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ABSTRACT

RORY MICHAEL CASEY. Computer Implementation of Symplectic Integrators and
Their Applications to the N-body Problem (Under the Direction of DR. XINGJIE LI)

This research has worked to develop a general computer implementation for symplectic
algorithms applied to the N-body problem. A program was written to evolve an arbitrary
N-body problem with an arbitrary symplectic integration algorithm so long as the coefficient
matrix corresponding to the algorithm is known. After the implementation was completed,
a set of sample two and three body systems were evolved using the symplectic integration
methods. It was found that high accelerations cause the symplectic algorithms to fail in
terms of accuracy. It was also found that while high order integrators struggled to accurately
evolve a system with very long time steps, they far surpassed low order methods as the time
step was reduced. It was also found that the symplectic integrators were better able to
evolve N-body problems over long time intervals than the backward differentiation formula

methods.
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1 INTRODUCTION

In the world of physics, the goal is always to understand that which lies beyond the
scope of human knowledge. From the earliest days of history, humanity has tracked the
stars, explored the furthest reaches of nature, worked to understand quantum mechanics,
and model the mathematics of a black hole’s interior. This particular research had the goal
of exploring the use, development, and implementation of symplectic integrators in regards
to the N-body problem. In the first section, past research on the subject is covered, the
history of the N-body problem is explored, and its construction as a Hamiltonian problem
is defined to allow the use of symplectic integration techniques. In the second section, the
specific symplectic integrators that are used will be introduced. In the third section, a
series of example systems are developed to test the four symplectic integration methods
over different time steps and for different time intervals. Finally, in the fourth section, the
results of the various integrations will be presented and the errors in the systems will be

analyzed.

1.1 Previous Research

In previous research, the N-body problem was studied as it relates to the study of dark
matter. Dark matter is the enigmatic source of stability in the universe. While dark energy
drives space-time itself apart, dark matter holds the universe together. [1] Without dark
matter, even the Milky Way galaxy would not survive. Most stars in our galaxy would be
cast into deep space and galactic cohesion would be lost. While scientists possess a sound
understanding of the importance of dark matter, their understanding of the nature of this
phenomenon is minimal at best. It is known that dark matter interacts gravitationally
following the laws of general relativity and is approximated by Newtonian mechanics. It is
also known that dark matter does not interact electromagnetically or through the strong

and weak forces. The universal structure and distribution of dark matter is also known. [1]



Despite understanding specific indirect information regarding dark matter, no one has ever
been able to explain what all dark matter is, where it comes from, and how it is distributed
on local scales.

As to what dark matter is, it is commonly accepted that there are three possibilities
for the nature of dark matter: MACHOs, WIMPs, and neutrinos. [1] MACHOs are large
objects like rogue planets, brown dwarfs, black holes, or neutron stars. The objects are
difficult to detect which allows them to be considered dark matter. However, it is generally
accepted that MACHOs are not the primary candidate for dark matter. [1] If they were,
there would be trillions of black holes and other objects stretching in narrow web-like bands
between galactic clusters, which is not behavior predicted by the current understanding of
physical laws. It is important to remember that while MACHOs may not be the largest
contributing factor to dark matter mass, when studying dark matter on local galactic scales,
a good model will always account for them because they do exist in the system. WIMPs
are the next model commonly used to explain dark matter. WIMPs are derived from
supersymmetric extensions to the standard model of particle physics and at this point
remain a concept described by theoretical mathematics rather than accepted physics. These
particles are essentially super sized versions of common particles such as leptons. [1,2] They
are developed as a mathematical solution to known problems with the standard model, but
to date, there are no theories about where they come from, how they are produced, how
many are expected to exist, or why particles with one thousand times the mass of a proton
have never been observed if WIMPs make up 27% of the known universe. [3,4] Neutrinos,
on the other hand, are very well understood. First postulated by Wolfgang Pauli to explain
nuclear decay, neutrinos are an accepted part of the standard model of particle physics.
[2] Neutrinos are commonly made in nuclear fission and fusion reactions including those in
stars where hundreds of billions of neutrinos are produced every second by a single star. [2]

The only issue with neutrinos being the primary contributor to dark matter is that their



mass is currently unknown. Upper limits have been placed on their mass, but without an
exact number, it is difficult to know if they can truly account for as much as twenty-seven
percent of the universe’s mass.

In previous research, work has been done to show that from a numerical perspective,
gravitation is the most relevant source of force when evolving the N-body problem. Influ-
ences such as radiation pressure were found to have forces of more than twenty orders of
magnitude less than gravitation, making them irrelevant. Using this information, a program
was created to estimate the amount of dark matter in a galaxy using the central approx-
imation theorem. The program was written to determine how much mass was needed at
the center of an arbitrary galaxy to account for the motion of each star. This procedure is
common in orbital mechanics and is used to model systems such as the solar system due to
the system being nearly isotropic. However, it was found that the calculations were unstable
and resulted in mass estimates with twenty to thirty orders of magnitude difference from
star to star. As a result, it was determined that a new approach was needed, providing the

grounds for this research.

1.2 The N-body Problem

To begin work on numerical integration of the N-body problem, it is important to first
understand the N-body problem. The N-body Problem was first postulated by Isaac Newton
during his work on Philosophiae Naturalis Principa Mathematica. [1] The N-body problem,
generally, is the problem of evolving a system of N bodies interacting with each other
through gravitational attraction. The problem is interested in forward and backward time
evolutions of the system. [5] At first glance, this may seem to be an easy task; after all, Isaac
Newton used only analytic geometry to develop rigorous solutions to a variety of three body
problems. [6] However, Newton’s solutions could not be generalized. In fact, Newton himself

uses his third law, "according to this law, all bodies must attract each other,” to describe



the interactions which drive this seemingly simple system to chaos. [6] Every object in the

N-body system moves according to the simple differential equations governing motion. [7]

Definition 1.2.1 Let an object under the influence of gravity from N other bodies exist

and be denoted by by. Then the trajectory of by is the solution to the system of differential

equations
deO (t)
=V
dt bo
dVbO Fbo (t)
J— t J—
dt abO( ) My,

where Xy, (t) is the position of by at time t, vy, (t) is the velocity of by at time t, ap,(t) is the
acceleration of by at time t, ¥y (t) is the net gravitational force acting on by at time t, and

my, @S the mass of by.

