
IMPLEMENTATION OF A DISTRIBUTED MIDDLEWARE FRAMEWORK TO SPAN THE

EDGE - FOG - CLOUD TIERS OF A MOBILE DISTRIBUTED COMPUTING IoE

PLATFORM REQUIRING REAL-TIME AND NEAR-REAL-TIME RESPONSE

by

Arindrajit Seal

A dissertation submitted to the faculty of

The University of North Carolina at Charlotte

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2020

 Approved by:

Dr. Arindam Mukherjee

Dr. Chen Chen

 Dr. Tao Han

Dr. Fareena Saqib

Dr. Susan Sell

ii

©2020

Arindrajit Seal

ALL RIGHTS RESERVED

iii

ABSTRACT

ARINDRAJIT SEAL. Implementation of a Distributed Middleware Framework to span the

Edge - Fog - Cloud tiers of a Mobile Distributed Computing IoE Platform requiring real-

time and near-real-time response. (Under the direction of DR. ARINDAM MUKHERJEE).

This report motivates the roles of Cloud computing, Edge computing, and the

hierarchically distributed cooperative Fog computing, for the real-time analysis of

big-data in Internets-of-Everything (IoEs). IoEs are enhanced Internets of Things (IoTs)

which integrate people, process, data and heterogeneous “Things”: compute, storage,

and sensor/actuator hardware. The ubiquitousness of IoE devices, the ever-increasing

amount of big-data in IoEs, and the need for real-time computing in IoEs have motivated

the problem of distributed data storage and analysis. With trillions (big-data scale) of IoE

devices on the verge of being deployed in tomorrow’s ever-connected and autonomous

society, and with the expected big-data generated by each such IoE device (typically

image data of the order of tens and hundreds of gigabytes per day), we are rapidly

approaching Big-Squared data dimensions. The power consumption of traditional cloud

data centers are already about 70% of all power generated, and it will increase

exponentially if Cloud computing is the only solution for tomorrow’s IoEs. Moreover, the

Big-Squared-Data from merging IoEs will create network and compute level bottlenecks

that will be impractical from a real-time standpoint, especially in case of rapid mobility in

IoEs. Hence, the need for distributed hierarchical Fog computing and associated data

management. I survey key features of emerging IoEs, the existing big-data computing

and storage frameworks, and point out their capabilities and deficiencies. I discuss the

design and implementation of my Fog computing architecture. I present my work in

Accident Identification and Related Congestion Control. The results show that having a

iv

Fog Computing Layer helps in cutting down data bandwidth to the cloud and reduces

total latency by approximately 80%. Finally, I have shown that the integration of Apache

Kafka, Apache Cassandra and Spark Streaming in a Fog Computing Architecture has a

greater impact on the problem at hand and it is successful in solving both the issues of

real-time and near-real-time responses along with containing the Big-Squared-Data to

just big-data and conserving the data bandwidth.

v

ACKNOWLEDGEMENTS

First and foremost I would like to thank Dr. Arindam Mukherjee who allowed me to work

with him in his lab at UNC Charlotte and without whom this would not have been

possible. Dr. Mukherjee’s ideas and valuable inputs to the research made the entire

endeavour quite smooth and an enriching experience for me. True research can only be

made possible when your mind is given much needed freedom to do the things in your

own comfort zone irrespective of the time of conducting the research. Dr. Mukherjee did

just that and I am grateful that he believed in me and put his trust in me. I would also like

to thank my committee members like Dr. Tao Han, Dr. Fareena Saqib, Dr. Susan Sell

and Dr. Chen Chen for being a part of my dissertation committee and helping me from

time to time with my research. The department of Electrical and Computer Engineering

at The University of North Carolina at Charlotte also played a pivotal role. I owe my

gratitude to the department as it deemed me worthy to utilize its resources and also for

funding my entire education – a big contribution indeed.

I would certainly acknowledge the contribution of Mr. Sumanta Bhattacharyya who

collaborated with me in my ongoing research. Mr. Bhattacharyya helped in designing an

accident identification dataset which was crucial for my research. He managed to collect

and assemble the dataset from scratch. A very tiresome but necessary job that needed

to be done and for that I am grateful.

I am also indebted to my parents for being a constant source of support during my time

as a Ph.D. student. It is only because of their prayers and sacrifices that I have reached

where I reached today.

vi

 Last but not the least; I would like to thank the Almighty for giving me the opportunity to

attain a doctoral degree.

vii

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 1

 1.2 Contribution 2

 1.3 Progression 3

CHAPTER 2: RELATED WORK 4

 2.1 Internet of Things 4

 2.2 Cloud Computing 4

 2.3 Fog Computing 5

 2.4 Key Features of Emerging IoEs 5

 2.4.1 Rapid Mobility 6

 2.4.2 Seamless Integration of Diverse Communication Protocols and

 Hardware 8

 2.4.3 Structured and Unstructured Data 9

 2.4.4 Scalability and Connectivity 9

 2.4.5 Real-time Computation 10

CHAPTER 3: BIG DATA FRAMEWORKS 11

 3.1 Big-Data Analysis Frameworks 11

 3.1.1 Batch Processing Frameworks 11

 3.1.2 Stream Processing Frameworks 13

 3.2 Big-Data Storage Frameworks 14

 3.2.1 SQL Databases 14

viii

 3.2.2 NoSQL Databases 14

CHAPTER 4: FOG COMPUTING ARCHITECTURE 15

 4.1 Assumptions 15

 4.2 System Outline 15

 4.3 Architecture Details 16

 4.4 My Implementation of Fog 18

CHAPTER 5: BENCHMARK DATASET AND APPLICATION IN NEAR REAL-TIME

ACCIDENT PREDICTION AND RELATED CONGESTION CONTROL 20

 5.1 Deep learning and Modelling 20

 5.2 Supervised and unsupervised learning 24

 5.3 Traffic Incidence Detection and Congestion-Aware Navigation 25

 5.4 Middleware 26

 5.4.1 Job Scheduling 28

 5.4.2 Database Management 29

 5.4.3 Communication Handling 29

 5.5 Results 29

CHAPTER 6: BENCHMARK DATASET AND APPLICATION IN A SPARK AWS EMR

CLUSTER 33

 6.1 Streaming Applications with Apache Spark 33

 6.2 Amazon Web Services 34

 6.2.1 Elastic Map Reduce 35

 6.3 Results 37

CHAPTER 7: REAL-TIME TRAFFIC MANAGEMENT OF AUTONOMOUS VEHICLES

USING INTER-FOG COMMUNICATION ON 4G LTE NETWORKS 38

 7.1 Wi-Fi and LTE NETWORKS 38

ix

 7.2 Related Work 40

 7.3 Our Proposed Algorithm 41

 7.4 Results 44

 7.5 Discussion 47

CHAPTER 8 : ACCIDENT PREDICTION AND CONGESTION CONTROL USING

SPARK STREAMS THROUGH KAFKA IN A FOG COMPUTING BASED IOT

NETWORK ARCHITECTURE 48

 8.1 Spark Streams 48

 8.2 Reason for choosing Spark Streaming 49

 8.3 Advantages of Spark Streaming 50

8.4 Apache Kafka 50

 8.4.1 Publish-Subscribe Messaging System 51

 8.5 Apache Cassandra 52

 8.5.1 Storage in Cassandra 54

 8.6 Our implementation of the Fog Computing Architecture 55

 8.7 Deep-Learning and the Application Benchmark 56

 8.7.1 Deep learning and Modelling 57

 8.8 Rule Based Decision Tree 59

 8.9 Congestion Awareness and Changes in Routing 60

 8.10 Results 61

 8.11 Conclusion 62

REFERENCES 64

x

LIST OF TABLES

TABLE 1: MINIMUM AVERAGE PRECISION 24

TABLE 2: MIDDLEWARE 27

TABLE 3: NAVIGATION AND IMAGE PROCESSING ON THE CLOUD 29

TABLE 4. NAVIGATION ON CLOUD AND IMAGE PROCESSING ON FOG

SERIALLY 29

TABLE 5: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON

 FOG IN PARALLEL 30

TABLE 6: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON

 FOG IN PARALLEL WITH QUEUING 30

TABLE 7: NAVIGATION AND IMAGE PROCESSING ON THE EC2

INSTANCE 37

TABLE 8: NAVIGATION ON CLOUD AND IMAGE PROCESSINGON A 2

 NODE EMR CLUSTER 37

TABLE 9: CLOUD ONLY ARCHITECTURE (WITHOUT FOG INSTANCES) 46

TABLE 10: INTEGRATION OF THE FOG ARCHITECTURE WITH THE

 CLOUD 46

TABLE 11: NAVIGATION ON CLOUD AND IMAGE PROCESSING

ON THE FOG WITH QUEUING 61

TABLE 12: NAVIGATION ON CLOUD AND IMAGE PROCESSING

ON THE FOG WITH QUEUING (SPARK - KAFKA - CASSANDRA) 61

xi

LIST OF FIGURES

FIGURE 1: MOBILE CLOUD COMPUTING (MCC) 6

FIGURE 2: DISRUPTIONS IN SERVICES DUE TO: (A) MOBILE

NODE HANDOVER; (B) PROCESS MIGRATION

(CRIU); (C) MOBILE NODE HANDOVER WITH PROCESS

MIGRATION 8

FIGURE 3: FOG COMPUTING ARCHITECTURE 16

FIGURE 4: NETWORKING LINKS AND COMPONENTS OF FOG

COMPUTING 18

FIGURE 5: DEEP LEARNING AND MODEL DEVELOPMENT 21

FIGURE 6: RESULT OF YOLOV3.11 22

FIGURE 7: CURRENT AVG. LOSS VS ITERATION 23

FIGURE 8: RULE BASED LEARNING 25

FIGURE 9: ROUTING ON THE CLOUD AND HISTORY TABLE

UPDATION 26

FIGURE 10: MIDDLEWARE IN THE CLOUD, FOG AND EDGE TIERS 27

FIGURE 11: THE OPTIMUM NUMBER OF THREADS 28

FIGURE 12 : THREAD COUNT BEFORE THE PROCESS IS STARTED 32

FIGURE 13: THREAD COUNT FOR OPERATION ON A SINGLE CAR 32

FIGURE 14: THREAD COUNT FOR OPERATION ON EIGHT CARS 32

FIGURE 15: SPARK STREAMING 33

FIGURE 16: DATA STREAMING 34

FIGURE 17: AWS EMR 36

FIGURE 18: PROPOSED APPROACH 36

xii

FIGURE 19: LTE ARCHITECTURE 40

FIGURE 20: MODEL AND WORKFLOW DEVELOPMENT 41

FIGURE 21: DFD OF THE PREDICTIVE APPROACH 43

FIGURE 22: BLOCK DIAGRAM OF THE REACTIVE APPROACH 44

FIGURE 23: SPARK STREAMING DATA FLOW 48

FIGURE 24: SPARK STANDALONE CLUSTER 49

FIGURE 26: APACHE KAFKA’S ARCHITECTURE 52

FIGURE 27: APACHE CASSANDRA CLUSTER 53

FIGURE 28: STORAGE COMPONENTS IN CASSANDRA 54

FIGURE 29: FOG COMPUTING ARCHITECTURE 56

FIGURE 30: WORKFLOW OF THE APPLICATION BENCHMARK 58

FIGURE 31: RULE BASED LEARNING 59

FIGURE 32: ROUTING ON THE CLOUD AND HISTORY TABLE

UPDATION 60

1

CHAPTER 1: INTRODUCTION

Cloud technology is generally based on data centers, which handle data storage

and analysis. It’s more like a client server paradigm where the server, residing inside the

cloud, does all the work and returns the result to the devices or clients. With the ever-

increasing number and bandwidth requirements of devices that are connected to the

internet however, cloud is not able to handle the big-data in real-time, or even with

acceptable delays. In 2012, global commercialization of Internets-of-EveryThing (IoEs)

based systems created a profit of $4.8 trillion [1], with CISCO estimating a 21% increase

of profits for the IoE sector [2]. However, the current infrastructure for IoE computing in

the big-squared data space is inadequate – an IoE with billions of autonomous vehicles

that operate in a rapid mobile environment, while sensing and processing data at rates

of 10 Gb/day to 100Gb/day in realtime (low latency) with high Quality of Service (QoS),

presents an ideal benchmark for my proposed framework. Fog Computing is taken into

consideration when we try to elevate the standard of performances of IoE devices that

are mobile. By performance we mainly indulge ourselves in realtime output. [3] shows

that this term - coined by CISCO, is basically intelligence imparted on edge devices and

also other devices in the hierarchy mainly for producing real-time output and reducing

latency. Fog Computing is a natural ally of Cloud Computing as is aforementioned

already but the essentiality of Fog Computing is realized when we talk about latency

resilience and real-time data generated from these network edge devices.

