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ABSTRACT 

BARTHOLOMEW NATHANIEL BRIGGS.  Vector-based Mecanum-Drive Robotic System 
with Machine Vision and Sensor Fusion for Soccer Training.  (Under the direction of  

DR. AIDAN BROWNE) 
 
 

This research proposes the use of a robotic system for soccer training.  The 

purpose of this research is to devise, build, and demonstrate a vector-based mecanum-

drive robot to act as an impediment to a soccer player dribbling toward a known goal 

target.  Successful implementation of the system is defined by the robot maintaining its 

objectives during interaction with the human player in a specified test environment:  

maintaining a three-point linearity between the player and goal target; maintaining an 

appropriate distance from the player, known as the buffer zone, whose center is the 

human player and whose radius is between 0.5 and 1 meter; and maintaining 

orientation with the robot’s front aligned tangent to the buffer zone circumference. 

The robot’s objectives are demonstrated in a test environment that is indoors 

with standard ambient light conditions and smooth, untextured concrete surface with a 

minimum useful area of 5 meters by 5 meters.  Prior to the match, the human player 

begins in the corner opposite to the target, while the robot begins in the center of the 

test area.  The game begins with the human player presses the start button; the robot 

indicates commencement of the match to the human player; the game ends when time 

expires or the player presses the stop button. 

During the match, data from the robot’s front and rear camera sensors are fused 

to create appropriate vectors defining robot strafe magnitude and direction for 
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maintaining linearity and buffer zone distance, as well as required rotation for 

maintaining buffer zone tangency.  Data collected through trials is used to verify system 

function and optimize autonomous control.   

A Proof-of-Concept Robotic System was constructed and proved ultimately 

successful in demonstrations against a player of reasonable ability.  

This project extends the previous work of Dr. Aidan Browne and Stephen 

Padgett:  applying a vector-based drive system (Mecanum) with a vector-based sensor 

(Slamtec - RPLIDAR-A1:  2D Puck LiDAR) through enhancement of its Obstacle Tracking 

and Avoidance System.  



v 

 

DEDICATION 

Without the support of my beautiful wife Sana, my loving parents Cynthia and 

Kendall, my siblings Joshua and Jocelyn, and my puppy dogs Bert and Beastmaster, 

there is no way my life would have led to my ability to complete a project of this 

complexity and magnitude.  This thesis is dedicated to the amazing people above and to 

my newborn son Zain whose world is brand new and is without limit. 



vi 

 

ACKNOWLEDGEMENTS 

My colleague Vedant Raval has gone above and beyond to assist me with some 

of the more perplexing aspects of this project – helping to bring me back to Earth on 

what can be done within the short time period of the Master’s program, showing me 

the idiosyncratic aspects of the LabVIEW programming language, and trying to get the 

LiDAR to obey my commands.  It turns out that eating an elephant is accomplished one 

bite at a time and can go much faster with assistance from a clever mind full of 

electrical, mechanical, and programming knowledge. 

 I would also like to give much appreciation to my professors in the Applied 

Energy & Electromechanical Systems program for constantly challenging me throughout 

my coursework and giving me the freedom to choose projects that were incredibly 

fulfilling.  A special depth of gratitude and appreciation is deserved by Dr. Aidan Browne 

who provided a great amount of help when I was intensely in need of it – helping me 

define a path to success and providing to me a workspace, tools, and equipment to 

make this project happen.

  



vii 

 

TABLE OF CONTENTS 

LIST OF TABLES .............................................................................................................. IX 

LIST OF FIGURES ............................................................................................................. X 

LIST OF SYMBOLS AND ACRONYMS.............................................................................. XIV 

1. INTRODUCTION......................................................................................................15 

1.1. Motivation [Problem Statement]....................................................................15 

1.2. State of the Art [Literature Review] ................................................................17 

1.2.1. Sensors and Vision Systems for Localization ...........................................18 

1.2.2. Sensor Fusion .........................................................................................24 

1.2.3. Safety .....................................................................................................25 

1.2.4. Mecanum Drive System Control .............................................................26 

1.2.5. Measurement Uncertainty .....................................................................28 

1.2.6  Soccer-Specific Robotic Systems ...................................................................30 

1.3. Mecanum Drive ..............................................................................................31 

1.4. Technologies Investigated ..............................................................................35 

2. SYSTEM ARCHITECTURE .........................................................................................41 

3. SENSOR FUSION .....................................................................................................51 

4. CONTROL SYSTEM ..................................................................................................71 

4.1 Mecanum Drive Implementation .........................................................................71 

4.1.1. Tele-Operational Mapping ...........................................................................78 

4.2 Autonomous Control ............................................................................................83 



viii 

 

5. TEST PLAN ..............................................................................................................91 

6. RESULTS .................................................................................................................97 

7. DISCUSSION AND CONCLUSIONS.......................................................................... 106 

REFERENCES ................................................................................................................ 110 

APPENDIX .................................................................................................................... 114 

Data Fusion Lexicon Definitions per JDL: .................................................................. 114 

Component Technical Specifications: ....................................................................... 115 

Mecanum Wheels ................................................................................................ 115 

CIM Motor ........................................................................................................... 116 

Toughbox Mini Gearbox ....................................................................................... 116 

US Digital E4P Optical Encoders ........................................................................... 117 

Talon SRX Motor Speed Controllers ..................................................................... 117 

Battery ................................................................................................................. 117 

Power Distribution Panel ..................................................................................... 118 

Voltage Regulator Module ................................................................................... 118 



ix 

 

LIST OF TABLES  

TABLE 1:  Technologies Considered ................................................................................40 

TABLE 2:  Mechanical Parameters of Robot ...................................................................42 

TABLE 3:  Mapped Voltage Colors for LEDs ....................................................................50 

TABLE 4:  PWM Duty Cycle Mixture ...............................................................................77 

TABLE 5:  Visibility Loss Summary Data (s) ................................................................... 103 

TABLE 6:  Motor Parameters ........................................................................................ 116 

TABLE 7:  Talon SRX Technical Parameters ................................................................... 117 

TABLE 8:  myRIO PWM Channel Layout ........................................................................ 118 



x 

 

LIST OF FIGURES 

FIGURE 1:  Game Layout ................................................................................................16 

FIGURE 2:  Right Mecanum Wheel .................................................................................31 

FIGURE 3:  Left Mecanum Wheel ...................................................................................32 

FIGURE 4:  Mecanum Configuration with Force Vectors for Forward Movement ...........33 

FIGURE 5:  Forward Movement Vector Addition ............................................................33 

FIGURE 6:  Clockwise Rotation Vector Addition..............................................................34 

FIGURE 7:  Lateral Movement Vector Addition ..............................................................34 

FIGURE 8:  Controllable Degrees of Freedom for Mecanum Drive (X,Y,ψ) ......................35 

FIGURE 9:  LiDAR Components Considered ....................................................................36 

FIGURE 10:  LiDAR State Machine Noise.........................................................................37 

FIGURE 11:  Stereo Vision Mounting ..............................................................................38 

FIGURE 12:  Thermal Imaging System ............................................................................39 

FIGURE 13:  Thermal Vision Red Dot Error .....................................................................39 

FIGURE 14:  FutBot Front View ......................................................................................41 

FIGURE 15:  FutBot Rear View ........................................................................................41 

FIGURE 16:  Mecanum Drive System Components .........................................................43 

FIGURE 17:  Power System Components ........................................................................44 

FIGURE 18:  Controller and Vision Hardware ..................................................................45 

FIGURE 19:  Vision Conduit System ................................................................................46 

FIGURE 20:  Vision Mounting .........................................................................................47 



xi 

 

FIGURE 21:  Buttons and LED Splitter .............................................................................48 

FIGURE 22:  Front-Facing Camera Sample Image Initial ..................................................52 

FIGURE 23: Front-Facing Camera Color Model and Threshold Values ............................53 

FIGURE 24:  Front-Facing Camera Sample Image Threshold Validation ..........................53 

FIGURE 25:  Front-Facing Camera Sample Binary Image .................................................54 

FIGURE 26:  Front-Facing Camera FFT Low-Pass Filter ....................................................55 

FIGURE 27:  Front-Facing Sample Image FFT Filter Result ...............................................55 

FIGURE 28:  Front-Facing Camera Binary Morphology Erosion Parameters ....................56 

FIGURE 29:  Front-Facing Sample Image Binary Erosion Result ......................................56 

FIGURE 30:  Front-Facing Camera Binary Morphology Dilation Parameters ...................57 

FIGURE 31:  Front-Facing Sample Image Binary Dilation Result ......................................57 

FIGURE 32:  Front-Camera FFT Method Performance Analysis .......................................58 

FIGURE 33:  Front-Camera Binary Morphology Method Performance Analysis ..............58 

FIGURE 34:  Front-Facing Camera Sample Image Centroid .............................................59 

FIGURE 35:  Front-Facing Camera Sample Image Centroid Coordinates .........................60 

FIGURE 36:  Front-Facing Camera Sample Image Histogram Statistics ............................61 

FIGURE 37:  Buffer Zone Tangency .................................................................................61 

FIGURE 38:  Goal Target Sample Image Initial ................................................................62 

FIGURE 39:  Rear-Facing Camera Color Model and Threshold Values .............................63 

FIGURE 40:  Rear-Facing Camera Sample Image Threshold Validation ...........................63 

FIGURE 41:  Rear-Facing Camera Sample Binary Image ..................................................64 

FIGURE 42:  Rear-Facing Camera FFT Low-Pass Filter .....................................................65 



xii 

 

FIGURE 43:  Rear-Facing Sample Image FFT Filter Result ................................................65 

FIGURE 44:  Rear-Facing Camera Sample Image Circle Detection Result ........................66 

FIGURE 45:  Rear-Facing Camera Circle Detection Parameter Details .............................66 

FIGURE 46:  Rear-Camera FFT Method Performance Analysis ........................................67 

FIGURE 47:  Rear-Camera Binary Morphology Method Performance Analysis ...............67 

FIGURE 48:  Rear-Facing Camera Binary Morphology Erosion ........................................68 

FIGURE 49:  Rear-Facing Camera Sample Image Binary Morphology Erosion Result .......68 

FIGURE 50:  Rear-Facing Camera Binary Morphology Dilation ........................................69 

FIGURE 51:  Rear-Facing Camera Sample Image Binary Morphology Erosion Result .......69 

FIGURE 52: Rear-Facing Camera Sample Image Centroid ...............................................70 

FIGURE 53:  Rear-Facing Camera Sample Image Centroid Coordinates ..........................70 

FIGURE 54:  Front-Facing Camera Sample Image Histogram Statistics ............................70 

FIGURE 55:  Mecanum Mixer Front Panel ......................................................................71 

FIGURE 56:  Duty Cycle for PWM ...................................................................................73 

FIGURE 57:  Vector Magnitude ......................................................................................74 

FIGURE 58:  Mecanum Mixing of PWM Duty Cycles .......................................................76 

FIGURE 59:  Xbox One Controller Mapped Parameters ..................................................79 

FIGURE 60:  Xbox Controller Parameters VI....................................................................79 

FIGURE 61:  Tele-op Control Front Panel ........................................................................82 

FIGURE 62:  Goal Priority ...............................................................................................85 

Figure 63:  Goal Target Image Parameters .....................................................................85 

FIGURE 64:  Intended Robot Movement ........................................................................87 



xiii 

 

FIGURE 65:  Player Priority .............................................................................................88 

FIGURE 66:  Player Target Image Parameters .................................................................88 

FIGURE 67:  Proportional Controller Diagram ................................................................90 

FIGURE 68:  Goal Monitor Loop Test Setup ....................................................................92 

FIGURE 69:  Player Monitor Loop Test Setup .................................................................94 

FIGURE 70:  Player and Goal Monitor Fusion Loop Test .................................................95 

FIGURE 71:  Goal Monitor Loop Test Front Panel ...........................................................97 

FIGURE 72:  Goal Monitor Loop Test - Proportional Control Repeatability .....................98 

FIGURE 73:  Goal Monitor Loop Step Response ..............................................................99 

FIGURE 74:  Player Monitor Loop Test Front Panel.........................................................99 

FIGURE 75:  Goal Monitor Loop Test - Proportional Control Repeatability ................... 100 

FIGURE 76:  Player Monitor Loop Step Response ......................................................... 101 

FIGURE 77:  Goal and Player Monitor VI Front Panel .................................................... 102 

FIGURE 78:  Goal and Player Monitor Loop Test........................................................... 104 

FIGURE 79:  Distance Monitor Loop Step Response ..................................................... 104 

FIGURE 80:  Full Fusion Step Response ........................................................................ 105 

FIGURE 81:  Futbot Reaction to Player ......................................................................... 106 

FIGURE 82:  CIM Motor Torque-Speed Curve (“CIM Motor—VEXpro Motors—VEX 

Robotics,” n.d.) ............................................................................................................ 116 

FIGURE 83:  myRIO 1900 Channel Pinouts (National Instruments) ............................... 119 



xiv 

 

LIST OF SYMBOLS AND ACRONYMS 

VI Virtual Instrument 

IDE Integrated Development Environment 

PID Proportional-Integral-Derivative (Controller) 

PWM Pulse Width Modulation 

SOC System On Chip 

RGB Red, Green, Blue 

DM Direct Movement 

RM Rotational Movement 

LM Lateral Movement 

ROI Region of Interest 



15 

 

1. INTRODUCTION 

1.1. Motivation [Problem Statement] 

Throughout my life, the two primary subjects of interest have always remained:  

Soccer (Futbol) and Robots – so naturally, combining the two of them for an 

overwhelmingly intensive project makes sense does it not?   

