, there were no

differences in RTs to the three items within either the open or the closed category.

For the different-shape/same-feature condition, I again found significant RT dif-

ferences among the six pairs of shapes (F(5, 185) = 14.136, p < 0.001, η2
p = 0.276)

but the findings were not as clear as in the previous condition. Trials with × and

plus took significantly longer (M = 760 ms) than all other shape combinations, and

circle/triangle trials were significantly faster (M = 630 ms) than the other com-

binations of closed shapes (M = 700 ms for circle/square and M = 716 ms for

square/triangle). Asterisk/plus-sign trials were also significantly faster (M = 683

ms) than square/triangle trials (M = 716 ms).

When analyzing the nine different-shape/different-feature conditions a significant

main effect of shape pairs was found (F(8, 296) = 2.836, p = 0.012, η2
p = 0.071), but

follow-up Bonferroni tests showed no significant differences among the items.
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Figure 4.3: Reaction Times (in ms) for each shape combination within each condi-
tion. (a) Same shape, same feature - the closed shapes are all significantly faster
than the open shapes. (b) Different shape, same feature - the x/plus-sign pairing is
significantly slower than all other combinations. (c) Different shape, different feature
- no significant differences among pairs. Error bars show 95% confidence intervals.

4.2.2 Errors

The average proportion of errors was moderately low in the experimental condi-

tions, varying from 0 to 15% with a mean of 3.1%. The ANOVA on average error

proportions showed a significant effect of condition (F(2, 74) = 6.488, p = 0.006,

η2
p = 0.149) with different shape/different feature lower (2%) than the other two

conditions–same shape (3.3%) and different shape/same feature (3.7%). I also found

significance for feature errors (F(1, 37) = 10.936, p = 0.002, η2
p = 0.228); closed

shapes had significantly fewer errors (2.7%) compared to open shapes (3.4%).

4.3 Discussion

As hypothesized, same-shape trials yielded the fastest RTs, and different-item/same-

feature trials took the longest. Participants took longer deciding that the shapes were

heterogeneous when the different shapes shared the open or closed feature category

than when the shapes were taken from both categories. These findings are consistent

with those found in the flanker task in chapter 3 and provide additional evidence for
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the existence of open/closed feature categories in visual perception.

Similarly to the flanker study, participants reliably had faster and more accurate

RTs to closed shapes than to the open shapes and the effect was consistent for both

same shape and different items same category conditions. Interestingly, in the same

shape condition, closed shaped items were responded to more quickly than open

shaped items and there were no significant RT differences among the items within the

feature categories. This provides additional evidence that feature category differences

reflect differences in the way open and closed shapes are perceived rather than a result

of low-level differences in the shapes. Items within each of the two categories differed

in similar ways in terms of low-level features such as differences in line elements and

angles; if these factors were the basis of the category difference there would have

been more differences between items within a category. For example, the plus sign

had fewer elements than the asterisk and the triangle had fewer angles than the square

yet differences were not observed when these shapes were presented in the same shape

condition.

The analysis on the error proportions lends credence to two of the three hypotheses.

Different-item/different-feature trials had the fewest errors, reflecting the ease with

which participants discerned between open and closed shapes. Different-item/same-

feature trials had the highest errors due to participants’ relative difficulty in discrimi-

nating between different shapes sharing the open or closed category. Closed shapes did

introduce significantly fewer errors than open shapes, but different-shape/different-

feature trials introduced fewer errors than same-shape trials, contrasting the expecta-

tion of the first hypothesis. That said, it is not necessarily surprising that participants
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were most accurate in their judgments with symbols that differed so significantly.



CHAPTER 5: VISUAL SUMMARY TASKS

The experiments reported in the previous three chapters investigated discrimination

within and between open and closed shapes using basic tasks. Those paradigms

involved displays with a small number of representative shapes and short exposure

times to isolate attentional allocation, and the results provided strong evidence for the

categorical distinction between open and closed shapes in early vision. To illustrate

the utility of those findings for the visualization community, it was necessary to

involve tasks and displays more natural to that context in successive experiments. If

the deployment of such encoding strategies could be shown to influence participants’

abilities to perform some tasks commonly used in scatterplot displays, then there

was justification for expanding this investigation in a number of directions – a larger

variety of analysis tasks, additional feature categories, and more comprehensive design

recommendations.

A key feature of scatterplot displays is that they allow extraction of generalized,

higher-order information through ensemble coding - automatic aggregation of large

sets of elements in the visual field. Szafir et al. [115] discuss ensemble coding in the

context of data visualization, and provide a categorization of a variety of task types in

which this feature of the human visual system can be effectively harnessed. One such

example is numerosity estimation, which has been shown to be a preattentive visual

property independent of other factors such as texture density or spatial frequency of
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elements in the visual field [102, 55, 44].

I chose three visual analysis tasks with relative judgments to test the findings from

the flanker and same-different experiments:

1. Average Value: Participants determine which of two sets of shapes has a higher

average position on the y-axis

2. Numerosity: Determine which of two sets of shapes contains more elements

3. Trend Judgements: Determine which set of shapes best exemplifies a linear

relationship

For each of the tasks, I hypothesized that if open/closed features represented an im-

portant perceptual category, then there should be some difference in task performance

when open rather than closed symbols are used in the scatterplot displays.

Based on the previous findings, I had the following hypotheses:

H1 visualization tasks involving closed symbols will be associated with faster RTs

than open symbols

H2 when two symbols are used together in tasks requiring discrimination between

symbols in a single display, symbols from different feature categories will be

more easily distinguishable and lead to faster RTs than symbols from the same

open or closed category

With each task two kinds of displays were tested: separate-plot displays, which

appeared side by side and required participants to select the plot with the higher

average value, higher numerosity, or the one showing a linear relationship; and single-

plot displays that paired two shapes within one plot and required participants to
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determine the one that depicted the higher average value, numerosity, or linear trend.

The separate-plots contained only homogeneous shapes in each display and were used

to get baseline data on participants’ ability to perform the visual analysis task whereas

the single plot used two symbols within the same display and required discrimination

between the two symbols to make a relative judgment. Performance in the single-

plot displays provided a direct test of the hypothesis that it is easier to discriminate

between two symbols and perform a visualization task when the symbols are from

different open/closed categories.

5.1 Methodology

5.1.1 Participants

Twenty-six student volunteers (nineteen were male and seven female) were recruited

as participants. Participants were tested individually in 40-minute sessions. The

inclusion criteria required all participants to be over the age of 18, with 20/20 (or

corrected to 20/20) vision and no history of visual impairment.

They were given an informed consent form and then positioned 60 cm from the

computer screen in a well-lit room. Each participant completed the three blocks of

trials.

5.1.2 Stimulus Materials

The visual stimuli were presented on an iMac computer with a 17” flat screen LCD

monitor. Stimulus presentation and data collection were controlled by SuperLab 4.0.

All stimuli were created using Javascript and SVG on the same computer to guarantee

uniform display properties.
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(a) (b)

(c)

Figure 5.1: Medium-difficulty single-plot displays for the scatterplot analysis trials.
(a) Average Value Task (b) Numerosity Task (c) Linear Relationship Task. Partici-
pants were shown a fixation display for 500 to 1000ms, then the stimulus display until
a keypress response was made.
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Figure 5.2: Medium-difficulty separate-plot display for the numerosity analysis task.
Participants were shown a fixation display for 500 to 1000ms, then the stimulus
display until a keypress response was made.

I used the same shape palette as in the Same/Different study (4): circle, square,

and triangle for the closed shapes, and asterisk, ×, and plus-sign for the open shapes.

Figure 5.1 has examples of the single-plot displays for all the tasks and Figure 5.2

shows the separate-plot stimuli for a numerosity task. All of the displays contained

100 items, split evenly between two sets of shapes in the single-plot displays and split

evenly between left and right displays in separate-plot displays. The only deviation

from that even split was within numerosity trials, which necessitated a difference

between the number in each set.

To introduce levels of difficulty, I used the concept of ‘delta’ for each task, similar

to Gleicher et al. [46], who found difficulty to correlate with task performance. Delta

represented the difference in pixels between the average position on the y-axis for

two sets of shapes in average value judgments, the difference in number of shapes

between the two sets in numerosity tasks, and the degree of correlation displayed by
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the set of shapes with the linear relationship in the third task. Pilot tests were used

to obtain reasonable delta values for easy, medium, and hard conditions within each

task. For average value judgments, the deltas were 50, 35, and 20 pixels, respectively.

For numerosity judgments, deltas were 36, 26, and 16 shapes. For linear relationship

judgments, correlations were within 0.05 of 0.8, 0.6, and 0.4 as measured by the

Pearson product-moment correlation coefficient.

The stimuli were black on a white background, with display regions of 500 by 500

pixels, and all shapes were rendered at 15 by 15 pixels within a circular area with a

diameter of 30 pixels to prevent overlap and introduce a minimum distance between

elements. For separate-plot displays, two display regions of the same size were placed

side by side in the center of the screen.

For the single-plot target displays in average value and numerosity judgments, I

adapted the algorithm from Gleicher et al. [46]. First, randomly select the center

point of the entire set at a location in the middle third of the display. Then utilize

a dart-throwing approach to maintain spatial distance between shape positions and

best-candidate sampling to prefer positions providing the desired mean, alternating

between the two desired shapes to intersperse the categorical sets. For the average

value displays, make small vertical adjustments to the resultant sets of points to

reach the desired pixel delta for the given difficulty level. The top and bottom shapes

were also de-correlated from the actual higher and lower sets to counter the response

heuristic relying on these extremes. To maintain particular delta values in the nu-

merosity tasks, I alternated between shapes until the desired maximum number for

the smaller set was reached, then continued drawing the shape from the larger set
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until 100 points were drawn overall.

Single-plot target displays for the linear relationship judgment tasks were generated

in a fashion similar to the description given by Rensink et al. [97]. I first selected

a linear equation from a predetermined set of candidate lines with slopes ranging

from -1 to 1 and y intercepts within the central two-thirds of the display. From

there, I alternated between the two sets of shapes. For elements in the set of linearly

associated shapes, I randomly selected x-coordinates and generated y-coordinates

for each point within a constrained distance of the associated y-coordinate from the

linear equation depending on the correlation delta. For elements in the set without

linear relationship, a pseudo-random number generator was used to produce both x-

and y-coordinates. For shapes of either set, small adjustments were made to prevent

overlaps and maintain spacing between shapes, and the positions were re-randomized

if a satisfactory position could not be achieved with minor adjustments. See Figure 5.1

for examples of each stimulus display.

For the separate-plot target displays for each of the three analysis tasks, the same

sequence of steps as the single-plot display generation were taken, but alternate shapes

were drawn in two separate regions of the display rather than the same region.

The three tasks were arranged into blocks of 108 trials, separated into sub-blocks of

thirty-six separate-plot trials and seventy-two single-plot trials. Single-plot target dis-

plays were split evenly among easy, medium, and hard trials and all six of the shapes

were used an equal number of times as both target and distractors. Separate-plot

target displays were also split evenly among the three difficulty levels, and contained

an even number of instances when the target display was on either the left or right
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side. For the linear relationship task trials, an equal number of positive and nega-

tive correlations were maintained. Within any given sub-block of trials, there was a

random arrangement of difficulty levels and shapes.

The presentation order of the three task blocks was arranged into a Latin Square

order and, as often as was possible, an equal number of participants were randomly

assigned to one of the three orders. Within each block, participants always began with

the separate-plot trials as these involved easier binary decisions and some baseline

data, followed by the single-plot trials.

5.1.3 Procedure

For each trial, participants were sequentially shown a fixation display followed by

the target display. The fixation display was shown for 500, 600, 700, 800, 900, or 1000

milliseconds, then the target display was presented until the participant responded

with a keypress or 30 seconds elapsed. Participants began each of the three blocks

with twelve practice trials to familiarize themselves with the separate-plot task and

the associated key responses for the left/right decision. They were instructed to

respond with the ‘f’ key to indicate left and the ‘j’ key to indicate right as quickly

as possible without sacrificing accuracy. In the average value task, participants were

told to identify which of the side by side graphs had the items with the higher average

Y value. For numerosity, the task was to identify which plot had the greater number

of symbols and for the trend task, the participants identified which plot had the linear

relationship. Thirty-six experimental trials followed the practice trials.

A second set of twenty-four practice trials was used to learn the key associations for
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the shape responses in the single-plot displays. For these displays, participants were

instructed to identify which of the two shapes that appeared in the heterogeneous

display indicated the higher average Y value, or the greater number of symbols, or

the linear relationship. Key responses for the six shapes were mapped to six easily-

accessible keys in the center of the keyboard (sdf, jkl). The shape/key mappings

remained accessible to participants throughout the duration of the study with a note

at the bottom of the monitor. Keypress mappings for the six shapes were reordered

for every other participant so that open and closed feature shapes were mapped to

right/left finger responses an equal number of times across participants to account for

any handedness bias. Seventy-two experimental trials followed with the single-plot

displays. After a brief break, participants moved on to the second and third block of

trials following the same procedure.

5.2 Analysis

On average 2% of the trials were trimmed and the data from six participants were

removed prior to the analysis due to error rates in excess of 50% in at least two

conditions. For the remaining twenty participants, mean correct RTs were computed

across the six trials in each of the experimental conditions. The ANOVAs tested for

task (average value, numerosity, linear relationship), difficulty (easy, medium, hard),

target feature (open, closed), and distractor feature (same, different). Follow-up

Bonferroni comparisons (at the p < .05 level of significance) were also conducted to

explore the significant main effects of task and difficulty level.
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5.2.1 Separate-Plot Displays

Response Times The analysis on the responses to separate-plot displays showed

considerable difference in RTs to the three tasks (F(2, 38) = 9.5, p = 0.006, η2
p =

.333); average value took significantly longer on average (M = 1602 ms, SD = 1492

ms) than numerosity (M = 662 ms, SD = 205 ms) and linear relationship (M = 632

ms, SD = 149 ms), which did not differ significantly from each other. Unexpectedly,

neither a main effect of target feature (F < 1, p = .664) nor interactions of target

feature with any other variables of interest rose to significance: target feature by task

(F(2, 38) = 2.23, p = .12), target feature by difficulty F(2, 38) = 1.44, p = .250),

target feature by task by difficulty (F(2, 38) = 2.73, p = .089).

