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ABSTRACT

NICHOLAS E. SIZEMORE. Surface integrity in diamond machining germanium for
infrared optics. (Under the direction of DR. MATTHEW A. DAVIES)

Ultra-precision manufacturing is a deterministic method of producing optical-grade

components. Continuous and interrupted machining operations are the main focus

of this research with the goal of improving the manufacturing community’s knowl-

edge. The original contributions of this research are: (a) a comprehensive analysis

of the cutting mechanics of single-crystal germanium, specifically studying the ef-

fects of major crystal orientation and cutting speed; (b) methodology for producing

flat, damage-free test samples in single-crystal germanium; and (c) machine learning

models for estimating surface finish parameters Sa, Sq, and Sz in SPDT of single-

crystal germanium and oxygen-free high-conductivity copper. As a final product of

this research, a pair of collimating lenses were produced for an external collaborator.
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CHAPTER 1: Motivation and Background

Complexities in component design have driven the need for more deterministic

higher- degree-of-freedom manufacturing processes. Ultra-precision machine tools

have enabled production of advanced optical prescriptions that do not have a rota-

tional axis of symmetry. [1][2][3]. Optics with such surfaces are known as freeform

optics. Freeform optic design can greatly improve existing or new systems by combin-

ing the optical function of several classical axisymmetric optics into a single element.

This allows simplification of optical systems, allowing for more compact, and light-

weight designs that require less assembly. Multi-axis (>2 axes) techniques, such as

coordinated-axis turning, milling, multi-axis flycutting, grinding, and MRF can be

used to produce freeform surfaces.

Freeform optics are enabling significant innovations in imaging, surveillance, fiber

optics, solar cells, and military defense applications [4][5]. Because of the more forgiv-

ing tolerances, IR systems may provide the most immediate opportunities for freeform

optics. A brittle IR material that is extensively used in imaging and military defense

systems is single-crystal germanium (Ge) which has been utilized as an IR lens ma-

terial since the late 1940’s [6]. Materials that are transmissive in the IR can be more

difficult to machine due to their brittle nature and require a fundamental understand-

ing of material behavior and cutting mechanics. Compared to the cutting mechanics

of ductile metals, the behavior of brittle materials is not well understood. Particularly

in high-speed machining, the behavior of brittle materials such as Ge still requires

significant research. Improvements in productivity, tool life and surface quality by

deterministic prediction of optimal machining parameters is a subject of current re-

search [7][8]. Limited research on the high-speed machining of Ge exists [9]. In this
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dissertation, new research into the cost-effective machining of Ge are presented for

both continuous and interrupted cutting operations.

The use of Ge in IR applications stems from its high index of refraction (∼4) and

(ideally) isotropic optical properties. A high index of refraction leads efficient redirec-

tion of light as is demonstrated in the final chapter of this work in the machining of

compact fast-axis collimators. However because of its mechanical material properties,

production of optics in Ge requires ultra-precision machining. Freeform optics in par-

ticular require more complex geomtries that make machining and cutting mechanics

more complex.

Ge has a diamond-cubic crystal structure that naturally resists the flow of dislo-

cations. Glide or slip can occur on {111} plane in the <110> direction. Machining

Ge can be described as brittle-dominated or ductile-dominated. For decades, our

understanding of diamond turnable ductile and brittle materials has been the subject

of many research studies [10][11][12][13][14][15][16][17][18][19]. Plastic flow in Ge has

been at the center of the literature. Originally, it seemed impractical to machine

Ge since there is a natural resistance to plastic deformation; however, if the scales

are small enough, such as in diamond turning and micro-machining, ductile flow can

occur [20]. Studies by Furukawa et al. [21], Blake et al. [22], and Nakasuji et al.

[23] set the modern groundwork for understanding ductile-dominated machining of

Ge and other brittle materials.

Two critical geometric properties of the tool in machining Ge are the rake angle

(α) and the tool nose radius (R). These control material loading mechanics and

chip geometry and make ductile-dominated machining a more favorable deformation

mode. The rake angle (α) controls the hydrostatic pressure imposed by the tool on

the deformation zone in single-point diamond turned (SPDT), milling, and flycut-

ting. As α becomes more negative (-15, -25, -45), the compressive force increases

and tensile force decreases. Several researchers have shown an increased compressive
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force will suppress crack formation and reduce subsequent surface degradation due to

fracture and pitting in diamond machining operations [10][24][25]. The radius R in

combination with the depth of cut (adoc) and feed per revolution (fr) are the main

contributors to defining the chip geometry. Because the transition from a surface

free of fracture to one with significant fracture can occur over a small range of fr, re-

searchers postulated that there was a transition from ductile-to-brittle machining at a

critical chip thickness at which an abrupt ductile-to-brittle transition occurs [24][26].

Realistically, the tool geometry is not constant, thereby making it difficult to describe

a true point in the chip thickness that defines a brittle-to-ductile transition. More

likely, the transition can occur over a range of machine parameters, and the transition

begins to occur more gradually, first in the sub-surface which eventually is manifested

in what appears to be a dramatic change in the surface character.

It has been postulated that phase transformations in Ge allow the apparently brittle

material to deform plastically. Phase transformations occurring due to the compound

effect of hydrostatic pressure and rapid loading/unloading during continuous machin-

ing operations could promote ductile-dominated behavior. Oliver et al. described

rate-dependent phase transformation in nano-indentated Ge [27]. Several other stud-

ies support this observation in both Ge and silicon [28][29][30][31][32][33]. Of great

interest for machining is the transformation from diamond cubic Ge (dc-Ge) to a the

metallic β-tin phase. The β-tin metallic phase has a greater number of slip systems

and thus could contribute to observed ductile behavior in machining. However, the

β-tin phase is meta-stable and, thus, transforms back to dc-Ge and amorphous-Ge

upon unloading. Deshmukh et al. described an explosive crystallization nature under

mechanical impact driving the remaining transformation of β-tin Ge to dc-Ge [34].

Phase transformations could account for ductile-dominated material removal in both

continuous and interrupted cutting operations.

Chemo-mechanical polishing Ge and other brittle IR materials is a well-known
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method for producing low damage wafers and pucks. This research found that there

was a lack of flat, damage-free commercially available Ge needed for diamond machin-

ing experiments. Most chemo-mechanically polished Ge is in wafer form and is used

in the electronics industry. The wafers have controlled thickness but are thin and

typically not "flat". Alternatively, diamond machining can be used to manufacture

"flat" samples with controlled thickness, but the surfaces have machining-induced

damage. A challenge of this research was that the experiments designed to study the

damage induced in interrupted cutting required a surface that was both "flat" (to

better than 100 nm) and damage-free.

To better understand the mechanics of machining, all previous damage induced into

the workpiece should be removed prior to completing a cutting experiment. Of course,

there is no such thing as a perfect lattice without disorder or imperfection. This re-

search has set to produce flat, damage-free Ge through first single-point diamond

turning and finishing with chemo-mechanical polishing. This method is then com-

pared to others that use a combination of diamond turning and magneto-rheological

finishing or only involved diamond turning. Thus, an ancillary result of the sample

preparation undertaken in this research was the comparison of damage generated in

diamond turning, MRF, and chemo-mechanical polishing.

To assist in the understanding of the mechanics of single-point diamond turn-

ing and polishing, methods such as confocal Raman and Rutherford Backscattering

Spectroscopy (RBS) were used to evaluate subsurface disorder and damage. RBS

and confocal Raman are common methods for characterizing lattice disorder within

ductile and brittle materials [35][36][37]. Subsurface damage produced by single-point

diamond turning is expected to be dependent on machining parameters. Lattice dis-

order in the form of residual stress (tension or compression) and dislocation formation

is left in the wake of the diamond tool. Residual stress causes birefringence which can

degrade optical performance [38]. Ge samples with final surface preparations from
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single-point diamond turning, chemo-mechanical polishing, and magneto-rheological

finishing were examined using both confocal Raman and RBS in the channeling con-

figuration.

Because of the complexity of physically modeling the dependence on surface and

subsurface characteristics on machining parameters, more complex modeling meth-

ods were investigated. Recently, data-driven models in engineering applications have

demonstrated potential in predicting machine parameters. For instance, predicting

surface roughness has shown improved accuracy over physics-based analytical or tra-

ditional statistical models [39] [40] [41]. Classic physics-based models require an

in-depth understanding of the physical system to develop closed-form mathematical

models or physics-based simulations. However, data-driven models do not require the

same in-depth understanding of the physics. Data-driven models can also provide

insight into the physics of material behavior by identifying links between parameters

not previously suspected. It is necessary to have a fundamental understanding of the

behavior of the physical system. Yet, unlike an uncertainty analysis, having knowl-

edge of the probability distributions is not a prerequisite for data-driven machine

learning models. More often, data-driven models reveal incomplete specifications of

physical models, which can identify regimes where observed behavior deviates from

current understanding [42]. Chapter 3 will cover more detail into the specific types

of machine learning models that are utilized in this research.

As previously mentioned, brittle IR materials have many applications in the com-

mercial and defense industries. The research in this dissertation was used in a prac-

tical demonstration - the production of fast-axis (FACs) and slow-axis collimators

(SACs) for a high-power diode laser systems [43]. The base form of these lenses is

a cylinder. FACs are an essential element in high-power diode laser systems as they

have a high-numerical aperture and short focal length (around 200 µm) for focusing

the beam. The lenses are also fixed to the heat sink to help dissipate heat generated
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during operation [44]. The function of a SACs is to use an array of lenslets that cor-

rect error from the FACs with slow-axis collimation of the beam. As a final product

of this research, a pair of collimating lenses were produced for a defense application.

The original contributions of this research are: (a) a comprehensive analysis of

the cutting mechanics of single-crystal germanium, specifically studying the effects

of major crystal orientation in germanium and cutting speed; (b) a methodology for

producing flat, damage-free test samples in single-crystal germanium; (c) a quanti-

tative comparison of the damage induced by diamond turning, MRF and CMP, and

(d) a machine learning model for estimating surface finish parameters Sa, Sq, and

Sz for SPDT of single-crystal germanium and oxygen-free high-conductivity copper.



CHAPTER 2: EXPERIMENTAL SETUP AND EQUIPMENT

2.1 Introduction

2.2 Machine, Tools, Cutting Configurations, Parameters

A Moore Nanotechnology 350FG machine tool was used to machine Ge and copper

(Cu). Two machining configurations were used in this research: single-point diamond

turning (SPDT) and flycutting.

2.2.1 Single-Point Diamond Turning

SPDT for this research is a face turning operation. Figure 2.1 shows how the

machine input parameters dictate the position and motion of the the diamond tool

as the workpiece is cut. In a perfect scenario, the SPDT operation imparts a cusp

pattern, as seen in Figure 2.1, which is a geometric replication of the the tool nose

radius (R) and feed per revolution (fr). This simple geometric surface model is useful

to assist machine operators in estimating the final surface roughness after SPDT. This

surface roughness estimate and others are discussed later in the Experimental Results

section.

Figure 2.1: Surface generation from SPDT facing operation.
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2.2.1.1 Machining Parameters for Machine Learning

The information reported in this section was used from [42] and copyright permis-

sion was provided by the publisher. See Appendix A for the supporting documents.

Ge and Cu were SPDT with a variety of input parameters to produce a two datasets

for predictive models using machine learning methods. Table 2.1 summarizes the tools

and selected input parameters for the datasets. The diamond tool used in the Cu

experiments included tool no.1. The Ge experiments were conducted with tools no.2,

no.3, and no.4.

Table 2.1: SPDT parameters used to produce dataset for predictive machine learning
models.

Tool R (mm) α (deg) fr (µm/rev) adoc (µm) Vc (m/sec)

no.1 0.25 0 0.1 - 40 1, 10 0.3, 3.0

no.2 0.5 -15, -25, -45 0.1 - 5.0 5, 25 0.5, 2.0, 6.0

no.3 1.0 -15, -25, -45 0.1 - 6.5 5, 25 0.5, 2.0, 6.0

no.4 5.0 -15, -25, -45 0.3 - 10 5, 25 0.5, 2.0, 6.0

Other parameters, such as Ω and vf , are calculated based on the parameters pro-

vided in Table 2.1. Eq 2.1 and Eq 2.2 are used to calculate these parameters.

Ω =
2Vc
πr

(2.1)

vf = Ωfr (2.2)

2.2.1.2 Sample Surface Preparation for Uncertainty Analysis

The Ge sample under test was SPDT on an ultra-precision machine tool. The tool

used was a single-crystal diamond with a 5.0 mm, controlled waviness nose radius

and a -25 degree rake angle. The nominal depth of cut for generating surfaces was
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25 µm, and the commanded feeds were 1, 10, 25 µm/rev. The resulting surfaces were

measured using a CSI to collect surface roughness information. Table 2.2 below shows

a summary of the commanded input parameters for the machining operation, as well

as, the analytically estimated surface roughness.

Table 2.2: Commanded machine parameters and predicted surface roughness.

R (mm) fr (µm/rev) adoc (µm) Ω (rpm) Sapred (nm)

5 1 25 2000 0.006

5 10 25 2000 0.642

5 25 25 2000 2.566

A SiC-CVD optical reference flat standard (serial no. 990784043) for the Zygo

NexView was used as a baseline surface. The naming convention for this surface

is SiC-CVD. It served to assist in quantifying how surface texture influences the

uncertainty of the measurement. The optical reference flat has a near perfect surface.

Figure 2.2 shows the height map for the SiC-CVD surface. The mean Sa and Sq of

50 measurements is 0.1 nm and 0.2 nm, respectively. Surface processing included a

plane removal and an 80 µm FFT filter.
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Figure 2.2: SiC-CVD height map.

The CSI with a 50x objective (1x zoom) was used to collect surface data from each

of the surfaces. The samples were setup up such that less than 5 nm of tilt remained

in the setup misalignment. Thus the uncertainty associated with tilt misalignment

was considered negligible. The measurement mode was set to: (1) CSI; (2) high z-

resolution; (3) 1 average. The surfaces were post-processed by removing a plane. A

total of 50 measurements were collected per site of interest.
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Figure 2.3: Height maps for (a) Ge-1; (b) Ge-2.1; (c) Ge-2.2; (d) Ge-3.

Ge-1, Ge-2.1, Ge-2.2, and Ge-3 indicate the nomenclature for the 1 µm/rev, 10

µm/rev, 10 µm/rev, and 25 µm/rev surfaces, respectively. The surfaces in Ge were

measured along the assumed crystal orientation <011>, which is a known cleavage

direction that exhibits more surface fracture than other orientations [23]. The surface

Ge-2.1 was approximately clocked 22.5 degrees with respect to <011>. Figure 2.3

shows a height map for each of the surfaces. Table 2.3 provides the mean Sa and Sq

values for each surface.

Table 2.3: Mean Sa and Sq measured values of 50 measurements per surface.

SiC-CVD Ge-1 Ge-2.1 Ge-2.2 Ge-3

Mean Sa (nm) 0.1 0.3 2.7 2.9 21.6

Mean Sq (nm) 0.2 0.4 3.1 5.0 47.6
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2.2.1.3 Sample Preparation for Magneto-Rheological Finishing

The two samples for this study are Ge with a major crystal orientation of (100)

that were grown with a known miscut in the crystal orientation of ± 1 degree. The

two Ge pucks were prepared by SPDT and post-processed with either MRF polishing

or the MRF spotting technique. The MRF spotted sample was later etched to reveal

more information within the surface of the Ge pucks. The MRF setup and results are

discussed in Chapter 2 and 4, respectively.

Single point diamond turning on an ultra-precision machine tool was utilized for

the project to manufacture the parts under test. The machine tool used was a Moore

Nanotechnology 350FG located in an environmentally controlled lab which is kept at

a traceable 20 degrees Celsius. A single-crystal diamond tool with a R of 3.0 mm

and an α of -25 degrees was used. Figure 2.1 illustrates the function of a turning

operation using a single point diamond tool.

The machining parameters for this study included are summarized in Table 2.4.

The part was centered on the main spindle of the machine tool and the tool positioning

was setup from the samples surface. The initial turning parameters for creating a

relatively damage free surface and subsurface were as follows: adoc of 0.5 µm, fr of 0.5

µm/rev. Table 2.4 describes the turning parameters used to create a highly damaged

surface. These parameters were determined from a sub-study where a Ge puck was

SPDT with an array of different fr values. The effect of constant surface speed is

neglected.

Table 2.4: Diamond turning parameters.

R (mm) fr (µm/rev) adoc (µm) Ω (rpm) vf (mm/min)

3.0 35 10 1000 35

The two samples are identified as follows: (1) sample 1 - MRF spotting technique;

(2) sample 2 - MRF full aperture polish. Sample 1 was used to estimate the subsurface
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damage present in the sample after SPDT. Sample 2 was used to evaluate the MRF

machines ability for removing damage and mitigating mid-spatial frequencies from

the SPDT workpiece.