This project incorporates many of the ideas, strategies, theories, and 

applications presented during my master’s degree curriculum in Applied Energy and 

Electromechanical Systems at the University of Charlotte, North Carolina whose primary 

subjects include:  System Dynamics, Applied Mechatronics, Applied Statistics, Advanced 

Instrumentation, as well as Energy Generation and Conversion and Energy Transmission 

and Distribution. 

Soccer is one of my greatest passions – which is greatly understating the 

situation.  I practice nearly daily to increase agility, foot speed, dexterity, shot and pass 

accuracy, and dribbling technique.  Developing appropriate drills for dribbling technique 

has proven the most difficult to adequately correspond to the dynamic environment of 

a live game.  Using cones as obstacles can help with confidence on the ball and building 

muscle-memory via repetitive movement, however, the ability to perceive an opposing 

player’s approach and create successful strategies for mitigating ball loss has only been 

personally resolved by having an actual defensive player attacking the ball as they would 

in a game scenario.  To combat this problem, the thesis project presented in this paper 

proposes building an agile robot with machine vision processing techniques and sensor 
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fusion to suitably track an offensive player in order to maintain linearity between the 

player and the goal target, while always properly facing the player, and keeping an 

appropriate distance from the player.   

The starting layout for the game can be seen in the following image: 

 
FIGURE 1:  Game Layout 

The objectives of the robot during the match: 

➢ Maintain 3-point linearity between the player and the goal target 

➢ Maintain an appropriate distance from the player-defined by a circular area 

known as a buffer zone whose center is the human player.  The human can 

reduce this buffer zone during approach, but the robot cannot. 

➢ Maintain orientation with its Front aligned tangent to the buffer zone 

circumference 

5
 m

e
te

rs

5 meters

FutBot

(START)
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In order to achieve its objectives, two cameras are used – one in the front and 

the other in the rear.  The front-facing camera tracks the player target, while the rear-

facing camera tracks the goal target.  The data from these sensors are fused to create 

appropriate vectors defining robot strafe magnitude and direction for maintaining 

linearity, as well as the required robot rotation for maintaining tangency.  Data collected 

through trials is used to verify and optimize the control system. 

This project extends the previous work of Dr. Aidan Browne and Stephen 

Padgett:  applying a vector-based drive system (Mecanum) with a vector-based sensor 

(Slamtec - RPLIDAR-A1:  2D Puck LiDAR) through enhancement of its Obstacle Tracking 

and Avoidance System applied for a specific purpose. 

The thesis is demonstrated through a constructed proof-of-concept robotic 

system demonstrated against a player of reasonable ability and analyzed for validity 

with recommendations for future enhancement.  

 
1.2. State of the Art [Literature Review] 

To determine the best approach and verify the appropriate path for this project, 

many resources have been referenced to identify reliable systems and best practices as 

they apply to the various subject areas covered by this project:   

➢ Sensors and Vision Systems for Localization 

➢ Sensor Fusion 

➢ Safety, Mecanum Drive System Control 

➢ Vector-based Navigation 
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➢ Measurement Uncertainty 

➢ Soccer-specific Robotic Systems 

 
1.2.1. Sensors and Vision Systems for Localization 

Critical to this system’s implementation was determination of sensor choice and 

localization methods.  Machine vision was the obvious choice for drive control as it is 

widely used for object recognition, 3D positioning, and target tracking.  For this system, 

the robot must track a static object (the goal target) located behind the robot, and a 

dynamic object (the player target) located in front of the robot.  The locations of the 

targets relative to the robot are used to create the appropriate lateral movement 

(left/right), direct movement (forward/backward), and rotation (clockwise/counter-

clockwise). 

Looking at general sensors used in locomotive systems by Patole et. al provided 

an in-depth overview of common technologies – including LiDAR, Ultrasound, and 

Cameras.  Common Signal processing techniques were also provided for measuring the 

performance of differing telemetry parameters.  This article was used as a reference and 

verification of sensor choice since it provided varied resources of existing research, 

methods, and techniques (Patole, Torlak, Wang, & Ali, 2017).  Ultimately, the simplest 

sensors that suit the application objectives should be used, and for this robot, the 

simplest sensors were deemed to be two monocular cameras:  one front-facing, and the 

other rear-facing. 
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Further knowledge of sensor systems specific to locomotion - specifically 

autonomous guided vehicles (AGVs) was my next logical step for discovery.  The paper 

by Luettel et. al. was a survey that included several successful autonomous system 

approaches – highlighting commonalities and differentiators of proven AGVs.  They 

covered many of the current technologies used to track humans and motion as well as 

static obstacles.  For static obstacles, an occupancy map is commonly used.  Since 

humans and other moving objects are capable of moving any direction at varying 

speeds, often predictive state estimation techniques are used such as recursive Bayesian 

Filters or most commonly the extended Kalman Filter – these estimation techniques 

could certainly be implemented in future work on this system.   

Detecting the movement of these humans or objects can be done via optical 

flow – checking anomalous differences between monocular image frames.  The robotic 

system discussed in this paper uses a simplified differential optical flow technique, 

where only a single point (the centroid) is compared to the image center during each 

calculation loop, normalized, and multiplied by a gain to exhibit wheel movement as 

intended.  To do so the frames are turned into a binary image using color thresholding.  

Then for each frame, the histograms of mean pixel values and centroid calculations are 

used to determine the size and location of the player target with the front-facing 

camera, and the location of the goal target with the rear-facing camera.  (Luettel, 

Himmelsbach, & Wuensche, 2012). 

Before deciding on the two camera solution mentioned previously, I initially 

conceived of the system using LiDAR (Light Detection and Ranging), as well as Stereo 



20 

 

Vision, and Thermal Vision for my system.  While considering these sensors, I consulted 

a paper by Song, Choi, & Kim.  This paper demonstrated the use of two-dimensional 

LiDAR and an RGB-depth camera - providing a novel technique to determine the 

location of a moving target via tracking algorithms, depth of field, and extrinsic 

calibration.  The advantage of their proposed system is redundancy to eliminate the 

failure mode caused by an incidental failure of a single tracker.  Ultimately neither 

LiDAR, Stereo Vision, nor Thermal Vision was used on the final robot, so this direct 

approach was not useful for my final system. 

According to Cadena e.t al, Simultaneous Localization and Mapping (SLAM) has 

been one of the most reliable methods for achieving localization in an unstructured 

environment research topic has been a key one for the past several decades.  Several 

research groups have provided in-depth comparisons of existing approaches and 

provided open-source codebases for implementation by researchers (Cadena et al., 

2016),  (Mur-Artal & Tardós, 2017), (Chow, Lichti, Hol, Bellusci, & Luinge, 2014), and 

(Endres, Hess, Sturm, Cremers, & Burgard, 2014).   

Also, prior to determining the final control system and sensors, I anticipated that 

the environment may need to be mapped in order for the robot to have knowledge of 

its surroundings and to know the difference between static and transient or dynamic 

obstructions – so I explored top SLAM approaches.  However, upon further evaluation of 

the game setup and robot objectives, I determined that the environment for which this 

robotic system operates is certainly structured, where surroundings and setup should be 

known and well-controlled.  
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If the robot were to be used in an uncontrolled environment for future work, of 

these approaches, the most effective localization method seemed to be the ORB-SLAM2 

system – which according to authors provided state-of-the-art accuracy by measuring 

the 29 most popular public sequences (known as the KITTI visual odometry benchmark).  

Their system applied to monocular, stereo, and LiDAR-based systems, using iterative 

closest point (ICP) for bundle adjustment (BA).  Other approaches I studied were similar 

in their use of ICP – the minimization of the square of the errors between two 

corresponding entities.  For instance, using ICP and Kalman Filters (KF) – which are the 

most popular filter type for robotics (Chow et al., 2014); or use of ICP and general 

purpose keypoint detectors with ORB keypoints providing minimum processing time at 

the expense of a small increase in error (Endres et al., 2014).  To improve the algorithms 

that were used in the control system of the final robot prototype of this thesis, 

minimizing the square of the errors may have provided a faster response to stimuli, 

rather than just minimizing the error itself as was implemented. 

The main advantage of the ORB-SLAM2’s implementation over the others was 

their focus on real-time use with the ability of lightweight localization mode – visual 

odometry tracks for unmapped regions and keypoint matches for comparing local 

mapping to an underlying global calibration map.  This allowed their system to quickly 

detect when sensors returned to existing mapped areas while correcting accumulated 

error and re-localizing the camera after any tracking failures – caused by sensor 

occlusion, aggressive motion, or system reset.   
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Even though SLAM was ultimately unused in this project, I knew that my control 

system must also process image data quickly and regain appropriate tracking of the 

player and target even after gross loss of visibility.  Initially, I considered using an 

underlying global map (with the five square meter layout and known goal location) 

combined with a compass so that the robot would always know its heading and be able 

to regain location between the player and goal if either target were lost.  This global 

map could also be considered the occupation grid that was indicated as commonly used 

in AGV applications by Luettel et. al. However, in the final prototype, all that was 

necessary in order for the robot to achieve its objectives were the two cameras – one in 

the front and one in the rear with no map being necessary. 

Other non-SLAM approaches were also assessed.  For instance, the physical 

principles considered by Lin and Shih including mass eccentricity and Lagrange dynamics 

equations proved too complicated to actually be useful.  (Lin & Shih, 2013).   

Tong and Chen’s system was also studied for potential use.  They determined 

effective methods for reconstructing focused images from multiple sources using Non-

sub-sampled Shearlet Transforms (NSST), which decomposed images into low and high 

frequency components.  The initial filter algorithm used to eliminate noise used a similar 

approach – by using a fast-Fourier transform (FFT) and removing high-frequency 

components above a particular threshold, however, this approach proved to be more 

costly in terms of processing time versus the morphological opening method (also 

known as shrink and grow; or erosion/dilation) that was eventually by both sensors. 



23 

 

Similar to the multi-focus fusion algorithm described above,  Stauffer and 

Grimson proposed using multiple cameras to passively observe moving objects to learn 

patterns of activity.  Motion tracking, camera coordination, activity classification, and 

event tracking were used to accumulate information of duplicated activities using an 

adaptive background subtraction method.  This approach of using binary tree 

classification was not useful for my project (Stauffer & Grimson, 2000).  

Another novel approach to vision feedback was provided by (Mezouar & 

Chaumette, 2002).  In this approach, they created control loops for path planning and 

control via image-space with specific reference to targets remaining in view, calibration 

parameters, shape of target, and dimensions of target.  The experimental results 

provided confirmation that their approach was successful – however, this was another 

paper that proved to be too complicated for legitimate use in my system.   

More interesting was the approach of (Chumerin & Van Hulle, 2008) which used 

two comparative data streams to track independently moving objects and recognition of 

those objects.  Their proposed system used stereo-vision, LiDAR, and optical encoders 

for actively determining proximity, relative speed, and relative acceleration.  Similarly, 

for this robot, two data streams are used to track two independent objects:  a single 

static object, and a single dynamic object however, this is accomplished using only two 

cameras (one for each object) in order for the system to achieve its objectives with 

minimum complexity. 
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1.2.2. Sensor Fusion 

Sensor Fusion as defined by the Joint Directors of Laboratories (JDL) workshop 

[1]: “A multi-level process dealing with the association, correlation, combination of data 

and information from single and multiple sources to achieve refined position, identify 

estimates and complete and timely assessments of situations, threats, and their 

significance.”  The Joint Directors of Laboratories (JDL) Data Fusion Working Group 

created the process model for data fusion, and a Data Fusion Lexicon (Hall & Llinas, 

1997).  See the appendix for these definitions. 

At its most basic definition, sensor fusion involves incorporating the information 

acquired from multiple sources in order to increase known information of a specific 

target entity surpassing what is achievable by a single sensor alone.  Hall & Llinas 

describe the true goal of multi-sensor fusion is to make accurate and appropriate 

characterizations of a target entity in its surrounding environment through redundant or 

complementary combinations of data.  The robot presented in this paper must have 

awareness of what is occurring in front of it in order to react to the movement of the 

player, as well as the awareness to the rear and its location relative to the goal target, in 

order to keep itself between the player and the goal target.  The two sensors used:  the 

front-facing camera and the rear-facing camera complement each other since a single 

camera alone would not have the same bi-directional awareness and their combined 

information is processed for defining action or inaction of the system.   