1.1 Motivation

The main storage of cloud computing are the data centers all around the globe.

They communicate among themselves. Presently, every day to day activity is reliant on

the cloud so eventually the data centers are running constantly. [4] references the

2

mathematical model for Cloud Analysis by Zhang et. al. With the increase in IoE devices,

traditional cloud computing will be facing the following challenges:- (i) The International

Data Corporation (IDC) foretells that the global market for IoE will grow from $1.9 trillion

(2013) to $7.1 trillion (2020) [5]. (ii) The US Environmental Protection Agency(EPA)

stated that the data centers of the United States consumed a total power of 61 billion

kWh whose expenditure was around $4.5 billion. In 2007, it was seen that 30 million

servers worldwide spent 100 TWh of the world’s energy [6] & [7]. (iii) Currently the

planet’s energy consumption is around 1500 TWh [8]. By traffic controlling , the relative

up-time of the data centers can be reduced which will help in reduction in the overall

power consumption. The essentiality of Fog/Edge Computing comes into the picture

when we talk about real-time and near-real-time responses. Computation, if done on or

very close to the devices from where data gets generated, will reduce the data load over

the cloud. By being able to reduce the data bandwidth to the cloud we are in a way able

to reduce the total up-time of the cloud and hence we are able to reduce the energy

consumption. By having a Fog based architecture we are able to decentralize the

computation and storage which previously was centralized in the case of only a cloud.

Furthermore, if the Fog Computing instances were equipped with a cluster computing

framework, the same ones that are used in a cloud, we will be able to further distribute

the data that will give rise to even further parallel processing and real-time outputs. So in

conclusion we need a distributed middleware framework over the three tiers of

computation Edge-Fog-Cloud that will be helping in the Big-Squared-Data Engineering

due to the rapid increase in IoT/IoE devices.

1.2 Contribution

The main contributions of this research are listed below:- (i) This work motivates

3

the need for Fog computing as a computing and big-data storage infrastructure, that is

physically closer to the millions of points of data generation and actuation in an IoE. The

presence of Fog Computing is expected to enable Real-Time computing for IoEs, by

load balancing with existing Cloud computing infrastructure and reducing network

bandwidth requirements. (ii) I survey key features of emerging IoEs, the existing big data

computing and storage frameworks, and point out their capabilities and deficiencies. (iii)

Finally, I discuss the design and implementation of my Fog computing architecture.

1.3 Progression

The following sections have been assigned according to the order of progression

of the research. Chapter 2 deals with a literature survey of the previous works that have

been done in IoT frameworks. Chapter 3 shows us the existing Big Data Frameworks

and categorizes them into either Batch or Stream Processing frameworks. In chapter 4 I

talk about the Fog Computing Layer and present my Fog Computing Architecture as the

2nd Tier in the three tiered architecture of Edge, Fog and Cloud. In chapter 5 I talk about

using my Fog Architecture performing accident prediction by various deep-learning

models namely YOLOv3 and Tiny YOLOv3 over images and related congestion aware

navigation based on the results of the image object detection, in near real-time. Chapter

6 talks about the same framework this time only on the Cloud over an Amazon EMR

cluster running Apache Spark. Chapter 7 talks about the Ongoing Research and things

that are needed to be done before the final defense.

4

CHAPTER 2: RELATED WORK

2.1 Internet of Things

Presently, IoE comprises of devices that are connected to the Internet enabling

machine-machine (M2M) communication[9],[10],[11]. Thus when we talk about IoT/IoE

frameworks we focus on data storage, computation and managing the data[12]. Devices

relying heavily on the internet are gradually converging towards IoT/IoE[13]. CISCO has

estimated that by 2020 around 50 million devices will be connected to the Internet[14].

Thus a surplus of applications needs to be processed from the domain of IoTs/IoEs. The

data generated will be of high magnitude with a very rapid velocity. The Big-Data

generated from these devices are anticipated to be serviced in real-time[16]-[18]

enabling a reduction in the overall latency. Therefore, the performance of IoTs/IoEs

should be heavily dependent on cloud[19]-[22], and how well the cloud can service a

rainbow of applications requiring services in real-time[12],[23].

2.2 Cloud Computing

Formerly, a number of quality researches have provided the way the processes

are delegated in the cloud[24]-[27]. In [28] , Xiao et. al. proposed a work which would

focus on optimal positioning of data centers for better QoS in terms of latency and cost

efficiency. Tziritas et al. [30] stated migration of processes to better improve the

performance of cloud systems. By using job scheduling techniques, Chandio et. al. tried

to improve QoS by comparing jobs[31]. Several other scheduling algorithms be it for

real-time workload[32] or for energy-efficient scheduling[33] have been proposed on a

small-scale . With the increase in IoE devices at an alarming rate, the data centers

would be insufficient in handling all of the requests from all these devices. There would

5

be denial of services in the worst case or a high latency in servicing . [34] - [37] states

that as we are gradually moving towards technology, we are harming nature, thus

making it mandatory to maintain the eco-friendliness of our surroundings.

2.3 Fog Computing

CISCO coined the term Fog Computing, a revolutionary idea which mitigates the

limitations of cloud computing [3], [38]. It is a distributed computing infrastructure which

is able to handle a lot of internet connected devices. Bonomi et al. [38] showed us the

importance of Fog - Cloud interplay. [39] shows the characteristics of the architecture in

terms of location, geographical distribution, latency . Hong et al. [40] created a

programming model for Fog infrastructure addressing issues like geographical

distribution, real-time applications. The importance of Fog was pointed out by Yannuzzi

et al. [41] and Preden et al. [42] but only at a top-level. [43] considered various

computing models including cloud and worked out the essentiality of building up a Fog

Computing Platform. Do et al. [44], Aazam and Huh [45],[46] have worked on various

problems in resource allocation in Fog. Few researchers have also worked on security

angles in Fog Computing of late [47] - [49].

2.4 Key Features of Emerging IoEs

IoE has revolutionized today’s smart societies by facilitating machine-to-machine

(M2M) communications. Whereas IoT focuses on the integration of “Things” or

heterogeneous smart devices, IoE (Internet of EveryThing) - a termed coined by CISCO

- focuses on the integration of 4 primary tuples, namely People, Process, Data and

“Things”. Some of the key features of emerging IoEs are listed below.

6

2.4.1 Rapid Mobility

Mobile IoE edge devices traverse large geographical distances within short time

intervals. A way to interface these devices with the ubiquitous compute and storage

access is Mobile Cloud Computing (MCC) [51] in which edge devices communicate

directly with the cloud using wireless networks. However, there are strong drawbacks

such as (1) long compute latency due to network delays and cloud congestion, (2) very

high network bandwidth requirement, and (3) low availability of the cloud instance due to

signal attenuation.

FIGURE 1: MOBILE CLOUD COMPUTING(MCC). THE UPWARD ARROWS INDICATE

DATA REQUESTS, UPLOADS AND DOWNWARD ARROWS SIGNIFY COMMANDS

OR DOWNLOADS.

Alternatively, Heterogeneous Networks (HetNets) [51] can be used to offer

wireless coverage in an area with a variety in wireless coverage zones, ranging from an

outdoor environment to indoor office buildings, homes, and underground areas. Such a

HetNet would typically be a Wide Area Network with macrocells, picocells, and/or

femtocells with complex handshaking between the cells to provide coverage, with

handoff capability between network elements as shown in Figure 1. HetNets are defined

7

by Small Cell Forum as a multi-x environment where x denotes technology, domain,

spectrum, operator, vendor’. Although a HetNet improves access to the cloud, it does

not minimize the network congestion and subsequent latency of service.

The combination of MCC and HetNet is not able to deal with rapid mobility since

macro cells are designed to provide signal coverage to larger areas and hence avoid

frequent handovers. The drawback lies in the low data rates and high signal instability

since macro cells generally contain a surplus of mobile nodes in them which ensures

that each device inside the macrocell is bandwidth constrained and they get a low data

rate. Pico and femto cells, on the other hand, provide much higher data rates and signal

stability since these cells generally contain a lesser number of mobile devices, but their

coverage is restricted to a few hundred meters, thus they are not conceived for serving

applications under fast mobility.

Yannuzzi et.al [52] conducted experiments considering three different mobility

scenarios: (i) Mobile Node Handover, (ii) Process Migration using

CRIU(Checkpoint/Restore in Userspace) - a software tool in linux operating system for

freezing a running application and checkpointing it, and (iii) Process Migration oriented

Mobile Node Handovers - Mobile devices changing access points for a handover

towards endpoints. The second case deals with interdomain process migration. In the

last situation both the endpoint and the process move together in a completely real-time

system. The figure below shows the nature of the service disruptions in three different

cases.

8

FIGURE 2: DISRUPTIONS IN SERVICES DUE TO: (A) MOBILE NODE HANDOVER;

(B) PROCESS MIGRATION (CRIU); (C) MOBILE NODE HANDOVER WITH PROCESS

MIGRATION [52].

2.4.2 Seamless Integration of Diverse Nodes and Hardwares

Any device that can connect itself to the internet today and communicate

valuable data is a part of the IoE. For this specific reason the importance of sensory data

is of valuable importance in the field of energy management, waste management, traffic

control, smart transportation, healthcare systems, smart agriculture and smart

greenhouse gas monitoring, just to name a few.

[55] discusses various IoT protocols offered by IEEE,IETF and ITU to enable

various new devices to join in this virtually real world of IoEs . This paper also includes a

discussion on management and security protocols. Kazmi et. al. [54] discusses the

modelling of heterogeneous IoE data streams in order to overcome the challenge of

heterogeneity. Thus to orchestrate the varied number of jobs based on priority coming in

from various heterogeneous edge devices, to establish protocol neutrality(different edge

devices communicate by different communication protocols), we need a middleware.

Along with the diverse hardwares that take part in the data transportation, storage and

analysis, there may also be heterogeneity in the application processes. The middleware

9

must be smart enough to arbitrate between billions to devices that are connected.

2.4.3 Structured and Unstructured data

Structured data usually refers to the data in a RDBMS(Relational Database

Management System), it consists of data fitted into rows and columns with every row

identifying a particular entity with various characteristics. We generally use

SQL(Structured Query Language) in dealing with structured data. Unstructured data

refers to the rest of the data which include videos, images, sensor data, text files, chat

data, mobile phone data in general. We use NoSQL(non SQL) in case of unstructured

data.

Data produced by most IoE devices which operate on the network edge is

unstructured data. Tingli LI et.al. in [56] talks about storage of unstructured data in IoT

through a novel storage solution called IOTMDB based on NoSQL. It is also estimated

that the magnitude of the data that is generated by the IoE in future will surpass even the

scale of Big-Data .Present Big-Data frameworks on the cloud are not designed to handle

such a massive scale of data. IoEs require real-time output with negligible latency and

present Big-Data Frameworks do not take latency into consideration.

2.4.4 Scalability and Connectivity

[57] addresses the issue of connectivity and scalability in the Fog Computing

Framework(to be discussed elaborately in section V) by easily integrating nodes into

either cooperating mode or a task sharing mode. The approach uses a middleware

platform for Distributed Cooperative Data Analytics (DCDA) in the fog premises.

10

2.4.5 Real-Time Computation

The cloud is a physically distributed group of servers, but from a network point of

view it is centralized. IoE requires real-time analysis in which case the cloud fails due to

two major reasons: 1) high latency of service due to an increased Turn Around Time

(TAT) 2) Low Bandwidth and Network Unavailability in regions with poor connectivity.

Hazem En Raafat et.al. [58] extracted statistical features from sensor data from the IoEs

to minimize latency and storage.

11

CHAPTER 3: BIG-DATA FRAMEWORKS

Handling the volume, variety, and velocity of IoE big-data requires a new

computing model with the following requirements: Reduce latency: In order to meet

Real-Time constraints, data analysis has to be made closer to the edge device.

Conserve network bandwidth and storage: IoE data will eventually congest any network

unless hierarchical computation and data volume reduction is done between the data

producers and data analyzers. Address security concerns: The data generated from IoE

devices should be secured from source to the destination. Operate reliably: Any

framework for big-data analysis must have high availability and reliability. In the following

subsections I survey the existing frameworks for big-data analysis and storage, and

point out their advantages and deficiencies.