2.2.1.4 Sample Preparation for Surface Integrity Study

This section discusses the sample preparation for surface integrity study. A puck

of Ge with a major crystal orientation of (100) was diamond milled to produce mini-

pucks with an alignment flat that identified a preferred cutting orientation where

surface fracture is minimized. Identification of the preferred orientation was based on

[23]. These 8 mm diameter mini-pucks, as shown in Figure 2.4, were then turned off-

axis with a single-point diamond tool that had a R of 3.0 mm and a α of -25 degrees.

The off-axis turning operations were completed such that the cutting direction was

approximately parallel to the flat. The nominal depth of cut was 10 µm for all turning

processes. As-cut surfaces that were produced using fr values of 0.3, 1, 5, 9, and 20

µm/rev were investigated.

Figure 2.4: Layout of the surface of Ge with mini-pucks.

Three additional surfaces were generated with a fr of 9 µm/rev and were subse-

quently finished with a chemo-mechanical polishing (CMP) or magneto-rheological

finishing (MRF) polishing process. Specifically, these processes included MRF, CMP,

and CMP followed by chemical etching. The MRF process used a D10 slurry with

an average diamond particle size of ∼150 nm and a material removal rate of about 8
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µm/min. The CMP process consisted of a diluted-bleach and Ultra-Sol S39 (110 nm

diameter colloidal silica) slurry using a urethane polishing pad. The material removal

rate of the CMP process was about 6.3 µm/hr. Approximately 18 µm was removed

from the surface during both the CMP and MRF processes. Etching was performed

with 3% hydrogen peroxide for 2.5 min at room temperature. Based on reported

etching rates in the literature, this would indicate a minimum of ∼50 nm of material

removal.
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2.2.2 Flycutting

A high speed air-bearing spindle was used with a flycutter arbor. The spindle’s air

supply enters the machine at approximately 24 ◦C. Thus, the spindle is cooled via

chillers to 20 ±0.1 ◦C. The spindle is mounted on a granite boss for thermal and vi-

bration isolation. Figure 2.5 shows the high speed spindle with the axis configuration

of the Moore Nanotechnology 350FG.

Figure 2.5: High speed air-bearing spindle with flycutting arbor.

Uni-directional raster flycutting was used in this research with a single tooth inter-

action. Figure 2.6 shows the flycutting configuration using a single-crystal diamond

insert. The stepover (So) drives the surface finish with ductile-dominated cuts are

achieved. The fr has a small significance for introducing brittle dominated cuts due

to the sweeping direction of the flycutter.



16

Figure 2.6: Surface generation from raster flycutting operation.

2.2.2.1 Flycut Tool Arrangement and Parameters for Application

This section describes the part preparation and flycutting configuration for the ap-

plication of machining of two IR optics (fast- and slow-axis lenses). The results for the

application are discussed in Chapter 6. The manufacturing procedures for producing

each lens is as follows: (1) an initial turning operation, (2) a flycutting operation with

a raster path along the cylinder axis, (3) a rough dicing operation, and (4) an edge

finishing to final dimensions. Non-contact and contact metrology methods were used

to verifying surface quality and prescriptions. The setup and methodologies used in

metrology will be discussed in a later section. All manufacturing and metrology were

completed in temperature controlled labs (20 ±0.1 C).

Targets for surface roughness and form error (departure from prescription) were

10 nm Sa and ±300 nm, respectively. Waviness or so-called mid-spatial frequency

errors have not yet been specified. However, based on experience, we expect these

errors to be on the order of ±150 nm with a spatial wavelength that is dependent on

the cutting parameters. The sources of these errors are thermal and are result from

cycles in the machine temperature control systems which have a temporal period of

less than 10 minutes.
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The Ge workpieces used in the application had a major crystal orientation of (100).

They were first diamond turned to identify the preferred cutting direction for the

flycutting operation. The preferred cutting direction allows for a higher material

removal rate while maintaining a ductile-dominated cut. The final prepared surfaces

were diamond turned using a 5 µm depth of cut and a 0.5 µm/rev feed to preserve

a high-quality surface integrity. Figure 2.7 shows the diamond turning operation.

Spray mist with odorless mineral spirits used to evacuate chip and lubricate the

cutting operation.

Figure 2.7: Single-point diamond turning Ge.
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Figure 2.8: Single-point diamond turning Ge.

The flycutter apparatus was setup using the high speed spindle mounted on the z-

carriage and clocked at a 45 degree angle relative to the z-axis of the machine. Figure

2.8 shows the setup of the flycutter. The Ge workpiece was held by vacuum on the

main spindle. C-axis mode was enabled to hold the workpiece in a specific orientation

during the flycutting operations. The flycutting operation can be observed in Figure

2.8, where the spindle was set to 30,000 rpm. Both the fast- and slow-axis lenses

were cut oversize in the lateral dimensions (XY) to ensure no residual damage was

left from the dicing operation.

The fast-axis surface was machined using a single-crystal diamond insert with a

nominal R of 250 µm and a α of -25 degree. The insert was mounted to a 25 mm

diameter arbor on a 60,000 rpm milling spindle in a flycutting configuration, as pre-

viously described in 2.8. The spindle was balanced better than 6 nm following error.

Errors in the actual position of the diamond tip and true nose radius led to a correc-

tion of the tool nose radius to 229 µm. The nose radius correction was completed by

machining a cylindrical artifact in Ge and verifying the radius of the artifact with a

tactile profilometer. Table 2.5 shows the machine input parameters.
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Table 2.5: Machine input parameters for cutting fast-axis surface.

Machine parameter rough medium finish

adoc (µm) 25 10 5

vf (mm/min) 500 500 300

So (µm) 15 15 5

The slow-axis surface was machined using the same flycutting configuration as

previously mentioned and following the same balancing requirement. The diamond

insert had a nominal R of 10 µm and a α of -25 degree. The corrected tool nose

radius was 10.02 µm. Table 2.6 shows the machine input parameters for cutting the

slow-axis surface.

Table 2.6: Machine input parameters for cutting slow-axis surface.

Machine parameter medium finish

adoc (µm) 5 5

vf (mm/min) 500 300

So (µm) 5 2
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The lenses were diced oversized from a larger Ge workpiece using a milling oper-

ation. A milling tool with a 2.536 mm cutting diameter and a zero rake angle was

used. The zero rake angle left residual damage on the edges of the part. The damage

from the milling operation was subsequently removed during last stage that brought

the optics to their final lateral dimensions. Figure 2.9 (left) shows the mounting con-

figuration of the lenses for the lateral trimming operation. Figure 2.9 (right) shows

the flycutting arrangement rotated such that axis of rotation is perpendicular to the

parts surface.

Figure 2.9: (left) Extended boss for lateral trimming; (right) flycutting arrangement.
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2.3 Polishing

Two polishing methods were used in this research: (1) chemo-mechanical polishing

(CMP) and (2) magneto-rheological finishing (MRF). The following sub-sections will

the discuss the equipment and process for each method.

2.3.1 Chemo-Mechanical Polishing

A CMP process was developed to produce flat, damage-free samples for diamond

machining experiments. The results from this study are reported in Chapter 4, section

4. The CMP equipment can be seen in Figure 2.10. The polishing fluid was a mixture

containing a 1:1:10 dilution in the following ratio: (a) 200 g of Ultra-Sol S39, a

colloidal silica solution, (b) 200 g of bleach, and (c) 2000 g of deionized water. The

polishing pad used was a polyurethane impregnated polyester felt pad (SubaTM 600)

with the following specifications: (a) compressibility of 4%, (b) Shore D hardness of

80, and (c) thickness of 1.27 mm. The mass holding the Ge down was 150 g. The

rotation speed was set at 55 rpm.

Figure 2.10: CMP equipment for polishing germanium.
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2.3.2 Magneto-Rheological Finishing

The magneto-rheological finishing (MRF) spotting technique and full aperture pol-

ish were performed on the QED Q22-XE machine. The MRF fluid D10 was used for

this study. D10 fluid is composed of a non-magnetic abrasive (diamond), a magnetic

carbonyl iron, and a stabilizer (sodium hydroxide). The MRF fluid loses moisture

as the fluid is circulated. Deionized (DI) water was used to control the viscosity of

the fluid. The non-magnetic abrasive in D10 fluid is 150 nm sized diamond. The

magnetic carbonyl iron allows for the fluid to be ejected from the pump system via

a nozzle onto a rotating wheel. A permanent magnet at the wheel assembly creates

a magnetic field around the rotating wheel, such that, the carbonyl iron aligns and

forms a stiff ribbon. The abrasive is pushed to the outer surface of the ribbon. The

workpiece can then be mounted to a multi-axis arm and polished by the MRF ribbon.

The MRF machine function is as depicted in Figure 2.11.

Figure 2.11: MRF equipment for polishing germanium.

In order to setup the MRF machine for polishing, the material removal rate for

Ge needed to be characterized using the D10 fluid. Four spots located 90 degrees

from each other were statically polished (i.e. a single location on the workpiece). The
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polishing time was 5 seconds. A Fizeau Verifire was used to measure the surface.

Figure 2.12 shows the resulting spots for characterizing the material removal rate.

The material removal rate of Ge using D10 fluid with a viscosity of 76 cP was 8

µm/min. The ribbon height was 1.8 mm, the depth of penetration into the ribbon

by the workpiece was 0.7 mm.

Figure 2.12: MRF - spot characterization.
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Table 2.7: MRF spot information.

Spot no. Time (sec) Angle (deg) Viscosity (cP)

1 3 0 85.0

2 6 20 85.4

3 9 40 85.9

4 12 60 86.0

5 15 80 86.9

6 18 100 86.9

7 21 120 87.3

8 24 140 86.8

9 27 160 86.9

10 30 180 86.7

11 33 200 86.8

12 42 220 82.3

13 51 240 86.2

14 60 260 87.2

15 69 280 85.9

16 78 300 86.4

17 87 320 81.5

18 96 340 85.1

The MRF spotting technique was completed on sample 1. There were 18 spots pol-

ished into the surface at defined time intervals and specific locations on the workpiece.

This information is summarized in Table 2.7.
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Table 2.8: MRF full aperture polish.

Iteration Removal step

(µm)

Total amount removed (µm)

1 0.5 0.5

2 0.5 1.0

3 0.5 1.5

4 0.5 2.0

5 0.5 2.5

6 0.5 3.0

7 1.0 4.0

8 1.0 5.0

The MRF full aperture polish was completed on sample 2. In order to observe the

removal of damage and mitigation of mid-spatial frequencies from the SPDT process,

the workpiece was polished in steps. The polishing steps removed 500 nm of material

at each iteration until 3.0 µm were removed in total. The next step size was 1 µm of

material removed until 5 µm were removed in total. Table 2.8 shows the breakdown

of these iterations.



26

2.4 Materials, Crystal Orientations

Single-crystal Ge and oxygen-free high-conductivity copper were used in this re-

search. The following sections provide background information for the two materials.

2.4.1 Single-crystal Germanium

Ge is most extensively used as an IR optical material in thermal imagining, spec-

trometers, and quantum cascade laser applications. Ge is (ideally) optically isotropic

with an excellent range in IR transmission (3-12 µm), high index of refraction (n =

4.003), and its high hardness in terms of Knoop hardness (HK = 780) [38]. Due to

it’s high index of refraction, Ge transmits approximately 45% of the IR light that

passes through it. Imperfections in the crystal lattice during growth or subsequent

manufacturing stage will ultimately determined the effectiveness in optical perfor-

mance and optical isotropy. High-purity Ge (99.999% pure) is preferred for optical

applications, and it is important that residual stresses are minimized to reduces the

effects of birefringence. Birefringence can lead to anisotropic optical qualities within

surface that impart differences in the polarity and refractive index. This minimizes

the impedance on optical performance from the bulk material. Subtractive manu-

facturing methods, such as SPDT, will impart damage and disorder into the surface.

Understanding how to minimize the effects in the kinetic and dynamics of the ma-

chining operation will only enhance the efficiency. Table 2.9 provides a summary of

the mechanical properties for Ge. Ge has a thermal conductivity of 0.58 W/(cmC)

and a melting temperature at approximately 938.2 C.

Table 2.9: Mechanical properties of single-crystal germanium.

Young’s modulus Shear modulus Bulk modulus Poisson ratio

103 GPa 41 GPa 75 GPa 0.26
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2.4.2 Oxygen-free High-conductivity Copper

Oxygen-free high-conductivity (OFHC) copper is a diamond turnable material [45].

It exhibits minimal grain relief from the turning operation, i.e. the material is ideal for

producing optical-grade surface finish, with minimal digs from grain pull-out. OFHC

copper is commonly utilized in high-intensity laser applications [46]. The research

conducted for this dissertation used OFHC copper in the machine learning study,

discussed in Chapters 3 and 5, because of its well-behaved material response when

diamond turned.



28

2.5 Surface Measurements and Metrology Equipment

Surface finish of machined and polished parts were measured using a Zygo NexView

coherence scanning interferometer (CSI). Surface measurements that report surface

finish are processed by removing a plane and applying an Fast-Fourier-Transform

(FFT) band-pass filter (2.5 to 80 µm unless otherwise specified). Uncertainty mea-

surements were completed on the CSI to examine the effects of cusp patterns from

diamond machining and anisotropic surface fracture. The results from the uncertainty

analysis are reported in Chapter 4 under the section heading Surface Measurement

Uncertainty.

2.5.1 Measurement Procedure for MRF Study

This section discusses the measurement procedure for the MRF spotting technique

and full aperture polish study. Prior to measuring on the CSI, the samples were

thoroughly cleaned using a mixture of DI water and Dawn dish soap to remove any

MRF fluid remaining on the surfaces after polishing and spotting. The samples were

then carefully drag wiped with acetone and ethanol, respectively.

The CSI was used to measure samples 1 and 2 for characterization and analysis

of the surface topography. Sample 1 and sample 2 were measured using the 20x

objective on the NexView. The field of view for this objective is 418x418 µm, with

a numerical aperture of 0.40. The 2.75x objective was also used to measure sample

2 for a PSD analysis of the surfaces. The field of view of this objective 3.0x3.0 mm,

with a numerical aperture of 0.08. Samples 1 and 2 were marked with fiducials to

ensure repeatability of the measurement locations.
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Figure 2.13: MRF - measurement locations (left) MRF spot and (right) MRF full
aperture polish.

Sample 1 - MRF spotting technique - was measured at the deepest area in the spots

in three locations, as shown in Figure 2.13(left). Every height map produced was

an average of three measurements, and all three locations were averaged to provide

surface roughness parameters for further analysis of each spot. In addition, three

measurements were taken on the original diamond turned surface for comparison.

Sample 2 - MRF full aperture polish - was measured at four locations as depicted

in Figure 2.13(right). Again, each height map produced was an average of three

measurements. The four locations were evaluated independently, and the surface

roughness parameters produced were averaged.

All height maps evaluated for surface roughness parameters had the following post-

processing steps: (1) removed piston and tilt; (2) filter areal data with a FFT high-

pass filter with a period of 80 µm; (3) the surface roughness parameters Sa, Sq, and

Sz were reported. All height maps used for PSD analysis had a piston and tilt term

removed.

2.5.2 Metrology Procedures for Verifying Application Parts

A NexView CSI was used to verify the surface quality for both lenses and the

radius of the slow-axis cylinders. Surface roughness results, such as Sa and Sq, were
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processed by removing a cylinder and applying an FFT band-pass filter in accordance

with ISO 10110-8:2010. All measurements were taken in a temperature controlled lab

(20 ±0.1 C).

A Mahr Marsurf LD 260 with a diamond tip probe was used to verify test artifacts

and the prescription of the fast-axis lens. The diamond tip probe has a nominal radius

of 2 µm. Figure 2.14 below depicts the process for scanning the surfaces. The scan

direction was made perpendicular to the acylinder axis. Data processing included

trimming and leveling of trace data. The trace of the acylinder from the fast-axis

surface was compared to the optical prescription. All measurements were taken in a

temperature controlled lab (20 ±0.1 C).

Figure 2.14: Mahr profilometer measurement.

2.6 Surface Integrity Measurements

The subsurface damage from polishing and machining of Ge were completed at

Oklahoma State University and Los Alamos National Laboratory. The instruments

used to examine the subsurface of the parts under test are a confocal Raman micro-
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scope and a Rutherford back-scattering spectrometer. Both of these instruments are

non-destructive in nature; however, if the laser intensity is not well tuned in confo-

cal Raman, the surface and subsurface can be heated to recrystallize the local area.

Thus, the recrystallization will erase the history of machining or polishing.