Sources of information available for sensor fusion include A Priori information:  

the game layout, expected lighting conditions, and game surface; dynamic information:  
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the images from the webcams.  The human-computer interface also provides useful 

information and includes the light indication system, the start button, the emergency 

stop button, and optional tele-operational control.  Data from the robot’s vision system 

is pre-processed to calculate centroids and histogram mean values  

1.2.3. Safety 

Ensuring safety of a user is undoubtedly any automated system’s first priority – 

Wu, Bateman, Zhang, and Lind provided a framework that covered the fundamentals of 

applying monitoring systems to ensure safety during robotic use with the ability to flag 

abnormal situations including methods for determining the system process are 

discussed via circular cascading (cyclical) actions.  They provided a use-case via 

simulation and demonstrated the ability to discovers system process errors using their 

methodology providing confidence that their approach was believable (Wu, Bateman, 

Zhang, & Lind, 2018).  Ultimately no monitoring systems were used on this robot since a 

simpler system was implemented. 

Zanchettin et. al provided some best practices when considering shared 

environments between humans and robots focusing on ones in which they are expected 

to work in tandem.  A real-time kinematic control system was proposed for ensuring 

human safety as a top priority and has been validated with a dual-arm (7-DOF per arm) 

robot (Zanchettin, Ceriani, Rocco, Ding, & Matthias, 2016).  This was an important read 

since my system is also real-time and discovering working solutions was critical to safety 

assurance.  The best practice used in this robotic system was the implementation of an 
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emergency stop (E-Stop) button, which immediately causes the wheels to stop all 

rotation 

Similarly, Haddadin et. al provided additional methods of creating safe robot 

interactions with humans.  Context-independent collision events were considered to 

identify how a robot would safely interact with its environment while performing 

expected tasks (Haddadin, Luca, & Albu-Schäffer, 2017).  For incidental collisions with 

the human player and my robot system, I added padding to the outer perimeter of the 

chassis and limited the top speed to one deemed suitable for safe robot interaction.  

Since the game layout incorporates a relatively small area (5 meters by 5 meters), and 

the speed of the robot is limited, incidental injury the human player is unlikely. 

1.2.4. Mecanum Drive System Control 

Physical parameters of concern affecting the mecanum drive system were 

considered, but ultimately proved not useful in the development of my robot’s control 

algorithms.  The three parameters of concern identified by Conciecao et al. were viscous 

friction, Coulomb friction, and moment of inertia.  Initially, I planned on combining 

those physical parameters with state-space representation of an armature-controlled 

DC motor to provide a robust method of linear and rotational control but ultimately 

chose a simpler route through a mecanum mixer model where throttle values are input 

for control of direct, lateral, and rotational movement(Conceição, Moreira, & Costa, 

n.d.).   

The most useful information for developing kinematic models came from a 

master’s thesis describing the inverse kinematic control and rotational dynamics 
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involved for building an appropriate control system of a KUKA youBot which 

incorporates a similar mecanum drive.  The KUKA youBot is an industrial experimental 

robotic platform using mecanum wheels to achieve omnidirectional movement.  In this 

paper, the USARSim (Unified System for Automation and Robot Simulation) was used to 

simulate the physical principles involved in the action of the robot.  The results of the 

simulation verified the experimental values with a further need for optimization – 

illustrating how this free software may provide sufficient expectation of realistic action if 

set up appropriately.  For my uses, a very simple kinematic model is all that was 

required (“A KUKA youbot simulation in USARSim. Freddy de Greef—PDF,” n.d.). 

To develop the control system various approaches were considered. (Vidal, 

Shakernia, Kim, Shim, & Sastry, 2002) used both unmanned Aerial Vehicles (UAVs) and 

unmanned Ground Vehicles (UGV) placed into teams of pursuers and evaders using 

game theory using two greedy pursuit policies:  local-max and global-max.  Their 

solution proposed places emphasis on both independent and collaborative approaches 

using pursuit policy, map building, communication, navigation, sensing, and control.  

The approach may prove useful in the future when an entire robotic soccer team is 

developed extending the approaches of the ones used in my project (Vidal et al., 2002). 

Motion planning for general terrains using geometric paths and vehicle speeds to 

minimize motion time per the various system constraints:  dynamics, topography, 

obstacles, mobility.  The proposed solution by (Shiller & Gwo, 1991) used a cost function 

to determine a best path via spline geometry and is demonstrated on a simple dynamic 

model.  In my system, a cost function, or tracking score is used to determine appropriate 
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weighting where priority on tracking the human player is placed above tracking the goal 

target when determining the appropriate throttle values for direct, lateral, and 

rotational movement for the optimum state of action during real-time activity. 

 
1.2.5. Measurement Uncertainty 

The true value of a measurement is never exact, so building a system that does 

not rely on exact measurement but still achieves objectives is desirable.  In this robot’s 

case, the interaction with the player is always dynamic, so general knowledge of 

direction and relative speed are all that is necessary to prompt movement of the robot 

to consistently aspire to maintain its objectives of facing the human player, maintaining 

a buffer zone, and placing itself between the player and the goal target.  The centroid 

calculation and mean histogram value are used for this movement, where their true 

values have some level of uncertainty surrounding those used.  

Distributed detection systems with multiple sensors compound the 

accumulation of measurement error.  Many of these can be seen in (Tenney & Sandell, 

1981)’s paper, which is decades old, but still relevant.  They illustrated the issue of using 

multiple sensors succinctly, by providing the unknowns that can affect readings, and 

methods of determination are presented in detail.   

Sources of uncertainty in this application are the location and speed of the 

human player, the orientation of the human player when the image is taken (side-facing 

or front-facing), the friction of the play surface, the noise from the surrounding 

environment, lighting conditions, battery level, mecanum wheel rolling resistance, 
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controller-laptop data transfer rates, and so on.  There are many sources of uncertainty 

that come into play for this application, but the control system was created to be able to 

handle this uncertainty. 

Another resource used to define optimal approaches, was Viswanathan and 

Varhay’s survey of common methods including:  Neyman-Pearson (NP) Criterion and 

Bayes Formulation for dependent architectures, and Likelihood Ratio Test (LRT) for 

independent architectures provided a solid foundation on which to minimize localization 

errors.  The most helpful sections of this paper provided the tradeoffs for simplicity vs. 

complexity of computations and details of the most common generalized models as the 

robot’s development progressed, the initial high complexity solution that was theorized 

proved unnecessary and ultimately led to the development of the simple of minimizing 

error between targets being tracked and their location relative to the image frame’s 

center. 

Uncertainty for robotic control systems was discussed in detail by (Medina & 

Hirche, 2018) with information based on biological systems.  Their relation stochastic 

control via statistical methods provided a valid approach for minimizing rotational and 

translational error.  Their approach used costs (weights) which were applied to sources 

of uncertainty to increase the robustness of the control system for both linear and non-

linear settings (Medina & Hirche, 2018).  As mentioned previously, the tracking weights 

varied between the human player and goal target.  This approach in conjunction with 

the known map construction of the environment proved quite successful for my 

purposes of autonomous action.  In my case, these weighted systems were termed as 



30 

 

priorities for a particular action and were based upon the error of the sensor 

measurement and the target locations within the image frame. 

1.2.6  Soccer-Specific Robotic Systems 

A conference paper from Badung State Polytechnic University in Indonesia on 

the topic of robotic humanoid soccer provided verification of some approaches used in 

this application from their analysis of related studies:  namely using HSV filtration 

techniques to determine objects from images and rotation of the robot to maintain 

perpendicularity to the tracked object by keeping that object in the middle of an image.  

This is what was done for my robotic system.  Their actual research was not useful for 

my project, where they extend the previous work in the field by tracking multiple 

objects in a single image and calculating target position with an artificial neural network 

without the requirement for perpendicularity since the images used in the analysis are 

taken by the goalkeeper.  (Awaludin, Hidayatullah, Hutahaean, & Parta, 2013) 

Non-uniform lighting conditions for machine vision can cause difficulty with 

algorithms requiring color classification.  Research by (Dhanapanichkul & 

Chongstitvatana, 2005) provides a method of approaching shadow compensation for 

soccer robot teams from a programmatic perspective.  They compensate by determining 

HSV values on a per-pixel basis, comparing each value to the field color to develop 

albedo ratios to the field color and other colors of interest, then adjusting the pixel-level 

brightness before component labeling and classification.  In my application, I overcame 

this issue by adding LED floodlights to the front and rear of the robot.  The effect of 
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these lights was to provide reliable HSV readings of the colors of interest:  in my robot’s 

case, those colors are red for the goal target and green for the human player. 

 

1.3. Mecanum Drive 

This specialized omnidirectional drive system is a relatively modern invention as 

it is less than 50 years old.  It was originally devised in 1972 by a man named Bengt 

Erland Ilon who worked for the Swedish company Mecanum AB (hence the name of the 

drive system).   

The key to this system is the mecanum wheel, which is a wheel surrounded in its 

circumference by sets of parabolic rollers typically angled at 45 degrees relative to the 

axis of rotation of the wheel.  This 45-degree angle can be in either direction, clockwise 

or counterclockwise, providing two possible wheel configurations which are mirrored 

assemblies of one another – referred to as the left and right mecanum wheels.  Other 

angles are also possible, but for this thesis, the 45-degree type wheels are used.  See the 

following images for an illustration of both wheel configurations. 

 
FIGURE 2:  Right Mecanum Wheel 
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FIGURE 3:  Left Mecanum Wheel 

When a specific combination of the wheel configurations is used in a 4-wheeled 

robot, the robot inherits the special ability for strafing – moving in any direction while 

maintaining consistent heading orientation.  This is also known as holonomic drive – 

where the controllable degrees of freedom equal the total degrees of freedom (x, y, ψ) 

where x and y describe the two-dimensional movement in the ground plan, and ψ 

describes the angular rotation around the z-axis running from the ground plane up 

through the center of the robot.  Due to the angle of the rollers, the force vector 

created by the wheel during its rotation allows for the unique ability of the robot to 

move in any direction (strafe) without the need to turn its front wheels – allowing the 

robot to face the same direction while moving in any vector direction – since all degrees 

of freedom are controllable.  Please see the following images for the force vector detail.  

(“Holonomic (robotics),” 2019) 
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FIGURE 4:  Mecanum Configuration with Force Vectors for Forward Movement 

Imagine the figure above, where the wheels of the robot are all rotating forward 

in the same direction:  combining the force vectors of the front and rear wheels for the 

left and right side provides the forward-facing vectors seen in the following image. 

 
FIGURE 5:  Forward Movement Vector Addition 

Next, imagine that the wheels on the left side of the robot are rotating forward, 

but the wheels on the right side are rotating backward:  combining the force vectors of 

the front and rear wheels for the left and right side provides clockwise rotational 

movement seen in the following image.  Yaw angle, ψ, is the rotation around the Z-axis 
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which runs from the ground plane interacting with the wheels through the center of the 

robot toward the sky. 

 
FIGURE 6:  Clockwise Rotation Vector Addition 

Finally, imagine the scenario where the front left and rear right wheels are 

rotating forward, while the front right and rear left wheels are rotating backward. 

 
FIGURE 7:  Lateral Movement Vector Addition 

From the images above, it should be apparent that by controlling the forward 

and backward rotation of each wheel independently, the robot is able to allow for yaw 

rotation of any angle as well as any vector movement in the X-Y plane.  Therefore, the 

controllable degrees of freedom are X, Y, and ψ as shown in the image below. 
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FIGURE 8:  Controllable Degrees of Freedom for Mecanum Drive (X,Y,ψ)  

 

1.4. Technologies Investigated 

As mentioned in the Literature Review section, before simplifying the final sensors 

used to only two monocular cameras: one front-facing, and one rear-facing, many other 

technologies were investigated to determine their usefulness and validity in this 

application.  These technologies included LiDAR, Stereo Vision, and Thermal Vision.   

My initial concept for the robot system was to use the LiDAR’s time-of-flight 

characteristic to determine the distance of the human player from the robot – in order 

to maintain an appropriate buffer zone per the objectives.  Components tested for use 

were the RPLiDAR A1M1 and A3M1.  These can be viewed in the following figure: 
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FIGURE 9:  LiDAR Components Considered 

The A1M1 is a belt-driven, low-cost 2D LiDAR system with an 8-meter range that 

was used on the original mecanum platform.  I was never able to achieve 

communication with this system with LabVIEW code used on the previous robot 

platform or through the software supplied by the manufacturer.   

The RPLiDAR A3M1 which is an upgraded version of the A1M1 capable of 

achieving up to 16000 samples per second with a 25-meter range was also explored for 

use.  Communication with this device and the controller is performed with a USB serial 

TTL converter communicating at 256000 bauds per second.  I was able to acquire 

adequate data from the software supplied by the manufacturer, however, when trying 

to control via LabVIEW I was unsuccessful.  After many weeks of creating a LabVIEW 

state machine with the assistance of a colleague to handle the massive amounts of 

incoming data from this component, we were never able to eliminate the noise in the 

system to make it useful for implementation.  Additionally, I was able to use the front-

facing camera to determine the distance of the human player from the robotic system 

through estimates derived from the mean histogram value of the images – making the 
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LiDAR ultimately unnecessary.  An example of the noisy code output is provided in the 

following image. 