3.1 Big-Data Analysis Frameworks

3.1.1 Batch Processing Frameworks

Apache Hadoop is a batch processing framework. Hadoop was the first big-data

framework to gain significant recognition in the open-source community. Based on a lot

of facts and reports by Google about how they were dealing with a surplus amount of

data at the time, Hadoop tailored the algorithms and made abstraction framework to

make large scale batch processing feasible. Present versions of Hadoop comprises of

many components or layers, that work together on batch data.

HDFS: HDFS, which stands for Hadoop Distributed File System, is the distributed

file system for storage on hadoop cluster nodes using a replication factor. HDFS ensures

that the entire hadoop framework is fault-tolerant.

12

YARN: YARN, which stands for Yet Another Resource Negotiator, is the

coordinator in the Hadoop stack which maintains the cluster. It is a job scheduler and a

coordinator for the underlying resources. YARN made it possible for a wide variety of

workloads to be run on the cluster, than was possible in earlier versions, by acting as an

interface to the cluster resources.

MapReduce: MapReduce is Hadoop's engine for batch processing of jobs.

Although Hadoop has some clear advantages in terms of scalability (storing and

distributing large datasets across hundreds of inexpensive servers), fault-tolerance(data

gets replicated within the cluster of nodes), flexibility(used for a wide range of purposes

including fraud-detection, data warehousing, recommendation systems, log processing,

market campaign analysis), it lags behind in some key areas which became evident after

the advent of IoTs followed by the current IoEs.

The shortcomings of Hadoop includes security(missing encryption at the storage and

network levels),vulnerability(the entire framework is written in Java- a widely used but

controversial language since it is heavily exploited by cybercriminals), latency(the

system was not designed to administer results for real-time and near real-time data

analysis).

Apache Spark is a batch processing framework of the next generation that also

does stream processing. Inspired by the MapReduce model of Hadoop, Spark can

quicken up workloads in batch processing by donating a processing optimization and full

in-memory computability.

 Spark can act as an alternative to the MapReduce engine by hooking up with Hadoop.

Limitations of Spark include no support for real-time processing(although it does support

near real-time processing) , lack of a file management system, in-memory computation

creates a bottleneck for cost-effective computation of big data.

13

3.1.2 Stream Processing Frameworks

Apache Storm is a data stream processing framework that outputs results with

extremely low latency and is suited for workloads which require near real-time and

realtime analysis There are a lot of similarities that exist between Storm and Hadoop in

terms of scalability and fault-tolerance. Storm is extensively used for near real-time and

real-time analysis of IoE data.

Apache Samza is a data stream processing framework that is bound to the

Apache Kafka messaging system. Kafka may be used by many processing

systems.Samza utilizes Kafka’s architecture providing fault tolerance and state

storage.Samza uses YARN for resource allocation .

Apache Flink is stream framework handling batch tasks. It treats batch

processing as a subset of stream processing since it considers large datasets to have

finite boundaries thus categorizing the workload automatically as batch. This stream

approach unfortunately has side-effects.

This stream-first approach has been named as the Kappa Architecture. The Lambda

Architecture is batch-first architecture that occasionally uses streams to faster produce

results.

Although stream processing has solved the issue of real-time data analysis of

IoEs to an extent, it has a major disadvantage since it only exists on the cloud. [5]-[7]

mentions the exponential increase in the number of IoE devices by 2020 and warns us

about the increasing power consumption by the data centers with implications of

increased CO2 emissions. Computation bottleneck will hence result as an aftermath of

network bottleneck [38].

14

3.2 Big-Data Storage Frameworks

 3.2.1 SQL Databases

It is possible to access Big-Data stored in the HDFS of Hadoop through SQL-on-

Hadoop. Apache Hive was the first SQL-on-Hadoop engine. Presently, many new

engines have been released like Concurrent Lingual, Hadapt, InfiniDB, CitusDB,

Cloudera Impala, JethroData, MammothDB, Pivotal HawQ, Progress DataDirect,

ScleraDB, Apache Drill, MemSQL, Simba and Splice Machine. All of the aforementioned

database engines work on SQL query.

3.2.2 NoSQL Databases

NoSQL is the new breed of the Database Management System (DBMS). These

databases typically support horizontal scaling, do not fit their data into tabular form with

rows and columns, have a structured storage and they also avoid JOINs . Some of the

most widely used NoSQL database engines are MongoDB, Redis, CouchDB, RevenDB,

MemcacheDB, Riak, Neo4j, HBASE, Perst, HyperGraphDB, Cassandra, Voldemort,

Terrastore, NeoDatis, MyOODB, OrientDB, InfoGrid, Db4objects.

15

CHAPTER 4: FOG COMPUTING ARCHITECTURE

In this Section I present the fog computing architecture and its details. It is

important to mention that fog computing is a non-trivial extension of cloud computing and

extends the services of cloud to the network edge.

4.1 Assumptions

Fog paradigm is still in its early stage of research and is yet to shape up. I,

therefore, draw few simple, yet realistic assumptions. • Edge devices, also termed here

as Terminal Nodes(TNs), are able to share their geospatial location information through

technologies such as GPS(Global Positioning System), GIS(Geographic Information

System), or GNSS(Global Navigation Satellite System) so that services are provided to

the TNs in real-time based on data analysis of its geospatial location. Specific geospatial

perimeters inside which these TNs lie are known as Virtual Clusters(VCs), as shown in

Figure. 3 and Figure. 4. • Fog Computing devices are “intelligent” based on their storage

and computability [38], [40]. Apart from forwarding and routing, they are also in charge of

decision making. These devices decide the suitability of the instance(either Cloud or

Fog) which is best fitted to the running of an application. Every Fog Instance (FI), see

Figure. 3 is in charge of a VC. • Fog Computing Devices support Rapid

Mobility(travelling from one virtual cluster to the other) of the TNs through interfog

instance communication.

4.2 System Outline

This subsection illustrates the distinct tiers of a generic fog computing

architecture. As depicted in Figure. 3, it is essentially three tier architecture. The tiers are

16

discussed below. (a) Tier 1: This is the bottom-most tier of the architecture.This tier is

also referred to as the ‘Edge Tier’, see Figure. 3. The tier comprises of several TNs. The

TNs are smart, wireless sensor nodes that sense heterogeneous location specific

parameters and transfer the same to the immediate upper tier. (b) Tier 2: The tier 2 or

the middle layer is also known as the ‘Fog Tier’. Components of this tier are intelligent

intermediate devices (such as routers, gateways, switches, and access points, PCs) that

possess the ability of data storage, computation, routing, and packet forwarding. (c) Tier

3: The uppermost tier is commonly known as the cloud computing tier. This tier

comprises of servers and PCs.

FIGURE 3: FOG COMPUTING ARCHITECTURE

4.3 Architecture Details

Virtual Clusters (VCs) are location based perimetres which consists of IoE

devices that are being referred to as TNs. TNs constantly scan their environment and

send the data to the Fog. The Fog Tier consists of devices that range from

routers,gateways, access points, switches to PCs. A Fog Instance (FI) is in charge of its

own VC. As proposed by Bonomi et al., [38] the fog computing architecture can be

17

classified into two sub-parts, viz., (a) the fog abstraction layer and (b) the fog

orchestration layer. While the former manages the fog resources, enables virtualization,

and preserves tenant privacy, the latter beholds the exclusive fog properties. The fog

orchestration layer comprises of a small software agent – foglet which monitors the state

of the devices, a distributed database to account for scalability and fault tolerance, and a

service orchestration module which is responsible for policy-based routing of application

requests.Within the FIs, the data are processed and analyzed to decide whether it needs

to be transmitted to the cloud DCs.

Application requests which require storage or historical data based analytics are

redirected to the cloud, else, the data are processed within the fog units. The fog devices

possess limited semi-permanent storage that allow temporary data storage and serve

the latency-sensitive applications in real-time. The cloud computing tier is commonly

responsible for permanent storage of huge, voluminous data chunks within its powerful

DCs. The DCs are equipped with massive computational ability. However, unlike

conventional cloud architecture, the core cloud DCs are not bombarded for every single

query. Fog computing enables the cloud tier to be accessed and utilized in an efficient

and controlled manner.

18

FIGURE 4: NETWORKING LINKS AND COMPONENTS OF FOG COMPUTING [53]

4.4 My Implementation of Fog

(i) Edge Nodes: In this work I have used both Raspberry Pi 3 (RPi3) and Google

Pixel 2 (Walleye) as my edge nodes or TNs. The RPi has specifications of 1.2 GHz

CPU, Armv8 4 cores architecture, Broadcom Video IV GPU, 1GB LPDDR2 RAM, 10/100

Ethernet, 2.4GHz 802.11n wireless and a microSD storage with Raspbian OS. Pixel 2

has a system specification of 1.9 - 2.45 GHz CPU, AARCH64 8 cores architecture, Wi-Fi

2.4G + 5GHz 802.11 a/b/g/n/ac, 4 GB RAM , 52.2 GB Internal Storage with Android 8.0

“Oreo” OS.

(ii) Fog Instances : Intel NUCs play the role of Fog Instances or Servers having

a system configuration of Intel ® core i7 - 7567U CPU @ 3.50 GHz with a 16 GB RAM

DDR4 memory, 512 GB NVME SSD, Intel(R) Dual Band Wireless (802.11ac) and

Bluetooth 4.2, Intel ® Gigabit LAN, Micro SD card slot .

(iii) Cloud Instance: We have established UNCC’s biggest Hadoop-based

research cloud with 39 nodes. The data center is currently available to researchers

working with BigData, Mobile Clouds and Internets-of-Everything. In response to a

proposal in 2016, Intel made an infrastructure donation of 39 Xeon based business class

19

computing/embedded servers to build a data center in the ECE department at UNCC,

with the implied commitment to upgrade machines regularly in future under their

“waterfall” program. The Cloud is connected to the Edge Gateways through Fog

Gateways.

Following are some key technical specs of the servers and the system: 1) There

are currently 39 1U servers, each requiring 350W for computing. The processors are

Xeon E3, or 2nd/3rd generation i3 based (about 100 GFLOPS per server node). 2) Each

server node is equipped with a 10Gbps NIC card for communication. 3) Each server

node has 3TB HDD 2.5in SATA 6Gb/s 7200RPM. The servers are connected by a

switching system with the spec: 48-port 10GbE + 12-port 40/56GbE Non-blocking Open

Ethernet ToR Switch System.

20

CHAPTER 5: BENCHMARK DATASET AND APPLICATION IN NEAR REAL-TIME

ACCIDENT PREDICTION AND RELATED CONGESTION CONTROL

This work focuses on developing (i) a benchmark application for Real-Time traffic

incidence identification and related traffic management, using Real-Time congestion-

aware navigation of smart vehicles (Edge nodes) with video feeds, (ii) an image

database for Deep Learning used for recognition and classification of traffic incidences

such as accidents and congestions, (iii) the System Level Software (or Middleware)

required for Distributed Computing in such a heterogeneous Real-Time constrained

system with Rapid Mobility - today’s Internet-of-Everything (IoE), and (iv) a hardware

prototype of the distributed computing and storage infrastructure. The video bandwidth

requirement of 10-100 GigaBytes of data per minute per vehicular camera makes it a Big

Data problem. With millions of smart vehicles projected to be deployed within the next 5

years, BigData from a single vehicle, multiplied with the large number of vehicles,

presents a Big-Squared-Data computing space which will easily overwhelm any Cloud

infrastructure with its Real-Time or near Real-Time demands. Hence the need for a Fog

tier between the Edge nodes and the Cloud to bring distributed computation (servers)

and storage closer to the Edge nodes. Such a Fog consists of multiple Fog instances,

each one of which services cells or Virtual Clusters of Edge nodes. Results show that

Fog-Cloud computing framework outperforms a Cloud-only platform by 79.7% reduction

in total latency or response time.

5.1 Deep learning and Modeling

The objective of this analysis is to predict the kind of traffic incident (or accident)

and the associated congestion along with it, from live video feed images from the smart

vehicles, and re-route their paths based on the time taken for the clearance. This image

21

analysis for traffic incidence and congestion prediction, and Deep Learning (training), are

done continuously in Real-Time, along with congestion-aware re-routing. Fig. 5 shown

below presents a block diagram of the underlying workflow of the deep learning and

subsequent machine learning based model development.