Given that this is a gravitational system, a definition for the force function can also be

stated following the work of Newton in Principia.

Definition 1.2.2 For an object of mass mg interacting with N additional bodies through

gravity, the net force, Fo(t), at time t can be defined as

N

Fo(t) Z Gmom;(x;(t) — xo(t))

= ) =%

where G = 6.674x107' is Newton’s gravitational constant and the 2-norm is normally

defined.

The classic N-body problem is to find the trajectories of bodies in a gravitationally
interacting system that is defined by a differential system of equations where each of the
N bodies in the system has its motion described by the equations in Definition 1.2.1 with
accelerations determined by the force function of Definition 1.2.2. This paper will focus on

this classic statement of the N-body problem; however, it is important to note that many



other physical problems are modeled in the same way while changing the equivalence of the
acceleration and the definition of the force function. For example, N electrically interacting
objects of large mass could be described by replacing gravitational force with the formula
for electric attraction and repulsion.

The chaotic nature of this general N-body system is what has impeded progress towards
a general solution. In fact, the chaotic nature of the problem has led to the common belief
that there does not exist a solution to the N-body problem. [5] A more accurate statement
is to say there is no closed form solution to the N-body problem. To see why, the degrees of
freedom and available integrals of motion must be examined. For the degrees of freedom, it
is necessary to understand what information is needed to solve the problem. When solving
the N-body problem, finding the position vector at every point in time is the goal. [6]
However, the positions of each body are determined by the velocities at each point in time.
[1] The velocity vector and position vector of each body contribute three degrees of freedom

each to the problem leading to the following statement.

Theorem 1.2.1 Let there exist an N-body system governed by gravitational interactions

only. Then the degrees of freedom for the N-body evolution is 6N .

This theorem is obviously true following from the previous statements. It is possible to
reduce the degrees of freedom in the N-body system by making use of the first integrals
generated by conservation of energy, conservation of angular momentum, and conservation

of linear momentum.

Definition 1.2.3 A first integral of a system of differential equations is a function which
remains constant along any solution of the system. Its value is dependent on the particular
solution. The integral is algebraic if it can be solved algebraically for one variable in terms

of the others.

The first six integrals of motion can be derived using the conservation of linear momen-



tum. The conservation of linear momentum is the physical law which states that linear
motion in a system is conserved. [7] The conservation of linear momentum is commonly
applied in problems such as inelastic collisions, and it is equally sound in the N-body prob-
lem. The conservation of linear momentum is equivalent to the sum of forces being 0 in an
isolated system. So take Zjvzl m;i; = 0 and integrate the system twice to get Zjvzl m;v; =
E;.V:l m;r; = 0 which provides the first 6 first integrals that are relevant. Each component
of these two equations provides one first integral. [8,9] The next three first integrals are
obtained from the conservation of angular momentum. From the anticommutativity of the
cross product, the angular momentum gives Zjvzl m;(rjai;) =0=4 Zjvzl m;(r;zv;). So
for some constant ¢, and by the conservation of angular momentum, Z;VZI m;(rjov;) = c
which gives three first integrals. [8,9] Then using the conservation of energy, a tenth, and
final, first integral can be obtained by defining the potential of the system and convert-
ing as Z;VZI m;(E;5;) = 4(1 Z;VZI m;v3) = Zjvzl gTUjrj = 4U. This gives the equivalence
T=; Zjvzl m;v; = U+ h for some constant h with respect to time. [8,9] These ten first in-
tegrals are used to reduce the degrees of freedom of the N-body problem and can be used to
show that the two body problem in three dimensions is equivalent to a specially constructed
one body problem in one dimension. [5] Unfortunately, for N > 3, no such reduction is
possible. In his work on the three body problem, Poincare proved the following Theorem:

[10]

Theorem 1.2.2 There are no first integrals, algebraic with respect to the time, position,

and the velocities only, other than the ten abvove.

Since the N-body problem has 6 N degrees of freedom and there are only ten first integrals
of motion, the most the system can be reduced is to 6N — 10 degrees of freedom. For the
two body problem, this gives two degrees of freedom which is the one body problem in
one dimension as discussed earlier. The general two body solution known as Binet’s orbital

equation can be derived through complex analysis and is easily followed in the work by



D’ Eliseo. [11] For the three body problem, however, the reduction gives eight degrees
of freedom, which is why there is no closed form solution for the general N-body problem.
Despite having no general closed form solution for the N-body problem, there is a convergent
series solution derived by Sundman in [12] for the three body problem in 1913 and extended
to the N-body problem by Qiu-Dong in 1990. [13]

For the statements and proofs of the Sundman and Qiu-Dong series solutions to the
N-body problem, the reader is referred to the original papers published on the topic. [12,13]
It is important to note, however, that the general series solution to the N-body problem
presented by Qiu-Dong does not extend to all cases. In Sundman’s original work, he analyt-
ically extended past binary collisions by recognizing they were algebraic branch points and
using a conformal mapping to regularize the phase space. [8,12,14] However, as noted by
Qiu-Dong, regularization can only be applied to binary collisions, and it is well known that
while the three body problem only undergoes singularity at a binary collision, an arbitrary
N-body problem can experience singularities at triple or greater collisions and can even
experience singularities at times where there are no collisions. [13] Fortunately, though, it is
commonplace to simply ignore initial conditions which result in singularity. This is accepted
in the physics community because it has been proven that the set of all initial conditions
corresponding to singularity in the N-body problem has Lesbesgue measure zero. [15,16]
This theorem is proven clearly in the work by Saari and the reader is referred to that work

for a detailed proof.