Task difficulty had the strongest effect on the response times (F(2, 38) = 21.314, p

< 0.001, η2
p = .529), and follow-up Bonferroni tests (p < .05) showed that easy trials

(M = 790 ms) were significantly faster than all others, hard trials were the longest

(M = 1156 ms) with medium difficulty trials (M = 950 ms) in between, mirroring my

expectations and accounts from the literature. Difficulty also interacted with task

(F(4, 76) = 6.09, p = .004, η2
p = .243), as shown in Figure 5.3.

Because of the variability in RTs among the three tasks, I reanalyzed the data

separately for each of the tasks looking for effects of target feature and task difficulty.

We found a significant effect of task difficulty for all three tasks. For average value

(F(2, 38) = 10.81, p < 0.001 , η2
p = .363), follow-up Bonferroni tests (p <.05) showed

that the easy trials were significantly slower than the hard trials. For numerosity

(F(2, 38) = 22.26, p < 0.001, η2
p = .540), the main effect resulted from a significant
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Figure 5.3: Difficulty by task interaction for the side-by-side plots. Average value
task required significantly more time and interacted more starkly with difficulty than
numerosity or linear tasks, possibly related to the automaticity of the task require-
ments.

difference among all three levels of difficulty; and for linear relationship (F(2, 38) =

22.25, p < 0.001 , η2
p = .539), the significant main effect was due to the longer RTs

for the hard trials in comparison to the other difficulty levels. However in all three

of the analyses, there were no significant effects of target feature, nor any significant

interactions between target feature and task difficulty.

5.2.1.1 Errors

Participant accuracy across all of the conditions was high, with average error rates

ranging from 0 to 13% of the trials. The analysis on the proportion of errors was

similar to the RTs in showing a main effect of task (F(2, 38) = 13.754, p = 0.001, η2
p =

.420), with more errors on the average value task (M = .053, SD = .08) in comparison

to the numerosity (M = .004, SD = .01) and linear relationship (M = .011, SD =

.03) tasks. As in the previous RT analysis, there was more variability associated with
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performance in the average value task than in the other tasks. Difficulty remained

a significant factor (F(2, 38) = 5.016, p = .012, η2
p = .209), although none of the

difficulty levels were significantly different from each other (means of .014, .017, and

.038 for easy, medium, and hard, respectively). Surprisingly, target feature was also

significant (F(1, 19) = 28.023, p < .001, η2
p = .596), as were its interactions with

task (F(2, 38) = 5.635 p = .007, η2
p = .229) and three-way interaction with task

and difficulty (F(4, 76) = 2.907, p = .044, η2
p = .133). These interactions may have

resulted from a floor effect with negligible error rates in the numerosity and trend

tasks in comparison to some low error rates in response to closed targets in the average

value task.

Reanalyzing the data separately for the three tasks exposed significant effects of

target feature (F(1, 19) = 18.424, p < .001 , η2
p = .492) in average value tasks and

difficulty in average value tasks (F(2, 38) = 7.535, p = .006, η2
p = .284) and linear

relationship tasks (F(2, 38) = 4.147, p = .05, η2
p = .179). Numerosity tasks received

so few errors across the conditions that none of the effects achieved significance.

Taken together, the RT and error data from the side by side displays show that

although there were differences across the tasks, participants could perform all three

of the visualization tasks with a high degree of accuracy. Detecting numerosity and

linear relationships were accomplished more quickly than determining average value

but in all of the tasks performance for the most part was above 90% correct.

These results also show that for each of the three tasks, there was no difference in

task performance with the open and closed category of shapes, other than a slight

increase in errors with closed shapes in the average value task. In contrast to the
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findings from the perception tasks, however, there were no observable differences

in task performance when either open or closed shapes were used as symbols in

homogeneous scatterplot displays.

5.2.2 Single-Plot Displays

5.2.2.1 Response Times.

When participants were asked to identify which of the two shapes presented in a

single display met the task requirements, a strong, significant influence of task on

RTs was found (F(1.112, 21.326) = 15.673, p < 0.001, η2
p = .452), with follow-up test

showing that all three task means differed significantly from each other (M = 3226

ms, SD = 1417 ms; M = 2363 ms, SD = 404 ms; M = 1787 ms, SD = 347 ms for

average value, numerosity, and linear relationship respectively). Task was also found

to interact with distractor feature (F(1.513, 28.753) = 6.135, p = .01, η2
p = .244), and

target feature (F(2, 38) = 5.03, p = .012, η2
p = .209).

As with the side by side displays, there was a main effect of difficulty level (F(2,

38) = 16.046, p < 0.001, η2
p = .458); however, Bonferroni comparisons showed that

easy trials (M = 2261 ms) differed significantly from medium (M = 2512 ms) and

hard (M = 2603 ms), and the latter two did not differ significantly from each other.

Importantly, distractors sharing features with targets lengthened RTs relative to

distractors differing in features, (F(1, 19) = 52.595, p < 0.001, η2
p = .735), and

distractor feature interacted with target feature (F(1, 19) = 25.11, p < .001, η2
p =

.569), and in a three-way interaction with target feature and difficulty (F(2, 38) =

5.051, p = .011, η2
p = .210). There was no main effect of target feature (p = .552),
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but there was an additional interaction of this variable with difficulty (F(2, 38) =

3.401, p = .044, η2
p = .152).

Figure 5.4: Target by distractor feature interaction for the single plot numerosity
tasks. Different-featured distractors always decreased RTs, particularly in trials with
closed symbols. Same-feature distractors always increased RTs, especially when both
symbols were closed. Closed shapes seem more susceptible to influence from distractor
shapes overall. Error bars express 95% confidence intervals.

To understand the influence of target and distractor features on each task, the data

were reanalyzed separately for each of the tasks. In the analysis on the average value

task, the subjects displayed a great deal of variability in response latency. Although

the trends appeared to be moving in the right directions for the hypothesized effects

of difficulty and distractor feature, no significant main or interaction effects among

any of the experimental conditions was found.

For the numerosity task, however, a number of significant effects emerged. Dis-

tractor feature was significant (F(1, 19) = 48.16, p < .001, η2
p = .717); same-feature

distractors took 400 ms longer on average. Difficulty level was also significant (F(2,
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38) = 8.87, p = .002, η2
p = .318); easy trials (M = 2142 ms) differed significantly from

both medium (M = 2437 ms) and hard (M = 2511 ms), but the latter two did not

differ significantly from each other. A significant interaction effect of target feature

and distractor feature (F(1, 19) = 8.70, p = .008, η2
p = .314) indicated that same-

feature distractors reliably caused longer reaction times but the effect was modulated

by target features (Figure 5.4).

It was the linear relationship task, however, where the strongest effects on target

RTs from all of the manipulated variables were found. As with the previous task,

there was an effect of level of difficulty (F(2, 38) = 24.38, p < .001, η2
p = .562), in

which easy trials (M = 1556 ms) were significantly different from medium (M = 1857

ms) and hard trials (M = 1949 ms); medium and hard did not differ significantly.

Closed target features led to quicker RTs than open targets (F(1, 19) = 20.95, p <

.001, η2
p = .524), and same featured distractors lengthened RTs relative to distractors

from different categories than the target (F(1, 19) = 25.33, p < .001, η2
p = .571).

Additionally, these two variables interacted with each other (F(1, 19) = 26.27, p <

.001, η2
p = .58) as well as in a three-way interaction with level of difficulty (F(2, 38)

= 3.15, p < .054, η2
p = .142). Figure 5.5 presents the three-way effect.

These results show that when making judgments of numerosity and linear rela-

tionships from displays with heterogeneous items, the feature category of both the

target and distractor shapes are important. When the distractors are from a different

open/closed category than the target, RTs are faster, but the effect is particularly

evident when processing closed targets.
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(a) (b) (c)

Figure 5.5: Three-way interaction of difficulty, target, and distractor features for sin-
gle plot linear tasks with 95% confidence intervals. (a) easy, (b) medium, and (c)
hard conditions. Different-feature distractors were faster than same-feature distrac-
tors in all conditions except the hard trials with open targets. In hard trials with
relatively low correlation (r = 0.4) among open-featured target symbols, participants
were faster on average when the distractors also shared open features; it is not clear
why this occurred.

5.2.2.2 Errors.

The mean proportion of errors varied considerably across the experimental condi-

tions (0% to 37%) showing effects largely consistent with the RTs data. The analysis

of error proportions in single display trials yielded a number of significant effects and

interactions. Task (F(1.230, 23.378) = 31.920, p < 0.001, η2
p = .627) and difficulty

(F(2, 38) = 45.075, p < .001 , η2
p = .703) both showed strong significant effects. Error

rates in all three tasks were significantly different from each other (average value: M

= .272, SD = .225; numerosity: M = .118, SD = .13, and linear relationship: M =

.024, SD = .06). At an error rate of .201, hard trials introduced significantly more

errors than medium (.119) and easy (.093) conditions. Task and difficulty also showed

a significant interaction (F(4, 76) = 10.607, p < .001, η2
p = .358) (See Figure 5.6).

Distractor feature (F(1, 19) = 20.083, p < .001, η2
p = .514), its interaction with task
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(F(2, 38) = 3.677, p = .035, η2
p = .162), and its three-way interaction with task and

difficulty (F(4, 76) = 4.002, p = .016, η2
p = .174) were all significant effects in the

error proportion analysis.

Figure 5.6: Error proportions for task and difficulty interactions in single-plot dis-
plays. The linear trend task was far more resilient to difficulty levels, perhaps due to
the automaticity of the task.

Separate reanalysis of each task yielded a significant effect of difficulty in average

value tasks (F(2, 38) = 17.263, p < .001, η2
p = .476) and numerosity tasks (F(2,

38) = 41.148, p < .001, η2
p = .684). In the former, hard trials (M = .365) involved

significantly more errors than medium (M = .244) and easy (M = .206) trials. The

same relationship was observed for numerosity trials (easy, medium, and hard trials

had .052, .092, and .210 error proportions on average respectively). No other effects

were significant in average value tasks. In numerosity tasks however, a main effect of

distractor feature (F(1, 19) = 13.612, p = .002, η2
p = .417) and its interaction with

target feature (F(1, 19) = 6.050, p = .024, η2
p = .242) rose to significance.
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As with RT results, the error rates indicate same-feature distractors caused more

errors than different-feature distractors, but closed shapes were more sensitive than

open shapes to facilitation and inhibition effects, providing further evidence that open

and closed shapes are processed differently, particularly in complex displays; more

study is needed to investigate this relationship. For linear relationships tasks, the

only effect to reach significance was the three-way interaction between target feature,

distractor feature, and difficulty (F(2, 38) = 4.546 , p = .022, η2
p = .193). However,

since the error rates in this task were low, ranging from 1% to 6% of the responses

in any given condition, it appears that this complex effect may have resulted from a

floor effect in many of the conditions.

5.3 Discussion

Support for the hypothesized open/closed feature categories was found in two of

the three visualizations tasks (numerosity and average value) and only in the single-

plot displays with heterogeneous items. An effect of feature category was not evident

in the baseline task when homogeneous items filled side by side displays. Because

visualization tasks facilitate rapid integration of summary statistics of visual infor-

mation through ensemble coding mechanisms, there may not be as much sensitivity

to symbol features and their categorical or topological differences when homogeneous

items fill a display (as compared to lower-level perceptual tasks in simpler displays).

Feature category differences, however, were more evident in the single-plot displays

because participants were required to discriminate among items with different topo-

logical features; when dealing with visual clutter, same and different feature categories
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had important influences on numerosity and average value judgments.

After reanalyzing the data for each task, it was clear that the average value task

took much longer and exhibited far more variance than the other two tasks. The

disparity in individual differences in response times, when considered with the length

of the RTs and the higher error rates, suggests that judgment of average value among

sets of marks requires lengthier processing time and more cognitive effort, while nu-

merosity judgment and perception of linear relationship tasks are more automatic.

Indeed, the trends in the average value task in this experiment appeared to be mov-

ing in the hypothesized directions for the level of difficulty and distractor feature

effects, but ultimately did not produce significant main or interaction effects among

the experimental conditions.

Numerosity and linear relationship tasks were more interesting: consistent with

the stated hypotheses, same-feature distractor shapes lengthened RTs relative to

different-feature distractors. The effect of distractor feature was modulated by tar-

get features; closed-feature targets were impacted more drastically – both facilitation

by different-feature and interference by same-feature distractors – than open-feature

counterparts (see Figure 5.4).

In particular, closed target shapes with closed-feature distractors exhibited a great

deal of interference. Specifically in linear relationship tasks, closed targets were re-

sponded to more quickly than open targets for both same and different distractor

features in easy trials, However, when the level of difficulty increased to medium the

pattern of the interaction changed, and RTs to the closed targets were only facilitated

when distractors were from a different category rather than the same category as the
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target. With the hardest difficulty level, the effect of distractor feature was found

only with the closed targets (see Figure 5.5).



CHAPTER 6: OVERPLOTTING STUDY

The visual summary experiments described in the previous chapter provided a

foundation for moving the more abstract, lower-level studies of the preceding chapters

closer to the domain of applied visualization design. The results across the tasks fol-

lowed expectations to some extent – different combinations of open and closed shapes

certainly did exert influence on the speed and accuracy of participants’ responses –

but also opened the door to additional questions.

One weakness with the methods and results up to this point is the ecological va-

lidity of using displays in which symbols did not overlap in the visualization tasks.

In particular, the information in the stimulus displays did not reflect an important

characteristic of realistic data because all the marks were drawn to positions without

any overlap with other symbols. Although the goal is to provide justification and

guidance for visualizing realistic displays, I had intentionally maintained a minimum

space separating all the symbols in order to control for overlap effects while isolating

the open vs closed construct. The general question of symbol discrimination and the

application to visualization displays is quite complex, so I tried to move carefully to

address the question of overlap in the experiment described in this chapter.

The primary purpose of this experiment is to extend the previous findings with open

and closed categories of symbols to address increasingly realistic data characteristics

and displays, with a particular focus on overlapping elements. As in the scatterplot
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experiments (chapter 5), numerosity and trend judgement tasks were tested with

single and side by side displays containing multiple categorical variables encoded

with open and closed symbols. This was structured so as to determine whether the

open/closed categories had a meaningful influence on RTs and error rates when the

data positions induced marks to overlap. The degree of overlap among the symbols

was manipulated to create low, medium, and high levels, and I expanded the symbol

palette to test more shapes and pairs, but in other respects the experiment was

designed to replicate the findings from the previous study.

