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ABSTRACT 

 

 

ARINDRAJIT SEAL. Implementation of a Distributed Middleware Framework to span the 

Edge - Fog - Cloud tiers of a Mobile Distributed Computing IoE Platform requiring real-

time and near-real-time response. (Under the direction of DR. ARINDAM MUKHERJEE).  

 

 

This report motivates the roles of Cloud computing, Edge computing, and the 

hierarchically distributed cooperative Fog computing, for the real-time analysis of              

big-data in Internets-of-Everything (IoEs).  IoEs are enhanced Internets of Things (IoTs) 

which integrate people, process, data and heterogeneous “Things”: compute, storage, 

and sensor/actuator hardware. The ubiquitousness of IoE devices, the ever-increasing 

amount of big-data in IoEs, and the need for real-time computing in IoEs have motivated 

the problem of distributed data storage and analysis. With trillions (big-data scale) of IoE 

devices on the verge of being deployed in tomorrow’s ever-connected and autonomous 

society, and with the expected big-data generated by each such IoE device (typically 

image data of the order of tens and hundreds of gigabytes per day), we are rapidly 

approaching Big-Squared data dimensions. The power consumption of traditional cloud 

data centers are already about 70% of all power generated, and it will  increase 

exponentially if Cloud computing is the only solution for tomorrow’s IoEs. Moreover, the 

Big-Squared-Data from merging IoEs will create network and compute level bottlenecks 

that will be impractical from a real-time standpoint, especially in case of rapid mobility in 

IoEs. Hence, the need for distributed hierarchical Fog computing and associated data 

management. I survey key features of emerging IoEs, the existing big-data computing 

and storage frameworks, and point out their capabilities and deficiencies. I discuss the 

design and implementation of my Fog computing architecture. I present my work in 

Accident Identification and Related Congestion Control. The results show that having a 
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Fog Computing Layer helps in cutting down data bandwidth to the cloud and reduces 

total latency by approximately 80%. Finally, I have shown that the integration of Apache 

Kafka, Apache Cassandra and Spark Streaming in a Fog Computing Architecture has a 

greater impact on the problem at hand and it is successful in solving both the issues of 

real-time and near-real-time responses along with containing the Big-Squared-Data to 

just big-data and conserving the data bandwidth.  
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CHAPTER 1: INTRODUCTION 

 

 

Cloud technology is generally based on data centers, which handle data storage 

and analysis. It’s more like a client server paradigm where the server, residing inside the 

cloud, does all the work and returns the result to the devices or clients. With the ever-

increasing number and bandwidth requirements of devices that are connected to the 

internet however, cloud is not able to handle the big-data in real-time, or even with 

acceptable delays. In 2012, global commercialization of Internets-of-EveryThing (IoEs) 

based systems created a profit of $4.8 trillion [1], with CISCO estimating a 21% increase 

of profits for the IoE sector [2]. However, the current infrastructure for IoE computing in 

the big-squared data space is inadequate – an IoE with billions of autonomous vehicles 

that operate in a rapid mobile environment, while sensing and processing data at rates 

of 10 Gb/day to 100Gb/day in realtime (low latency) with high Quality of Service (QoS), 

presents an ideal benchmark for my proposed framework. Fog Computing is taken into 

consideration when we try to elevate the standard of performances of IoE devices that 

are mobile. By performance we mainly indulge ourselves in realtime output. [3] shows 

that this term - coined by CISCO, is basically intelligence imparted on edge devices and 

also other devices in the hierarchy mainly for producing real-time output and reducing 

latency.  Fog Computing is a natural ally of Cloud Computing as is aforementioned 

already but the essentiality of Fog Computing is realized when we talk about latency 

resilience and real-time data generated from these network edge devices. 

 

1.1 Motivation 

 

 

The main storage of cloud computing are the data centers all around the globe. 

They communicate among themselves. Presently, every day to day activity is reliant on 

the cloud so eventually the data centers are running constantly. [4] references the 
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mathematical model for Cloud Analysis by Zhang et. al. With the increase in IoE devices, 

traditional cloud computing will be facing the following challenges:- (i) The International 

Data Corporation (IDC) foretells that the global market for IoE will grow from $1.9 trillion 

(2013) to $7.1 trillion (2020) [5]. (ii) The US Environmental Protection Agency(EPA) 

stated that the data centers of the United States consumed a total power of 61 billion 

kWh whose expenditure was around $4.5 billion. In 2007, it was seen that 30 million 

servers worldwide spent 100 TWh of the world’s energy [6] & [7]. (iii) Currently the 

planet’s energy consumption is around 1500 TWh [8]. By traffic controlling , the relative 

up-time of the data centers can be reduced which will help in reduction in the overall 

power consumption. The essentiality of Fog/Edge Computing comes into the picture 

when we talk about real-time and near-real-time responses. Computation, if done on or 

very close to the devices from where data gets generated, will reduce the data load over 

the cloud. By being able to reduce the data bandwidth to the cloud we are in a way able 

to reduce the total up-time of the cloud and hence we are able to reduce the energy 

consumption. By having a Fog based architecture we are able to decentralize the 

computation and storage which previously was centralized in the case of only a cloud. 

Furthermore, if the Fog Computing instances were equipped with a cluster computing 

framework, the same ones that are used in a cloud, we will be able to further distribute 

the data that will give rise to even further parallel processing and real-time outputs. So in 

conclusion we need a distributed middleware framework over the three tiers of 

computation Edge-Fog-Cloud that will be helping in the Big-Squared-Data Engineering 

due to the rapid increase in IoT/IoE devices.  

 

1.2 Contribution 

 

 

The main contributions of this research are listed below:- (i) This work motivates 
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the need for Fog computing as a computing and big-data storage infrastructure, that is 

physically closer to the millions of points of data generation and actuation in an IoE. The 

presence of Fog Computing is expected to enable Real-Time computing for IoEs, by 

load balancing with existing Cloud computing infrastructure and reducing network 

bandwidth requirements. (ii) I survey key features of emerging IoEs, the existing big data 

computing and storage frameworks, and point out their capabilities and deficiencies. (iii) 

Finally, I discuss the design and implementation of my Fog computing architecture. 

 

1.3 Progression  

 

 

The following sections have been assigned according to the order of progression 

of the research. Chapter 2 deals with a literature survey of the previous works that have 

been done in IoT frameworks. Chapter 3 shows us the existing Big Data Frameworks 

and categorizes them into either Batch or Stream Processing frameworks. In chapter 4 I 

talk about the Fog Computing Layer and present my Fog Computing Architecture as the 

2nd Tier in the three tiered architecture of Edge, Fog and Cloud. In chapter 5 I talk about 

using my Fog Architecture performing accident prediction by various deep-learning 

models namely YOLOv3 and Tiny YOLOv3 over images and related congestion aware 

navigation based on the results of the image object detection, in near real-time. Chapter 

6 talks about the same framework this time only on the Cloud over an Amazon EMR 

cluster running Apache Spark. Chapter 7 talks about the Ongoing Research and things 

that are needed to be done before the final defense.     
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CHAPTER 2: RELATED WORK 

 

 

2.1 Internet of Things 

 

 

Presently, IoE comprises of devices that are connected to the Internet enabling 

machine-machine (M2M) communication[9],[10],[11]. Thus when we talk about IoT/IoE 

frameworks we focus on data storage, computation and managing the data[12]. Devices 

relying heavily on the internet are gradually converging towards IoT/IoE[13]. CISCO has 

estimated that by 2020 around 50 million devices will be connected to the Internet[14]. 

Thus a surplus of applications needs to be processed from the domain of IoTs/IoEs. The 

data generated will be of high magnitude with a very rapid velocity. The Big-Data 

generated from these devices are anticipated to be serviced in real-time[16]-[18] 

enabling a reduction in the overall latency. Therefore, the performance of IoTs/IoEs 

should be heavily dependent on cloud[19]-[22], and how well the cloud can service a 

rainbow of applications requiring services in real-time[12],[23].  

 

2.2 Cloud Computing  

 

 

Formerly, a number of quality researches have provided the way the processes 

are delegated in the cloud[24]-[27]. In [28] , Xiao et. al. proposed a work which would 

focus on optimal positioning of data centers for better QoS in terms of latency and cost 

efficiency. Tziritas et al. [30] stated migration of processes to better improve the 

performance of cloud systems. By using job scheduling techniques, Chandio et. al. tried 

to improve QoS by comparing jobs[31]. Several other scheduling algorithms be it for 

real-time workload[32] or for energy-efficient scheduling[33] have been proposed on a 

small-scale . With the increase in IoE devices at an alarming rate, the data centers 

would be insufficient in handling all of the requests from all these devices. There would 
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be denial of services in the worst case or a high latency in servicing . [34] - [37] states 

that as we are gradually moving towards technology, we are harming nature, thus 

making it mandatory to maintain the eco-friendliness of our surroundings.  

 

2.3 Fog Computing 

 

 

CISCO coined the term Fog Computing, a revolutionary idea which mitigates the 

limitations of cloud computing [3], [38]. It is a distributed computing infrastructure which 

is able to handle a lot of internet connected devices. Bonomi et al. [38] showed us the 

importance of Fog - Cloud interplay. [39] shows the characteristics of the architecture in 

terms of location, geographical distribution, latency . Hong et al. [40] created a 

programming model for Fog infrastructure addressing issues like geographical 

distribution, real-time applications. The importance of Fog was pointed out by Yannuzzi 

et al. [41] and Preden et al. [42] but only at a top-level. [43] considered various 

computing models including cloud and worked out the essentiality of building up a Fog 

Computing Platform. Do et al. [44], Aazam and Huh [45],[46] have worked on various 

problems in resource allocation in Fog. Few researchers have also worked on security 

angles in Fog Computing of late [47] - [49].  