Theorem 1.2.3 The set of initial conditions leading to collision in finite time has Lesbesque

measure zZero.

This theorem leads the physics community to accept the Sundman and Qiu-Dong series’
as solutions to the three body and N-body problems. However, the work by both of these
figures remains fairly unknown because the convergence of the series’ is extremely slow. This

slow convergence means that, under certain assumptions, a solution to the N-body problem



has been found, but is ultimately not useful because of slow convergence. Therefore, it is
important to continue to improve and analyze numerical methods for integrating the N-body
problem.

The final theoretical consideration for dynamic systems, like the N-body problem, being
evolved in this research is a topic known as attractors. Attractors are an important con-
sideration in dynamic systems because they control the evolution in a dynamic system for

long time simulations.

Definition 1.2.4 Let t be time and f(t,-) be a dynamic function defining the evolution of

the system. Then an attractor is a subset, A, of phase space characterized by

1. A is forward invariant under f. This means that if a € A, then f(t,a) € A for all

t > 0.

2. A has a basin of attraction. The basin B(A) is the set of all b in the phase space such

that for any open neighborhood N of A, there exists a positive constant T such that
f(t,b) € N forallt >T.

3. There is no proper, non-empty subset of A with the first two properties satisfied. [17,18]

There are many kinds of attractors including fixed point attractors, periodic attractors, and
strange attractors. In N-body simulations, periodic attractors and strange attractors are

the most common types. [18]

Definition 1.2.5 Let A be an attractor in a dynamic system. Then A is a strange attractor

if its structure is fractal in nature. [19]

Definition 1.2.6 Let A be an attractor in a dynamic system. Also let z(t) be a closed
trajectory in phase space satisfying the differential system being examined. Then A is a
limit cycle of the dynamic system if it is the limit set of some trajectory which is not its

own.



These attractors are useful in N-body systems because most real N-body systems are
stable systems that destroy or merge together bodies that would drive the system to chaos.
For example, the Sol system once had a planet between Earth and Mars that was obliterated
in a collision which led to a more stable system and the Earth’s moon. [1] In large N-body
systems where all bodies have regular orbits, periodic attractors will pull nearby trajectories
to themselves as time proceeds to infinity even if the trajectory is slightly disturbed. In the
symplectic integration techniques that will be used for this research, the error at each time
step appears mathematically as a slight disturbance in the trajectory away from a body’s
true orbit. This means that when combined with 2-form conservation that will be discussed
later, the presence of periodic attractors in the N-body system guarantee long term stability
of symplectic integration. To locate these special features of dynamic systems, Lyapunov
functions are commonly used. While a detailed description of the many applications of
Lyapunov functions is beyond this paper, the reader is referred to [20] for examples of and

uses of Lyapunov functions in locating attractors for dynamic systems.

1.3 Hamiltonian Mechanics

While studying the N-body problem, the second step is in understanding the way in
which it is viewed by mathematicians and physicists today. To do this, it is important to

understand the basics of Hamiltonian mechanics.

Definition 1.3.1 A Hamiltonian system is a dynamic system of differential equations de-

fined by:
dp
X - vV .H
dt Vq (p7 q)
dq
2 v H
7 V,H(p, q)

where p 1s the momentum in phase space, q is the position in phase space, and H 1is the

Hamiltonian function of the system. [21]
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For many general mechanics problems, including the N-body problem, the Hamiltonian is

representative of the total energy of the system and is therefore separable. [22]

Definition 1.3.2 Let K(p) be the kinetic energy of an N-body system, and let U(q) be the
potential energy of the system. Then the separable Hamiltonian, H, of the N-body system is
[23]

H(p,q) = K(p) + U(q)

For a specific example on constructing the Hamiltonian of a system, the reader is referred
to [24] which constructs the Hamiltonian for triaxial galactic nuclei.

Hamiltonian systems are important to the understanding of the N-body problem because
they possess several important properties. The first of these properties is the simplicity of
the 2-form in phase space. The 2-form of the Hamiltonian system is [21] H (p, ¢)dp A dgq with

the relevant integral being

/HWQWA@
S

When discussion begins on symplectic integrators in a later section, the 2-form becomes a
very important property of the Hamiltonian system. [23,25] For now, it is sufficient to know
that this 2-form defines the differential form, or geometry, of the phase space related to the
Hamiltonian. [21] In addition to the 2-form, Hamiltonian systems are useful in studying the
N-body problem because they are well known producers of attractors which are important
in ensuring convergence of a dynamic system. Understanding the N-body problem as a
Hamiltonian problem is also relevant to this research because symplectic integrators are
specifically designed to work on Hamiltonian systems. [26] They cannot be used, in general,

for non-Hamiltonian systems.
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2 INTEGRATION TECHNIQUES

The next important topic to cover in research regarding the symplectic integrators is the
integrators themselves. In the following sections, the backward differentiation formulas will
be presented first. These methods are well understood and Python has existing packaging
to make use of a 6th order BDF method which will allow for accurate short time evolution
of each system. The short time evolution of each system will serve as a reference system
to compare the symplectic integrators to with a variety of time steps. Following the BDF
method explanations, a basic example of long time error in BDF method evolution will
be examined in the classic explicit Euler method. After it becomes clear that long time
simulation of the N-body problem requires a more accurate numerical approach than the
BDF methods, the four symplectic integrators that will be used here are the first order
symplectic Euler method which is a slight modification of the explicit Euler method, the
second order Verlet method which is closely related to the traditional leap-frog algorithm,

the third order Ruth method, and the fourth order Neri method.