The following hypotheses were tested:

H1 Pairs of symbols differing in open and closed features will produce faster RTs

and fewer errors than pairs sharing open or closed features

H2 Closed-feature target shapes will be more influenced by distractor features

H3 Larger proportions of overlap among positions will increase task difficulty

Mark encodings were varied in multi-class scatterplot displays with specific pro-

portions of overlapping shapes in order to determine (a) if certain types of plotting

symbols yield better performance in realistic displays and (b) whether certain com-

binations of shapes are more susceptible to overdraw effects.

6.1 Methodology

This experiment was conducted to explore how the open and closed feature cate-

gories would interact with different levels of overlap and analysis tasks. Two relative

judgment tasks were used (numerosity and linear trend), each with low, medium, and
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high proportions of overlapping marks in synthetic data distributions. The numeros-

ity task asked participants to determine which of the two sets of shapes contained

more elements, and the linear trend task asked participants to determine which set

of shapes represented a stronger linear relationship or correlation.

In both tasks, separate-plot displays with side-by-side charts and single-plot dis-

plays with variables overlaid on top of each other were used, just as in the previous

chapter. Separate-plot displays required participants to make a binary choice between

the left and right displays with homogeneous shapes to identify the more numerous

or linearly associated set; these were designed primarily to assess participants’ task

competence and any overall differences between open and closed symbols. Single-

plot displays incorporated pairs of shapes to encode the two sets of points, directly

assessing the relationship between pairs of open and/or closed symbols.

6.1.1 Participants

Thirty one student volunteers (eighteen female, thirteen male) were recruited from

UNC Charlotte and awarded class credit for participation where appropriate. The

inclusion criteria required all participants to be over the age of 18, with 20/20 (or

corrected to 20/20) vision and no history of visual impairment.

6.1.2 Stimulus Materials

Stimuli were presented as black on a white background in regions measuring 500

x 500 pixels. Each shape was generated using a bounding circle with a radius of 8

pixels, producing stimuli subtending 0.4043 degrees of visual angle for participants

60cm away from the screen, well within the bounds of symbol size for normal visual
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(a) (b)

Figure 6.1: Sample stimulus displays from the Linear Trend task. (a) Triangle and
square symbols (i.e. same-feature). (b) Circle and fiveline symbols (i.e. different-
feature).

acuity recommended by Li et. al. [77]. Stimulus displays were generated using D3

and presented using Superlab 5.0 on an iMac computer with a 27” flat screen retina

display.

Four open and four closed symbols were selected directly from the stimuli used by

Li et. al. [77], expanding the palette of symbols used in the previous experiments.

Closed symbols included circle, square, triangle, and pentagon, and open symbols

were shapes with six, five, four and three radial spokes; see Fig. 6.3.

Previous use of ensemble judgment tasks in the literature [46, 97] and in probing

open and closed feature categories [19] involved varying the level of difficulty, with

different amounts of symbols for numerosity judgments and higher or lower degrees

of correlation for the linear trend judgments. In this experiment, that measure of

difficulty was held constant so as not to interfere with varied levels of overlap. All
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(a) (b)

Figure 6.2: Sample stimulus displays from the Numerosity task. (a) Fourline and
threeline (i.e. same-feature). (b) Square and sixline (i.e. different-feature).

linear trend displays contained 100 points split evenly in two, and numerosity task

sets were split 37-63. Each linearly correlated set was produced within +/- 0.02 of a

+/-0.6 Pearson correlation coefficient. These values correspond to the medium level

of difficulty in the previous study, and fall within reasonable ranges used by other

researchers in similar contexts.

To carefully vary the overlap among points in the display, I settled on a measure

involving the proportion of symbols with a non-zero number of overlaps with other

symbols. A pair of symbols were considered to overlap if they were less than two times

the bounding radius away from each other, and set low (30%), medium (50%), and

high (70%) thresholds for the total proportion of symbols overlapping in the display.

A minimum distance between the centers of each point was enforced to avoid cases

where symbols were directly on top of each other.
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(a) (b)

Figure 6.3: (a) The symbol palette for the current experiment. The top row contains
closed symbols and the bottom row contains the open symbols. (b) The four groups
mapping keys to symbols. Participants practiced the associations until they were
comfortable before performing the experimental trials, and a note remained at the
bottom of the screen to serve as a visual reminder of the mappings throughout the
study.

For the numerosity task, displays were generated using the following algorithm.

Pick two symbols. If the desired number of points in each set is not met, randomly

decide to add either an overlapping or non-overlapping point, alternating between

symbol 1 and symbol 2, otherwise add whichever type still needs more points. When

adding a non-overlapping point, sample new coordinates from a normal distribution

until a position is found without any overlaps with existing points. When adding an

overlapping point, randomly pick an existing point, generate a random angle around

that point, and place a new point along that vector between the minimum distance (2

pixels) and the bounding circle radius (8 pixels). Compare the candidate position to

the other points in its vicinity to ensure the minimum distance is not violated. When

the desired number of points are drawn into the display, if the overall proportion of

overlapping symbols is more than 2.5% away from the desired overlap threshold, start

over. See figure 6.2 for two examples; a wider variety of stimuli across conditions is

given in the Appendix: B.18, B.20.



78

For the linear trend task I followed a similar approach to Rensink et. al [96, 97],

sampling from a normal distribution and coercing the y coordinates of each point

to within +/- .02 of the target +/- .6 correlation for the correlated set of points,

randomly deciding whether any given point should overlap or not until the desired

overlap threshold was reached. Small perturbations were made to the points to adjust

the desired overlap proportions without harming the correlation values, and the whole

display was re-randomized if a satisfactory distribution could not be attained. See

figure 6.1 for two examples; a wider variety of stimuli across conditions is given in

the Appendix: B.17, B.19.

In stimulus displays for both tasks, I re-used the same exact distributional positions

with a few different combinations of symbols to produce a number of stimulus displays

with similar overlaps and spatial characteristics. The entire set of points was rotated

by random increments of 90 degrees within each display region so participants would

not recognize them and introduce bias into their responses. For single-plot displays, all

points were drawn into the same region of the display, and the overlap was computed

across all points. For separate-plot displays, each set of points was drawn into one

of two separate regions of the display, and overlap was computed across all points in

each region.

Both tasks were organized into separate blocks. Each task held ninety six separate-

display trials in one sub-block followed by a second sub-block of 144 single-display

trials. Separate-plot blocks contained an even number of each shape and an even split

of trials for which left and right was the correct answer. Single-plot blocks contained

as close as possible to a fair distribution of pairs selected from the 8-shape palette,
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and all blocks contained an even number of low, medium, and high overlaps. Linear

trend blocks contained an even number of positive and negative correlations. The

display order of the stimuli was randomized in each task block. Presentation order of

the two tasks was counterbalanced across participants, and participants were evenly

assigned to one of four key mapping groups to guard against biases in key/response

mapping.

6.1.3 Procedure

Participants were tested individually in 45-minute sessions. After reading and

signing an informed consent document, they were placed 60 cm from the computer

screen in a well-lit room. Twenty nine of the thirty one participants completed all

four blocks of trials; the other two were not able to finish in the allotted time frame

and opted to leave.

Each participant began with a set of general instructions about the key mappings

and tasks in the study, and then saw instructions and eight practice trials for the

first task’s separate-display sub-block to familiarize themselves with the ‘left/right’

response keys. In the separate-display condition the keypress indicated whether the

left/right display contained more symbols, or which one represented a linear trend.

After completing the practice trials and the ninety six experimental trials, they saw

a second set of instructions and thirty two practice trials for the single-display sub-

block to learn the key mappings for the eight shapes, and then performed the 144

experimental trials. On every trial there were two possible responses mapped to one

key on the right and one key on the left hand. The keypress indicated which of
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the two symbols in the display were more numerous or represented the linear trend.

Participants were instructed to take a short break between tasks, and then the same

sequence of instructions, practices, and sub-blocks was administered for the second

task.

Participants were instructed to respond to all trials as accurately and quickly as

possible. If participants answered incorrectly in more than a quarter of the trials

in any practice blocks, the block started over. Throughout the experimental session

there was a note at the bottom of the screen to remind the participants of the key

associations.

Within each experimental trial, participants were first presented with a fixation

display for 500, 600, 700, 800, 900, or 1000 milliseconds, then the target display was

presented until either a keypress was made or 30 seconds elapsed.

Figure 6.4: Triple interaction of Task, Overlap, and Target feature for separate-plot
response times; no main effects or other interactions were significant. Closed targets
in the lowest overlap level of the linear trend task were faster than all other conditions,
but were indistinguishable from open targets in medium and high overlap cases. All
responses were very quick across conditions.
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6.2 Analysis

Response Times (RTs) were trimmed if they exceeded 2.5 standard deviations from

a participant’s mean correct RT in each condition. The mean trimmed correct RTs

and proportion of incorrect responses in each condition were analyzed with separate

repeated measures analyses of variance (ANOVAs). A significance level of 0.05 was

used for all statistical tests, and the Greenhouse-Geisser correction was made to the

p-value where appropriate to protect against possible violations of assumptions of

sphericity.

Five participants’ data were removed due either due to lack of study completion

or error rates in excess of 50% in at least two conditions. An average of 2.3% of

trials were removed for each participant, and the largest trim proportion was 4.2%.

The ANOVAS for the remaining twenty six participants tested for task (linear, nu-

merosity), target (open, closed), overlap (low, medium, high), and, in the single-plot

displays, distractor (same feature, different feature). Follow-up Bonferroni compar-

isons (at the p < .05 level of significance) were also conducted to explore the significant

main effect of the overlap factor.

6.2.1 Separate-Plot Displays

6.2.1.1 Response Times

RTs were not found to differ significantly when responding to separate-displays

that varied in task (linear trend: M = 939 ms, SD = 62 ms; numerosity: M = 997

ms, SD = 215 ms), target (open: M = 956 ms, SD = 102 ms; closed: M = 979 ms,

SD = 128 ms), or overlap conditions (low: M = 950 ms, SD = 124 ms; medium: M
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= 967 ms, SD = 110 ms; high: M = 987 ms, SD = 112 ms), nor were any of the

two-way interactions significant.

The only interaction to achieve statistical significance was the three-way interac-

tion of task by overlap by target (F (2, 36) = 4.383, p = .02, η2 = .196). This complex

effect appeared to result from an overlap effect in the linear trend task with closed

targets (see Fig. 6.4). Closed targets in the lowest overlap level were much faster

than all other conditions, and were indistinguishable from open targets in medium

and high overlap cases. Judgments regarding linear correlation between two separate

displays were very rapid regardless of features and overlap proportions. In the nu-

merosity task, closed targets took marginally longer than open targets, but no useful

interaction with overlap was present, and it is hard to draw conclusions with the

amount of overlap among error bars for each target type and at each level of overlap.

6.2.1.2 Error Proportions

Errors were low across all of the experimental conditions, ranging from 0 − 4% of

the responses. The analysis did not show any significant main or interaction effects

from manipulation of task, target or overlap conditions.

6.2.2 Single-Plot Displays

6.2.2.1 Response Times

Participant response times were not significantly influenced by the effects of task

ordering group (p = .535) or the shape group for the key mappings (p = .054) into

which they were placed, so I collapsed the data across both between-subjects factors
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and analyzed the main and interaction effects that arose.

When two symbols were presented together in a single display and participants were

required to discriminate among them, RTs were found to differ in response to all of

the expected within-subjects variables. A main effect of task (F (1, 25) = 18.594, p <

.001, η2 = .427) showed that the linear trend task (M = 4346 ms, SD = 337 ms) took

longer on average than the numerosity task (M = 3032 ms, SD = 250 ms).

As hypothesized, the increasing overlap proportions exerted a strong significant

effect (F (1.574, 39.357) = 18.994, p < .001, η2 = .432), and within-subjects contrasts

indicate a significant linear trend in RTs with increasing degree of overlap (F (1, 25) =

24.787, p < .001, η2 = .498), with low (M = 3532 ms, SD = 253 ms) and medium (M

= 3618 ms, SD = 254 ms) both differing significantly from high (M = 3917, SD =

264) levels of overlap (p < .001, p = .001 respectively).

In addition, RTs were influenced by a significant effect of target feature category

(F (1, 25) = 16.420, p < .001, η2 = .396). Responses to open targets took longer on

average (M = 3811 ms, SD = 244 ms) than closed symbols (M = 3567 ms, SD = 267

ms), indicating that it mattered whether the more numerous or the more correlated

set of points were encoded with a closed symbol, regardless of the other symbols at

hand.

Among all of the manipulated variables, having distractor symbols from the same or

different feature category than the target levied the strongest effect on RTs (F (1, 25) =

82.890, p < .001, η2 = .768). Consistent with findings in earlier experiments on open

and closed shapes and their relationship in judgment tasks, same-featured distractors

significantly lengthened response times (M = 4267 ms, SD = 304 ms) in compari-
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son to different-featured distractors (M = 3111 ms, SD = 211 ms); the relationship

between same and different featured distractors clearly makes a large difference on

target processing.

Figure 6.5: The Target by Distractor interaction in the single-plot RT analysis shows
that closed targets are more facilitated by different-feature distractors than open
targets are. When distractors come from the same feature category, performance is
reliably worse regardless of target features. Error bars show 95% confidence intervals.

In addition to their main effects, the relationship between target and distractor

features also interacted significantly with a few other manipulated variables.

The Task * Distractor interaction (F (1, 25) = 13.541, p = .001, η2 = .351) showed

that the linear task was more susceptible to distractor effects than the numerosity

task (see figure 6.6), while the Target * Distractor interaction (F (1, 25) = 6.301, p =

.019, η2 = .201) indicated that closed targets were more susceptible to distractor

facilitation effects than open targets (see figure 6.5). This outcome agrees with some

of the previous findings, in which closed symbol processing received a more drastic
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impact by distractor feature than open symbols.

The distractor * overlap effect (F (2, 56) = 3.853, p = .028, η2 = .134) resulted

from the fact that different-feature trials showed a steady linear increase in RTs with

increasing overlap while the same-feature pairs were more susceptible to distractor

effects with high overlap.

Figure 6.6: Triple interaction of Task, Overlap, and Distractor feature for single-plot
response times. Linear Trend tasks took significantly longer than numerosity tasks,
and RTs in both tasks were faster when symbols differed in boundary closure. Error
bars show 95% confidence intervals.

