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CHAPTER 1: INTRODUCTION

The healthcare decisions and predictions are based on various data modalities

with heterogeneous levels of description [1]. This semantic heterogeneity demands

a task-specific representation, with different granularity and abstraction levels, for

each modality of data [2]. In this context, integration of information with a se-

mantically [3], quantitatively [4,5], and computationally [6] reasonable approach is a

challenging task. In this dissertation, we are proposing a domain-knowledge-driven

pipeline for effective feature integration in the healthcare domain.

1.1 Research Motivation

The modality representation is determined by the features extracted from that

modality of data for a particular task. In fact, it is common in the literature to use

terms "representation" and "feature" interchangeably [7]. Designing an effective rep-

resentation —i.e., extracting appropriate features, involves both data-driven feature

extraction and domain-knowledge-driven feature engineering tasks [8].

The data-driven approaches extract features in a bottom-up fashion from the lowest

abstraction-level of data —i.e., raw data. On the other, the knowledge-driven meth-

ods are based on hypotheses and experiments and eventually synthesizing the data.

In other words, these features are built in a top-down fashion, starting from a feature

with the highest level of abstraction [9]. While the former features have higher free-

dom of information extraction, it is easier for the human mind to memorize, interpret,

validate, and feedback on the latter group of features [6].

In the healthcare domain, the decisions are made by a complex combination of high-

level information and low-level data-driven findings from multiple modalities of data.



2

For example, in radiation therapy planning, the physician considers the patient a high-

level physiological condition for prescribing the dose-at-target. However, the planner

team tries the feasible plans based on the patient’s low-level anatomical features to

find the best feasible plan [10–12]. This example clearly shows how multiple modalities

of data provide information on different levels of abstraction.

The multimodal machine learning has substantial literature for the integration of

modalities with similar abstraction-level. The conventional methods include high-

level feature integration in classic multivariate machine learning [13] and low-level

feature fusion methods in deep learning models [14, 15]. However, the integration

of features with heterogeneous representation and dissimilar abstraction-level is a

long-time open question [7, 9].

The importance of learning from modalities with both low-level —i.e., data-driven—

and high-level —i.e., hand-crafted— features in the healthcare domain and the com-

plex inter-relation of these features among themselves and with respect to the target

task motivated this research to study the integration of heterogeneous features sys-

tematically. We are specifically interested in studying this problem in healthcare and

addressing the role of domain knowledge for designing an effective approach.

1.2 Research Scope

Many tasks in the healthcare domain have a regression nature [16–18]. However, the

majority of research studies concentrated on tasks with a classification nature. This

tendency is observable in prior research for scalar — e.g., disease diagnosis [19–24]

— and high dimensional tasks — e.g., segmentation [25–27]. This disparity creates

a research gap for tasks with a regression nature in this domain. This dissertation

provides a framework for regression applications to address this gap in the healthcare

domain.

For a regression task, we define a hypothetical framework with two types of modal-

ities: primary modality with fine-grain information, which we call modality A, and an
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auxiliary modality which provides supporting information and is called modality B in

this dissertation.

1.3 Research Questions

In the research scope mentioned in Section 1.2, we want to study the role of domain-

knowledge in providing the best integration approach in multimodal healthcare ap-

plications. In particular, we want to answer the following research questions in a

systematic way:

RQ1: , An increasingly common representation for modality A, is using the raw data

— e.g., image, and letting a deep learning model learn the best representation. Is

this blind representation learning for primary modality always results in the most

accurate and generalizable performance?

RQ2: The most common approach for the integration of modality B is using multi-

modal machine learning with various levels of fusion. Are these blind fusion/integration

always effective in improving model accuracy over single modality learning in all the

health care applications with heterogeneous data?

RQ3: How can domain knowledge help us determine the best model architecture?

Particular questions include (1) proper identification of multiple modalities; (2) best

architecture for the primary modality(s); (3) the different ways the information in

supporting modalities (e.g., modality B) may contribute to the accuracy of integrated

models; and (4) the best architecture for integrating supporting modalities.

In addition to answering the above questions based on literature and in the context

of real healthcare applications, we also study the impact of using domain-knowledge

in the two applications of radiation treatment planning and disease progression pre-

diction. With these experiments, we aim to answer the following research questions:

RQ4: Can domain-driven representation improve model accuracy and generalizabil-

ity over blind representation methods — i.e., high-level and low-level, in predicting
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dose distribution for radiation treatment planning?

RQ5: Can domain-driven multimodal machine learning methods improve model ac-

curacy over single modality one in predicting disease progression using ADNI data?

1.4 Research Method

We systematically review the researches that fit the scope we mentioned in Sec-

tion 1.2 and analyze their learning methods and data modalities. We formulate the

problem in a framework with two hypothetical modalities and discuss the possible

solutions based on the first two questions based on the evidence from the literature.

We further propose a pipeline in which we use the domain-knowledge to represent the

modalities and integrate the information.

We use a domain-driven convolution neural network to extract fine-grained fea-

tures from primary modality with an efficient abstraction-level. We also propose a

tree-structure convolution neural network along this pipeline, a novel perspective for

integrating the multimodal information and getting a more accurate result than the

blind fusion architectures in some applications.

The pipeline is then applied to two healthcare applications for radiation treat-

ment planning and disease progression prediction to evaluate the methods. We

clarify the pipeline and validate the proposed methods by studying the implication

in a scalar regression task in Alzheimer’s Disease (AD) progression prediction do-

main [28], and a high dimension regression task for knowledge-based treatment plan-

ning (KBP) [10,29]. The results are validated by comparing the proposed approaches

with the previously reported results.

1.5 Structure of the dissertation

In the following chapters of the dissertation, we first provide some background on

multimodality and deep learning architectures in Chapter 3 and systematically re-

view the recent publications in multimodal deep learning. In Chapter 4, we describe
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the proposed framework. We study the domain-driven representation in a framework

with a 2D regression prediction for radiation treatment planning in Chapter 5, and we

analyze the multimodal learning and proposed methods for the case of Alzheimer’s

Disease progression prediction using ADNI data in Chapter 6. Finally, in Chap-

ter 7, we summarize the contributions and limitations of the current dissertation. We

further discuss the potential direction of this work in the future.



CHAPTER 2: Multimodality and Feature Integration

Human understanding of the environment has always been multimodal. This means

that a person relies on various sources of information for experience and interpreting

an event. This information comes from visual, auditory, and olfactory senses and

the prior stored knowledge in one’s mind. This is an important note in real machine

learning applications, where often similar features should be injected into the algo-

rithm for a human-comparable performance. This chapter briefly reviews some of

the previous machine learning strategies for handling multimodal features instead of

single-modal ones.

2.1 Multimodality

Modality as a term is defined as how something is experienced [30] or the type of

representation format in which information is stored [31]. Image, text, and audio are

among the common modalities in machine learning tasks. Although each of these

modalities has distinct statistical properties, the higher-level distributions of various

modalities have some form of correlation when they represent a shared task. This

situation is what we call multimodality.

A multimodal distribution in statistics is a distribution with multiple modes, which

appears as multiple distinct peaks or local maxima in the probability density func-

tion. This distribution often is considered to be a combination of multiple uni-modal

distributions. Therefore, typical summary statistics such as the mean, median, and

standard deviation can be misleading and inappropriate descriptive measurements.

Instead, the characteristics of each uni-modal distribution and the between-modals

relationship offer better measures to describe the distribution. While a real-life mul-
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timodal problem has a far more complex distribution than this definition, for having

an abstract imagination, a multimodal event can be perceived as a product of an

unknown interaction of multiple unimodal events.

Datasets in real-life applications have various heterogeneity types, which is referred

to as any in-homogeneity in the data [1]. Some examples in the literature are label het-

erogeneity, which can result from multiple inhomogeneous instances or label providers,

data distribution or task heterogeneity, and feature source or view heterogeneity [1].

Multimodality falls under the category of feature source heterogeneity.

2.2 Multimodal Machine Learning

The multimodal machine learning area extends the potential of machine learning

to take advantage of heterogeneous sources of information [1]. However, it introduces

numerous novel areas and challenges.

A recent survey paper [30] addresses five core challenges in multi-modal machine

learning applications, including representation, translation, alignment, fusion, and

co-learning. Each application of machine learning may deal with one or a couple of

these categories, as they demonstrated some examples in Table 1 of the paper [30].

A subset of these challenges was also previously mentioned in the multiview machine

learning area [32,33], which makes the two areas inter-related.

A major concentration of prior studies is on the modalities with high-dimensional

or sparse encoding/representation such as image, audio, video, or text [34,35]. How-

ever, the importance of low-dimensional modalities and the modal heterogeneity from

the semantic axis, granularity, and dimension perspective is rarely addressed in the

literature. This is despite a wide range of prior applied studies and application do-

mains [19,36]. One of the main categories of these applications is incorporating prior

domain knowledge into learning from raw signals [1,37,38]. We discuss this aspect of

modality representation in the following section.
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2.3 Modality Representation

In this section, we review the modality dimensional and sparsity characteristics.

Modality representation in a machine learning task is directly relevant to the features

extracted from that modality, and these terms are sometimes used [7] interchangeably.

We discuss multiple dimensions and abstracted related characteristics of modalities

in the following subsections.

2.3.1 Knowledge-Driven vs. Data-Driven

Classic machine learning provides a set of tools for feature extraction, dimen-

sion reduction, and feature selection. These toolsets are a complimentary guide for

knowledge-based feature engineering to extract a few features that can efficiently cap-

ture a target’s information. According to domain knowledge, these features used to

be hand-crafted and validated in a statistically approved approach.

A common characteristic of classic features is their coarse-grain description domain

and high-level of information representation. The shortcomings appear when a task

needs more local or more fine-grained information.

Deep learning methods and particularly convolution neural networks, unlike the

hand-crafted features, learn features in a bottom-up fashion. This means that hierar-

chical levels of dimension reduction learn the local information much more efficiently

than the typical classic approaches. This structure made a breakthrough in tasks

such as image classification [39].

This learning model uses the available data resource efficiently for the structural-

based situation through hierarchical weight sharing and the innate convolution reg-

ularization. Nevertheless, this efficiency causes unintended bias when a higher-level

characteristic such as shape, depth, or distance is what the target function needs [40].

Furthermore, even with the efficient use of data similar to other non-parametric

approaches, the predictions’ quality still depends on the availability of reasonable
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variation and amount of data [6, 25].

2.3.2 Representation Abstraction

The term abstraction is used for an operation which hides or removes the less

critical detail and preserve the desirable properties [41]. The desirability in machine

learning is typically calculated with respect to the target function [42]. In other

words, the abstraction shows the density of the expected knowledge in a particular

representation [42, 43]. This means that a higher abstraction compressed the same

knowledge in a lower dimension of representation.

Abstraction can be thought as a feature or category (such as car vs bike) or a

discrete or continuous function of sensory data, such as past tense of a sentence or

speed of an object in a video [44]. A feature with high-level of abstraction has a

coarse-grain description domain, while a low-level feature potentially provides finer-

grain information.

2.3.3 Representation Granularity and Sparsity

Representation is the format in which information is extracted from the source

and encoded for the machine. Thus, it characterizes the type of features and the

potential computational algorithms this information can be fed to. A multi-modal

representation should also have the potential to integrate the information from mul-

tiple heterogeneous sources in a meaningful way.

We discussed in Section 2.3.2 that the information can be represented in various

levels of abstraction. The immediate impact of leveraging abstraction of represen-

tation - i.e., lower-level representation to a higher-level one, is usually a dimension

reduction. As a result, each element of representation holds more information. This

causes a denser - i.e., less sparse representation. As a result, there is a common cor-

relation between abstraction increase, dimension reduction, and a feature’s coarser

granularity. However, it is crucial to note that these are not equal concepts.
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The features’ sparsity is measured through the ratio of zero or near-zero values

compared to the numeric volume of a representation. Literature suggested various

metrics for the sparsity measurement. A comparison of these measures suggested

that Gini-sparsity-index is the best among all with respect to six criteria [45]. Equa-

tion 2.1, demonstrates the formula for this metric. In this equation, k is the index of

each feature-item when their values are sorted in an ascending form, ||c||1 is the sum

of absolute values, and N is the number of feature-items.

S = 1− 2
N∑
k=1

c(k)
||c||1

(
N − k + 1

2

N
), c(1) ≤ c(2) ≤ ... ≤ c(N) (2.1)

The dimensional aspect of the representation and features are commonly discussed

either in a high-dimensional sparse domain or in a low-dimensional dense projection.

The feature dimensionality is measurable by the average size or the number of items

in one feature/modality. For example MNIST dataset [46] contains image-pixels of

size 28x28, which means each instance of the dataset contains 784 numbers. This is

an example of a small image, yet it is a high-dimensional feature. It can be compared

to Iris dataset 1 with only four pieces of information, i.e., sepal and petal width and

length, that is saved in four integer numbers.

Apart from the superficial appearance of dimensionality, there is a slightly deeper

difference between MNIST and Iris datasets. This difference is about the density and

sparsity of the feature vectors. For example, each instance of MNIST train dataset on

average contains only 19.12 % nonzero value, while Iris data has four nonzero values,

with semi-uniform distributions between 0.1 to 7.9. This attribute of a feature or

modality is called density.
1https://archive.ics.uci.edu/ml/datasets/iris

https://archive.ics.uci.edu/ml/datasets/iris
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2.4 Deep Learning Representation

The hierarchical architecture of deep learning models and a general compression

tendency in these networks [47] makes the concept of abstraction critical in the deep

learning representations and feature extraction. The ideal expectation from deep

learning is an auto-learning of the multi-level abstraction similar to the human [42].

The real hierarchical structure in deep learning usually decreases the granularity

and dimensionality. However, after measuring correlation [42] or mutual informa-

tion [48] between the target class and network layers [42], it has been shown that the

representation density and abstraction, unlike the expectation, does not monotoni-

cally increase in this hierarchy [42]. Furthermore, even if the abstraction increases

with respect to the train data, it is not always in a generalizable and meaningful

hierarchy like human [41,49].

In classic machine learning, it was common to extract dense low-dimensional fea-

tures from all modalities. These features typically had a coarse-grained description

of the status of that modality. The compressed nature of these representations, along

with their applicability for the classic machine learning to this type of representation,

is part of the reasons that a large portion of our data-driven prior domain knowledge

is stored and used in this format [50].

Deep learning models’ emergence with the current high-power computation and

storage systems transformed the dialogues back into sparse representations. The idea

is that in an ideal unlimited situation, a deep learning type of architecture can capture

the information of the sparse modalities that are relevant to the target. However, in

the absence of sufficient resources, we may need to constrain these assumptions.

The fundamental quantitative and semantic differences between these two repre-

sentations are important in selecting the most efficient machine learning and deep

learning approach. Deep learning, as one of the most popular machine-learning ap-

proaches in many areas, provides the capability of hierarchical levels of abstraction
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for the modality representation [39].

2.5 Modality Representation Quality

The existence of different representation approaches and various levels of abstrac-

tion, discussed in previous subsections, makes it critical to have an assessment met-

ric. Some studies use the performance of a learning task to evaluate the represen-

tation quality for a particular learning model [51]; other studies directly analyze the

representation-target relation to conduct this assessment [48,52].

One direct method for quality assessment of the representations is mutual informa-

tion (MI). Specifically, a good representation is the one that maximizes the mutual

information between inputs and desirable targets. Formally, it is defined based on

Shannon entropy as stated in Equation 2.2, where H is the Shannon entropy, and

H(X|Y ) is the conditional entropy of Z givenX. The calculation for high-dimensional

and continuous feature space is complicated.

I(X;Y ) = H(X)−H(X|Z) (2.2)

In order to extend the concepts of entropy to a continuous feature space, it is

common to use the target standard deviation. The problem with these measurements

is that they only assess the quality with respect to global statistics.

There are more complex neural-network-based definitions such as Mutual Infor-

mation Neural Estimation (MINE) [48] that measures more locally the amount of

knowledge being retained in a neural-network representation. Deep InfoMax (DIM)

method [53] demonstrates that in their assessment, local information produces better

representation for classification, whereas generation tasks need more global informa-

tion in representation to perform well.

The indirect evaluation of a particular representation is through comparing the

model performance using that representation compared to a common representation
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method. In these evaluation methods, it is essential to 1) keep the other parameters

and aspects of the model consistent [51]. 2) study the behavior of the representa-

tion upon changing other variables. 3) study the representation’s generalizability by

comparing its performance on seen data vs. unseen data [41].

2.6 Summary

In this chapter, we provided background about the concept of multimodal machine

learning. We discussed important aspects of modality representation consisting of

the generation method, abstraction level, representation dimensionality, and sparsity.

We further described the deep learning-based representation and the importance of

abstraction levels in the corresponding representations. Finally, we discussed two

common approaches for comparing the quality of two different modality representa-

tion. In Chapter 3, we analyze the modality representations in the literature from a

dimensionality perspective. Further, we use the indirect method, explained in Sec-

tion 2.5, for assessing the suggested representation in Chapters 4 to 6.



CHAPTER 3: Multimodal Deep Learning: A Systematic Review

In this chapter, we conduct a systematic review of the recent publications to under-

stand the common abstraction-level and integration approach for multimodal tasks

in the healthcare domain. We limit our review to the papers with a form of deep

learning method for two primary reasons: 1) The deep learning architectures are di-

verse and capable of representing and learning both high-level and low-level features.