 

FIGURE 10:  LiDAR State Machine Noise 

The A3M1 LiDAR was left mounted for future implementations of the robotic 

system and is shown secured to a plate that fits into the inner diameter of the PVC and 

secured with a set screw so that internal wiring could be accessed if necessary.    

Stereo Vision was also considered for use in this system.  The original concept 

involved using images taken from two cameras spaced the same distance as the human 

eyes to generate the angle of the human target in relation to the robot as well as 

provide redundant depth analysis for the LiDAR.  After mounting the cameras as seen in 

the following image, I was never able to communicate with them via LabVIEW.   
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FIGURE 11:  Stereo Vision Mounting 

Through much effort, I discovered that the reason for their lack of 

communication is that the laptop used for code development had a Windows 10 

operating system and the since the cameras were an older model:  LifeCam VX-3000, 

the drivers were never updated, not available, and would have never worked with the 

laptop.  The difficulties experienced with these cameras actually worked to my benefit 

since as I was discovering new webcams for use, I realized that I could acquire the same 

angular information of the targets with only a single camera (one for the front of the 

robot and one for the rear), by comparing subsequent frames to determine change in 

position of the targets, rather than comparing simultaneous images of a pair of stereo 

cameras.  The effect was the overall simplification of the robotic system. 

The last technology that proved unsuccessful for use with this system was 

Thermal Vision.  The original concept involved using the heat signatures from thermal 

images as pre-globbed frames for simply identifying the human target.  The idea was to 

use the thermal image with a pre-trained neural network – either a HOG (histogram of 
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oriented gradients) or Haar Cascade for feature detection to identify a human’s torso.  A 

proof-of-concept system was built using a FLIR Lepton and Raspberry Pi 3 coded with 

Python.  This system can be seen in the following image: 

 
FIGURE 12:  Thermal Imaging System 

 The unit was functional but ultimately determined to not be useful for this 

system since slight jostling caused the sensor to unseat from its associated PCB.  This 

caused a red dot to appear as seen below.  The fix for this error was to open the 

enclosure, pry off the sensor with a set small set of plyers and re-seat the sensor in its 

PCB.  This was just not a tenable solution for a robot with dynamic movement and 

moderately high vibration from the mecanum wheels. 

 
FIGURE 13:  Thermal Vision Red Dot Error 
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A summary of the technologies investigated for this project can be seen in the following 

table. 

TABLE 1:  Technologies Considered 

Technology Specific 
Component 

Was it 
Used? 

Why or Why not? 

Thermal 
Vision 

FLIR Lepton No Sensor would consistently show error 
- requiring hardware to be reset on 
the PCB. 

Stereo Vision 2 - LifeCam VX3000 No Cameras not compatible with 
Windows 10.  Ultimately could 
achieve the same information of 
relative target angle via monocular 
vision. 

LiDAR RPLiDAR A1M1 
RPLiDAR A3M1 

No A1M1 could not communicate via 
serial connection - may have been 
damaged previously.  A3M1 - was not 
able to create useful State Machine 
with LabVIEW to eliminate noise from 
the signal.  Would have been easier if 
ROS were used. 

Machine 
Vision 

Logitech C270 HD Yes Cameras were compatible with 
Windows 10 - provided enough 
resolution at the required frame rate.   
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2. SYSTEM ARCHITECTURE 

The following images provide front and rear views of the robotic system, lovingly 

referred to as the FutBot: 

 
FIGURE 14:  FutBot Front View 

 
FIGURE 15:  FutBot Rear View 

An existing mecanum chassis platform was modified to suit the goals of this application:  

to act as an impediment to a dribbling soccer player by seeking to keep itself between 
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the player and the goal, maintaining an appropriate distance from the player, and 

seeking to always face the player  

The chassis of the robot is relatively simple and comprised of various aluminum 

channel – perforated C-channel, L-channel and box channel secured by steel hardware 

sized according to the specifications of the following table: 

TABLE 2:  Mechanical Parameters of Robot 

Base Dimensions:   30.25"W x 32.25"L 

Lower Platform Height: 7" 

Upper Platform Height: 17" 

Vision Height: 46.5" 

 
The original base dimensions, as well as lower and upper platform heights, were not 

modified from the original chassis design since most of the major components remained 

the same.  The height for vision was chosen to be suitable for a wide array of player 

heights.  With the average player height of 71.5” according to the International Centre 

of Sports Studies’ analysis of the 2009 soccer labor market, 46.5” was estimated to be at 

the level of a standard player’s solar plexus, meaning that during dynamic movement, 

the camera would still have a suitable view of the center of mass of the human player.   

Secured beneath the Lower platform are the mechanical components of the 

Mecanum Drive System, which is comprised of the following major components: 

• 8” Mecanum Wheels – quantity of 4 (2-right; 2-left) 

• 2.5” CIM Motor – quantity of 4 

• ToughBox Mini Gearbox – quantity of 4 

• US Digital E4P Optical Encoder – quantity of 4 

• Talon SRX Motor Speed Controllers – quantity of 4 
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The Talon SRX motor speed controllers, which can also be considered part of the drive 

system are located between the lower and upper platforms where the majority of 

electrical components are placed.  These drive system components were supplied with 

the original mecanum chassis and found to be wholly suitable for the purposes of this 

application.  Detailed technical specifications for these components can be found in the 

Appendix. 

The following image illustrates the major components of the Mecanum Drive 

System: 

 
FIGURE 16:  Mecanum Drive System Components 

The Power System, which is housed between the lower and upper platforms is 

comprised of the following major components: 

• Battery 

• Power Distribution Panel (PDP) 
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• 120A Thermal Circuit Breaker 

• Voltage Regulator Module (VRM) 

These components were also supplied with the original mecanum chassis and found to 

be suitable for this application.  The battery capacity of 18A-h was found to be useful for 

more than 30 minutes of gameplay. 

The following image illustrates the major components of the Power System: 

 
FIGURE 17:  Power System Components 

The main controller for this Robot is a myRIO 1900 by National Instruments.  This 

reconfigurable Input/Output device (RIO) allows for rapid development via National 

Instruments LabVIEW – a visual data flow programming language.  Onboard processing 

is performed by a dual-core ARM Cortex-A9 processor or Xilinx FPGA.  The RIO has 3 

separate channels (A, B, C) with 10 analog inputs, 6 analog outputs, and 40 digital 

input/outputs.  The device also contains a single USB 2.0 port which can be expanded 

with a powered, compatible hub.  Also of note is a 2.4GHz wireless radio that creates its 
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own hotspot for communication and reprogramming wirelessly by a host computer 

running LabVIEW.  This allows some processes to be off-loaded to a host computer to 

reduce the burden on the controller.  There are several other tools available on-board 

the RIO including pushbuttons, LEDs, audio output, and an accelerometer. 

 The cameras used for the vision processing were two Logitech C270 HD webcams 

that provide a 720p resolution at 30 frames per second with fixed focus and a 60-degree 

field of view.  Communication with the controller is through a USB 2.0 hub connected to 

the single port available on the myRIO 1900 controller. The minimum criteria for the 

vision system were images of 160x120 pixels at 30 frames per second. 

The following image illustrates the major components of the controller and 

vision systems: 

 
FIGURE 18:  Controller and Vision Hardware 
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In order to reach the required heights of the Vision System outlined in Table 1, 

1” PVC pipe was used to create a seamless cable path and mounting location for the 

hardware components.  To ensure that the pipes maintained vertical mounting, the 

angle for stability was controlled by a turnbuckle constrained between two aluminum L-

channels.  As mentioned previously the primary chassis used in this robot was inherited 

from a previous project along with the mecanum drive and power system components, 

so the mounting technique was chosen to reduce the overall burden of reconfiguration.  

An example of this conduit system and component mounting can be seen in the 

following figure. 

 
FIGURE 19:  Vision Conduit System 

Mounting of the cameras used a combination of off-the-shelf parts compatible 

with the PVC diameter, as well as a custom-designed 3D printed mounting bracket.  The 

3D-printed mounting bracket was created to constrain the cameras for front and rear at 
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the proper height and secure them during dynamic movement of the robot.  This 

mounting technique can be seen in the following figure. 

 
FIGURE 20:  Vision Mounting 

One of the objectives of the thesis to provide a means with which to 

communicate with the human player.  This is accomplished through an LED lighting 

indication system and a simple human-machine interface comprised of only two buttons 

(Start Button, and Emergency Stop Button).  The buttons and LED power supply splitter 

can be seen in the following image: 
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FIGURE 21:  Buttons and LED Splitter 

When the robot is powered on and ready to begin play, the LEDs are blue in 

color.  The human player then presses the start button to begin play.  The color of the 

LEDs change to yellow as the 10-second count-down to game commencement begins.  

With three seconds until game start, the LEDs then change their color to orange to 

indicate to the player that the game is about to begin.  During gameplay the color of the 

LEDs is green.  Once the timer has fully elapsed or the human player presses the stop 

button, the LEDs change to red to indicate that the motors are powered off.   

The LED lighting system makes use of the DIODER 4-piece, multi-color lighting 

strip from IKEA.  The original controller was removed and replaced with a NodeMCU 0.9 

ESP-12 Module, which is an open-source firmware SOC (system on a chip) based on the 

ESP8266 by Espressif, useful as a microcontroller which can be programmed with the 
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Arduino IDE.  This microcontroller was combined with a P9813 LED Driver to create a 

method of responding with appropriate RGB lighting commands via analog signals 

received from the myRIO controller.   

A program containing the ChainableLED library header is loaded onto the 

NodeMCU to define the necessary variables for creating the control program:  number 

of LEDs (1 in this case since all 4 light bars indicate the same color), data pin 

communicating with LED driver (digital output - D0), clock pin communicating with LED 

driver (digital output - D1), and signal pin communicating with myRIO (digital input – 

A0).  A 100-millisecond delay is instantiated for loop control, as well as two values for 

mapping the input variable (0-1023) to analog voltage (0-3.3V).  The setup function is 

used to initialize the LEDs, set their color to a value of zero for all RGB (Off), and begin 

serial communication at 115,200 bauds per second.  After setup, the loop that begins 

upon power-up and continues until power down reads the analog signal provided by the 

myRIO’s Channel C – analog output 0 (AO0) and the analog output express VI.  The 

analog value received by the NodeMCU, which is between 0 and 1023 is mapped to a 

voltage between 0 and 3.3 by the following equation: 

 𝑚𝑎𝑝𝑝𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = 𝑎𝑛𝑎𝑙𝑜𝑔 𝑣𝑎𝑙𝑢𝑒 ∗ 3.3/1023 (1) 

The following table provides the color for the given mapped voltage values: 
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TABLE 3:  Mapped Voltage Colors for LEDs 

Mapped Voltage (MV) Color 

MV < 0.3 Off (R=0, G=0, B=0) 

0.3 ≤ MV ≤ 0.9 Red (R=255, G=0, B=0) 

0.9 ≤ MV ≤ 1.5 Blue (R=0, G=0, B=255) 

1.5 ≤ MV ≤ 2.1 Orange (R=255, G=60, B=0) 

2.1 ≤ MV ≤ 2.7 Yellow (R=255, G=150, B=0) 

2.7 ≤ MV ≤ 3.3 Green (R=0, G=255, B=0) 

 
The VI that controls the color on the myRIO is about as simple as it could possibly 

be.  A ring enumerator is used for each potential color and the midpoint voltage value is 

sent as a single sample through the analog output express VI:  off – 0, red – 0.6, blue – 

1.2, orange – 1.8, yellow – 2.4, or green – 3.  

 The start and emergency stop button controls are also very simple.  The start 

button is a momentary switch that is connected to Channel C – digital input 1 (DIO1) and 

uses a single sample of the digital input express VI to make appropriate action – i.e. 

indicating to the robot that the human player is ready for the game to begin.  The 

emergency stop is a mechanically latching switch that is connected to Channel C – digital 

input 5 (DIO5) and also uses a single sample of the digital input express VI to make 

appropriate action – i.e. setting all motor throttle values to zero and changing the 

lighting to red.  This button must be unlatched before any program can continue. 
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3. SENSOR FUSION 

For this project, the depth of fusion processing does not reach far beyond Level 

1.  The environment A Priori, or previously known information that is used to program 

the object refinement parameters.  The data then undergoes transformations before it 

is capable of being fused for robot action. 

The forward and rear-facing cameras are each making feature-based inferences 

by thresholding specific HSV color values of a target (human or goal), and transforming 

that information into the target’s approximate centroid location, distance from the 

image center, and mean value for the histogram distribution of pixel values contained 

within the image.     

The centroid of the human player and its relative distance from the image center 

is used to control rotational movement.  The centroid of the goal target and its relative 

distance from the image center is used to control lateral movement.  The mean 

histogram value of the human player is used to control direct movement via maximum 

threshold.  Mean histogram values for both the human player and goal target are also 

used with minimum threshold values to determine if the targets are within the frame.  

The front and rear camera information are fused at the decision level to determine the 

PWM signals necessary to achieve the net result of the lateral, direction, and rotational 

movement. 