A confocal Raman microscope in the back-scattering configuration was used a 532

nm wavelength laser with a spot size of approximately 1 µm that had a probing

depth of 10-30 nm. Confocal Raman is traditionally used for material, chemical and

life sciences. This research uses confocal Raman microscopy to measure damage from

ultra-precision machining and polishing applications. Here low-frequency vibrational

modes in the material lattice of the part under test are examined to reveal subsurface

integrity information. Incident photons from the laser will strike the crystal lattice

and back-scatter to a detector. The back-scattered photons provide insight on residual

stress within the lattice which is indicated by a shifts in the peak. Broadening of the

peak can indicate lattice disorder, such as cracks or dislocations like twinning.

Rutherford backscattering spectroscopy was used to examine the surface integrity

of polished and SPDT Ge. The subsurface damage of the surfaces was investigated

with channeling RBS, performed at Los Alamos National Laboratory. The channeling

RBS beam was collimated with 2 MeV 4He+ ions, a spot size of approximately 1 mm2,

and kept in a vacuum chamber at 4-5x10−7 Torr. The backscattered particles were

collected by a solid state detector. Surface response was quantified by the spectra of

backscattered particles versus backscattered energy. Usefulness of the data collected

is typically limited to the first micrometer (∼1 µm) of the surface under test.
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2.7 Cutting Measurements and Dynamometer Equipment

The cutting forces of the machining operations were measured using multi com-

ponent transducer-based dynamometers. Micro-cutting force measurements require

high fidelity and resolution data capture. Prior to all force measurements, the dy-

namometers were reset to zero to ensure good repeatability from the piezoelectric

measurement technology. This minimized the errors from thermal drift.

A Kistler mini-dynamometer (mini-dyn) - model 9256C1 - was used to measure

forces during SPDT operations. The mini-dyn and charge amplifier can be seen in

Figure 2.15. The natural frequency of the mini-dyn is approximately 5 kHz prior to

adding the mass from a part under test. The mini-dyn provided cutting (tangential)

and thrust (normal) force information. Resultant force F and angular Θ information

were calculated from the collected data.

Figure 2.15: (left) Kistler mini-dynamometer - model 9256C1 and (right) Kistler
charge amplifier.

A Kistler micro-dynamometer (micro-dyn) - model 9109AA - was used to measure

forces during flycutting operations. The micro-dyn and charge amplifier can be seen

in Figure 2.16 The micro-dyn provided a higher natural frequency (15 kHz) to combat

with the high tooth passing frequency of a flycutting operation. Thus improving the

accuracy of the data collected. The micro-dyn has the capability of measuring forces

from spindle speeds up to 120,000 rpm.
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Figure 2.16: (left) Kistler micro-dynamometer - model 9109AA and (right) Kistler
charge amplifier.

2.7.1 Data Acquisition and Analysis

Force data was monitored and collected from the mini- and micro-dyn via a custom

virtual instrument (VI) LabVIEW program. The VI-LabVIEW program read the

force data through a NI USB-6251 BNC data acquisition (DAQ) board. The force

data was save and post-processed in MATLAB®, version 2019/2020.



CHAPTER 3: UNCERTAINTY ANALYSIS, BASIC MECHANICS, AND

MACHINE LEARNING

3.1 Surface Measurement Uncertainty Analysis

Measurement uncertainties are important to identify and quantify such that a more

reasonable and reliable characterization is provided with the measurand. Further-

more, an estimate of the uncertainty in the measurement for the measurand will

provide higher confidence in reporting measured values. In the case of this study, the

measurands are output parameters from a CSI measurement. These measurands are

Sa and Sq. Note that the result of a measurement is an estimate of the true value of

the measurand [47], where the true value can never really be known. A prediction of

the analytically estimated value for surface roughness can be calculated by using Eq

3.1.

Sapred =
f 2
r

9
√

12R
(3.1)

Sapred is the prediction of the surface roughness for a single-point diamond turned

surface, fr is the feed per revolution in µm, and R is the radius of the tool in µm

[42]. However, this prediction of the surface roughness has proven to be an insufficient

method of providing reasonable values of the measurand. This is noticeable when fr is

a very low or high value. The actual measurement of the surface roughness can deviate

orders of magnitude due to temperature variations during the cutting operation, or

due to material characteristics [48]. As previously mentioned, Ge can have a brittle

response to machining if parameters are not carefully selected. When Ge is diamond

turned with aggressive machining parameters, the result is unfavourable fracture on
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the surface, as well as, a fair amount of subsurface damage. Surface fracture observed

from diamond turning can also be considered an inhomogeneous surface topography.

In order to provide a proper formulation of uncertainty, the GUM states that the

measurand definition and equation must be well defined, such that all input quanti-

ties involved in the measurement are captured. The GUM also indicates that each

input quantity should be evaluated using a Type A or Type B evaluation. Type A

evaluations of the input quantity is completed using statistical methods, and a Type

B evaluation uses other methods than statistical ones. Monte Carlo simulations pro-

vide the best approach when doing a Type B evaluation [49]. Additionally, Type

B evaluations require a good understanding of the input quantities because proba-

bility density functions are used. Either method is used to determine the standard

measurement uncertainty, which will be used later when determining the combined

measurement uncertainty. All uncertainty evaluations should report a coverage factor

when reporting the expanded uncertainty of the measurement.

There are many papers and publications focusing on the uncertainties associated

with profile measurements [48, 49, 50]. However, there seems to be a lack in lit-

erature that includes the effects of surface texture inhomogeneity in areal surface

measurements using a CSI. Surface texture inhomogeneities for profile measurements

are largely degraded when the user applies the appropriate filtering [50]. Such filtering

can include an FFT high pass filter. Homogeneity of the surface has been reported

as a major contributing factor in the uncertainty of measurement [51]. CSI measure-

ments of rough surfaces can also be known to lead to artefacts in the measurement

from steep topography [52]. These artefacts can be observed as large spikes location

in or around a fracture on the surface that can increase the measured values. Because

of this, it can be very useful to compare the measurements results of one instrument

to another. For instance, the measurement from a CSI can be compared to that of

an a AFM (atomic force microscopy).
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3.1.1 Uncertainty Model

3.1.1.1 Measurand Definition and Equations

The definition of the measurand is vital for telling a meaningful story about the

quantity describing the object being measured. This work defines the measurand as

the areal surface roughness values, Sa and Sq. These parameters are described by

Eq 3.2 and 3.3, respectively. The target uncertainty for this study was ±0.5 nm. The

coverage factor considered for the expanded uncertainty was k = 3 (99.73 %).

Sa =
1

n

∫ ∫
|Z(x, y)|dxdy ± U(Sa) (3.2)

Sq =

√
1

n

∫ ∫
|Z2(x, y)|dxdy ± U(Sq) (3.3)

CSI measurements can be sensitive, but not limited to: (1) environmental condi-

tions; (2) calibration of the instrument; (3) drift motions of the stage; and (4) the

quality and optical properties that are inherently apart of the workpiece under test.

The influencing contributors in the measurement are summarized by Figure 3.1.

Figure 3.1: Ishikawa diagram - influencing contributors of the measurement.
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Sample tilt was assumed to be negligible as the setup minimized the tilt as much as

possible. The turbulence was also neglected since the air gap between the workpieces

and objective was very small (∼3-4 mm). The instrument setting denoise was turned

on for all measurements to minimize camera noise in the measurements. The system’s

calibrated reference file was subtracted from all measurements in order to minimize

artefacts from the instrument. The remaining influencing contributors are assumed to

be captured in the performed surface topography repeatability (STR) measurements.

3.1.1.2 Evaluation Methods

Two evaluation methods were considered for analysing the STR of each surface

measured. A total of 50 measurements per surface was collected using the CSI. Both

methods for analysis used MATLAB® 2018b. All values reported in this analysis are

rounded up to 1 decimal place considering the units of nm.

Method 1 provided an analytical model based on the same principles as the STR

synthetic reference method used by Venditti et al. [53]. After post-processing of

the height maps, the average height map was calculated. This average was then

subtracted from the individual height maps, which resulted in 50 individual deviation

maps. The STR Sa and STR Sq were calculated from the deviation maps and

averaged. Eq 3.4 and 3.5 were used to calculate STR Sa and STR Sq. These values

represent the estimated uncertainty from modelling Method 1.

STRSa =
1

n

∫ ∫
|Z(x, y)|dxdy (3.4)

STRSq =

√
1

n

∫ ∫
|Z2(x, y)|dxdy (3.5)

Method 2 was more unconventional from the ISO 27158-604 using a Monte Carlo

simulation that evaluated the uncertainty by using the average height map and the 50

deviation maps. A randomly selected deviation map was designated to add a specific
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pixel to the same pixel location in the average height map. Each pixel location

was randomly chosen from one of the 50 deviation maps. The Sa and Sq values

were computed for each iteration using the same formulas, shown in Eq 3.4 and 3.5,

produced a probability density function (PDF) for each term. The Monte Carlo

simulation ran 10,000 iterations prior to computing the PDF. The corresponding

uncertainties were then determined by calculating the standard deviation of the PDF

using the built in MATLAB® function ’std’. Figure 3.2 provides an example of a

PDF produced from the Monte Carlo code.

Figure 3.2: SiC-CVD - Monte Carlo resulting PDF after 10,000 iterations.
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3.2 Basic Mechanics of Machining

As previously mentioned in the in Chapter 1, Ge is a brittle material and requires a

fundamental knowledge in order to effectively machine the material for optical appli-

cations. Geometric parameters and machine input parameters all have an important

interplay that dictates whether or not the material response is ductile-dominated or

brittle-dominated. Simply put, kinematic and dynamic input parameters will decide

the cutting mechanics. The R, in combination with adoc and fr, are the main con-

tributors to defining the chip geometry. Figure 3.3 illustrates the effect of small and

large R, where the undeformed chip geometry can be observed. As fr gets larger the

yc approaches zero and thus the probability of fracture remaining in the generated

surface increases.

Figure 3.3: Effect of tool nose radius in SPDT of Ge as described by Blake et al. [24].

The undeformed chip thickness has served as a base-line in predicting surface frac-

ture generation. The maximum undeformed chip thickness is described in Eq 3.6.

tc = R−
√

[R− adoc]2 +
[
R sin

(
arccos

(
R− adoc

R

))
− fr

]2
(3.6)
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The rake angle of the diamond tool determines the magnitude of tensile and com-

pressive stress resolved into the workpiece during the cutting operation. Figure 3.4

depicts how a negatively raked diamond tool imposes a larger hydrostatic pressure

into the workpiece material and suppresses brittle fracture. The suppression of brittle

fracture can be examined by an increase in compressive stress and a decrease in the

tensile stress. Brittle materials naturally perform better under compressive loading

scenarios. Additionally, existing cracks propagation and crack nucleation is ceased or

significantly sustained from growth due to the hydrostatic pressure.

Figure 3.4: (left) zero raked tool, (right) negatively raked tool.

Cutting forces (Fc) and thrust forces (Ft) can be measured using a force measuring

dynamometer. Figure 3.4 also depicts how a negatively raked tool increases the thrust

force and decreases the cutting force. These forces in any case provides important

insight into the mechanics of the cutting operations. For instance, when surface

fracture occurs in a cut, the thrust force drops reducing the angle (θ) and the resultant

force (F ). Owen et al. discussed this results for orthogonal turning and flycutting of

Ge [37].
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Specific cutting energy (Ks) also provides insight into cutting mechanics for all

materials. Ks is calculated from F , adoc, and fr, as shown in Eq 3.7. When surface

fracture is present in a cut, the required energy to remove material is subsequently

decreased. This is observed as a decrease in Ks. This research found that increasing

Vc will reduce the Ks. The reduction will be reported later in Chapter 4.

Ks =
F

fradoc
(3.7)

Figure 3.5: Cracking modes were described by Yoshino et al. in [25].

Yoshino et al. described the importance of a negatively raked tool in cutting brittle

materials by visualizing the effect through Mohr’s circle [25]. Figure 3.5 shows two
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modes of crack nucleation from increased stress during a cutting operation. Mode I

crack is activated when the tensile stress is excessively large reaching the threshold

of σmax

√
πa. Mode II crack nucleation is activated when shear stress is excessively

large reaching the threshold of τmax

√
πa. Increased compressive stress induced by the

negatively raked tool shifts Mohr’s circle to the left. Thus, decreasing the possibility

of Mode I cracks. It is also possible that Mode I crack can occur behind the tool.

3.2.1 Chip Morphology

Chip morphology can also provide insight on the mechanics of ductile-dominate and

brittle dominated machining. A face plunge-to-face operation in Ge using a 5 mm R

with a -25 degree α revealed ductile-dominated and brittle-dominated chips. The tool

was plunged at a 50 nm/rev to a depth of 25 µm. A facing operation continued at 25

µm depth of cut and 15 µm/rev. Figure 3.6 shows an image of the chips produced.

Ductile-dominated chips can be observed from the formation of lamellar chips, as

shown in sub-image A in Figure 3.6. Brittle-dominated chips occurred during the

facing operation and the subsequent chip can be seen in sub-image C of Figure 3.6.

The remaining structure of the chip is held near the apex of the tool tip, where the

chip is thinnest. Sub-image B in Figure 3.6 shows the effect of crystal orientation as

described by Nakasuji et al. [23]; or, rather, SPDT along damage lobes where brittle

behavior is more likely to occur.
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Figure 3.6: A face plunging operation reveals ductile-dominated and brittle-
dominated chips.

In another scenario, a 3 mm R with a -25 degree α was used to face Ge. The cut

was made at 1 µm depth of cut and 5 µm/rev. Figure 3.7 shows the chips produced

from the operation. Again, a continuous section of the chip is observed where the

chip is thinnest (apex of the tool). Increasing damage can also be observed further

up the chip.

Figure 3.7: SEM image of germanium chips from SPDT.
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3.3 Machining Learning

The information reported in this section was used from [42] and copyright permis-

sion was provided by the publisher. See Appendix A for the supporting documents.

Chapter 1 introduced the basic desire for utilizing machine learning models in

engineering applications. This section on machine learning will specifically cover

the background of data-driven machine learning models used in this research. This

research focuses on the application and evaluation of machine learning methods to

better assist the prediction of surface roughness parameters in Ge and provides a

comparison with a well-understood ductile material, Cu.

3.3.1 Basic Background for Machine Learning

Data-driven models prioritize automatic discovery of patterns in the observed data

using expert knowledge. Physics-based approaches are motivated by understanding

hypotheses about specific physical relationships and correlations among specific pa-

rameters. As such, they are not easily able to accommodate complexity and generally

rely on simplifying assumptions. In contrast, data-driven approaches, like in machine

learning, typically use measurement data to build a model by training without any

informing knowledge of the underlying physics. The types of machine learning algo-

rithms differ in their approach and function, i.e. regression, classification, supervised,

unsupervised, etc. They also differ by the type of input and output data, and the

type of task or problem that they are intended to solve. Supervised machine learning

infers a functional relationship from labeled training data consisting of a set of train-

ing examples. These training examples, known as output labels, are used to guide

the learning process. Unsupervised learning builds a model from a set of data which

contains only inputs and no desired output labels. Unsupervised learning algorithms

are often used to find structure in the data, such as clusters, by grouping inputs by

similarity, or aim at reducing data dimensionality to make a problem more tractable
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[54][55]. Among the most popular data-driven approaches, especially for machining

applications, are artificial neural networks (ANNs), support vector machines, decision

trees, and random forest regression [56][57].

ANNs are a family of machine learning models based on biological neural networks

which are used to estimate complex relationships between inputs and outputs [58][59].

Machine learning models, like ANNs, make predictions or decisions without being ex-

plicitly programmed to perform the tasks. Like the human brain, ANNs are modeled

as a stylized web of interconnected nodes or neurons. The networks are composed of

an input layer referred to as input features, one or more hidden layers that process

the data with an assigned function, and an output layer that provides one or more

targeted outputs. Figure 3.8 illustrates a base-line and deep(er) artificial neural net-

work. A deep or deeper artificial neural network has a larger number of hidden layers

(>2).

Figure 3.8: (left) base-line artificial neural network, (right) deep(er) artificial neural
network.

In feedforward networks, the flow of information takes place in the forward direc-

tion. The input features are used to calculate intermediate functions in the hidden

layers. The subsequent values from the hidden layers are used to calculate the target

outputs. The neurons are the computational building blocks of the artificial neural

network. An artificial neural network transforms input features by applying a nonlin-

ear function to a weighted sum of the inputs within the hidden layers. Each neuron
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receives inputs from several other neurons, multiplies them by assigned weights, adds

them and passes the sum to one or more neurons in feedforward fashion. A hidden

layer can apply an activation function to the intermediate-output before passing it to

the next variable. Learning is accomplished through iterative optimization of the loss

function to adjust the weights such that convergence toward the target output(s) is

achieved. A popular optimizer that uses gradient descent optimization, Adam (adap-

tive moment estimator), aims to calculate the individual adaptive learning rate for

each parameter from estimates of first and second moments of the gradients. Adam

is typically used in the case of noisy gradients or gradients with high curvatures. The

datasets in this research are noisy by nature.