FIGURE 5: DEEP LEARNING AND MODEL DEVELOPMENT

In recent years, evolution of convolutional neural networks (CNN) have resulted

in significant improvement in object detection and recognition. The original YOLOv3 [59],

[60] has been trained on a Microsoft Common Objects in Context (COCO) dataset with

80 different objects, most of which are unrelated to traffic. In this work I am using two

CNN architectures to classify the data: YOLOv3.11 (for 11 classes related to traffic

congestion) for traffic object identification and tiny YOLOv3.6 (for 6 classes related to

traffic incidences).

In Fig.6, YOLOv3.11 was used for object detection primarily because of its state-

22

of-the-art performance with reasonable accuracy. It has 106 layers, is fully convolutional

with residual skip connections and up sampling, and detection is done by applying 1x1

detection kernels on feature maps of three different sizes at three different places in the

network. It is trained on the COCO dataset. I used the classes: ‘car’, ‘motorbike’, ‘bus’,

’truck’, ’person’, ‘traffic light’, ‘stop sign’, ‘train’, ‘bicycle’, ‘fire-hydrant’, ‘parking-meter’ out

of the 80 classes in the COCO dataset for our object detection module.

The shape of the detection kernel is 1x1x(Bx(5 + C)). Here B is the number of

bounding boxes a cell on the feature map can predict, C is the no of classes. For my

architecture I took 11 classes, B = 3 and C = 11, so the kernel size is 1 x 1 x 48.

I used feature correlation using logistic regression on the predicted outputs from

the first network to assign the input image in any one of these 3 target classes: high

congestion, medium congestion and low congestion. These will be our three buckets to

measure the degree of congestion. Details of this process is discussed in section below.

 FIGURE 6: RESULT OF YOLOV3.11

Dataset to Test: Since image databases required for this learning are not easily

available or open-sourced, we recorded about 20 hours of video, driving around

23

Charlotte, North Carolina and lower Manhattan, New York city. We extracted 10876

relevant images from video data using a video-to-image converter and tested on them.

For the second network, we chose tiny YOLOv3.6 for detection. It is meant to be

used for resource constrained environments. It has 23 layers in a similar architecture to

YOLOv3. We used this network due to its better training on smaller datasets. It detects 6

classes: police car, ambulance, crash, car on fire, car upside down, and fire truck. We

designed our own annotated dataset containing around 600 images of these classes to

train and 150 test images. The following image is the training plot showing the loss vs

iteration. We achieve convergence at 50,138 iterations with a current average loss of

0.288 and a learning rate of 0.001 (Fig. 7).

FIGURE 7: CURRENT AVG. LOSS VS ITERATION

Since there is no well defined dataset of accident pictures, we needed to create

our own dataset and annotate them properly. Due to the small size of the dataset, we

could not train it on YOLOv3 architecture, like the COCO dataset, as there is a strong

possibility of loss of accuracy. We found the architecture of Fig. 2 to be more accurate

than a single network architecture. We are open-sourcing our dataset for the community.

24

Accuracy: We used mean Average Precision(mAP) to evaluate our detection

model. The idea of Average Precision can be conceptually viewed as finding the area

under the precision-recall graph. Table 1 shows us the mAP values for our model.

Precision: Measures how accurate our predictions are, as the ratio of true

positives to all positives.

Recall: Measures how well the algorithm finds all the positives.

TABLE 1: MINIMUM AVERAGE PRECISION

configuration mAP Train Dataset Test Dataset classes remark

YOLOv3 51.5 COCO dataset COCO dataset 80 classes 106 layers

YOLOv3.11 43.7 COCO dataset our driving dataset 11 classes 106 layers

Tiny YOLOv3.6 31.5 traffic incidence

dataset

traffic incidence

dataset

6 classes 23 layers

5.2 Supervised and unsupervised learning

The trained YOLOv3 model detects objects from the images and passes the

objects and their confidence scores to a Linear Logistic Regression model (Supervised

Learning). The model performs feature correlation and classifies the image into 3

buckets of congestion categorized as high, medium and low.

The trained Tiny YOLOv3 model detects incidences from the same image (if any)

and gives confidence scores for the classes categorized as crash, car on fire, fire truck,

police car and ambulance, and car upside down. This information is integrated with the

output of the Linear Logistic Regression using a rule based approach.

25

FIGURE 8: RULE BASED LEARNING

We correlate the output from the Logistic Regression and the outputs from the

Tiny YOLOv3.6 using a Rule Based Learning Approach. Fig. 8 shows us how the model

learns and integrates kinds of congestion along with detection of an accident for setting

up the Time for clearance of the roads (edges of the graph).

5.3 Traffic Incidence Detection and Congestion-Aware Navigation

I created an undirected weighted graph with the nodes as the intersection for the

roads of Lower Manhattan in New York City (NYC), and the roads represented by the

edges. When smart vehicles request the route from a given source to a destination, its

corresponding FI passes it on to the cloud for routing. The cloud calculates the

congestion-aware shortest route, and that information is passed down to the car through

its FI. Meanwhile, the car keeps on capturing street videos and presents them to the Fog

for interpretation. The aforementioned models derived from deep learning are applied on

to the images (in test mode) from the videos frame-by-frame to recognize traffic

incidences and congestion. That information is passed on to the cloud (as edge weights)

26

to update its connected routing graph and re-route vehicles.

My framework performs image analysis on the Fog and congestion aware routing

on the Cloud. In order to reduce the computation overhead from the increasing number

of devices connected to the cloud [1], [2] and also to reduce the consumption of power

from the data centers [3], I am limiting the Big Squared Data by processing the bulk of

the bandwidth (images from videos) on the FI itself.

The Cloud has in its possession a History Table (HT) which stores the counter

value in minutes for each Result Type. The Counter can be thought of as a timer that

starts decreasing after it is initially set. When it reaches zero the edge of the graph that

was assigned a higher weight because of congestion is reset to the initial weight. Fig. 9

shown below shows us the flowchart of the routing on the cloud along with the HT

updation.

FIGURE 9: ROUTING ON THE CLOUD AND HISTORY TABLE UPDATION

5.4 Middleware

Fig. 10 depicts the different functions executed by the Edge nodes and the Fog

27

and Cloud instances. Except for the Image Classifier and Routing functions, which are

application codes, all other functions are the system software (middleware) codes. The

send or receive functions handle communication between the different tiers and between

Fog instances, while the Fog and Cloud Schedulers manage application job executions

(specific to different vehicle data and requests). Navigation and image data are stored in

the Cloud and Fog databases, which are managed by the corresponding DB_Manager

functions. The Execute Application function includes Image Processing (which is

forwarded to the Cloud by a busy Fog Instance) and Routing (Global).

FIGURE 10: MIDDLEWARE IN THE CLOUD, FOG AND EDGE TIERS

Table 2 shows the different middleware functionalities.

TABLE 2 : MIDDLEWARE

TIER MIDDLEWARE APPLICATION

Tier 1 - Edge Node

Edge DB Management

Edge Job Scheduling
Edge-Fog Communication Handler

Collect videos from cameras

Tier 2 - Fog instance

Fog DB Management

Fog Job Scheduling
Fog-Edge Communication Handler

Fog-Cloud Communication Handler

Local Navigation

Image Analysis

28

Fog-Fog Communication Handler

Tier 3 - Cloud instance

Cloud DB Management

Cloud Job Scheduling

Cloud-Fog Communication Handler

Global Navigation

Image Analysis (when Fog is busy)

5.4.1 Job Scheduling

In order to service the requests efficiently I have devised MultiThreaded Fog and

Cloud servers which can simultaneously service many client requests at the same time

through parallel processing of the data. First-In-First-Out(FIFO) Queue scheduling has

been implemented for both Fog servers and the Cloud server. The client requests will

only be queued after the thresholding limit of multithreading is exceeded. The threshold

limit of multithreading depends on the server configurations. For the Fog servers the

thresholding value has been found to be approximately 2000 parallel threads for normal

computations which do not involve heavy deep-learning computations like YOLO. Fig. 11

shown below shows the behaviour of the Fog system when I increase the number of

threads.

 FIGURE 11: THE OPTIMUM NUMBER OF THREADS

29

 5.4.2 Database Management

 Database management mainly deals with the saving and deletion of images sent

by the smart cars for image analysis and classification. When an image is received by a

fog or cloud instance, it saves the image at a particular location in the file system,

identified by the car_id, timestamp and geolocation coordinates, and that location is

passed to the image analyzer. After the image analysis is completed, the image is

placed on a queue for deletion.

5.4.3 Communication Handling

 Communication handling functions are under the control of the middleware, but

they are not scheduled in the task queues because they run as concurrent threads with

the job scheduler. All communications are implemented using TCP/IP sockets.

5.5 Results

Latency for an IoE node is the time interval between the moment when an IoE

node sends a service request and when it receives the corresponding response.

TABLE 3: NAVIGATION AND IMAGE PROCESSING ON THE CLOUD

Average Total Image

Processing Time

(seconds)

Average Computation

Time for Yolo V3

(seconds)

Average Computation

Time For Tiny Yolo

(seconds)

Average Computation

Time for Rule Based

(milliseconds)

Average Navigation

Time + Network

Latency (Edge-Cloud-

Edge) (seconds)

18.93 17.15 1.78 0.03 0.89

Table 3 shows the latencies for all computations (Navigation+Image Processing) done

on the Cloud only, in the absence of the Fog instances.

TABLE 4: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON FOG SERIALLY

Average Total Image Average Computation Average Computation Average Average Navigation

30

Processing Time (in

Fog) (seconds)

Time for Yolo V3(in

Fog) (seconds)

Time For Tiny Yolo

(seconds)

ComputationTime for

Rule Based

(milliseconds)

Time + Network

Latency (Edge-Cloud-

Edge) (seconds)

8.14 7.5 0.92 0.07 0.18

-56.9% -56.26% -48.31% 133.33% (time is in

the order of ms for

this column)

-79.77%

TABLE 5: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON FOG IN

PARALLEL

Average Total Image

Processing Time (in

Fog) (seconds)

Average Computation

Time for Yolo V3

(seconds)

Average Computation

Time For Tiny Yolo

(seconds)

Average Computation

Time for Rule Based

(seconds)

Average Navigation

Time + Network

Latency (Edge-Cloud-

Edge) (seconds)

9.84 9.53 1.05 0.07 0.13

TABLE 6: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON FOG IN

PARALLEL WITH QUEUING

Groups Average Total

Image Processing

Time (in Fog)

(seconds)

Average

Computation

Time for Yolo V3

(seconds)

Average

Computation

Time For Tiny

Yolo (seconds)

Average

Computation

Time for Rule

Based

(milliseconds)

Average

Navigation +

Queuing +

Network Latency

(Edge)

(seconds)

Group A high
priority requests -

low waiting times

in queue

17.48 12.69

1.62 0.05 0.12

Group B low

priority requests -
high waiting times

in queue

170.43 17.08 1.59 0.062 42.692

Table 4 shows the average latencies when Image Processing is done on the Fog

and the Navigation is done on the cloud (partial data forwarding) in a serial fashion. The

average back and forth network latency is found out to be 0.179s. The last row of Table

4 (Navigation in Cloud and Image Processing in Fog) shows the reductions of average

latencies in all the columns when compared to those in Table 3 (where all computations

are done on the Cloud).

The total wait time of any car request for serial handling is the sum of the

latencies of all previous requests that need to be serviced in the time window when the

31

request is active. Hence for the Nth request in an active window, there will be N-1

previous requests that will have to be serviced with a latency (Total Image Processing

Time) of 7.5secs per request, on average, for a total wait time of 7.5(N-1) secs before

the Nth request will start processing. Hence, the Total Image Processing Time for the

Nth request will be 7.5(N) seconds, on average.

Table 5 shows us the values for the average latencies when requests from

different cars are handled in parallel. On average, the Total Image Processing Time

reduces to 9.84 secs, and this number remains independent of the number of car

requests as long as the number of parallel threads does not exceed hardware capacity

and start queuing requests.

Table 6 shows the average latencies when the number of requests from cars

exceed the multithreading capability of the Fog hardware, so that additional requests are

queued. Although each Intel-NUC (used as a Fog node) is capable of handling a huge

number threads in parallel (as shown in Fig. 8), when YOLO runs on the Fog instance

for Image Processing, around 5 parallel executions of YOLO (corresponding to 5

requests from cars) spawns close to a thousand parallel threads - hence the limit on the

number of requests that can be parallely processed, and the increased queuing times for

larger number of car requests. This limitation can be overcome using a cloud of NUCs

for a particular Fog instance, or using alternate hardware with even greater

multithreading capability.