2.1 Backward Differentiation Formulas

The first group of integration techniques that will be examined here are the BDF meth-
ods. BDF methods are a class of integrators designed for use in stiff systems of ordinary
differential equations such as the N-body problem. [27] The classic explicit Euler method is
the first order BDF method. This shows the primary strength and weaknesses of this class
of integrators. The main strength of these schemes is their ease of implementation. This
strength is offset by lack of accuracy. As with any numerical scheme, the BDF methods
rely on mesh size to become accurate; the shorter the time step at each approximation,
the better the estimate that is returned. [28] The sixth order BDF method used to gen-
erate the reference systems in this research will rely on a mesh size of At = 0.0016. As

will be discussed in the results section later, even over the short-time intervals that will
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be examined in this research, the accumulating error of the BDF methods is evident. As
t — oo a BDF method will always eventually diverge from the true solution no matter the
mesh size. [28] The need to constantly reduce mesh size with increasing time makes BDF
methods inappropriate for long-time evolution of an N-body system. The 6th order BDF
method used for the short-time reference systems in this research is appropriate because
of the short-time intervals. However, an N-body system that needs to evolve over millions
of years (such as a galaxy) would be an inappropriate use of a BDF method. The general

algorithm for a multi-step method is: [27,28,29]

k k
> ittngroi = hn > Becif (bngi—is tns1—i) = 0
i=0 1=0

This is adapted for the BDF methods to:
"1
Z Zvlunﬂ = hf(tns1, Uns1) + Unsa

=1

For example, the 3rd order BDF method is:

18 9 2 6h

n = T Up — T Up— T Unp— T tn y Un
Up+1 11U HU 1—1—11u 2+11f( 15 Unt1)

2.2 Explicit Euler Example

As an example of the failures of BDF methods, a simple example of the class explicit

Euler method will be presented here. This simple method can be formally stated as [28§]

Up+1 = Up + h.f<tn7 un)

For this example take the initial value problem 3’ = y,y(0) = 1 which has the true solution

y = e'. The explicit Euler method for At = 1.0 and At = 0.25 are given by
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Figure 1: This figure shows the error of the explicit Euler scheme using At = 1.0 and
At =0.25

From this figure, it should be clear that for large mesh size, the explicit Euler method
diverges from the true solution rapidly. Also, it should be clear that despite the smaller
mesh size, the Explicit Euler method still eventually diverges from the true solution. This
long-time divergence from the true solution of the problem is a feature shared by all BDF

methods. [28]

2.3 Symplectic Integrators

This section will discuss the Symplectic schemes that will be used to evolve systems for

this research. Before beginning a discussion of each independent scheme, some time should
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be devoted to discussing what it means for an integrator to be symplectic, the properties of
these integrators, and why they are so important to Hamiltonian systems like the N-body

problem.

Definition 2.3.1 An integrator ¢ is symplectic if the trajectory of ¢(p,q) in phase space

conserves the 2-form of the Hamiltonian system in phase space. [25]

Definition 2.3.2 The two form for an arbitrary Hamiltonian system, including the N-body

problem, is given by H(p,q)dg A dp and has the integral [ H(p,q)dq A dp. [21]

Any integrator which conserves this 2-form in phase space is a symplectic integrator. [21,25]
It is important here to understand what it means to conserve the 2-form in phase space.
The 2-form in phase space defines the global interactions of the momentum and position
components of the Hamiltonian. Since the 2-form defines area in this phase space, the
integral | s H(p,q)dp A dq defines the total energy of the system. Therefore, a symplectic
integrator will conserve the total energy of the system. [21] This is an important distinction
from energy conservative integrators. Conserving the total energy of the system offers no
guarantees on the individual energies associated with each body. For example, if the area
in phase space is a rectangle with width 2 and length 1, then the energy is 2. Under a
symplectic map, we expect this 2 to be conserved, but we cannot guarantee that the new
shape is a rectangle at all. In the N-body problem, this means we expect the total sum of
the kinetic and potential energy to be conserved, but the symplectic map offers no guarantee
that every star will adhere to its true orbit.

While the nature of a symplectic transform itself offers no guarantee about adherence
of individual bodies to their true orbits, a special property of the N-body system does.
As discussed earlier, in most naturally occurring N-body systems, objects orbit in regular
elliptical patterns which allows attractors in the system to be considered. The most common

types of attractors are strange attractors which are prominent in systems like the Lorenz-63
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system, periodic attractors which are prominent in systems like dual pendulum motion, and

fixed point attractors.

Definition 2.3.3 Let o, p, and [ be physical constants defining an atmospheric system.

Then the Lorenz-63 system is given by: [30]

d
d—fZU(y—x)
d
L =w(p—2)—y
© oy pe

dt
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Figure 2: This image gives a sample Lorenz-63 system.

For some initial conditions, a single fixed point attractor is present resting just outside
the butterfly loop. For some initial conditions, two strange attractors are present in the
center of the loop. Still other initial conditions can result in a system which decays into
random motion and does not have an attractor. The N-body system for certain initial
conditions can contain strange attractors, periodic attractors, both, or neither, making it
somewhat more complex of a case study. However, the regular orbits of realistic N-body
gravitational systems mean that periodic attractors can be both common and useful. The
presence of periodic attractors in the phase space of realistic N-body problems provides
that once stars approach their true orbits in simulation, they will not seriously diverge for a

symplectic integrator. For example, when evolving the Sun-Earth-Moon system, you might
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expect the Earth to occasionally be outside or inside its true orbit, but the nature of the
attractor means that it will always return to its true path.