Also, the hierarchical structure of most of the deep learning models has an explicit

representation of abstraction-levels. 2) The popularity of the deep learning models

and toolboxes created a trend in healthcare publications to use deep learning models

in their applications.

3.1 Review Questions

Through this systematic review, we want to answer the following research questions

according to the study cohort:

• What are the common modalities and representation-levels in multimodal health-

care applications?

• What are the common modality integration methods in multimodal applications

in the healthcare domain?

These primary questions help us understand the context of the problem and the

common methods currently used in this field. Following these questions, we want

to examine whether these are the best approaches, and the common methods are

always effective. We will discuss these questions in the last sections of this chapter

and Chapter 4. We will further address the role of domain knowledge in choosing the

best approach.
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3.2 Review Method

We conduct a systematic review by looking for the papers containing "multimodal

deep learning" in their topics - i.e., title, abstract, and keywords, which are indexed

in the web of science 1 and published between 2017 to 2019. These documents are

then sorted by Publication Year and Number of Citation (descending), respectively.

We also include some useful contents from previous related review papers, which are

not captured in our pipeline but contained related information [54–61].

The selected cohort are categorized into Review Papers and Application and Method

manuscripts. The method typically is those with innovation from the multimodality

perspective, while the applications are the ones that used the previous methods to

solve a practical problem. Nevertheless, the method papers typically contain one or

multiple application use-cases. The method papers are not representative of a com-

mon approach, and we kept them regardless of their application domain. However,

we did not include them in the analysis for Subsection 3.3.2. The review papers are

the ones that review the previous works. While a few of them are specifically on mul-

timodal deep learning, the majority have other concentration subjects. Figure 3.1

demonstrates the review pipeline.

3.3 Review Results

The final cohort contains 105 papers consisting of 57 application papers in health-

care, 15 review papers with either general multimodal deep learning concentration

or healthcare-related, and 33 method papers for multimodal deep learning with any

domain of interests. We reviewed the cohort for each of these categories, the fol-

lowing subsections, separately. This review intends to understand the primary data

modalities and some representative tasks in this domain.
1http://www.webofknowledge.com/

http://www.webofknowledge.com/
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Figure 3.1: Overview of the method for systematic review of recent representative
multimodal deep learning papers in healthcare. The search is done on Web Of Science
platform, and the search entriy retrieval is done on April 22, 2020.

3.3.1 Survey Papers

Among the 302 manuscripts before being filtered-down to the healthcare domain,

about 8%, i.e., 24, are review papers. This is a relatively high ratio, which is not

unexpected, and it shows that multimodality and deep learning are a common concern

in the recent review perspective in multiple domains.

As Figure 3.1 shows, these review studies come from various healthcare and biology

domains, RGB-D and land-use image analysis, human activity recognition, emotion

and facial recognition, and finally, mobile applications. Nevertheless, more than half

of these studies belong to the healthcare and biological data. This can be interpreted

as the significance of the multimodality and deep learning topic and concern in the
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recent healthcare publications, compared to the other areas.

The healthcare survey papers mainly review recent methods or deep learning ap-

proaches in specific health or medical domains. This can be disease-oriented [62–67],

task-oriented [56, 68], or technology-oriented [55, 69]. While these papers are not

specifically concern about multimodality, this is an inherent aspect of the data in

this domain. Therefore most of them have either a short or a more extensive dis-

cussion on this perspective. Another group are modality oriented and discussing re-

lated approaches for processing one modality or coordination of multiple data modal-

ities [55–58]. Finally, some surveys are devoted to deep learning [60] and multi-

modal [61] aspects of biological and medical data in general.

In addition to the domain-specific publications, two survey papers are dedicated

to a more general perspective of multimodality in deep learning. The first one, pub-

lished in 2017, overviews the popular datasets and applications in this domain [15].

These datasets and tasks are still prevalent in the application papers we review in

Section 3.3.2. They further discussed the deep learning-based method and compared

them with the conventional machine learning approaches [15].

The second one, [14], which is published more recently, discusses the representa-

tion aspect more in-depth. It classifies the current deep multimodal representation

into three central frameworks of joint representation, coordinated representation, and

encoder-decoder. They put recent multimodal approaches in this framework and an-

alyze the advantage and disadvantages of each of them [14].

A relevant but broader study in this area [30], suggests a taxonomy for the topic

of multimodal machine learning, which is consistent with the framework in prior

surveys [14, 15]. The study puts the core challenges of this area into five folds of

representation, translation, alignment, fusion, and co-learning. They discuss the con-

ceptual frameworks and the conventional and deep learning methods for each of these

challenges.
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These reviews refer to the most significant challenges and approaches in the multi-

modal deep learning literature. However, the subject of feature semantic, dimension,

and abstraction heterogeneity is not sufficiently discussed in any of them.

3.3.2 Application Papers: Modalities, Representation Levels, and Tasks

The level of abstraction has an inverse relationship with dimensionality. The dimen-

sionality is a more straight-forward measure to quickly categorize the representation.

While they don’t provide a precise equivalent description of the abstraction-level,

based on one we already discussed in the previous chapter - i.e., Section 2.3, dimen-

sionality can be a quick and reasonable approximation for comparing representation

abstraction across various researches.

As Figure 3.1 demonstrates, a large number of papers in the multimodal deep

learning cohort are healthcare-related. We review these papers based on their data

modalities and representative features, the type of machine learning task, and their

general approaches.

The data modalities used in these manuscripts are classified in Table 3.1 based on

the type of information they provide and the representation dimensionality. Each

modality of data has various semantic aspects. However, the data representation

is meant to reflect the most relevant semantic elements of the data to meet the

computational and data availability constraints.

With the same approach, we also categorized the application papers according to

their machine learning tasks. Table 3.2, demonstrates the task-oriented categorization

of the application papers. The majority of publications analyzed their problem in the

form of a classification task.

3.3.3 Application and Method Papers: Learning and Integration Methods

To analyze the methodology, we define a framework and will extend it in the next

chapters with two hypothetical modalities; one has a primary role in the prediction
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Table 3.1: The feature modalities used in the cohort are categorized based on the
representation dimension and their temporal character for the defined task in the
corresponding manuscript. The dimensionality of the representation compare to the
raw-data demonstrates the abstraction-level of the corresponding representation.

Contextual Cross-Sectional Temporal

0D Demographics [70] Clinical [17, 19,71] Biomarkers [20]
Patient Meta-Data [21,72] Hand-Crafted Handwriting

Features [73]

1D

Social Features [74] Surface Linguistic Features [74] Text [70,74]
Gene Expression [19,71,75] Hand-Crafted Image-Features Hand-Crafted Image-Features
Copy Number Alteration [19] [23,76–79] [80,81]
MicroRNA Expression [71] EEG, fNIRS [82] EEG [83], sEMG [84]

Finger Joints Angles [84]
Motion Sensors [85]
Audio [70,73]
Gait Signal [73]

2D Image Slice [86–91] Video [70,85]
[18,92–99]
2D Image [21,72,100] 2D Moving Images [101]
2D Image Patches [22]
Depth Image [92]

3D 3D Image [71,102–105] 3D Image Transitions [106,107]
[17,24,108–111]
3D image patches [112–114]

task, which we call itmodality A. This modality is sufficient for a reasonable prediction

performance without extra information.

In this framework, we assume that we have an additional modality of information

or another representation of the same modality that provides supplementary infor-

mation to improve the original performance of modality A. This auxiliary modality

is called, modality B, in this framework. The use of low and high dimension in this

framework is relative. The homogeneously low-dimension features are the scalar or

1D vectors without neighborhood relation between the features closer together. The

low/high heterogeneous features are categorized based on the relative differences of

the dimension scale - i.e., scalar, 1D, 2D, etc., of the two modalities.

As we discussed in Section 3.2, to get a wider understanding of the common meth-

ods, we include the manuscripts from other areas if their methods are relevant to

the framework we defined here. We also consider a few other manuscripts that were
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Table 3.2: Tasks-based categorization of the application papers.

Category Task Papers

Classification

Scalar Classification [19–21,82,90,108,115,116]
[22–24,72,77,78,83,95,106,113]
[74,79,80,84,85,99,109,112]

Retrieval & Similarity [75,92,100]
Segmentation [86,88,89,91,102,104]

[87,93,105,110,111,117]
[81,96–98,107,114]

Regression

Scalar Regression [20,70,76]
Generation [18,73,108,118]
Registration [89,94,101]
Prognosis & Survival Analysis [17,71,103]
Retrieval & Similarity [104]

relevant and did not appear in our systematic search. These typically were appeared

in different forms of search-terms - e.g., "multi modal" instead of "multimodal" or

before filtration based on year/citation.

Table 3.3 demonstrates examples of healthcare tasks, which fit our framework of

a primary and auxiliary modality for a regression task. We further studied the ap-

proaches in each of these integration groups. Table 3.4, demonstrates some archi-

tectures that were used in these applications, and Table 3.5 shows the integration

method that are popular in each integration group.

Table 3.3: Examples of applications, which fits the defined framework with modal
A as the primary source of information and modal B as the auxiliary modality to
provide supplementary information.

Modal B (auxiliary)
Low Dimension High Dimension

Modal A
(primary)

Low Dimension AD [20,23,77], Brain Age [76] Survival Prediction [17]
High Dimension Skin [21,72] AD [106], Seg [17,86]

3.4 Summary and Discussions

This review initially wanted to answer the two questions mentioned in Section 3.1.

We demonstrated the results in Section 3.3. To summarize that, we review the two

primary questions:
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Table 3.4: Literature-based learning models for the framework with modal A as the
primary source of information and modal B as the auxiliary modality to provide
supplementary information.

Modal B (auxiliary)
Low Dimension High Dimension

Modal A
(primary)

Recurrent Neural Network (RNN) [20] Random Forrest
Low Dimension Deep Polynomial Network (DPN) [23] Regression [17]

Restricted Boltzmann Machine (RBM) [77]
Deep Neural Net (DNN) [76]

High Dimension ConvNet [21,72] ConvNet [86,107],
W-Net [110],
DenseNet [119]

Table 3.5: Literature-based integration methods for the framework with modal A as
the primary source of information and modal B as the auxiliary modality to provide
supplementary information.

Modal B (auxiliary)
Low Dimension High Dimension

Modal A
(primary)

Bottom-Up: Early/Late [20,23,76], Late Fusion [17]
Low Dimension & Weighted Fusion [77]

Top-Down: Loss-based [21,120] Bottom-Up:
Fusion Methods including:

Bottom-Up: Early/Late [72,116] Early/Mid [86,107,119],
Late [17,86,107,119]

High Dimension Decision [86,107,110,121]

Top-Down:
Attention-based [122],
Adversary Method [18,94]

1. What are the common modalities and representation-levels in multimodal health-

care applications? Table 3.1 demonstrates the modality and dimensionality of

the representations. We discussed that a dimensionality is a quick form of

showing the abstraction level in our study.

2. What are the common modality integration methods in multimodal applications

in the healthcare domain? Tables 3.4 and 3.5, demonstrate the architecture and

integrated approaches in our framework, respectively. It is most common for

the primary modality to be represented in high-dimension than the auxiliary.
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Also, the diversity of studies and methods for the homogeneous features are

more than heterogeneous ones.

Besides answering the primary questions, the review gave a better understanding of

the healthcare domain, and its limitations and the importance of image modality, and

particular characteristics of the medical image compare to regular images. We discuss

about these topics in the Sections 3.4.1 and 3.4.2. We finally discuss a paragraph

about the specific characteristic of regression tasks, in which we are more concentrated

in this dissertation.

3.4.1 Healthcare domain

These application papers in the healthcare domain share some common themes and

challenges that make them more relevant to this research area.

First and foremost, the features directly or indirectly hold information about the

human body. The targets are better understanding human health aspects and assist-

ing in a better prevention/treatment. Therefore, these application papers are related

to a real-life problem, as opposed to machine learning hypothetical problems.

Secondly, the questions are complex and have multiple aspects, considerations, and

constraints. Therefore, one modality or a few features are not sufficient to represent

the case and learn the answers.

Thirdly, typical data sets are either small or very noisy as the data collection is a

recent tendency in this domain. Furthermore, due to the privacy considerations and

data-acquisition challenges, they are usually collected locally, which creates a natural

bias in the data and label distribution.

Finally, unlike the scarcity of the data resource, there is a rich source of domain

knowledge in this area, which is not fully reflected in the data. This makes the

data-driven approaches hard to compete with the more traditional ones and hardly

acceptable for the domain experts.
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3.4.2 Medical image

Typically, features of interests are different in medical images than the RGB images

of an object detection task. Firstly, concepts and objects of interest are more limited

compare to regular object recognition.

Secondly, the geometrical features are much more important than the colors and

intensities. Sometimes color and intensities are secondary tools for making the geom-

etry more understandable for clinicians.

Thirdly, the required granularity of the image is completely task-dependent. This

means that for one task such as Alzheimer’s prediction, a coarse grain feature like

region volume size is much more important than the details of regional changes, while

in another task like brain vein segmentation, a much finer granularity is desirable.

Fourthly, granularity and importance vary across different regions. To some level,

this happens in regular images, but it is more consistent for a particular context.

In a medical image, the physician’s intention, patient status, and other information

outside of the image context have a central role in guiding the granularity level.

Finally and more importantly, unlike the typical image expected to be invariant

with respect to orientation or scale change, the medical image is absolutely sensitive

to these settings. By changing the scale or orientation, we may lose all the information

we need from that image.

This is partly because the semantic origin of the geometrical measures depends on

the purpose of imaging, and it is not the image origin. For example, in radiation

treatment planning, the distance and measures matter with respect to the cancer

area. Also, it is also constraint by the radiation beam source and bed placement.

This last characteristic mainly makes it hard to transfer the learned model between-

patient and between-organizations. This is less problematic for the tasks involving

entirely local features such as segmentation, where deep learning could achieve good

performance (look at publications mentioned in Table 3.2). However, these models
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do not perform well for tasks that require higher-level geometrical features such as

distances or volume.

3.4.3 Regression Task

The primary difference between regression and a classification task is in the target

or dependent variable. There are a finite number of values for the prediction and an

infinite number of possible separators to be captured by the classifier in a classification

task. On the other hand, a regression task has an infinite number of possibilities for

the target value.

An ideal regression model predicts a value that is as close to the actual target as

possible. Therefore, a regression model needs to capture the relationship between

the independent and the target variable more precisely than a classification model.

In our review, we observed that the major portion of the multimodal deep learning

models in healthcare and medical imaging [27, 123] are devoted to the classification

tasks. This left a research gap for finer-grained target functions that have a regression

nature.

3.5 Review Limitation

The systematic review in this section is definitely not exhaustive and could have

missed a lot of important works in this domain. Some of these limitations are:

1. The web of science platform gives a great set of tools for a systematic review.

However, the publications and indexes are not as up-to-date as other search

engines such as google scholar. We reviewed many other manuscripts based on

the google scholar results for researching this dissertation. However, the orga-

nized and easy to follow toolset in web-of-science makes it more reliable for this

section’s purpose. Still, not including the actual extensive set of publications in

this area is part of the mentioned results’ limitations.

2. The keyword search could be expanded. We searched multiple versions of the
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keyword search, such as multi-modal, deep-learning, or other combinations of

these phrases. However, we got the most relevant list of results using the current

phrase "multimodal deep learning." While we tried to include the significantly

relevant papers that did not appear in our search, we missed so many important

works in this domain.

3. The concept of multimodality has various terminology in different domains.

Therefore, the manuscripts that used this concept without mentioning the term

is not included in this review. For example, multiview is a subclass of mul-

timodal representation. While we reviewed some of the survey paper in this

regard, the review process was not on those works.

4. The classic machine learning did also have a vast resource of multimodal-related

works. Since we limited the search to the deep learning and recent approaches,

we have not those works in our results.

5. We limited the scope to the healthcare domain for the application paper. We

tried to briefly overview the other ones and keep them as a method paper if

their approach is relevant. However, we still could miss some good works in this

process.



CHAPTER 4: Feature Integration Framework

4.1 Learning models

In this section, we explain the two algorithms, which we used in designing the

domain-driven learning pipeline. We describe model-tree, which is a form of decision-

tree for a regression task and convolution neural network, which is a form of deep

learning, which learns local filter-based patterns.

4.1.1 Model Tree

A decision tree is a simple data structure for categorizing the data into multi-

ple branches. The discrete and nonlinear nature of this data structure makes it an

important building block for several classic and modern learning algorithms.

In machine learning, a decision-tree is made in a top-down process of dividing the

data into more homogeneous subsets with respect to the target. The homogeneity

and heterogeneity are measured by multiple factors in various types of decision trees.

Among those measuring heterogeneity by entropy for classification and standard de-

viation or variance for regression targets are the most popular ones.

In classification, the mutual information of feature A and target T is measured

by the entropy decrements after branching on values of A. Equation 4.1 shows this

formulation, where EA is the expected information gain for feature A with branches ai,

I(T,A) is the mutual information between target and feature A, H(T ) is the entropy

of target before the branching, and H(T |A) is the weighted sum of the branches’

entropy.

EA(IG(T, ai)) = I(T,A) = H(T )−H(T |A) (4.1)
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The concept of entropy is replaced by a standard deviation or variance when the

target function is continuous. Equation 4.2 demonstrates a typical formulation for

a regression task using Standard Deviation Reduction (SDR) as a measure of homo-

geneity increase. The tree is created recursively, and a mean of the values in leaves

are considered as the prediction of that branch. This is a simple form of regression

tree, which is coded in the CART program [124].