I have prioritized the individual car requests based on the distances between

their sources and destinations; fewer the number of intersections in the navigation path,

higher the priority of the corresponding car request. I have split the results of Table 6 into

2 groups corresponding to high priority requests (low waiting times in queues) and low

priority requests (high waiting times in queues). Note the slight increase in Total average

Image Processing time for requests in group A compared to that in Table 5: this is the

32

result of preemptive thread scheduling with waiting threads in the queue, and the larger

increase in average Total Image Processing time for requests in group B compared to

that in group A: this is the result of both preemptive thread scheduling and waiting times

in queues.

FIGURE 12: THREAD COUNT BEFORE THE PROCESS IS STARTED

Before the process is started, the total threads running on the system is 640 as shown in

Fig. 12.

FIGURE 13: THREAD COUNT FOR OPERATION ON A SINGLE CAR

Once YOLO based Image Processing is started for a single car, the thread count is

increases to 769 - an increase of about 130 threads per single instance of YOLO.

FIGURE 14: THREAD COUNT FOR OPERATION ON EIGHT CARS

Fig. 14 shows that when I simulate 8 cars the thread count goes as high as 986.

33

CHAPTER 6: BENCHMARK DATASET AND ITS APPLICATION IN NEAR REAL-TIME

ACCIDENT IDENTIFICATION AND RELATED CONGESTION CONTROL IN A SPARK

AWS EMR CLUSTER

This work focuses on real-time cloud based analytics of live video feeds from the

cameras of self-driven autonomous vehicles using the Spark framework on Amazon’s

Elastic Mapreduce (EMR). We use deep-learning methodologies for real-time object

detection and classification on the streamed images, to classify and predict traffic

incidences, leading to subsequent congestion control. Results on a benchmark

application: traffic congestion aware navigation using 10 self-driving vehicles with their

own camera feeds as they drive around in Manhattan; show an 58% improvement in

performance on the AWS-EMR based Spark framework, when compared to cloud

processing on a single instance of EC2 server on the AWS.

6.1 Streaming Applications with Apache Spark

Spark Streaming is an extension of core Spark that was added to Apache Spark

in 2013. It provides scalability, fault-tolerance and high-throughput of data streams that

are coming in live. Data consumption is possible through means such as Apache Kafka,

Apache Flume, Apache Kinesis or TCP/IP Sockets. The output can be pushed into a file

system or any database or via TCP/IP socket.

FIGURE 15: SPARK STREAMING

The way this spark streaming works is the data streams are divided into batches

34

and the batches are processed by Spark to generate a final stream of results as shown

in Figure 16.

The key abstraction of Spark Streaming is Discretized Stream or DStream which

represents a stream of data that is divided into small batches and are built on Spark

RDDs. Resilient Distributed Datasets(RDDs) in Spark are collections of elements that

can be operated on in parallel. RDDs can be created by parallelizing a collection(data

structure) or by referencing a dataset in an external file system like HDFS / HBASE, S3

or Kafka. You will find tabs throughout this guide that let you choose between code

snippets of different languages. Fig. 15 and Fig. 16 show an abstract block diagram of

Spark Streaming.

FIGURE 16: DATA STREAMING

6.2 Amazon Web Services

Amazon Web Service(AWS) is basically a service that is provided by amazon as

an on-demand platform or more technically a platform as a service(PaaS) to subscribers,

companies and governments, on a pay basis. The technology adheres to the needs of

the subscribers by providing them with a cluster of servers , available all the time,

through the Internet. AWS provides the following : (CPU(s) & GPU(s) for processing,

local/RAM memory, hard-disk/SSD storage); operating systems choices; networking;

and pre-loaded application software such as web servers, databases etc.

35

The AWS technology is implemented at amazon data centers throughout the

world .The fee is based on the usage of the system and its pay per use. AWS has 6 data

centers at North America.

Two of the most popular services of AWS are Elastic Compute Cloud(EC2) and

Simple Storage Service (S3). The bulk of AWS services lie in the background and are

not exposed to the subscribers and developers, they can avail these services only

through API calls.. AWS is accessed over HTTP, using the REST style and SOAP

protocol.

Services are billed based on usage, but each service measures usage in

different ways. As of 2017, AWS owns a whopping 34% of all cloud (IaaS, PaaS) while

the next competitors are namely Microsoft, Google, and IBM have 11%, 8%, 6%

respectively according to Synergy Group.

6.2.1 Elastic Map Reduce

Amazon Elastic MapReduce (EMR) is an Amazon Web Services (AWS) service

for big data analytics, storage and processing.Amazon EMR offers a scalable, cluster

service wherein the subscriber is provided the platform as well as the infrastructure for

computation.

Amazon EMR is based on Hadoop which is a mapreduce processing framework.

Apache Spark has been a recent add-on over Hadoop. Spark brings in stream

processing capabilities for the framework which was initially absent in Apache Hadoop

which by default is a batch-processing framework. It was developed at Google for web

page indexing and replaced their original indexing algorithms and heuristics in 2004.

Amazon EMR processes big data across a Hadoop based cluster of servers on

Amazon Elastic Compute Cloud (EC2) and Amazon Simple Storage Service (S3). in

36

EMR's name has the term elastic which refers to its dynamic resizing ability, which

allows it to ramp up or reduce resource use depending on the demand at any given time.

Fig. 17 shows a sample AWS based application which integrates a Spark engine on an

EMR cluster with the S3 storage buckets (note: HDFS, RDS, dynamo DB and other

AWS storage can also be instantiated to work with EMR).

FIGURE 17: AWS EMR

FIGURE 18: PROPOSED APPROACH

Fig. 18. Shown above shows the block diagram of my proposed approach in an

abstract manner.

Running the framework mentioned in Chapter 5 over a single Amazon AWS EC2

instance and then over a 2 Node EMR Cluster I have the following results.

37

6.3 Results

I perform a comparison between running the jobs in an EC2 instance versus

running it over a 2 node EMR cluster on Amazon. As an EC2 instance I have chosen the

configuration of t2.micro (Variable ECUs, 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1 GiB

memory, EBS only)

 TABLE 7: NAVIGATION AND IMAGE PROCESSING ON THE EC2 INSTANCE

Average Total Image

Processing Time

(seconds)

Average Computation

Time for Yolo V3

(seconds)

Average Computation

Time For Tiny Yolo

(seconds)

Average Computation

Time for Rule Based

(milliseconds)

Average Navigation

Time + Network

Latency (Edge-Cloud-

Edge) (seconds)

18.93 17.15 1.78 0.03 0.89

Table 7 shows the benchmark average of the total image processing time, along

with processing times for both the deep learning YOLO models, the computation times of

the rule based decision tree, as well as the (navigation time + network latency) on the

EC2 instance.

TABLE 8: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON A 2 NODE EMR

CLUSTER

Average Total Image

Processing Time (seconds)

Average Computation Time

for Yolo V3(seconds)

Average Computation Time

For Tiny Yolo (seconds)

Average Computation Time

for Rule Based

(milliseconds)

8.00 7.0 0.5 0.01

-57.51% -59.18% -71.91% -66.66%

Table 8 shows the corresponding data for the same algorithm executing in spark

deployed on a 2-node AWS based EMR cluster. The nodes in the EMR cluster have the

following m4.large configuration: 4 vCore, 8 GiB memory, EBS only Storage:32 GiB.

Compared to the single EC2 based computation, the 2-node Spark based EMR cluster

reduces the image processing time by around 60%, on average.

38

CHAPTER 7: REAL-TIME TRAFFIC MANAGEMENT OF AUTONOMOUS VEHICLES

USING INTER-FOG COMMUNICATION ON 4G LTE NETWORKS

This paper focuses on developing an Inter-Fog data communication mechanism

that was not addressed in [61], [62] & [63] Accident Prediction and Related Congestion

Control based on a Fog Computing Architecture. The bandwidth that is actually required

for images and video streaming of data from autonomous vehicles to the servers

residing on the Fog as well as on the Cloud were only simulated using Wi-Fi internet

connectivity as was elaborated in [61], [62], [63]. In this research we simulate the entire

application using 4G LTE connectivity and compare the results with the Wi-Fi approach.

We also propose two novel approaches - Predictive and Reactive - that control the

handover of the data and metadata of the Terminal Nodes (the autonomous vehicles)

between the Fog Instances.

7.1 Wi-Fi and LTE NETWORKS

The Internet has become a daily necessity for everyone. Mobile Broadband/LTE

and Wi-Fi are mediums to access the internet. Wi-Fi is a wireless networking protocol

based on IEEE 802.11 standard. It is the most popular approach in wireless data

communication. Wireless networking is often synonymous with Wi-Fi technology but it is

a misconception as wireless networking is much broader in nature. Wi-Fi is a trademark

of the Wi-Fi Alliance – a consortium involved with wireless LAN technologies and

products.

 The main requirement of Wi-Fi is that there should be a device like a router,

phone or computer that can transmit the signal to nearby devices within a range. A

router is a device that transmits signals that come from outside the network like an

Internet Service Provider(ISP), to nearby devices that are in reach.

39

 LTE stands for Long Term Evolution and is a 4G - 4th generation wireless

broadband network standard. It offers a higher bandwidth with faster speeds suitable for

voice calls (VoIP) and multimedia streaming. It is very suitable for bandwidth-hungry

applications on mobile devices.

 LTE is a 4G technology using radio waves, unlike 3G and WiMAX that uses

microwaves. LTE has a better penetration in remote areas and has greater coverage

span. It uses Single-Carrier Frequency Division Multiple Access Scheme(SC-FDMA) in

its uplink and Orthogonal Frequency Division Multiple Access (OFDMA)in downlink and

64 QAM modulation scheme. OFDMA utilises channel resources efficiently therefore

increasing the capacity of total number of users. It is an architecture of distributed

intelligence among base stations called eNodeB which are interconnected by interface

named X2 and connected to the core by interface named S2. This distributed

architecture allows User End(Ue) devices in motion to connect to the network with less

handover delay and faster connection setup. Enhanced Packet Core(EPC) is the core of

the architecture consisting of Mobility Management Entity(MME) that manages

authentication, sessions and keeps a track of users. To route the data packets through

the user network, Serving Gateway(S-GW) is used. One of the reasons for the success

of LTE is that it can support 2G and 3G because it uses Evolved Packet Core which

combines voice and data on an Internet Protocol(IP) unlike earlier architectures which

had circuit switching for voice and packet switching for data. The interface between the

LTE network and other packets is Packet-Data Node Gateway(PGW) which manages

Quality of Service(QoS). This architecture is described in Fig. 19 [64] below.

40

FIGURE 19: LTE ARCHITECTURE [64]

7.2 Related Work

As illustrated in the works [61] and [63], the main goal was to predict accidents

and traffic incidences and rerouting based on that received information using live video

feeds from autonomous vehicles. The predictions and image object detections are all

done in real-time from live video feeds for predicting traffic incidences. Rerouting

vehicles based on the received information is done in near and near-real-time. The

workflow and model development of the application algorithm has been shown in Figure

20 below [61]. For the Deep Learning part, the methodology that was used was a real-

time state-of-the-art Image Objection Detection Algorithm called YOLOv3 [59],[60]. It has

106 layers that are fully-convolutional. It is a modification over normal Convolutional

Neural Networks to detect objects from images.

41

 Two instances of the YOLO model were used: one to predict the congestion and

second to detect/predict an accident. The database for the accident prediction was

assembled and open-sourced [62].

FIGURE 20: MODEL AND WORKFLOW DEVELOPMENT [61]

7.3 Our Proposed Algorithm

Predictive Approach

In this approach, a TN recognizes its proximity to the boundary of a VC by

evaluating the Received Signal Strength Indicator (RSSI) from its supervising FI. As a

result, the TN sends out broadcast packets to all neighboring FIs listening over a

42

dedicated port. The Cloud Server oversees the FIs and is aware of the route of the TN,

along with the identity of the VC it would most likely be traversing. The FI in charge of

that VC will be notified by the Cloud Server and it will respond back to the TN with its IP

address, proclaiming that it is the next server which the TN must communicate with. The

data and metadata from one FI are transferred to the next FI through the Cloud. Figure

21 shows the Data Flow Graph of the above approach.

Reactive Approach

We assume that the reactive approach works simultaneously with the predictive

approach. Figure 22, explains the reactive approach where a TN starts traversing a VC

whose FI is unaware of that TN. This can happen either because of misprediction in the

predictive approach above, or because of network failure or high Turn Around Time

(TAT) in the cloud implementing the predictive approach. In the reactive approach, each

FI runs NMap periodically to discover new MACs in its VC. In this situation, the FI will

find the unexpected TN in its VC and inform the Cloud. The Cloud updates the routing

information and informs the original FI chosen (as a result of a prior prediction), that the

TN won’t be travelling through its supervised VC. This FI then sends the data and

metadata of the TN to the Cloud, and deletes the MAC address of the TN from it’s list.