 

2.4 Key Features of Emerging IoEs 

 

 

IoE has revolutionized today’s smart societies by facilitating machine-to-machine 

(M2M) communications. Whereas IoT focuses on the integration of “Things” or 

heterogeneous smart devices, IoE (Internet of EveryThing) - a termed coined by CISCO 

- focuses on the integration of 4 primary tuples, namely People, Process, Data and 

“Things”. Some of the key features of emerging IoEs are listed below.  
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2.4.1 Rapid Mobility 

 

 

Mobile IoE edge devices traverse large geographical distances within short time 

intervals. A way to interface these devices with the ubiquitous compute and storage 

access is Mobile Cloud Computing (MCC) [51] in which edge devices communicate 

directly with the cloud using wireless networks. However, there are strong drawbacks 

such as (1) long compute latency due to network delays and cloud congestion, (2) very 

high network bandwidth requirement, and (3) low availability of the cloud instance due to 

signal attenuation.  

 

 

 

FIGURE 1: MOBILE CLOUD COMPUTING(MCC). THE UPWARD ARROWS INDICATE 

DATA REQUESTS, UPLOADS AND DOWNWARD ARROWS SIGNIFY COMMANDS 

OR DOWNLOADS. 

 

 

Alternatively, Heterogeneous Networks (HetNets) [51] can be used to offer 

wireless coverage in an area with a variety in wireless coverage zones, ranging from an 

outdoor environment to indoor office buildings, homes, and underground areas. Such a 

HetNet would typically be a Wide Area Network with macrocells, picocells, and/or 

femtocells with complex handshaking between the cells to provide coverage, with 

handoff capability between network elements as shown in Figure 1. HetNets are defined 
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by Small Cell Forum as a multi-x environment where x denotes technology, domain, 

spectrum, operator, vendor’. Although a HetNet improves access to the cloud, it does 

not minimize the network congestion and subsequent latency of service. 

The combination of MCC and HetNet is not able to deal with rapid mobility since 

macro cells are designed to provide signal coverage to larger areas and hence avoid 

frequent handovers. The drawback lies in the low data rates and high signal instability 

since macro cells generally contain a surplus of mobile nodes in them which ensures 

that each device inside the macrocell is bandwidth constrained and they get a low data 

rate. Pico and femto cells, on the other hand, provide much higher data rates and signal 

stability since these cells generally contain a lesser number of mobile devices, but their 

coverage is restricted to a few hundred meters, thus they are not conceived for serving 

applications under fast mobility. 

Yannuzzi et.al [52] conducted experiments considering three different mobility 

scenarios: (i) Mobile Node Handover, (ii) Process Migration using 

CRIU(Checkpoint/Restore in Userspace) - a software tool in linux operating system for 

freezing a running application and checkpointing it, and (iii) Process Migration oriented 

Mobile Node Handovers - Mobile devices changing access points for a handover 

towards endpoints. The second case deals with interdomain process migration. In the 

last situation both the endpoint and the process move together in a completely real-time 

system. The figure below shows the nature of the service disruptions in three different 

cases.  
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FIGURE 2: DISRUPTIONS IN SERVICES DUE TO: (A) MOBILE NODE HANDOVER; 

(B) PROCESS MIGRATION (CRIU); (C) MOBILE NODE HANDOVER WITH PROCESS 

MIGRATION [52]. 

 

 

2.4.2 Seamless Integration of Diverse Nodes and Hardwares  

 

 

Any device that can connect itself to the internet today and communicate 

valuable data is a part of the IoE. For this specific reason the importance of sensory data 

is of valuable importance in the field of energy management, waste management, traffic 

control, smart transportation, healthcare systems, smart agriculture and smart 

greenhouse gas monitoring, just to name a few.  

[55] discusses various IoT protocols offered by IEEE,IETF and ITU to enable 

various new devices to join in this virtually real world of IoEs . This paper also includes a 

discussion on management and security protocols. Kazmi et. al. [54] discusses the 

modelling of heterogeneous IoE data streams in order to overcome the challenge of 

heterogeneity. Thus to orchestrate the varied number of jobs based on priority coming in 

from various heterogeneous edge devices, to establish protocol neutrality(different edge 

devices communicate by different communication protocols), we need a middleware. 

Along with the diverse hardwares that take part in the data transportation, storage and 

analysis, there may also be heterogeneity in the application processes. The middleware 
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must be smart enough to arbitrate between billions to devices that are connected. 

 

2.4.3 Structured and Unstructured data  

 

 

Structured data usually refers to the data in a RDBMS(Relational Database 

Management System), it consists of data fitted into rows and columns with every row 

identifying a particular entity with various characteristics. We generally use 

SQL(Structured Query Language) in dealing with structured data. Unstructured data 

refers to the rest of the data which include videos, images, sensor data, text files, chat 

data, mobile phone data in general. We use NoSQL(non SQL) in case of unstructured 

data.   

Data produced by most IoE devices which operate on the network edge is 

unstructured data. Tingli LI et.al. in [56] talks about storage of unstructured data in IoT 

through a novel storage solution called IOTMDB based on NoSQL. It is also estimated 

that the magnitude of the data that is generated by the IoE in future will surpass even the 

scale of Big-Data .Present Big-Data frameworks on the cloud are not designed to handle 

such a massive scale of data. IoEs require real-time output with negligible latency and 

present Big-Data Frameworks do not take latency into consideration. 

 

2.4.4 Scalability and Connectivity  

 

 

[57] addresses the issue of connectivity and scalability in the Fog Computing 

Framework(to be discussed elaborately in section V) by easily integrating nodes into 

either cooperating mode or a task sharing mode. The approach uses a middleware 

platform for Distributed Cooperative Data Analytics (DCDA) in the fog premises.  
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2.4.5 Real-Time Computation  

 

 

The cloud is a physically distributed group of servers, but from a network point of 

view it is centralized. IoE requires real-time analysis in which case the cloud fails due to 

two major reasons: 1) high latency of service due to an increased Turn Around Time 

(TAT) 2) Low Bandwidth and Network Unavailability in regions with poor connectivity. 

Hazem En Raafat et.al. [58] extracted statistical features from sensor data from the IoEs 

to minimize latency and storage.  
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CHAPTER 3: BIG-DATA FRAMEWORKS  

 

 

Handling the volume, variety, and velocity of IoE big-data requires a new 

computing model with the following requirements: Reduce latency: In order to meet 

Real-Time constraints, data analysis has to be made closer to the edge device. 

Conserve network bandwidth and storage: IoE data will eventually congest any network 

unless hierarchical computation and data volume reduction is done between the data 

producers and data analyzers. Address security concerns: The data generated from IoE 

devices should be secured from source to the destination. Operate reliably: Any 

framework for big-data analysis must have high availability and reliability. In the following 

subsections I survey the existing frameworks for big-data analysis and storage, and 

point out their advantages and deficiencies.  

 

3.1 Big-Data Analysis Frameworks 

 

 

3.1.1 Batch Processing Frameworks 

 

 

Apache Hadoop is a batch processing framework. Hadoop was the first big-data 

framework to gain significant recognition in the open-source community. Based on a lot 

of facts and reports by Google about how they were dealing with a surplus amount of 

data at the time, Hadoop tailored the algorithms and made abstraction framework to 

make large scale batch processing feasible. Present versions of Hadoop comprises of 

many components or layers, that work together on batch data. 

HDFS: HDFS, which stands for Hadoop Distributed File System, is the distributed 

file system for storage on hadoop cluster nodes using a replication factor. HDFS ensures 

that the entire hadoop framework is fault-tolerant.  
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YARN: YARN, which stands for Yet Another Resource Negotiator, is the 

coordinator in the Hadoop stack which maintains the cluster. It is a job scheduler and a 

coordinator for the underlying resources. YARN made it possible for a wide variety of 

workloads to be run on the cluster, than was possible in earlier versions, by acting as an 

interface to the cluster resources.  

MapReduce: MapReduce is Hadoop's engine for batch processing of jobs.  

Although Hadoop has some clear advantages in terms of scalability (storing and 

distributing large datasets across hundreds of inexpensive servers), fault-tolerance(data 

gets replicated within the cluster of nodes), flexibility(used for a wide range of purposes 

including fraud-detection, data warehousing, recommendation systems, log processing, 

market campaign analysis), it lags behind in some key areas which became evident after 

the advent of IoTs followed by the current IoEs.  

The shortcomings of Hadoop includes security(missing encryption at the storage and 

network levels),vulnerability(the entire framework is written in Java- a widely used but 

controversial language since it is heavily exploited by cybercriminals), latency(the 

system was not designed to administer results for real-time and near real-time data 

analysis).  

Apache Spark is a batch processing framework of the next generation that also 

does stream processing. Inspired by the MapReduce model of Hadoop, Spark can 

quicken up workloads in batch processing by donating a processing optimization and full 

in-memory computability.   

 Spark can act as an alternative to the MapReduce engine by hooking up with Hadoop.  

Limitations of Spark include no support for real-time processing(although it does support 

near real-time processing) , lack of a file management system, in-memory computation 

creates a bottleneck for cost-effective computation of big data.  
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3.1.2 Stream Processing Frameworks 

 

 

Apache Storm is a data stream processing framework that outputs results with 

extremely low latency and is suited for workloads which require near real-time and 

realtime analysis There are a lot of similarities that exist between Storm and Hadoop in 

terms of scalability and fault-tolerance. Storm is extensively used for near real-time and 

real-time analysis of IoE data. 

Apache Samza is a data stream processing framework that is bound to the 

Apache Kafka messaging system. Kafka may be used by many processing 

systems.Samza utilizes Kafka’s architecture providing fault tolerance and state 

storage.Samza uses YARN for resource allocation .  

Apache Flink is stream framework handling batch tasks. It treats batch 

processing as a subset of stream processing since it considers large datasets to have 

finite boundaries thus categorizing the workload automatically as batch. This stream 

approach unfortunately has side-effects. 

This stream-first approach has been named as the Kappa Architecture. The Lambda 

Architecture is batch-first architecture that occasionally uses streams to faster produce 

results.  

Although stream processing has solved the issue of real-time data analysis of 

IoEs to an extent, it has a major disadvantage since it only exists on the cloud. [5]-[7] 

mentions the exponential increase in the number of IoE devices by 2020 and warns us 

about the increasing power consumption by the data centers with implications of 

increased CO2 emissions. Computation bottleneck will hence result as an aftermath of 

network bottleneck [38].  
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3.2 Big-Data Storage Frameworks 

 

 3.2.1 SQL Databases 

 

 

It is possible to access Big-Data stored in the HDFS of Hadoop through SQL-on-

Hadoop. Apache Hive was the first SQL-on-Hadoop engine. Presently, many new 

engines have been released like Concurrent Lingual, Hadapt, InfiniDB, CitusDB, 

Cloudera Impala, JethroData, MammothDB, Pivotal HawQ, Progress DataDirect, 

ScleraDB, Apache Drill, MemSQL, Simba and Splice Machine. All of the aforementioned 

database engines work on SQL query.  