Support vector machines are supervised machine learning models that are used

largely for classification, but also prediction [60]. Like artificial neural network, sup-

port vector machines infer a function from labeled training data consisting of a set of

training examples of paired inputs and outputs. The objective of the support vector

machine algorithm is to find a hyper-plane in an N-dimensional space, where N is

the number of input features that distinctly classifies the data points. For example,

binary classification is performed by finding the hyper-plane that best differentiates

between two classes, i.e. maximizes the margin between the hyper-plane and the sup-

port vectors, or closest values to the classification margins, illustrated in Figure 3.9.

The use of kernels can transform linearly inseparable problems into linearly separate

ones.
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Figure 3.9: Support vector machine example: (left) non-linear and (right) linear by
Kernel function.

Decision trees are a non-parametric supervised learning method used for both clas-

sification and prediction [61]. The output of a decision tree analysis is represented by

a tree-like structure shown Figure 3.10. The algorithm breaks a given dataset into

smaller and smaller subsets which form the branches and leaves of the tree. Learning

in decision trees is implemented by inferring decision rules from input features at the

decision points in the tree structure (non-iterative). Individual decision trees that

grow very deep tend to over-fit, exhibiting low bias but very high variance.

Figure 3.10: Decision tree example.

A meta-algorithm called boosting is often used in conjunction with machine learn-
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ing methods to improve performance. Boosting is a method of converting a set of

weak learners into stronger learners. A weak learner has a low likelihood of produc-

ing the correct target values (<50%). The AdaBoost meta-algorithm, chosen for this

research, functions by putting more weight on difficult to classify instances and less

on those already handled well [62][63].

Random forest consists of a large number of individual decision trees that operate

as an ensemble [57][64]. The underlying idea is to combine many different decision

trees, built with different bootstrapped samples of the original dataset, and a pre-

specified, but random, number of input features as shown in Figure 3.11. Random

forest methods are a way of combining multiple deep decision trees that are trained

on different parts of the same training dataset, with the goal of reducing the variance.

Random forest methods typically avoid over-fitting. Random forest methods can also

handle unbalanced data and are robust to outliers and non-linear data. Generally,

an ensemble of a large number of uncorrelated decision tree models will outperform

any of the individual models in the ensemble. As with decision trees, random forest

methods provide some insight into the relative importance of each feature on the

predicted output.

Figure 3.11: Random forest example.
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3.3.2 Data Processing

Figure 3.12: Machine learning workflow for creating and employing data-driven mod-
els.

Implementation of various machine learning approaches follows a typical workflow,

as shown in Figure 3.12. A typical workflow consists of five steps that are applied to

model a problem. Data collection (step 1) gathers a set of samples. Each set contain-

ing values for input variables describing the problem being modeled. This research

specifically uses supervised learning algorithms that have corresponding numeric tar-

get output values associated with the inputs. Data processing (step 2) focuses on

cleansing and formatting the dataset to be acceptable for the machine learning al-

gorithms through feature selection, feature transformation, and feature extraction.

Data cleansing consists in removing or repairing incorrect or missing data, reducing

noise, and/or applying data augmentation techniques. Data augmentation techniques

synthetically create variation of the existing data to avoid the need for additional data

collection and to create a more balanced dataset. Data augmentation is particularly

important in classification tasks. Analysis of individual features can lead to removal

of unnecessary features. Invariant features are not ideal and are a case for removal.

Transforming the remaining features by normalization or scaling can help improve
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the machine learning algorithm’s accuracy. Extraction of new features from the in-

put data is another technique to engineering a dataset that may be better suited to

the machine learning method. The ultimate goal of a machine learning method is

to create a model capable of performing well on new data it has not ’seen’ during

the learning phase. For this reason, in step 2, the resulting, clean dataset is split

into non-overlapping training and testing sets. Model training (step 3) includes se-

lecting adequate parameters for the learning algorithm, which is then executed to

find patterns in the training data that map the input features to the output target.

The product of this step is a machine learning model that captures these patterns

and can produce the correct target output when injected with a new input sample.

Model performance evaluation (step 4) involves an evaluation of the model generated

by measuring its responses to the testing dataset. This uses performance metrics se-

lected for the specific problem. Model hyper-parameters may need to be modified or

tuned if results are not yet as accurate as expected. In this case, the process goes back

to step 3, as the model must be re-trained using the modified parameters. Lastly,

final model production (step 5) involves implementing and deploying the tuned model

to operate with live data.

In this research, the Cu and Ge datasets contain features with varying magnitudes,

units and range, as listed in Table 2.1 from Chapter 2. Machine learning algorithms

are sometimes based on distance measures, e.g. SVM. Large scale differences between

features may become dominating and skew the model results. Feature scaling, or

standardization, is a type of feature transformation applied to individual features

during the data processing step. This normalizes the data to a particular range. It

also helps to improve algorithmic accuracy and speeds up computation time. However,

normalization should not be applied if the scale difference in features is meaningful.

Standardization replaces feature values by their Z-scores by linearly transforming the

data to have zero mean and standard deviation of 1. Z-scores are calculated for each
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individual feature by Eq 3.8, where µ is the feature mean and σ is the feature standard

deviation.

Z =
x− µ
σ

(3.8)

The input features of the Cu and Ge datasets have been standardized to ensure

good results for the SVM models. The same standardized data was utilized in all the

experiments for comparison purposes. The target outputs were not standardized as

the magnitude and range of Sa, Sq, and Sz from surface roughness measurements are

important to our analysis. Machine learning experiments were implemented in the

programming language Python v.3.7.3, utilizing Keras v.2.2.5 neural network API to

access the TensorFlow library in the back-end, and various regression algorithms of

the Scikit-learn v.0.20.3 machine learning library.

3.3.2.1 Machine Learning Experiments

The task of predicting surface roughness in the Cu and Ge was tackled by perform-

ing experiments with four classic machine learning algorithms: decision tree, random

forest, adaboost, and support vector regressors, and a set of ANN machine learning

architectures differing in the number of hidden layers and neurons per layer. Figure

3.13 provides a summary of the models tested.

Figure 3.13: Machine learning models tested with Cu and Ge datasets.

Machine learning algorithms have a number of hyper-parameters that require fine-

tuning to reduce the generalization error and achieve the best possible model. For

example, ’max depth’ is the hyper-parameter that controls the maximum number of
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children nodes that can grow out from a decision tree before it is cutoff. Experiments

were conducted with four decision trees by setting their max depth to 2, 5, 8, and

11. This hyper-parameter should also be tuned when applying the random forest

and adaboost algorithms, as they are ensembles of decision trees. Other trial runs

were performed using two separate experiments with each of these algorithms by

setting max depth to 8 and 11, since these methods are not susceptible to over-

fitting. Another hyper-parameter that required tuning was the maximum number

of estimators. This had to be tuned before boosting was terminated in adaboost.

Random forest also required setting the maximum number of trees (estimators) in

the forest. Both algorithms used 100 estimators.

A support vector regressor uses a set of mathematical functions, known as kernels,

to take lower dimensional data as input and transform it into a higher dimensional

form. This was used to determine the hyper-plane that enables prediction of contin-

uous values, i.e. the target output. Three general-purpose support vector regressor

kernels were examined: Gaussian radial basis function (RBF), sigmoid (Sig), and

polynomial (Poly). A strong advantage of RBF is that it requires no prior knowl-

edge of the data. The Sig kernel is customarily used as a proxy for neural networks,

while the Poly kernel is popular in image processing and was added as a baseline for

comparison with the other kernels. The RBF kernel has two free parameters: the

regularization parameter C set to 100, and the epsilon value set to 0.1. The epsilon

value assigns a safeguard distance from the actual value suffering any penalty during

the model training phase. For the Poly kernel, C was set to 1000 and epsilon was

kept as 0.1. Additional free parameters for the Poly kernel are coef0, the independent

term in the kernel function, which was set to 1. The degree of the polynomial kernel

function was set to 3. For the Sig kernel, coef0 was set to -3, while epsilon was kept

as 0.1.

Selecting the ANN algorithm and configuration that best fits a dataset is an open
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research question that is continuously being investigated by many researchers. Among

a growing number of ANN algorithms and optimizers, the Adam optimizer has been

selected for the experiments given that is it straightforward to implement, computa-

tionally efficient, appropriate for problems with noisy data, and requires little tuning

of hyper-parameters. A number of feedforward ANN configurations were tested, i.e.

ANNs with different numbers of hidden layers and different numbers of neurons per

layer. Six ANN configurations were kept in the final experiment. A basic ANN con-

sisting of a single hidden layer with a small number of neurons is used as a ’Base-line’.

ANN configurations named ’Wider’ have a single hidden layer but contain a larger

number of neurons in this layer. The ’Deeper’ ANN configurations have three hidden

layers and different number of neurons in these layers. The activation function applied

to the hidden layers of the ANNs was the rectified linear unit (ReLU), while a linear

activation function was applied to the output layers. The loss function utilized for

minimizing the loss of the ANNs by optimizing its weight parameters was the mean

squared error (MSE), as shown in Eq 3.9.

MSE =
1

n

n∑
i=1

(ŷi − yi)2 (3.9)

The Cu dataset contains only 78 samples, a small dataset by machine learning

standards. Thus, the data was randomly split by separating 80% of the samples (62

samples) for training the model and the remaining 20% (26 samples) for testing. The

larger Ge dataset has 810 samples and was also randomly split in 80% (648 samples)

for training and 20% (162 samples) for testing to allow for better comparison of the

accuracy in results against those from Cu data.

3.3.2.2 Evaluation Metrics

There are multiple ways to define the performance criteria for a machine learning

model and a number of metrics are typically used. For regression tasks, predictive
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capability is typically evaluated using metrics that measure how close predicted values

are to the actual measured value. Variance score, root mean squared error, mean

absolute error, and R-squared score were computed and used to evaluate the predictive

capability of machine learning for surface roughness in diamond turned Ge and Cu.

The following explains each of these metrics.

In Eq 3.10, 3.11, 3.12, 3.13, and 3.14, ŷi corresponds to the value predicted and yi

is the actual measured value expected for the ith example. ȳ is the feature mean and

V ar is the variance, i.e. the square of the standard deviation.

The explained variance regression score (EV S) is a statistical measure, defined

in Eq 3.10, of the proportion of variance in a given dataset which is accounted by

a regression model. The mean absolute error (MAE) measures the average of the

absolute difference between each true value and the prediction. MAE corresponds to

an absolute measure of fit and is computed by Eq 3.11.

EV S = 1− V ar(yi − ŷi)
V ar(yi)

(3.10)

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.11)

Root mean squared error (RMSE) is computed as the square root of the average

of the squared difference between each prediction and its actual measured value, as

shown in Eq 3.12. Squaring the differences between predictions and true values makes

RMSE give higher weight to larger outliers, which is a useful property for data anal-

ysis. Similarly to MAE, RMSE is in the same units as the target. The maximum

residual error (MaxError) measures the worst-case error between the predicted (tar-

get) value and the actual measured value. This is a useful property when very high

errors can result in catastrophic or expensive events. MaxError is shown in Eq 3.13.
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RMSE =

√∑n
i=1(ŷi − yi)2

n
(3.12)

MaxError = max(|yi − ŷi|) (3.13)

R-squared (R2), or coefficient of determination, is the statistical measure of the

proportion of the variance in the dependent (target output) variable that is predictable

from the independent (input features) variables. Typically R2 values vary between 0

and 1. An R2 value equal to 0 indicates that the model is not capable of predicting

the target from the given input features. On the other hand, an R2 value equal to 1

means that the target output can be predicted without error from the input features.

In rare cases, when the selected model fit is worse than a horizontal line R2 values can

be negative. Thus, a negative value indicates that the mean of the data is a better

predictor than the selected model.

R2 = 1−
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1(yi − ȳ)2

(3.14)

Performance metrics were computed for both the training and test phases of model

building. A machine learning model ’learns’ a system’s behavior from input-output

pairs of samples it ’sees’ processes during the training phase. The model’s accuracy

is evaluated during the testing phase by measuring the error of its predictions when

presented with input samples it has not seen before. The corresponding target output

value is also unknown to the model. Model evaluation results utilizing these metrics

are presented in the Chapter 5.



CHAPTER 4: EXPERIMENTAL RESULTS

4.1 Surface Measurement Uncertainty

This section focuses reporting the results from the uncertainty analysis in measuring

surface roughness on Ge that is machined using a single-point diamond tool. In

particular, the areal surface roughness (Sa) and the root mean squared areal surface

roughness (Sq) are considered as the measurands for the analysis. Since single-point

diamond turned surfaces are not considered as homogeneous, it is anticipated that

the texturing on the surfaces will drive up the uncertainty in surface topography

repeatability (STR) analysis. Additionally, since Ge is a brittle material, it is expected

to have surface fracture due to aggressive turning parameters, which is hypothesized to

further increase the uncertainty in the STR analysis. It was assumed for the purpose

of this research, that the STR analysis will capture the dominating uncertainty for

the measurements as previously discussed. A SiC CVD reference standard was used

as a comparator to the effects from the machined surfaces.

4.1.1 Uncertainty Analysis Results

The uncertainties determined from Method 1 are summarized in Table 4.1. The

three surfaces SiC-CVD, Ge-1, and Ge-2.1 all seem to have minimal uncertainty from

the STR analysis. The surface Ge-2.2 had a minor amount of surface damage due

to brittle fracture. The surface Ge-3 had severe surface fracture damage. These

two surfaces had larger associated uncertainties, where Sq more vividly captured the

surface defects present in the two surfaces.
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Table 4.1: Method 1 - STR analysis results for 50 measurements.

SiC-CVD Ge-1 Ge-2.1 Ge-2.2 Ge-3

STR Sa (nm) 0.1 0.1 0.1 0.2 1.0

STR Sq (nm) 0.2 0.1 0.2 1.6 4.7

Figure 4.1 shows the effect of surface fracture as the number of measurements

increases. This ever growing increase in the STR Sa could be attributed to the drift

motions of the stages over time. The STR Sq results depicted the same relationship

with presence of brittle fracture in the samples surface. It should also be pointed out

that the values reported in this graph were rounded up to 1 decimal place considering

the units of nm.

Figure 4.1: Method 1 - STR analysis.
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Table 4.2: Method 2 - STR analysis results for 50 measurements.

SiC-CVD Ge-1 Ge-2.1 Ge-2.2 Ge-3

Mean Sa (nm) 0.2 0.4 2.7 2.9 21.9

Mean Sq (nm) 0.2 0.5 3.2 5.4 48.1

STR Sa (nm) 0.1 0.1 0.1 0.1 0.3

STR Sq (nm) 0.1 0.1 0.1 0.8 0.7

The mean values for Sa and Sq are summarized in Table 4.2 for Method 2. The

standard deviations were computed from the PDFs of each surface. Major outliers in

the PDFs were observed for Ge-2. These are likely attributed to the surface fracture

in the surfaces.

Figures 4.2, 4.3, and 4.4 show the PDFs for Sa and Sq estimates based on Method

2. The plots are scaled with the same vertical axis bounds to better compare the

results. The skewness and kurtosis values are reported in Table 4.3. Based on the

results in Table 4.3, the PDFs are not normally distributed. The surface Ge-2.2 was

largely effected by the surface defects present on the surface as the skewness and

kurtosis indicate. The surface Ge-3 interestingly shows a similar distribution as the

other surfaces. The surface defects for Ge-3 were better distributed as compared to

Ge-2.2.

Table 4.3: Reported skewness and kurtosis for Method 2 PDFs.

SiC-CVD Ge-1 Ge-2.1 Ge-2.2 Ge-3

Skewness Sa (nm) 0.14 -0.73 0.09 2.04 -0.98

Skewness Sq (nm) 0.18 -0.87 0.06 1.87 -1.03

Kurtosis Sa (nm) 3.24 3.92 3.04 5.82 3.46

Kurtosis Sq (nm) 3.16 4.30 3.05 5.04 3.64
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Figure 4.2: Sa and Sq PDFs for SiC-CVD.

Figure 4.3: Sa and Sq PDFs for (a) Ge-1 and (b) Ge-2.1.
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Figure 4.4: Sa and Sq PDFs for (a) Ge-2.2 and (b) Ge-3.
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4.2 Single-Point Diamond Turning

4.2.1 General Force Results in Germanium

This section will report on the cutting forces Fc and thrust forces Ft measured

while single-point diamond turning Ge. The major crystal orientation of the Ge is

(100) for these results. The following machine parameters were held constant for this

set of experiments: Vc at 2 m/sec and adoc at 25 µm. Tools with R of 0.5, 1.0, and 5

mm with an α of -25 degrees were used.