Thereafter the cloud sends the data associated with the TN to the new FI along with the

new route. The new FI then sends this route to TN.

43

FIGURE 21: DFD OF THE PREDICTIVE APPROACH

44

FIGURE 22: BLOCK DIAGRAM OF THE REACTIVE APPROACH

7.4 Results

 Experimental Setup

 For wifi- internet connectivity setup we have used Raspberry Pi boards running

10 parallel threads as Edge Nodes (TNs). We have used Intel NUCs equipped with 16

45

GB RAM, DDR4, i7 - 3.5 GHz, 512 GB SSD hard drive facilitating wireless dual band

(802.11ac) support, as Fog Instances. We have used the data center at the Cyber

Physical Systems Lab at UNCC equipped with 39 nodes as the Cloud.

 For simulating the architecture for LTE, we have used NS-3 which is a discrete-

event network simulator for Internet-systems[9]. We simulated two network models, (1)

Cloud Based Architecture - where the data flows from TN to cloud and back and (2) Fog

Based Network Architecture - Data flows across TN -> FI -> Cloud. In the first model, the

image processing and computation takes place in the cloud server and in the second

case, it takes place in the FI. The simulated architecture consists of LTE and EPC.

 For simplicity, we have used 10 nodes as autonomous vehicles (TNs). The

application sending data in NS-3 is working on top of User Datagram Protocol (UDP).

The average image processing time is added as delay for both the models. For

calculating the average turnaround time, we fixed the positions of the nodes at different

positions. The Maximum Transmission Unit (MTU) is set to 1500 bytes which is nothing

but the largest packet size. Maximum number of packets in uplink and downlink is

1000000 each with a data rate of 100 Gbps. The distance between two base stations - is

60 meters. Since the average navigation (routing/rerouting) time is negligible, we are

ignoring that.

 Table 9 shows the average times for all computations and Network Latency when

computation is done in Cloud only, in the absence of the Fog instances. We observed

that for an ideal case scenario when the terrain - the buildings and the user density in a

particular cell is not considered, LTE provided better Turn Around Time (TAT) than wifi

internet. The Network Latency is the Turnaround Time for both 802.11ac and LTE. Note

the order of magnitude reduction (more than 10 times) in the Network Latency of LTE

compared to that of 802.11ac.

46

TABLE 9: CLOUD ONLY ARCHITECTURE (WITHOUT FOG INSTANCES)

Average Image

Object

Classification

Time

(seconds)

Average

Computation

Time for

Congestion

Detection

(seconds)

Average

Computation

Time For

Accident

Detection

(seconds)

Average

Computation Time

for Model Output

Integration(Decision

Tree) (milliseconds)

Cloud Turn

Around Time

(802.11ac)

(seconds)

Cloud Turn

Around Time

(LTE)

(seconds)

18.93 17.15 1.78 0.03 0.89 0.063

TABLE 10: INTEGRATION OF THE FOG ARCHITECTURE WITH THE CLOUD

Average Image

Object

Classification

Time in the

Fog

(seconds)

Average

Computation

Time for

Congestion

Detection

(seconds)

Average

Computation

Time For

Accident

Detection

(seconds)

Average

Computation Time

for Model Output

Integration(Decision

Tree) (milliseconds)

Cloud Turn

Around Time

(802.11ac)

(Seconds)

Cloud Turn

Around Time

(LTE)

(seconds)

8.14 7.5 0.92 0.07 0.18 0.082

-56.9% -56.26% -48.31% 133.33% (time is in

the order of ms for

this column)

-79.77%

Table 10 shows the average times for all computations and Network Latency

when we have a distributed computation utilizing the Fog Computing Framework. On

average there is a more than 50% reduction in computation times when using fog, which

can be explained by the parallelism realized with multiple FIs. Interestingly, the average

computation time for the Rule Based Decision Tree approximately doubled for the FIs.

We believe the reason for this could be the process suspension mode of the FI

architecture, wherein the main memory is cleared in order to make way for newer

processes when run parallely. We also observe that there is an approximate 80%

reduction in Network Latency on 802.11ac when we compare with that of Table 1 for a

Cloud only framework. The LTE Network Latency is 0.082 secs which is approximately

half the 802.11ac latency. This improvement is not as dramatic as the LTE latency

improvement over its 802.11ac counterpart for the Cloud only architecture because the

Fog architecture’s integration with the Cloud reduces the latency of the 802.11ac

network from 0.89secs to 0.18secs (a factor of 5 reduction).

The increase in the TAT when a Fog Computing Architecture is introduced in the

LTE mobile broadband network simulation is due to the processing delays that occur on

47

each level of the architecture as a result of the increase in the number of hops.

For the Predictive Approach, the handover time is quite small and mostly

equivalent to 0.001 seconds. For the Reactive Approach, the handover time is 1.005

seconds on an average for 802.11ac. The time in seconds for LTE is almost similar to

that of 802.11ac.

7.5 Discussion

The results show us that there is (a) an order of magnitude (approximately 10

times) reduction in the TAT for a cloud only architecture when we use LTE over

802.11ac, and (b) a factor of 2 reduction in TAT when we use LTE over 802.11ac for a

Fog based architecture. Moreover the Fog-Cloud integration achieves more than 50%

reduction in computation time over that of the Cloud only architecture, on average. This

paper also highlights two other approaches viz. Predictive and Reactive through which

the system software provides Rapid Mobility in a roaming wifi as well as on an LTE

environment. Fault tolerance is also achieved as the application provides a mechanism

to recover the TN when it falls under an unintended VC.

48

CHAPTER 8: ACCIDENT PREDICTION AND CONGESTION CONTROL USING

SPARK STREAMS THROUGH KAFKA IN A FOG COMPUTING BASED IOT

NETWORK ARCHITECTURE

8.1 Spark Streams

Spark Streaming is built on top of core Spark that was added to Apache Spark in

2013. It provides scalability, fault-tolerance and high-throughput of data streams that are

coming in live. Data consumption is possible through means such as Apache Kafka,

Apache Flume, Apache Kinesis or TCP/IP Sockets. The output can be pushed into a file

system or any database or via TCP/IP socket.

FIGURE 23: SPARK STREAMING DATA FLOW

The way this spark streaming works is the data streams are divided into batches

and the processing takes place on these batches to give the final stream of results as

shown in Figure 23.

The key abstraction of Spark Streaming is DStream or Discretized Stream which

signifies a stream of data that is divided into small batches and are built on Spark RDDs.

Resilient Distributed Datasets(RDDs) in Spark are collections of elements that can be

operated on in parallel. RDDs can be created by parallelizing a collection(data structure)

or by referencing a dataset in an external file system like HDFS / HBASE, S3 or Kafka.

There are worker nodes that work on partitions of an RDD parallely. The spark

standalone cluster is picturized in Figure 24.

49

FIGURE 24: SPARK STANDALONE CLUSTER

8.2 Reason for choosing Spark Streaming

For a near-real-time or real-time requirement, a traditional batch processing

system like Apache Hadoop is not suitable. For a stream processing system like Apache

Storm, a processing of a record is guaranteed if that hasn’t been processed but there is

an inconsistency in Storm wherein a repetition of a record might be there. Also in

Apache Storm the state is lost if a node running Apache Storm goes down. Mostly,

people use Apache Hadoop for batch processing and Apache Storm for Stream

Processing which cause an increase in the size of the code, increase in the number of

bugs to fix, a longer learning curve, a lot of developmental effort and so on.

Spark Streaming is advantageous since it helps in fixing the aforementioned

issues and it provides scalability, efficiency, resilience along with a batch processing

system. This makes it very easy for a developer as only a particular framework needs to

be learnt in order to work with both batch and stream processing.

Spark tasks are assigned dynamically to the worker nodes on the basis of locality

of data and resources that are available. In traditional models the load is statically

50

allocated to the worker nodes.

Instead of assigning tasks statically to worker nodes like a continuous operator

model does, Spark Streaming is dynamic and assigns jobs to workers based on data

locality and available resources. This helps in load-balancing and faster fault recovery.

8.3 Advantages of Spark Streaming

Dynamic load balancing- The data is divided into smaller micro-batches which

aids in a more equal allocation of computations. The executor counts can be increased

at runtime depending on the application’s computation needs.

Fast failure and straggler recovery- Older systems needed to restart the failed

computation on another node. One node was responsible for handling the recomputation

which generally stalled the pipeline. Spark creates a more uniform distribution of tasks

that can run anywhere on the cluster. Even for failed tasks, they can be distributed

evenly on all kinds of nodes which has been proven to be faster than the traditional

approach.

Performance- Spark Streaming’s ability to use the spark core engine by

batching data leads to higher throughput to other contemporary approaches. Latencies

can be as low as a few hundred milliseconds.

8.4 Apache Kafka

Apache Kafka was originally conceived at LinkedIn, later becoming an open-

source project at Apache in 2011. Apache Kafka is written in Scala and Java and is a

publish-subscribe message queuing system.

Kafka is made for a clustered high throughput system. The advantages that

51

Apache Kafka provides is that it has a built-in partitioning, replication, fault-tolerant and

better throughput.

8.4.1 Publish-Subscribe Messaging System

In this kind of a system, messages are persisted on queues that are called

topics. Consumers or Subscribers can actually subscribe to one or many topics and pull

messages from that topic. Publishers are also called Producers of the messages.

Figure 25: Publish Subscribe Messaging System

Kafka’s cluster management system relies on Zookeeper. The messages in

Kafka are saved on the disks and replicated within the Kafka cluster. Kafka is suitable for

online and offline message consumption as each message is offsetted inside a topic.

The advantages of Apache Kafka lies in the fact that it is blazingly fast

performing 2 million writes per sec. Kafka puts everything into the disk which essentially

means that all the writes go to the OS(RAM) page cache. The phenomenon of

Sequential I/O takes place where since the Kafka messages are in an ordered fashion

are read ahead by the OS and persisted on the disk/page cache. So the application

doesn’t need disk seeking latencies, also no additional logic needs to be written for

52

Sequential I/O as the OS generally keeps the disk cache on the free memory.

FIGURE 26: APACHE KAFKA’S ARCHITECTURE

In the above Figures 25 and 26, we describe a publish subscribe model along

with a proper example of such a model namely Apache Kafka.

In figure 26 a topic is split into three partitions. Partitions have individual offset

numbers associated with them.

Kafka creates a replication for each partition of a topic. For load balancing in a

cluster, each broker stores one or more of those partitions.

8.5 Apache Cassandra

Apache Cassandra is an open-source, decentralized and distributed NoSQL

database. It has no single point of failure.

Cassandra was developed and open-sourced by facebook. Apache accepted it

as an incubator project in 2009. It was made a top-level project in 2010. Cassandra

provides certain distinct advantages to it’s users as :

53

Scalability - It allows us to add more hardware to accommodate more users and

more data.

Always on Architecture - It has no single point of failure and it is best for

applications that cannot afford a failure.

Flexible Database - It allows all kinds of data formats to be stored(structured,

semi-structured, unstructured).

Replication - Data is replicated across nodes in the cluster, across multiple

datacenters.

ACID Property - Cassandra supports properties like Atomicity, Consistency,

Isolation and Durability just like a Relational Database System.

Fast Writes - Performing blazingly fast writes, Cassandra can store hundreds of

terabytes of data.

FIGURE 27: APACHE CASSANDRA CLUSTER

As is shown in the figure 27 above, Cassandra has a peer-to-peer distributed

system where the data is stored across its nodes. Any node can receive the read/write

request regardless of where the data is located in the cluster. Cassandra uses a kind of

Gossip Protocol in the background for the nodes to intercommunicate with each other.

54

8.5.1 Storage in Cassandra

The Storage Components in Cassandra are mentioned above in the figure. The

partitions are made in the above figure based on references of the query and they are

divided into two groups:-

a) Memory Store - This contains most notably MemTables (it’s a caching

mechanism for cassandra in the main memory). Any action that has to be performed will

be performed on the MemTable first, after that syncing happens to the disk. Bloom

Filters(To test whether an element is present in a set in a probabilistic way), Index

Summary(Index of the original index that is present on disk), Key Cache(to store

primary keys and row offsets), Row Cache(store sets of rows)

b) Disk Store - This contains Commit Logs(crash recovery mechanism in

Cassandra, every write operation is written to it after the memory’s Commit Log is written

to), SSTable (stores Bloom Filters, Indices and the original data). The figure 28 below

shows a block diagram of the above theory.