 

3.2.2 NoSQL Databases 

 

 

NoSQL is the new breed of the Database Management System (DBMS). These 

databases typically support horizontal scaling, do not fit their data into tabular form with 

rows and columns, have a structured storage and they also avoid JOINs . Some of the 

most widely used NoSQL database engines are MongoDB, Redis, CouchDB, RevenDB, 

MemcacheDB, Riak, Neo4j, HBASE, Perst, HyperGraphDB, Cassandra, Voldemort, 

Terrastore, NeoDatis, MyOODB, OrientDB, InfoGrid, Db4objects.  
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CHAPTER 4: FOG COMPUTING ARCHITECTURE 

 

 

In this Section I present the fog computing architecture and its details. It is 

important to mention that fog computing is a non-trivial extension of cloud computing and 

extends the services of cloud to the network edge. 

 

4.1 Assumptions  

 

 

Fog paradigm is still in its early stage of research and is yet to shape up. I, 

therefore, draw few simple, yet realistic assumptions. • Edge devices, also termed here 

as Terminal Nodes(TNs), are able to share their geospatial location information through 

technologies such as GPS(Global Positioning System), GIS(Geographic Information 

System), or GNSS(Global Navigation Satellite System) so that services are provided to 

the TNs in real-time based on data analysis of its geospatial location. Specific geospatial 

perimeters inside which these TNs lie are known as Virtual Clusters(VCs), as shown in 

Figure. 3 and Figure. 4. • Fog Computing devices are “intelligent” based on their storage 

and computability [38], [40]. Apart from forwarding and routing, they are also in charge of 

decision making. These devices decide the suitability of the instance(either Cloud or 

Fog) which is best fitted to the running of an application. Every Fog Instance (FI), see 

Figure. 3 is in charge of a VC. • Fog Computing Devices support Rapid 

Mobility(travelling from one virtual cluster to the other) of the TNs through interfog 

instance communication.  

 

4.2 System Outline  

 

 

This subsection illustrates the distinct tiers of a generic fog computing 

architecture. As depicted in Figure. 3, it is essentially three tier architecture. The tiers are 
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discussed below. (a) Tier 1: This is the bottom-most tier of the architecture.This tier is 

also referred to as the ‘Edge Tier’, see Figure. 3. The tier comprises of several TNs. The 

TNs are smart, wireless sensor nodes that sense heterogeneous location specific 

parameters and transfer the same to the immediate upper tier. (b) Tier 2: The tier 2 or 

the middle layer is also known as the ‘Fog Tier’. Components of this tier are intelligent 

intermediate devices (such as routers, gateways, switches, and access points, PCs) that 

possess the ability of data storage, computation, routing, and packet forwarding. (c) Tier 

3: The uppermost tier is commonly known as the cloud computing tier. This tier 

comprises of servers and PCs.  

 

 

 

 

FIGURE 3: FOG COMPUTING ARCHITECTURE 

 

4.3 Architecture Details  

 

 

Virtual Clusters (VCs) are location based perimetres which consists of IoE 

devices that are being referred to as TNs. TNs constantly scan their environment and 

send the data to the Fog. The Fog Tier consists of devices that range from 

routers,gateways, access points, switches to PCs. A Fog Instance (FI) is in charge of its 

own VC. As proposed by Bonomi et al., [38] the fog computing architecture can be 
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classified into two sub-parts, viz., (a) the fog abstraction layer and (b) the fog 

orchestration layer. While the former manages the fog resources, enables virtualization, 

and preserves tenant privacy, the latter beholds the exclusive fog properties. The fog 

orchestration layer comprises of a small software agent – foglet which monitors the state 

of the devices, a distributed database to account for scalability and fault tolerance, and a 

service orchestration module which is responsible for policy-based routing of application 

requests.Within the FIs, the data are processed and analyzed to decide whether it needs 

to be transmitted to the cloud DCs.  

Application requests which require storage or historical data based analytics are 

redirected to the cloud, else, the data are processed within the fog units. The fog devices 

possess limited semi-permanent storage that allow temporary data storage and serve 

the latency-sensitive applications in real-time. The cloud computing tier is commonly 

responsible for permanent storage of huge, voluminous data chunks within its powerful 

DCs. The DCs are equipped with massive computational ability. However, unlike 

conventional cloud architecture, the core cloud DCs are not bombarded for every single 

query. Fog computing enables the cloud tier to be accessed and utilized in an efficient 

and controlled manner. 
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FIGURE 4: NETWORKING LINKS AND COMPONENTS OF FOG COMPUTING [53] 

 

4.4  My Implementation of Fog 

 

 

(i) Edge Nodes: In this work I have used both Raspberry Pi 3 (RPi3) and Google 

Pixel 2 (Walleye) as my edge nodes or TNs. The RPi has specifications of 1.2 GHz 

CPU, Armv8 4 cores architecture, Broadcom Video IV GPU, 1GB LPDDR2 RAM, 10/100 

Ethernet, 2.4GHz 802.11n wireless and a microSD storage with Raspbian OS. Pixel 2 

has a system specification of 1.9 - 2.45 GHz CPU, AARCH64 8 cores architecture, Wi-Fi 

2.4G + 5GHz 802.11 a/b/g/n/ac, 4 GB RAM , 52.2 GB Internal Storage with Android 8.0 

“Oreo” OS. 

(ii) Fog Instances : Intel NUCs play the role of Fog Instances or Servers having 

a system configuration of Intel ® core i7 - 7567U CPU @ 3.50 GHz with a 16 GB RAM 

DDR4 memory, 512 GB NVME SSD, Intel(R) Dual Band Wireless (802.11ac) and 

Bluetooth 4.2, Intel ® Gigabit LAN, Micro SD card slot .  

(iii) Cloud Instance: We have established UNCC’s biggest Hadoop-based 

research cloud with 39 nodes. The data center is currently available to researchers 

working with BigData, Mobile Clouds and Internets-of-Everything. In response to a 

proposal in 2016, Intel made an infrastructure donation of 39 Xeon based business class 
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computing/embedded servers to build a data center in the ECE department at UNCC, 

with the implied commitment to upgrade machines regularly in future under their 

“waterfall” program. The Cloud is connected to the Edge Gateways through Fog 

Gateways.  

Following are some key technical specs of the servers and the system: 1) There 

are currently 39 1U servers, each requiring 350W for computing. The processors are 

Xeon E3, or 2nd/3rd generation i3 based (about 100 GFLOPS per server node). 2) Each 

server node is equipped with a 10Gbps NIC card for communication. 3) Each server 

node has 3TB HDD 2.5in SATA 6Gb/s 7200RPM. The servers are connected by a 

switching system with the spec: 48-port 10GbE + 12-port 40/56GbE Non-blocking Open 

Ethernet ToR Switch System.  
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CHAPTER 5: BENCHMARK DATASET AND APPLICATION IN NEAR REAL-TIME 

ACCIDENT PREDICTION AND RELATED CONGESTION CONTROL  

 

 

This work focuses on developing (i) a benchmark application for Real-Time traffic 

incidence identification and related traffic management, using Real-Time congestion-

aware navigation of smart vehicles (Edge nodes) with video feeds, (ii) an image 

database for Deep Learning used for recognition and classification of traffic incidences 

such as accidents and congestions, (iii) the System Level Software (or Middleware) 

required for Distributed Computing in such a heterogeneous Real-Time constrained 

system with Rapid Mobility - today’s Internet-of-Everything (IoE), and (iv) a hardware 

prototype of the distributed computing and storage infrastructure. The video bandwidth 

requirement of 10-100 GigaBytes of data per minute per vehicular camera makes it a Big 

Data problem. With millions of smart vehicles projected to be deployed within the next 5 

years, BigData from a single vehicle, multiplied with the large number of vehicles, 

presents a Big-Squared-Data computing space which will easily overwhelm any Cloud 

infrastructure with its Real-Time or near Real-Time demands. Hence the need for a Fog 

tier between the Edge nodes and the Cloud to bring distributed computation (servers) 

and storage closer to the Edge nodes. Such a Fog consists of multiple Fog instances, 

each one of which services cells or Virtual Clusters of Edge nodes.  Results show that 

Fog-Cloud computing framework outperforms a Cloud-only platform by 79.7% reduction 

in total latency or response time. 

 

5.1 Deep learning and Modeling 

 

 

The objective of this analysis is to predict the kind of traffic incident (or accident) 

and the associated congestion along with it, from live video feed images from the smart 

vehicles, and re-route their paths based on the time  taken for the clearance. This image 
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analysis for traffic incidence and congestion prediction, and Deep Learning (training), are 

done continuously in Real-Time, along with congestion-aware re-routing. Fig. 5 shown 

below presents a block diagram of the underlying workflow of the deep learning and 

subsequent machine learning based model development.  

 

 

 

 

FIGURE 5:  DEEP LEARNING AND MODEL DEVELOPMENT 

 

In recent years, evolution of convolutional neural networks (CNN) have resulted 

in significant improvement in object detection and recognition. The original YOLOv3 [59], 

[60] has been trained on a Microsoft Common Objects in Context (COCO) dataset with 

80 different objects, most of which are unrelated to traffic. In this work I am using two 

CNN architectures to classify the data: YOLOv3.11 (for 11 classes related to traffic 

congestion) for traffic object identification and tiny YOLOv3.6 (for 6 classes related to 

traffic incidences).  

In Fig.6, YOLOv3.11 was used for object detection primarily because of its state-
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of-the-art performance with reasonable accuracy. It has 106 layers, is fully convolutional 

with residual skip connections and up sampling, and detection is done by applying 1x1 

detection kernels on feature maps of three different sizes at three different places in the 

network. It is trained on the COCO dataset. I used the classes: ‘car’, ‘motorbike’, ‘bus’, 

’truck’, ’person’, ‘traffic light’, ‘stop sign’, ‘train’, ‘bicycle’, ‘fire-hydrant’, ‘parking-meter’ out 

of the 80 classes in the COCO dataset for our object detection module. 