Figure 4.5, 4.6, and 4.7 shows Fc and Ft plotted against fr for each of the tools.

The standard deviation of the forces are plotted as a dashed line. For Figure 4.5 (R

of 0.5 mm), surface fracture began to appear for fr values greater than 1.1 µm/rev

and became more prevalent after fr exceeded 1.75 µm/rev. As the surface fracture

increased, so did the standard deviation in the force plots. For Figure 4.6 (R of 1

mm), surface fracture began to appear for fr values greater than 2.6 µm/rev.

Figure 4.5: R of 0.5 mm for (left) Fc versus fr and (right) Ft versus fr.

Figure 4.6: R of 1.0 mm for (left) Fc versus fr and (right) Ft versus fr.
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The force results from 5 mm R, as shown in Figure 4.7, never experienced surface

fracture; however, the standard deviation increased following 2 µm/rev.

Figure 4.7: R of 5.0 mm for (left) Fc versus fr and (right) Ft versus fr.

The resultant forces F and angle resultant Θ for all three tools is shown in Figure

4.8. As previously mentioned, the 5 mm R did not exhibit surface fracture for fr

values between 0.3 to 10 µm/rev. Though there is still a decrease in Θ to a similar

degree as the other two tools that did exhibit visible surface degradation. With this

in mind, the decrease in angle could be considered in two parts: (1) larger chip loads

increase the Fc more quickly than Ft, and (2) the larger chips are experiencing more

brittle fracture within the chip.

Figure 4.8: F and Θ for (a) R of 0.5 mm, (b) R of 1.0 mm, R of 5.0 mm.
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Figure 4.9: Ks versus fr for (a) R of 0.5 mm, (b) R of 1.0 mm, R of 5.0 mm.

Even though the overall chip thickness decrease with a larger tool nose radius, the

energy required to remove the material is higher. The undeformed chip thickness

for the 5 mm tool is about 3 times smaller than that of the 0.5 mm tool. Another

consideration is that because the chip is thinner for the 5 mm tool, there is less

fracture generated within the chip.
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Figure 4.10: Force ratio for (a) R of 0.5 mm, (b) R of 1.0 mm, R of 5.0 mm.

Figure 4.10 shows the force ratio plots for the three tool nose radii. All three plots

follow a similar trend, but one noticeable difference is observed in Figure 4.10 plot

(c). Here there seems to be a stronger intrinsic effect as the chip thickness is much

thinner than for the other two radii.

4.2.2 Major Crystal Orientation Effect

Ultra-precision machining of brittle materials is a timely process, as most machine

input parameters are conservative. This is mostly due to the introduction of brittle

fracture that has been discussed throughout this research. A reduction in surface

integrity ultimately will degrade the quality of the part produced and could also

impede optical performance and fatigue-life depending on the application of the final

product.

There are two major crystal orientations for single-crystal Ge: (100) and (111).

Since Ge has (ideally) isotropic optical properties, it would be important to know what

major crystal orientation of Ge is the most cost-effective choice for manufacturing.

The anisotropic mechanical properties are equally important to identify. In general,
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optical-grade Ge with a major crystal orientation of (111) is procured more often and

kept readily in-stock at vendors across the nation. However, as this research will show

in this section, Ge with a major crystal orientation of (100) exhibits higher material

removal rates than the (111) orientation. Thus, significantly reducing machine time

for roughing parameters in single-point diamond turning scenario.

Figure 4.11 shows a comparison of maximum fr allowed prior to brittle fracture

based on R and the major crystal orientation. The adoc and Vc were held constant

at 25 µm and 2 m/sec, respectively. Three R were used (0.5 mm, 1.0 mm, and 5.0

mm) with an included α of -25 degrees. The major orientation (100) can achieve

approximately twice the material removal rate compared with (111).

Figure 4.11: Maximum fr prior to brittle fracture based on R and major crystal
orientation.
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4.2.3 Cutting Speed in Turning Germanium

Cutting speed Vc in diamond machining of Ge has not been a major focusing point

in ductile-dominated machining of Ge. In fact, Blake and Scattergood published

a paper in 1989 concluding that there was insufficient evidence Vc had an impact

on surface integrity. This was the only account of the to date based on a current

literature search. This section will provide the results that showcase the beneficial

effects of Vc in diamond turning of Ge.

Vc was varied from 0.25 to 24 m/sec in SPDT of Ge. The adoc and fr were held

constant at 20 µm and 4 µm/rev, respectively. 4 µm/rev was chosen as surface

fracture was present at 2 m/sec. The goal of this experiment was to determine

whether or not surface fracture was suppressed by an increased Vc. Five repetitions

were completed for thoroughness to ensure that the results were repeatable.

Force data was also collected during the cutting operations using the Kistler 9256C1.

The cutting (tangential) force Fc and thrust (normal) force Ft were analyzed to get

a better understanding the mechanics of the operation. Figure 4.12 shows Fc and

Figure 4.13 shows Ft. As Vc increases from 2 m/sec and onward, the forces begin to

drop and so does the standard deviation. The standard deviation of the force data

is plotted along with the Fc and Ft data. The narrowing of the standard deviation

tends to be a good sign, as it indicates a reduction or absence of surface fracture.

The drop in forces that is observed at lower values of Vc (i.e. 0.25 m/sec) is from

the increase in surface fracture. Less energy is required to remove material with the

assistance of fracturing.
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Figure 4.12: Cutting force Fc versus cutting speed Vc.

Figure 4.13: Thrust force Ft versus cutting speed Vc.
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The resultant force F and resultant angle Θ were plotted against Vc, as shown in

Figure 4.14. Here Θ is the angle between F and Fc. The increased Vc begins to

increase Θ, which indicates that less tensile force is resolved into the surface.

Figure 4.14: Resultant force F and angle Θ versus cutting speed Vc.

The specific cutting energyKs is shown in Figure 4.15. Again, the same relationship

is observed here, where the Ks decreases with increased Vc. The drop in forces and

specific cutting energy is consistent with ductile metal cutting at high Vc values.
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Figure 4.15: Specific cutting energy Ks versus cutting speed Vc.

Finally, the force ratio versus Vc is shown in Figure 4.16. One hypothesis to explain

the observed increase in the force ratio is by relating it to an intrinsic effect. This

means that the material being removed is likely experiencing ploughing rather than

shearing. An alternative hypothesis is that the more rapid loading/unloading rate is

assisting a phase transformation from diamond-cubic Ge to a metallic (β-tin) phase

of Ge, which is more ductile by nature. In either case, the mechanism of material

needs to be examined further by analyzing the subsurface and chips from machining.
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Figure 4.16: Force ratio Ft

Fc
versus cutting speed Vc.

Figure 4.17: Single-point diamond turned germanium at Vc values of (a) 0.25 m/sec,
(b) 10 m/sec, and (c) 24 m/sec.
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Figure 4.17 shows three example surfaces from the Vc experiment. A larger network

of cracks produces more pitting that also goes deeper into the surface when Vc is 0.25

m/sec. As Vc increases to 10 and 24 m/sec, there is likely a decrease in the density of

crack nucleation, thus generating fewer surface defects. Surface fracture generation is

fairly agnostic to the depth of cut in turning and flycutting of Ge. That being said,

it is safe to say that a small variation in the depth of cut (± 6 nm) observed in the

feed direction did not alter the mechanics of the cut. In the case of turning, the feed

per revolution fr is a much more sensitive parameter.

It is clear that a higher cutting speed provides a means for improved material

removal rates. A 1 mm R will begin to produce surface fracture around 2 µm/rev at

low values of Vc (<10 m/sec). Higher Vc values increase the maximum allowable fr

before fracture occurs.
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4.3 Single-Point Diamond Flycutting

As previously mentioned diamond flycutting operation used a 1 inch arbor mounted

to a 60,000 rpm air-bearing spindle. The experiments conducted using this setup had

the goal of vary the cutting speed Vc to determine if a speed effect reduces brittle

fracture on the surface.

4.3.1 Cutting Speed in Flycutting Germanium

As previously discussed in the single-point diamond turning results, a speed effects

was observed in a continuous cutting operation. Those results concluded that cutting

speeds higher than 10 m/sec assisted in suppressing brittle fracture in the surface.

A similar hypothesis in interrupted cutting (flycutting) was therefore expected to

be true. However, unlike the turning operation, the flycut surfaces were all free of

fracture. In order to observed the effect from varying the Vc, the exits of the patches

were examined using a CSI.

Recall the patches flycut in Ge were 0.5 mm by 2 mm, such that force data and

surface data could be collected from the resulting surfaces. Also recall that the Vc

was varied from 10 to 40 m/sec, while adoc, fr, and R were constant. The rotation of

the flycutter in combination with the feed direction makes this operation similar to

a climb milling operation, such that the tool enters the cut where the chip is largest.
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Figure 4.18: Flycut germanium at Vc values of (a) 10 m/sec, (b) 20 m/sec, (c) 30
m/sec, and (d) 40 m/sec.

Figure 4.18 shows the four surfaces from varying the Vc from 10 to 40 m/sec. Notice

that all three surfaces have very similar Sa and Sq values, which also overlap if the

uncertainty in the measurements is included ± 0.3 nm. This does not necessarily

mean that there is no residual damage underneath the surfaces.
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Figure 4.19: Flycut exit in germanium at Vc values of (a) 10 m/sec, (b) 20 m/sec, (c)
30 m/sec, and (d) 40 m/sec.

Figure 4.19 shows the exit of the cuts for the four surfaces that were shown in

Figure 4.18. The exit of the cuts provide the final visual evidence that Vc does indeed

influence the cutting mechanics and does impact the damage residing in the surface.

As Vc is increased from 10 to 40 m/sec, the depth of damage perceived as surface

fracture, and represented here through Sz, decreases from ∼1.0 µm to ∼0.1 µm.
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4.4 Polishing

4.4.1 Magneto-Rheological Finishing Results

Single point diamond turning has been a method of manufacturing precision parts

for optical molds or directly manufacturing of symmetric lenses. The manufacturing of

IR optics using brittle materials like germanium and chalcogenide glass can be tricky

due to their brittle nature. Obtaining reasonable methods for evaluating surface and

subsurface damage is important to ensure the quality of the manufactured optics.

Some methods like confocal Raman spectroscopy is extremely limited on the depth

of penetration it can observe into the surface provided the right laser source is used.

For example, a 532 nm laser can observe damage and disorder only down to 30 nm

or less in Ge. Two alternative methods using an MRF machine were used to evaluate

damage depth in single-point diamond turning of Ge. These two methods are the

MRF spotting technique and a full aperture polish using the MRF machine. The

major difference between these two methods are: (1) the spotting technique polishes

a single location on the workpiece for a prescribed amount of time; (2) full aperture

polishing includes a rotating and rastering workpiece over the flowing ribbon of the

MRF machine. The basic hypothesis behind the first method is that the MRF fluid

is removing material from the surface exposing the subsurface damage and eventually

the polishing will reach a non-damaged surface. The second method addresses the

process of removing subsurface damage from a diamond turned surface; however, the

findings focus more on the mitigation of mid-spatial frequencies. For the purpose of

this research, it was assumed that the MRF fluid is not causing additional damage

or fracture propagation into the surface.

4.4.1.1 Sample 1 - Surface Damage Evaluation

Sample 1 was initially diamond turned as specified earlier. The damage introduced

into the surface and subsurface from the SPDT operation was evaluated through the



76

MRF spotting technique. Figure 4.20 shows sample 1 on the NexView stage. The

workpiece was aligned using the fiducial marks presented on the surface of the part.

The fringes were ’fluffed’ such that a single fringe engulfed the field of view.

Figure 4.20: Sample 1 - MRF spotting technique.

The MRF spotting technique completed on sample 1 shows some promise in es-

timating the subsurface damage in SPDT germanium. However, in order to have

complete confidence in the process, the spots were etched using 3% hydrogen per-

oxide. The etch rate was determined to be approximately 1 nm/min while using an

ultrasonic bath. The ultrasonic bath assisted the etch rate. The sample was etched

for 25 minutes. Thus, approximately 25 nm were removed. Figure 4.21 shows the

original diamond turned surface and etched surface. The etching process revealed

more damage from the network of fractured surface surface.
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Figure 4.21: (left) SPDT surface; (right) SPDT turned - etched.

Figure 4.22 shows the progression of damage removal in MRF spotting after 21

seconds of spotting time. The diagonal marks in the surfaces are made by the MRF

fluid (D10). Larger pits were revealed following the etching process.

Figure 4.22: (left) MRF spot - 21 seconds; (right) MRF spot - 21 seconds - etched.

Figure 4.23 shows a 60 second spot. No additional damage (in the form of pits) was

observed in the pre-etched or etched surface that indicated damage from the diamond

turning operation. There was no sign of material shearing from the MRF process;

however, more experiments are required.
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Figure 4.23: (left) MRF spot - 60 seconds; (right) MRF spot - 60 seconds - etched.

Figure 4.24: Evaluation of surface parameters from spotting data.

An estimation of the subsurface damage was determined from the CSI results.

Figure 4.24 shows the plot of Sa, Sq, and Sz. The plot summarizes an average

of measurements for each of the spotting times. The spotting surfaces begin to be

free of pits between 40-50 seconds spotting time. This concludes that the estimated
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subsurface damage was between 5.2 to 6.3 µm deep.

The theoretical spot depth compared relatively close to the measured spot depth.

The original material removal rate for D10 fluid was at 8 µm/min; however, the trend

depicted in Figure 4.25 matches better with a material removal rate of 7.5 µm/min.

This could be from the change in viscosity during the polishing operation.

Figure 4.25: Theoretical and measured spot depth from CSI stitch.

4.4.1.2 Sample 2 - Mid-spatial Evaluation

The study involving sample 2 - MRF full aperture polishing - showed great promise

in removing damage and mitigating mid-spatial frequencies from a SPDT Ge puck.

Figure 4.26 illustrates the transition in MRF polishing for select steps of the process.

At 5 µm of material removed, it can be seen that most of the damage from diamond

turning has been removed. It was observed in an additional sub-study that D10 fluid

can polish Ge to a sub-nanometer surface finish after filtering is applied. However,

D10 is not a sufficient finishing slurry. D20 or possibly C30 would be a suitable

fluid as the particle sizes for these slurries are much finer. A finer abrasive would be
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necessary for improving the surface texture.

Figure 4.26: (a) SPDT surface; (b) iteration 2 - 1 µm removed; (c) iteration 4 - 2 µm
removed; (d) iteration 8 - 5 µm removed.

The information in Figure 4.27 shows that the MRF full aperture polish contin-

uously removed damage from the surface. The drop in Sz indicated that there are

fewer pits from fracture present in the surface topography. In comparison to the spot-

ting data, the subsurface damage might be removed within the next micrometer or so,

since both sample were generated using the same tool, setup, and cutting parameters.
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Figure 4.27: Surface history from full aperture polish in steps.

In order to get a better picture of the capabilities of the MRF machine using D10,

an evaluation of the surface using a power-spectral density (PSD) plot was necessary.

A 2.75x objective with a 1x tube lens was used to measure the surface to obtain a

PSD plot. A PSD shows dominating surface characteristics, such as fr. The fr and

a harmonic of the fr can be seen in Figure 4.28 as two peaks in iteration 0 (it.0).

There was also a mid-spatial indicated by the arrow in Figure 4.28 that shifted and

propagated further into the polished surface.
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Figure 4.28: PSD plots from the SPDT surface and the MRF polished surfaces.

4.4.2 Surface Integrity Results

The following study focused on creating and characterizing a set of Ge specimens,

which had a major crystal orientation of (100), that were created with single point

diamond turning using 3 mm R and -25 degree α with a range of fr values. The adoc

and Ω were held constant at 10 µm and 1000 rpm, respectively. These were previously

described in Section 2.2.1.4 of Chapter 2. In addition to the as-cut surfaces, surfaces

finished with MRF, CMP, and a combination of CMP+etching were investigated. The

polish arrangements for CMP and MRF were explained in Section 2.3 of Chapter 2.

Note that the polished and etched surfaces were all diamond turned using the same

machine input parameters, where fr was 9 µm/rev. The mini-dynamometer was used

to measure the cutting forces Fc and thrust forces Ft during off-axis turning. The

resulting surfaces and subsurfaces were characterized with CSI, confocal Raman, and

RBS.

Figure 4.29 and 4.30 show the seven surfaces that were examined in this study. The

three diamond turned surface shown in Figure 4.29 used considerably higher values fr
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that could be useful during a roughing stage of machining. Severe surface damage can

be observed in height map (a) of Figure 4.29. The four surfaces shown in Figure 4.30

had the lowest surface finish values and, as will be discussed later, the best surface

integrity.