Finally, there was a triple interaction of Task * Overlap * Distractor (F (2, 50) =

11.336, p < .001, η2 = .312); see figure 6.6. To understand this effect and all of the

other interactions, a follow-up simple effects analysis was conducted separately on

each of the two tasks.

Linear Trend Task

In the analysis on only the Linear Task, strong significant effects of Target (F (1, 25) =

8.179, p = .008, η2 = .246), Overlap (F (1.635, 40.885) = 4.142, p = .030, η2 = .142),

and Distractor feature (F (1, 25) = 71.228, p < .001, η2 = .740), and a two-way inter-

action of Overlap by Distractor (F (2, 50) = 9.904, p < .001, η2 = .284) were found.
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While the variance of overlap contributed overall, the low (M = 4242 ms, SD = 348

ms), medium (M = 4274 ms, SD = 337 ms), and high (M = 4523 ms, SD = 342 ms)

conditions did not differ significantly from each other. Open targets (M = 4487 ms,

SD = 329 ms) took significantly longer than closed targets (M = 4206 ms, SD = 351

ms), and pairs with different open or closed features were significantly faster (M =

3591 ms, SD = 290 ms) than same-featured pairs (M = 5101 ms, SD = 398 ms).

As shown in Fig. 6.6 (left side), different-featured pairs did not vary much across

overlaps, and only the high overlap condition significantly lengthened RTs for same-

featured pairs.

However, in contrast to some of the previous findings and the overall interaction

effects reported above, Target * Distractor (p = .067) did not rise to statistical sig-

nificance, nor did the triple Target * Overlap * Distractor interaction (p = .196).

Numerosity Task

Outcomes were similar for the reanalysis of the numerosity task, with significant main

effects of Target (F (1, 25) = 5.033, p = .034, η2 = .168), overlap (F (1.352, 33.810) =

24.379, p < .001, η2 = .494), and distractor (F (1, 25) = 34.516, p < .001, η2 = .580).

As with the linear trend analysis, same-feature distractors (M = 3435 ms, SD = 294

ms) reliably lengthened RTs in comparison to different-feature distractors (M = 2630

ms, SD = 219 ms), adhering to my expectations, and open targets continued to take

significantly longer (M = 3135 ms, SD = 243 ms) than closed targets (M = 2929

ms, SD = 265 ms), albeit both targets were faster overall for numerosity than linear

trend. As with the linear trend analysis, target * distractor (p = .092) and target *

distractor * overlap (p = .949) did not rise to significance.
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Unlike in linear trend trials, each level of overlap (low: M = 2823 ms, SD = 244

ms; medium: M = 2961 ms, SD = 245 ms; high: M = 3313 ms, SD = 270 ms) dif-

fered significantly from each other (low/medium: p = .006; medium/high: p = .001;

low/high: p < .001), but there was no overlap by distractor interaction (p = .687) in

the numerosity task trials.

6.2.2.2 Error Proportions

Just as with the response times, the errors were not significantly influenced by

shape group (p = .166), nor did the task ordering group have a significant effect (p =

.982) on error proportions. Data were collapsed across these between-subjects factors.

Mean error proportions varied from 3.2% to 23% across the experimental condi-

tions, and many of the same effects and interactions rose to statistical significance as

in the RT analyses.

Target feature (F (1, 25) = 8.114, p = .009, η2 = .243) and Overlap (F (2, 50) =

16.772, p < .001, η2 = .402) were both significant, with higher rates of errors gener-

ally mirroring the conditions with longer RTs. Open targets produced significantly

more errors (M = .146, SD = .021) than closed targets (M = .112, SD = .014).

Trend analysis on the different levels of overlap revealed significance for both linear

and quadratic effects, but in this case the dominant effect size was for a quadratic

trend in the overall error proportions (linear: F (1, 25) = 11.368, p = .002, η2 = .313;

quadratic: F (1, 25) = 24.983, p < .001, η2 = .500). Low (M = .123, SD = .016) and

Medium (M = .103, SD = .014) both differed significantly from High (M = .162, SD
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= .022) overlap trials (p = .007, p < .001, respectfully).

Just as with RTs, Distractor (F (1, 25) = 65.152, p < .001, η2 = .723) exerted a very

strong significant effect on error proportion, with same-feature pairs (M = .173, SD =

.020) producing double that of different-feature pairs (M = .086, SD = .014). It also

interacted meaningfully in a Target * Distractor interaction (F (1, 28) = 4.221, p =

.049, η2 = .131) in which open targets produced reliably higher error rates than

closed shapes, which produced particularly low error rates when the more numerous

or linearly associated symbol was a closed shape paired with an open shape distractor;

see figure 6.7.

Figure 6.7: The Target by Distractor interaction in the single-plot Error Proportion
analysis shows that different-featured distractors caused fewer errors and closed tar-
gets induced fewer errors overall, but closed targets with different-feature distractors
were by far the most accurate condition. Error bars show 95% confidence intervals.

On the other hand, Task (p = .704) was not a contributing factor to the error

proportions overall, but it did interact in the same triple interaction as in the general
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RT analysis: Task * Overlap * Distractor (F (1.560, 39.004) = 3.870, p = .039, η2 =

.134). Same-feature trials clearly caused more errors than different-feature trials (see

figure 6.7) and these differences were mediated by task requirements, so, as with the

RT analysis, I followed up by reanalyzing the data separately for both tasks to help

clarify the relationship of all the factors.

Linear Trend Task

In linear trend tasks, Overlap (F (2, 50) = 14.050, p < .001, η2 = .360) and Distractor

(F (1, 25) = 31.487, p < .001, η2 = .557) both exhibited statistically significant effects

on error proportions. Low (M = .119, SD = .024) and Medium overlap (M = .092, SD

= .020) both differed significantly from High (M = .166, SD = .030) (p = .010 and p

< 0.001, respectively), but Low and Medium did not induce a significant difference in

error rates (.202). As hypothesized, the relationship between symbol features played

a significant role in determining error rates in the linear trend task. Same-feature

distractors (M = .165, SD = .028) had double the error rates of trials differing across

the open/closed feature category (M = .087, SD = .020). In addition, Overlap *

Distractor produced a significant interaction (F (2, 50) = .3540, p = .036, η2 = .124);

error proportions increased steadily with overlap level in different-feature trials, but

the mean error proportion for low overlap trials with same feature symbols fell evenly

between the medium and high levels of overlap; see figure 6.8.

Target (p = .104) no longer bore significance for error rates in linear trend trials,

nor did it interact significantly with any other variables of interest.

Numerosity Task

Reanalysis on the numerosity error data echoed the main significant effects of Target
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Figure 6.8: In the linear trend task, error rates increased steadily with different-
featured symbols and larger overlap proportions, but the low overlap condition saw
more errors than the medium overlap condition for same-featured shapes. There is no
simple explanation for the performance differences between low and medium overlap
trials, as all of the trials were created and analyzed properly. Error bars show 95%
confidence intervals.

(F (1, 25) = 8.237, p = .008, η2 = .248), Overlap (F (2, 50) = 6.573, p = .003, η2 =

.208), and Distractor (F (1, 25) = 67.763, p < .001, η2 = .730). The feature of the

more numerous symbol set was influential on error rates, with open targets (M =

.152, SD = .018) causing significantly more errors than closed targets (M = .113, SD

= .010). As in the Linear trend task, Low (M = .127, SD = .013), Medium (M = .113,

SD = .013) and High (M = .158, SD = .018) overlap levels significantly influenced

error rates; medium and high levels differed significantly from each other (p = .007)

in the numerosity task.

Distractor again proved the strongest determinant of error rates in numerosity

tasks, with the continued trend of same-featured symbols (M = .181, SD = .015)
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inducing significantly more errors than different-featured trials (M = .085, SD =

.013), but distractor did not significantly interact with target (p = .288) in this case.

6.2.3 Shape Pair Analysis

To seek a more granular explanation for the effects and interactions in this exper-

iment, I collapsed the RT and error proportion data across overlap levels for each

combination of symbols. I then rank ordered the symbol pairs by their mean RTs

across the linear trend and numerosity tasks. The only condition I was unable to

consider was pentagon/fiveline; that pair was not presented together to participants

in any of the numerosity trials. The resultant ordering found that all different-feature

shape pairs produced faster RTs than same-feature pairs, further strengthening the

effect of distractor feature reported in the overall RT and error proportion analyses.

Due to this clean split, I chose to analyze the same and different-feature pairs sepa-

rately with an ANOVA that tested for the effect of task by shape-pairs.

6.2.3.1 Response Times

I began with different-feature pairs and found a significant main effect of task

(F (1, 25) = 10.936, p = .003, η2 = .304) and a significant interaction of task *

different-feature pair (F (5.181, 129.523) = 2.760, p = .020, η2 = .099), but no sig-

nificance for different-feature pairs as a main effect (p = .057). In accordance with

previous findings, the linear trend task (M = 3657, SD = 288) took much longer

than the numerosity task (M = 2738, SD = 220) in all cases except the circle/sixline

pair.



92

Same-feature pairs also exhibited a significant main effect of task (F (1, 25) =

24.397, p < .05, η2 = .494) and task * same-feature pair (F (6.481, 162.025) = 5.529, p <

.05, η2 = .181). In addition, there were significant differences in RTs among same-

feature pairs (F (5.608, 140.209) = 11.492, p < .05, η2 = .315). Again, linear trend

tasks (M = 5282, SD = 408) took much longer than numerosity tasks (M = 3554, SD =

311), and many of the same-feature shape pairs were significantly different from each

other.

6.2.3.2 Error Proportions

The error proportions for same- and different-feature pairs were moderately high,

ranging from 5.6% to 24% with a mean of 12.3%. For different-feature pairs, no main

effects or interactions reached significance (task: p = .889; different-feature pairs:

p = .276; task*different-feature pairs: p = .812). Task (p = .453) and task * pair

interactions (p = .099) were not significant for same-feature pairs either, however I

did find a significant main effect of pair (F (11, 275) = 3.022, p = .001, η2 = .108).

That said, the only significant pairwise difference was between the circle/square and

the sixline/fiveline pairs (p = .002).

6.2.4 Combined Measures

One of the assumptions inherent in reaction time studies is that errors will be low

so that differences in RTs among conditions reflect the different constructs in the

methodology. As mentioned in the analysis on error proportions in section 6.2.3.2,

moderately high errors which reflected conditions in the tasks were introduced, weak-

ening the interpretation of the RTs as a varying measure of performance by them-
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selves. In cases such as these, it is useful to consider composite measures combining

RTs and error rates so that variance in both measures is incorporated in that analysis.

The most straightforward approach is to divide the mean trimmed correct RTs by

the proportion correct (PC) in each condition, producing Inverse Efficiency Scores

(IES) which can be analyzed and interpreted in the same fashion as the RTs and

error proportions.

PCi,j = 1− ErrorProportioni,j (6.1)

IESi,j =
R̄T i,j

PCi,j

(6.2)

(For each participant i and condition j )

In addition, participants were instructed to respond as quickly and accurately as

possible to all trials. Speed accuracy tradeoffs (SATs) can arise in experiments such

as these, where RTs and error rates can be affected asymmetrically by the cognitive

processes under investigation and based on each subject’s interpretation and appli-

cation of the instructions [78, 92, 130]. There was no indication that the results in

this study were systematically occluded by SATs; the RTs and error proportions had

largely similar effects and pointed in the same direction. Appendix A discusses com-

bined measures designed to account for SATs and presents further analyses on the

shape pair data from this study.
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6.2.4.1 Inverse Efficiency Scores (IES)

In the rank-ordering of symbol pairs, different-feature symbol pairs all had shorter

RTs than pairs with symbols from the same feature category. As task interacted

significantly with response times but not error rates in the shape pair analyses, I opted

to produce inverse efficiency scores and examine shape pair performance separately

for each task. I had run the analyses on error proportions in all previous studies, so I

needed to compute PC using eq 6.1 before computing IES. I continued the reanalysis

by computing the mean RT and mean PC for each pair of symbols separately for each

task, and produced IES for each pair according to eq 6.2.

Tables 6.1 and 6.2 contain the average error rates, response latencies, IES, and

their standard deviations for each pair in each of the analysis tasks, rank ordered

by mean RT. Figure 6.9 presents the rank order and measure for each of the pairs

before and after the IES transformation in both tasks. While many pairs of symbols

changed rank, different-feature pairs were faster than same-feature pairs in almost all

cases.

After computing IES for each pair of symbols in each task and examining their re-

spective rank orderings, I analyzed the effect of the pairs on the variance in each task,

and explored performance and pairwise significance among the pairs. In the Linear

Trend task, shape pairs exerted a significant effect on IES (F (27, 675) = 12.258, p <

.001, η2 = .329), and many pairs were significantly different from each other. Figure

6.10 compares the magnitudes of each pair’s IES, and figure 6.12 displays the sig-

nificant differences among pairs of symbols. In general, same-feature pairs induced
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Table 6.1: Pairwise combinations of symbols rank ordered by mean response times
in the Linear Trend task. The first 16 purple shape pairs are all different-feature,
and all were faster than the successive 12 (17-28) green same-feature pairs.