The front-facing camera is only concerned with tracking the human player.  

Images captured by this camera pass through an algorithm which filters the incoming 
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image by a pre-defined HSV threshold.  The ranges of these values were derived from 

multiple images at various angles and lighting intensities to provide reliable 

identification of the unique green color of the shirt, which serves as the control variable 

for the player tracking model. 

The output of the model is a binary image, which drastically reduces processing 

requirements – reducing the file size from a 32-bit (~1200 kilobyte size) to 8-bit binary 

(~300 kilobyte size).  The following figure shows the green shirt that was used for all 

testing with the human player. 

 
FIGURE 22:  Front-Facing Camera Sample Image Initial 

Optimization of algorithms involved trials of various parameter thresholds and color 

models.  The most successful parameters for this environment are provided by the 

following image.  For different lighting scenarios or environments, these threshold 

values may benefit from recalibration. 
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FIGURE 23: Front-Facing Camera Color Model and Threshold Values 

The image is filtered to identify only the green color of the shirt and eliminate 

background information. 

 
FIGURE 24:  Front-Facing Camera Sample Image Threshold Validation 
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FIGURE 25:  Front-Facing Camera Sample Binary Image 

After the binary image is created, some noise still exists within the image since 

the threshold values will inevitably pick up some of the green colors in the background.  

My first effort in eliminating this noise was to use an FFT filter.  The FFT filter functions 

by transforming the image to its frequency representation providing details about the 

periodicity and spatial distribution of pixel value variation.  The noisy aspects of the 

images are attributed to higher spatial frequencies, while the ROI contains more gradual 

variation and is associated with lower spatial frequencies.  In this case, a lowpass filter is 

used to truncate high frequencies.  The following images detail the FFT Filter step and 

the resulting processed image. 
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FIGURE 26:  Front-Facing Camera FFT Low-Pass Filter 

 
FIGURE 27:  Front-Facing Sample Image FFT Filter Result 

The difference between the initial sample image and the FFT filter result is a 

significantly smaller data sample which contains only the region of interest (the human 

target center of mass) with the background fully filtered. 

This method works well, however, the processing cost is more onerous than 

what is accomplished by a binary erosion/dilation morphology method, known as 

morphological opening or shrink and grow technique.  With the morphological opening 

method, the image is first eroded to eliminate smaller artifacts within the image frame 



56 

 

that were caught in the color threshold.  Subsequently, the pixels that remain are then 

dilated.  The morphological opening steps and results are shown below in the following 

images.  

 
FIGURE 28:  Front-Facing Camera Binary Morphology Erosion Parameters 

 
FIGURE 29:  Front-Facing Sample Image Binary Erosion Result 
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FIGURE 30:  Front-Facing Camera Binary Morphology Dilation Parameters 

 
FIGURE 31:  Front-Facing Sample Image Binary Dilation Result 

The average inspection time for the FFT method vs. the binary morphology 

method is calculated with the performance meter tool within Vision Assistant.  The cost 

of the FFT Filter alone is around 74 milliseconds, while the cost of the Binary 

Morphology Method, both erosion and dilation are around 13 milliseconds combined.  

The inspection results are shown below. 
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FIGURE 32:  Front-Camera FFT Method Performance Analysis 

 
FIGURE 33:  Front-Camera Binary Morphology Method Performance Analysis 

The overall average processing time for the binary morphology method was 

around 32 milliseconds, while the FFT Filter method is around 94 milliseconds.  Since 

these calculations must be performed for each frame that comes through the webcam, 

the faster they can be processed, the higher frame-rate that is possible for use, and thus 

the quicker reaction time of the robot.  The frame rate for this technique coupled with 

low-resolution images allowed for real-time processing and reaction by the robot. 

Another pre-processing step to make this data useful is to determine its 

centroid.  The image centroid (X,Y) is calculated by the following equations: 
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𝑋 =

∑ ∑(𝑋𝑖 ∗ 𝑃𝑉𝑖) 
𝑛
𝑖=1

∑ 𝑃𝑉𝑖
𝑛
𝑖=1

 (2) 

 
𝑌 =

∑ ∑(𝑌𝑖 ∗ 𝑃𝑉𝑖) 
𝑛
𝑖=1

∑ 𝑃𝑉𝑖
𝑛
𝑖=1

 (3) 

Where Xi is X coordinate of the ith pixel, Yi is Y coordinate of the ith pixel, and PVi 

is the ith pixel value ranging from 0 to 255, where 0 is minimum energy (black pixel) and 

255 is maximum energy (white pixel).   

The result of the centroid calculation can be seen in the following images.  This 

centroid measurement is used to estimate the human player’s distance from the center 

of the image (the error).  This error measurement is then multiplied by a gain in order to 

create rotational movement whose objective is to keep the centroid of the target in the 

center of the image. 

 
FIGURE 34:  Front-Facing Camera Sample Image Centroid 
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FIGURE 35:  Front-Facing Camera Sample Image Centroid Coordinates 

The final value necessary for calculation is one that can ascertain the visibility of 

the player in the frame.  This is done by creating a histogram of the values within the 

image.  Since the image is binary, any value not black should indicate that a human is 

present unless noise was able to make its way through the binary morphology noise 

filtration method.  This is possible, but unlikely due to the fact that the environment is 

well controlled and information is A Priori.  Even so, noise can be further filtered by 

reading the mean histogram value and using a minimum threshold value to provide a 

Boolean value of True or False to indicate that a human is present.   

Additionally, this mean histogram value is used to estimate the human player’s 

distance from the robot.  The robot moves forward with a direct movement toward the 

player until a maximum threshold value threshold is met, causing the robot to stop and 

maintain an appropriate distance from the player.  A sample of the histogram statistics 

can be seen in the following image. 
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FIGURE 36:  Front-Facing Camera Sample Image Histogram Statistics 

This algorithm was developed through NI Vision Assistant, which can auto-generate the 

necessary code for creating a LabVIEW Virtual Instrument program.   

Remembering the primary objectives of the robot during the match, the function 

of this sensor is to provide the data necessary for ensuring that the robot makes 

appropriate effort to maintain its front aligned tangent to the buffer zone 

circumference, as well as keep an appropriate distance from the human player.  See the 

image below for a visual reference of this objective. 

 
FIGURE 37:  Buffer Zone Tangency 

Buffer Zone
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The rear-facing camera is only concerned with tracking the goal target.  Similar 

to the front-facing camera, images captured by this camera pass through an algorithm 

that filters the incoming image by a pre-defined HSV threshold.  The ranges of these 

values were derived from multiple images at various angles and lighting intensities to 

provide reliable identification of the unique red color of the squares on the face of the 

goal target, which serves as the control variable for the goal tracking model.   

For this game, the goal target is a 24”x24” plywood board that has been raised to a 

height of 48 inches.  On this target, several color swatch squares of Red Geranium paint 

color are placed on the target in an equilateral triangle.  The goal target can be viewed 

in the following image acquired from the rear-facing camera: 

 
FIGURE 38:  Goal Target Sample Image Initial 

 Pre-processing of the image data is performed via HSV color thresholding.  The 

filter values were determined based on several images with similar lighting conditions to 

that of the actual game environment.  See the following images for further detail. 
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FIGURE 39:  Rear-Facing Camera Color Model and Threshold Values 

 
FIGURE 40:  Rear-Facing Camera Sample Image Threshold Validation 

The image is filtered to identify only the red color of the target and eliminate 

background information. 
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FIGURE 41:  Rear-Facing Camera Sample Binary Image 

After the binary image is created, inevitably some noise unassociated with the 

ROI will exist within the image frame.  The initial algorithm for eliminating noise was the 

same FFT filtration method tested for use with the front-facing camera, where the 

higher spatial frequency artifacts are removed via lowpass filter.  Note that the 

truncation frequency for the rear-facing camera is higher than the front-facing camera 

(10% vs. 5%).  This is due to the smaller area of the color being used for the target vs. 

the large area of the green shirt.  If the truncation frequency were lower, the small 

squares would be considered ‘noise’ and be eliminated.  The following images detail the 

filter and the resulting processed image.   
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FIGURE 42:  Rear-Facing Camera FFT Low-Pass Filter 

 
FIGURE 43:  Rear-Facing Sample Image FFT Filter Result 

A unique aspect of the FFT filter’s effect on the squares was to turn them into 

circles by truncating the corners. Using this effect for purpose – a circle detection 

algorithm was implemented to count the number of circles that are visible.  The circles 

were used as a count to verify that the target was actually being seen, rather than some 

other noise in the environment that unexpectedly remained after color thresholding and 
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FFT filtration.  By ensuring that three circles were visible, the visibility of the goal target 

could be verified.  See the following images for detail. 

 
FIGURE 44:  Rear-Facing Camera Sample Image Circle Detection Result 

 
FIGURE 45:  Rear-Facing Camera Circle Detection Parameter Details 

 The circle detection algorithm used a minimum radius of 4 pixels and a maximum 

radius of 100 pixels, for which all sample images containing the goal target provided a 

reliable reading.  For images where not all squares were visible or were very close to the 

camera, the number of circles was outside of the expected range.   For images where 

the goal target was fully visible, the results are similar to what is provided in the figure 

above. 

However, after determining the lower processing costs using the morphological 

opening technique for the front-facing camera, the same approach was used for the 
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rear-facing camera.  Again, the erosion/dilation technique provided with superior results 

with faster processing times.  See the performance analyses below.  

 
FIGURE 46:  Rear-Camera FFT Method Performance Analysis 

 
FIGURE 47:  Rear-Camera Binary Morphology Method Performance Analysis 

The average processing cost for the morphological opening algorithm is 50.8 ms 

versus 127.6 ms for the FFT and circle detection algorithm.  The updated filtration for 

the front and rear-facing cameras significantly accelerates the overall system 

performance and reaction time of the robot.  See the following images for further detail 

of the Morphology setup.  After receipt of the image frame, the HSV color threshold is 

performed to achieve a binary image.  The erosion morphology step is then 

implemented, followed by the dilation morphology, centroid determination, and 
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histogram mean value calculation.  The centroid of the goal target is used to estimate 

the goal target’s distance from the center of the image (the error).  This error 

measurement is then multiplied by a gain in order to create lateral movement whose 

objective is to keep the centroid of the target in the center of the image. 

 
FIGURE 48:  Rear-Facing Camera Binary Morphology Erosion 

 
FIGURE 49:  Rear-Facing Camera Sample Image Binary Morphology Erosion Result 
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FIGURE 50:  Rear-Facing Camera Binary Morphology Dilation 

 
FIGURE 51:  Rear-Facing Camera Sample Image Binary Morphology Erosion Result 
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FIGURE 52: Rear-Facing Camera Sample Image Centroid 

 
FIGURE 53:  Rear-Facing Camera Sample Image Centroid Coordinates 

 
FIGURE 54:  Front-Facing Camera Sample Image Histogram Statistics 
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4. CONTROL SYSTEM 

4.1 Mecanum Drive Implementation 

To build a control system capable of achieving the independent 4-wheel drive 

necessary for the Mecanum Drive function, a virtual instrument (VI) was created via 

LabVIEW for the main controller of the robot (myRIO 1900).  Inputs for this program are 

throttle control toggle and throttle requests for Direct Movement (backward/forward) 

Lateral Movement (left/right), and Rotation(CCW/CW).  Outputs for this program are 

the PWM values sent to the speed controllers (Talon SRX).  The following image shows 

the front panel of the VI. 

 
FIGURE 55:  Mecanum Mixer Front Panel 

The inputs for throttle control are values from -100 to +100.  For Direct 

Movement, a positive value indicates forward movement of the robot (+Y direction), 

while a negative value indicates backward movement (-Y direction).  For Lateral 
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Movement, a positive value indicates right directional movement (+X direction) and a 

negative value indicates left directional movement (-X direction).  For Rotation, a 

positive value indicates clockwise rotation (+ψ direction), while a negative value 

indicates counterclockwise rotation (-ψ direction). 

For this robot’s application, the input values are each tied to a particular sensor 

and interpretation of the sensor’s data controls the throttle response required for the 

associated degree of freedom.  For instance, the Lateral Movement is controlled by the 

rear-facing camera, and the Rotation and Direct Movement is controlled by the front-

facing camera.  The data is fused together in this Mecanum Mixer VI to provide robot 

response to the targets that it is intended to track.   

The Talon SRX speed controller expects a signal for a high time input pulse 

between 1ms (backward rotation at full throttle) and 2ms (forward rotation at full 

throttle) to control the wheel movement to which it is tied.  There are four total speed 

controllers – one for each motor.  A signal of 1.5ms would indicate no movement of the 

motor.  The channel layout of speed controllers for the Left Front (LF), Right Front (RF), 

Left Rear (LR), and Right Rear (RR) is provided in the appendix.  These channels correlate 

to the available inputs of the myRIO 1900.  