The shape of the detection kernel is 1x1x(Bx(5 + C)). Here B is the number of 

bounding boxes a cell on the feature map can predict, C is the no of classes. For my 

architecture I took 11 classes, B = 3 and C = 11, so the kernel size is 1 x 1 x 48. 

I used feature correlation using logistic regression on the predicted outputs from 

the first network to assign the input image in any one of these 3 target classes: high 

congestion, medium congestion and low congestion. These will be our three buckets to 

measure the degree of congestion. Details of this process is discussed in section  below. 

 

 

 

  FIGURE 6: RESULT OF YOLOV3.11 

 

Dataset to Test: Since image databases required for this learning are not easily 

available or open-sourced, we recorded about 20 hours of video, driving around 
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Charlotte, North Carolina and lower Manhattan, New York city. We extracted 10876 

relevant images from video data using a video-to-image converter and tested on them. 

For the second network, we chose tiny YOLOv3.6 for detection. It is meant to be 

used for resource constrained environments. It has 23 layers in a similar architecture to 

YOLOv3. We used this network due to its better training on smaller datasets. It detects 6 

classes: police car, ambulance, crash, car on fire, car upside down, and fire truck. We 

designed our own annotated dataset containing around 600 images of these classes to 

train and 150 test images. The following image is the training plot showing the loss vs 

iteration. We achieve convergence at 50,138 iterations with a current average loss of 

0.288 and a learning rate of 0.001 (Fig. 7). 

 

 

 

FIGURE 7: CURRENT AVG. LOSS VS ITERATION 

 

Since there is no well defined dataset of accident pictures, we needed to create 

our own dataset and annotate them properly. Due to the small size of the dataset, we 

could not train it on YOLOv3 architecture, like the COCO dataset, as there is a strong 

possibility of loss of accuracy. We found the architecture of Fig. 2 to be more accurate 

than a single network architecture. We are open-sourcing our dataset for the community. 
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Accuracy: We used mean Average Precision(mAP) to evaluate our detection 

model. The idea of Average Precision can be conceptually viewed as finding the area 

under the precision-recall graph. Table 1 shows us the mAP values for our model. 

Precision: Measures how accurate our predictions are, as the ratio of true 

positives to all positives. 

 

            

                          
 

 

Recall: Measures how well the algorithm finds all the positives. 

 

            

                          
 

 

TABLE 1: MINIMUM AVERAGE PRECISION 

configuration     mAP Train Dataset  Test Dataset classes remark 

YOLOv3 51.5 COCO dataset COCO dataset 80 classes 106 layers 

YOLOv3.11 43.7 COCO dataset   our driving dataset  11 classes 106 layers 

Tiny YOLOv3.6 31.5 traffic incidence 

dataset 

traffic incidence 

dataset 

6 classes 23 layers 

 

5.2 Supervised and unsupervised learning 

 

 

The trained YOLOv3 model detects objects from the images and passes the 

objects and their confidence scores to a Linear Logistic Regression model (Supervised 

Learning). The model performs feature correlation and classifies the image into 3 

buckets of congestion categorized as  high, medium and low. 

The trained Tiny YOLOv3 model detects incidences from the same image (if any) 

and gives confidence scores for the classes categorized as crash, car on fire, fire truck, 

police car and ambulance, and car upside down. This information is integrated with the 

output of the Linear Logistic Regression using a rule based approach. 
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FIGURE 8: RULE BASED LEARNING 

 

We correlate the output from the Logistic Regression  and the outputs from the 

Tiny YOLOv3.6 using a Rule Based Learning Approach. Fig. 8 shows us how the model 

learns and integrates kinds of congestion along with detection of an accident for setting 

up the Time for clearance of the roads (edges of the graph).  

 

5.3 Traffic Incidence Detection and Congestion-Aware Navigation 

 

 

I created an undirected weighted graph with the nodes as the intersection for the 

roads of  Lower Manhattan in New York City (NYC), and the roads represented by the 

edges. When smart vehicles request the route from a given source to a destination, its 

corresponding FI passes it on to the cloud for routing. The cloud calculates the 

congestion-aware shortest route, and that information is passed down to the car through 

its FI. Meanwhile, the car keeps on capturing street videos and presents them to the Fog 

for interpretation. The aforementioned models derived from deep learning are applied on 

to the images (in test mode) from the videos frame-by-frame to recognize traffic 

incidences and congestion. That information is passed on to the cloud (as edge weights) 
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to update its connected routing graph and re-route vehicles. 

My framework performs image analysis on the Fog and congestion aware routing 

on the Cloud. In order to reduce the computation overhead from the increasing number 

of devices connected to the cloud [1], [2] and also to reduce the consumption of power 

from the data centers [3], I am limiting the Big Squared Data by processing the bulk of 

the bandwidth (images from videos) on the FI itself.  

The Cloud has in its possession a History Table (HT) which stores the counter 

value in minutes for each Result Type. The Counter can be thought of as a timer  that 

starts decreasing after it is initially set. When it reaches zero the edge of the graph that 

was assigned a higher weight because of congestion is reset to the initial weight. Fig. 9 

shown below shows us the flowchart of the routing on the cloud along with the HT 

updation. 

 

 

FIGURE 9: ROUTING ON THE CLOUD AND HISTORY TABLE UPDATION 

 

5.4 Middleware 

 

 

Fig. 10 depicts the different functions executed by the Edge nodes and the Fog 
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and Cloud instances. Except for the Image Classifier and Routing functions, which are 

application codes, all other functions are the system software (middleware) codes. The 

send or receive functions handle communication between the different tiers and between 

Fog instances, while the Fog and Cloud Schedulers manage application job executions 

(specific to different vehicle data and requests). Navigation and image data are stored in 

the Cloud and Fog databases, which are managed by the corresponding DB_Manager 

functions. The Execute Application function includes Image Processing (which is 

forwarded to the Cloud by a busy Fog Instance) and Routing (Global).  

 

 

 

 

FIGURE 10: MIDDLEWARE IN THE CLOUD, FOG AND EDGE TIERS 

 

Table 2 shows the different middleware functionalities. 

 

TABLE 2 : MIDDLEWARE 

TIER MIDDLEWARE APPLICATION 

Tier 1 - Edge Node 

Edge DB Management 

Edge Job Scheduling 
Edge-Fog Communication Handler 

Collect videos from cameras 

Tier 2  - Fog instance 

Fog DB Management 

Fog Job Scheduling 
Fog-Edge Communication Handler 

Fog-Cloud Communication Handler 

Local Navigation 

Image Analysis 
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Fog-Fog Communication Handler 

Tier 3 - Cloud instance 

Cloud DB Management 

Cloud Job Scheduling 

Cloud-Fog Communication Handler 

Global Navigation 

Image Analysis (when Fog is busy) 

 

5.4.1 Job Scheduling 

 

 

In order to service the requests efficiently I have devised  MultiThreaded Fog and 

Cloud servers which can simultaneously service many client requests at the same time 

through parallel processing of the data.  First-In-First-Out(FIFO) Queue scheduling has 

been implemented for both Fog servers and the Cloud server. The client requests will 

only be queued after the thresholding limit of multithreading is exceeded. The threshold 

limit of multithreading depends on the server configurations. For the Fog servers the 

thresholding value has been found to be approximately 2000 parallel threads for normal 

computations which do not involve heavy deep-learning computations like YOLO. Fig. 11 

shown below shows the behaviour of the Fog system when I increase the number of 

threads.  

 

 

 FIGURE 11: THE OPTIMUM NUMBER OF THREADS 
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 5.4.2 Database Management 

 

 

 Database management mainly deals with the saving and deletion of images sent 

by the smart cars for image analysis and classification. When an image is received by a 

fog or cloud instance, it saves the image at a particular location in the file system, 

identified by the car_id, timestamp and geolocation coordinates, and that location is 

passed to the image analyzer. After the image analysis is completed, the image is 

placed on a queue for deletion. 

 

5.4.3 Communication Handling 

 

 

  Communication handling functions are under the control of the middleware, but 

they are not scheduled in the task queues because they run as concurrent threads with 

the job scheduler. All communications are implemented using TCP/IP sockets. 

 

5.5 Results 

 

 

Latency for an IoE node is the time interval between the moment when an IoE 

node sends a service request and when it receives the corresponding response. 

 

TABLE 3: NAVIGATION AND IMAGE PROCESSING ON THE CLOUD 

Average Total Image 

Processing Time 

(seconds) 

Average Computation 

Time for Yolo V3 

(seconds) 

Average Computation 

Time For Tiny Yolo 

(seconds) 

Average Computation 

Time for Rule Based 

(milliseconds) 

Average Navigation  

Time + Network 

Latency (Edge-Cloud-

Edge)  (seconds) 

18.93 17.15 1.78 0.03 0.89 

 

Table 3 shows the latencies for all computations (Navigation+Image Processing) done 

on the Cloud only, in the absence of the Fog instances.  

TABLE 4: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON FOG SERIALLY 

Average Total Image Average Computation Average Computation Average Average Navigation  
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Processing Time (in 

Fog) (seconds) 

Time for Yolo V3( in 

Fog) (seconds)  

Time For Tiny Yolo 

(seconds) 

ComputationTime for 

Rule Based 

(milliseconds) 

Time + Network 

Latency (Edge-Cloud-

Edge)  (seconds) 

8.14 7.5 0.92 0.07 0.18 

-56.9% -56.26% -48.31% 133.33% (time is in 

the order  of ms for 

this column) 

-79.77% 

 

TABLE 5: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON FOG IN 

PARALLEL 

Average Total Image 

Processing Time (in 

Fog) (seconds) 

Average Computation 

Time for Yolo V3 

(seconds) 

Average Computation 

Time For Tiny Yolo 

(seconds) 

Average Computation 

Time for Rule Based 

(seconds) 

Average Navigation  

Time + Network 

Latency (Edge-Cloud-

Edge)  (seconds) 

9.84 9.53 1.05 0.07 0.13 

 

TABLE 6: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON FOG IN 

PARALLEL WITH QUEUING 

 

Groups Average Total 

Image Processing 

Time (in Fog) 

(seconds) 

Average 

Computation 

Time for Yolo V3 

(seconds) 

Average 

Computation 

Time For Tiny 

Yolo (seconds) 

Average 

Computation 

Time for Rule 

Based 

(milliseconds) 

Average 

Navigation + 

Queuing + 

Network Latency 

(Edge) 

(seconds) 

Group A high 
priority requests - 

low waiting times 

in queue 

17.48 12.69 

 

1.62 0.05 0.12 

Group B low 

priority requests - 
high waiting times 

in queue 

170.43 17.08 1.59 0.062 42.692 

 

Table 4 shows the average latencies when Image Processing is done on the Fog 

and the Navigation is done on the cloud (partial data forwarding) in a serial fashion. The 

average back and forth network latency is found out to be 0.179s. The last row of Table 

4 (Navigation in Cloud and Image Processing in Fog) shows the reductions of average 

latencies in all the columns when compared to those in Table 3 (where all computations 

are done on the Cloud). 