# Shape Pair RT (ms) ERR IES (ms)
Mean SD Mean SD Mean SD

1 circle / sixline 3104 1167 0.048 0.123 3275 222
2 circle / threeline 3312 1293 0.077 0.170 3706 315
3 circle / fourline 3366 2245 0.077 0.161 3702 442
4 triangle / fiveline 3475 1403 0.096 0.188 4063 401
5 square / sixline 3485 2036 0.038 0.092 3614 396
6 circle / fiveline 3525 2323 0.100 0.152 4034 572
7 square / threeline 3555 1690 0.115 0.190 4156 355
8 triangle / sixline 3593 1307 0.085 0.116 3919 253
9 pentagon / fourline 3672 1473 0.077 0.137 3999 289
10 square / fiveline 3810 1668 0.108 0.129 4370 407
11 pentagon / threeline 3882 1829 0.100 0.162 4465 483
12 pentagon / sixline 3906 1894 0.085 0.152 4514 598
13 square / fourline 3932 1902 0.085 0.162 4331 366
14 triangle / threeline 4097 1618 0.062 0.110 4432 344
15 pentagon / fiveline 4112 2178 0.106 0.202 5022 674
16 triangle / fourline 4141 1824 0.125 0.203 5064 655
17 circle / square 4170 1833 0.128 0.178 4925 437
18 circle / triangle 4310 1743 0.147 0.207 5500 653
19 sixline / threeline 4310 2193 0.096 0.171 4785 442
20 sixline / fourline 4568 1591 0.154 0.188 5694 470
21 fiveline / fourline 4888 2036 0.167 0.200 6191 571
22 square / triangle 5156 2404 0.160 0.191 6176 515
23 fiveline / threeline 5215 2092 0.218 0.282 8426 1432
24 triangle / pentagon 5597 3122 0.186 0.185 6930 655
25 fourline / threeline 5764 2791 0.167 0.211 7322 758
26 square / pentagon 5841 2326 0.173 0.185 7191 529
27 circle / pentagon 6208 3213 0.167 0.200 7836 862
28 sixline / fiveline 7355 3459 0.218 0.187 9785 1004
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Table 6.2: Pairwise combinations of symbols rank ordered by mean response times in
the Numerosity task. All but one of the different-feature pairs (purple) was faster
than the same-feature pairs (green).

# Shape Pair RT (ms) ERR IES (ms)
Mean SD Mean SD Mean SD

1 circle/threeline 2172 694 0.087 0.140 2413 148
2 pentagon/threeline 2410 1117 0.090 0.135 2663 228
3 circle/fiveline 2509 1157 0.128 0.127 2839 209
4 circle/fourline 2557 1436 0.054 0.121 2699 275
5 square/fourline 2583 1342 0.077 0.184 2927 314
6 triangle/threeline 2585 1304 0.051 0.123 2783 274
7 triangle/fiveline 2682 929 0.083 0.127 2977 206
8 square/threeline 2803 1799 0.058 0.107 3031 419
9 square/sixline 2818 969 0.082 0.100 3117 226
10 square/fiveline 2851 1441 0.090 0.135 3107 268
11 triangle/sixline 2864 1778 0.077 0.114 3156 377
12 pentagon/sixline 2890 1231 0.100 0.117 3177 228
13 pentagon/fourline 2968 1351 0.071 0.096 3213 289
14 triangle/fourline 2983 1473 0.115 0.152 3439 327
15 sixline/threeline 2987 1318 0.167 0.163 3621 284
16 circle/square 3102 1418 0.109 0.115 3534 312
17 sixline/fourline 3152 1325 0.109 0.176 3681 317
18 fiveline/threeline 3398 1634 0.231 0.177 4418 386
19 circle/sixline 3400 2770 0.077 0.184 3733 548
20 circle/pentagon 3421 2456 0.179 0.156 4212 571
21 circle/triangle 3486 2392 0.224 0.205 4692 537
22 triangle/pentagon 3530 1579 0.109 0.141 3934 287
23 square/triangle 3723 1650 0.244 0.165 5016 417
24 fiveline/fourline 3855 1589 0.199 0.177 4913 387
25 fourline/threeline 3933 1775 0.186 0.172 5287 805
26 square/pentagon 3967 2368 0.147 0.136 4646 538
27 sixline/fiveline 4097 2106 0.263 0.190 5697 523
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(a) (b)

Figure 6.9: Shape pairs rank ordered fastest to slowest (top to bottom) before and
after IES transformation in (a) Linear Trend, and (b) Numerosity tasks. Red lines
indicate worsening ranks, blue lines indicate increasing ranks, and grey lines indicate
no change in rank. Many pairs changed order in both tasks, but most same-feature
pairs (green) took longer than different-feature pairs (purple).

significantly higher IES than different-feature pairs. Shape pairs were also a signif-

icant determinant of performance in the Numerosity Task (F (26, 650) = 9.106, p <

.001, η2 = .267), with a number of significant differences among pairs; figure 6.11

shows the rank ordered IES magnitudes and figure 6.13 shows the pairwise significant

differences among symbol pairs.

6.2.5 Discussion

6.2.5.1 Separate-plot Displays

Separate-plot displays in the visual summary tasks (chapter 5) found no significant

effects of target feature or any interactions with difficulty level, suggesting that the

feature categories of the marks were not relevant to the task when positions were

encoded in separate same-feature category groups in the display. The response time
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Figure 6.10: Shape pairs ordered by IES in the Linear Trend task. The pairs corre-
spond to the rank orders and values displayed in Table 6.1 and figure 6.9 (a). With
two exceptions, same-feature pairs (green) took longer than different-feature pairs
(purple). Error bars show 95% confidence intervals.

Figure 6.11: Shape pairs ordered by IES in the Numerosity task. The pairs correspond
to the rank orders and values displayed in Table 6.2 and figure 6.9 (b). With a single
exception, same-feature pairs (green) took longer than different-feature pairs (purple).
It is interesting that the circle/sixline pair was the hardest different-feature pair, even
harder than three of the same-feature pairs, while the same circle/sixline pair was the
easiest symbol pairing in the linear trend task. Error bars show 95% confidence
intervals.
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Figure 6.12: Significant differences among IES of shape pairs in the Linear Trend task.
Most significance pairwise differences arose where same-feature pairs took longer than
different-feature pairs; see figure 6.10 for comparison.
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Figure 6.13: Significant differences among IES of shape pairs in the Numerosity task.
As with the Linear Trend task, most significance pairwise differences among pairs
arose where same-feature pairs took longer than different-feature pairs; see figure
6.11 for comparison.
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and error data from this study were consistent with those findings. They show that

participants are able to respond quickly and accurately to judgment tasks regardless

of the target or overlap conditions when only a single symbol was used to encode

marks in both of the displays.

6.2.5.2 Single-plot Displays

There were significant differences between the two tasks in the single-display com-

ponent of this study, above and beyond the influence of the shape encodings or their

feature relationships. Linear trend tasks with multiple shape encodings introduced

significantly longer RTs and more errors than judgments on the numerosity task. The

previous experiments with these tasks (chapter 5) exhibited the opposite relationship,

with linear trend significantly faster than numerosity tasks. The requirements of the

tasks and varying characteristics of the displays, particularly the use of realistic, over-

lapping data distributions, likely influences these findings, but the differences were

robust regardless of the shapes and their featural relationships in this experiment.

Across the analyses of RT and error rates, closed targets symbols were processed

faster and with fewer errors than open symbols, and displays with two open or two

closed (i.e. same-featured) symbols were significantly harder than displays with one of

each feature. The more basic perception experiments (chapters 3, 4) found evidence

to support a preference for closed symbols, and results from the visual summary

tasks (chapter 5) suggested that closed symbols might receive a more drastic impact

by distractor feature than open symbols. I found some continued support for both of

these findings. The overall analyses of RTs and errors in this study, the analyses of
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RTs in both tasks, and the error rates in the numerosity task all support the notion

that closed targets are faster and less error-prone than targets encoded with open

symbols. Furthermore, the overall RT and error analyses and the analysis of error

rates in the linear trend task lend further evidence that closed targets are particularly

influenced by the lack of closure of the distractor symbol. Taken together, these

results suggest that the closure of the shape encodings segments them more readily

and facilitates summary judgments, particularly when their distractors are not as

salient, but that the effect does not rely significantly on the features of other items

in the display for particular tasks.

I hypothesized that larger levels of overlap among symbols due to overplotting

would give subjects a harder time responding to the judgment tasks, and was in-

terested to see whether this would differ depending on the shape features in the

displays. Increasing the proportions of overlaps caused RTs to exhibit a linear in-

crease and errors to exhibit a quadratic increase, and overall interactions showed that

same-featured displays were more impacted by higher levels of overplotting.

Differences in RTs and error rates due to levels of overplotting were significant in

the analysis of both tasks, with particular influence on both measures at the highest

level of overlap and for same-feature symbol pairs, especially in the numerosity task.

For the overlap by distractor interaction in the linear trend task, I could not find

an explanation for the discrepancy between low and medium levels of overlap; all

trials appeared randomly, were tagged and scored correctly, and this condition did

not exhibit undue levels of trimming, and yet the same-featured trials were faster

in the medium level of difficulty. In general, these findings lend further support to
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the discriminability between open and closed symbols due to the relative stability

heterogeneous encodings exhibited in the face of increased overplotting.

Figure 6.14: Shape pairs rank ordered by IES in both tasks. Different-featured pairs
(purple) were almost all easier than same-featured pairs (green), but many of the
pairs changed in rank order between the two tasks. Blue lines show a decrease in
rank order (i.e. those pairs performed better in the Numerosity task) and red lines
show an increase in rank order (i.e. those symbols performed worse in the Numerosity
task).

The shape pair analyses provide strong support for the conclusion that it is more

difficult to discriminate between pairs from the same open/closed category than from

different categories. The rank orders of RT and IES (see figure 6.9) clearly show

that different-feature pairs were more performant than almost all of the same pairs.

Further, when the size of the symbols are kept constant and discrimination is made

between same-featured shape encodings, it is harder to discriminate symbols that
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have larger complexity (i.e. larger number of internal angles, more numerous line

segments and endings) or more similarity. For example, sixline/fiveline had the worst

performance of any pair in both tasks regardless of the measure, and fourline/threeline

was also difficult in both tasks; both pairs differ minimally from each other in terms

of more basic features, regardless of their topological features. In other cases, the

differences in performance of particular shape pairs depended heavily on the task.

Figure 6.14 displays the changes in rank order of IES measures between the two

tasks. Circle/sixline was the easiest pair in the linear trend task, but was the most

difficult different-feature pair in the numerosity task, even taking longer than three of

the same-feature pairs. Many other pairs saw stark changes in rank order between the

tasks, such as pentagon/threeline, which went from one of the more difficult different-

featured pairs in the linear trend task to the second easiest in the numerosity task.

While the most robust differences in performance seem to be driven by the categorical

difference between featural or topological characteristics of open/closed pairs, the

relative complexities of the symbols and the influence of task requirements clearly

cause differences as well.



CHAPTER 7: REAL-WORLD DATA STUDY

The basic perception experiments (chapters 3, 4) found that closed symbols elicited

better performance than open symbols, and results from the visual summary tasks

and overplotting study (chapters 5, 6) found continued support for this and further

suggested that closed symbols might receive a more drastic impact by distractor fea-

ture than open symbols. One final study was run using real world data to complete the

sequence from basic perceptual tasks to application in realistic scatterplot displays,

examine the influence of shape and symbol closure, and test previous findings.

More specifically, categorical variables were encoded using specific symbols in a

variety of scatterplot displays (a) to test if closed shapes yield better performance in

displays with realistic data distributions and (b) to validate the influence of perceptual

dissimilarity between open and closed shapes. Support was found for both concepts;

the relative distinctiveness of open/closed symbols was more important than differ-

ences within each group, and participants responded to the task more quickly and

with fewer errors when target symbols were closed.

The following hypotheses were explored:

H1 Pairs of symbols differing in open and closed features will produce faster RTs

and fewer errors than pairs sharing open or closed features

H2 Closed-feature target shapes will be faster and more influenced by distractor
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features in comparison to open shapes

7.1 Toxics Release Inventory (TRI)

The Toxic Release Inventory (TRI) was established in 1986 as part of the Emer-

gency Planning and Community Right-to-Know Act (EPCRA), which the United

States congress passed in response to two deadly chemical spills in 1984 in Bhopal,

India and in 1985 in West Virginia [37]. The TRI program is managed by the En-

vironmental Protection Agency (EPA), which had been instantiated a decade and a

half earlier in 1970 to bring climate research, policy-making, and enforcement under

the same umbrella in the United States.

Among its specific provisions, the TRI program mandates that facilities report

yearly usage above a minimum threshold for a variety of toxic chemicals, and tracks

measures of treatment, energy recovery, recycling, and release into the atmosphere,

landfills, and waterways for each of those chemicals, among many other variables.

The current list of toxic or otherwise harmful chemicals includes over 595 individual

chemicals in thirty-three categories, including carcinogens, and persistent bioaccu-

mulative toxic chemicals, which can persist in bodies or the environment over long

timespans. Many industrial facilities are required to report to the TRI program every

year, from mining and manufacturing to waste management and federal facilities.

Public access to data from the TRI program provides an incentive for improved

environmental performance. A variety of tools have been developed to explore the

yearly datasets, sift through the complex relationships among the variables collected,

and inform citizens, underrepresented groups, and policymakers about chemical usage
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in their local areas, states, and country. The social and cultural relevance of this type

of information, the volume of data submitted to the program in recent decades, and

my previous work using data from TRI made this dataset a reasonable choice to

underpin the current study [18, 20].

7.2 Methodology

The primary goal of the present study was to test the influence of open and closed

symbols with more realistic displays and analysis contexts. I adapted the stimulus

displays to support that goal by increasing the chart areas and decreasing the sym-

bol sizes, and simplified the study design by using a subset of the symbols and only

one relative judgment task. Some participants had struggled adapting to the eight

symbols in the previous experiment, and the results were muddied somewhat by an

effect of symbol ordering between participants, so I wanted to test the hypotheses and

find further support for my findings without introducing too much variance in the

methodological approach. I elected to use the numerosity task, as it had reliably pro-

duced faster responses and fewer errors than the linear trend task in the overplotting

study in the previous chapter.

7.2.1 TRI Data Displays

I stepped through the most recent twenty years of TRI datasets and extracted

total quantities of recovery, recycling, release, and treatment of each chemical at each

unique facility, and stored the data in a nosql database to support flexible query

construction for these investigations. These usage categories subsume multiple more

specific methods, but they provide a good overview of how a given facility interacted
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with chemicals on the TRI list in a given year, and therefore give us enough flexibility

for the purposes of this study.

To test the interaction of the shape categories under investigation on real rather

than synthetic data distributions while maintaining the use of relative judgment tasks,

I generated a number of charts from the TRI data. While the numerosity task selected

for the user study did not require any particular knowledge of the TRI data, nor were

participants expected to consider chart axes or labels in their judgments, I briefly

discussed the source and context of the data to invoke a sense of realism, both for

the data distributions and the task itself.

7.2.2 Participants and Stimulus Materials

Sixteen student volunteers (five female, eleven male) were recruited as participants,

and tested each individually in 20-minute sessions. As in all the previous studies, all

participants were required to be over the age of 18, with 20/20 (or corrected to 20/20)

vision and no history of visual impairment.