Figure 4.29: Single-point diamond turned with fr values of (a) 20 µm/rev, (b) 9
µm/rev, and (c) 5 µm/rev.
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Figure 4.30: Best surfaces by the following processes: (a) SPDT, fr of 0.3 µm/rev,
(b) MRF, (c) CMP, and (d) CMP + Etched with hydrogen peroxide.
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An initial study using confocal Raman was completed on the for each of the di-

amond turned surfaces and polished surfaces prior to examining with RBS. Figure

4.31 shows two plots. The top plot is the peak centering and the bottom plot is the

peak width. Peak centering provides information regarding the residual stress within

the lattice. An approximation of the residual stress is calculated from the peak cen-

tering data. Peak width or broadening of the peak indicates lattice disorder, such as

cracks or dislocations. The CMP surface has the least lattice disorder, while the two

diamond turned surface with fr values of 0.5 µm/rev and 1.0 µm/rev have less than

the MRF surface.

Figure 4.31: Confocal Raman results (top) peak center, (bottom) peak width.
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Figure 4.32 shows the residual stress from the surfaces. Again, the CMP surface

and the 0.3 µm/rev surfaces exhibited the lowest residual stress.

Figure 4.32: Confocal Raman results - residual stress.

Channeling RBS was performed on all of the surfaces to quantitatively measure

the near surface crystal quality. MeV ions directed at an aligned crystal backscatter

due to direct encounters with atoms on the surface, and also as a result of near

surface lattice disorder. In a channeling experiment, the number of backscattered

ions as a function of their backscattered energy is collected. If the disordered layer

is thin (<1 µm) a surface peak in the backscattered spectrum occurs. It can be

shown from first principles that the integrated intensity of the surface peak (the

number of backscattered ions normalized by the charge collected and the solid angle

of the detector) is directly proportional to the number of displaced atoms at the

surface/cm2 [36]. The values of the channeling minimum yield χmin, which is the

ratio of the backscattered yield under channeling conditions to that of a randomly

oriented crystal, also provides a measure of the near surface crystal quality.
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The resulting RBS spectra are shown in Figure 4.33 and the values of the channeling

minimum yield, χmin, are shown in Table 4.4. The as-cut surfaces were generally found

to have an increasing amount of near surface damage with increasing feed fr. The

width of the peaks are marginally larger with increased fr,

The one surface that did not fit this trend was the diamond turned surface with

a fr value of 1 µm/rev. It is unclear why the sample did not fit the trend and was

therefore removed from the RBS results. A repeat of the channeling RBS experiments

on the specimens created from diamond turning only is underway.
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Figure 4.33: Channeling RBS spectra of the Ge surfaces.
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Table 4.4: Channeling minimum yield χmin values.

Processing χmin d (µm)

DT: 0.3 µm/rev 8.4 0.06

DT: 1 µm/rev 20.2 1.02

DT: 5 µm/rev 12.2 0.47

DT: 9 µm/rev 19.3 .96

DT: 20 µm/rev 30.5 1.44

MRF 8.9 0.12

CMP 8.0 0

CMP+Etch 8.7 0.1

Taking the information from Table 4.4, an estimate of the disorder depth from the

surface can be calculated using Eq 4.1. χCMP here is the CMP surface as it is nearly

disorder-free (no peak). These value are also reported in Table 4.4.

d = ln
(1− χmin)

(1− χCMP )
(4.1)



CHAPTER 5: MODELING RESULTS

The information reported in this section was used from [42] and copyright permis-

sion was provided by the publisher. See Appendix A for the supporting documents.

5.1 Predicting Surface Roughness Parameters

For each prediction target outcome, i.e. Sa, Sq, and Sz, the classic machine learn-

ing algorithms were tested by building 1000 models per algorithm and per target,

i.e. executing 1000 runs of each algorithm for each target. The results were averaged

to obtain each evaluation metric. Each model was trained on data obtained by ran-

domly splitting the (cleansed and standardized) dataset in 80% for training and 20%

for testing sets. At each run, the same training input data and target output were

used to train each of classic machine learning algorithms.

Experiments were also performed for the six different ANN configurations, as de-

scribed previously described in Chapter 3. In the ANN experiments, the number of

epochs was set to 300 with batch size of 1. In neural network terminology, an epoch

corresponds to one forward and one backward pass of all the training examples. Batch

size is the number of examples in one forward/backward pass. This means that the

648 examples in the Ge training dataset (and similarly, the 62 examples of the Cu

training data) are presented as input to the model 300 times during the model training

phase. Thus, the ANN will be trained in (300 ∗ 648 =) 194,400 iterations to pass the

Ge training set through the algorithm, and (300 ∗ 62 =) 18,600 iterations for the Cu

training data. The number of iterations indicates how much more computationally

intensive it is to train an ANN with larger datasets. However, larger datasets are far

preferred over small datasets.
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5.1.1 Copper

Tables 5.1, 5.2, and 5.3 present the average results of 1000 runs for the classic

machine learning algorithms for Sa, Sq, and Sz, respectively. Numeric results for

both training and testing are provided for each of four metrics. A score of 1 for EVS

indicates the model is capable of fully capturing the variance in the data. Thus, the

best models based on these criteria are those closer to 1. For metrics measuring the

error between prediction and measured values the best-case scenario is a score as close

to 0 as possible.

The random forest (RF) with a maximum depth of 8 nodes performed the best when

predicting the average surface roughness, Sa. This results and all other traditional

machine learning models can be seen in Table 5.1.

Table 5.1: Sa average prediction results of 1000 runs for copper dataset.

ML Algorithms EV S RMSE MAE MaxError

(test | train) (test | train) (test | train) (test | train)

DT(2) 0.987 | 0.977 6.625 | 10.057 2.39 | 8.889 21.248 | 16.379

DT(5) 1 | 0.988 0.585 | 7.382 0.294 | 1.654 1.881 | 10.44

DT(8) 1 | 0.987 0.122 | 7.493 0 | 1.392 0.366 | 10.936

DT(11) 1 | 0.988 0.109 | 7.425 0 | 1.376 0.366 | 10.664

RF(8) 0.998 | 0.996 2.846 | 3.912 0.217 | 1.057 12.946 | 6.282

RF(11) 0.998 | 0.996 2.85 | 3.934 0.235 | 1.084 12.972 | 6.377

AB(8) 1 | 0.989 0.355 | 7.102 0.102 | 1.297 0.648 | 9.399

AB(11) 1 | 0.989 0.338 | 7.104 0.112 | 1.297 0.553 | 9.399

SVR(RBF) 0.973 | 0.947 9.736 | 15.605 0.323 | 2.3 71.666 | 58.788

SVR(Poly) 0.999 | 0.954 1.737 | 14.181 0.222 | 1.196 7.842 | 11.488

SVR(Sig) 0.014 | 0.012 65.991 | 91.652 2.993 | 46.862 217.61 | 198.261

Eq 3.1 — | 0.977 — | 5.410 — | 2.138 — | 17.812
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Table 5.2: Sq average prediction results of 1000 runs for copper dataset.

ML Algorithms EV S RMSE MAE MaxError

(test | train) (test | train) (test | train) (test | train)

DT(2) 0.988 | 0.972 7.675 | 13.128 2.917 | 4.402 19.963 | 21.811

DT(5) 1 | 0.999 0.782 | 2.953 0.47 | 1.424 2.174 | 2.681

DT(8) 1 | 0.999 0.212 | 2.919 0.059 | 1.391 0.616 | 2.681

DT(11) 1 | 0.999 0.166 | 2.928 0 | 1.391 0.542 | 2.681

RF(8) 0.998 | 0.995 3.043 | 5.378 0.29 | 1.756 10.204 | 6.948

RF(11) 0.998 | 0.995 3.039 | 5.388 0.303 | 1.739 10.128 | 6.899

AB(8) 1 | 0.999 0.434 | 2.808 0.109 | 1.391 0.542 | 2.681

AB(11) 1 | 0.999 0.416 | 2.788 0.113 | 1.214 0.542 | 2.681

SVR(RBF) 0.953 | 0.969 15.675 | 14.774 0.411 | 2.339 84.603 | 42.296

SVR(Poly) 0.999 | 0.998 2.389 | 3.495 0.317 | 1.231 6.339 | 3.824

SVR(Sig) 0.012 | 0.011 79.56 | 97.649 4.333 | 31.976 247.982 | 236.66

Eq 3.1 — | 0.998 — | 5.498 — | 2.700 — | 16.446

The adaboost (AB) with a maximum depth of 11 nodes performed the best when

predicting the root mean squared average surface roughness, Sq. This results and all

other traditional machine learning models can be seen in Table 5.2.
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Table 5.3: Sz average prediction results of 1000 runs for copper dataset.

ML Algorithms EV S RMSE MAE MaxError

(test | train) (test | train) (test | train) (test | train)

DT(2) 0.982 | 0.991 9.25 | 8.1 3.359 | 2.363 23.944 | 25.792

DT(5) 1 | 0.998 0.785 | 3.975 0.576 | 0.954 2.061 | 5.439

DT(8) 1 | 0.998 0.255 | 3.991 0.012 | 1.499 0.86 | 5.439

DT(11) 1 | 0.998 0.242 | 3.989 0 | 1.411 0.86 | 5.439

RF(8) 0.999 | 0.999 2.463 | 2.937 0.373 | 0.683 9.705 | 8.493

RF(11) 0.999 | 0.999 2.482 | 2.986 0.377 | 0.684 9.766 | 8.621

AB(8) 1 | 0.998 0.42 | 3.986 0.174 | 1.285 0.687 | 5.439

AB(11) 1 | 0.998 0.473 | 4.023 0.109 | 1.615 0.86 | 5.439

SVR(RBF) 0.975 | 0.955 10.961 | 19.457 0.483 | 1.111 79.791 | 72.702

SVR(Poly) 0.999 | 0.99 2.361 | 8.309 0.347 | 0.831 3.422 | 6.58

SVR(Sig) 0.013 | 0.012 78.849 | 97.685 5.354 | 5.107 246.916 | 236.381

Eq 3.1 — | 0.799 — | 265.531 — | 55.438 — | 708.091

The random forest (RF) with a maximum depth of 8 nodes performed the best

when predicting the peak-to-valley, Sz. This results and all other traditional machine

learning models can be seen in Table 5.3.

Machine learning model performance was measured on how well the model pre-

dicted new data, i.e. the test set. The criterion for the best model for predicting

each surface roughness target was the lowest RMSE score among test results. A

closer inspection of the numeric results (in Tables 5.1, 5.2, and 5.3) shows that the

model with the lowest RMSE test results also score as the best or close to the best

model in the other three scoring criteria. Random forest, with maximum depth of 8,

outperforms all other models when predicting Sa and Sz for the Cu dataset, while

adaboost, maximum depth of 11, was the best model for predicting Sq.
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Table 5.4 presents the results for the ANN configurations tested. As with the

classic machine learning model results, the lowest RMSE score on the Cu test set was

the criterion set for selecting the best model here. Even though all models are good

predictors of the target Sa, as indicated by their R2 scores, the ’Deeper’ ANN models

achieve better fit to the data. For Sa, the ’Deeper’ ANN with the larger number of

neurons in its three hidden layers, i.e. 50, 25, and 12 neurons, outperforms all the

other ANN configurations, as well as the best model selected from the classic machine

learning algorithms, i.e. Random forest with max depth of 8. Therefore, among the

experiments with the Cu data, the best model for predicting Sa is the ’Deeper’

ANN with configuration [50-25-12-1]. All machine learning and ANN models also

outperform the analytical model (Eq 3.1) with respect to RMSE.

Table 5.4: Sa prediction results for the Cu dataset using artificial neural networks.

ANN type ANN config R2 RMSE

(test | train) (test | train) (test | train)

Base-line [5-10-1] 0.992 | 0.991 5.432 | 5.57

Wider [5-24-1] 0.993 | 0.993 5.329 | 4.661

Deeper [5-24-16-8-1] 0.996 | 0.996 3.974 | 3.586

Deeper [5-10-10-10-1] 0.995 | 0.994 4.401 | 4.349

Wider [5-50-1] 0.995 | 0.994 4.331 | 4.641

Deeper [5-50-25-12-1] 0.999 | 0.998 1.682 | 2.664
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Figure 5.1: Loss (mean squared error) vs epochs for ’Deeper’ ANN model ([5-50-25-
12-1]) for the Cu dataset.

Figure 5.1 shows that the losses, based on MSE for the ’Deeper’ ANN, gradually

decrease to a steady state within 50 epochs. The two plots in Figure 5.2 allow for

a direct comparison between the absolute error for Sa values predicted by the best

’Deeper’ ANN versus the absolute error for analytical Sa values (Eq 3.1) as a function

of fr, and shows that the ANN model has a lower absolute error.

Figure 5.2: Plot of absolute error for analytical Sa and predicted Sa versus the
observed Sa by the ’Deeper’ ANN model ([5-50-25-12-1]) for the Cu dataset.
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The Q-Q (quantile-quantile) plot in Figure 5.3 confirms the close similarity between

the observed Sa and predicted Sa distributions. A graphic visualization of how closely

the ’Deeper’ ANN model predicts Sa when compared to the analytical model (Eq

3.1) is presented in Figure 5.4. The graph insert provides a close-up view of the Sa

prediction error for very low values of fr.

Figure 5.3: Q-Q plot between observed Sa and predicted Sa by the best ’Deeper’
ANN model ([5-50-25-12-1]) for the Cu dataset.

Figure 5.4: Plot of observed Sa and predicted Sa values obtained with best performing
’Deeper’ ANN model ([5-50-25-12-1]) versus the analytical Sa for the Cu dataset.
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5.1.2 Germanium

Tables 5.5, 5.6, and 5.7 contain the average results for 1000 runs of the classic

machine learning algorithm experiments for predicting Sa, Sq, and Sz, respectively,

for Ge. The evaluation metrics are the same as those for the Cu models, and the

selection of best model for Ge is, again, based on the lowest RMSE score. A strong

indication of the power of the machine learning technology is to verify that the same

machine learning algorithms selected as the best model for the three surface roughness

targets for Cu repeat their performance with the Ge dataset. Random forest with

max depth of 8 has the lowest RMSE for Sa and Sz, and adaboost with max depth

of 11 was the best model for Sq for Ge data. While the RMSE scores for Sa and Sq

for both Cu and Ge are in acceptable ranges and similarly scaled, there was a large

discrepancy between the RMSE scores for Sz of the two materials with the scores for

Ge being much higher than those of Cu that were away from the acceptable range. The

root cause for such large discrepancy is unknown. More research and measurement

fieldwork are required to investigate whether the Sz values collected for the Ge dataset

are skewed by measurement or other errors. Alternatively, the large deviation in the

Sz performance in Ge could be attributed to the inhomogeneous surface fracture of

Ge during SPDT. As such, surface fracture is characterized by spatial randomness

that is not observed by the models since no image data is involved in the training

currently.
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Table 5.5: Sa average prediction results of 1000 runs for germanium dataset.

ML Algorithms EV S RMSE MAE MaxError

(test | train) (test | train) (test | train) (test | train)

DT(2) 0.375 | 0.399 2.954 | 3.389 0.611 | 0.85 30.535 | 19.294

DT(5) 0.85 | 0.66 1.446 | 2.565 0.212 | 0.317 15.588 | 19.149

DT(8) 0.973 | 0.866 0.62 | 1.607 0.081 | 0.25 5.626 | 8.025

DT(11) 0.999 | 0.887 0.111 | 1.474 0 | 0.223 1.125 | 5.936

RF(8) 0.971 | 0.893 0.634 | 1.428 0.086 | 0.218 7.757 | 9.889

RF(11) 0.963 | 0.88 0.716 | 1.518 0.139 | 0.244 7.788 | 10.155

AB(8) 0.997 | 0.811 0.236 | 1.89 0.151 | 0.285 0.957 | 5.245

AB(11) 0.999 | 0.8 0.147 | 1.942 0.045 | 0.227 0.715 | 5.245

SVR(RBF) 0.883 | 0.869 1.286 | 1.612 0.1 | 0.203 22.736 | 13.669

SVR(Poly) 0.846 | 0.801 1.471 | 1.977 0.258 | 0.379 23.347 | 12.811

SVR(Sig) 0.209 | 0.167 3.509 | 4.328 0.2 | 0.279 31.49 | 20.308

Eq 3.1 — | 0.136 — | 4.118 — | 0.701 — | 20.409
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Table 5.6: Sq average prediction results of 1000 runs for germanium dataset.