The total wait time of any car request for serial handling is the sum of the 

latencies of all previous requests that need to be serviced in the time window when the 
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request is active. Hence for the Nth request in an active window, there will be N-1 

previous requests that will have to be serviced with a latency (Total Image Processing 

Time) of 7.5secs per request, on average, for a total wait time of 7.5(N-1) secs before 

the Nth request will start processing. Hence, the Total Image Processing Time for the 

Nth request will be 7.5(N) seconds, on average. 

Table 5 shows us the values for the average latencies when requests from 

different cars are handled in parallel. On average, the Total Image Processing Time 

reduces to 9.84 secs, and this number remains independent of the number of car 

requests as long as the number of parallel threads does not exceed hardware capacity 

and start queuing requests. 

Table 6 shows the average latencies when the number of requests from cars 

exceed the multithreading capability of the Fog hardware, so that additional requests are 

queued. Although each Intel-NUC (used as a Fog node) is capable of handling a huge 

number threads in parallel (as shown in Fig. 8), when YOLO runs on the Fog instance 

for Image Processing, around 5 parallel executions of YOLO (corresponding to 5 

requests from cars) spawns close to a thousand parallel threads - hence the limit on the 

number of requests that can be parallely processed, and the increased queuing times for 

larger number of car requests. This limitation can be overcome using a cloud of NUCs 

for a particular Fog instance, or using alternate hardware with even greater 

multithreading capability.  

I have prioritized the individual car requests based on the distances between 

their sources and destinations; fewer the number of intersections in the navigation path, 

higher the priority of the corresponding car request. I have split the results of Table 6 into 

2 groups corresponding to high priority requests (low waiting times in queues) and low 

priority requests (high waiting times in queues). Note the slight increase in Total average 

Image Processing time for requests in group A compared to that in Table 5: this is the 
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result of preemptive thread scheduling with waiting threads in the queue, and the larger 

increase in average Total Image Processing time for requests in group B compared to 

that in group A: this is the result of both preemptive thread scheduling and waiting times 

in queues.  

 

 

FIGURE 12: THREAD COUNT BEFORE THE PROCESS IS STARTED 

Before the process is started, the total threads running on the system is 640 as shown in 

Fig. 12.  

 

FIGURE 13:  THREAD COUNT FOR OPERATION ON A SINGLE CAR 

Once YOLO based Image Processing is started for a single car, the thread count is 

increases to 769 - an increase of about 130 threads per single instance of YOLO. 

 

FIGURE 14: THREAD COUNT FOR OPERATION ON EIGHT CARS 

Fig. 14 shows that when I simulate 8 cars the thread count goes as high as 986. 
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CHAPTER 6: BENCHMARK DATASET AND ITS APPLICATION IN NEAR REAL-TIME 

ACCIDENT IDENTIFICATION AND RELATED CONGESTION CONTROL IN A SPARK 

AWS EMR CLUSTER 

 

 

This work focuses on real-time cloud based analytics of live video feeds from the 

cameras of self-driven autonomous vehicles using the Spark framework on Amazon’s 

Elastic Mapreduce (EMR). We use deep-learning methodologies for real-time object 

detection and classification on the streamed images, to classify and predict traffic 

incidences, leading to subsequent congestion control. Results on a benchmark 

application: traffic congestion aware navigation using 10 self-driving vehicles with their 

own camera feeds as they drive around in Manhattan; show an 58% improvement in 

performance on the AWS-EMR based Spark framework, when compared to cloud 

processing on a single instance of EC2 server on the AWS. 

 

6.1 Streaming Applications with Apache Spark  

 

 

Spark Streaming is an extension of core Spark that was added to Apache Spark 

in 2013. It provides scalability, fault-tolerance and high-throughput of data streams that 

are coming in live. Data consumption is possible through means such as Apache Kafka, 

Apache Flume, Apache Kinesis or TCP/IP Sockets. The output can be pushed into a file 

system or any database or via TCP/IP socket.  

 

 

FIGURE 15: SPARK STREAMING 

 

The way this spark streaming works is the data streams are divided into batches 
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and the batches are processed by Spark to generate a final stream of results as shown 

in Figure 16. 

The key abstraction of Spark Streaming is Discretized Stream or DStream which 

represents a stream of data that is divided into small batches and are built on Spark 

RDDs. Resilient Distributed Datasets(RDDs) in Spark are collections of elements that 

can be operated on in parallel. RDDs can be created by parallelizing a collection(data 

structure) or by referencing a dataset in an external file system like HDFS / HBASE, S3 

or Kafka. You will find tabs throughout this guide that let you choose between code 

snippets of different languages. Fig. 15 and Fig. 16 show an abstract block diagram of 

Spark Streaming. 

 

 

 

 

FIGURE 16: DATA STREAMING 

 

6.2 Amazon Web Services 

 

 

Amazon Web Service(AWS) is basically a service that is provided by amazon as 

an on-demand platform or more technically a platform as a service(PaaS) to subscribers, 

companies and governments, on a pay basis. The technology adheres to the needs of 

the subscribers by providing them with a cluster of servers , available all the time, 

through the Internet. AWS provides the following : (CPU(s) & GPU(s) for processing, 

local/RAM memory, hard-disk/SSD storage); operating systems choices; networking; 

and pre-loaded application software such as web servers, databases etc.  
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The AWS technology is implemented at amazon data centers throughout the 

world .The fee is based on the usage of the system and its pay per use. AWS has 6 data 

centers at North America.  

Two of the most popular services of AWS are Elastic Compute Cloud(EC2) and 

Simple Storage Service (S3). The bulk of AWS services lie in the background and are 

not exposed to the subscribers and developers, they can avail these services only 

through API calls.. AWS is accessed over HTTP, using the REST style and SOAP 

protocol. 

Services are billed based on usage, but each service measures usage in 

different ways. As of 2017, AWS owns a whopping 34% of all cloud (IaaS, PaaS) while 

the next competitors are namely Microsoft, Google, and IBM have 11%, 8%, 6% 

respectively according to Synergy Group.  

 

6.2.1 Elastic Map Reduce 

 

 

Amazon Elastic MapReduce (EMR) is an Amazon Web Services (AWS) service 

for big data analytics, storage and processing.Amazon EMR offers a scalable, cluster 

service wherein the subscriber is provided the platform as well as the infrastructure for 

computation. 

Amazon EMR is based on Hadoop which is a mapreduce processing framework. 

Apache Spark has been a recent add-on over Hadoop. Spark brings in stream 

processing capabilities for the framework which was initially absent in Apache Hadoop 

which by default is a batch-processing framework. It was developed at Google for web 

page indexing and replaced their original indexing algorithms and heuristics in 2004. 

Amazon EMR processes big data across a Hadoop based cluster of servers on 

Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage Service (S3). in 
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EMR's name has the term elastic which refers to its dynamic resizing ability, which 

allows it to ramp up or reduce resource use depending on the demand at any given time. 

Fig. 17 shows a sample AWS based application which integrates a Spark engine on an 

EMR cluster with the S3 storage buckets (note: HDFS, RDS,   dynamo DB and other 

AWS storage can also be instantiated to work with EMR). 

 

 

 

FIGURE 17: AWS EMR 

 

 

 

FIGURE 18: PROPOSED APPROACH 

 

Fig. 18. Shown above shows the block diagram of my proposed approach in an 

abstract manner. 

Running the framework mentioned in Chapter 5 over a single Amazon AWS EC2 

instance and then over a 2 Node EMR Cluster I have the following results.  
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6.3 Results 

 

 

I perform a comparison between running the jobs in an EC2 instance versus 

running it over a 2 node EMR cluster on Amazon. As an EC2 instance I have chosen the 

configuration of t2.micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB 

memory, EBS only) 

 

 TABLE 7: NAVIGATION AND IMAGE PROCESSING ON THE EC2 INSTANCE 

Average Total Image 

Processing Time 

(seconds) 

Average Computation 

Time for Yolo V3 

(seconds) 

Average Computation 

Time For Tiny Yolo 

(seconds) 

Average Computation 

Time for Rule Based 

(milliseconds) 

Average Navigation  

Time + Network 

Latency (Edge-Cloud-

Edge)  (seconds) 

18.93 17.15 1.78 0.03 0.89 

 

Table 7 shows the benchmark average of the total image processing time, along 

with processing times for both the deep learning YOLO models, the computation times of 

the rule based decision tree, as well as the (navigation time + network latency) on the 

EC2 instance.  

 

TABLE 8: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON A 2 NODE EMR 

CLUSTER 

Average Total Image 

Processing Time (seconds) 

Average Computation Time 

for Yolo V3( seconds)  

Average Computation Time 

For Tiny Yolo (seconds) 

Average Computation Time 

for Rule Based 

(milliseconds) 

8.00 7.0 0.5 0.01 

-57.51% -59.18% -71.91% -66.66% 

 

Table 8 shows the corresponding data for the same algorithm executing in spark 

deployed on a 2-node AWS based EMR cluster. The nodes in the EMR cluster have the 

following m4.large configuration: 4 vCore, 8 GiB memory, EBS only Storage:32 GiB. 