Figure 7.1: The symbol palette for the current experiment. The top row contains
closed symbols and the bottom row contains the open symbols. Combinations of
square, triangle, fourline, and threeline provided two same-feature pairs and four
different-feature pairs.
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A palette of four symbols was chosen, with two open and two closed shapes (see

Fig. 7.1) that had exhibited similar RT performance when paired together in the

numerosity task in the overplotting study in the previous chapter. Combinations of

square, triangle, fourline, and threeline were used, providing two same-feature pairs

and four different-feature pairs.

Stimuli were presented as black on a white background in regions measuring 700

x 700 pixels. Each shape was generated using a bounding circle with a radius of 6

pixels, producing stimuli subtending 0.3032 degrees of visual angle for participants

60cm away from the screen, within the bounds of symbol size for normal visual acuity

[77]. All displays contained 250 points, with a more numerous set of 150 and a less

numerous set of 100 symbols for each numerosity judgment. Stimulus displays were

generated using D3 and presented using Superlab 5.0 on an iMac computer with a

27” flat screen retina display.

To meet the goal of moving beyond synthetic distributions, data from the TRI

program was aggregated as described above and participants were asked to make

numerosity judgments in comparisons involving facilities from pairs of US States.

Each stimulus display contained a chart with data from two randomly selected states,

with the top 150 and 100 facilities respectively contributing the most to two of the

four usage metrics in that state, plotted on orthogonal axes using log scales (see Fig

7.2). Each facility was represented using a single mark, and the categorical encoding

for each location was selected from the four symbols in the palette. Charts were

reused with a few different combinations of symbols to produce a number of stimulus

displays with similar overlaps and spatial characteristics.
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(a) (b)

Figure 7.2: Sample stimulus displays from the TRI study. Symbols represent states,
and each point represents an individual facility from the Toxics Release Inventory
dataset [37]. Facilities are plotted based on their aggregate chemical usage: chemicals
released into the environment (x-axis) vs quantity recycled (y-axis). (a) The same-
feature pair of open symbols; (b) the same-feature pair of closed symbols.

A total of eighty stimulus displays were produced, with an even split of same-

feature and different-feature trials, an even number of trials with each shape as the

correct answer, and as close as possible to an even split of trials for each unique pair

of shapes. The display order of the stimuli was randomized for each participant.

7.2.3 Procedure

After reading and signing an informed consent document, participants were placed

60 cm from the computer screen in a well-lit room. Every participant completed all

the trials.

Each participant began with a description of the TRI data and the numerosity

task, then saw instructions for the key responses. Shapes were mapped to the ’d, f,

j, k’ keys, and each hand had one open and one closed symbol. Participants then
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completed eight practice trials, receiving feedback after each response to ensure they

were comfortable with the tasks and key mappings. After successfully completing the

practice trials, they responded to the eighty experimental trials.

Each trial contained two possible responses, and while participants were encouraged

to memorize the four key mappings, a visual reminder for the key/shape associations

was posted beneath the screen. Participants were instructed to respond to all trials

as accurately and quickly as possible.

Within each experimental trial, participants were first presented with a fixation

display for 500, 600, 700, 800, 900, or 1000 milliseconds, then the target display was

presented until either a keypress was made or 30 seconds elapsed.

7.3 Analysis

An average of 3.7% of trials were removed for each participant, and the largest trim

proportion was 7.5%. The ANOVAS for all sixteen participants tested for effects and

interactions of target (open, closed) and distractor feature (same, different).

7.3.1 Target and Distractor Features

7.3.1.1 Response Times

The speed with which participants could respond to the judgment tasks in this

experiment was significantly influenced by the feature of the target shape (F (1, 15) =

9.907, p = .007, η2 = .398) and the distractor shape (F (1, 15) = 19.230, p = .001, η2 =

.562). Displays with more numerous open targets (M = 5860, SD = 631) took partic-

ipants significantly longer than those with closed targets (M = 4980, SD = 497), and

displays in which the symbols shared open or closed features (M = 5918, SD = 613)



112

(a) (b)

Figure 7.3: (a) While the target by distractor interaction was not significant for RTs in
this study, main effects of both target feature (open vs closed) and distractor feature
(same vs different) exerted significant effects on participants’ response latency in this
numerosity judgment task. Displays with two open symbols took the longest, and
pairing a closed target with an open distractor produced the fastest responses. (b)
Error proportions received a similar influence of target and distractor feature. Error
bars show 95% confidence intervals.

required more time than displays with different features (M = 4922, SD = 506); see

figure 7.3. The interaction between target and distractor feature was not significant

(p = .875).

7.3.1.2 Errors

The error proportions across experimental conditions closely followed the effects

on RTs, with target feature (F (1, 15) = 5.819, p = .029, η2 = .280) and distractor

feature (F (1, 15) = 11.266, p = .004, η2 = .429) reaching significance and target *

distractor feature failing to do so (p = .439); see figure 7.3. In the same pattern as

with the response times, open targets (M = .207, SD = .019) induced significantly

more errors than closed targets (M = .155, SD = .019), and subjects made more

erroneous judgments with same-feature symbol pairs (M = .213, SD = .022) than
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with different-feature pairs (M = .148, SD = .013).

7.3.2 Shape Pairs

7.3.2.1 Response Times

Each combination of TRI states and facilities was used to generate multiple stim-

ulus displays with the same structure and distribution of data, differing only in the

pairs of symbols used as mark encodings. Unsurprisingly, different pairs of symbols

led to varying outcomes in RTs in this task (F (5, 75) = 7.941, p < .05, η2 = .346).

Pairwise differences among symbol pairs appear to be driven primarily by the diffi-

culty of the fourline/threeline pairing and the relative ease of the square/fourline and

triangle/threeline pairings, both of which differed significantly from fourline/threeline

in follow-up Bonferroni comparisons (see figure 7.4).

(a) (b)

Figure 7.4: A comparison of (a) response times (ms), and (b) error proportions for
each pair of symbols used in the TRI study. The fourline/threeline pair was the
slowest and most erroneous, adhering to the findings with respect to open symbols
and same-feature pairs. Square/fourline and triangle/threeline were the fastest and
least error-inducing conditions. Error bars show 95% confidence intervals, and *
indicates pairwise significance < .05.
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7.3.2.2 Error Proportions

Different symbol pairs produced significant differences in error rates in this experi-

ment (F (5, 75) = 3.138, p = .013, η2 = .173). As with the RT analysis, fourline/threeline

was the hardest, and square/fourline and triangle/threeline were the easiest, although

only fourline/threeline and triangle/threeline were significantly different from each

other in follow-up Bonferroni comparisons (see figure 7.4).

7.3.3 Inverse Efficiency Scores (IES)

Error rates were moderately high in this study, ranging from 11% to 23% in the

target and distractor analysis and 11% to 22% in the shape pair analysis. As discussed

in the previous chapter (6.2.4.1), measures combining RTs and error rates can be

analyzed if high participant errors reflect the conditions in the experimental task and

complicate the interpretation of the main RT measure. In order to have a cleaner

analysis of performance in this task, I produced IES for the shape pairs and the

target/distractor relationship using equations 6.1 and 6.2, and ran the same analyses

as in the previous sections.

7.3.3.1 Target and Distractor Features

IES were significantly influenced by the open or closed features of the target symbol

in the displays (F (1, 15) = 9.111, p = .009, η2 = .378). Distractor feature (F (1, 15) =

38.875, p < .05, η2 = .722) also imposed a strong significant effect on the combined

measure. Reflecting the trends seen in the RT analysis in this study and in previous

studies, open targets produced higher scores (M = 7486 ms, SD = 801 ms) than closed
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Figure 7.5: While the target by distractor interaction was not significant for IES,
it is clear that open targets had worse performance than closed targets, and same-
featured distractors produced worse scores than different-featured distractors in this
task. Error bars show 95% confidence intervals.

targets (M = 5927 ms, SD = 549 ms), and same-feature pairs (M = 7563 ms, SD =

697 ms) had higher scores than different-feature pairs (M = 5880 ms, SD = 605 ms);

see figure 7.5. As in the RT and error proportion analyses, no target by distractor

interaction rose to significance (p = .987).

7.3.3.2 Shape Pairs

Reanalyzing IES for pairs of symbols showed a significant influence on participant

performance (F (2.430, 36.454) = 8.588, p < .05, η2 = .364). Whereas differences

from the fourline/threeline pair seemed to drive significant pairwise differences in

the RT and error proportion analyses (only two pairs and one pair of symbols were

significantly different in these analyses, respectively; see figure 7.4), more pairs of

symbols were significantly different from each other in the IES analysis. Figure 7.6
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(a) (b)

Figure 7.6: (a) Differences among IES for pairs of symbols in this study. (b) Pairwise
significance between pairs of symbols. Error bars show 95% confidence intervals.

displays the differences among pairs of symbols, (a) as magnitudes and (b) with

significant differences among pairs.

7.3.4 Discussion

Effects of target closure and target-distractor feature relationships adhere to the

expectations based on results from all the previous investigations. Relative judgment

tasks with shape encodings are much faster and more accurate when symbols dif-

fer in boundary closure, and bounded (closed) shapes are easier to respond to than

unbounded ones. The preference for closed symbols was fairly stark in this experi-

ment; figure 7.3 shows how displays with two closed symbols took only marginally

longer than displays with different-featured symbol categories and more numerous

open items, and subjects had the easiest time overall with displays containing more

numerous closed targets and open-featured distractors. Reanalysis of targets and

distractors using inverse efficiency scores supported the same findings; see figure 7.5.

Results from the shape pair analysis provide mixed support for earlier findings.
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Previous experiments found bounded symbols to be faster than open symbols and

found a reliable separation between pairs of symbols sharing the open or closed fea-

ture category. Figure 7.4 demonstrates that the same-feature open pair was certainly

the hardest condition, however the same-feature closed pair actually performed com-

parably to two of the four different-feature pairs. The two easiest conditions in this

study across RTs and error proportions appear to be the square/plus and trian-

gle/threeline pairs, both of which were significantly faster than the hardest condition,

and the latter of which introduced significantly fewer errors. It is not clear why the

square/threeline and triangle/fourline performed as poorly as the easier same-feature

condition while the other two different-feature conditions were so much better.

Reanalysis of the shape pairs using IES revealed more significant pairwise differ-

ences. The square/fourline and triangle/threeline were still the easiest conditions,

and both differed significantly from both the same-feature pairs with this combined

measure. The other two different-feature pairs still did not perform better than same-

feature pairs: triangle/fourline was indeed significantly slower than the open-featured

fourline/threeline pair but was significantly longer than the different-featured trian-

gle/threeline pair, square/threeline was not significantly different from any of the

other pairs. These differences may be due to the displays themselves, as not every

data distribution was used for every single pair of symbols due to a need to balance

the number of same/different symbol pairs and the number of trials with each symbol

as the correct answer, and the overlap was not controlled in the same way as the

experiment in the previous chapter.

Overall, the use of the combined measure taking RT and error rates into account
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brought the results from this study into closer alignment with findings from previous

experiments. The two same-feature pairs produced significantly worse performance

than either two or three, respectively, of the four different-feature pairs.



CHAPTER 8: CONCLUSIONS

The world we inhabit is full of natural objects of various shapes and sizes, and

we must perceive, recognize, and categorize them in order to effectively navigate our

daily lives. Artificial symbols such as letters, numerals, and road signs are also used

to communicate more abstract information. Our visual system readily consumes

all this stimulus and rapidly derives meaning and context relevant for a variety of

tasks. Graphical perception and visual literacy have arisen to exploit these capacities,

allowing us to offload cognitive effort onto the automaticity and parallelization of our

visual processing systems when engaging with visual displays of complex data and

their relationships.

The sequence of experiments described and analyzed in this document encapsulate

a systematic approach to exploring a well-bounded subset of human graphical percep-

tion: perception of simple, two-dimensional shapes, and particular design decisions

related to using shapes as mark encodings in multi-class scatterplot displays. The

findings have direct applicability to certain visualization contexts and also provide

evidence of interesting relationships and asymmetries in visual perception more gen-

erally. The earlier chapters (chapters 2, 3, 4) detail experiments using lower-level

paradigms designed to assess perceptual and categorical similarities and differences

among shapes. Successive chapters explored the influence of shape categories on

higher-level ensemble judgments in visualization contexts (chapter 5), their suscep-
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tibility to overplotting effects due to distributional characteristics (chapter 6), and

applicability with a real-world dataset (chapter 7). The next sections include a gen-

eral discussion of the experimental findings across all the studies, connections to other

work in complementary areas, and a variety of ideas for future refinement of these

ideas and directions for new investigations.

8.1 General Discussion of Experimental Findings

Taken together, the results across all the studies found strong support for the cate-

gorical differences between closed (bounded, polygonal) shapes and open (unbounded)

shapes composed of line segments, and underscored the importance of these topo-

logical features when using simple, two-dimensional symbols as mark encodings in

multi-class visualization displays.

There is a preference for processing closed symbols. The Flanker (chapter 3) and

Same-Different (chapter 4) experiments both showed evidence that exemplars from

the bounded feature category were processed more quickly in basic perceptual tasks.

This result was robust in findings from both task paradigms, and the latter study

expanded the set of shapes used as stimuli to increase confidence that the results

were not tied specifically to the symbols in the Flanker study. Further evidence of

a perceptual preference for processing closed symbols was found for the easiest dif-

ficulty level in the linear trend task, and to an extent depending on the distractor

feature in the other tasks and difficulties, in the Visual Summary study (chapter 5),

in both the linear trend and numerosity tasks in the Overplotting study (chapter 6),

and in the Real-World Dataset study (chapter 7). Subjects responded more quickly
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and with fewer errors when closed symbols were more numerous or more linearly asso-

ciated, in some cases regardless of the distractor symbol and otherwise (particularly

in chapter 5) when the distractors were from the distinct open category. Overall,

these results suggest that closed boundaries of shape encodings serves to segment

them more readily, draw heightened attention to them, and facilitate more accurate

summary judgments, particularly when distractors differ categorically.

There is an interesting connection to research by Makovski [86], who provided em-

pirical evidence of an illusory size effect between symbols with and without bound-

aries. This effect biases perception of symbols toward overestimations of size with

open symbols. Perhaps the closedness of a symbol confers some processing advan-

tage related to preattentive scene segmentation or attentional allocation throughout

a display, in line with Chen’s findings with respect to topological features [26]. On

the other hand, maybe the the results obtained in these studies were driven in part

by the introduction of this illusory size effect.