The frequency of the PWM signal sent to the speed controller is set to a constant 

50Hz.  See the following image and equations for the calculation of the duty cycle. 
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FIGURE 56:  Duty Cycle for PWM 

 
𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =

𝑇𝑖𝑚𝑒 𝑂𝑛

𝑇𝑖𝑚𝑒 𝑂𝑛 + 𝑇𝑖𝑚𝑒 𝑂𝑓𝑓
=
𝐻𝑖𝑔ℎ 𝑇𝑖𝑚𝑒 𝐼𝑛𝑝𝑢𝑡 𝑃𝑢𝑙𝑠𝑒

𝑃𝑒𝑟𝑖𝑜𝑑
 (4) 

 𝐻𝑖𝑔ℎ 𝑇𝑖𝑚𝑒 𝐼𝑛𝑝𝑢𝑡 𝑃𝑢𝑙𝑠𝑒 (𝑓𝑜𝑟 𝑇𝑎𝑙𝑜𝑛 𝑆𝑅𝑋)

= {
1𝑚𝑠 𝑓𝑢𝑙𝑙 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
1.5𝑚𝑠 𝑛𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
2𝑚𝑠 𝑓𝑢𝑙𝑙 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

 
(5) 

 
𝑃𝑒𝑟𝑖𝑜𝑑 =

1

𝑓
=

1

50𝐻𝑧
= 0.02𝑠 = 20𝑚𝑠 (6) 

 

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =

{
 
 

 
 
1𝑚𝑠

20𝑚𝑠
= 0.05 𝑓𝑢𝑙𝑙 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑠 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

1.5𝑚𝑠

20𝑚𝑠
= 0.075 𝑛𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

2𝑚𝑠

20
= 0.1 𝑓𝑢𝑙𝑙 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

 (7) 

Creating the duty cycle for the PWM signals of the Mecanum control is 

accomplished by a multitude of steps.  First, consider the Direct and Lateral Movement 

throttle values provided to the VI.  The sign for each of the Direct and Lateral Movement 

values is extracted by the following: 

 

𝑠𝑔𝑛(𝑥) = {

−1 𝑖𝑓 𝑥 < 0,
0 𝑖𝑓 𝑥 = 0,
1 𝑖𝑓 𝑥 > 0.

 (8) 
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The resultant vector magnitude of these throttle values is then calculated.  The 

resultant vector magnitude of the Direct (Ẏ) and Lateral Movement (Ẋ) throttle values 

are determined by the following: 

 𝑉 = √�̇�2 + �̇�2 (9) 

An image illustrating this calculation is shown below: 

 
FIGURE 57:  Vector Magnitude 

This vector magnitude is then used as the divisor to determine the PWM duty 

cycle signal sent to each of the motors prior to mixture.  The square of each signal 

(maximum of 100) is multiplied by its original sign and divided by the vector magnitude.  

This value is then divided by 4000 to ensure that the final value is between 0.025 and -

0.025, which are used in the PWM duty cycle calculations.  If the value is not a number 

(for the occasion where throttle values are zero), a value of 0 is recorded. 

Direct Movement and Lateral Movement PWM duty cycle calculations can be 

seen in the following equations: 
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 𝑃𝑟𝑒𝑚𝑖𝑥 𝐷𝑖𝑟𝑒𝑐𝑡 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

=   {

𝑠𝑔𝑛(�̇�) ∗ �̇�2

√�̇�2 + �̇�2
∗

1

4000
 �̇�|�̇� ≠ 0

0 �̇�, �̇� = 0

 
(10) 

 𝑃𝑟𝑒𝑚𝑖𝑥 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

=   {

𝑠𝑔𝑛(�̇�) ∗ �̇�2

√�̇�2 + �̇�2
∗

1

4000
 �̇�|�̇� ≠ 0

0 �̇�, �̇� = 0

 
(11) 

   

The calculation for the Rotational Movement PWM Duty Cycle is according to the 

following equation: 

 
𝑃𝑟𝑒𝑚𝑖𝑥 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =

�̇�

4000
 (12) 

where positive values indicate clockwise (CW) rotation and negative values indicate 

counterclockwise (CCW) rotation.   

To understand the mixing of the duty cycles for Direct Movement (DM), Lateral 

Movement (LM), and Rotational Movement (RM), see the following image which relates 

the throttle values to the wheel force vectors: 
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FIGURE 58:  Mecanum Mixing of PWM Duty Cycles 

From this image, the mixture of signals becomes much more intuitive.  If the 

robot were requested to move forward, the Direct Movement (DM) throttle value 

would be positive (+) for all wheels, causing forward rotation.  If the robot were 

requested to rotate clockwise, the Rotational Movement (RM) throttle value would be 

positive (+) for the left front (LF) and left rear (LR) wheels, and negative (-) for the right 

front (RF) and right rear (RR) wheels.  If the robot were requested to move to the right, 

the Lateral Movement (LM) throttle value would be positive (+) for the left front (LF) 

and right rear (RR) wheels, and negative (-) for the left rear (LR) and right front (RF) 

wheels.   

The following table provides the associated calculations for PWM signals 

provided to each wheel motor via the Talon SRX speed controller: 
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TABLE 4:  PWM Duty Cycle Mixture 

Left Front (LF) DM+LM+RM+0.075 Right Front (RF) DM-LM-RM+0.075 

Left Rear (LR) DM-LM+RM+0.075 Right Rear (RR) DM+LM-RM+0.075 

 

The values of the mixture prior to the addition of 0.075 are coerced to values 

within the range of -0.025 to +0.025 ensuring that no error is encountered, such as 

receiving a value surpassing the intended maximum or minimum.  As mentioned 

previously, a duty cycle value of 0.075 would indicate no rotation for the motor.  Taking 

the Left Front wheel as an example, the maximum value of DM+LM+RM would be 

+0.025 and the minimum value would be -0.025.  At maximum value, the left front 

wheel would receive a value of 0.025+0.075 = 0.1, which is the expected PWM duty 

cycle value for full forward rotation.  At minimum value, the left front wheel would 

receive a value of -0.025+0.075 = 0.05, which is the expected PWM duty cycle value for 

full backward rotation. 

Consider the following scenario where Ẋ has a throttle value of -30, Ẏ has a 

throttle value of +40, and ψ̇ has a throttle value of -10.  Using the table and equations 

above, the following calculations can be performed for determining each of the PWM 

duty cycle signals provided to the speed controllers: 

 𝑃𝑟𝑒𝑚𝑖𝑥 𝐷𝑖𝑟𝑒𝑐𝑡 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

=   
+(402)

√302 + 402
∗

1

4000
= 0.008 

(13) 
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 𝑃𝑟𝑒𝑚𝑖𝑥 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒

=   
−(302)

√302 + 402
∗

1

4000
= −0.0045 

(14) 

 
𝑃𝑟𝑒𝑚𝑖𝑥 𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃𝑊𝑀 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =

−10

4000

= −0.0025 

(15) 

 𝐿𝑒𝑓𝑡 𝐹𝑟𝑜𝑛𝑡 (𝐿𝐹) = 0.008 + (−0.0045) + (−0.0025) + 0.075

= 0.076 
(16) 

 𝐿𝑒𝑓𝑡 𝑅𝑒𝑎𝑟 (𝐿𝑅) = 0.008 − (−0.0045) + (−0.0025) + 0.075

= 0.085 
(17) 

 𝑅𝑖𝑔ℎ𝑡 𝐹𝑟𝑜𝑛𝑡 (𝑅𝐹) = 0.008 − (−0.0045) − (−0.0025) + 0.075

= 0.09 
(18) 

 𝐿𝑒𝑓𝑡 𝑅𝑒𝑎𝑟(𝐿𝑅) = 0.008 + (−0.0045) + (−0.0025) + 0.075

= 0.081 
(19) 

These calculations are performed in a while loop that is controlled by the 

throttle control toggle and calculated values are output as a 1D array. 

4.1.1. Tele-Operational Mapping 

Verifying the Mecanum Mixer program was performed with an Xbox One 

controller via remote or tele-operational control.  This program was written in such a 

way that it could be easily ported to automated control with camera sensor input after 

the sensor fusion algorithms were devised.  The button and joysticks of the Xbox One 

controller were mapped in such a way that the robot could be easily and intuitively 
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controlled.  The following images illustrate the mapped parameters.

 

FIGURE 59:  Xbox One Controller Mapped Parameters 

 
FIGURE 60:  Xbox Controller Parameters VI 

The Xbox Controller VI is run on the laptop used for programming the myRIO 

with LabVIEW.  The Xbox controller parameters are each individually mapped, placed in 
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an array and set as a shared variable named ‘Joystick Transmission.’  This shared 

variable array is then used by the teleop program running on the myRIO which uses the 

Mecanum Mixer as a sub-VI to cause the associated movement.   

In the teleoperation control VI, the ‘A’ button provides a Boolean value (0 or 1) 

which is used to toggle the throttle control of the Mecanum Mixer VI on or off.  In this 

program, the robot’s start button also causes the same action.  The ‘B’ button also 

provides a Boolean value (0 or 1) and is used to set the Emergency Stop to true, which 

stops all motors and stops the loop for the motor control.  In this program, the robot’s 

Emergency Stop button also causes the same action.  The right trigger provides an 

analog signal from 0 to -32768, which is mapped to the overall throttle coefficient. This 

can be considered the global gain on all throttle values.  The value’s sign is inverted and 

then divided by 65536 and then the value is coerced between 0.15 and 0.5.   

The left joystick provides an analog signal of -32768 to 0 for left action on the X-

axis, 0 to 32768 for right action on the X-axis.  The received value for the left joystick X-

axis is divided by 360 and coerced to a value between -10 and 10 which is then 

multiplied by the lateral multiplier before being sent to the lateral movement parameter 

of the Mecanum Mixer VI.  Any value out of range of the coercion is forced to 0.  The 

lateral multiplier allows for the discovery of optimum throttle values for an increasing 

response of movement relative to the forward/backward motion of the direct 

movement.  This was important for discovering robot speed that was still deemed safe 

for use with human interaction.   
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The left joystick also provides an analog value of -32768 to 0 for up action on the 

Y-axis, and 0 to 32768 for down action on the Y-axis.  The received value for the left 

joystick Y-axis is divided by 360 and inverted (so up direction is positive and down 

direction is negative), and then the value is coerced between -10 and 10 before being 

sent to the direct movement parameter of the Mecanum Mixer VI.  Any value out of 

range of the coercion is forced to 0.   

The right joystick provides an analog signal of 0 to 32768 for right action on the 

X-axis, and -32768 to 0 for left action on the X-axis.  The received value for the right 

joystick X-axis is divided by 360 and coerced to a value between -10 and 10 before being 

multiplied by the rotational multiplier and being sent to the rotational movement 

parameter of the Mecanum Mixer VI.  Any value out of range of the coercion is forced to 

0. 

The shared variable containing the aforementioned controller parameters is 

used by the Teleoperational Control VI.  This VI begins by setting all movement 

parameters to zero using local variables for Rotation, Direct Movement, Lateral 

Movement, Throttle Control, and E-Stop!.  The LED VI is also used to indicate the robot’s 

current state – and during initialization is set to Blue – meaning that the robot is ready 

to play, but throttle control is off.  The movement parameters are all sent to a special 

sub-VI created to determine the minimum movement threshold before being sent as 

PWM values to the Mecanum Mixer VI.  The reason for this is that the motors need a 

certain torque value to overcome the inertia of the system.  The thresholds are used to 

define this minimum value to cause movement.   
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The special sub-VI is called Inverted Value Threshold Coercion.  Inputs to the VI 

are a value and a minimum value threshold.  If the input value is equal to zero, the 

output value is equal to zero.  If the absolute input value is between zero and the 

threshold value, the value is coerced towards the threshold value and maintains the 

polarity of the input value.  If the absolute input value is greater than the threshold 

value, it is passed without affecting value or polarity.   

The start button on the robot is used with the LED control sub-VI to indicate the 

state of the robot’s throttle control – green for on, and blue for off.  The emergency 

stop button is also used with the LED control sub-VI to indicate that the robot is in the 

red stopped state and when pressed also causes all throttle values to be locked at 0, the 

tele-op control program to end, and the throttle control to be turned off.  The front 

panel of the Teleoperational Control VI can be seen in the following image. 

 

 
FIGURE 61:  Tele-op Control Front Panel 
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 4.2 Autonomous Control 

Fusing the sensor data from the front-facing camera, and rear-facing camera to 

make sense of the environment while tracking multiple targets – static and dynamic and 

causing the robot to take appropriate action quick enough for suitable use in soccer 

training took much thought and deliberation.  The following subsections describe the 

control system in detail.   

The first functional element of the main program initializes all systems to default 

state.  The throttle control is set to false, or off, and the lights on the robot turn blue to 

indicate to the user that the robot has turned on and is readying itself for gameplay.  

Once the human player presses the start button, the initialization function begins a 10-

second countdown, which changes the LED color to yellow, and when the timer gets to 

three seconds until game commencement, the color changes to orange.  Once the game 

begins, the color is set to green and the robot begins moving and reacting to the sensor 

data. 