SD(T |ai) =

√∑
(t− t)2
n

SD(T |A) =
∑
ai∈A

P (ai)SD(T |ai) =
∑
ai∈A

|ai|
|T |

SD(T |ai)

SDR(T,A) = SD(T )− SD(T |A)

(4.2)

A model-tree or m5 is a form of regression tree with an important improvement.

In each leaf node, instead of value -i.e., the mean of data in that node, there is a

linear model [124]. Despite the simplicity and limitation of the decision trees, they

are very interpretable and easy to validate. The model trees are much more powerful

for having the linear models in the tree leaves.

4.1.2 Convolution Neural Network

Convolution neural networks are one of the most successful machine learning meth-

ods, especially in the computer vision area. The architecture is inspired by the human

visual system, particularly from the following two perspectives:

• The hierarchical architecture of perception and information processing.

• The ability to capture local patterns, which is similar to the receptive fields in

the visual system.

If we compare a convolution neural network to a complete search with respect to

the input features, there are multiple levels of regularization, which limits the search
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area. Each of these regularization methods is added to the architecture at a different

time and made it more efficient for some applications:

1. The hierarchical structure, which limits the features’ connection to a tree-shape

form (similar to the decision tree).

2. The convolution weights, which changes the dependency of learned features

from input size (ex. in an image each pixel one feature) to the smaller kernel

size (ex. using k number of 3x3 kernels to convert any size of the input image

into k features of the same or smaller size).

3. Pooling block (ex.max-pooling), which gradually reduces the dimension and

resolution of the input, and keeps the most significant information.

4. Drop-out, which randomly turns on and off the connection to make the archi-

tecture robust to the small changes.

These regularization methods, along with other gradual refinements such as back-

propagation, ReLU activation function, stochastic gradient-based optimizations, and

normalization methods, made this architecture an important building block of many

computer vision applications. One of the important features for us is its ability

and performance in the extraction of local and spatial patterns. The Equation 4.3

demonstrates the forward path of a convolution neural network for on layer l with

kernels k of initial weight W l
k and bias blk.

hlk = f(W l
k ∗ hl−1 + blk) (4.3)

4.2 Problem Framework

We define a hypothetical framework with two heterogeneous modalities. The as-

sumption is that one modality provides the main information, and the other one
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holds high-level auxiliary information. This is similar to some of the applications we

mentioned in the previous chapter [20, 21,23,72].

We call the primary modality A and the auxiliary one B. We also define a target

regression curve R, which is a complex continuous curve for a healthcare regression

task with a small data size.

4.2.1 Primary Modality

The primary modality, called A, has more than zero-dimension, i.e., it is not a

scalar. This can be a one-dimensional vector or a two-dimensional matrix or higher.

As discussed in Section 3.4, image is one of the important high-dimensional modalities

in multimodal healthcare applications, so for simplicity in discussions, we consider

this modality as an image type, but we provide examples from other modalities, as

well.

A = (a0, a1, a2, ...) (4.4)

4.2.2 Auxiliary Modality

The second modality, called B, consists of one or multiple zero-dimension or scalar

features. These features can be extracted from the same origin as A, or extracted

from another high-dimensional modality or a piece of low-dimensional contextual

information.

B = (b0, b1, b2, ...) (4.5)

4.2.3 Target Function

We formulate the regression tasks as in Equation 4.7, where R̂ is the dependent

variable of known variables in modalities A and B. The actual curve is a hypothetical

function f in Equation 4.6, which depends on features of modalities A, B, and un-
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known Γ with small residual ε. An ideal regression model could minimize the distance

of modeled R̂ and actual values of R, which is called L for loss in Equation 4.8.

R = f(A,B,Γ) + ε = (r0, r1, r2, ...) (4.6)

R̂ = f̂(A,B) (4.7)

Loss(R, R̂) = dist(R, R̂) (4.8)

4.2.4 Framework Application

We reviewed the data types, applications, and approaches in multimodal health-

care applications in Chapter 3. Table 4.1 briefly mentions some of the applications,

which fits the framework we defined in this section, and the corresponding represen-

tation extraction method. Particularly, we mention the spatial and temporal feature

extraction method for primary modality.

Table 4.1: This table demonstrates some examples of the tasks in the literature,
which fits the defined framework with corresponding modalities and the representation
learning methods in those papers. We observe that the applications with smaller
datasets are more careful about the features they use. Even using CNN is a tool for
a more careful secondary analysis [17].

Task Modal A Modal B A-Spat-Rep A-Temp-Rep Data-scale
Depression Scale Video Demog. CNN RNN M (671)

Pred. [125]
AD Prog. Pred. [20] Med Image Demog., Handcrafted RNN M (1677)

CogTest
Survival Pred. [17] Med Image Demog. Handcrafted + - S (285)

CNN
Prognosis Pred. [71] Med Image Clinic. CNN - L (11000)

Gene Exp. DNN
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Figure 4.1: Proposed pipeline to used domain-knowledge for designing the multimodal
information integration for a regression task.

4.3 Proposed Pipeline: Domain-driven Heterogeneous Feature Integration

There are different ways that the domain knowledge provides information to a ma-

chine learning task besides providing a resource of labeled data. A machine learning

method, which is enriched by this prior knowledge, is referred to by an informed ma-

chine learning term [8]. To incorporate domain knowledge into the machine learning

model, we need to answer three main questions [8,126]: (1) what is a good source for

extracting the knowledge? (2) how to represent the knowledge? (3) how to integrate

the knowledge with the learned model? We use the same set of questions to design

a domain-driven multimodal machine learning model. Figure 4.1, demonstrate the

domain-driven pipeline we designed.

The main building blocks of the proposed pipeline are listed below:

1. Primary Modality Identification: Selecting the primary modality/ies in health-

care applications needs a combination of domain-driven and data-driven pa-

rameters. The primary modality is the modality, which has both high and

meaningful correlation with the target. Other factors selecting the modality

is the quality of available data and the missing ratio. In our framework, the
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primary modality has also another characteristics, which is the importance of

local features.

(a) Data-driven: relevance (correlation, co-variation), quality(missing-ratio).

(b) Knowledge-driven: relevance (meaningfulness,causation analysis), and qual-

ity (precision of data acquisition).

2. Primary Modality Representation: We propose a domain-drive representation

leverage along with convolution neural network for primary modality represen-

tation.

(a) Data-driven: Convolutional Neural Network (Section 4.1.2.)

(b) Knowledge-driven: domain-driven representation leverage (Section 4.3.2.)

3. Auxiliary Modality Identification:

(a) Data-driven: relevance (correlation, co-variation), extra information (stan-

dard deviation reduction), quality(missing-ratio).

(b) Knowledge-driven: relevance (meaningfulness,causation analysis), quality

(precision of data acquisition).

4. Auxiliary Modality Representation: Depends on the availability of data, this

modality can be also represented in different levels. In our framework, we

assume that the highest level of abstraction (engineered features) provides suf-

ficient information.

(a) Data-driven: performance increase with different integration methods.

(b) Knowledge-driven: the nature of information it provides about target func-

tion.

A common method in the literature is using various levels of fusion for combining

the information from multiple modalities. We explain these methods in the form of a
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fusion framework in Section 4.3.1. We add two further approaches using a bottom-up

and top-down knowledge incorporation methods in the Sections 4.3.2 and 4.3.3.

4.3.1 Literature-based Method: A Fusion Framework

As we reviewed in Section 3, one of the most common approaches for information

integration in multimodal applications is using fusion approaches. These approaches

are usually based on blindly integrating all the features, including low and high levels,

and let the network learn the relation between the features together and with the

target. These methods are typically used with little or no discussion on the reasoning

for the chosen level of representation and integration [17,106].

A few works use multiple levels of fusion to find the best performance [86,116]. We

define a fusion framework as a systematic study of these explorations. Figure 4.2,

demonstrates this literature-based framework, and Table 4.2 refers to some of the

methods and corresponding applications in the literature.

Table 4.2: Fusion method and the corresponding applications according to the liter-
ature.

Method Fusion level Literature Applications
Feature level Early Representations have similar size,

granularity & spatial semantic [86,109,127]
[104,119,128]

Deep learning feature Mid Integration of heterogeneous high-dim
modalities with high-level semantic
correlation.

Classifier Late The most popular type of fusion for
heterogeneous data, specially when the
dimensionalities are also different [31,129].
[99, 105,121,130]

Decision Score Modalities are completely uncorrelated
or the same -i.e. multi-view/slicing [131]
[105,121].

Regularization Loss Fusion Combining global & local information [37,120]
Adversarial Models Modalities are complementary and

correlated [18,94].

A more automated approach is studied in some AutoML frameworks such as [132,
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(a) Early fusion - Channel Concatenation

(b) Middle fusion - Channel Concatenation

(c) Late fusion architecture

Figure 4.2: Convolutional neural network based heterogeneous feature integration
framework. In this framework a convolutional neural network extracts feature from
primary (high-dim) modality and a one layer fully-connected network maps the hand-
crafted features of the auxiliary modalities to appropriate dimension for that fusion
level.

133]. These methods are comprehensive but more applicable for a generic application

with a large set of data. In the majority of healthcare applications, understanding

the causation is equally important as prediction accuracy. Additionally, the available

size of data in these applications is typically on a small or medium scale.

4.3.2 Bottom-Up: Informed Representation

In Section 3.4, we discussed the complexities attached to healthcare imaging. We

particularly mentioned that in a medical image, the intensity variation is not always

the actual features that physicians need - e.g., in radiation therapy [10, 134, 135].
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In fact, the medical image is a medium that is humanly understandable; therefore,

information is transformed into a regular image to make it more convenient for the

physician to understand that.

A physician interprets the image in the context of the other information s/he has,

such as the scale, imaging setting, or the background information of the patient’s

disease. For a convolution neural network with a small set of data, it is highly possible

to learn some irrelevant information and still have a good performance for a train or

similar test cases [123]. However, this cannot be generalized to future cases without

knowing the decision basis. Few approaches that are mentioned in the literature are:

1. Interpretation Models: These methods generally debug the learned networks

to understand the important area/features for a particular decision [136–138].

This includes the use of packages such as LIME [139], Shapely [140]. The

interpretation models would help physicians and experts validate whether the

learned feature makes sense according to the domain knowledge or not [141].

2. Transfer Learning: Another approach for incorporating domain knowledge is

transferring that knowledge from another domain. This is useful when we know

the important features are common between a task τs with sufficient source of

data and a target task τt with a small dataset - e.g., most of the healthcare

applications. This is formulated as a function fτ to learn task τt in domain

Dt, to transfer latent knowledge from task τs and domain Ds, where Dt 6=

Ds and/or τt 6= τs. The assumption is that the size of Ds is much larger

than Dt - i.e. Ns >> Nt [142]. There is an extensive literature of transfer

learning methods in classic machine learning [143] and deep learning [142] area.

Using pre-trained models such as VGG16 [144] to transfer image filters to tasks

like segmentation [145] is an example of this knowledge incorporation method.

We use this method in vulnerable patient classification tasks for the radiation

treatment planning task, which is explained in Section 5.4.2.
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3. Data Augmentation: If instead of the important feature, the domain knowl-

edge provides information about unimportant features, some forms of data aug-

mentation could be helpful to improve the generalizability of the data-driven

learning method [146]. There is a large literature on augmentation approaches,

particularly in the image analysis domain [146–148] including various geomet-

ric methods and adversarial ones. This is reported to be an effective method,

particularly in some deep learning image classification [148].

4. View Selection: In healthcare applications, it is common to select one slice

or a selected number of slices as a representative for the information provided

by the whole modalities [86, 116, 149, 150]. Despite the loss of information,

the advantage of this approach is that it reduces the modality dimension in

a straightforward, clear and understandable way. Depending on the task, the

remaining information might also be sufficient.

These methods are effective for many tasks in regular and medical image processing.

However, for more complex applications like disease progression, survival analysis [17],

radiation treatment planning [134], or brain network activity analysis [118] these

methods are not sufficient due to granularity of target function and the geometrical

domain [134]. For example, in the case of Alzheimer’s disease, the volume change of

various regions across time is the bio-marker of interest or for the brain-network [151].

In the absence of sufficient data sources for these complex problems, more domain-

dependent representation is needed. We argue that a form of feature engineering or

feature expansion is helpful for these contexts. This can be a granularity increase

or a form of feature disentanglement. An example iterative approach is shown in

Figure 4.3. Another approach is to use the appropriate granularity level based on

domain knowledge. We use this type of representation leverage approach for the

applications of radiation treatment planning and disease progression prediction in

Chapters 5 and 6.
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Figure 4.3: An iterative method for representation granularity leverage; for this pro-
cess, H1 is a hypothesis that with this representation and the available size of data,
the convolution neural network can extract relevant features. The null hypothesis
assumes that this representation will increase the validation accuracy compare to the
coarser-grain representation. While this is not the case, we keep expanding the repre-
sentation toward finer granularity. While this is a more systematic approach, in the
following chapter, we did not actually go through this process.

4.3.3 Top-Down: Tree Structure Convolution Neural Network

To take advantage of global and local information, we define a tree structure CNN

by combining the regression tree model and CNN. The idea is to use the macro-

level features for dividing the regression function into its simpler components or

sub-modalities. Figure 4.4 demonstrates two suggested approaches for tree-structure

CNN. This architecture can be further refined using other prior probabilities, which

is mentioned in the literature [37, 152,153].

The simplest form of the architecture is dividing the complete network based on

the value/s of modality B in a branching-block. This can be dividing only for feature

extraction or the whole pipeline. Figures 4.4b and 4.4a, these models can be observed.

The branching block in the Figure 4.4, is where we divide the sample cases into

multiple branches according to their values in one or multiple features in modality

B. Similar to the model tree, we mentioned in Section 4.1.1. This block increases

the sub-branches’ homogeneity. For feature fi, we select a break point bi in a way

that it minimizes the sum of branches’ standard deviation. The simplest form of this

structure is simply selecting one feature from modality B and dividing the data into
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two branches. This can be extended to more than two branches or a more than one

feature in modality B.

4.4 Discussion

The main intention of the top-down architecture is to use the knowledge of the

domain to distribute the learning process into more homogeneous sets. The main

advantages of the model are:

1. Using global level features and local ones in different levels of information pro-

cessing.

2. Consideration of feature correlation and overlap.

3. The learning model for each branch would be based on more balanced data.

4. A more interpretable performance and outcome based on the branching features

and approach.

This architecture has, of course, some drawbacks, which makes its applications

limited to some trade-offs:

1. The most important drawback is decreasing the amount of data in a situation

that we already have a small set. The situation is even worse because of the

parameter-sharing character of the convolution nets. In the regular form, the

data of each category would have contributed to the learning parameters of all

levels. If the data is divided into two equal categories, the number of data for

the same size of the network is now half of the previous part.

2. Since this problem happens in the networks of all branches, it is multiplied by

the number of branches.

The above drawbacks show that for this architecture to be beneficial, the added

homogeneity as a result of branching should be very high to worth this. This can be
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the case for smaller dimensions of modality A, with a strong feature from the domain.

However, the extend-ability of the approach for a higher dimension should be further

researched. The architecture, of course, is a very base form and can be refined with

so many tools in the literature. We explore some of these refinements in Chapter 6,

and discussed more suggestions that can be explored.

As we demonstrate in Chapter 3, demographic and genetic information and some

clinical factors are among the frequent high-level, zero-dimensional features in health-

care. In a disease progression, for example, clinical factors intuitively tell the physi-

cian the stage of diseases, and the genetic or demographic would tell the pattern or

intensity of the progression. Depend on the domain knowledge, if the effect is adding

some intensity to the model, the factors can be used as a loss/regularizer [120] or

prior probability [37,152,153]. However, when the effect causes different curve shapes

or when the data of one category has a fundamentally different quality with the data

of other categories, the prior information in the previous forms of the literature can

be misleading for a regression task.

4.5 Summary

In this chapter, we proposed a framework for integrating information from hetero-

geneous modalities. The main concentration was extracting the information from the

appropriate semantic level of abstraction for each modality. This semantic abstrac-

tion is defined by domain knowledge. We reviewed the current approaches in the

literature and provided two other novel perspectives to this framework. In the follow-

ing chapters, we will discuss the application of the framework in radiation treatment

planning and Alzheimer’s Disease progression in more detail in the following chap-

ters. We introduce a distance-based representation on Chapter 5 and a region-based

representation on Chapter 6. We evaluate the whole pipeline for disease progression

prediction on Chapter 6.

.
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(a) Conv-Net architecture

(b) Full-Net-architecture

Figure 4.4: Tree-Structure Convolutional Neural Network architectures. In this ar-
chitecture, convolutional neural network is mainly predicting the regression function
through information in modality A, and modality B is decomposing the curve into
sub-groups of samples. In Conv-Net (top), the decomposition is on dimension re-
duction, while in Full-Net (bottom) the whole pipeline is decomposed into subsets of
data.



CHAPTER 5: Case Study I: Informed Representation in Radiation Treatment

Planning

The application of concentration for this chapter is knowledge-based treatment

planning (KBP) for radiation therapy 1. An ideal machine learning framework would

be trained with the features of the previous (specific type of) cancer patients as well as

their high-quality treatment plans, and can accurately predict a high-quality plan (or

some information about that) for the future patients (according to their features) [29].