FIGURE 28: STORAGE COMPONENTS IN CASSANDRA

55

8.6 Our implementation of the Fog Computing Architecture

For our implementation of the Fog Computing Architecture we have simulated

autonomous cars in each virtual cluster. The cars supply their initial source and

destination and that reaches the Cloud via the Fog. The Cloud handles the routing

aspect of the application and the Image Object Detection is performed by the Fog

Instances. The figure 29 describes the architecture below.

Fog Routing Server - The Fog Routing Server is principally concerned with

sending the routing information to the Cloud and back to each car.

Cloud Edge Server - The Cloud Edge Server receives the routing information

initially from the Fog Routing Server, it pushes the information as a Kafka Producer into

a Kafka topic in our architecture. It also opens up another channel for receiving the FI’s

results and updating the connected graph which is on Cassandra (cloud).

Cassandra Cluster (Fog) - There are two nodes Cassandra Cluster in each Fog

Instance. Cassandra cluster is principally concerned here with the storage of images as

BLOB (Binary Large Objects) type.

Kafka Queue (Fog) - The message queue in the Fog is concerned with queuing

images as byte arrays(message) along with the (MAC + IP) as the key.

Spark Standalone Cluster (Fog) - The cluster that has been set up on each

instance of the Fog is a two node Spark standalone cluster. This cluster is concerned

with performing image object detection on Spark Streams using two models of a deep-

learning algorithm called YOLO trained on different datasets. It also performs feature

correlation (Logistic Regression) and rule-based decision making.

Spark Standalone Cluster (Cloud) - The cloud comprises five servers acting in

unison to form a five node standalone spark cluster. The cloud is responsible for routing

of the autonomous vehicles based on the results of the FI’s estimation. Spark is

56

responsible for carrying out the route processing and adjusting the edges of the

weighted graph (for the Lower Manhattan map). Spark streaming pulls messages from

the Kafka queue on the cloud.

Kafka Queue (Cloud) - The message queue in the cloud is concerned with

sending out route information to the Spark Cluster as key and message pairs. Key here

is the (MAC + IP) and message is a normal String value with initial source and

destination.

Cassandra (Cloud) - Storing of the connected graph as a text file (BLOB) in

Cassandra. Spark uses it every time it pulls a new routing information from Kafka.

FIGURE 29: FOG COMPUTING ARCHITECTURE

8.7 Deep-Learning and the Application Benchmark

57

8.7.1 Deep learning and Modeling

The main goal of this analysis is to predict accidents and traffic incidences and

rerouting based on that received information using live video feeds from autonomous

vehicles. The predictions and image object detections are all done in real-time from live

video feeds for predicting traffic incidences. Rerouting vehicles based on the received

information is done in near and near-real-time. Figure 30 shown below presents a block

diagram of the underlying workflow of the deep learning and subsequent machine

learning based model development [61].

Deep Learning : Significant improvements in object detection and object

recognition have only been due to the advancement of Convolutional Neural

Networks(CNNs). The original YOLOv3 [59], [60] has been trained on a Microsoft

Common Objects in Context (COCO) dataset with 80 different objects, mostly unrelated

to traffic. To classify the data, we are using two CNN architectures: YOLOv3.11 (for 11

classes related to traffic congestion) for traffic object identification and tiny YOLOv3.6

(for 6 classes related to traffic incidences).

YOLOv3.11 is one of the faster object detection algorithms and due to its fast

performance and high accuracy, it has been used in Fig.3 for object detection. It has 106

layers, fully-convolutional with residual skip connections and up sampling. Detection is

done by applying 1x1 detection kernels on feature maps of three different sizes at three

different places in the network. It is trained on the COCO dataset. We have used the

classes: ‘car’, ‘motorbike’, ‘bus’, ’truck’, ’person’, ‘traffic light’, ‘stop sign’, ‘train’, ‘bicycle’,

‘fire-hydrant’, ‘parking-meter’ out of the 80 classes in the COCO dataset for our object

detection module.

The shape of the detection kernel is 1x1x(Bx(5 + C)). Here B is the number of

bounding boxes a cell on the feature map can predict, C is the no. of classes. For our

58

architecture we took 11 classes, B = 3 and C = 11, so the kernel size is 1 x 1 x 48.

FIGURE 30 : WORKFLOW OF THE APPLICATION BENCHMARK

On the predicted outputs, we have used feature correlation using logistic

regression from the first network to assign the input image in any one of the 3 target

classes: high congestion, medium congestion and low congestion. We will measure the

degree of congestion from these three classes.

Dataset to Test: For the image database that is required for learning, we have

recorded a video of driving for 20 hours around places like Charlotte, North Carolina

and Lower Manhattan, New York City since image databases are not easily available or

open-sourced. To extract relevant images from the video data, we have used a video-to-

image converter. A total of 10876 images were extracted for testing. For resource

constrained environments in the second network [3], we chose tiny YOLOv3.6 for

detection. The architecture of YOLOv3.6 is similar to YOLOv3 having 23 layers. It has

the ability of better training on smaller datasets. It detects 6 classes: police car,

59

ambulance, crash, car on fire, car upside down, and fire truck. Our designed dataset

contains approximately 600 images of the above mentioned classes which we have

used to train. Apart from these images, there are 150 test images.

FIGURE 31: RULE BASED LEARNING

8.8 Rule Based Decision Tree

This is the second stage of the overall feature correlation by which two model

predictions (YoloV3.11 and Tiny YoloV3.6) are combined. The structure is shown in

figure 31 above.

60

FIGURE 32: ROUTING ON THE CLOUD AND HISTORY TABLE UPDATION

8.9 Congestion Awareness and Changes in Routing

The results of the FIs reach the Cloud’s Edge Server. The server makes the

necessary change to the BLOB(Binary Large Object) file in the Cassandra cluster on the

cloud that stores the overall connected graph for the topology. The consecutive spark

jobs that are fired for different cars get the updated value of the overall connected graph.

A History Table(HT) is stored into Cassandra database. This portion of Cassandra deals

with a more structured form of the data wherein counters are assigned for each edge

with a predicted or detected traffic with or without predicted accidents. Leveraging the

blazingly high write speeds of Cassandra, this work has been made possible with

minimum disk read/write latency.

61

8.10 Results

TABLE 11: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON THE FOG

WITH QUEUING

Groups Average Total

Image

Processing

Time (in Fog)

(seconds)

Average

Computation

Time for Yolo

V3 (seconds)

Average

Computation

Time For Tiny

Yolo (seconds)

Average

Computation

Time for Rule

Based

(milliseconds)

Average

Computation

Time for

Logistic

Regression

(seconds)

Average

Navigation +

Queuing +

Network

Latency

(Edge)

(seconds)

Group A high

priority requests

- low waiting
times in queue

17.48 12.69

1.62 0.05 0.12 0.12

Group B low
priority requests

- high waiting

times in queue

170.43 17.08 1.59 0.062 42.692

TABLE 12: NAVIGATION ON CLOUD AND IMAGE PROCESSING ON THE FOG WITH

QUEUING (SPARK - KAFKA - CASSANDRA)

Groups Average Total

Image

Processing

Time (in Fog)

(seconds)

Average

Computation

Time for Yolo

V3 (seconds)

Average

Computation

Time For Tiny

Yolo (seconds)

Average

Computation

Time for Rule

Based

(milliseconds)

Average

Computation

Time for

Logistic

Regression

(seconds)

Average

Navigation +

Queuing +

Network

Latency

(Edge)

(seconds)

Equal Priority

Requests
14.81 12.01 2.8 0.07 0.58 2.189

The changes in the result when I have integrated the Spark - Kafka - Cassandra

mixture along with my middleware application are due to a myriad of reasons that I am

going to explain below.

In my earlier system, that is in a system without Kafka, Cassandra and Spark,

the Fog Instances that were mainly Intel NUCs failed if I ran more than 7 or 8 parallel

executions of YOLO which spawned more than 1000 parallel high computation threads.

In this spark streaming system however, I have reserved four executors on each worker

node to facilitate 4 parallel executions of YOLO at a time. The other machine learning

algorithms do not take much time to complete so I am only focussing on YOLO at this

62

time. Due to Spark’s Lazy Evaluation and In-Memory processing the entire application

has been highly optimized.

The second reason why the queueing time has greatly reduced is that in Table

11’s approach while one high priority thread that had started running stalled a

corresponding low priority thread for a long time, in Table 12’s approach the

implementation using Kafka-Spark-Cassandra gave better performance without

prioritized threads. As soon as the FI predicts the results of an image by performing

Image object detection, feature correlation and decision making (decision tree), it

updates the corresponding weight of the connected graph that resides in Cassandra. So

the next car doesn’t have to wait an entire duration of the time while an earlier car is still

in transit (critical section problem in the earlier approach).

The third reason is Apache Cassandra’s fast read/write. Owing to the structural

components discussed earlier like Commit Logs, Index of an Index and MemTables.

Mostly the processing is in-memory again rather than disk reads. This saves a lot of time

when compared to the earlier approach.

The fourth reason is Apache Kafka’s highly fault-tolerant and fast disk reads

owing to the Sequential I/O nature of the OS. Here again it is an in-memory processing.

The ordered nature of the messages of Apache Kafka makes the OS prefetch the data

from the disk to the disk/page cache which resides in the main memory.

The deep-learning and machine learning portions of the code were actually

written in python and that is the reason why the codes were a little slower than

that which was written in C/C++ for the earlier chapters.

8.11 Conclusion

The goal of my research was to implement an interconnected smart middleware

63

that spans a three tiered network architecture to facilitate better real-time and near-real-

time responses for IoT/IoE devices. While trying to disassemble the application

benchmark over the tiers, I found that by limiting the data that travels to the cloud we can

prohibit the conversion of BigData to Big-Squared-Data that would have easily

overwhelmed any powerful cloud architecture. Thus the reason for Fog Computing is

justified as we can find a way to save data bandwidth that is travelling to the cloud. After

this was achieved I tried to address the other most important issue of real-time and near-

real-time responses. I found out during the course of my research that utilizing a

clustered framework on both the Fog instances and the Cloud Servers and leveraging

the BigData IoT/IoE framework of Apache Spark, I could reduce the latency of

computation by a wide margin as is estimated from the results. By utilizing message

queues like Apache Kafka and NoSQL databases like Apache Cassandra, I could

improve the results even further as is described earlier. I also successfully managed to

deploy deep-learning algorithms as external processes in Spark Streaming jobs thereby

managing to maintain a constant task-level parallelism that helped in improving the

performance. I would like to conclude this dissertation report by reiterating that in

tomorrow’s ever-connected world with ubiquitous smart devices that are constantly

sending/receiving data back and forth, Fog Computing is the need of the hour. Such an

architecture will help mitigate the problems of Big-Squared-Data, it will help reduce the

network latency as the entire goal of Fog Computing is to perform the computation as

close to the edge device as possible.

64

REFERENCES

[1] L. Piras. (2014, March) A brief history of the internet of things [info- graphic]. [Online].

Available: http://www.psfk.com/2014/03/internet-of- things-infographic.html

[2] Internet of things market forecast:. Cisco. [Online].

Available:http://postscapes.com/internet-of-things-market-size

[3] (2014, Jan.) Cisco delivers vision of fog computing to accelerate value from billions of

connected devices. Press release. Cisco. [Online].

Available:http://newsroom.cisco.com/release/1334100/Cisco-DeliversVision-of-Fog-

Computing-to-Accelerate-Value-from-Billions-of-Connected-Devices-utm-medium-rss

[4] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau, “Moving big data to the

cloud: An online cost-minimizing approach,” IEEE Journal on Selected Areas in

Communications, vol. 31, pp. 2710–2721, Dec. 2013.

[5] D. Lund, C. MacGillivray, V. Turner, and M. Morales, “Worldwide and regional

internet of things (iot) 20142020 forecast: A virtuous circle of proven value and demand,”

International Data Corporation (IDC), Tech. Rep., 2014.

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy studies on

magneto-optical media and plastic substrate interface,” IEEE Transl. J. Magn. Japan,

vol. 2, pp. 740-741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301,

1982].

[7] M. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science,

1989.

[8] M. P. Mills, “The cloud begins with coal,” Digital Power Group, Tech. Rep., August

2013.

[9] D. He and S. Zeadally, “An analysis of rfid authentication schemes for internet of

things in healthcare environment using elliptic curve cryptography,” IEEE Internet of

Things Journal, vol. 2, no. 1, pp. 72–83, Feb 2015.