The Game Loop is the main program of the system which collects input from the 

target monitor programs:  Player Monitor Loop, Goal Monitor Loop, Distance Monitor 

Loop and outputs the appropriate values of lateral movement, direct movement, and 

rotational movement to the Mecanum Mixer Sub-VI.  These programs will be explained 

in further detail below.  This loop is set to operate on time for the intended amount of 

game time, which is initially set to 30 seconds but can be user-controlled to any desired 

value.  



84 

 

 Movement priorities are calculated as the errors between the expected state 

and the measured state:  for rotational movement, this is the difference between the 

image center and the human player centroid; for lateral movement, this is the 

difference between the image center and the goal target; for direct movement, this is 

the difference between maximum threshold value and mean histogram value.  The 

ultimate result of the priorities is to define how quickly the reactions should be for each 

sensor reading based on the game action.  The priority number for each movement 

type:  defend (Prdefend), seek player (Prplayer), seek goal (Prgoal) is a number between -1 

and +1.  The last known location of the target being tracked is provided as a sign where -

1 indicates the last known location is in the left frame of the image for the camera 

sensors, or to the left of the direct and +1 is when the target is to the right.  These 

priority values are multiplied by an adjustable gain before being input into the 

Mecanum Mixer VI as throttle values.   

The Goal Monitor Loop outputs Goal Priority (-1 to +1), Sign of Goal Priority (-

1,0,+1), and Goal Visibility (T/F).  This program uses the filtering sub-VI discussed in the 

Rear-Facing Camera Section, which uses HSV parameters and Binary Morphology to 

determine the centroid of the image and the mean histogram value.  If the mean 

histogram value is above 0.02, the image is considered to contain the goal.  The centroid 

of the x-axis is then used in the following equation to calculate the rotation error 

referenced to the center of the image (multiplied by the gain value): 
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FIGURE 62:  Goal Priority 

 
𝑃𝑟𝑔𝑜𝑎𝑙 =

80 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑔𝑜𝑎𝑙,𝑥
80

 (20) 

The reasoning behind the value of 80 is that this number is the midpoint of the 

image being used for calculation since the incoming images are taken at 160x120 pixels.  

The frame rate for the incoming images is 30 frames per second.  This image size was 

the smallest size which still provided a reliable value for a reading of the goal target.  

The parameters for the rear-facing webcam can be seen in the following image. 

 
Figure 63:  Goal Target Image Parameters 

In the Game Loop, if Goal Visibility is True, a timer is continuously reset until 

Goal Visibility is False.  For each subsequent iteration, the time for which the Goal 

Visibility is False gets passed into an array, presented and graphed on the VI front panel 

for data analysis.   

Prgoal

ΘG
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Also, if Goal Visibility is True, the sign for goal priority is stored, and the Goal 

Priority value is multiplied by a constant of 0.75 before being multiplied by the Goal 

Gain.  This value is output to the Mecanum Mixer for Lateral Movement.  The case for 

when Goal Visibility is False is slightly more complicated.  The last stored value for the 

Goal Sign is multiplied by 0.618 and only output if the goal timer reads a value higher 

than 0.25 seconds, and only reacts for a 1 second maximum before the sign for goal 

priority is set to zero – causing lateral movement to cease even if the goal target is not 

in view.   

One of the robot’s objectives is to create reactive movement according to the 

following image: maintaining 3-point linearity, where the robot tries to drive ΘP and ΘG 

to zero.  The Player Monitor Loop consistently rotates the robot in order to track the 

player and keep the player in the center of the image, while the Goal Monitor Loop 

moves laterally to keep the goal target in the center of the image.  In order to achieve 

the linearity condition, a higher tracking score on the Player Monitor Loop via a 0.25-

second reaction delay on lateral movement.  If this is not present, the two loops ‘fight’ 

each other by trying to maintain design rules that are slightly at odds with one another – 

since if the robot rotates to track the player, the goal target will accordingly move its 

location in-frame relative to the rear-facing camera.  To combat this, the delay was built 

into the system so that the player was always being tracked, and then the robot would 

then move laterally back towards the last known position of the Goal Target.  
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FIGURE 64:  Intended Robot Movement 

The Player Monitor Loop outputs the Player Priority, Sign of Player Priority, and 

Player Visibility.  This program runs continuously during gameplay and has the primary 

task of monitoring the sensor data from the front-facing camera.  This VI also uses 

filtration for HSV parameters and Binary Morphology to determine the centroid and 

mean histogram value outlined in the Front-Facing Camera Section – similar to the Goal 

Monitor Loop.  If the mean histogram value is greater than 0.02, the image is considered 

to contain the goal.  The centroid of the x-axis is then used in the following equation to 

calculate the rotation error referenced to the center of the image (multiplied by the gain 

value): 

P

G

ΘP

ΘG
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FIGURE 65:  Player Priority 

 
𝑃𝑟𝑝𝑙𝑎𝑦𝑒𝑟 =

80 − 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑝𝑙𝑎𝑦𝑒𝑟,𝑥
80

 (21) 

This image size was chosen for speed of processing and the ability to have images 

incoming at 30 frames per second without appreciable lag. 

 
FIGURE 66:  Player Target Image Parameters 

 In the main Game Loop, if Player Visibility is True, a timer is continuously reset 

until Player Visibility is False. This action is similar to the Goal Monitor Loop.  For each 

subsequent iteration, the time for which the Player Visibility is False gets passed into an 

array, presented and graphed on the VI front panel for data analysis. 

 Additionally, if the Player Visibility is True, the sign for player visibility is stored 

and the Player Priority is passed through and multiplied by the player gain before being 

sent as rotational movement Mecanum Mixer Sub-VI  When the Player Visibility is False, 

the sign of the last priority value during player visibility is multiplied by 1.125 before 

Prplayer

60°FOV

ΘP
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being multiplied by the player gain, negated, and then sent to the Mecanum Mixer’s 

Rotational Movement input.   

The Distance Monitor Loop uses the mean histogram value acquired from the 

front-facing camera and subtracts this number from the maximum threshold (0.55) 

before multiplying by a gain value and sending that value as the direct movement 

throttle for the Mecanum Mixer VI.  This is only valid for the condition where the mean 

histogram value is higher than the minimum threshold for the human player (0.2) and 

lower than a maximum threshold for the goal target (0.7) – to stop movement if the 

goal is too close. 

The control systems used for the front-facing and rear-facing camera are actually 

a type of proportional gain controller.  One of the most commonly used types of control 

systems is the proportional-integral-derivative (PID) controller, which uses information 

from the present, as well as past and anticipated future state to generate a controlled 

response. For this application’s purpose, only the proportional feedback was needed for 

movement and simplification of the controller. 

For proportional control, a proportional controller gain, kp is multiplied by the 

error term to create an output.  See the following image for detail: 
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FIGURE 67:  Proportional Controller Diagram 

As described in the Goal and Player Monitor Loop sections, the centroid of the 

image is used to calculate its proportion away from the center of the image – where our 

set point is the pixel value of 80 and the process variable is the centroid measurement.  

The difference between these values is the error term.  This error term is then 

multiplied by a gain before being output to the program which causes wheel movement.  

These calculations of error from centroid are continuously calculated and passed along.   

The stall torque of the wheels from the system inertia actually serves to dampen 

any signals that would provide steady-state error, and are somewhat of a natural 

integral controller.  In PI or PID control, the integral term accounts for historic values of 

error and seeks to eliminate the residual error.  Since the motor needs a minimum 

voltage to effect movement, any imbalances of proportional control which would cause 

oscillations in this range are eliminated.  However, this is only true for appropriate gain 

values.  If the gain value was too high, the robot would overcompensate movements 

causing extreme oscillation.  In this case, I could have used a Derivative term in order to 

control rapid changes in error.  For this simple model, the P controller was effective. 
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5. TEST PLAN 

The first step to verify the approach was to assess the filtering methods for 

centroid calculation for front and rear cameras.  This verification was provided in the 

Sensor Fusion Section.  The next step was to verify the objectives of the robot 

independently which cause movement of the robotic system – front-facing camera for 

rotational movement and direct movement, and rear-facing camera for lateral 

movement.  After verifying rotational and lateral movement, those programs were 

tested for integration, which prompted the higher tracking score for the Player Monitor 

Loop versus the Goal Monitor Loop.  The final step was to integrate the programs into a 

single program capable of fusing the sensor input to cause the intended reaction.   

To verify the function of the Goal Monitor Loop, a simple VI was written, which 

calculates loop timing and also uses the outputs of the Goal Monitor Loop – Goal 

Priority, Sign of Goal Priority, and Goal Visibility.  The front panel allows the user to start 

and stop the movement of the robot by either providing the calculated values to the 

Mecanum Mixer’s Lateral Movement or sending 0 value.  If the target is visible, the goal 

priority value is multiplied by the gain value and sent as Lateral Movement.  If the target 

is not visible, the robot moves in the direction of the last target direction for 1 second 

and sets itself to zero throttle thereafter.  After the output value is multiplied by a gain 

value, which can be adjusted by the user on the front panel, the Lateral Movement 

values sent are captured in a chart that illustrates these values for each loop iteration.   
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The speed of a player of average skill was considered to be around 1.5 m/s – 

which is around the same speed as a brisk walk.  This speed was based on empirical 

observation of several colleagues attempting to dribble with the ball.  To associate the 

robot’s speed with the player’s speed, the goal target was shuttled ten times between 

two pieces of tape 1 meter apart from one another – to calculate the time required for 

response, and to check if the responses showed a repeatable signal.  The objective of 

the test was to verify that the program could read the centroid of the target and make 

the appropriate action without overshooting the target at the appropriate speed.  The 

gain value was adjusted until this was repeatable.  Step responses were also recorded.  

The pass criteria for this test was movement from the robot within a time of 2.36 

seconds, which correlates to the average player dribble speed and the time it takes the 

player to reach the robot from starting position (3.5 meters from the robot) with 

repeatable result.  The test setup is provided in the following image: 

 
FIGURE 68:  Goal Monitor Loop Test Setup 
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Similar to the Goal Monitor Loop Test, a simple VI was written to make use of 

the outputs of the Player Monitor Loop:  Player Priority, Sign of Player Priority, and 

Player Visibility.   

The front panel allows the user to start and stop the movement of the robot by 

either providing the calculated values to the Mecanum Mixer’s Rotational Movement or 

sending 0 value.  The output value is multiplied by a gain value, which can be adjusted 

by the user on the front panel and the values are captured in a chart that illustrates 

these values for each loop iteration.   

Testing the algorithm was similar to the Goal Monitor Loop test, but instead of 

using the goal target as the moving target, I used myself and stepped 1 meter left and 

right ten times each second – to verify that the program could read the centroid of the 

target and make the appropriate action without overshooting the target at the 

appropriate speed.  Again, the pass criteria for this test was movement from the robot 

within a time of 2.36 seconds.  The gain value was adjusted until the robot’s action was 

quick enough to track effectively, but did not overshoot its target with sustained 

oscillations.  Step responses were also recorded.  A view of the test setup can be seen in 

the following image: 
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FIGURE 69:  Player Monitor Loop Test Setup 

After both the function of the Player Monitor Loop and Goal Monitor Loop were 

verified and appropriate gain values were discovered, the two algorithms were 

combined as well as some additional functionality, including the human-machine 

interface (start and emergency buttons) and LED indication system. 

This test uses a human subject (myself), this time stepping at a distance of √2 (1 

meter to the right and 1 meter forward) within 1 second to check step response.  See 

the following image for detail:   
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FIGURE 70:  Player and Goal Monitor Fusion Loop Test 

Pass criteria is movement within 2.36 seconds.  Tests of dynamic movement were also 

performed to check consistency of tracking – pass criteria for this test was if the 

majority of tests lost visibility of the human player less than the goal target if the 

maximum visibility loss for either target was less than 15% of the total game time, and if 

maximum time per visibility loss for either target was less than 1 second.  The front 

panel of the VI, loss of tracking for both player and goal are sent into arrays and the 

player priority charts are captured to check tracking and values sent to the motors for 

movement.   

After verification of the Player Monitor Loop (rotational movement) and Goal 

Monitor Loop (lateral movement), as well as the fusion of the rotational and lateral 

movement, the next verification was for the Distance Monitor Loop.  Using myself as the 

test target, a step response was recorded for 1-meter movement.  If the robot 

responded within 2.36 seconds of movement, the test was considered passed. 
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The final verification of the system was the fusion of the Player Monitor Loop, 

the Goal Monitor Loop, and the Distance Monitor Loop, which incorporates all 

objectives of the thesis:  direct motion – maintaining an appropriate buffer zone, 

rotational motion – maintaining tangency with the buffer zone, and lateral motion – 

maintaining 3-point linearity with the robot between the player and goal.   

This test involved reading a step response for a diagonal movement of √2 – the 

same movement used for verification of the Goal and Player Monitor Fusion Loop.  

Using the same passing criteria as the previous step responses, if the robot was able to 

make appropriate movement within 2.36 seconds, it was deemed successful.
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6. RESULTS 

For the Goal Monitor Loop, the Gain Value found to produce desired repeatable 

results without consistent overshoot and oscillation was found to be a value of 60.  The 

following image illustrates the front panel output from the test shuttling the goal target 

between tape placed 1 meter apart: 

 
FIGURE 71:  Goal Monitor Loop Test Front Panel 

The left-hand side of the image provides the loop execution time for each 

iteration.  The RMS value for this loop iteration is around 180ms. 