ML Algorithms EV S RMSE MAE MaxError

(test | train) (test | train) (test | train) (test | train)

DT(2) 0.407 | 0.329 5.842 | 8.044 1.25 | 0.89 46.222 | 60.29

DT(5) 0.812 | 0.615 3.292 | 6.119 0.388 | 0.53 37.577 | 51.645

DT(8) 0.971 | 0.826 1.296 | 4.138 0.136 | 0.377 9.573 | 20.304

DT(11) 0.999 | 0.85 0.287 | 3.829 0 | 0.303 2.612 | 18.716

RF(8) 0.978 | 0.827 1.125 | 4.104 0.156 | 0.376 10.14 | 31.092

RF(11) 0.968 | 0.814 1.36 | 4.255 0.236 | 0.395 10.628 | 31.217

AB(8) 0.996 | 0.846 0.517 | 3.846 0.314 | 0.522 1.681 | 29.463

AB(11) 0.999 | 0.879 0.233 | 3.426 0.06 | 0.4 1.461 | 24.855

SVR(RBF) 0.891 | 0.784 2.513 | 4.623 0.148 | 0.277 31.494 | 42.196

SVR(Poly) 0.87 | 0.778 2.738 | 4.649 0.379 | 0.541 29.317 | 42.393

SVR(Sig) 0.162 | 0.097 7.634 | 10.06 0.358 | 0.409 50.166 | 64.134

Eq 3.1 — | 0.077 — | 9.562 — | 1.052 — | 50.319

The adaboost (AB) with a maximum depth of 11 nodes performed the best when

predicting the root mean squared average surface roughness, Sq. This results and all

other traditional machine learning models can be seen in Table 5.2.
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Table 5.7: Sz average prediction results of 1000 runs for germanium dataset.

ML Algorithms EV S RMSE MAE MaxError

(test | train) (test | train) (test | train) (test | train)

DT(2) 0.469 | 0.44 182.864 | 171.016 79.054 | 88.804 865.5 | 671.3

DT(5) 0.799 | 0.587 112.384 | 146.739 22.16 | 37.598 723.5 | 558.6

DT(8) 0.955 | 0.662 52.981 | 133.678 5.84 | 20.193 466.1 | 610.0

DT(11) 0.996 | 0.512 15.892 | 160.923 0 | 19.902 95.6 | 607.5

RF(8) 0.978 | 0.835 37.223 | 93.083 9.188 | 21.726 306.4 | 495.4

RF(11) 0.962 | 0.83 48.868 | 94.4 11.981 | 20.887 418.5 | 491.8

AB(8) 0.993 | 0.81 20.716 | 99.38 4.94 | 15.58 85.3 | 596.3

AB(11) 0.999 | 0.76 8.135 | 111.574 0.033 | 16.497 55.0 | 606.0

SVR(RBF) 0.807 | 0.776 111.039 | 107.5 28.298 | 40.603 772.9 | 552.5

SVR(Poly) 0.85 | 0.813 97.379 | 98.039 28.239 | 38.879 860.2 | 620.3

SVR(Sig) 0.009 | 0.01 297.648 | 267.548 17.678 | 17.843 1262.7 | 935.8

Eq 3.1 — | 0.009 — | 331.984 — | 28.916 — | 1284.2

Table 5.8: Sa prediction results for the Ge dataset using artificial neural networks.

ANN type ANN config R2 RMSE

(test | train) (test | train) (test | train)

Base-line [5-10-1] 0.896 | 0.872 1.256 | 1.352

Wider [5-24-1] 0.939 | 0.892 0.959 | 1.24

Deeper [5-24-16-8-1] 0.995 | 0.973 0.265 | 0.625

Deeper [5-10-10-10-1] 0.99 | 0.958 0.394 | 0.776

Wider [5-50-1] 0.941 | 0.915 0.946 | 1.101

Deeper [5-50-25-12-1] 0.996 | 0.981 0.254 | 0.525

Results for all ANN model configurations tested with the Ge data are shown in



101

Table 5.8. Similar to the results obtained for Cu, the best model among all ANNs

tested was the ’Deeper’ ANN with configuration [50-25-12-1]. Still more encouraging,

was the fact that this ANN configuration has a much lower RMSE test score than

that of the best traditional model found for the Ge data with the Random Forest

with max depth 8. Thus, the ’Deeper’ ANN with configuration [50-25-12-1] is the

overall best model for predicting Sa for both Ge and Cu.

Figure 5.5 shows that the losses, based on MSE for the ’Deeper’ ANN, gradually

decreased to a steady state within 100 epochs. The Q-Q plot of Figure5.6 shows the

correlation between the observed Sa and ANN predicted Sa values, while suggesting

a few possible outliers, that require further investigation. Figure 5.7 presents strong

evidence of the performance superiority of the ’Deeper’ ANN model in predicting Sa

for the Ge dataset over the geometric analytical model as the absolute errors of the

predictions are significantly lower than the absolute errors of analytical Sa by Eq 3.1.

Figure 5.5: Loss (mean squared error) vs epochs for ’Deeper’ ANN model ([5-50-25-
12-1]) for the Ge dataset.
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Figure 5.6: Q-Q plot between observed Sa and predicted Sa by the best ’Deeper’
ANN model ([5-50-25-12-1]) for the Ge dataset.

Figure 5.7: Plot of absolute error between analytical Sa and predicted Sa by the best
’Deeper’ ANN model ([5-50-25-12-1]) for the Ge dataset.

The superior performance of the ’Deeper’ ANN model in predicting target pa-

rameter Sa (non-solid markers) over the analytical model (continuous curve) when

compared with observed values (solid markers) is shown in Figure 5.8. The ANN

model significantly under performs at higher values of fr. Results are shown for three
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values of R = 0.5, 1.0 and 5.0. The analytical model also significantly under performs

the ’Deeper’ ANN model for smaller values of R confirming that surface roughness

was dominated by geometric replication of the tool into the surface, especially at lower

values of R, which the analytical model was not able to capture. Figure 5.9, 5.10,

and 5.11 provide a comparison of the observed, predicted and analytical Sa values for

the three cases of tool geometry (R equal to 0.1, 1.0 and 5.0 mm) over a range of fr.

While the ’Deeper’ ANN model used to predict the Sa output included all eight of the

aforementioned input parameters, Figure 5.9, 5.10, and 5.11 display predictive errors

as a function of fr only. These figures provide graphical insights into the quality of

surface finish based on tool geometry and feed. Over the experimental range of fr,

Figure 5.9, 5.10, and 5.11 display which observed values are associated with surface

fracture. As can be seen, surface fracture was observed much sooner in feed when the

tool nose radius is small. Experiments with tool nose radius R = 0.5 mm experienced

surface fracture during turning at feeds fr as low as 1.5 µm/rev, while no fracture

was observed at the larger tool nose radius R = 5.0 mm, α = -25 deg, Vc = 2 m/sec,

and adoc = 25 µm. In addition, the introduction of surface fracture is associated with

increased error between the observed Sa and the analytical model, Eq 3.1.
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Figure 5.8: Plot of observed Sa and predicted Sa values obtained with best performing
’Deeper’ ANN model ([5-50-25-12-1]) versus analytical Sa for the Ge dataset.

Figure 5.9: Sa roughness for: R = 0.5 mm; α = -25 deg; Vc = 2 m/sec; adoc = 25
µm.
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Figure 5.10: Sa roughness for: R = 1.0 mm; α = -25 deg; Vc = 2 m/sec; adoc = 25
µm.

Figure 5.11: Sa roughness for: R = 5.0 mm; α = -25 deg; Vc = 2 m/sec; adoc = 25
µm.



CHAPTER 6: APPLICATION FOR INFRARED OPTICS

The scope of this military application was to conduct research and development in

flycutting Ge with the end goal of manufacturing enhanced FACs and SACs lens pairs

for quantum cascade lasers. The optics will be manufactured in Ge using three-axis

ultra-precision diamond flycutting. The main capabilities that pertain to this project

are expertise in multi-axis machining of Ge in the so-called ductile-dominated mode

for optical applications and metrology.

Because Ge is a brittle material, machining parameters must be chosen judiciously

to obtain a final surface free of fracture. In particular, parameters such as α and R

have a significant impact Ge due to its brittle nature. Publications and previous work

have shown that a negative α produces a hydrostatic pressure locally in the material.

This suppresses brittle fracture and increases plastic deformation in material removal.

In addition, R influences the shape of the undeformed chip and how residual fracture

is left in the generated surface. Increasing the tool nose radius effectively increases

the distance of fracture from the generated surface. This also depends on other input

machining parameters like feed fr and depth of cut adoc, where typically Ge behaves

agnostically to adoc.
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Sa for flycutting can be predicted based on geometric replication of R onto the

surface. This geometric relationship is defined by the equation Sa = So

9
√
12R

, where So

is the stepover in µm and R is the nose radius of the tool in µm. Figure 6.1 provides

an example of this geometric relationship for flycutting.

Figure 6.1: Cusp structure from flycutting - when fr is much lower than So.

NanoCAM 4.0 was used to generate the tool paths for the test cylinders and for

cutting the two optical elements.

6.1 Fast-axis Lens

The FACs included an acylinder as the major form of the prescription that had an

axis of symmetry along the length of the optic making diamond flycutting a viable

manufacturing option. Figure 6.2 shows the lens model. A 250 µm R with a -25

degree α diamond insert was used on the flycutter arbor. The following sections will

discuss an assessment of the optical design, tool path generation, and a reporting of

the metrology completed on the FACs.
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Figure 6.2: Fast-axis lens model.

6.1.1 Analysis of Drawings for Manufacturing

Assessment of the initial optical design for the FACs indicated that the blend radius

at the transition between the optical surface and the top (alignment) surface required

a tool sweep angle of greater than 120 degrees. Diamond tool manufacturers are

capable of creating sweep angles up to 180 degrees; however, controlling the waviness

of the cutting cannot exceed 120 degrees, which limits the steepness of the blend

radius. Refer to Figure C.1 in Appendix B for an example of a sweep angle on a

diamond cutter. Since the blend radius was outside of the clear aperture (i.e. not

part of the optical surface prescription), RPO modified the blend radius as shown

in Figure 6.3(Rev 3). Figure 6.3(Rev 3) shows the profile of the blend radius before

and after the change. The change admitted a tool with larger nose radius (250 µm).

From a purely geometric standpoint, the larger radius also allows more aggressive

(productive) cutting parameters while maintaining a target surface roughness.
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Figure 6.3: In Revision 2, the surface slope in the blend region between the optical
surface and the flat reference surface radius that is too large for practical tooling;
Revision 3 reduced the slope allowing a larger tool nose radius and a smaller included
angle.
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6.1.2 Tool Path Generation

NanoCAM 4.0 was used to model the FACs and generate the cutting path. The

following subsection discusses the correction of R to ensure that the form of the

prescription is manufactured within specification.

6.1.2.1 Tool Nose Radius Correction

A test cylinder was modeled and the subsequent tool path generated in NanoCAM

4.0. A radius r close the base radius of the FACs was defined as 1.5 mm. approxi-

mately 18 degrees of the diamond tool sweep is utilized in the manufacturing of the

FACs, thus the test cylinder was modeled with a φ of 20 degrees. Figure 6.4 shows

the model of the test cylinder.

Figure 6.4: Fast-axis test cylinder.
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Figure 6.5: Fast-axis test cylinder - tool path.

The tool path for the test cylinder can be seen in Figure 6.5. The tool path included

a uni-directional raster.

Nominally the diamond insert had a 250 µm R included a negative α. However, in

reality the radius is smaller. This is in part due to the manufacturing method of the

diamond insert and the tool height relative to the center of rotation of the flycutting

arbor. The latter is perceived as a reduction in R as the tool and an example is shown

in Figure 6.6.

Figure 6.6: Tool height offset example.
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Two iterations were completed to determine the actual radius of the tool. The first

iteration provided the correction necessary to produce the prescribed radius of the test

cylinder. The second confirmed the correction of the radius and provided feedback

to any further deviation. Verification of the cylinder radius was confirmed using a

Mahr Marsurf LD-260. Traces were taken perpendicular to the axis of symmetry and

a best fit radius was calculated from the data using MATLAB®. The corrected R

for this setup and tool was 229 µm.

6.1.2.2 Tool Path for FACs

6.1.3 Metrology Verification Results

A Mahr Marsurf LD-260 was used to confirm the form of the fast-axis lens. Figure

6.7 below shows the form error for two traces perpendicular to the acylinder axis. The

mean Z error for Figure 6.7 (left) and (right) are 2.8 nm and 7.5 nm, respectively.

The standard deviation errors for Figure 6.7 (left) and (right) are 110.1 nm and 108.9

nm, respectively. The peak-to-valley (PV) of the form error is 450 nm.

Figure 6.7: Form error from profilometer measurement.

Figure 6.8 shows the mean Sq of the fast-axis lens is 14.7 ±0.3 nm. There is a

waviness feature on the surface that has a period of 41 µm and a PV of approximately

60 nm.
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Figure 6.8: Form error from CSI measurement.

6.2 Slow-axis Lens

The SACs included an array of cylinders that spanned the length of the lens. Fig-

ure 6.9 shows the SACs lens model. A smaller tool was required for this part, as

there little-to-no transition between each cylinder. The SACs lenslet array utilized

a 10 µm R in order to minimize the separation of the lenses and maximize the clear

aperture/useable optical surface. The axis of symmetry for the cylinder is perpen-

dicular to the length of the lens. Thus, the flycutting direction was programmed to

feed perpendicular to the length of the part. A 10µm R with a -25 degree α diamond

insert was used on the flycutter arbor. The following sections will discuss the tool

path generation and a reporting of the metrology completed on the SACs.
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Figure 6.9: Slow-axis lens model.

6.2.1 Tool Path Generation

6.2.1.1 Tool Nose Radius Correction

A test cylinder was machining using the 10 µm R. A small section of the sweep

was required on this tool and, therefore, the correction was minimal. The radius

confirmation for the test cylinder was verified using the NexView CSI. This was

because the arc length of the test cylinder was so small and could not be verified by

fitting a circle to the Mahr data. The actual radius of the tool was programmed as

10.02 µm.

6.2.1.2 Tool Path for SACs

6.2.2 Metrology Verification Results

A previously mentioned, the radius of the cylinders that make up the slow-axis

surface were verified through a non-contact profilometer. The mean radius of the

cylinders was determined to be 1.8295 mm. Figure 6.10 below shows a plot of the dis-

tribution of cylinder radius measurements. The mean as compared to the prescribed

focal length varies by 0.9 µm.
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Figure 6.10: Form error from CSI measurement.

Figure 6.11 shows the mean Sq of the slow-axis lens is 16.0 ±0.3 nm (k = 3).

There is a waviness feature on the surface that has a period of 16 µm and a PV of

approximately 54 nm.

Figure 6.11: Form error from CSI measurement.



CHAPTER 7: CONCLUSIONS

7.1 Uncertainty Analysis Conclusion

The findings from this analysis reported the uncertainty in measuring single-point

diamond turned Ge. Recall that the measurand was defined as Sa and Sq. Some

of the surfaces had optical quality surface roughness, where others exhibited surface

fracture from more aggressive turning parameters. These surfaces were analysed

using two STR analysis methods: Method 1 and Method 2. The STR analysis from

Method 2 was considered as the best estimate of the uncertainty, as it is the more

robust procedure for evaluating the STR for both Sa and Sq. The mean values from

Table 2.3 are used in Table 7.1. The reported uncertainty considers k = 3 (99.73 %).

Table 7.1: STR uncertainty analysis summary.

Mean (nm) Uncertainty (nm)

SaSiC−CV D 0.1 ± 0.3

SqSiC−CV D 0.2 ± 0.3

SaGe−1 0.3 ± 0.3

SqGe−1 0.4 ± 0.3

SaGe−2.1 2.7 ± 0.3

SqGe−2.1 3.1 ± 0.3

SaGe−2.2 2.9 ± 0.3

SqGe−2.2 5.0 ± 2.4

SaGe−3 21.6 ± 0.9

SqGe−3 47.6 ± 2.1
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Recall that the target uncertainty was ± 0.5 nm. This was achieved by all surfaces

measured using the STR analysis, except for Ge-2.2 and G-3. These two surfaces

exhibited surface fracture which drove the uncertainty up in the analysis.

Following this work, Venditti et al. determined that the STR uncertainty analysis

varies based on the Sq of the measured surface [53]. The uncertainties included in

the height map measurements throughout this dissertation should be considered as

an estimate of the total uncertainty in the measurements based on the surface type.

They do not reflect what was determined by Venditti et al. [53].

7.2 Diamond Machining of Germanium

7.2.1 Major Crystal Orientation

The findings on the major crystal orientation showed that the Ge with a major

crystal orientation of (100) could handle a higher material removal rate (∼2x) than

Ge with a (111) crystal orientation. Future work will include an analysis of the

subsurface damage using confocal Raman and RBS.

An anonymous survey of several suppliers across the United States summarized

that the most common orientation procured was (111). Given the new findings on

Ge (100) versus (111), and Ge’s (ideally) isotropic optical properties, it would make

sense that manufacturers use Ge(100) to optimize machine usage.