Compared to the single EC2 based  computation, the 2-node Spark based EMR cluster 

reduces the image processing time by around 60%, on average.  
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CHAPTER 7: REAL-TIME TRAFFIC MANAGEMENT OF AUTONOMOUS VEHICLES 

USING INTER-FOG COMMUNICATION ON 4G LTE NETWORKS 

 

 

This paper focuses on developing an Inter-Fog data communication mechanism 

that was not addressed in  [61], [62] & [63] Accident Prediction and Related Congestion 

Control based on a Fog Computing Architecture. The bandwidth that is actually required 

for images and video streaming of data from autonomous vehicles to the servers 

residing on the Fog as well as on the Cloud were only simulated using Wi-Fi internet 

connectivity as was elaborated in [61], [62], [63]. In this research we simulate the entire 

application using 4G LTE connectivity and compare the results with the Wi-Fi approach. 

We also propose two novel approaches - Predictive and Reactive - that control the 

handover of the data and metadata of the Terminal Nodes (the autonomous vehicles) 

between the Fog Instances. 

 

7.1 Wi-Fi and LTE NETWORKS 

 

 

The Internet has become a daily necessity for everyone. Mobile Broadband/LTE 

and Wi-Fi are mediums to access the internet. Wi-Fi is a wireless networking protocol 

based on IEEE 802.11 standard. It is the most popular approach in wireless data 

communication. Wireless networking is often synonymous with Wi-Fi technology but it is 

a misconception as wireless networking is much broader in nature. Wi-Fi is a trademark 

of the Wi-Fi Alliance – a consortium involved with wireless LAN technologies and 

products.  

 The main requirement of Wi-Fi is that there should be a device like a router, 

phone or computer that can transmit the signal to nearby devices within a range. A 

router is a device that transmits signals that come from outside the network like an 

Internet Service Provider(ISP), to nearby devices that are in reach.  
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 LTE stands for Long Term Evolution and is a 4G - 4th generation wireless 

broadband network standard. It offers a higher bandwidth with faster speeds suitable for 

voice calls (VoIP) and multimedia streaming. It is very suitable for bandwidth-hungry 

applications on mobile devices.  

 LTE is a 4G technology using radio waves, unlike 3G and WiMAX that uses 

microwaves. LTE has a better penetration in remote areas and has greater coverage 

span. It uses Single-Carrier Frequency Division Multiple Access Scheme(SC-FDMA) in 

its uplink and Orthogonal Frequency Division Multiple Access (OFDMA)in downlink and 

64 QAM modulation scheme. OFDMA utilises channel resources efficiently therefore 

increasing the capacity of total number of users. It is an architecture of distributed 

intelligence among base stations called eNodeB which are interconnected by interface 

named X2 and connected to the core by interface named S2. This distributed 

architecture allows User End(Ue) devices in motion to connect to the network with less 

handover delay and faster connection setup. Enhanced Packet Core(EPC) is the core of 

the architecture consisting of Mobility Management Entity(MME) that manages 

authentication, sessions and keeps a track of users. To route the data packets through 

the user network, Serving Gateway(S-GW) is used. One of the reasons for the success 

of LTE is that it can support 2G and 3G because it uses Evolved Packet Core which  

combines voice and data on an Internet Protocol(IP) unlike earlier architectures which 

had circuit switching for voice and packet switching for data. The interface between the 

LTE network and other packets is Packet-Data Node Gateway(PGW) which manages 

Quality of Service(QoS).  This architecture is described in Fig. 19 [64] below. 
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FIGURE 19: LTE ARCHITECTURE [64] 

 

7.2 Related Work 

 

 

As illustrated in the works [61] and [63], the main goal was to predict accidents 

and traffic incidences and rerouting based on that received information using live video 

feeds from autonomous vehicles. The predictions and image object detections are all 

done in real-time from live video feeds for predicting traffic incidences. Rerouting 

vehicles based on the received information is done in near and near-real-time. The 

workflow and model development of the application algorithm has been shown in Figure 

20 below [61].  For the Deep Learning part, the methodology that was used was a real-

time state-of-the-art Image Objection Detection Algorithm called YOLOv3 [59],[60]. It has 

106 layers that are fully-convolutional. It is a modification over normal Convolutional 

Neural Networks to detect objects from images. 
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 Two instances of the YOLO model were used: one to predict the congestion and 

second to detect/predict an accident. The database for the accident prediction was 

assembled and open-sourced [62].  

 

 

 

 

FIGURE 20: MODEL AND WORKFLOW DEVELOPMENT [61] 

 

7.3 Our Proposed Algorithm 

 

 

Predictive Approach 

 

In this approach, a TN recognizes its proximity to the boundary of a VC by 

evaluating the Received Signal Strength Indicator (RSSI) from its supervising FI. As a 

result, the TN sends out broadcast packets to all neighboring FIs listening over a 
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dedicated port. The Cloud Server oversees the FIs and is aware of the route of the TN, 

along with the identity of the VC it would most likely be traversing. The FI in charge of 

that VC will be notified by the Cloud Server and it will respond back to the TN with its IP 

address, proclaiming that it is the next server which the TN must communicate with. The 

data and metadata from one FI are transferred to the next FI through the Cloud. Figure 

21 shows the Data Flow Graph of the above approach. 

 

Reactive Approach 

 

We assume that the reactive approach works simultaneously with the predictive 

approach. Figure 22, explains the reactive approach where a TN starts traversing a VC 

whose FI is unaware of that TN. This can happen either because of misprediction in the 

predictive approach above, or because of network failure or high Turn Around Time 

(TAT) in the cloud implementing the predictive approach. In the reactive approach, each 

FI runs NMap periodically to discover new MACs in its VC. In this situation, the FI will 

find the unexpected TN in its VC and inform the Cloud. The Cloud updates the routing 

information and informs the original FI chosen (as a result of a prior prediction), that the 

TN won’t be travelling through its supervised VC. This FI then sends the data and 

metadata of the TN to the Cloud, and deletes the MAC address of the TN from it’s list. 

Thereafter the cloud sends the data associated with the TN to the new FI along with the 

new route. The new FI then sends this route to TN. 
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FIGURE 21: DFD OF THE PREDICTIVE APPROACH 
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FIGURE 22: BLOCK DIAGRAM OF THE REACTIVE APPROACH 

 

7.4 Results 

 

 Experimental Setup 

 

 For wifi- internet connectivity setup we have used Raspberry Pi boards running 

10 parallel threads as Edge Nodes (TNs). We have used Intel NUCs equipped with 16 
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GB RAM, DDR4, i7 - 3.5 GHz, 512 GB SSD hard drive facilitating wireless dual band 

(802.11ac) support,  as Fog Instances. We have used the data center at the Cyber 

Physical Systems Lab at UNCC equipped with 39 nodes as the Cloud.  

 For simulating the architecture for LTE, we have used NS-3 which is a discrete-

event network simulator for Internet-systems[9]. We simulated two network models, (1) 

Cloud Based Architecture -  where the data flows from TN to cloud and back and (2) Fog 

Based Network Architecture - Data flows across TN -> FI -> Cloud. In the first model, the 

image processing and computation takes place in the cloud server and in the second 

case, it takes place in the FI. The simulated architecture consists of LTE and EPC.  

 For simplicity, we have used 10 nodes as autonomous vehicles (TNs). The 

application sending data in NS-3 is working on top of User Datagram Protocol (UDP). 

The average image processing time is added as delay for both the models. For 

calculating the average turnaround time, we fixed the positions of the nodes at different 

positions. The Maximum Transmission Unit (MTU) is set to 1500 bytes which is nothing 

but the largest packet size. Maximum number of packets in uplink and downlink is 

1000000 each with a data rate of 100 Gbps. The distance between two base stations - is 

60 meters. Since the average navigation (routing/rerouting) time is negligible, we are 

ignoring that. 

 Table 9 shows the average times for all computations and Network Latency when 

computation is done in Cloud only, in the absence of the Fog instances. We observed 

that for an ideal case scenario when the terrain - the buildings and the user density in a 

particular cell is not considered, LTE provided better Turn Around Time (TAT) than wifi 

internet. The Network Latency is the Turnaround Time for both 802.11ac and LTE. Note 

the order of magnitude reduction (more than 10 times) in the Network Latency of LTE 

compared to that of 802.11ac. 
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TABLE 9: CLOUD ONLY ARCHITECTURE (WITHOUT FOG INSTANCES) 

Average Image 

Object 

Classification 

Time 

(seconds) 

Average 

Computation 

Time for 

Congestion 

Detection 

(seconds) 

Average 

Computation 

Time For 

Accident 

Detection 

(seconds) 

Average 

Computation Time 

for Model Output 

Integration(Decision 

Tree) (milliseconds) 

Cloud Turn 

Around Time 

(802.11ac) 

(seconds) 

Cloud Turn 

Around Time 

(LTE) 

(seconds) 

 

18.93 17.15 1.78 0.03 0.89 0.063 

 

TABLE 10: INTEGRATION OF THE FOG ARCHITECTURE WITH THE CLOUD   

Average Image 

Object 

Classification 

Time in the 

Fog 

(seconds) 

Average 

Computation 

Time for 

Congestion 

Detection 

(seconds) 

Average 

Computation 

Time For 

Accident 

Detection 

(seconds) 

Average 

Computation Time 

for Model Output 

Integration(Decision 

Tree) (milliseconds) 

Cloud Turn 

Around Time  

( 802.11ac) 

(Seconds) 

Cloud Turn 

Around Time 

(LTE) 

(seconds) 

8.14 7.5 0.92 0.07 0.18 0.082 

-56.9% -56.26% -48.31% 133.33% (time is in 

the order  of ms for 

this column) 

-79.77%  

 

Table 10 shows the average times for all computations and Network Latency 

when we have a distributed computation utilizing the Fog Computing Framework. On 

average there is a more than 50% reduction in computation times when using fog, which 

can be explained by the parallelism realized with multiple FIs. Interestingly, the average 

computation time for the Rule Based Decision Tree approximately doubled for the FIs. 

We believe the reason for this could be the process suspension mode of the FI 

architecture, wherein the main memory is cleared in order to make way for newer 

processes when run parallely.  We also observe that there is an approximate 80% 

reduction in Network Latency on 802.11ac when we compare with that of Table 1 for a 

Cloud only framework. The LTE Network Latency is 0.082 secs which is approximately 

half the 802.11ac latency. This improvement is not as dramatic as the LTE latency 

improvement over its 802.11ac counterpart for the Cloud only architecture because the 

Fog architecture’s integration with the Cloud reduces the latency of the 802.11ac 

network from 0.89secs to 0.18secs (a factor of 5 reduction).  