Focusing on the chart to the right side of the front panel, we have the following 

figure: 



98 

 

 
FIGURE 72:  Goal Monitor Loop Test - Proportional Control Repeatability 

When the target is moved to the left of the robot, the minimum lateral value 

sent was nearly -40 and then movement goes back to zero once the target is centered.  

When the target is moved to the right of the robot, the maximum lateral value sent was 

nearly +40 and then movement goes back to zero once the target is centered.  The blips 

that show immediate zero value are when the tracking was lost.  The case for when 

visibility goes to zero accounts for this by sending an output which causes movement in 

the last direction of the image centroid, then tracking is regained quickly.  If tracking is 

lost for too long (above a second), the value for movement goes to zero.  Otherwise, the 

robot would continue to one direction without any knowledge of its position relative to 

the target.  By stopping movement, there is a chance that the target may come back 

into view – especially when other sensors cause different movements (i.e. rotation from 

front-facing camera control). 

The step response for the Goal Monitor Loop is given by the following image: 
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FIGURE 73:  Goal Monitor Loop Step Response 

The critical response for this loop, which was calculated from the end of the step input 

until robot steady-state was calculated to be 1.228 seconds. 

For the Player Monitor Loop, the gain value found to produce desired repeatable 

results without sustained oscillation and overshoot was found to be around a value of 

32.  The following image illustrates the front panel output from the stepping 1 meter to 

the left, then back 1 meter to the right.  

 
FIGURE 74:  Player Monitor Loop Test Front Panel 
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Similar to the Goal Monitor Loop Test Front Panel, the chart on the left-hand 

side illustrates the loop execution time for each iteration – which again had an RMS 

value of nearly 180 milliseconds, however in this image, there is also a spike valued for 

loop hesitation.   

Focusing on the chart on the right-hand side, we can see the repeatability of the 

control system. 

 
FIGURE 75:  Goal Monitor Loop Test - Proportional Control Repeatability 

When the player steps to the right, the maximum value sent to the rotational input of 

the Mecanum Mixer VI is around -22, causing counter-clockwise movement and then 

movement goes back to zero once the target is centered.  When the player steps to the 

left, the value sent to the rotational input is around +22, causing clock-wise movement 

and then movement goes back to zero once the target is centered.  In this test, tracking 

was not lost. 

 The step response for the Player Monitor Loop is given by the following image: 



101 

 

 
FIGURE 76:  Player Monitor Loop Step Response 

The critical response for this loop, which was calculated from the end of the step input 

until robot steady-state was calculated to be 0.807 seconds. 

An example of the front panel used to illustrate the fusion result of the Goal 

Monitor Loop and Player Monitor Loop is given by the following image: 



102 

 

 
FIGURE 77:  Goal and Player Monitor VI Front Panel 

From the image above, we can see that for each round of play, the priority values also 

called the centroid error are shown in charts, as are the times for lost tracking of either 

the player or goal.  In this illustration of a successful trial, the player tracking was only 

lost one time for around 0.76 seconds, while the goal target was lost in tracking several 

times, but none for longer than 1.26 seconds.   

 The sum of each array is also calculated to make a comparison between trials.  

The following table illustrates these values. 
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TABLE 5:  Visibility Loss Summary Data (s) 

Trial Player # Times 
Lost 

Goal # Times 
Lost 

Total Game Time 

1 0.56 1 2.79 3 20.27 

2 0 0 3.39 4 20.27 

3 0.37 1 1 1 20.36 

4 0 0 2.22 3 20.32 

5 0 0 2.83 3 20.34 

6 0 0 1.21 2 20.2 

7 0.77 2 0.19 1 20.25 

8 0 0 2.36 2 20.33 

9 0 0 2.23 4 20.23 

10 0 0 2.25 4 20.24 

Average 0.17 
 

2.25 
 

20.281 

 
For an average game duration of 20.28 seconds, the player tracking was lost only 0.83% 

of the time, and the goal tracking was lost only 10.09% of the time.  The average time 

per player visibility loss was 0.44 seconds, while the average time per goal visibility loss 

was 0.76 seconds. 
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The step response of the Goal Monitor Loop and Player Monitor Loop fusion VI is 

given by the following figure:

 

FIGURE 78:  Goal and Player Monitor Loop Test 

The critical response for this loop, which was calculated from the end of the step input 

until robot steady-state was calculated to be 2.23 seconds. 

 For the Distance Monitor Loop, the step response is given by the following 

image: 

 
FIGURE 79:  Distance Monitor Loop Step Response 
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The critical response for this loop, which was calculated from the end of the step input 

until robot steady-state was calculated to be 2.32 seconds. 

For the fusion loop meeting all objectives of the thesis, combining the Player 

Monitor Loop, the Goal Monitor Loop, and the Distance Monitor Loop, the step 

response is given by the following image:  

 
FIGURE 80:  Full Fusion Step Response 

The critical response for this loop, which was calculated from the end of the step input 

until robot steady-state was calculated to be 2.57 seconds.
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7. DISCUSSION AND CONCLUSIONS 

The primary contribution of this project is verifying that for a robot tracking a 

dynamic target (a dribbling soccer player) located to the front of the robot and a static 

target (the goal target) located to the rear of the robot, whose primary objectives are to 

face the player, maintain appropriate distance from the player, and place itself between 

the player and goal - mecanum motion could be controlled simply with just two sensors: 

one front-facing camera and one rear-facing camera.   

The following image illustrates the realistic robot movement in reaction to the 

human player for the proof-of-concept vehicle created for this thesis. 

  
FIGURE 81:  Futbot Reaction to Player 



107 

 

 The algorithm was favored to track the human player since if the player is 

tracked well, even if the goal target is lost, it will commonly come back into view as the 

robot makes an appropriate movement to seek a position which puts itself between the 

player and the goal.  Since the Futbot has been programmed to track the player with 

higher priority, the typical reaction to the human player moving to one side or the other 

during initial gameplay is for the Futbot to rotate and then strafe back towards the goal 

since visibility loss of the goal is more common.  This approach naturally makes the 

Futbot move backward as it rotates and then moves back toward the centerline 

between the player and goal.  The effectiveness is proven mostly heuristically through 

actual interaction with the robot, as well as the pass/fail criteria outlined in the Test 

Plan.  Many videos were taken to prove success. 

 All tests were considered passing except for the final fusion test, which missed 

the 2.36-second pass criteria by 0.21 seconds.  I believe that the wireless 

communication between the network created by the myRIO controller and the 

computer used for programming caused a delay that would not be necessary if the 

program were run as a startup on the myRIO and did not pass data back to the laptop.  

This wireless communication constraint is likely also the culprit of the spikes seen in the 

iteration loop execution times on the front panel. 

To improve tracking, the goal target (24”x24” wood panel) could have been 

painted fully red instead of using paint swatches set up in a triangular formation – these 

were initially chosen for circle count and creating an equilateral triangle – which was 

potentially going to be used to for angular determination.  After the discovery of the 
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faster binary morphology erosion/dilation method versus the FFT filter, the circles were 

no longer used for determining if the goal was visible – the histogram mean value and 

threshold were used instead.   

The shirt tracked very well, but unfortunately, the available test environment 

was incredibly noisy.  The vending machines in the background contained Mountain 

Dew bottles which just happened to be a similar color to the shirt.  Also, any red that 

could be found in the frame was covered with white paper – this included fire 

extinguishers and exit signs.  This actually worked to my benefit in the long run, since it 

required a more stringent application of thresholding values – limiting noise seen in the 

images after this filter was applied. 

 Future work of the robot could involve facial recognition for ensuring that it 

approaches only the player it has been tasked with defending.  Also, adding LiDAR to the 

sensor set would help better inform of the environment and allow for some additional 

action beyond what was determined as this thesis’ objective.  Building a slam map of the 

environment, when the knowledge is not A Priori could allow the discovery of static vs. 

transient obstructions.  Also, adding a Kalman Filter for error calculation could improve 

robot reaction and improve sensor fusion.  With more time, it would have been fun to 

add pool noodles on a wiper motor with acoustic sensors so that they swiped at the ball 

when I came near.   

I hope that this inspires students at UNC Charlotte to one day join the RoboCup 

and build robots that will one day truly be capable of beating the World Cup champions.   
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This project has challenged me beyond expectations and led to a result that is truly 

remarkable.   It constantly reminded me to maintain the mantra of ‘keep it simple.’ 

Improvements to this system could include Kalman filters, α/β filters, or multiple 

hypothesis trackers.  In the robotic application of this thesis, the Player target moves, 

Goal target remains stationary – future work could involve tracking both robot proximity 

to either target or also the targets’ proximity to one another determining which 

patterns are most effective.  One could also apply machine learning techniques for 

common player approaches – using deep learning techniques based on reward structure 

to have the system develop predictive techniques of player target action to devise its 

own methods of improvement.  
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APPENDIX 

Data Fusion Lexicon Definitions per JDL: 

Sources of Information – local or network sensors providing input data; reference 

information or A Priori knowledge of the environment. 

Human-Computer Interaction (HCI) – peripherals for human input and 

communication. 

Source Pre-processing (Process Assignment) – pre-screening data to allow fusion 

to focus on the most relevant data. 

Level 1 Processing (Object Refinement) – Synthesis of pre-processed data to 

make an assessment of object features and kinematics for discrimination and tracking 

via four key functions:  data alignment, data/object correlation, feature association, and 

entity classification.   

Level 2 Processing (Situation Refinement) – relates the entities being tracked to 

their environment with higher-level pattern inferences.   

Level 3 Processing (Threat Refinement) – uses the current situational 

understanding to predict future events making inferences of intent and predicted 

opportunity.   

Level 4 Processing (Process Refinement) – ensures optimal performance of data 

fusion system via four key functions:  monitoring performance, identifying deficits in 

data quality or type, determining which sources are necessary for specific object feature 
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identification, and allocating and directing resources of the system to optimize 

application objectives.   

Data Management – known as a support function for the various levels of fusion 

processing, managing data for efficient storage, retrieval, and protection is a significant 

undertaking due to the potentially vast types and amount of data accrued by the sensor 

systems.  

Component Technical Specifications: 

Mecanum Wheels 

• Steel Side Plates riveted to black Polycarbonate Core 

• Diameter: 8" 

• Load Capacity: 500 lbs per wheel 

• Weight: 4.58 lbs 

• Width Across Middle: 3.50 in. 

• Nylon Core Rollers - 80A durometer TPU over-mold 

• Roller Durometer: 80A 

• Rollers: 12 

  



116 

 

CIM Motor 

TABLE 6:  Motor Parameters 

Free Current: 2.7 AMPs 

Free Speed: 5,310 RPM 

Maximum Power: 337 Watts 

Stall Current: 133 AMPs 

Stall Torque: 343.4 in-oz 

Voltage:  12 Volts 

 

 
FIGURE 82:  CIM Motor Torque-Speed Curve (“CIM Motor—VEXpro Motors—VEX 

Robotics,” n.d.) 

Toughbox Mini Gearbox 

• Angled Plate 
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• 12.75:1 gear ratio 

• Stall Torque:  91.22 ft-lbs 

• Free Speed:  416.47 rpm 

• Wheel Speed for 8” Wheel:  14.54 ft/s 

US Digital E4P Optical Encoders 

• Counts Per Revolution:  250 

• Bore:  ¼” 

• No Index 

• Single-Ended Output 

Talon SRX Motor Speed Controllers 

TABLE 7:  Talon SRX Technical Parameters 

Voltage: Nominal:  12V Min/Max:  6-28V 

Current: 60A continuous 100A surge (2s) 

PWM Input: Pulse (high time):  1-2 ms nominal Rate (period):  2.9-100 ms 

PWM Output: Chop Rate (switching frequency) 15kHz 

Minimum Throttle: (Deadband) 4% 

 

Battery 

• Sealed Lead-Acid Type 

• 12 Volts 

• 18 Amp-hours 
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• Weight:  12.5 lbs 

Power Distribution Panel 

• 12V DC Input 

• 12V DC Output 

• 8 Channels:  40A protection 

• 8 Channels:  20/30A Protection 

• 1 Channel:  20A protection for Voltage Regulator Module 

• 1 Channel:  10A for myRIO 

• 1 CAN Bus:  feedback to myRIO 

Voltage Regulator Module 

• 12V DC input 

• 2 Channels:  12V, 1.5A limit (2A peak) 

• 2 Channels:  12V, 500mA limit 

• 2 Channels:  5V, 1.5A limit (2A peak) 

• 2 Channels:  5V, 500mA limit 

 

TABLE 8:  myRIO PWM Channel Layout 

Left Front (LF) Channel A:  PWM 0 Right Front (RF) Channel A:  PWM 1 

Left Rear (LR) Channel B:  PWM 0 Right Rear (RR) Channel B:  PWM 1 
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FIGURE 83:  myRIO 1900 Channel Pinouts (National Instruments) 

 

 