There are many forms of symplectic integrators, some of which are designed to be sym-
plectic and some of which just happen to be when applied to a Hamiltonian problem. One
group of methods which just happens to be symplectic are the Runge-Kutta methods. The
4 methods this research will focus on—-Symplectic Euler, Verlet, Ruth, and Neri—are all ex-
amples of integrators that are constructed to be symplectic. They are specifically designed
to be used for Hamiltonian systems. In general, all designed symplectic integrators are a
symplectic transformation on the initial conditions called a symplectic mapping. [21] This
mapping can be simply written as (i1, ¢us1) = t.1(Pn,@n). The symplectic integration
methods are all examples of the ¢, function. They take the system from a given point
to the next unknown point. Before studying each scheme in detail, we should look at how
these schemes are generally developed.

Let A and B be non-commutative operators and 7 be a small real number. Then the
goal of developing a symplectic integrator is to find 2 sets of real numbers (¢, co, ..., ¢x) and

(dy,dy, ..., dy) such that the following equality holds for a given positive integer n,[26]

o T(A+B) _ ﬁecm—Aedm—B +o(r™)
i=1
To derive this formula, we look at the methods used by Neri in [31]. First rewrite the
Hamiltonian equations in the form % = {z, H(z)} where the Poisson bracket {z, H(z)} is
defined by the form {F,G} = F,G, — F,G,. Then define D¢ to be a differential operator
by DgF := {F,G}. Then the Hamiltonian system can be written as € = Dgz. Then we
get the time evolution of z(t) from t = 0 to t = 7 by z(7) = 2(0)e™#. For a separable

Hamiltonian like the N-body problem, this becomes z(7) = 2z(0)e™+5) where A := Dy

and B := Dy. Then for two sets of numbers (c1,ca, ..., ;) and (dy,ds, ..., dy) satisfying
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2(71) = z{Hle e 4edTB) the integrators defined by the sets (cy, ca, ..., ¢) and (dy, da, ..., dy,)
are symplectic because they are the product of elementary symplectic maps.[21,26] The
coefficients ¢; and d; in this case will be chosen to compel z(7) to correspond with the
Taylor expansion of the true solution to order 7. For this research, methods of this form
will be used. However, as noted by Yoshida in [26] higher order symplectic integrators can
03 AeTB 5 A

be generated for even order from these methods. Let Sy(7) := . Then it is clear

that this corresponds to the Verlet method. Then higher order integrators can be found by
Sp (1) = So(wnT)S2(wp—17)...58 (w1 T)S2(weT)Se (w1 T)...S2 (Wp_17)S2 (W, T)

It should be noted that these integrators are computationally difficult to find for order n > 6.
It should also be noted that the general form for an algorithm using these coefficients for

time step dt is given by [32]
v =0 4 a(x)at

2@ = 27 4 oWt

for i = 1,2,...,1. Here the (i) labels denote the particular intermediate step where there

are [ steps total in the algorithm.

2.3.1 First Order Symplectic Euler Method

The first symplectic integration technique introduced for this research is the symplectic
Euler method. It is a slight modification on the classic explicit Euler method that updates
velocities before updating positions. Following the derivations presented in the introduction
to this section, the symplectic Euler method can be defined as a trivial solution to the

satisfying Neri’s constructions.
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Definition 2.3.4 Let C be a matrixz holding values corresponding to the coefficients that
solve the system of equations constructed in the previous system. Let the first row hold

values for ¢; and the second row hold values for d;. Then the symplectic Euler method is

defined by [23]

C:

This equates to the system of ordered equations for step size dt

Upt1 = Up + Gpdt

Tpt1 = T + UnJrldt

where x,, v,, and a, correspond to the position, velocity and acceleration at time t = n
and x,.1, U1 correspond to the position and velocity at time ¢ = n + 1. This method
is primarily used as a fast integration method for systems that do not experience extreme
instabilities. It is also useful in determining the process that needs to be undertaken to

implement a general method for symplectic integration.

2.3.2 Second Order Verlet Method

The second symplectic integration technique introduced for this research is the second
order Verlet method. It is a technique very closely related to the leapfrog algorithm. [28]
In the classic leapfrog algorithm, the velocity is updated to a half time step ahead of the
position for the body. Then in a similar manner to the symplectic Euler method, the
positions and velocities are updated in sequence. The leapfrog algorithm gives a multi-step

method described by the equations [33]

Tpy1 = Ty + Un+1/2dt
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Un+3/2 = Uni1/2 + a(Tnqr)dl

The symplectic single step Verlet method differs slightly. Rather than updating the
velocity to half time step, the update on the velocity is split into two portions. The velocity
is updated, then the position is updated, and the velocity is then updated a second time.
This algorithm corresponds to a single time step leapfrog algorithm. Following the work
from the previous sections, the Verlet method can be seen as the second order scheme that

is used to construct the higher order symplectic integrators.

Definition 2.3.5 Let C be constructed similarly to the symplectic Euler method. Then the
Verlet method is defined by [33]

D=

Q
|
D=

This method equates to a system of ordered equations for step size dt

1
Upyl = Un + §andt

In general symplectic integration, the velocity and position would be updated the same
number of times. However, in the Verlet method, the second update of position has a
coefficient of zero which is equivalent to not updating the position a second time. The
Verlet method is commonly used in evolutions of N-body problems and was the commonly
accepted method prior to development of higher order symplectic algorithms. [34] When
implementing a general method for arbitrary symplectic integration, it is also useful for
testing the code for errors in iterating over the list of coefficients. Once the process for

the symplectic Euler and Verlet methods is understood, implementing other symplectic
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integrators is simple.