Shapes don’t matter for separate displays. Results from the side-by-side visualiza-

tion displays in the Visual Summary and Overplotting studies indicated that there

was no difference in processing symbols, regardless of overlap among points or feature

category or bounding, when single shapes were used alone to encode a set of points.

It was only when different symbols were presented together as visual encodings in the

same displays that differences became evident in those tasks. In displays with multiple

shape encodings, the presence of distractor symbols from the same feature category

interfered more than distractors from different feature categories when participants

were focused on processing a given symbol, bolstering the categorical distinction be-
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tween these types of symbols. The popularity of side-by-side approaches is evident

from chart idioms such as scatterplot matrices, small multiples [126], and scagnostics

[132]; these types of displays are great choices for exploring a moderate number of

relationships among data, and comparisons can be made fairly rapidly by glancing

between elements in the display. The findings here suggest that shape encodings

would not meaningfully influence performance in those contexts.

Categorical differences are larger than differences within a category. The shape

pair analyses in the Visual Summary Task, Overplotting, and Real-World Data tasks

provided strong evidence for the categorical distinction between open and closed sym-

bols. Their results support the notion that it is more difficult to discriminate between

symbols within an open or closed feature category than between those categories. Al-

though differences in the relative complexity of symbols caused variations across all

pairs, the rank orders of performance highlighted the importance of categorical dif-

ferences for multi-class displays, as all different-featured pairs were more performant

than all same-featured pairs.

Shape pairs are also influenced by symbol complexity. For the individual pairwise

differences among symbols across the relative judgment tasks, difficulty was driven

by symbol complexity, such as the number of internal angles, and more numerous line

segments and endings. The hardest pair in both tasks in the Overplotting study was

sixline/fiveline, which paired the most complex symbols from the open feature cate-

gory together. Other pairs that led to poor performance included fourline/threeline,

circle/pentagon, and square/pentagon, each of which share features and have rela-

tively high complexity. This is not surprising, and indeed is predicted through other
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work on symbol discrimination in the literature. For example, similarity kernels

produced by Demiralp and colleagues [33] projected subjective measures of similar-

ity into rough categories separating circles, triangles of varying orientations, squares

and diamonds, and open symbols composed of line segments [33]. After reorder-

ing a palette of symbols for maximal perceptual distance, circle and fourline were

predicted as the first symbols to choose; data from my Overplotting study indeed

showed circle/fourline to be among the easiest pairs. However, it does appear that

individual pairwise similarity measures of symbols are not sufficient to predict their

visibility in ensemble displays supporting analytical judgment tasks, despite being

relatively scalable and robust first passes at the problem. For example, their MDS

projections suggest that circle and square are roughly half the perceptual distance

apart that circle and triangle are, and yet circle/triangle was harder in both tasks in

the Overplotting study. Furthermore, figure 6.14 shows how many pairs of symbols

were drastically different in the two tasks in that study. Much more work needs to

be done to understand and model the features contributing to the relative percep-

tual distances among plotting symbols, particularly in conjunction with redundant

encoding of visual variables such as size and color, which has been shown to influence

segmentation in visualization displays [90].

8.2 General Discussion of Methodological Considerations

In the experiment in the visual summary tasks chapter, shapes were inscribed from

a bounding square region, which potentially introduced a size effect since squares were

larger than all other symbols. In the overplotting study, shapes were created used a
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bounding circle region instead, following the symbol palette from Li et. al. [77]. The

types of symbols used as marks have radial symmetry, so the bounding circle region

may be more appropriate and grounded in the literature. Despite this modification,

bounding circle region may still not be sufficient to control for size effects, let alone

to create uniformity of luminance between shapes, especially if line widths are equal.

Makovski’s [86] findings regarding an illusory size effect for bounded shapes may also

have exacerbated the open vs closed distinction in the experiments reported so far.

I originally intended to measure overplotting based on a visibility index approach

similar to Urribarri and Castro’s work [125], but extending from square filled regions

to complex shapes raised more questions than answers. Following the visibility index

approach would require discretizing the display and counting the number of ’boxes’

(pixels or sub-regions of the display) containing part of more than one mark. It is

unlikely that such a granular sum would have the most predictive power for ensemble

perception of ensemble displays, not least because my experiments had already yielded

evidence that higher-level shape features (i.e. topological characteristics) subsumed

differences within a feature category in the basic perception studies described in earlier

chapters. Instead, the Overplotting study measured the proportion of symbols that

overlapped with other symbols in the display to generate different difficulty levels.

Although overlap was constrained to keep pairwise distances within a particular range

(i.e. between 25% and 75% of the maximum distance constituting overlap), and each

shape had a maximum number of shapes it could overlap with, the measure did not

much support nuance in the types of overall distributions or the different amounts

of clustering that could occur with real data. Measuring the number of symbols
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with overlaps was more appropriate for a rough characterization of clutter in the

Overplotting study, but I saved enough data about each stimulus display that I could

feasibly rebuild them and test more comprehensive metrics in the future. A significant

amount of work still needs to be done to understand and model shape, color, and size

channels, and their conjunctive interactions, so there is plenty of space for future

refinement in this area alone.

This raises another question I grappled with: how does one define overlap? Do

lines need to fully overlap, just touch, or simply have their bounding regions inter-

sect? Full overlap between any pairs of symbols produces new topological features

(new line crossings or ’holes’), and there is strong evidence that topological relation-

ships between objects are encoded categorically (and categorical differences are more

salient) [82]. Understanding and modeling topological differences en masse in ensem-

ble displays is likely only part of the picture, and I would have been putting the cart

before the horse to try and use that as a measure for the purpose of investigating open

and closed symbols in cluttered displays. Future work informed by mathematical or

perceptual models of symbols, both individually and within scenes, will shed light

on this area, not to mention the additional influence of color, task constraints, and

different statistical distributions of the underlying data.

It is worth highlighting the fact that differences in task performance changed some-

what in the studies that employed those tasks. Subjects in the Visual Summary tasks

(chapter 5) were significantly faster in responding to linear trend tasks than to nu-

merosity tasks, while this relationship was inverted in the Overplotting study (chapter

6), and the tasks in the latter experiment took longer overall. Numerosity tasks took
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just under half a second longer on average, while linear trend tasks doubled in time

taken in the Overplotting study. Both experiments presented 100 symbols in each

display, and the task instructions were effectively the same, so other methodological

choices must have contributed to the differences, such as the choice to use more real-

istic, overlapping data distributions, as well as a few differences in the symbol palette.

In this case, distractor symbols were randomly placed throughout the display in the

linear trend task in the Visual Summary experiments, while the distractors for the

same task in the Overplotting experiment were drawn from a normal distribution.

The lack of overlap in the Visual Summary experiments may have meant that the

linear target symbol was overrepresented in the center of the display and distrac-

tor symbol was more peripheral, potentially biasing subjects’ responses to that task,

adding to the large differences in performance described earlier. Although I made

efforts across all my studies to anticipate and mitigate the types of strategies sub-

jects might employ, and design stimuli to most parsimoniously address the research

questions at hand, it is always possible that additional sources of variance crept in.

When comparing the Overplotting study and Real-World Dataset study, a few

methodological differences were introduced. The chart region was larger and each

symbol was smaller in the latter study in order to test larger data quantities while

taking up proportional screen space. As discussed in the section on stimulus materials

in chapter 7, the symbol palette was also halved to reduce the cognitive load on the

participants, and the displays were not controlled for any measure of overlap. In

both of these experiments, I used the exact same sets of points as the foundation for

multiple stimulus items with different shape encodings in order to decouple the shape
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pair results from the underlying data distributions.

One point of potential interest is the similarity of the structure and orientations

of the lines comprising the pairs of symbols in the two easiest conditions in the

Real-World Dataset study (square/fourline and triangle/threeline; fig 7.4). The open

symbols (fourline, threeline) look rather like the topological shape skeletons [42, 5] of

their respective closed symbol pairing (square, triangle), and the lines are either all

oriented vertically and horizontally for the square/fourline pair or mostly angled at

similar orientations for two of the three arms of the threeline and triangle symbols.

I would have guessed that both factors would make the symbols more confusable

for each other, and therefore make those two conditions more difficult than other

different-feature pairs as a result. Indeed, when considering the ensemble coding

of basic image features in early visual areas, large enough differences in orientation

of perceived lines and boundaries should pop out ’preattentively,’ and yet the more

similar different-feature pairs were the best combinations in this study. It remains

unclear why these results arose, although they do not meaningfully alter the overall

findings with respect to the categorical differences among open and closed shapes.

8.3 Future Work

There are a number of research directions to follow and edge cases to probe beyond

the scope of this work. For example, what is it about closed symbols that causes

them to be segmented and summarized more rapidly than open symbols? How well

can new measures of symbol similarity covary with performance in ensemble displays,

and how can this be joined with new taxonomies of tasks in visualization displays?
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How can shapes be employed as encodings in other multivariate contexts, perhaps

representing ordinal data, and how do redundant encodings with color, size, opacity,

and motion build upon or reshape these findings?

Work still needs to be done to understand relative size perception among different

types of shapes. The studies in this document relied on bounding square and bounding

circular regions, as did the noteworthy experiments in the literature [125, 76]. New

methods for generating different shapes in such a way that luminance and size are

controlled may be required. One approach is to display pairs of shapes, perhaps in

busy displays with other shape or color distractors, and ask participants to adjust

sliders controlling dominant shape features (stroke width of lines, bounding region,

etc.) until they look identical at different levels of gaussian filtering. Validating results

from such an experiment could use a same-different task, compute just-noticeable-

differences, and construct psychometric functions to model the influence of stroke

width and bounding region on perceptibility. Such an approach could hone in on

uniformity among symbols, and could provide an opportunity to refine subjective

or modeled similarity metrics for existing or arbitrary symbols, and extend work on

adjusting sizes to minimize overplotting effects.

It would be valuable to have a meta-analysis combining the basic analytics tasks

and their sub-tasks from taxonomies, either specifically for scatterplots [104] or more

generally [108, 21, 17, 107, 103], with experimental studies that have employed them

to see if any trend arises in RTs, PCs, or combined measures, or whether gaps exist

that could be explored. Work by Saket and colleagues [103] is particularly relevant,

as they analyzed the types of basic visual analysis tasks tasks best supported by
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a variety of standard visualization approaches. The relative judgments used in my

studies are only a small sampling of the types of tasks that are useful to consider,

and asymmetries are likely to arise in a variety of contexts I did not consider directly.

Another avenue for future work would be to investigate whether certain shapes

or types of symbols are more susceptible to over- or underestimation in busy visual

displays. The numerosity task gave some data on how quickly and accurately subjects

could determine the larger set of symbols, but the relative judgment and the fixed

delta and set sizes did not provide the opportunity to explore this question.

One useful direction will be to continue examining the parsimony of the open/closed

construct. It is possible that the results we obtained are not tied to specific shapes

or combinations of primitive features, but rather luminance and size effects for the

stimuli used in our tasks. Smart and Szafir [110] found asymmetric influence of shape

on size and color perception which differed based on symbol features, Li et. al. found

size effects to dominate shape differences in symbol discrimination [76, 77], Bergen and

Adelson [8] suggested that relative texture-element size has high explanatory power

over low-level features like line endings and crossings, and Chen [26] has argued a

compelling case for more intermediate perceptual organization (instead of focusing

on lowest-level features). We attempted to control for these types of effects when

designing our stimulus materials by constraining the bounding region of each shape

and testing the selections in short pilot studies, but the base-level similarity among

symbols and the mapping of these features into visualization contexts is by no means

a solved problem.

A discussion of symbol and shape differences considering topological differences
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may also yield fruit, perhaps in tandem with investigations of other models of shape

or symbol and their relative similarity. Lovett and Franconeri [82] studied changes

in categorical relationships among shapes (overlap, above, etc) and found that these

differences were more noticeable than equal metric distance changes that did not

alter categorical relationships. This may have implications for the outcomes we ob-

tained from our Overplotting and Real-World Dataset studies, where the influence of

overlapping points in analysis contexts was explored. Topological characteristics of

shapes and topological relationships among those shapes likely influence the relative

discriminability of regions in cluttered displays, biasing perception of numerosity or

clustering, or drawing saccadic eye movements under brief viewing conditions. Fu-

ture studies could focus specifically on whether variations in emergent topological

relationships covary significantly with performance in visualization tasks. Addition-

ally, computational vision models predicting fixations and saccadic eye movements

based on low- and intermediate-level features in data displays should be explored, ei-

ther in order to refine those models with task-relevant information or to help explain

human performance in those contexts [94].

Exploration of more general computational approaches to understanding human

shape perception could also inform future work on more basic shapes, and the influ-

ence of those shapes in visual analysis contexts. The current state-of-the-art models

of biological shape perception involve medial axis skeletons, and it is noteworthy that

the open and closed symbols considered in the experiments described in this docu-

ment look like basic shapes and their own topological skeletons [42, 40]. Future work

is required to understand whether mathematical models of symbols can correlate with



131

or predict their similarity, and work in vision science can help illuminate the processes

underlying their perception.

In visualization design, the shape channel is most commonly used to represent

categorical variables; symbols are not drawn from a continuous shape space, nor

do we tend to perceive different shapes along such a continuum. Aside from some

consideration by Chung et. al. [27], who found that star-like shapes with varying

numbers of points were perceived as more orderable than polygonal shapes, very little

work has been done to explore shapes as encodings for other types of data. Future

studies could consider combinations of categorical and ordinal data, using closed and

open symbols respectively, and test participant performance in multivariate displays.

Shapes can also play a role in more complex visual environments than two-dimensional

charts. Encoding the relative positions and trajectories of multiple dynamic objects,

such as drones, planes, or people, either in two- or three-dimensional space, is likely to

differ in efficacy depending on the features and differences among the symbols used.

The results from my studies support the notion that closed symbols are more salient,

even in larger quantities, so it would be interesting to test whether fill, boundary

closure, and other topological characteristics follow similar patterns in visualization

of motion.
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Centre Français de la Couleur, 26(5):340–350, 2001.

[84] J. Mackinlay. Automating the design of graphical presentations of relational
information. Acm Transactions On Graphics (Tog), 5(2):110–141, 1986.

[85] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation
for visual analysis. IEEE transactions on visualization and computer graphics,
13(6):1137–1144, 2007.