The increase in the TAT when a Fog Computing Architecture is introduced in the 

LTE mobile broadband network simulation is due to the processing delays that occur on 
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each level of the architecture as a result of the increase in the number of hops. 

For the Predictive Approach, the handover time is quite small and mostly 

equivalent to 0.001 seconds. For the Reactive Approach, the handover time is 1.005 

seconds on an average for 802.11ac. The time in seconds for LTE is almost similar to 

that of 802.11ac.  

 

7.5 Discussion 

 

The results show us that there is (a) an order of magnitude (approximately 10 

times) reduction in the TAT for a cloud only architecture when we use LTE over 

802.11ac, and (b) a factor of 2 reduction in TAT when we use LTE over 802.11ac for a 

Fog based architecture. Moreover the Fog-Cloud integration achieves more than 50% 

reduction in computation time over that of the Cloud only architecture, on average. This 

paper also highlights two other approaches viz. Predictive and Reactive through which 

the system software provides Rapid Mobility in a roaming wifi as well as on an LTE 

environment.  Fault tolerance is also achieved as the application provides a mechanism 

to recover the TN when it falls under an unintended VC.   
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CHAPTER 8: ACCIDENT PREDICTION AND CONGESTION CONTROL USING 

SPARK STREAMS THROUGH KAFKA IN A FOG COMPUTING BASED IOT 

NETWORK ARCHITECTURE  

 

 

8.1 Spark Streams 

 

 

Spark Streaming is built on top of core Spark that was added to Apache Spark in 

2013. It provides scalability, fault-tolerance and high-throughput of data streams that are 

coming in live. Data consumption is possible through means such as Apache Kafka, 

Apache Flume, Apache Kinesis or TCP/IP Sockets. The output can be pushed into a file 

system or any database or via TCP/IP socket.  

 

 

FIGURE 23: SPARK STREAMING DATA FLOW 

 

The way this spark streaming works is the data streams are divided into batches 

and the processing takes place on these batches to give the final stream of results as 

shown in Figure 23. 

The key abstraction of Spark Streaming is DStream or Discretized Stream which 

signifies a stream of data that is divided into small batches and are built on Spark RDDs. 

Resilient Distributed Datasets(RDDs) in Spark are collections of elements that can be 

operated on in parallel. RDDs can be created by parallelizing a collection(data structure) 

or by referencing a dataset in an external file system like HDFS / HBASE, S3 or Kafka. 

There are worker nodes that work on partitions of an RDD parallely.  The spark 

standalone cluster is picturized in Figure 24. 
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FIGURE 24: SPARK STANDALONE CLUSTER 

 

8.2 Reason for choosing Spark Streaming 

 

 

For a near-real-time or real-time requirement, a traditional batch processing 

system like Apache Hadoop is not suitable. For a stream processing system like Apache 

Storm, a processing of a record is guaranteed if that hasn’t been processed but there is 

an inconsistency in Storm wherein a repetition of a record might be there. Also in 

Apache Storm the state is lost if a node running Apache Storm goes down. Mostly, 

people use Apache Hadoop for batch processing and Apache Storm for Stream 

Processing which cause an increase in the size of the code, increase in the number of 

bugs to fix, a longer learning curve, a lot of developmental effort and so on.     

Spark Streaming is advantageous since it helps in fixing the aforementioned 

issues and it provides scalability, efficiency, resilience along with a batch processing 

system. This makes it very easy for a developer as only a particular framework needs to 

be learnt in order to work with both batch and stream processing. 

Spark tasks are assigned dynamically to the worker nodes on the basis of locality 

of data and resources that are available. In traditional models the load is statically 
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allocated to the worker nodes. 

Instead of assigning tasks statically to worker nodes like a continuous operator 

model does, Spark Streaming is dynamic and assigns jobs to workers based on data 

locality and available resources. This helps in load-balancing and faster fault recovery. 

 

8.3 Advantages of Spark Streaming  

 

 

Dynamic load balancing- The data is divided into smaller micro-batches which 

aids in a more equal allocation of computations. The executor counts can be increased 

at runtime depending on the application’s computation needs. 

Fast failure and straggler recovery- Older systems needed to restart the failed 

computation on another node. One node was responsible for handling the recomputation 

which generally stalled the pipeline. Spark creates a more uniform distribution of tasks 

that can run anywhere on the cluster. Even for failed tasks, they can be distributed 

evenly on all kinds of nodes which has been proven to be faster than the traditional 

approach.   

Performance- Spark Streaming’s ability to use the spark core engine by 

batching data leads to higher throughput to other contemporary approaches. Latencies 

can be as low as a few hundred milliseconds. 

 

8.4 Apache Kafka 

 

 

Apache Kafka was originally conceived at LinkedIn, later becoming an open-

source project at Apache in 2011. Apache Kafka is written in Scala and Java and is a 

publish-subscribe message queuing system. 

 

Kafka is made for a clustered high throughput system. The advantages that 
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Apache Kafka provides is that it has a built-in partitioning, replication, fault-tolerant and 

better throughput. 

 

8.4.1 Publish-Subscribe Messaging System 

 

 

In this kind of a system, messages are persisted on queues that are called 

topics. Consumers or Subscribers can actually subscribe to one or many topics and pull 

messages from that topic. Publishers are also called Producers of the messages.  

 

 

 

Figure 25: Publish Subscribe Messaging System 

 

Kafka’s cluster management system relies on Zookeeper. The messages in 

Kafka are saved on the disks and replicated within the Kafka cluster. Kafka is suitable for 

online and offline message consumption as each message is offsetted inside a topic. 

The advantages of Apache Kafka lies in the fact that it is blazingly fast 

performing 2 million writes per sec. Kafka puts everything into the disk which essentially 

means that all the writes go to the OS(RAM) page cache. The phenomenon of 

Sequential I/O takes place where since the Kafka messages are in an ordered fashion 

are read ahead by the OS and persisted on the disk/page cache. So the application 

doesn’t need disk seeking latencies, also no additional logic needs to be written for 



52 

 

Sequential I/O as the OS generally keeps the disk cache on the free memory.  

 

 

 

FIGURE 26: APACHE KAFKA’S ARCHITECTURE 

 

In the above Figures 25 and 26, we describe a publish subscribe model along 

with a proper example of such a model namely Apache Kafka.  

In figure 26 a topic is split into three partitions. Partitions have individual offset 

numbers associated with them.  

Kafka creates a replication for each partition of a topic. For load balancing in a 

cluster, each broker stores one or more of those partitions.  

 

8.5 Apache Cassandra 

 

 

Apache Cassandra is an open-source, decentralized and distributed NoSQL 

database. It has no single point of failure. 

Cassandra was developed and open-sourced by facebook. Apache accepted it 

as an incubator project in 2009. It was made a top-level project in 2010. Cassandra 

provides certain distinct advantages to it’s users as : 
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Scalability - It allows us to add more hardware to accommodate more users and 

more data. 

Always on Architecture - It has no single point of failure and it is best for 

applications that cannot afford a failure. 

Flexible Database - It allows all kinds of data formats to be stored(structured, 

semi-structured, unstructured). 

Replication - Data is replicated across nodes in the cluster, across multiple 

datacenters. 

ACID Property - Cassandra supports properties like Atomicity, Consistency, 

Isolation and Durability just like a Relational Database System. 

Fast Writes -  Performing blazingly fast writes, Cassandra can store hundreds of 

terabytes of data. 

 

 

FIGURE 27: APACHE CASSANDRA CLUSTER 

 

As is shown in the figure 27 above, Cassandra has a peer-to-peer distributed 

system where the data is stored across its nodes. Any node can receive the read/write 

request regardless of where the data is located in the cluster. Cassandra uses a kind of 

Gossip Protocol in the background for the nodes to intercommunicate with each other. 
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8.5.1 Storage in Cassandra 

 

 

The Storage Components in Cassandra are mentioned above in the figure. The 

partitions are made in the above figure based on references of the query and they are 

divided into two groups:- 

a) Memory Store - This contains most notably MemTables (it’s a caching 

mechanism for cassandra in the main memory). Any action that has to be performed will 

be performed on the MemTable first, after that syncing happens to the disk. Bloom 

Filters(To test whether an element is present in a set in a probabilistic way), Index 

Summary( Index of the original index that is present on disk), Key Cache(to store 

primary keys and row offsets), Row Cache(store sets of rows) 

b) Disk Store - This contains Commit Logs(crash recovery mechanism in 

Cassandra, every write operation is written to it after the memory’s Commit Log is written 

to), SSTable (stores Bloom Filters, Indices and the original data). The figure 28 below 

shows a block diagram of the above theory. 

 

 

FIGURE 28: STORAGE COMPONENTS IN CASSANDRA 
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8.6 Our implementation of the Fog Computing Architecture 

 

 

For our implementation of the Fog Computing Architecture we have simulated 

autonomous cars in each virtual cluster. The cars supply their initial source and 

destination and that reaches the Cloud via the Fog. The Cloud handles the routing 

aspect of the application and the Image Object Detection is performed by the Fog 

Instances. The figure 29 describes the architecture below. 

Fog Routing Server -  The Fog Routing Server is principally concerned with 

sending the routing information to the Cloud and back to each car. 

Cloud Edge Server - The Cloud Edge Server receives the routing  information 

initially from the Fog Routing Server, it pushes the information as a Kafka Producer into 

a Kafka topic in our architecture. It also opens up another channel for receiving the FI’s 

results and updating the connected graph which is on Cassandra (cloud).  

Cassandra Cluster (Fog) - There are two nodes Cassandra Cluster in each Fog 

Instance. Cassandra cluster is principally concerned here with the storage of images as 

BLOB (Binary Large Objects) type. 

Kafka Queue (Fog) - The message queue in the Fog is concerned with queuing 

images as byte arrays(message) along with the (MAC + IP) as the key. 