Despite the complexity of the task and various influential variables [12], the available

high-quality data source is typically sparse. Therefore, an important part of the

previous researches was the extraction of few (high-level) features - e.g., [10]) that can

predict some information about the outcome (high-quality plan) [29]. Nonetheless,

these methods cannot capture low-level and local features (for example, in a CT-

image) properly. Therefore, this study adds to the domain knowledge by addressing

the abstraction-level (or locality) of various features and providing a systematic means

for selecting an appropriate level.

5.1 Background and Context of The Application

Radiation therapy is one of the treatment or control approaches for most types of

cancer. The goal of this treatment approach is to destroy the cancerous tissues while

saving the healthy ones. Intensity-modulated radiation therapy (IMRT) is one of the

recent and flexible radiation therapy technology. However, this flexibility made the

optimization problem complex from all mathematics, physics, and biology aspects. In

other words, solving the current mathematical equations and optimization does not
1The content of this chapter is published in the proceeding of the 2019 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM) [134].
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have a perfect answer.

This means that the ideal solution considering the physical and biological con-

straints cannot be prescribed. Therefore, there are various trade-offs involved in the

process, making the process time-consuming with no best for all solution. Besides

normal anatomical features that are traditionally considered in the mathematical for-

mulation of this problem, there are many more parameters involved in the manual

trade-off process. Besides, the complication of low-level cellular and molecular reac-

tions left parts of the problem unknown, even from physical and biological aspects.

This study is not focusing on unknown features. Instead, it focuses on transferring

the manual trade-off process into a more automated and systematic approach. It is

meant to take one step toward facilitating the knowledge-based strategy for treat-

ment planning. The intention of knowledge-based planning is efficiency and raise the

overall quality across planners and cancer treatment centers with different levels of

experience by learning from previous patients and their high-quality plans. Many

studies were done in this category using a case-based and statistical, and machine

learning approach. Following the recent achievements of deep learning, we are mostly

focusing on exploring deep learning perspectives for addressing the learning tasks.

5.2 Background

Radiation therapy is one of the most effective techniques in prostate cancer treat-

ment. It works by destroying or controlling the cancerous area. One of the main

complications associated with the treatment process evolves around the intensity and

the direction of the dose is applied. An insufficient dose in the cancer area fails to

demolish the cancerous cells properly and increases the risk of tumor regrowth. Con-

versely, high dose radiation can damage the surrounding healthy organs or increase

the risk of secondary cancers. Despite the planner team’s effort in restraining the

radiation to the target area, some patients are more vulnerable to receive excessive

doses than others due to the patient anatomy and cancer geometry. Early assessment
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of the best achievable dose distribution’s vulnerability and prediction can guide the

physician and planner team to a better treatment strategy.

Quantitative analysis of normal tissue vulnerability and toxicity can be measured

by the traditional Normal Tissue Complication Probability (NTCP) model [154,155].

This model uses dosimetric features, such as dose-volume histogram (DVH), of the

proposed plan to evaluate the probability of dose-induced complications in noncancer-

ous tissue. Later updates from Quantitative Analysis of Normal Tissue Effects in the

Clinic (QUANTEC) group suggest machine learning as the future pathway to develop

more accurate predictive models [12,156].

The conventional predictive models [10] utilize some hand-crafted anatomical fea-

tures that can explain a significant amount of variations in inter-patient organ-at-risks

(OAR)’s DVH after planning.

Recent studies [135, 157–159] claim better performance employing deep learning

potentials to capture the features directly from 3D CT scan images. Due to the

limited resources for training these models, most of the studies extract the contour

information -i.e., segments, from the image before the learning process, and represent

the patient anatomy using 2D slices of the contoured image. While this representation

decreases the complexity of the learning task, it loses some significant information,

such as the organ’s three-dimensional position and orientation with respect to the

cancer area. While augmentation methods in deep learning training can accommodate

some variations, they may not be sufficient to handle patient positioning variations

in clinical practices.

The distance-based representation we suggest in this study emphasizes the 3D dis-

tance of the OAR from planning target volume (PTV). This representation has a

major advantage over existing approaches in that it maintains the volumetric infor-

mation despite slicing the 3D images into 2Ds.

This chapter’s experiments are designed to assess the potential of this distance-
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based deep learning framework for knowledge-based dose distribution prediction.

Comparing the results from the distance-based deep learning representation, intro-

duced in this study, with the contour-based [157] and hand-crafted features [10] in

prior studies demonstrate comparable or higher performance.

The motive to substitute the image and contour-based representations with the

distance one is its robustness to patient positioning. Hence, it increases the gener-

alization potentials of knowledge-based models in transferring knowledge from one

patient or institution to another.

Technical Significance: This work assesses distance-based representation for deep

learning frameworks to predict dose distribution in radiation treatment planning.

This novel use of distance representation combines prior knowledge of the radiation

treatment domain with deep learning capabilities. Having limited data in deep learn-

ing is a major threat to the generalization of the learned models. Our work is in

line with the argument that the prior and domain knowledge is a proper means to

mitigate the generalizability challenge [160] specifically in the absence of sufficient

resources of labeled data.

Clinical Relevance: Radiation therapy is a widely used and effective technology for

cancer treatment. However, radiation treatment planning is currently a complex

iterative process manually carried out by a team of physicians and planners. One of

the reasons is that the clinically desirable dose distribution may not be achievable

by the treatment system due to variations in patients’ anatomical, tumor geometries,

and other clinical factors. Therefore, it is important to inform physicians what is

achievable for an individual or, at least, which patient is likely to fail the clinical

criteria. This study addresses these questions by providing physicians with an early

estimation of their vulnerability due to the anatomical limitation (Task 1). The

method then provides an early estimation of the achievable dose distribution based

on the organ features and knowledge from previous similar patients (Task 2).
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5.3 Dataset: Distance-based Representation

5.3.1 Representation Motivation

An organ’s distance to the target volume is one of the key anatomical constraints

during treatment planning. The short distance of a healthy organ from a cancerous

area makes the organ vulnerable to receive an excessive dose. Prior studies [161,

162] introduced metrics, such as Distance-to-Target Histogram (DTH) and Overlap

Volume Histogram (OVH), to describe and analyze this factor quantitatively. Later,

Yuan et al. demonstrated the significant contribution of the following measures in

predicting DVH between-patients variability [10]:

• The median distance between Organ-at-Risk (OAR) and planning target volume

(PTV)

• The portion of OAR volume within an OAR specific distance range

• The fraction of OAR volume that overlaps with PTV

• The portion of OAR volume outside the primary treatment field

Deep learning architectures are strong in capturing local shape features. This made

it possible for the researchers to study the capability of local features in explaining

further inter-patient dose distribution variations [135,157–159]. Inspired by previous

works [10, 161, 162], we propose the use of 3D distance matrices, extracted from

contoured 3D CT scan images, as input representation for deep learning.

5.3.2 Data Extraction

The dataset was extracted from 216 prostate cancer patients who received radiation

treatment. We have chosen prostate cancer for this study because of the closeness

of the bladder and rectum as OARs to the prostate, which is the cancerous area.

Patients may suffer if they receive an uncontrolled amount of radiation dose in these
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two organs. If we can determine the dose that these two structures will receive based

on the geometry, proper measures can be taken during the treatment planning.

The raw data contains 3D structure contour values, 3D dose matrices, and the

prescription doses. The raw data were further processed to meet the need for this

study. First, the 3D dose matrices for bladder and rectum are created using the

patients’ contour information and planned dose matrices. The dose outside these two

structures is removed. Then cumulative DVHs are calculated on dose bins increases

by 50cGy interval. It demonstrates the percentage of the volume inside the structure

that receives greater than or equal to each dose bins for each organ. The dose values

in DVH and dose matrices are normalized by patient prescription dose.

The distance matrices are in three dimensions and extracted from 3D contours.

Each of the 3D matrices is called distance3d throughout this chapter and represents

one of the patient’s OARs -i.e., bladder or rectum. Each element of the matrix is

an assigned distance measure of the corresponding voxel. The assigned measure is

defined as the shortest distance of that voxel to the 3D surface of the PTV -i.e.,

prostate contour. All the voxels outside of the OAR are assigned a value of zero,

and the overlapping voxels that are inside both OAR and PTV contours get negative

values. The voxels outside of the radiation field are artificially increased to reflect

the out-of-field parameter [10]. No further information is stored about the prostate

contour.

The dataset used in this study contains only distance and dose information and,

thus, is completely anonymized.

5.4 Methodology: Deep Learning

Conventional knowledge-based planning methods extract engineered features from

3D CT-scan images to predict the best achievable dose in the cancerous area and other

organs at risk [29]. Recent studies in medical imaging and radiation therapy demon-

strated higher prediction power using deep learning features than the engineered
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ones [123]. However, the limited available resources of the labeled data compared to

the number of learning variables cast doubt on the trained models’ generalizability in

the radiation treatment planning domain.

In medical image processing, dimension reduction - e.g., in [145], transfer learning

- e.g., [145], and residual architectures - e.g., in U-Net [163], are among the popular

techniques to improve deep learning performance despite the data scarcity. We eval-

uated the proposed representation by using the same strategies to design our learning

model. In the following subsections, we explain these approaches and how we use

them for our experiments.

5.4.1 Dimension Reduction: Slicing

The dimension reduction from 3D to 2D decreases the number of learning variables

and reduces the scale of desired data for the learning task, causing some information

loss. Nevertheless, the 3D information retained by the proposed representation -i.e.,

distance3d matrices and the structural/local information maintained by the chosen

reduction approach -i.e., slicing, helped us minimize this information loss.

The formal statistical approaches for dimension reduction, such as principal com-

ponent analysis (PCA), retain the greatest variations, perceived as information, in

the data. However, the methods are optimized for retaining global information and

sacrifice the local structural patterns. Since deep learning feature extraction is based

on these local patterns, we avoided using those methods.

Instead, we consider the three anatomical axes as the main dimensions -i.e., fea-

tures, and select two of these three features using slicing. Slicing along the anatomical

planes maintains the imaging analogy and interpretability, as well. The anatomical

planes are sagittal, which divides the body into left and right, coronal that divides

the body into back and front, and axial that divides it into the head and bottom por-

tions. One can imagine in this coordinate system, the x-axis goes from left to right,

the y-axis goes from front to back, and the z-axis moves from top to bottom. The
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default slicing for prostate cancer CT images is along the axial plane and is indexed

from top to bottom. We explore the effect of these three directions of slicing in the

first experiment (Task 1).

Furthermore, the proposed representation in this study is based on 3D distance in-

formation. Thus, we expected the representation to prevent part of the volume-related

information loss. We confirmed this assumption by observing better performance us-

ing the 2D distance matrices and the 3D distance ones for the same experiments (Task

1).

After slicing, we treat each of these slices as an independent 2D data point. This

way, we increase the number of input samples and adds robustness to the network

against the slice position. As mentioned, all the voxels outside of OARs are zero.

Therefore, those full-zero slices are uninformative as independent samples and are

trimmed for the classification experiment (Task 1).

5.4.2 Transfer Learning: VGG-16

In a typical machine learning task, the assumption is that the training set has the

same distribution as the test-set. On the other hand, transfer learning is meant to

reuse the learned knowledge on one training domain for a different task and distri-

bution test. The deep learning need for a large amount of training data as well as

salient results of the trained models made transfer learning popular in this domain.

We use transfer learning to demonstrate the proposed representation’s potential

to benefit from models pre-trained on (non-medical) image data to compensate for

the data shortage in the planning domain (Task 1). The justification is that distance

matrices can be perceived as gray-scale images. The pixel intensities in a gray-scale

image carry information such as light, depth, and color. The distance matrices can

be perceived as the depth of each point from the PTV perspective.

Inspired by Tran’s work [145] we use VGG-16 [144] and transfer weights from that

model. VGG-16, also called OxfordNet, is a deep convolutional neural network (CNN)
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with five convolution blocks, 16 layers (five convolution blocks followed by three fully

connected layers), which was among the top winners of the ImageNet challenge in

2014 and the authors published the trained model and weights publicly [144].

The sequential format of the network gives the model some level of interpretabil-

ity. The image signals travel in a sequential structure of the convolution blocks from

low-level features to more abstract ones and eventually is used by the classification

component. Thus, the highest blocks are the most abstract and task-specific represen-

tation of the image. Similar to prior work [145], we borrowed the first four convolution

blocks of VGG-16 with their frozen weights. The extracted features, or the encoding,

out of the last block, then goes to three consecutive fully connected layers to learn a

classifier that can discriminate more vulnerable patients from less vulnerable ones in

their OAR. The schematic diagram of the CNN architecture we utilized is represented

in Figure 5.1. The distance values are repeated in three channels to make the input

suitable for VGG-16 (image format).

Figure 5.1: The architecture consists of four blocks of VGG-16 [144] with frozen
weights, followed by three layers of fully connected with ReLU activation function
and a final Sigmoid block for the binary classification.
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5.4.3 Learning Architecture: U-net

U-net is an elegant architecture belonging to the fully convolutional network fam-

ily [164]. The network was proposed for medical image segmentation [163]. Elim-

ination of the fully-connected layer in these networks dropped the learning model

variables and consequently demonstrated acceptable performance with the low num-

ber of training data points in encoder-decoder architectures.

In addition, U-net improved this performance by including the symmetric upsam-

pling process after the last layer and adding the residual signals from the correspond-

ing in the downsampling branch. This structure immunized the segmentation from

losing critical information during the downsampling without adding higher order of

complexity.

Recent related works [135, 157–159], used U-net based architectures for prediction

of voxel-level dose distribution based on organs’ contours. We implemented U-net ar-

chitecture similar to the original work [163] and compared the prediction performance

of the architecture from the distance representation to the contour ones. Figure 5.2

represents a schematic diagram of the model architecture we implemented for our

prediction task.

5.5 Evaluation and Result: Dose Prediction

The distance-based representation was evaluated in two predictive tasks. The first

task (Section 5.5.1) is the classification of patients based on their OARs’ vulnerability

to receive excessive dose level having a pre-trained model. The aim is to predict a

high-level feature directly from the anatomical structure of each organ-at-risk, inde-

pendently. The argument is that the representation keeps enough information from

CT images that enables the learning models to benefit from the computer vision do-

main’s features. Furthermore, there are informative features of the organ that can be

processed independently of the other ones.
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Figure 5.2: The U-net architecture takes a 2-channels 128 x 128 distance3d slice as
an input and predicts the dose distribution on the output side. We follow the original
U-net architecture paper for the implementation with a depth of five and a single last
channel for the dose prediction [163]. The size of the feature map in each convolution
block is written on the left side of the down-sampling direction. The size of feature
maps in the right side is equal to their left counterparts.



52

The second task (Section 5.5.2) predicts voxel-level dose distribution by learning

from high-quality plans of past patients. This task is implemented on a U-net archi-

tecture, which has been used successfully by several recent voxel-level dose prediction

efforts using deep learning [157,159].

The extracted data are preprocessed to meet the needs of the experiment. The

3D matrices are sliced into 2D ones, as mentioned in Section 5.4.1, and the slices are

center cropped to the size of 128 x 128. Table 5.1 demonstrates the original size of

the distance matrices for each of the organs at risk, as well as the size of the dataset

after preprocessing.

The contour matrices have a similar format to the distance matrices except that

the values are binary, zero for the voxels outside of the OAR, and one inside. Conse-

quently, the cropping and slicing process on distance, contour, and dose matrices are

parallel.

For the dose distribution prediction task (Task 2), bladder and rectum matrices

of the same slice are treated as two channels of one data sample. It is important to

note that the train, validation, and test splitting is done on the patient-level, making

sure similar information won’t appear in multiple cohorts. The slicing and other

processing are done after that.

Figure 5.3 demonstrates an overview of the experiments’ steps. Also, the hardware

and software frameworks for the experiments are shown in Tables 5.2 and 5.3.

5.5.1 Task 1: Organ-at-Risk Vulnerability Prediction

As was discussed in the introduction, a high-quality plan minimizes the received

dose in the OARs, but anatomically some patients are more vulnerable than the

others. This experiment is meant to predict this vulnerability factor.

The task is a binary classification of distace3d slices using pre-trained VGG-16

architecture, explained in Section 5.4.2. Thus, the 2D distance3d slices are input,

and the patient vulnerability labels are the expected output of the learning model.
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Table 5.1: The original data set contains distance matrices of bladder and rectum
(OARs) for 216 prostate cancer patients. Each matrix consists of 300 slices, each of
which has a size of 192 x 252. For the patient vulnerability (classification) task five
nonzero consecutive 2D samples extracted from the middle of each 3D matrix using
sagittal, coronal and axial slicing direction. This increased the number of samples
five times and decreased the complexity of the problem with the price of partial
information loss. For the voxel-level dose prediction task, to compare the results with
both representations in Nguyen et al. [157] and Yuan et al. [10], we designed multiple
experiments and the number of selected slices are discussed in the corresponding
section. Here, for simplicity, we put st and sv variables for the number of the selected
slices in training and validation processes, respectively.

Dimension of the Input Features
Original Dataset 2 * (216, 300, 192, 252, 1)
Classification Task Train 2 * (720, 128, 128, 3)
Classification Task Validation 2 * (180, 128, 128, 3)
Classification Task Test 2 * (180, 128, 128, 3)
Dose Prediction Task Train st * (2, 172, 128, 128, 1)
Dose Prediction Task Validation sv * (2, 44, 128, 128, 1)

Figure 5.3: An overview of the data source, steps and predictions in this study. The
evaluation blocks are colored in blue, and the external sources (data and model) are
colored in gray.
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Table 5.2: The experiments’ platform specification.