[86] T. Makovski. The open-object illusion: size perception is greatly influenced by
object boundaries. Attention, Perception, & Psychophysics, 79(5):1282–1289,
2017.

[87] J. Matejka, F. Anderson, and G. Fitzmaurice. Dynamic opacity optimization
for scatter plots. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, pages 2707–2710. ACM, 2015.

[88] T. Munzner. Visualization Analysis and Design. CRC Press, 2014.

[89] A. Normand, F. Autin, and J.-C. Croizet. Evaluative pressure overcomes per-
ceptual load effects. Psychonomic bulletin & review, 22(3):737–742, 2015.

[90] C. Nothelfer, M. Gleicher, and S. Franconeri. Redundant encoding strengthens
segmentation and grouping in visual displays of data. Journal of Experimental
Psychology: Human Perception and Performance, 43(9):1667, 2017.

[91] L. T. Nowell. Graphical encoding for information visualization: using icon color,
shape, and size to convey nominal and quantitative data. PhD thesis, Virginia
Tech, 1997.

[92] D. Paoletti, M. D. Weaver, C. Braun, and W. van Zoest. Trading off stim-
ulus salience for identity: A cueing approach to disentangle visual selection
strategies. Vision research, 113:116–124, 2015.

[93] D. G. Pelli, C. W. Burns, B. Farell, and D. C. Moore-Page. Feature detection
and letter identification. Vision research, 46(28):4646–4674, 2006.

[94] R. J. Peters and L. Itti. Beyond bottom-up: Incorporating task-dependent influ-
ences into a computational model of spatial attention. In 2007 IEEE conference
on computer vision and pattern recognition, pages 1–8. IEEE, 2007.

[95] R. A. Rensink. On the prospects for a science of visualization. In Handbook of
human centric visualization, pages 147–175. Springer, 2014.



139

[96] R. A. Rensink. The nature of correlation perception in scatterplots. Psycho-
nomic bulletin & review, 24(3):776–797, 2017.

[97] R. A. Rensink and G. Baldridge. The perception of correlation in scatterplots. In
Computer Graphics Forum, volume 29, pages 1203–1210. Wiley Online Library,
2010.

[98] H. Reuss, A. Kiesel, and W. Kunde. Adjustments of response speed and accu-
racy to unconscious cues. Cognition, 134:57–62, 2015.

[99] B. E. Rogowitz and L. A. Treinish. Data visualization: the end of the rainbow.
IEEE spectrum, 35(12):52–59, 1998.

[100] R. Rosenholtz, J. Huang, A. Raj, B. J. Balas, and L. Ilie. A summary statistic
representation in peripheral vision explains visual search. Journal of vision,
12(4):14–14, 2012.

[101] R. Rosenholtz, Y. Li, and L. Nakano. Measuring visual clutter. Journal of
vision, 7(2):17–17, 2007.

[102] J. Ross and D. C. Burr. Vision senses number directly. Journal of Vision,
10(2):10–10, 2010.

[103] B. Saket, A. Endert, and C. Demiralp. Task-based effectiveness of basic visu-
alizations. IEEE transactions on visualization and computer graphics, 2018.

[104] A. Sarikaya and M. Gleicher. Scatterplots: Tasks, data, and designs. IEEE
transactions on visualization and computer graphics, 24(1):402–412, 2018.

[105] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-lite: A
grammar of interactive graphics. IEEE transactions on visualization and com-
puter graphics, 23(1):341–350, 2017.

[106] J. Schneidewind, M. Sips, and D. A. Keim. Pixnostics: Towards measuring the
value of visualization. In Visual Analytics Science And Technology, 2006 IEEE
Symposium On, pages 199–206. IEEE, 2006.

[107] H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann. A design space of visu-
alization tasks. IEEE Transactions on Visualization and Computer Graphics,
19(12):2366–2375, 2013.

[108] B. Shneiderman. The eyes have it: A task by data type taxonomy for informa-
tion visualizations. In The craft of information visualization, pages 364–371.
Elsevier, 2003.

[109] D. Skau and R. Kosara. Arcs, angles, or areas: Individual data encodings in
pie and donut charts. In Computer Graphics Forum, volume 35, pages 121–130.
Wiley Online Library, 2016.



140

[110] S. Smart and D. A. Szafir. Measuring the separability of shape, size, and color
in scatterplots. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems, page 669. ACM, 2019.

[111] S. S. Stevens. On the psychophysical law. Psychological review, 64(3):153, 1957.

[112] M. Stone, D. A. Szafir, and V. Setlur. An engineering model for color difference
as a function of size. In Color and Imaging Conference, volume 2014, pages
253–258. Society for Imaging Science and Technology, 2014.

[113] H. Strasburger, I. Rentschler, and M. Jüttner. Peripheral vision and pattern
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APPENDIX: OVERPLOTTING BIS ANALYSIS

A Speed Accuracy Tradeoffs

Speed accuracy tradeoffs (SATs) can arise when response times and error rates are

measured as dependent variables in a study. RTs and error rates can be affected

asymmetrically by the cognitive processes under investigation and based on each

subject’s interpretation and application of the instructions [78, 92, 130], and can vary

across trials or within specific conditions, wittingly or otherwise [48, 98], or due to

phenomenon such as post-error slowing [34]. SATs can confound or mask the effects

being studied, potentially leading to conflicting or spurious conclusions.

One approach for mitigating the effect of SATs in behavioral psychology experi-

ments is to combine response times and proportion of correct (PC) responses into

a new measure for analysis. Perhaps the most common approach is to divide the

mean trimmed correct RTs by the proportion correct in each condition, producing

Inverse Efficiency Scores (IES), as shown in the section on combined measures 6.2.4

in chapter 6 and the section on IES 7.3.3 in chapter 7. Liesefeld and Janczyk have

more recently proposed the Balanced Integration Score (BIS) as another method for

combining RTs and PCs data, and have shown that it is less susceptible to the types

of speed accuracy tradeoffs subjects can employ [78, 79].

Although there were no specific indications of SATs in the overplotting study,

I chose to run further analyses using BIS to explore the data and findings. This

decision was due in part to the RT and error proportion analyses, which found different

interactions with task and same- or different-feature pairs. Those differences are likely
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to be simply reflections of individual performances, but the procedure is nevertheless

instructive.

B Balanced Integration Scores (BIS)

I computed BIS for each subject and condition from the original shape pair data

using eq A.1 and explored the main effects and interactions, as with the IES values,

using repeated measures ANOVAs. First, I took a birds-eye view and examined all

shape pairs and tasks together, and found significant main effects of task (F (1, 25) =

13.287, p = .001, η2 = .347) and shapePair (F (26, 650) = 22.810, p < .05, η2 = .477),

and a significant task * shapePair interaction (F (26, 650) = 2.528, p < .05, η2 = .092).

BISi,j = ZPCi,j
− ZR̄T i,j

with Zxi,j
=
xi,j − x̄
Sx

(A.1)

(For each participant i and condition j )

Because BIS is a standardized score computed over all observed mean RTs and

PCs, its range of values reflects relative performance compared to the average perfor-

mance. The previous examination of the effect of the two tasks in the Overplotting

study showed linear trend producing longer RTs or higher error proportions, and this

analysis comports with that effect by showing how the linear trend task produced

below-average performance (M = -.284, SD = .167) and the numerosity task pro-

duced above-average performance (M = .286, SD = .101) compared to the overall

average (see fig A.2).
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Figure A.1: Shape pairs rank ordered for BIS transformations. Same-feature pairs all
took longer than different-feature pairs. Lines are colored blue or red if they decreased
or increased in rank order, respectively. BIS are measured as standardized values (see
eq A.1).

Many of the symbol pairs differed significantly from each other in the overall analy-

sis. Ranking the shape pairs based on their BIS value produced a number of changes

in order, but none of the rank changes crossed the boundary between same- and

different-feature pairs; see figure A.1. I reanalyzed the BIS values separately for both

types feature pairs.

The analysis found a significant main effect of task (F (1, 25) = 7.582, p = .011, η2 =

.233) for different-featured pairs, but no significant main effect of differentPair (p =

.067) or task * differentPair interaction (p = .084). Keeping in mind that the different-

featured pairs were all easier than same-featured pairs, the linear trend task (M =

.268, SD = .157) was closer to the mean performance than the numerosity task (M

= .715, SD = .099) for this subset. Beyond the influence of task, the differences

among the different-featured pairs did not rise to significance, nor did they interact
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Figure A.2: BIS Task * ShapePair interaction across all symbol pairs. Each symbol
pair is ranked according to the mean BIS across both tasks, with poorer scores to
the left and better scores to the right. Keeping in mind that BIS reflect relative
performance compared to the average across all conditions, it can clearly be seen that
the linear trend task induced below-average performance and the numerosity task
induced above-average performance across the majority of symbol pairs. In addition,
it is noteworthy that the 12 left-most pairs are all same-feature pairs, and the 15
right-most pairs are all different-feature pairs.
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meaningfully with task.

Figure A.3: Significant differences among same-feature shape pairs in the Overplot-
ting study (chapter 6) compared between (a) IES and (b) BIS. P values < .05 from
pairwise Bonferroni comparisons are shown.

For the same-feature pairs, both main effects of task (F (1, 25) = 16.865, p <

.05, η2 = .403) and samePair (F (7.142, 178.541) = 9.22, p < .05, η2 = .269) reached

significance, as did their interaction (F (11, 275) = 3.057, p = .001, η2 = .109). The

linear trend task (M = -.973, SD = .193) was much further from the average per-

formance than the numerosity task (M = -.250, SD = .120) for the same-featured

pairs; circle/triangle was the lone exception. Figure A.2 shows the task * shapePair

interaction, with the 12 left-most (i.e. worst performing) pairs including all 12 same-

feature pairs. Within the same-feature pairs, many pairs differed significantly from

each other; figure A.3 shows the significant pairwise differences.
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APPENDIX: SAMPLE STIMULUS MATERIALS

Figure B.1: Stimulus Materials: color cue displays for the liminal perception study
(Chapter 2). While not an exhaustive array of stimulus displays, figures are sampled
from all experimental conditions. Figures are trimmed to show the important feature
differences among conditions.
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Figure B.2: Stimulus Materials: target displays for the liminal perception study
(Chapter 2). Figures are sampled from all experimental conditions. Figures are
trimmed to show the important feature differences among conditions.
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Figure B.3: Stimulus Materials: stimulus displays from the Square/Triangle block of
the Flanker study (Chapter 3). Figures are sampled from each experimental condition:
load [low (top), high (bottom)], flanker compatibility [compatible (left), incompat-
ible (middle), neutral (right)]. Figures are trimmed to show the important feature
differences among conditions.

Figure B.4: Stimulus Materials: stimulus displays from the Asterisk/Triangle block
of the Flanker study (Chapter 3). Figures are sampled from each experimental con-
dition: load [low (top), high (bottom)], flanker compatibility [compatible (left), in-
compatible (middle), neutral (right)]. Figures are trimmed to show the important
feature differences among conditions.
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Figure B.5: Stimulus Materials: All target displays for the same-shape conditions in
the same-different study (Chapter 4). Figures are trimmed to show the important
feature differences.
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Figure B.6: Stimulus Materials: A subset of target displays for the different-shape,
same-feature condition in the same-different study (Chapter 4). Figures are trimmed
to show the important feature differences.
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Figure B.7: Stimulus Materials: A subset of target displays for the different-shape,
different-feature condition in the same-different study (Chapter 4). Figures are
trimmed to show the important feature differences.
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Figure B.8: Stimulus Materials: A subset of single-plot displays for same-feature
shapes in the average value judgment task from the scatterplot study (Chapter 5).
Columns left to right show easy, medium, and hard conditions.
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Figure B.9: Stimulus Materials: A subset of single-plot displays for different-feature
shapes in the average value judgment task from the scatterplot study (Chapter 5).
Columns left to right show easy, medium, hard conditions.
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Figure B.10: Stimulus Materials: A subset of single-plot displays for same-feature
shapes in the numerosity judgment task from the scatterplot study (Chapter 5).
Columns left to right show easy, medium, and hard conditions.
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Figure B.11: Stimulus Materials: A subset of single-plot displays for different-feature
shapes in the numerosity judgment task from the scatterplot study (Chapter 5).
Columns left to right show easy, medium, hard conditions.
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Figure B.12: Stimulus Materials: A subset of single-plot displays for same-feature
shapes in the linear trend judgment task from the scatterplot study (Chapter 5).
Columns left to right show easy, medium, and hard conditions.
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Figure B.13: Stimulus Materials: A subset of single-plot displays for different-feature
shapes in the linear trend judgment task from the scatterplot study (Chapter 5).
Columns left to right show easy, medium, hard conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure B.14: Stimulus Materials: A subset of medium-difficulty separate-plot displays
from the average value task from the scatterplot study (Chapter 5).
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(a) (b)

(c) (d)

(e) (f)

Figure B.15: Stimulus Materials: A subset of medium-difficulty separate-plot displays
from the numerosity task from the scatterplot study (Chapter 5).
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(a) (b)

(c) (d)

(e) (f)

Figure B.16: Stimulus Materials: A subset of medium-difficulty separate-plot displays
from the linear trend judgment task from the scatterplot study (Chapter 5).
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(c) (d)

(e) (f)

(g) (h)

Figure B.17: Stimulus Materials: A subset of separate-plot displays from the linear
trend judgment task from the overplotting study (Chapter 6). Stimulus displays
contained pairs of adjacent charts; a-d contain closed symbols, and e-h contain open
symbols.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure B.18: Stimulus Materials: A subset of separate-plot displays from the nu-
merosity judgment task from the overplotting study (Chapter 6). Stimulus displays
contained pairs of adjacent charts; a-d contain closed symbols, and e-h contain open
symbols.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure B.19: Stimulus Materials: A subset of single-plot displays from the linear
trend judgment task from the overplotting study (Chapter 6). a-d are same-feature
pairs, e-h are different-feature pairs.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure B.20: Stimulus Materials: A subset of single-plot displays from the numerosity
judgment task from the overplotting study (Chapter 6). a-d are same-feature pairs,
e-h are different-feature pairs.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure B.21: Stimulus Materials: A subset of single-plot displays from the numerosity
judgment task from the real-world dataset study (Chapter 7). a-d are same-feature
pairs, e-h are different-feature pairs.
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