Spark Standalone Cluster (Fog) -  The cluster that has been set up on each 

instance of the Fog is a two node Spark standalone cluster. This cluster is concerned 

with performing image object detection on Spark Streams using two models of a deep-

learning algorithm called YOLO trained on different datasets. It also performs feature 

correlation (Logistic Regression) and rule-based decision making.  

Spark Standalone Cluster (Cloud) - The cloud comprises five servers acting in 

unison to form a five node standalone spark cluster. The cloud is responsible for routing 

of the autonomous vehicles based on the results of the FI’s estimation. Spark is 
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responsible for carrying out the route processing and adjusting the edges of the 

weighted graph (for the Lower Manhattan map). Spark streaming pulls messages from 

the Kafka queue on the cloud. 

Kafka Queue (Cloud) -  The message queue in the cloud is concerned with 

sending out route information to the Spark Cluster as key and message pairs. Key here 

is the (MAC + IP) and message is a normal String value with initial source and 

destination.  

Cassandra (Cloud) - Storing of the connected graph as a text file (BLOB) in 

Cassandra. Spark uses it every time it pulls a new routing information from Kafka.   

 

 

FIGURE 29: FOG COMPUTING ARCHITECTURE  

 

 

 

8.7 Deep-Learning and the Application Benchmark 
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8.7.1 Deep learning and Modeling 

 

 

The main goal of this analysis is to predict accidents and traffic incidences and 

rerouting based on that received information using live video feeds from autonomous 

vehicles. The predictions and image object detections are all done in real-time from live 

video feeds for predicting traffic incidences. Rerouting vehicles based on the received 

information is done in near and near-real-time. Figure 30 shown below presents a block 

diagram of the underlying workflow of the deep learning and subsequent machine 

learning based model development [61].  

Deep Learning : Significant improvements in object detection and object 

recognition have only been due to  the advancement of Convolutional Neural 

Networks(CNNs). The original YOLOv3 [59], [60] has been trained on a Microsoft 

Common Objects in Context (COCO) dataset with 80 different objects, mostly unrelated 

to traffic. To classify the data, we are using two CNN architectures: YOLOv3.11 (for 11 

classes related to traffic congestion) for traffic object identification and tiny YOLOv3.6 

(for 6 classes related to traffic incidences). 

YOLOv3.11 is one of the faster object detection algorithms and due to its fast 

performance and high accuracy, it has been used in Fig.3 for object detection. It has 106 

layers, fully-convolutional with residual skip connections and up sampling. Detection is 

done by applying 1x1 detection kernels on feature maps of three different sizes at three 

different places in the network. It is trained on the COCO dataset. We have used the 

classes: ‘car’, ‘motorbike’, ‘bus’, ’truck’, ’person’, ‘traffic light’, ‘stop sign’, ‘train’, ‘bicycle’, 

‘fire-hydrant’, ‘parking-meter’ out of the 80 classes in the COCO dataset for our object 

detection module. 

The shape of the detection kernel is 1x1x(Bx(5 + C)). Here B is the number of 

bounding boxes a cell on the feature map can predict, C is the no. of classes. For our 
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architecture we took 11 classes, B = 3 and C = 11, so the kernel size is 1 x 1 x 48. 

 

 

FIGURE 30 : WORKFLOW OF THE APPLICATION BENCHMARK 

  

On the predicted outputs, we have used feature correlation using logistic 

regression from the first network to assign the input image in any one of the 3 target 

classes: high congestion, medium congestion and low congestion. We will measure the 

degree of congestion from these three classes.  

Dataset to Test: For the image database that is required for learning, we have 

recorded a video of driving for  20 hours around places like Charlotte, North Carolina 

and Lower Manhattan, New York City since image databases are not easily available or 

open-sourced. To extract relevant images from the video data, we have used a video-to-

image converter. A total of 10876 images were extracted for testing. For resource 

constrained environments in the second network [3], we chose tiny YOLOv3.6 for 

detection. The architecture of YOLOv3.6 is similar to YOLOv3 having 23 layers. It has 

the ability of better training on smaller datasets. It detects 6 classes: police car, 
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ambulance, crash, car on fire, car upside down, and fire truck. Our designed dataset 

contains approximately 600 images of the above mentioned classes which we have 

used to train. Apart from these images, there are 150 test images. 

 

 

 

FIGURE 31:  RULE BASED LEARNING 

 

8.8 Rule Based Decision Tree 

 

 

This is the second stage of the overall feature correlation by which two model 

predictions (YoloV3.11 and Tiny YoloV3.6) are combined. The structure is shown in 

figure 31  above.  
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FIGURE 32:  ROUTING ON THE CLOUD AND HISTORY TABLE UPDATION  

 

8.9 Congestion Awareness and Changes in Routing  

 

 

The results of the FIs reach the Cloud’s Edge Server. The server makes the 

necessary change to the BLOB(Binary Large Object) file in the Cassandra cluster on the 

cloud that stores the overall connected graph for the topology. The consecutive spark 

jobs that are fired for different cars get the updated value of the overall connected graph. 

A History Table(HT) is stored into Cassandra database. This portion of Cassandra deals 

with a more structured form of the data wherein counters are assigned for each edge 

with a predicted or detected traffic with or without predicted accidents. Leveraging the 

blazingly high write speeds of Cassandra, this work has been made possible with 

minimum disk read/write latency.  
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8.10 Results  

 

 

TABLE 11:  NAVIGATION ON CLOUD AND IMAGE PROCESSING ON THE FOG 

WITH QUEUING 

Groups Average Total 

Image 

Processing 

Time (in Fog) 

(seconds) 

Average 

Computation 

Time for Yolo 

V3 (seconds) 

Average 

Computation 

Time For Tiny 

Yolo (seconds) 

Average 

Computation 

Time for Rule 

Based 

(milliseconds) 

Average 

Computation 

Time for 

Logistic 

Regression 

(seconds) 

Average 

Navigation + 

Queuing + 

Network 

Latency 

(Edge) 

(seconds) 

Group A high 

priority requests 

- low waiting 
times in queue 

17.48 12.69 

 

1.62 0.05 0.12 0.12 

Group B low 
priority requests 

- high waiting 

times in queue 

170.43 17.08 1.59 0.062  42.692 

 

TABLE 12: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON THE FOG WITH 

QUEUING (SPARK - KAFKA - CASSANDRA) 

Groups Average Total 

Image 

Processing 

Time (in Fog) 

(seconds) 

Average 

Computation 

Time for Yolo 

V3 (seconds) 

Average 

Computation 

Time For Tiny 

Yolo (seconds) 

Average 

Computation 

Time for Rule 

Based 

(milliseconds) 

Average 

Computation 

Time for 

Logistic 

Regression 

(seconds) 

Average 

Navigation + 

Queuing + 

Network 

Latency 

(Edge) 

(seconds) 

Equal Priority 

Requests 
14.81 12.01 2.8 0.07 0.58 2.189 

 

The changes in the result when I have integrated the Spark - Kafka - Cassandra 

mixture along with my middleware application are due to a myriad of reasons that I am 

going to explain below. 

In my earlier system, that is in a system without Kafka, Cassandra and Spark, 

the Fog Instances that were mainly Intel NUCs failed if I ran more than 7 or 8 parallel 

executions of YOLO which spawned more than 1000 parallel high computation threads. 

In this spark streaming system however, I have reserved four executors on each worker 

node to facilitate 4 parallel executions of YOLO at a time. The other machine learning 

algorithms do not take much time to complete so I am only focussing on YOLO at this 
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time. Due to Spark’s Lazy Evaluation and In-Memory processing the entire application 

has been highly optimized.  

The second reason why the queueing time has greatly reduced is that in Table 

11’s approach while one high priority thread that had started running stalled a 

corresponding low priority thread for a long time, in Table 12’s approach the 

implementation using Kafka-Spark-Cassandra gave better performance without 

prioritized threads. As soon as the FI predicts the results of an image by performing 

Image object detection, feature correlation and decision making (decision tree), it 

updates the corresponding weight of the connected graph that resides in Cassandra. So 

the next car doesn’t have to wait an entire duration of the time while an earlier car is still 

in transit (critical section problem in the earlier approach).  

The third reason is Apache Cassandra’s fast read/write. Owing to the structural 

components discussed earlier like Commit Logs, Index of an Index and MemTables. 

Mostly the processing is in-memory again rather than disk reads. This saves a lot of time 

when compared to the earlier approach. 

The fourth reason is Apache Kafka’s highly fault-tolerant and fast disk reads 

owing to the Sequential I/O nature of the OS. Here again it is an in-memory processing. 

The ordered nature of the messages of Apache Kafka makes the OS prefetch the data 

from the disk to the disk/page cache which resides in the main memory.  

The deep-learning and machine learning portions of the code were actually 

written in python and that is the reason why the codes were a little slower than 

that which was written in C/C++ for the earlier chapters.  

 

8.11 Conclusion 

 

 

The goal of my research was to implement an interconnected smart middleware 
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that spans a three tiered network architecture to facilitate better real-time and near-real-

time responses for IoT/IoE devices. While trying to disassemble the application 

benchmark over the tiers, I found that by limiting the data that travels to the cloud we can 

prohibit the conversion of BigData to Big-Squared-Data that would have easily 

overwhelmed any powerful cloud architecture. Thus the reason for Fog Computing is 

justified as we can find a way to save data bandwidth that is travelling to the cloud. After 

this was achieved I tried to address the other most important issue of real-time and near-

real-time responses. I found out during the course of my research that utilizing a 

clustered framework on both the Fog instances and the Cloud Servers and leveraging 

the BigData IoT/IoE framework of Apache Spark, I could reduce the latency of 

computation by a wide margin as is estimated from the results. By utilizing message 

queues like Apache Kafka and NoSQL databases like Apache Cassandra, I could 

improve the results even further as is described earlier. I also successfully managed to 

deploy deep-learning algorithms as external processes in Spark Streaming jobs thereby 

managing to maintain a constant task-level parallelism that helped in improving the 

performance. I would like to conclude this dissertation report by reiterating that in 

tomorrow’s ever-connected world with ubiquitous smart devices that are constantly 

sending/receiving data back and forth, Fog Computing is the need of the hour. Such an 

architecture will help mitigate the problems of Big-Squared-Data, it will help reduce the 

network latency as the entire goal of Fog Computing is to perform the computation as 

close to the edge device as possible.  
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