Hardware
Type of Machine Google cloud n1-standard-8
Processors 8 vCPUs and 1 NVIDIA Tesla K80 GPU
Memory 30 GB
Local Disk 100 GB standard persistent disk

Software - Classification Task
Operating System Debian 9
Programming Language Python 2.7
Deep learning back-end tensorflow 1.10
Deep learning interface Keras 2.2

Software - Dose Prediction Task
Operating System Debian 9
Programming Language Python 3.6.4
Deep learning back-end Pytorch 1.1.0

Table 5.3: Experiments’ parameter setting.

Parameter CNN setting U-net setting
Optimizer Adam Adam
Loss function Binary crossentropy Mean squared error
Abstraction (downsampling) 4 4
Number of epochs 100 200
Batch size 32 16
Learning rate 0.000001 0.0001



55

In order to have a balanced set of labels, we compare the patients with the average

case. We pick the dose-at-50 as the prediction index, but a similar model can be

trained for the dose at other volumes. The patient’s vulnerability in each OAR is

then defined by a binary value that demonstrates either the patient is going to receive

more than the average of the population or less.

Dose-at-50 is the maximum dose that at least 50 percent of the organ has received

(or is going to receive) according to the high-quality plans. By dividing the dose value

by the prescribed dose, the values are normalized and comparable across patients.

Finally, the ratio is compared to the mean. Those with higher or equal than the

mean would be considered more vulnerable (labeled as one), and those with lower

ratios were considered less vulnerable (labeled as zero). An important note is that

the vulnerability of a patient in the bladder does not mean s/he is also vulnerable

in the rectum. Despite the possibility of correlation, the two organs-at-risk, bladder,

and rectum, are independently labeled and evaluated in our experiment.

The experiments are run on cloud virtual machine using matrices extracted from

216 patients. The specifications of the experiment framework, settings and data are

in Tables 5.2, 5.1, and 5.3, respectively.

The results are evaluated using five-fold cross-validation, each containing random

173 patients as a training sample and 43 patients in the test set. While each slice is

considered an independent data point, the slices extracted from one patient belong

to the train set or the test set, not both. The binary-class evaluation metrics -i.e.,

accuracy, precision, recall, and f-score, are used as an evaluation measure of this

experiment. The results are demonstrated in Table 5.4 for both validation and test

rounds.

The average accuracy of vulnerability prediction on the best experiment is 84.89%

for the bladder and 60.34% for the rectum. Considering the distribution of the vul-

nerability in Figure 5.4 and the populations on the borderline, the results specifically
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Table 5.4: Experiment with distance3d as the input variable and vulnerability label
as the prediction target. Average evaluation metrics for five-fold cross-validation are
displayed along with the average of the five models on test-fold. Each fold is trained
on 720 data point from 144 patients (67%) and validated on 180 data points from
36 patients (17%). The models are then tested on 180 data points from 36 patients
(17%), which were not involved in the training process.

O-A-R Slicing Precision Recall F-score Accuracy
Validation Results

Axial 80.02 (+/- 8.11) 82.89 (+/- 1.89) 78.90 (+/- 4.21) 82.67 (+/- 2.47)
Bladder Coronal 82.61 (+/- 10.63) 77.67 (+/- 1.99) 77.24 (+/- 6.12) 80.11 (+/- 4.80)

Sagittal 80.51 (+/- 7.66) 82.42 (+/- 5.74) 79.44 (+/- 6.06) 81.44 (+/- 5.89)
Axial 55.27 (+/- 15.81) 49.94 (+/- 11.23) 48.35 (+/- 9.38) 51.33 (+/- 5.78)

Rectum Coronal 63.27 (+/- 12.42) 63.27 (+/- 10.99) 59.64 (+/- 6.64) 63.44 (+/- 3.05)
Sagittal 65.82 (+/- 14.83) 66.13 (+/- 9.03) 63.07 (+/- 8.66) 66.67 (+/- 1.96)

Test Results
Axial 79.14 (+/- 2.77) 81.16 (+/- 5.32) 78.55 (+/- 3.28) 77.89 (+/- 3.36)

Bladder Coronal 83.10 (+/- 3.74) 92.45 (+/- 3.00) 86.08 (+/- 2.66) 84.89 (+/- 3.13)
Sagittal 75.22 (+/- 3.05) 85.19 (+/- 2.29) 77.89 (+/- 3.25) 75.33 (+/- 3.38)
Axial 57.34 (+/- 1.69) 44.81 (+/- 12.98) 48.39 (+/- 7.77) 51.33 (+/- 1.71)

Rectum Coronal 50.46 (+/- 0.93) 46.79 (+/- 6.17) 47.64 (+/- 3.61) 48.56 (+/- 2.45)
Sagittal 60.48 (+/- 6.58) 60.61 (+/- 3.90) 58.43 (+/- 2.51) 60.34 (+/- 4.48)

U-net Validation
Bladder Axial 95.45 91.30 93.33 95.45
Rectum Axial 73.91 77.27 75.56 75.00

for bladder are promising. The results lead the experiments to the next task for

predicting the complete dose distribution matrices.

(a) Bladder (b) Rectum

Figure 5.4: The patients’ normalized dose-at-50 distribution in their bladder (left)
and rectum (right). The red line is the mean, which divides patients into more (above
the line) and less vulnerable.

5.5.2 Task 2: Dose Distribution Prediction

The complexity of radiation therapy planning and its dependency on various pa-

rameters made this process time and expertise intensive. On the other hand, the

quality of this step and accurate assessment of the results are significant determi-
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nants of the planning process’s success. Knowledge-based treatment planning aims

to support this process by transferring knowledge from previous patients’ high-quality

plans to future ones. The intention is firstly to transfer knowledge from institutions

with more expertise in planning to the less experienced ones. Secondly, provide an

early assessment of the best achievable outcome to expedite the decision-making and

planning process.

This task intends to assess the introduced representation in predicting dose dis-

tribution using a deep learning architecture. The U-net architecture, explained in

Section 5.4.3, is selected for this task. U-net is one of the popular architectures, or

components of the pipeline, in similar works. The evaluation for dose prediction in

slice-level and volume(patient)-level are discussed in this section.

5.5.2.1 Evaluation of Dose Distribution using 2D Slices

This task’s first experiment trains the U-Net model on one slice per patient (dis-

tance3d/contour matrix) from the training cohort and evaluates the dose prediction

on one slice per patient in the validation set. This setting is similar to what the early

deep learning dose prediction work [135] suggests.

Figure 5.5 demonstrates the plot of train vs. validation loss during the learning

epochs. We intentionally did not use any data-dependent regularization to observe

the generalization potential of the representation itself. The loss function is measured

by the mean squared error of the voxels’ dose. The validation loss did not have any

impact on the learning parameters. As Figure 5.5 shows, while the training process is

initially faster for the contour representation, from epoch-60, the over-fitting is much

more significant for the contour representation than the distance3d ones.

The input/output for a random sample from validation set is demonstrated in Fig-

ure 5.6. The inverse relation of distance and received dose is apparent in Figure 5.6a,

which gives a sense of the reasoning behind the proposed representation. This agrees

with the prior knowledge of the domain [10].
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(a) Distance representation (b) Contour representation

Figure 5.5: Training/Validation Epochs for distance (a) and contour (b) matrices as
the inputs of U-net for dose distribution prediction. From epoch-60, the over-fitting
in learning via contour matrices is more significant than the distance ones.

The slice-based mean loss information in Table 5.5 confirms the overfit on the

second representation (contour matrices) compared to the first one (using distance

matrices). Note that the values are percentage of the prescribed dose. While in a

similar situation, the validation data is used for setting up parameters and regular-

ization mechanisms to overcome the overfitting issue, due to the intention of this

study in understanding the independent generalization potential of each representa-

tion, for neither of the representations, we did not modify the model according to

the validation results. This experiment’s observations demonstrated a better vali-

dation performance and generalizability on the learning task with distance matrices

compared to the contour ones.

Table 5.5: Mean loss for Train and Validation Cohort containing 172 (80%) and 44
(20%) patients, respectively.

Feature Train Loss Validation Loss
Distance Matrix 28.24 33.18
Contour Matrix 8.73 40.82

5.5.2.2 Evaluation of Dose Distribution using 3D Volumes

To extend the evaluation on patient-level, we predicted all slices of patients’ volume.

We observed that the model trained on a single middle slice (for both distance and
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(a) Distance matrix(input), actual dose
distribution (expected output), and pre-
dicted dose distribution (predicted out-
put).

(b) Contoured image(input), actual dose
distribution (expected output), and pre-
dicted dose distribution (predicted out-
put).

Figure 5.6: input, expected and predicted output for one of the middle slices of a
random patient’s CT scan OARs’ contour. The slice is selected from the validation
set, and for the visualization, the bladder is set to the green channel, and the rectum
pixels are assigned to the red channel. The intensity of pixels on the middle and
right columns demonstrates the percentage of received by that voxel divided by the
prescribed dose. Yellow demonstrates a higher receipted dose, and blue shows a lower
level of dose.

contour representation) tends to overestimate the sparse slices’ dose distribution.

Therefore, we trained the model using ten slices (distance3d matrices) per patient to

ensure the distribution is not biased toward the dense ones. We adopt a probabilistic

selection method, which gives priority to the slices with more nonzero voxels for

sample selection due to the higher number of zero slices. We then evaluated the model

on all slices of the patients in the validation set to calculate their dose distribution

in three dimensions. The train and validation loss of these slices across the epochs

can be seen in Figure 5.7. The results are comparable with Figure 5 of the prior

contour-based deep learning model with a similar setting [157].

Having the prediction for all slices of the validation cohort, we calculate the pre-

dicted DVH and compare it with the DVH extracted from high-quality plans. The

results on Table 5.6 and Figure 5.9 are comparable with the results reported by

knowledge-based planning with engineered features [10]. We can see that for the

percent volume that received at least 85% of the prescription-dose (V85%) and 99%

of the prescription-dose (v99%), our model outperforms the prior reported results in

Yuan et al. [10].



60

Also, Figure 5.8 shows the predicted DVH compared to the planned DVH for two

randomly selected patients from the validation cohort, and Figure 5.9 demonstrates

the error for V50%, V85%, and V99%. These figures demonstrate a high correlation

between the predicted and planned DVH. The figures are comparable with Figures 5

and 6 of the referenced study [10].

(a) Epoch-iteration loss

Figure 5.7: Patient-level evaluation: In order to evaluate the model on a patient level
and compare with prior work [10], we trained the model on 10 slices of the patients
rather than 1 similar to Nguyen et al. [157]).

Table 5.6: Difference of the volumes corresponding to 99%, 85%, and 50% of pre-
scribed dose predicted vs. actual plans. Prior study of [10] reported 71%(17/24)
within 6% error and 85% (21/24) within 10% error bound.

Bladder: Volume-at-dose Error-bound bladder rectum
V50% 6% 72.73 (32/44) 54.55 (24/44)

10% 84.09 (37/44) 70.45 (31/44)
V85% 6% 84.09 (37/44) 75.0 (33/44)

10% 93.18 (41/44) 90.91 (40/44)
V99% 6% 90.91 (40/44) 81.89 (36/44)

10% 95.45 (42/44) 95.45(42/44)

5.6 Discussion and Future Work

There are two complementary approaches in feature extraction; using human knowl-

edge to design hand-crafted features or letting the machine learn the patterns from

various situations in data points. For example, in object classification applications,

the second approach has shown strong results with the convolutional neural network.
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(a) p1- Bladder (b) p1- Rectum

(c) p2- Bladder (d) p2- Rectum

Figure 5.8: A comparison of actual (black) vs. predicted (green) cumulative dose-
volume histogram in the volume of Bladder (left) and Rectum (right) for two random
patients (top and bottom) from validation set.

The state is different in the healthcare applications, where we do not have sufficient

high quality labeled data points. Yet, there are large scale variables to learn due to

the complexity of the images.

This study’s contribution is the suggestion and evaluation of a strategy to com-

bine the two mentioned approaches for extracting features in the domain of radiation

treatment planning. We utilized distance matrices instead of the actual images, in-

spired by previous studies and expert knowledge. The method retains the structural

information while removing the intensity representation (raw image data).

The reported results demonstrated comparable performance with state-of-the-art

methods. It also opens multiple paths to move toward more generalizable and in-

terpretable knowledge transfer in radiation treatment planning. Low-level feature
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(a) Bladder (b) Rectum

Figure 5.9: The predicted volume at V99%, V85%, and V50% on the DVH curves
by predicted and actual plan DVH for (a) bladder and (b) rectum. The error bound
corresponding to 6% and 10% OAR volume is shown to be comparable with [10].

engineering, proper use of pre-trained models, and informed dimension reductions

are among the paths this work suggests to move on.

Despite the reasonable performance demonstrated in the experiments, there are

several areas for further improvement. There are more relevant trained models in

the transfer learning task to transfer features from - e.g., DeepLesion model [165].

We also intend to evaluate the representation of the more recently-used architectures,

such as generative models [158].

Apart from the evaluation results, the substitution has other benefits. It encodes

the CT scan images in a more anonymous format, which makes data sharing more

convenient. Task 1 provides flexibility to analyze each of the OARs independent

from other organs and PTV for the prediction and learning task. Furthermore, the

invariant nature of the representation toward the displacement and orientation opens

some potential for data augmentation in this domain. Finally, the data’s interpretable

format opens a space for reverse engineering of the deep learning extracted features.

This can be significantly important not only from the validation perspective but also

to unleash deep learning’s potential in giving a simpler formulation for treatment

planning optimization.



CHAPTER 6: Case Study II: Domain-Driven Feature Integration Pipeline in

Alzheimer’s Disease Progression Prediction

Alzheimer’s disease causes neural damage, including brain atrophy in the patient

1. Consequently, ventricles that contain cerebral fluid are expanded to filling those

regions, which increases the proportional volume of ventricles in the brain. There-

fore, abnormal growth of ventricle volume is an important indicator for estimating

neural damage and, in turn, for the progression of Alzheimer’s diseases. The rate of

this volume-growth, i.e., neural damage, can be predicted by predictive and machine

learning models using the patient’s current status. These predictions help to assess

the effectiveness of a particular treatment for a patient, in addition to providing some

expectation of the disease timeline.

In this work, we propose and investigate the performance of multiple convolutional

neural network (CNN) architectures for predicting ventricle volume biomarkers using

TADPOLE competition data. We use engineered representation of a structural MRI

(sMRI) scan as the prediction’s primary modality. We further provide some auxiliary

information from other modalities and investigate how supplementary information

can benefit or harm the prediction task’s performance. Finally, we demonstrate that

single-modal CNN using engineered feature outperforms the winner of the TADPOLE

competition, and the tree-structure multimodal CNN can improve the performance

even further.
1Part of the content of this chapter is submitted to the 2020 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM) Conference.
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6.1 Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease, which causes brain

atrophy, loss of cognitive functions, and death in severe cases. The cognitive impair-

ment stage and AD progression are clinically measured by patient changes in mini-

mental state examination (MMSE) or AD assessment scale-cognitive subscale (ADAS-

Cog). Multiple other patterns in biomarker2 abnormality are observed throughout

research studies during the past two decades. These patterns enrich the assessment’s

confidence and accuracy for clinicians as well as computational and predictive mod-

els [166]. The progression models and predictive models predict the future severity

of biomarkers based on patients’ current feature values. These models assist physi-

cians in quantifying their expectation of abnormality development and highlighting

the effectiveness of a particular treatment for the patient.

One of the significant biomarkers in AD patients is the rate of ventricle volume

change. As the gray matter in the brain deteriorates, the ventricles that contain

cerebral fluid start filling those regions. This increases the proportional volume of

ventricles in the brain. Therefore, the ventricle volume growth rate is an important

representation of the brain atrophy rate.

This chapter suggests an engineered representation for structural MRI images to be

fed to a convolutional neural network (CNN) model for ventricle volume biomarker

prediction in ADNI TADPOLE competition data. The representation follows the

idea in our prior work [134] in decreasing the complexity of the raw image input

while maintaining the sub-regions’ spatial structure. This is expected to prevent the

network from capturing irrelevant and noisy patterns and increase the CNN model’s

generalizability potential in the absence of a large dataset. Our model has been

applied to the ADNI-TADPOLE data and has shown that the overall accuracy metrics

outperforming the current leaderboard’s best results.
2Medical measurements that can indicate a disease.
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In the following sections of the paper, we briefly review some of the previous works

in this domain. Then, we describe our dataset and the reason for using MRI-based

features. The method for representation, learning, along with the evaluation method,

are discussed after that. Finally, we analyze the results and evaluate the robustness

of the model.

6.2 Related Works: Alzheimer’s Disease Progression Model

Ito et al. [167] suggested a regression-based disease progression model for Alzheimer’s

disease (AD). They demonstrate that disease severity in the baseline, along with age,

APOE-ε4 genotype, and gender are among the strong co-variates affecting the rate

of disease progression (called α). They emphasize that as patients move to the later

stages, the brain deterioration gets faster.

The disease progression rate (α) is a hidden variable and is usually measured by

the abnormal changes in one or multiple biomarkers. Ito et al. [167], for example,

measured the progression by ADAS cognitive test. Other studies [168,169] estimated

the progression using the volumetric measures of the brain subregions. Each of these

biomarkers holds some information about the disease progression and stage of the

patient. Nevertheless, they also contain noise and have some limitations. For example,

the change in a biomarker can be caused by other disorders, not just Alzheimer’s, or

a frequent measurement for another biomarker might not be feasible because of its

price or side effects.