[10] I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy, “The internet

of bio-nano things,” IEEE Communications Magazine, vol. 53, no. 3, pp. 32–40, March

2015.

[11] A. Aijaz and A. H. Aghvami, “Cognitive machine-to-machine com- munications for

internet-of-things: A protocol stack perspective,” IEEE Internet of Things Journal, vol. 2,

no. 2, pp. 103–112, April 2015.

[12] A. M. Ortiz, D. Hussein, S. Park, S. N. Han, and N. Crespi, “The cluster between

internet of things and social networks: Review and research challenges,” IEEE Internet

of Things Journal, vol. 1, no. 3, pp. 206– 215, June 2014.

[13] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A

vision, architectural elements, and future directions,” Future Generation Computer

Systems, vol. 29, no. 7, pp. 1645 – 1660, 2013.

[14] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework for

creating a smart city through internet of things,” IEEE Internet of Things Journal, vol. 1,

no. 2, pp. 112–121, April 2014.

[15] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, “A survey on internet of things

65

from industrial market perspective,” IEEE Access, vol. 2, pp. 1660–1679, 2014.

[16] J. Wei, “How wearables intersect with the cloud and the internet of things

Considerations for the developers of wearables.” IEEE Consumer Electronics Magazine,

vol. 3, no. 3, pp. 53–56, July 2014.

[17] L. Wang and R. Ranjan, “Processing distributed internet of things data in clouds,”

IEEE Cloud Computing, vol. 2, no. 1, pp. 76–80, Jan 2015.

[18] X. Zheng, P. Martin, K. Brohman, and L. D. Xu, “Cloudqual: A quality model for

cloud services,” IEEE Trans. on Industrial Informatics, vol. 10, no. 2, pp. 1527–1536,

May 2014.

[19] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang, “Dataclouds: Enabling community-

based data-centric services over the internet of things,” IEEE Internet of Things Journal,

vol. 1, no. 5, pp. 472–482, Oct 2014.

[20] M. Nitti, R. Girau, and L. Atzori, “Trustworthiness management in the social internet

of things,” IEEE Trans. on Knowledge and Data Engineering, vol. 26, no. 5, pp. 1253–

1266, May 2014.

[21] X. Zheng, P. Martin, K. Brohman, and L. D. Xu, “Cloud service negotiation in

internet of things environment: A mixed approach,” IEEE Trans. on Industrial Informatics,

vol. 10, no. 2, pp. 1506–1515, May 2014.

[22] S. U. Khan, P. Bouvry, and T. Engel, “Energy-efficient high-performance parallel

and distributed computing,” Journal of Supercomputing, vol. 60, pp. 163–164, 2012.

[23] K. Bilal, S. U. R. Malik, S. U. Khan, and A. Y. Zomaya, “Trends and challenges in

cloud datacenters,” IEEE Cloud Computing, vol. 1, no. 1, pp. 10–20, May 2014.

[24] Q. Duan, Y. Yan, and A. V. Vasilakos, “A survey on service-oriented network

virtualization toward convergence of networking and cloud computing,” IEEE Trans. on

Network and Service Management, vol. 9, no. 4, pp. 373–392, December 2012.

[25] H. Liang, L. X. Cai, D. Huang, X. Shen, and D. Peng, “An smdp- based service

model for interdomain resource allocation in mobile cloud networks,” IEEE Trans. on

Vehicular Technology, vol. 61, no. 5, pp. 2222–2232, Jun 2012.

[26] T . H. Noor, Q. Z. Sheng, A. H. H. Ngu, and S. Dustdar, “Analysis of web-scale

cloud services,” IEEE Internet Computing, vol. 18, no. 4, pp. 55–61, July 2014.

[27] A. V. Dastjerdi and R. Buyya, “Compatibility-aware cloud service composition under

fuzzy preferences of users,” IEEE Trans. on Cloud Computing, vol. 2, no. 1, pp. 1–13,

Jan 2014.

[28] J. Xiao, H. Wen, B. Wu, X. Jiang, P.-H. Ho, and L. Zhang, “Joint design on dcn

placement and survivable cloud service provision over all-optical mesh networks,” IEEE

Trans. On Communications, vol. 62, no. 1, pp. 235–245, January 2014.

[29] W. Chen, J. Cao, and Y. Wan, “QoS-aware virtual machine scheduling for video

streaming services in multi-cloud,” Tsinghua Science and Technology, vol. 18, no. 3, pp.

308–317, June 2013.

[30] N. Tziritas, S. U. Khan, C. Z. Xu, T. Loukopoulos, and S. Lalis, “On minimizing the

resource consumption of cloud applications using process migrations,” Journal of

Parallel and Distributed Computing, vol. 73, pp. 1690–1704, 2013.

[31] A. A. Chandio, K. Bilal, N. Tziritas, Z. Yu, Q. Jiang, S. U. Khan, and C. Z. Xu, “A

comparative study on resource allocation and energy efficient job scheduling strategies

66

in large-scale parallel computing systems,” Cluster Computing, vol. 17, 2014.

[32] F. Zhang, J. Cao, W. Tan, S. U. Khan, K. Li, and A. Y. Zomaya, “Evolutionary

scheduling of dynamic multitasking workloads for bigdata analytics in elastic cloud,”

IEEE Trans. on Emerging Topics in Computing, 2013.

[33] D. Kliazovich, S. T. Arzo, F. Granelli, P. Bouvry, and S. U. Khan, “eSTAB: Energy-

efficient scheduling for cloud computing applications with traffic load balancing,” in IEEE

International Conference on and IEEE Cyber, Physical and Social Computing Green

Computing and Communications, Aug 2013, pp. 7–13.

[34] L. Xu, C. Li, L. Li, Y. Liu, Z. Yang, and Y. Liu, “A virtual data center deployment

model based on the green cloud computing,” in IEEE/ACIS 13th International

Conference on Computer and Information Science, June 2014, pp. 235–240.

[35] N. N. Naik, K. Kanagala, and J. P. Veigas, “Achieving green computing by effective

utilization of cloud resources using a cloud os,” in IEEE International Conference on

Emerging Trends in Computing, Commu- nication and Nanotechnology, 2013.

[36] T. T. Huu and C.-K. Tham, “An auction-based resource allocation model for green

cloud computing,” in IEEE International Conference on Cloud Engineering, 2013.

[37] K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijay- sekara, R. Irfan,

S. Shrestha, D. Dwivedy, M. Ali, U. S. Khan, A. Abbas, N. Jalil, and S. U. Khan, “A

taxonomy and survey on green data center networks,” Future Generation Computer

Systems, vol. 36, no. 0, pp. 189 – 208, 2014.

[38] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog computing: A platform for

internet of things and analytics,” in Big Data and Internet of Things: A Roadmap for

Smart Environments, ser. Studies in Computational Intelligence, N. Bessis and C.

Dobre, Eds. Springer International Publishing, 2014, vol. 546, pp. 169–186.

[39] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the

internet of things,” in Proceedings of the First Edition of the MCC Workshop on Mobile

Cloud Computing. ACM, 2012, pp. 13–16.

[40] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwalder, and B. Kold- ehofe,

“Mobile fog: A programming model for large-scale applications on the internet of things,”

in Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing,

2013, pp. 15–20.

[41] M. Yannuzzi, R. Milito, R. Serral-Gracia, D. Montero, and M. Ne- mirovsky, “Key

ingredients in an iot recipe: Fog computing, cloud computing, and more fog computing,”

in IEEE 19th International Workshop on Computer Aided Modeling and Design of

Communication Links and Networks, Dec 2014, pp. 325–329.

[42] J. Preden, J. Kaugerand, E. Suurjaak, S. Astapov, L. Motus, and R. Pahtma, “Data

to decision: pushing situational information needs to the edge of the network,” in IEEE

International Inter-Disciplinary Conference on Cognitive Methods in Situation Awareness

and Decision Support, March 2015, pp. 158–164.

[43] H. Madsen, G. Albeanu, B. Burtschy, and F. L. Popentiu-Vladicescu, “Reliability in

the utility computing era: Towards reliable fog computing,” in 20th International

Conference on Systems, Signals and Image Processing, July 2013, pp. 43–46.

[44] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S. Hong, “A

67

proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-

distributed fog computing,” in 2015 International Conference on Information Networking,

Jan 2015, pp. 324–329.

[45] M. Aazam and E.-N. Huh, “Fog computing micro datacenter based dynamic

resource estimation and pricing model for iot,” in IEEE 29th International Conference on

Advanced Information Networking and Applications, March 2015, pp. 687–694.

[46] “Dynamic resource provisioning through fog micro datacenter,” in IEEE International

Conference on pervasive Computing and Communication Workshops, March 2015, pp.

105 –110.

[47] C. Dsouza, G. J. Ahn, and M. Taguinod, “Policy-driven security management for fog

computing: Preliminary framework and a case study,” in IEEE 15th International

Conference on Information Reuse and Integration, Aug 2014, pp. 16–23.

[48] S. J. Stolfo, M. B. Salem, and A. D. Keromytis, “Fog computing:Mitigating insider

data theft attacks in the cloud,” in IEEE Symposium on Security and Privacy Workshops,

May 2012, pp. 125– 128.

[49] S. Kulkarni, S. Saha, and R. Hockenbury, “Preserving privacy in sensor- fog

networks,” in 9th International Conference for Internet Technology and Secured

Transactions, Dec 2014, pp. 96–99.

[50] Shaoshan Liu, Jie Tang, Chao Wang, Quan Wang, and Jean-Luc Gaudio

,”Implementing a Cloud Platform for Autonomous Driving “,Fellow IEEE

[51] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng. “Challenges on Wireless

Heterogeneous Networks for Mobile Cloud Computing”. In IEEE Wireless

Communications, June 2013.

[52] M. Yannuzzi, , R. Milito† , R. Serral-Gracia` , D. Montero, and M. Nemirovsky‡,”Key

ingredients in an IoT recipe: Fog Computing, Cloud Computing, and more Fog

Computing”

[53] Subhadeep Sarkar†, Student Member, IEEE, Subarna Chatterjee∗,Student Member,

IEEE,Sudip Misra‡, Senior Member, IEEE,” Assessment of the Suitability of Fog

Computing in the Context f Internet of Things”

[54]” Overcoming the Heterogeneity in the Internet of Things for Smart Cities “, Aqeel

Kazmi(B) , Zeeshan Jan, Achille Zappa, and Martin Serrano Insight Centre for Data

Analytics, National University of Ireland, Galway, Ireland

[55] “ Networking Protocols and Standards for Internet of Things “ , Tara Salman

[56] “ A Storage Solution for Massive IoT Data Based on NoSQL “ , Tingli LI1,2, Yang

LIU1,2, Ye TIAN1,, Shuo SHEN1, Wei MAO1. 2012 IEEE International Conference on

Green Computing and Communications, Conference on Internet of Things, and

Conference on Cyber, Physical and Social Computing

 ʹ ג͑ ʹ [57]

 ʹ

 ו

[58] “Fog Intelligence for Real-Time IoT Sensor Data Analytics Hazem M. Raafati ,

(Member, IEEE), M. Shamim Hossain 2,5, (Senior Member, IEEE), Ehab Essa3 , Samir

Elmougy3 , (Member, IEEE), Ahmed S. Tolba3 , Ghulam Muhammad4 , (Member,

68

IEEE), and Ahmed Ghoneim5,6, (Member, IEEE)

[59]Joseph Redmon , Santosh Divvala , Ross Girshick , Ali Farhadi,”You Only Look

Once: Unified, Real-Time Object Detection” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR)

[60],Joseph Redmon ,Ali Farhadi, “YOLOv3: An Incremental Improvement” in arXiv

,2018

[61]A. Seal, S. Bhattacharya and A. Mukherjee, "Fog Computing for Real-Time Accident

Identification and Related Congestion Control," 2019 IEEE International Systems

Conference (SysCon), Orlando, FL, USA, 2019, pp. 1-8.

[62]S. Bhattacharyya, A. Seal and A. Mukherjee, "Real-Time Traffic Incidence dataset,"

2019 SoutheastCon, Huntsville, AL, USA, 2019, pp. 1-5.

[63]A. Seal and A. Mukherjee, "Real Time Accident Prediction and Related Congestion

Control Using Spark Streaming in an AWS EMR cluster," 2019 SoutheastCon,

Huntsville, AL, USA, 2019, pp. 1-7.

[64]https://www.rcrwireless.com/20140509/evolved-packet-core-epc/lte-network-diagram