2.3.3 Third Order Ruth Method

The third symplectic integration technique to be covered for this research is the third
order Ruth method. It is a scheme that was originally developed for use in dynamic chemical
reactions and seismology. The Ruth method is the first symplectic algorithm that will fully
test the general implementation of an arbitrary symplectic scheme. It has all non-zero

coefficients which corresponds to evolving the velocity and position three times each.

Definition 2.3.6 Let C be constructed similarly to the previous sections. Then the Ruth
method is defined by [35]

e
24
C=

This scheme is the most commonly used 3rd order symplectic scheme and is described by
the equations, [35]

o =@ 4 cja(2@)dt
M = 20 dlv(l)dt
v® = oW 4 cya(zM)dt
2@ = 2O 4 @t
v® = 0@ 4 cga(z?)dt
z® = 2@ 4 d50®dt

2.3.4 Fourth Order Neri Method

The final symplectic integration technique introduced for this research is the fourth order

Neri method. Originially developed by Neri for use in research done by particle accelerators,
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the Neri method is the most robust algorithm used for this research. It updates velocity
and position four times each and does a series of forward and backward steps in time to get

the best approximation for the value at the computed time step.

Definition 2.3.7 Let C be constructed similarly to the previous sections. Then the Neri

method is defined by [31]

1 1-21/3 1-21/3 1
C— 2(2—21/3)  2(2—21/3)  2(2-21/3)  2(2-21/3)
1 —21/3 1 0
2—21/3 2-21/3 2-21/3

The ordered equations for the Neri method are the most accurate of the symplectic
algorithms for this research, but as will be seen in later portions of this work, often require

shorter time steps to function properly. The ordered equations for the Neri method are [31]

v =0 4 cra(z)dt

2 = 20 4 g 0®at
v® = oW 4 cya(zM)dt
2? = 20 4 dypwPdt
v® = 0@ + cga(z?)dt
2® = 2@ 4 dz®dt
v =B 4 cya(x®)dt

W = 20 ¢ gVt
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3 CONSTRUCTION OF THE SAMPLE SYSTEMS

Now that the necessary background of the N-body problem, its structure as a Hamil-
tonian problem, and specific integration techniques have been covered, it is necessary to
construct a series of sample systems to test the symplectic integrators that were developed
in the previous section. For the purposes of testing the integrators, a series of two and
three body problems will be used. The problems will have a variety of initial conditions and
scaling factors to force the system to unity and decrease computational load. The systems
will display normal elliptical orbits, rapidly spiraling orbits, and far more chaotic behavior
for some three body examples. The predictable behavior of the two body systems make
them good systems to train an integrator against while the chaotic behavior of the three
body systems will allow the integrators to be stressed sufficiently to determine circumstances
which causes them to fail.

Before constructing the systems, it is important to develop the scaled differential equa-
tions that will actually be approximated by the integrators. The scaling of these systems is
pursued by removing the dimensions of the differential equations. Previously, it was stated

that the Hamiltonian form of the differential equations for motion

dx(t)

o YW

dv(t)  F(1)
a — m

can be used to evolve these systems. Then an equivalent unity system can be constructed

according to the following definition.

Definition 3.0.1 Let the Hamiltonian system be defined as previously stated in Definition
1.2.1. Then define mycs to be a reference mass for a system, r..y to be a reference distance

for a system, v,er to be a reference velocity for a system, and t,.; to be a reference time for
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a system. Then define

Gtre Mye
Ky = lrefMres
,UTEfrref
bre
K2 _ Ureflref
Tref
Then the system defined by
x(t) _
— = Kyv(t
ar ~ ()
v(t) F(t)
K
dt Y

evolves in a reference space defined by reference units with trajectories equivalent to the

original system.

3.1 Construction of the Two Body Systems

In this section, the initial conditions of the two body systems, their scaling variables,
and the expected behavior of the systems will be presented. As discussed in the previous
section on the N-body problem, these systems have an analytic solution that is equivalent to
a one body problem with initial conditions based on the initial conditions of the two body
problem. Because of this, their behavior is easily predicted. The predictable behavior makes
these systems strong test systems. Numerical integration techniques can be trained against
the known solutions for two body systems to test for appropriate step sizes to approximate
the solution of a system. All values for systems presented in this section except for the

randomly generated systems can be found in [1].

3.1.1 Two Body Centauri System

The first two body problem that will be considered is the core system of the Centauri
star system. The Centauri star system is a trinary system with two dominating masses

and a third, much smaller star. The two dominating masses spiral around each other
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and translate slowly down a central axis. This behavior makes this system an important
step for each integrator. It displays translation and rotation behavior which provides two
different types of motion for the integrator to track offering a greater challenge than one
behavior or the other. As a phase one tester, all four integrators will accurately evolve this
system with an appropriate time step. The two body Centauri system will use the following
reference variables for scaling: m,.; = 1.989210%, 7.y = 5.326210'%, v,y = 3.0210%, and

bref = 1.285210%. In reference units, the initial conditions of this system are:

—-05 0 0
05 0 0

0.01 0.01 O
V:
—-0.05 0 —0.1
1.1

0.907

Here, X is the initial position matrix, V is the initial velocity matrix, and M is the mass

matrix where each row corresponds to a different object.