The advantage of using a volumetric measurement over the cognitive test scores is

that it is less subjective and more comparable across patients [168]. For this reason,

we found it a more reliable index for the purpose of this paper, which is learning

progression patterns from a population of patients. Therefore, throughout this study,

it is important to note that we are estimating the ventricle volume growth rate part

of α. However, to keep the notation simple, we use α for the ventricle volume growth

rate.
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6.2.1 AD Predictive Models: Deep Learning Approaches

An accurate prediction for the patient’s biomarker progression is important to

assess the patient’s condition as well as evaluating the effectiveness of treatment.

In this regard, multiple computational approaches are mentioned in the literature,

including statistical, supervised, and unsupervised machine learning models [166,170].

Deep learning is among the recent methods suggested for developing machine learn-

ing and predictive models. In the context of disease trajectory modeling and stage pre-

diction, typically, recurrent neural networks (RNN) are used. Mainly, in the absence

of imaging data, RNNs are used for both regression, i.e., trajectory modeling [171]

and classification tasks (ex. in [172]).

To have a quick evaluation of the performance of the RNN methods for ventricle

volume prediction, we looked at the results in the TADPOLE competition. Despite

having multiple teams with the RNN-based approach, none of them were among the

winners in either longitudinal or cross-sectional biomarker progression prediction [28].

Convolutional neural network (CNN) is another category of architectures used in

some previous works in this domain, mainly to deal with the image modalities [28].

Givon et al. used CNN to predict the future cognitive-scores having the current

structural MRI (sMRI) image of the patient [173]. Bhagwat et al. also used a siamese

neural-network (LSN) to predict future cognitive scores, i.e., MMSE and ADAS-13,

having the multimodal MRI, genetic and clinical factors [174]. However, these studies

use raw image features for their predictive task, which causes some concern regarding

the learned model’s generalizability considering the small/medium size of the dataset

that is usually available in this domain.

We previously demonstrated that CNN has a good performance not just on raw

image data but also on the engineered features extracted from them [134]. Intu-

itively, we keep some local patterns but using domain knowledge, and we remove

some insignificant signals/features to reduce the possibility of the network learning
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unimportant patterns or noises.

In this chapter, we demonstrate the performance of CNN in predicting the ventricle

volume change using the engineered features suggested by TADPOLE. According to

the ventricle volume change, we apply a CNN architecture to the features extracted

from MRI ROIs to predict alpha. The evaluation is done by comparing the predicted

future ventricle volumes and the actual ones using a linear projection.

6.2.2 AD Predictive Models: Multi-modal Machine Learning

6.3 Dataset

Data used in the preparation of this paper are obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database3 [175], and are pre-processed for

The Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) compe-

tition [28]. We compared our model’s performance with the winner of the competition

and other submissions with a form of deep learning approach [176]. These results are

accessible through the live leaderboard up to the submission date4.

The ADNI was launched in 2003 as a public-private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission tomography

(PET), other biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD)5 [175].

6.3.1 Gold Standard: TADPOLE Competition

TADPOLE competition was held in 2017 to compare the available predictive mod-

els’ performance in predicting the future evolution of individuals at risk of Alzheimer’s

disease using the ADNI data. The competition evaluates the models and algorithms
3http://adni.loni.usc.edu/
4https://tadpole.grand-challenge.org/D4_Leaderboard/
5More information at http://www.adni-info.org/

http://adni.loni.usc.edu/
https://tadpole.grand-challenge.org/D4_Leaderboard/
http://www.adni-info.org/
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on three tasks; a classification task for forecasting the patient’s clinical diagnosis and

two regression tasks for predicting the Alzheimer’s Disease Assessment Scale Cognitive

Subdomain (ADAS-Cog13) score and ventricle volume size (divided by intracranial

volume) extracted from MRI [28]. This study concentrates on the third task. The

performance of the proposed architectures in this study is compared with the out-

comes of the competition winner and five other teams, who used neural-network-based

approaches.

TADPOLE organizers offered three sets of data for training and validation, called

D1 to D3, and a final dataset, called D4, for testing:

• D1 - a comprehensive longitudinal data set for training

• D2 - a comprehensive longitudinal data set on rollover subjects for forecasting

• D3 - a limited forecasting data set on the same rollover subjects as D2

• D4 - The test set contains data from rollover individuals, acquired after the

challenge submission deadline, and used for evaluating the forecasts according

to the challenge metrics.

We used D1 for training and validation, and the last record of D2 patients (D3) is

used for prediction. A subset of these predictions are then evaluated with respect to

the actual measurements in D4 using three error metrics 6. The evaluation outcome

was compared with the performance of other submissions. A detailed descriptive

analysis of the data is demonstrated in Table 4 of the competition report paper [176].

A statistic overview of the TADPOLE data is demonstrated in Table 6.1. These

numbers are reported in the live announcement presentation of the results 7.
6The source code for evaluation functions is available on GitHub: https://github.com/

noxtoby/TADPOLE/tree/master/evaluation
7https://www.youtube.com/watch?v=BFS9Sr0lhuM

https://github.com/noxtoby/TADPOLE/tree/master/evaluation
https://github.com/noxtoby/TADPOLE/tree/master/evaluation
https://www.youtube.com/watch?v=BFS9Sr0lhuM
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Table 6.1: Initial overview of TADPOLE data statistics. This numbers are reported in
the presentation for the result announcement @ https://www.youtube.com/watch?
v=BFS9Sr0lhuM. The first row, represents the records for Cognitively Normal (CN)
patients, the second row is the records of patients with Mild Cognitive Impairment
(MC) diagnosis, and the last row belongs to the patient with dementia or Alzheimer’s
Disease (AD) diagnosis.

TADPOLE data set D1 D2 D3 D4
Number of Subjects 1667 896 896 219

CN Number(%) 508 (30.5%) 369 (41.3%) 299 (33.4%) 94 (42.9%)
Visits per subject 8.3 (4.5) 8.5 (4.9) 1.0 (0.0) 1.0 (0.2)
Age (baseline) 74.3 (5.8) 73.6 (5.7) 72.3 (6.2) 78.4 (7.0)
Gender(% male) 48.62% 47.15% 43.48% 47.90%
MMSE (baseline) 29.1 (1.2) 29.0 (1.2) 28.9 (1.4) 29.1 (1.1)
Converters ** 17 (3.35%) 8 (2.17%) - -

MCI Number(%) 841 (50.4%) 458 (51.1%) 269 (30.0%) 90 (41.1%)
Visits per subject 8.2 (3.7) 9.1 (3.6) 1.0 (0.0) 1.0 (0.3)
Age (baseline) 73.0 (7.5) 71.6 (7.2) 71.9 (7.1) 79.4 (7.0)
Gender(% male) 59.33% 56.33% 57.99% 64.40%
MMSE (baseline) 27.6 (1.8) 28.0 (1.7) 27.6 (2.2) 28.1 (2.1)
Converters ** 111 (13.20%) 34 (7.42%) - 9 (10.0%)

AD Number(%) 318 (19.1%) 69 (7.7%) 136 (15.2%) 29 (13.2%)
Visits per subject 4.9 (1.6) 5.2 (2.6) 1.0 (0.0) 1.1 (0.3)
Age (baseline) 74.8 (7.7) 75.1 (8.4) 72.8 (7.1) 82.2 (7.6)
Gender(% male) 55.35% 68.12% 55.88% 51.70%
MMSE (baseline) 23.3 (2.0) 23.1 (2.0) 20.5 (5.9) 19.4 (7.2)
Converters ** - - - 9(31.0%)

6.3.2 Modality Selection

Ventricle volume biomarker progression estimates the damage to the nerve cells.

The level of neural activity can measure this damage in brain regions, e.g., using

PET or DTI images, or through the volume and shape shrinkage of the gray matter.

Additionally, other biomarkers of the disease progression provide hints to a potential

higher ventricle volume growth. Out of six modalities of features provided in TAD-

POLE data, we used the ones extracted from MRI modality with a cross-sectional

processing pipeline as the primary predictors. The other modalities contribute to the

prediction by providing auxiliary information to the MRI information.

Traditionally cognitive tests are the initial measurements for assessing the AD sta-

tus and possible disease progression. However, more recent advances in technology

https://www.youtube.com/watch?v=BFS9Sr0lhuM
https://www.youtube.com/watch?v=BFS9Sr0lhuM
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and brain knowledge suggested other biomarkers to the assessment process of demen-

tia progression. These biomarkers commonly belong to two categories; either they

measure the amyloid beta protein or they estimate the damage to nerve cells [177].

MRI, PET, and DTI images and Cerebral Fluid test (CSF) are the main information

modalities that can assist physicians in these measurements. Additionally, some indi-

vidual risk-factors can impact the potential for developing dementia or the speed of the

progression. These factors include, and are not limited to, demographic information,

such as age, and genetic factors, such as Apolipoprotein E ε4 allele (APOE4) [178].

Table 6.2 describes the available information modalities in TADPOLE data, the num-

ber of features in each one, and the availability of values for the visits and patients.

Table 6.2: The feature sources and modalities provided by TADPOLE competition
organizers, and the missing portions in the union of D1 and D2 data.

Feature
Source

Modality No. of Fea-
tures

Missing
Records (%)

Missing Pa-
tients (%)

1 Key ADNI Fea-
tures

Mixed (demo,
cog-tests, etc)

83 33.31 0

2 Cross-Sectional
(FreeSurfer
V-4.3)

MRI-image 363 39.02 36.79

3 Banner
Alzheimer’s
Institute PET
NMRC Sum-
maries

PET-image 339 83.12 34.12

4 UPENN CSF
Biomarkers
Elecsys

CSF-sample 10 82.97 49.80

5 Longitudinal
FreeSurfer
(FreeSurfer
Version 4.4)

MRI-image 371 67.18 50.89

6 UC Berkeley -
AV45 analysis

PET-image 238 83.47 57.63

7 DTI ROI sum-
mary measures

DTI-image 238 93.82 86.93

8 UC Berkeley -
AV1451 analysis

PET-image 243 99.31 96.26

The MRI modality can quantify the nerve cells’ atrophy by measuring the volume

of gray (GM) and white matter (WM) of the brain. The GM is the brain tissue
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consists of nerve cells, and WM is the fibers connecting those nerve cells. When the

neurons in a region die, the volume of that region shrinks. Thus, atrophy can be

measured by volume loss in a region from an MRI scan in one session to the follow-

up one. This quantification is important because MRI is a non-invasive and widely

available modality.

6.4 Representation

Each record in the dataset belongs to one visit of a patient, which contains one or

multiple biomarkers that are measured throughout the visit. From a representation

perspective, some of these measures are low-dimension values and stand at a higher

semantic level, while others are high-dimensional and semantically at a lower level.

To make the notation easier, the rest of this manuscript referrers the high and low

dimension features as modality A and modality B, respectively.

The primary measure we use for the prediction task is a structural MRI image.

This feature modality is referred to as the modality A in the experiments, and we

discuss the reasoning for this choice in the following subsections. Low-dimension

values provide other auxiliary information from multiple sources, such as diagnosis,

ADAS13 test score, TAU protein levels, and a higher level of knowledge than the

modality A. As we mentioned in the previous paragraph, these features are referred

to as modality B.

In the following subsections, we explain the features organization in each of these

modalities and the pre-processing pipeline for each feature category.

6.4.1 Modality A: Low-level Feature Engineering

To extract information from the MRI images, instead of using the raw image data,

we use the engineered features provided by the competition organizers for the regions

of interest. This approach gives us more control over the network patterns based

on our knowledge from the domain. Moreover, it decreases the size of the learning
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variables and complexity of the network. Finally, the spatial and semantic information

remains in the data, and we can interpret the learned model easier.

According to the competition website, the MRI-based markers were measured after

registering (i.e., aligning) the MRI images with each other and performing a segmen-

tation of the relevant brain structures using an atlas-based technique. These markers

were selected based on the domain literature and previous works [166]. The values

are computed with an image analysis software called FreeSurfer using two pipelines:

cross-sectional (each subject visit is independent) or longitudinal (uses information

from all subject visits). While the longitudinal measures are more robust, as Ta-

ble 6.2 shows, there are more missing values for those measures in TADPOLE data.

Therefore, we used the cross-sectional features in our analysis.

We organize the MRI-based features in a 1D spatial tensor of 72 ROIs with 4-

channels of features for each patient’s visit. In Table 6.3, we describe a summary

of the information in these four channels. We extract the label for that visit by

calculating the ventricle volume change rate from the current visit to the patient’s

next visit.

The independent predictors we use are three categories of atrophy markers ex-

tracted from structural MRI and provided in the TADPOLE data. These markers

include ROI volumes, ROI cortical thicknesses, and ROI surface areas, where ROI

is a 3D sub-region of the brain such as the inferior temporal lobe. TADPOLE data

provided volume information for both GM and WM, but we only used the GM volume

in our analysis. We also did not use other MRI-features contained quality measure-

ment and metadata. For the cortical thickness, we used both average and standard

deviation of GM thickness across the region.

6.4.2 Modality B: High-level Domain Knowledge

Each record of the data is a snapshot of a patient’s feature at a specific time.

Therefore, as expected, a memory-free model such as CNN that we are using would
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miss the background information about disease evolution and stage. Besides, there

are some particular risk-factors for each individual that can increase or decrease the

patient progression pattern.

In an ideal situation with a sufficient amount of data, the MRI-based values in

modality A could be sufficient to capture these patterns. However, in reality, not hav-

ing a large set of data for a CNN model could cause overfitting to a non-generalizable

pattern. Therefore, we provide the stage-related information as well as risk-factors in

a high-level numerical representation as a supplement to the data from modality A.

We selected these features according to the previous studies from the knowledge of

the domain.

The stage-related features are selected based on a publication regarding the disease

progression model [151], and the individual-based factors are selected based on the

early study by Ito et al. [167]. These features and the descriptive analysis of their

corresponding data are demonstrated in Table 6.5.

6.5 Preprocessing

6.5.1 Data Normalization

TADPOLE competition uses the Intracranial Volume (ICV) at their baseline - i.e.,

first visit (ICVbl), to normalize the volume of the ventricles. This normalization

makes the ventricle volume measurements comparable across patients and prevents

the unintended bias in target values due to the patients’ size of the skull.

We use a similar approach to normalize all the volume features by ICVbl. We then

remove the ICV from the cortical volume measures to prevent it from suppressing the

other features. We normalize the other three categories of measures (surface area,

cortical thickness average, and cortical thickness standard deviation) by the mean

and standard deviation of the training population’s values for all the corresponding

category features. Equation 6.1 shows the normalization formula in which x is the

original number belongs to feature f on record r, and f belongs to category Cat with
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c features. The train-set contains n records.

norm(xfr) =
xfr − Catmean

Catstd

Catmean =

∑c
f=1

∑n
r=1 xfr

c ∗ n

Catstd =

√∑c
f=1

∑n
r=1 xfr − Catmean

(c ∗ n)− 1

(6.1)

Eventually, we organize the features in a one-dimension tensor of 72 regions, in the

four channels, explained in Table 6.3.

Table 6.3: Definition of the representation of modality A, i.e. MRI, using low-level
engineered features. Features are define in four channels, and each channel is normal-
ized separately. For applying the equation 6.1, the mean and standard deviation of
the whole training set (D1) is being used.

ch. Feature category Normalization method
0 ROI cortical volume Devision by ICV bl

1 ROI surface area Equation 6.1
2 ROI cortical thickness Equation 6.1
3 ROI cortical thickness standard deviation Equation 6.1

Modality B Features Equation 6.1

If for an ROI, we don’t have a value of one or multiple features (ex. cortical volume

for ICV, which was removed from the features), we simply fill it with zero. To prevent

the dying signal issue during the learning process, we multiply all the values with a

strength-factor of 1000. However, all the evaluations are reported after taking this

factor off of the results.

The modality B features are similarly normalized by the Equation 6.1 regardless

of being discrete or continuous. This way of normalization will retain the main

characteristics of the data distribution.
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6.5.2 Missing Data Imputation

A patient may have up to 19 records, where each record is demonstrating the

information from one visit. This is shown in Figure 6.1. Each visit measured some of

the features and may lack the values from others.

Figure 6.1: Number of patients with x number of visits

The missing values for the MRI-based features, including ventricles, are imputed

with a linear averaging over the prior and the following visits if they exist. If these

missing spots are not surrounded by the known values from the prior and later visits

of the same patient, with an exception for ventricles, we simply fill all others with

zero.

For the patient-level features of modality B, such as education and APOε4, we

repeated the values from baseline, if they exist, for the other records of the patient.

The progression features which are visit-based, i.e. Abeta, Ptau and Hippocampus−

volume, are imputed using the same linear assumption in Equation 6.2.

As it is described in Equation 6.2, for patient p, if a record in time t with missing

MRI-based values Xpt is surrounded by two known records at time t1 and t2, we

calculate Xpt by a linear weighted average of the surrounded known visits of the same
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patient.

xpt =
xt2 − xt1
t2 − t1

(6.2)

The previous computational model [167] suggests an exponential volume change

progression. However, for the short periods of visits, we found the linear assumption

a reasonably simple method to prevent the injection of bias by the imputed data.

After imputation, the remaining records with no MRI-based information, i.e., the

edge records not surrounded by two known records, were removed. Two records are

also removed for having alphas that were 100 times greater than the maximum alpha

of the rest of the records. The assumption is that either the records are capturing

some miscalculation, noise, or extreme outliers. The number of patients and records

during each of these steps is in Table 6.4.