7.2.2 Cutting Speed in Turning

The results from the cutting speed Vc study in diamond turning of Ge revealed

promising findings. There was an improvement in the surface quality when Vc exceed

10 m/sec. Future work utilizing confocal Raman and RBS will be required to explore

the residual damage in the surfaces. It is expected that the deformation zone is

decreased at the time of contact over a region is decreased, but it is not clear how

much damage remains and how phase transformation occur in each scenario.
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7.2.3 Cutting Speed in Flycutting

Insufficient information was gained by the cutting speed study using a flycutting

apparatus. It is likely that lower values of Vc should be tests. The exit of the cuts did

provide some insight into the damage depth along the chip. Future work is required

to understand more into the surface and subsurface.

7.3 Surface Integrity

The results from the surface integrity study concluded that the CMP process de-

veloped in this research was near-damage free and was ideal as a base-line for dia-

mond machining experiments. MRF might have shown more promising results had a

finer particle size been used in the polishing slurry. Additionally, when no polishing

method is readily available, diamond turning with a fr around 0.3 µm/rev produces

a comparable surface quality to CMP.

7.4 Machine Learning Modeling Conclusion

Data-driven machine learning models have become more useful predictive tools as

modern computing power has accelerated, and are increasingly part of the data sci-

ence toolkit for understanding the theory and practice of machining. This research

demonstrated the predictive capability of ANN methods and four classic machine

learning methods (random forest, decision trees, adaboost, and support vector ma-

chines) to predict surface roughness during diamond turning of both Ge and Cu. Both

analytical and theoretical models such as finite element analysis (FEA) provide an

excellent tool when modeling the plastic flow of ductile materials like Cu, for exam-

ple during chip production. However, these models have demonstrated shortcomings

when modeling brittle materials like Ge that experience fracture or other random ma-

terial defects during turning. The results presented in this research suggest that both

machine learning and ANN methods are capable of addressing these shortcomings.

First, over the range of all eight input parameters studied, fr, R, α, adoc,Vc, vf ,
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tc and ω, both machine learning and ANN models offer significant improvements in

the prediction of surface roughness for Ge when compared against analytical models.

These machine learning and ANN models also offer slight improvement over analyt-

ical models in predicting surface roughness for Cu. However, the most significant

improvements are attained for Ge which is well-known to experience brittle fracture

during diamond turning.

Second, and surprisingly given the differences in material structure and dynamics

between Ge and Cu, the best performing predictive models for the three ISO standard

surface finish parameters Sa, Sq and Sz were identical for both Ge and Cu. Among

the ANNs, the ’Deeper’ [50-25-12-1] ANN model exhibited the best overall fit with

respect to RMSE and R2 for both Ge and Cu when predicting surface roughness

parameter Sa. Similarly, among the classic machine learning models, random forest

with max depth 8, adaboost with max depth 11, and random forest with max depth

8 achieved the best accuracies when predicting surface roughness parameters Sa, Sq,

and Sz, respectively, for both Ge and Cu.

Finally, this research has yielded several key insights that can inform both future

analytical model development for diamond turning and suggest improvements in the

selection of turning process parameters, especially for Ge.

Future work will incorporate dynamometer force measurements and surface classi-

fication data into machine learning prediction models for Sa, Sq, and Sz.

7.5 Application for Infrared Optics

This work was a collaborative project with Rochester Precision Optics (RPO) Cor-

poration funded by the Air Force Research Laboratory (AFRL) under an STTR-Phase

2 grant extension for contract FA9451-17-C-0424.

Targets for surface roughness and form error (departure from prescription) were

10 nm Sa and ±300 nm, respectively. Waviness or so-called mid-spatial frequency

errors have not yet been specified. However, based on experience, we expect these
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errors to be on the order of ±150 nm with a spatial wavelength that is dependent on

the cutting parameters. The sources of these errors are thermal and are result from

cycles in the machine temperature control systems which have a temporal period of

less than 10 minutes.

The final surface roughness of both optics lies above the targeted 10 nm Sa.

Though, both the Sa and Sq are below 30 nm, which is more than enough for IR

applications. The form errors in the fast-axis lens had a PV of 450 nm, which was

below the expect range.

Figure 7.1: Final parts (left) FACs and (right) SACs.

The final parts are shown in Figure 7.1. These were packaged and ship to RPO

to anti-reflective coating prior to optical testing at AFRL. The optical testing is

on-going.
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APPENDIX A: SUPPORTING DOCUMENTS

The documents provided here are proof of permission to reuse "Application of

machine learning to the prediction of surface roughness in diamond machining" in

this dissertation. The contents from this paper are the original source and were used

in Chapters 1, 2, 3, 5, and 7. Figures A.1 and A.2 are the supporting documents that

state permission for reusing previously copyrighted material.

Figure A.1: Science Direct - copyright clearance.
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Figure A.2: Science Direct - email confirmation.
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APPENDIX B: MATLAB CODE

B.1 Monte Carlo STR Code

1 %% Main code

2 % Nicholas Sizemore

3 % Dec 2019

4

5 %% This code is for the Mx file type datx

6 % form will be removed

7

8 %%

9 clear all

10 clc

11 close all

12

13 %% Load .dat files

14 addpath(genpath('nans'));

15 addpath(genpath('Files'));

16 % Extracting data

17 h = dir('Files\*.datx');

18

19 for i = 1:1:length(h)

20 pn= h(i).folder;

21 fn = h(i).name;

22 Dswli(i).name = fn(1:end-5);

23 [X,Y,Data] = impData(pn,fn);

24 d(i).phase_data = Data;

25 d(i).X = X*10^6;

26 d(i).Y = Y*10^6;

27 end

28
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29 %% FoV

30 for file = 1:length(d)

31 x = d(file).X;

32 y = d(file).Y;

33 %% Convert to micron

34 z = (d(file).phase_data)*10^6;

35 %% Form removal - plane fitting

36 [FR,GR] = Fit(x,y,z);

37 z_p = FR(x,y);

38 d(file).form = z - z_p;

39 z = d(file).form;

40 Hmap(file).data = z;

41 % surface roughness

42 para(file).Sa = mean(nanmean(abs(z)));

43 para(file).Sq = sqrt(nanmean(z(:).^2));

44 para(file).Sz = max(max(z)) - min(min(z));

45 end

46

47 %% Estimation of surface topography repeatability

48 clc;

49 [STR_Sa_MC, STR_Sq_MC, STR_Sz_MC] = STR_error(Hmap);

50

51 %% Histogram

52 figure()

53 Sa_Hist = histogram(STR_Sa_MC);

54 figure()

55 Sq_Hist = histogram(STR_Sq_MC);

56 figure()

57 Sz_Hist = histogram(STR_Sz_MC);

58

59 %%

60 save('STR_MonteCarlo_result.mat')
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B.1.1 Function: Importing DATx Files

1 function [X,Y,Data] = impData(pn,fn)

2 %clear all

3 %close all

4

5 %%

6 cd DATx_Files;

7 if isequal(fn,0)

8 return

9 end

10 filename = [pn '\' fn];

11 Data = [];

12 i_Data = [];

13 cData=[];

14 qData=[];

15 info = h5info(filename);

16 try

17 Data = rot90(h5read(filename,..

18 '/Measurement/Surface'));

19 NanVal = h5readatt(filename,...

20 '/Measurement/Surface','No Data');

21 x_Convert = h5readatt(filename,...

22 '/Measurement/Surface','X Convert');

23 y_Convert = h5readatt(filename,...

24 '/Measurement/Surface','Y Convert');

25 z_Convert = h5readatt(filename,...

26 '/Measurement/Surface','Z Convert');

27 Data(Data >= NanVal)=NaN;

28 switch z_Convert.BaseUnit{:}

29 case 'NanoMeters'
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30 zScale = 1e-9;

31 case 'MicroMeters'

32 zScale = 1e-6;

33 end

34 Data = Data*zScale;

35 x_Res = x_Convert.Para{:}(2);

36 y_Res = y_Convert.Para{:}(2);

37 [size_Y,size_X]=size(Data);

38 x=(0:sizeX-1)*x_Res;

39 y=(0:sizeY-1)*y_Res;

40 [Y,X]=ndgrid(y,x);

41 catch

42 disp('No surface data')

43 return

44 end

45 try

46 qData = rot90(h5read(filename,...

47 '/Measurement/Quality'));

48 qNanVal = h5readatt(filename,...

49 '/Measurement/Quality','No Data');

50 qData(qual_Data >= qNanVal)=NaN;

51 catch

52 end

53 try

54 cData = rot90(h5read(filename,...

55 '/Measurement/ColorData'));

56 [sizeY,sizeX]=size(cData);

57

58 r=cData(:,1:3:end);

59 g=cData(:,2:3:end);

60 b=cData(:,3:3:end);

61 cData = zeros(sizeY,sizeX/3,3);

62 cData(:,:,1)=r;
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63 cData(:,:,2)=g;

64 cData(:,:,3)=b;

65 cData = cData/max(max(max(abs(cData))));

66 catch

67 end

68 cd ..

69 end



134

B.1.2 Function: Create Fit

1 function [FR,GR] = Fit(x,y,z)

2 % Function to perform Least squares Plane fit

3 [x_Data,y_Data,z_Data] = prepSData(x,y,z);

4 % fit type

5 f = fittype('poly11');

6 % Fit model to data.

7 [FR, GR] = fit([x_Data, y_Data],...

8 z_Data, f, 'Normalize', 'on' );

9 end
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B.1.3 Function: STR Error

1 function [Sa_error_MC,Sq_error_MC,Sz_error_MC]=STR_error(Hmap)

2 % Determines error for Sa, Sq, and Sz

3 [xp,yp] = size(Hmap(1).data);

4 files = length(Hmap);

5 sum_Hmap = zeros(xp,yp);

6 for i = 1:files

7 sum_Hmap = sum_Hmap + Hmap(i).data;

8 end

9 avg_Hmap = sum_Hmap/files; % Average map

10 for i = 1:files

11 z = Hmap(i).data - avg_Hmap; % Difference map

12 diff_Hmap(i).data = z;

13 end

14 for i = 1:10000 % number of iterations for the MC simulation

15 STR_Hmap_MC = zeros(xp,yp);

16 % selects random index for deviation maps

17 temp = randi([1 files]);

18 for j = 1:(xp*yp)

19 STR_Hmap_MC(j) = avg_Hmap(j) +...

20 diff_Hmap(temp).data(j);

21 end

22 Sa_error_MC(i) = mean(nanmean(abs(STR_Hmap_MC)));

23 Sq_error_MC(i) = sqrt(nanmean(STR_Hmap_MC(:).^2));

24 Sz_error_MC(i) = max(max(STR_Hmap_MC)) -...

25 min(min(STR_Hmap_MC));

26 end

27 end
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B.2 Monte Carlo STR Histogram Code

1 %% Histogram Analysis

2 % Nicholas Sizemore

3 % Dec 2019

4 %%

5 clc

6 clear all

7 close all

8 %% Define file names

9 files = ["STR_MC_SiC-CVD.mat"; "STR_MC_1umSO.mat";...

10 "STR_MC_10umSO_clocked22p5.mat"; "STR_MC_10umSO.mat";...

11 "STR_MC_25umSO.mat"];

12 names = ["STR MC SiC CVD"; "STR MC 1 um SO";...

13 "STR MC 10 um SO clocked 22.5 wrt <011>";...

14 "STR MC 10 um SO wrt <011>"; "STR MC 25 um SO"];

15 %% Plot histogram

16 n = 15; % number of bins

17 Hscale = 0.005; % scale for X-axis

18 for i = 1:length(files)

19 load(files(i));

20 figure

21 sgtitle(names(i))

22 minSa = min(STR_Sa_MC*1000) - min(STR_Sa_MC*1000)*Hscale;

23 maxSa = max(STR_Sa_MC*1000) + max(STR_Sa_MC*1000)*Hscale;

24 % Sa Plot

25 subplot(2,1,1)

26 histogram(STR_Sa_MC*1000,n,'FaceColor','k',...

27 'EdgeColor','k','FaceAlpha',0.2)

28 pbaspect([1 1 1])

29 set(gca,'LineWidth',1.5,'TickLength',[0.02 0.02]);
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30 set(gca,'FontName','Cambria')

31 xlim([minSa maxSa])

32 ylim([0 5000])

33 xtickformat('%.1f');

34 xlabel('Sa (nm)','FontWeight','bold','FontSize',12)

35 ylabel('Count','FontWeight','bold','FontSize',12)

36 minSq = min(STR_Sq_MC*1000) - min(STR_Sq_MC*1000)*Hscale;

37 maxSq = max(STR_Sq_MC*1000) + max(STR_Sq_MC*1000)*Hscale;

38 % Sq Plot

39 subplot(2,1,2)

40 histogram(STR_Sq_MC*1000,n,'FaceColor','k',...

41 'EdgeColor','k','FaceAlpha',0.2)

42 pbaspect([1 1 1])

43 set(gca,'LineWidth',1.5,'TickLength',[0.02 0.02]);

44 set(gca,'FontName','Cambria')

45 xlim([minSq maxSq])

46 ylim([0 6000])

47 xtickformat('%.1f');

48 xlabel('Sq (nm)','FontWeight','bold','FontSize',12)

49 ylabel('Count','FontWeight','bold','FontSize',12)

50 Mean_Sa(i) = mean(STR_Sa_MC)*1000;

51 Mean_Sq(i) = mean(STR_Sq_MC)*1000;

52 StdDev_Sa(i) = std(STR_Sa_MC)*1000;

53 StdDev_Sq(i) = std(STR_Sq_MC)*1000;

54 Skew_Sa(i) = skewness(STR_Sa_MC);

55 Skew_Sq(i) = skewness(STR_Sq_MC);

56 Kurt_Sa(i) = kurtosis(STR_Sa_MC);

57 Kurt_Sq(i) = kurtosis(STR_Sq_MC);

58 end
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B.3 Prescription Comparison Code

1 %% RPO - Compare prescription to Mahr trace

2 % Nicholas Sizemore

3 % July 30, 2020

4

5 %%

6 clc

7 clear all

8 close all

9

10 %% Load data and assign variables

11 load('RawMahr_FA_2.mat')

12 X = RawMahr_FA_1(:,1);

13 Z_Mahr = RawMahr_FA_1(:,2)*1000;

14 X_min = 132.291082; % start of trace

15 X_max = 133.670082; % end of trace

16 jj = find(X>X_min&X<X_max);

17 X_new = X(jj);

18 Z_new = Z_Mahr(jj);

19

20

21 %% Plot raw and prescription data

22 figure(1)

23 plot(X_new,Z_new)

24 xlabel('x (\mum)')

25 ylabel('z (\mum)')

26 hold on

27 grid

28

29 %% Find peak of raw and trim
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30 jj_1 = find(Z_new == max(Z_new));

31 X_new = X_new - X_new(jj_1);

32 figure

33 plot(X_new,Z_new)

34 xlabel('x (\mum)')

35 ylabel('z (\mum)')

36 hold on

37 grid

38 jj_2 = find(X_new>-0.6341&X_new<0.6341);

39 X_new = X_new(jj_2);

40 Z_new = Z_new(jj_2);

41

42 figure

43 plot(X_new,Z_new)

44 xlabel('x (\mum)')

45 ylabel('z (\mum)')

46 hold on

47 grid

48

49 %% Level data

50 p1z = Z_new(1,1);

51 p2z = Z_new(length(Z_new),1);

52 p1x = X_new(1,1);

53 p2x = X_new(length(Z_new),1);

54 X1 = [p1x p2x];

55 Z1 = [p1z p2z];

56 P = polyfit(X1,Z1,1);

57 Zfit = P(1)*X_new;

58 Z_new = Z_new - Zfit;

59

60 figure

61 plot(X_new,Z_new)

62 xlabel('x (\mum)')
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63 ylabel('z (\mum)')

64 hold on

65 grid

66

67 %% Prescription data

68 % This information cannot be provided here

69

70 %% Shift raw data to match prescription

71 Z_new = Z_new-max(Z_new)-25.0;

72

73 figure

74 plot(X_new,Z_new,X_new,Z_Pres)

75 xlabel('x (\mum)')

76 ylabel('z (\mum)')

77 hold on

78 grid

79

80 %% Calculate error

81 diff_Z = Z_Pres-Z_new;

82 Mean_Z_error = mean(diff_Z)

83 Std_Z_error = std(diff_Z)

84

85 figure

86 plot(X_new,diff_Z)

87 xlabel('x (\mum)')

88 ylabel('z (\mum)')

89 hold on

90 grid
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APPENDIX C: TOOLING FOR APPLICATION

The following sections provide the technical drawings for the FACs and SACs tool-

ing used in testing and manufacturing.

C.1 Fast-axis Lens Tooling

Figure C.1: Fast-axis cutting tool.
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C.2 Slow-axis Lens Tooling

Figure C.2: Slow-axis cutting tool.