3.1.2  Sun-Earth-System

The second two body problem which will be used to train the integrators is the Sun-
Earth system. This system is a familiar elliptical orbital system which evolves on a plane
through the center of the solar system. This system is a significant trial because it has the
largest differential in initial conditions for the two body problems. The difference between
the masses of the two bodies in this system is six orders of magnitude which assists in
determining what initial condition difference can be handled by symplectic integrators before

experiencing underflow. In this system, we expect a constant elliptical orbit of the smaller
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body about the larger body that evolves on the same plane. This means the Sun-Earth
system is challenging only due to its large differential in initial conditions, not due to
multiple behaviors being tracked simultaneously. This two body system will use these
reference variables for scaling: mye; = 1.989210%°, r,.; = 1.486x10", v,.; = 3.0210*, and

trey = 3.155762107. In reference units, the initial conditions of this system are given by:

0 0O
X —

1 00
0 0 0
0 0.99074 0

1
M=

0.0000030025

3.1.3 Earth-Moon System

The third two body system that will be examined here is the Earth-Moon system. This
system possesses identical behavior to the Sun-Earth system discussed previously, but it
has a much smaller difference in scaled masses of the system. The similarity in masses
in this system will mean that the larger body, the Earth in this case, will also exhibit
rotational behavior. That difference from the Sun-Earth system makes the Earth-Moon
system a significant trial for this research. This system will make use of the following scaling
variables: my.; = 5.972010%*, r,.; = 3.844210%, v,y = 1.023210*, and t,.; = 2.2384x10°.

In reference units, the initial conditions of this system will be given by:

000
X =

010



27

0 0 0
V=
-1 0 0
1
M=
0.012304

3.1.4  Jupiter-lo System

The next system to be examined is the Jupiter-Io system. This system is another
large and small body system that lies in between the Sun-Earth system and the Earth-
Moon system. As such, it will exhibit a similar rotational system for Io as the Earth
or Moon in the two previous systems. However, it will exhibit only minor motion on
Jupiter making it more similar to the Sun-Earth system. This allows for examining what
order of magnitude difference in masses leads the integrator to zero motion on the primary
body. This system will make use of the following scale variables: m,.; = 1.898210%7,
Trep = 42172108, v,op = 1.7334210%, and t,.; = 1.52853210°. In reference units, the initial

conditions are given by:

00 O
X:

00 -1

000
V:

010

1

M:

0.00004706

3.1.5 First Randomly Generated Two Body System

The next system that will be examined is the first of two randomly generated two body

systems, each of which displays unique behavior. This system has two bodies of similar
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mass positioned equidistant on either side of the origin of the system. The bodies have
two different velocities with the largest contribution in the x-direction for one and the z-
direction for the other. As such, this system is expected to display oscillatory behavior in
both bodies moving through the x-direction and down the z-direction. This system uses
scaling variables: m,.; = 8.172210%, r,.; = 5.1210%, v,y = 2.512210°, and ¢,.; = 1.75210*.

In reference units, the initial conditions of this system are:

—-0.5 =05 —-0.5
X =
0.5 0.5 0.5
1.1 0 0.01
V =
0.1 0.2 —-0.3
1
M =
1.112

3.1.6 Second Randomly Generated Two Body System

The final two body system that will be examined here is another randomly generated
two body system. Rather than displaying an elongated oscillating behavior as in the pre-
vious system, this system will be expected to display behavior similar to that of the two
body Centauri system. The key difference between the two is the magnitude of the initial
velocities. The initial velocities for the two body Centauri system were relatively small. The
velocities for this system are between two and four times larger. As a result, this system will
experience much sharper orbits and will complete more rotations in the same time interval.
This system uses the following reference variables: my..; = 1.989210%, r,., = 1.123210'°,

Upef = 6.0210°, and bref = 6.876210%. In reference units, the initial conditions of the system
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are given by:
05 0 0
0 0 05

0.09 01 02
—-0.09 —-0.1 -0.2

1

<
[

0.967

The expected behaviors of all the two body systems are summarized in the following

table.

Table 1: This table gives a summary of the expected behaviors for the given 2 body systems.

System Expected Behavior
2 Body Centauri Orbits Down a Central Axis
Sun-Earth Regular Elliptical Orbits
Earth-Moon Regular Elliptical Orbit Around a Wobbling Central Body
Jupiter-Io Regular Elliptical Orbit
Random 1 Oscillating Pattern
Random 2 Rapid Elliptical Orbit

3.2 Construction of the Three Body Systems

In this section, the initial conditions, scaling variables, and expected behavior for the
three body systems will be presented. As discussed in previous sections, the three body
problem is the most basic N-body problem which has no general closed form solution. As a
result, the expected behaviors of these systems will often be extremely chaotic as will be seen
by even the first example-the three body Centauri system. While not as easily predicted
as the two body problem, the 6th order backward differentiation formula method used to
get the reference systems for the two body problems will still suffice here. These three

body problem examples and their varied behavior are a much better test of the symplectic
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integrators than the two body problems. While good approximations for the true solution
are expected for the two body problems, the three body problems offer an opportunity to
stress the integrators and test their usefulness in evolving N-body problems. Similarly to

the two body problems, the values for the real systems included here can be found in [1].