Table 6.4: The number of patients and records in each pre-processing step.

Original Imputed Dropped Final
Patients 1737 1047 23 1714
Records 12741 2185 3111 9630

The diagnosis information, which is used in our last experiment, is imputed by

repeating the last known diagnosis of the patient for the following missed sessions.

We trained the network with the imputed and actual records. However, all the train,

validation, and test evaluations are reported solely based on the prediction for the

actual records.

6.6 Evaluation Method

6.6.1 Data Splitting

The data is split into training and validation using a five-fold cross-validation ap-

proach. The division is conducted on patients rather than visits so that no records
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Table 6.5: The descriptive analysis of candidate features for modality B. The Gini-
index is calculated using Equation 6.10, the SDR-Alpha is the standard deviation
reduction in alpha-ventricles if the records will be divided into two groups by the
feature on the specified breakpoint. The breakpoints are selected using the regression
tree process on D1-D2 datasets. The data normalization and feature imputation for
all these features are done using Equation 6.1 and 6.2, respectively.

Feature Gini-index SDR-Alpha Missing (%) Break Point
ADAS13 0.485 2.477 26.640 -0.426
TAU 0.238 4.588 78.548 1.216
Diagnosis 0.450 1.539 0.094 -0.485
PTAU 0.495 0.398 56.650 -0.145
Education 0.234 0.648 0 1.258
WholeBrain 0.391 1.247 21.909 -1.607
MMSE 0.491 -0.003 25.840 0.449
APOE4 0.165 0.038 0.090 1.468
Age 0.159 0.663 0 -1.509
Hippocampus 0.279 0.080 32.203 0.970

from the patient in the training data are used for validation. Each visit is represented

by the MRI-based measures, discussed in Section 6.3.2, and is passed to the model.

The model is expected to predict the ventricle volume change incline, i.e., α, which

approximates the brain deterioration rate. With a linear assumption, as mentioned

in Equation 6.7, the ventricle volumes in future dates are predicted by multiplying α

with the period length (in months).

In order to compare the results of this model with the ones from other TADPOLE

participants, the patients’ feature is extracted from their last record. The predicted α

is then used for calculation of patients’ ventricle volumes in the following potential 60

month-by-month sessions. At the time of competition, the test set was not available,

so they asked for monthly predictions for the next five years. The evaluation process

is then conducted by comparing the actual measurements during two years after the

competition, called D4, with the corresponding record in our submission 8.
8The source code for evaluation functions is available on GitHub: https://github.com/

noxtoby/TADPOLE/tree/master/evaluation

https://github.com/noxtoby/TADPOLE/tree/master/evaluation
https://github.com/noxtoby/TADPOLE/tree/master/evaluation
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6.6.2 Evaluation Metrics

We calculated the same metrics for our prediction as to the ones on the leaderboard.

This way, we can compare the results from our model to the previous competitors.

The main metric for ranking the submissions in the competition is the mean absolute

error (MAE), but they provide complimentary comparison using Weighted Error Score

(WES) and Coverage Probability Accuracy (CPA) metrics, as well. Therefore, to have

a more concise report, we report all the three metrics for the test-set evaluation, but

only MAE for the train and validation evaluation.

6.6.2.1 Mean Absolute Error (MAE)

As mentioned, this is the main metric that submitted results are ranked on. This

metric punishes the mistakes in a linear behavior. In other words, making big mistakes

in few records, for example, 50% error in 1% of the records, is equivalent to making

small mistakes in a large number of the records, 1% error in 50% of the records in

the example. The formulation for this calculation is shown in Equation 6.3, where N

is the number of records for prediction, and Ṽi and Vi are the predicted and actual

values for Ventricles/ICV, respectively.

MAE =
1

N

N∑
i=1

|Ṽi − Vi| (6.3)

6.6.2.2 Weighted Error Score (WES)

This error metric accounts for the confidence of the predictions. Unlike the linear

nature of MAE, this metric punishes errors with high-confidence more than the lower

ones. Of course, this means that if all the confidence-intervals are similar, this is going

to be the same as MAE. Equation 6.5 shows how this metric is being calculated,

where N is the number of records, and C̃− and C̃+ are the low and high bounds

of the prediction intervals, and Ṽi and Vi are the predicted and actual values for



79

Ventricles/ICV, respectively.

C̃i = (C+ − C−)−1 (6.4)

WES =

∑N
i=1 C̃i|Ṽi − Vi|∑N

i=1 C̃i
(6.5)

6.6.2.3 Coverage Probability Accuracy (CPA)

The CPA error metric accounts for the accurate coverage expectation from a con-

fidence interval. As mentioned in Subsection 6.8.2, we calculate a 50% confidence

interval for each prediction. This means that we expect the actual value to fall in

this interval 50% of the time. Clearly, the big intervals have more coverage than the

smaller ones. Therefore, the CPA error metric punishes higher and lower coverage

than the target, i.e. 50%, equally. This means that the interval should neither be too

vast nor too narrow to keep the coverage as close to 0.5 as possible. This error metric

is measured by the Equation 6.6, where C̃− and C̃+ are the low and high bounds of

the prediction intervals, and Vi is the actual value for Ventricles/ICV.

CPA = |actual coverage probability− nominal coverage probability|

= |count(C̃− < Vi < C̃+)

N
− 0.5|

(6.6)

6.7 Learning Models: Convolutional Neural Network

6.7.1 Single Modal Architecture

In order to capture the abnormal patterns of cortical volumes, we design a six-level

convolutional neural network. Each level contains two consecutive 1D-convolutions

followed by a max-pooling layer. We select a kernel size of three for the convolution

blocks and a pooling size of two for each pooling operation. The patterns are then

passed to a block with two fully-connected layers for the regression analysis and
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prediction of α.

As it is demonstrated in Figure 6.2, the input to the CNN architecture is a batch of

1D four-channels tensor, and the output is a single value. The activation function for

all the convolution blocks is a Leaky ReLU function with a negative slope of 0.1. After

the six convolution levels, the values are flattened into a 1D tensor and go through

two fully connected layers. The activation functions in these layers are linear due to

the regression nature of the learning task. This linear function lets the network to

be able to learn any real value (positive and negative). The expected output of the

learning model is a single number, which represents the expected brain deterioration

or ventricle growth rate.

Figure 6.2: Convolutional neural network architecture for ventricle volume growth
prediction. The architecture consists of 6 convolution level. In each level two convo-
lution (kernel=1x3) is applied consequently. The a pooling with kernel=1x2 down-
samples for the next level.

The network weights are initiated by Xavier normal approach [179], and biases by

zeros. We use the L1 for the network loss function as it is described in Equation 6.3

and the Adagrad algorithm [180] was as our optimization approach. The learning

rate is evolving through the experiment, starting from 0.01. When the validation is

not improved for three consecutive epochs -i.e., plateau, the learning rate reduces by

a factor of 0.5. The threshold for learning rate decrements is 0.0001.

6.7.2 Multimodal CNN: A Fusion Model

Learning feature and extracting from multiple modalities using deep learning was

initially proposed by Ngiam et al. [34] for two high dimensional sources of data such as
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audio and video. In that paper, they demonstrated the higher performance of a fused

representation for a learning task over learning on two independent networks. Since

then, various architectures are proposed for the fusion of information from multiple

modalities of data. Among those, early, middle and late fusions are the most common

ones in a variety of applications [30, 132, 181]. We implement early, middle, and late

fusion architectures, Figure 6.3, to explore the potential of these fusion approaches

for integration of data from modality A and B in neural deterioration progression

prediction.

(a) Early fusion - Channel Concatenation

(b) Middle fusion - Channel Concatenation

(c) Late fusion architecture

Figure 6.3: Fusion-Structure CNN architectures

6.7.3 Multimodal CNN: A Tree-Structure Model

In the previous part, we assume one model is sufficient to predict the α for all the

patients. From the prior studies, we know that the biomarker abnormality pattern
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is different in each stage of the disease [151, 170, 174]. Prior to this, we also knew

that some individual-level features of the patients -e.g., age, education, and APOE4

genetic factor, have a correlation with the AD progression and brain deterioration

rate [167]. We assume that in an ideal scenario with sufficient data, a CNN/RNN

model can learn the patterns either from the modal A alone or through a fusion can

learn. However, in the absence of sufficient data, we use some prior analysis to lead

the model. This is the idea behind the tree-structure CNN in this section.

We propose two tree-structure architectures; convolution and full branching, which

are demonstrated in Figure 6.4.

(a) Conv-Net Architecture

(b) Full-Net-Architecture

Figure 6.4: Tree-Structure CNN architectures.

6.8 Experiment Setting

The model is trained and validated in a five-fold cross-validation setting. The

division is conducted on patients rather than visits so that no records from the patient
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in the training data are used for validation. Each visit is represented by the MRI-

based measures, discussed in Section 6.4.1, and is passed to the model. The model is

expected to predict the ventricle volume change rate -i.e., α, which approximates the

brain deterioration rate. With a linear assumption, as mentioned in Equation 6.7,

the ventricle volumes in future dates are predicted by multiplying α with the period

length (in months).

The last visit of each patient is used to test the model and predict their ventricle

volumes in the following potential 60 month-by-month sessions. This is because, at

the time of competition, the test set was not available, so they asked for monthly

predictions for the next five years. The evaluation process is then conducted by com-

paring the closest record in the actual measurements, called D4, which was measured

during two years after the competition9. A summary of the experiment pipeline is

shown in Figure 6.5.

6.8.1 Initiation and Hyperparameter Setting

The hyperparameters of the network are the ones that had the best validation

performance on the single modal architecture. These settings are constant for most

experiments unless we mention otherwise. Table 6.6, demonstrates these hyperpa-

rameters and the corresponding values.

Table 6.6: These parameters are chosen during the validation phase. There are other
setting in the network design (such as dropout=0), which was not explored and can
be analyzed in the future.

Parameter Value
Depth of the network 6
Filter count for the first layer 8
Learning rate 0.0001
Convolution kernel size 3
Pooling size 2
Optimization method Relu with negative slope=0.1

9The source code for evaluation functions is available on GitHub: https://github.com/
noxtoby/TADPOLE/tree/master/evaluation

https://github.com/noxtoby/TADPOLE/tree/master/evaluation
https://github.com/noxtoby/TADPOLE/tree/master/evaluation
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6.8.2 Confidence Interval Calculation

We get five different trained models from a five-fold cross-validation approach.

This means that for the last visit of each patient, we have five different predictions

for α. The average for these predictions are reported as predicted alpha or α̃, and the

confidence interval is being measured by Equation 6.8, assuming that alpha follows

t-test conditions. In this equation, tCL=0.25 is the t-factor for confidence interval of

0.25, and σsamples is the standard deviation of the five predictions for α. In this

equation, df is the degree of freedom in the samples. As we have five samples from

five-fold experiments, we consider having four degrees of freedom.

As it is shown in Equation 6.7, the actual ventricle/ICV growth or α is calculated

using the ventricles/ICV of two visits with volume change of ∆(V ) across a time inter-

val ∆(time). Inherently, the confidence interval for the ventricle/ICV is the predicted

interval for alpha multiplied by a factor of time. In other words, the distance from the

current point increases uncertainty. As Equation 6.9 shows, we further increase this

uncertainty by another square-root factor of time-based on the experimental values

during the validation phase.

α = ∆(V )/∆(time) (6.7)

C̃α = α̃± tCL=0.25 ×
σsamples√

df
(6.8)

C̃V = C̃α ×∆(time)×
√

∆(time) (6.9)

6.9 Single Modal Experiments

The best result on the TADPOLE competition live leaderboard for the ventricle

prediction task belongs to a disease progression model [151]. The team’s predictions
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were evaluated after a year upon the acquisition of new measurements for the pa-

tients [176]. On average, the (five) teams with neural network approaches perform

reasonably well in ventricle prediction and are in the top half of the leaderboard. Yet,

none of the five submitted approaches beats the winner. All of the five methods have

a recurrent neural network architecture. Table 6.7 demonstrates the rank, features,

methods, and performance of these teams as well as the winner. As Table 6.7 shows,

our convolutional neural net model outperforms the leaderboard winner and other

neural-network-based submissions for ventricle volume prediction task 10.

Table 6.7: Summary of methods, features, and evaluation of the winner as well as
all the teams who used deep learning approach for ventricle prediction task in TAD-
POLE competition. The results are based on our last visit on June 20th, 2020.
More information about the features and methods can be found in the competition
paper [28].

Vent
Rank

Team Name Method Vents
MAE

Vents
WES

Vents
CPA

1.5 EMC1 Std/ Customa [151] DPM
SVM &
2D-spline

0.41 0.29 0.43

7.0 CN2L-Neural Network Three-
layer RNN

0.44 0.44 0.27

13.0 CBIL [20] Multimodal
LSTM

0.46 0.46 0.09

16.0 CN2L-Average Average
of Three-
layer RNN
& Random
Forrest

0.49 0.49 0.33

24.0 BravoLab LSTM 0.58 0.58 0.41
25.0 BGU-LSTM LSTM 0.60 0.60 0.23

Benchmarkb Mixed ef-
fects mod-
eling

0.56 0.56 0.5

Crowdsourcedc [28] Consensus
Median

0.38 0.33 0.09

Our Result Convolutional
Neural Net

0.39 0.3 0.1

a Winner of the competition in ventricles-icv prediction part.
b This is the best benchmark out of five benchmark approaches.
c This is the best crowd-sourced results out of three methods of aggregation -i.e., mean, median, best.

10The complete live leaderboard can be found at https://tadpole.grand-challenge.org/D4_
Leaderboard/.

https://tadpole.grand-challenge.org/D4_Leaderboard/
https://tadpole.grand-challenge.org/D4_Leaderboard/
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We further assess the robustness and sensitivity of the results to the unknown/random

factors through extensive sets of experiments discussed in the following subsections

and summarized in Table 6.8.

6.9.1 Robustness Analysis

We evaluated the robustness of the model by observing the behavior of the model

for other random values for the seeds, the number of epochs, and the order of the sub-

regions in the feature vector. Table 6.8 displays the result of the model with different

data-seed and model-seeds. Finally, we can see with a small number of training

epochs, we have relatively good results, and more epochs only slightly improve the

results.

Table 6.8: Results’ robustness: The MAE is not highly sensitive to the random seeds
and the number of epochs. The CPA and WES have more volatility, but it is still
in a comparably range with the original run and the results from the winner. It is
important to mention that in train and validation sets, the predictions are done for
the next visit, which is on average six month ahead but on the test (D4) this time-
span is up to five years ahead. Therefore, the loss of D4 is a factor of five or so more
than train-validation.

Experiment vents
Train
MAE

vents Val
MAE

vents
MAE

vents
WES

vents
CPA

Winner 0.41 0.29 0.43
CNN-Orig-Exp 0.08 0.08 0.39 0.30 0.10
Dataseeds
(10 different values)

0.08± 0.00 0.08± 0.00 0.39 ±
0.0047

0.30 ±
0.032

0.13 ±
0.0626

DataSeedsPreds-combined 0.39 0.30 0.08
ModelSeeds
(10 different values)

0.08± 0.00 0.08± 0.00 0.39 ±
0.0032

0.31 ±
0.0135

0.04 ±
0.0320

ModelSeedsPreds-combined 0.39 0.31 0.01
Epochs
(20, 50, 100, 200, 300,
400, 500, 700, 1000)

0.08± 0.00 0.08± 0.00 0.39 ±
0.0000

0.31 ±
0.0163

0.03 ±
0.0255

EpochsPreds-combined 0.39 0.31 0.07
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6.9.2 Feature Ordering

The volume-based representation maps the three-dimensional spatial information

into a one-dimensional space. Therefore, the ordering of the features cannot be pre-

served. Having the highest volatility, Table 6.9, in comparison to the other factors,

Table 6.8, it is important to note the impact of feature ordering in keeping some

spatial patterns. Nevertheless, the worst result is not drastically changing the per-

formance and is still comparable to the winner performance. Despite being obvious,

it is worth mentioning that we use the same feature ordering for the test set as the

one that the network is being trained on.

Table 6.9: The MAE has a higher sensitivity to changes in the ordering of the regions.
However, the range of changes are still comparable with the original results and the
ones from the winner. This means that despite having some optimum regional layouts,
not knowing the best layout will not worsen the performance, drastically.

Experiment vents
Train
MAE

vents Val
MAE

vents
MAE

vents
WES

vents
CPA

CNN-Orig-Exp 0.08 0.08 0.39 0.30 0.10
RegionOrders
(10 different random
orders)

0.08± 0.00 0.08± 0.00 0.39 ±
0.0070

0.28 ±
0.0166

0.04 ±
0.0308

RegionOrder-combined 0.39 0.27 0.10

6.9.3 Interpretation Limitation

To have a better interpretation of the performance, we should take into account

multiple aspects of the problem. Firstly, the disease progression curve might be

different from the neural damage part. This means that for this particular task, the

ratio of information to noise is much less when we only take the brain’s volumetric

information rather than the rest of the measures. Secondly, the ventricle growth is

a consequence of brain atrophy, but this atrophy can be either Alzheimer’s or other

types of dementia.
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Lastly, the disease pattern has both cross-sectional and longitudinal patterns. By

selecting a convolution net over the recurrent neural net, we concentrated on a cross-

sectional pattern and replaced the temporal information we could capture from the

data with a simple linear model assumption. Thus, this model is performing better

than the available temporal models for the near future, e.g., less than five years,

which is our data. Still, the error on average grows over time as it is observable in

Figure 6.6.

6.10 Multimodal Experiments

The single modal CNN, as mentioned in 6.9, already outperforms the leaderboard.

The single modal prediction is only aware of the current state of the brain regions’

volume. A physician, however, would typically take other patient’s information into

account for making a prediction. This includes the history and individual characteris-

tics of the patient. To reflect this practice into our computation model, we hypothesize

that the extra information provided by other modalities can improve the prediction

performance. Subsection 6.10.1 explains the hypotheses and some preliminary evalu-

ation. The following subsections evaluate multiple approaches for including the other

information from modalities into the current model.

6.10.1 Hypotheses Analysis

According to the previous studies in the literature, the disease progression rate

gets worse in the later stages [167]. Furthermore, the individual characteristics such

as the APOEε4 genetic factor have an association with the progression rate [167].

Following this domain knowledge, we make two hypotheses:

• H1: The neural deterioration progression rate looks differently for the patients

in different stages.

• H2: The progression slope or overall curve shape is different for individuals with

different characteristics, such as genetic factors.
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The Ventricle-ICV and Alpha distribution for the records of three different AD

stages is demonstrated in Figure 6.7. Particularly, the difference between Figures 6.7a

and 6.7c supports the first hypothesis. It is also in line with the discriminative

approach suggested by the TADPOLE winner [151].

Figures 6.8c and 6.8d demonstrate how median of Ventricles-ICV volume and pro-

gression rate are different in each genetic group. The Figures 6.8b and 6.8a further

demonstrates the progression differences with respect to the patients’ initial (baseline)

diagnoses.

These initial analyses clearly suggest that at least the patient stage and genetic

factor can provide some beneficial information regarding the curve shape.

As we discussed, the CNN model we designed does not have an understanding of

the temporal aspect, i.e., the patient’s history. We expect that providing a complete

picture of the patient’s current status compensates for part of that weakness.

The differences between MCI subgroups in Figure 6.8 further suggests that the

initial three clinical diagnosis labels, i.e., cognitive normal (CN), mild cognitive im-

pairment (MCI), Alzheimer’s Disease (AD), may not be sufficient for conveying the

patient’s stage. Similarly, the APOEε4 shows the impact of individual genetic dif-

ferences. One can also take other individual differences into account.

To better capture the stage information, we include the features mentioned in

a prior work [151] to the diagnosis, and we use Age, APOEε4 and Education, as

mentioned in another work [167], for capturing the individual differences.

6.10.2 Multi-modal: Fusion Analysis

We implemented the fusion framework discussed in Section 6.7.2 using all the fea-

tures in modality B. Table 6.10 shows the results of different levels of fusion - look

at Figure 6.3, for a convolutional neural network with original depth of six. As the

results demonstrate, there is no monotonic relationship between fusion depth and

performance. This is one example of the cases that we cannot predict what the most
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effective fusion level for integrating information of the modalities is. It is important

to note that fusion at depth five in this example performs significantly worse than

the original single modality. Even the late fusion method, which is the most popular

fusion approach in heterogeneous modalities, is not adding more value to the single

modal method. This is one reason that we call the common fusion approaches blind

method.

Table 6.10: The results for different levels of fusion combining all of the modality B
features. These results are based on training for 30 epochs, and by adding batch
normalization and dropout with probability 0.2 to the convolution architecture. All
the numbers in the table are rounded to two decimal points and sorted ascending
based on D4-MAE. As it is shown on the table, the best result on D4 (test data)
belongs to ADAS13 as the branching feature, which significantly outperforms the
winner and our original result.

Fusion Type Fusion
Depth

Train-
MAE

Val-
MAE

D4-MAE D4-WES D4-CPA

Middle Fusion 2 0.08 0.08 0.37 0.30 0.17
Early Fusion 0 0.08 0.08 0.37 0.30 0.03
Middle Fusion 3 0.08 0.08 0.38 0.31 0.03
Late Fusion 0.08 0.08 0.38 0.38 0.10
Middle Fusion 1 0.08 0.08 0.40 0.34 0.15
Middle Fusion 4 0.08 0.08 0.41 0.29 0.03
Middle Fusion 5 0.22 0.23 0.53 0.32 0.04
OrigCNN 0.09 0.09 0.38 0.31 0.03
Winner 0.41 0.29 0.43

6.10.3 Tree-Structures: Auxiliary Feature Analysis and Evaluation

Decision tree and neural networks have some fundamental differences in the mech-

anisms they utilize for learning the statistical patterns. There are some advantages

and disadvantages to each of these approaches. Using the architectures explained in

Section 6.7.3, we benefit from some of the decision tree mechanisms to improve the

previous convolutional neural network architecture in the absence of a large dataset.

Table 6.11 shows the results for a binary-tree with a deterministic branching method,

and the Table 6.12, shows the results using a non-deterministic method such as a

weighted-Sigmoid block for branching. The results are more interpretable and have
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some hint for a future model integration method.

Gini− index = 1−
n∑
i=1

(pi)
2 (6.10)

Table 6.11: The results for a binary branching using modality B features. These
results are based on training for 30 epochs, and by adding batch normalization
and dropout with probability 0.2 to the convolution architecture. Each row of the
table demonstrates an experiment using one of the features from modality B to do
the branching. The breakpoint is selected through the standard regression model
tree process by selecting the value that provides maximum standard deviation re-
duction. All the numbers in the table are rounded to two decimal points and sorted
ascending based on D4-MAE. As it is shown on the table, the best result on D4 (test
data) belongs to APOE4, WholeBrain, and ADAS13 as the branching feature, which
outperforms the winner and our original result.

Feature Gini-
index

SDR-
Alpha

Miss
(%)

Break
Point

Arch Train-
MAE

Val-
MAE

D4-
MAE

D4-
WES

D4-
CPA

APOE4 0.17 0.04 0.090 1.47 conv 0.09 0.08 0.37 0.33 0.09
WholeBrain 0.39 1.25 21.91 -1.61 conv 0.08 0.08 0.37 0.32 0.03
ADAS13 0.49 2.48 26.64 -0.43 conv 0.08 0.08 0.37 0.35 0.09
TAU 0.24 4.59 78.55 1.22 conv 0.08 0.08 0.38 0.36 0.13
Education 0.23 0.65 0 1.26 full 0.12 0.12 0.38 0.32 0.15
Age 0.16 0.67 0 -1.51 conv 0.08 0.08 0.38 0.34 0.33
Age 0.16 0.67 0 -1.51 full 0.10 0.09 0.38 0.34 0.34
Hippocampus 0.28 0.08 32.20 0.97 conv 0.09 0.10 0.38 0.33 0.11
WholeBrain 0.39 1.25 21.91 -1.61 full 0.10 0.10 0.40 0.34 0.19
PTAU 0.49 0.40 56.65 -0.14 conv 0.09 0.09 0.40 0.29 0.08
PTAU 0.49 0.40 56.65 -0.14 full 0.10 0.10 0.40 0.37 0.24
ADAS13 0.49 2.48 26.64 -0.43 full 0.10 0.10 0.40 0.39 0.21
TAU 0.24 4.59 78.55 1.22 full 0.09 0.10 0.41 0.33 0.01
MMSE 0.49 -0.00 25.84 0.45 conv 0.09 0.09 0.41 0.35 0.32
Education 0.23 0.65 0 1.26 conv 0.10 0.11 0.41 0.32 0.04
Diagnosis 0.45 1.54 0.09 -0.48 conv 0.08 0.08 0.42 0.37 0.04
Hippocampus 0.28 0.08 32.20 0.97 full 0.13 0.12 0.44 0.36 0.11
APOE4 0.17 0.04 0.090 1.47 full 0.12 0.12 0.45 0.33 0.05
Diagnosis 0.45 1.54 0.09 -0.48 full 0.13 0.13 0.49 0.49 0.20
MMSE 0.49 -0.00 25.84 0.45 full 0.13 0.14 0.56 0.33 0.21
OrigCNN 0.09 0.09 0.38 0.31 0.03
Winner 0.41 0.29 0.43

6.11 Conclusion and Future Works

In this chapter, we suggested a volume-based convolutional neural network, which

uses engineered features instead of raw intensity values of structural MRI for pre-
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dicting ventricle volume change in AD patients. We demonstrated that this model

outperforms the prior winner of the TADPOLE competition. Additionally, we did

further robustness analysis and observed comparable performance with the winner

despite changing the number of epochs, data, model random seeds, and even feature

order. Also, we observed the lowest sensitivity of the model in the number of epochs,

and the highest sensitivity belonged to the feature ordering.

After the result analysis, we hypothesized that deterioration for patients at a dif-

ferent stage and different individual characteristics follow a different distribution. We

used fusion as well as a more careful tree-structure convolution neural network (tree-

CNN) methods for integrating the modality information. Getting the best result from

tree-CNN with branch factor ADAS13 validated the hypothesis and importance of

the patient stage. It further confirmed that a careful knowledge-based feature fusion

could provide better results than a blind fusion method. We further observed that a

branching feature that has the highest standard deviation reduction is not necessar-

ily the best branching feature. However, a trade-off between data size and SDR can

demonstrate a suitable branch feature.

In our future work, we will further analyze the models with multiple features in

modality B of tree-CNN. We will also examine more than two branches, and its effect

on performance increase or decrease. Another factor is the data size in each group

and the balance between the size of branches. Due to the limitation of the available

data, we need some form of simulated data for further controlled analyses11.

11An extension of this work covering some of these analyses will be submitted as a journal article.
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Figure 6.5: A summary of experiment pipeline for evaluation of volume-based convo-
lutional neural network for TADPOLE AD data. Training five models using five-fold
data, we calculate the average expectation and confidence interval for alpha (ven-
tricles/ICV growth). The measure is then used to make a monthly prediction file
for the next five years. D4 is then compared with the closest records to the actual
measurement-date of the corresponding patients in the prediction file.



94

Figure 6.6: The absolute error is on average lower for the near future than later.

(a) Cognitive-normal
records

(b) MCI records (c) AD records (d) All records

Figure 6.7: Distribution of Ventricles/ICV vs Alpha-Ventricles-ICV, i.e % change
in Ventricles/ICV from one session to the next. The distribution is shown for each
categories of visit according to the physician diagnosis for that visit. Additionally, the
median line for Ventricles/ICV and Alpha-Ventricles-ICV is shown in black dashed-
line. The distribution shift is more observable when comparing the normal and AD
patients.



95

(a) Ventricles-ICV in Baseline Diagnosis
groups.

(b) Progression rate (α) in Baseline Diagnosis
groups

(c) Ventricles-ICV in APOEε4 genetic factor
groups.

(d) Progression rate (α) in APOEε4 genetic
factor groups.

Figure 6.8: Comparison of Median Ventricle/ICV (left) and Alpha-Ventricles-ICV
(right) changes over the visits in each Diagnosis-at-baseline groups (top) and APOE
groups (bottom). A general lower incline for median ventricles-icv and alpha is ob-
servable for APOE4=0 and CN groups. In AD patients, despite positive incline on
Ventricles-ICV, the Alpha median is reducing, which is different from MCI in this
sense. Moreover, EMCI and SMC is more similar to CN in the early months, while
LMCI is closer to the AD pattern in that time.
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Table 6.12: Instead of a deterministic threshold, we used similar architectures with
a Sigmoid block. This block provides a weight for the corresponding branch making
a nondeterministic threshold. The input for the Sigmoid block in each row is one
of the Diagnosis, ADAS13, APOE4, MMSE features, and the number of branches
tried for these features is between 2 to 6. These results are based on training for 30
epochs, and by adding batch normalization and dropout with probability 0.2 to the
convolution architecture. All the numbers in the table are rounded to two decimal
points and sorted ascending based on D4-MAE. As it is shown in the table, the best
result on D4 (test data) belongs to diagnosis with two branches, which outperforms
the previous results. These results have informative hints for the future works.

Feature Miss
(%)

Branch-
Count

Arch Train-
MAE

Val-
MAE

D4-
MAE

D4-
WES

D4-
CPA

Diagnosis 0.09 2 full 0.10 0.09 0.36 0.33 0.01
ADAS13 26.64 3 conv 0.12 0.13 0.37 0.29 0.27
APOE4 0.090 2 full 0.09 0.09 0.37 0.40 0.00
Diagnosis 0.09 3 conv 0.09 0.09 0.38 0.34 0.28
ADAS13 26.64 6 conv 0.24 0.24 0.39 0.30 0.37
Diagnosis 0.09 3 full 0.14 0.15 0.39 0.33 0.33
MMSE 25.84 5 full 0.20 0.20 0.41 0.29 0.09
MMSE 25.84 3 full 0.16 0.16 0.42 0.30 0.27
ADAS13 26.64 3 full 0.11 0.11 0.42 0.30 0.11
MMSE 25.84 2 full 0.10 0.11 0.42 0.36 0.11
Diagnosis 0.09 5 full 0.16 0.17 0.43 0.30 0.07
ADAS13 26.64 2 conv 0.10 0.10 0.46 0.26 0.02
ADAS13 26.64 6 full 0.29 0.29 0.47 0.32 0.43
Diagnosis 0.09 2 conv 0.22 0.24 0.47 0.31 0.03
MMSE 25.84 3 conv 0.12 0.12 0.50 0.33 0.14
APOE4 0.090 4 conv 0.32 0.32 0.50 0.36 0.39
ADAS13 26.64 2 full 0.14 0.14 0.50 0.36 0.33
APOE4 0.090 2 conv 0.30 0.30 0.52 0.30 0.04
MMSE 25.84 5 conv 0.25 0.25 0.52 0.29 0.40
MMSE 25.84 6 conv 0.32 0.33 0.54 0.29 0.35
MMSE 25.84 6 full 0.33 0.32 0.54 0.31 0.35
Diagnosis 0.09 5 conv 0.10 0.10 0.54 0.40 0.29
ADAS13 26.64 4 conv 0.32 0.30 0.60 0.36 0.42
ADAS13 26.64 5 full 0.14 0.14 0.62 0.52 0.39
MMSE 25.84 2 conv 0.18 0.19 0.62 0.29 0.09
Diagnosis 0.09 6 full 0.40 0.39 0.69 0.40 0.37
ADAS13 26.64 5 conv 0.15 0.15 0.70 0.32 0.41
MMSE 25.84 4 full 0.25 0.23 0.79 0.33 0.29
Diagnosis 0.09 4 full 0.18 0.17 0.84 0.44 0.24
APOE4 0.090 4 full 0.37 0.36 0.95 0.35 0.26
Diagnosis 0.09 4 conv 0.27 0.27 1.00 0.41 0.37
ADAS13 26.64 4 full 0.36 0.37 1.06 0.31 0.35
Diagnosis 0.09 6 conv 0.39 0.39 1.14 0.53 0.41
MMSE 25.84 4 conv 0.54 0.55 1.45 0.36 0.34
OrigCNN 0.09 0.09 0.38 0.31 0.03
Winner 0.41 0.29 0.43



CHAPTER 7: Conclusion

This dissertation defined a framework for analyzing the multimodal regression ap-

plications from the information abstraction perspective. We defined a dimensional-

based framework to study conventional methods for different combinations of low-

level and high-level modalities. We designed a pipeline to use domain knowledge to

integrate heterogeneous features from multiple modalities effectively.

Our framework used the representation dimensionality as a quick description of

a high-level representation vs. a low-level one. However, we demonstrate that this

notion is not precisely equivalent to abstraction in Chapter 2. For example, in the case

of treatment planning in Chapter 5, we demonstrated a domain-driven abstraction-

leverage in CT-scan representation without changing the dimensionality.

We further discussed the modality integration method and the popular fusion ap-

proach for homogeneous and heterogeneous modality combinations. However, we

discussed through the case of Alzheimer’s disease progression prediction in Chap-

ter 6 that a blind fusion might not always improve the performance. We suggested a

tree-structure convolution neural network (tree-CNN) that can enhance information

integration performance for some specific distributions along the proposed pipeline.

We demonstrated this method’s higher performance compared to a blind fusion frame-

work for the disease progression prediction in Alzheimer’s Disease.

7.1 Future Perspective

The tree-CNN architecture we suggested is a pipeline of classification followed by

a regression model. While the model tree is a simple classification method, demon-

strated in our architecture, this can be further extended with more complex classifi-
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cation/clustering methods. The core idea we are proposing and will be expanding in

our future work is a model integration perspective instead of blind data and feature

fusion. This topic is specifically crucial for the regression task, which requires a more

precise model, and the target linearity, monotony, and topology directly impact the

task complexity.

In our work, we used the simplest forms of classification and convolution neural

networks. The model could be explored through more complex models of classic

classification and deep learning architectures, e.g., adversarial networks or attention-

based methods. These tools can further refine the models we suggested both in a

bottom-up and in a top-down way.

In our future works, we plan to evaluate this with some simulated data to quanti-

tatively study the situation in which a model-integration is more appropriate than a

data-integration method. Specifically, we want to explore the role of low-dim feature

importance in distribution desegregation, the number of branches, and its trade-off

with the data-size. This helps us to move toward a more quantified pipeline for using

domain-knowledge in designing an efficient model.

Finally, the contribution of our method is mainly studied from the optimization

perspective [182] in this dissertation. The domain-driven pipeline can be studied from

other aspects, such as interpretability, usability from the physicians’ perspective, and

the other practical applications. This can be further researched in future works.
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