3.2.1 Three Body Centauri System

The first of the three body problems that will be developed here is the modified three
body Centauri system. The real Centauri system is one with two dominating bodies (those
used in the two body problem) and one secondary object. The secondary object is far
smaller than the two dominating bodies and as such, results in a simple elliptical orbit for
that body while the two body problem presented above models the primary bodies well.
Since the goal of the three body problems is to stress the integrators, the third body has
been inflated in its mass and velocity to provide a more chaotic evolution. The evolution of
the three body problem here is not periodic and has no regular orbit. As such, it provides
an excellent opportunity to test how the integrators perform when large numbers of sharp
direction changes are present in the system. The scaling variables for the modified three
body Centauri system are: m,.; = 1.989210%°, r,.; = 5.326210'2, v,.; = 3.0210%, and

trey = 1.285210%. For this reference system, the initial conditions are given by:

05 0 0
X=105 00
0 10

0.0l 0.01 0
V=1-005 0 =01
0 —01 0
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M = 10.907

3.2.2  Sun-Earth-Moon System

The next three body problem that will be used here is the Sun-Earth-Moon system and
will be used in a manner similar to the use of the two body Sun-Earth system in the previous
section. The mass differential between the Sun and Moon is two orders of magnitude greater
than the difference between the masses of the Sun and Earth. As such, the risk of underflow
is very high, and as will be observed, occurs in this system for machine precision of 16 or less.
This means a computer with good precision is needed to accurately evolve this system. For
a computer without sufficient precision, the reference object that is the Moon is observed
as being thrown out of the system because the underflow occurs in the acceleration of the
Moon. The scaling variables for this system are: mye; = 1.989210%, r,.; = 1.486x10',

Uref = 3.0210%, and tref = 3.15572107. The initial conditions for this system are:

0 0 0
X =11 0 0

1 0.002586 0
0 0 0
V= 0 0.99074 0O

—0.0341 0 0

1
M =1 0.0000030025
0.000000036943
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3.2.3 Sun-Earth-Jupiter System

The next system that will be evolved is the Sun-Earth-Jupiter system. This system is
a fairly simple system presenting with two elliptical orbits around a dominating primary
body. This system is an interesting case study, however, because the two elliptical orbits
present in the system have different necessary time steps to reach convergence. The time
step needed to accurately evolve the lower acceleration orbit (Jupiter in this case) is much
longer than the time step needed to accurately evolve the higher acceleration orbit (Earth
in this case). This makes the system interesting to study because only 300 steps on the
interval are needed to accurately evolve Jupiter’s orbit, while the Earth’s orbit needs about
1000 steps on the interval to stabilize to an elliptic orbit. The reference variables for this
system are: Mmyep = 1.989210%°, Tref = 7.7858210, Upef = 3.0210%, and tref = 3.15572107.

With these reference variables, the initial conditions of the system are given by:

0 00
X =10.1908 0 0

0 10
0 0 0
V= 0 0.99074 0O

—0.43566 0 0

1
M = 10.0000030025
0.00095425
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3.2.4  Sun-Jupiter-Saturn System

The next system that will be studied is the Sun-Jupiter-Saturn system. This system is
very similar to the Sun-Earth-Jupiter system with the notable exception that the masses
of the two secondary bodies only differ by one order of magnitude rather than three. This,
combined with the longer distance from the Sun, means that both will have lower accelera-
tions than the Earth as described in the previous problem. These lower accelerations mean
a longer time step is acceptable to evolve this system. That makes this system relevant in
terms of future research. Adaptive algorithms are commonplace in numerical integration
today. The difference here in step size needed to evolve the low acceleration orbits of the
Sun-Jupiter-Saturn system and the higher acceleration of the Earth in the Sun-Earth-Jupiter
system is significant to developing a future adaptive algorithm for symplectic integration.
Changing step size according to the varied accelerations is a good approach for developing
an adaptive algorithm. The reference variables for this system are: m,.; = 1.989210%,
Trep = 7.7858210", v,.; = 3.0210%, and t,.; = 3.15572107. With these scaling variables,

the initial conditions are:

0 0 0
X = 0 10
—-1.9299 0 0
0 0 0
V = 1-0.43566 0 0
0 —0.32242 0
1

M = 10.00095425
0.00028572
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3.2.5 Sun-Venus-Mercury System

The next system that will be examined here is the Sun-Venus-Mercury system. The
Sun-Venus-Mercury system fills a role similar to the role of the Sun-Earth-Moon system,
but the two primary bodies are within one order of magnitude of each other which will
help to find the limits of the integrators in terms of underflow on the accelerations. In
this system, the expected behavior is two elliptical orbits for Venus and Mercury. However,
underflow will again cause the smallest body to be thrown out of the system. The way it is
thrown out differs from the Sun-Earth-Moon system. In the Sun-Earth-Moon system, the
Moon was thrown out immediately because its mass was too small to get any acceleration.
In the Sun-Venus-Mercury system, Mercury is thrown out at a slower rate. This is because
its mass differential from the Sun is not as large as the difference between the Moon and
the Sun. The behavior that is observed due to the overflow is a spiral outward rather
than a constant velocity path out of the system. The scaling variables for this system are:
My = 1.989210%°, 7, = 6.4936210™, v, = 3.0210%, and ¢,.; = 3.1557210°. With these

reference variables, the initial conditions in reference units are:

0 00
X=|1 -1 00
1.6555 0 0
0 0 0
V=10 —-1667 0
0 1.674 0

1

M = 10.0000003285
0.0000024470
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3.2.6 Randomly Generated Three Body System

The final system that will be examined here is the randomly generated three body
system. This randomly generated system is developed using the same motivation as the
randomly generated two body systems. Here three masses are chosen to be relatively sim-
ilar. Then random initial positions and velocities are chosen to exhibit some unique and
interesting behavior. In this system, the positions and velocities are chosen to display an
oscillatory behavior in all three bodies. The sharp oscillations in the system offer extreme
stress to the symplectic integrators in the same fashion as the modified three body Cen-
tauri system. It will be observed in the results, that the convergence to the true solution
requires a very small time step for the integrators. Even at the maximum time step used
throughout this research, the integrators struggle to converge for this system. The scaling
variables for this system are: mye; = 1.989210%, r,.; = 1.486210", v,e; = 3.0210*, and
tref = 3.15572107. With these scaling variables, the initial conditions for the randomly

generated three body system are:

00 0
X=101 0
00 —1

0 —0.6132 0

V=10 0 0.9156
—-1.12 0 0
1
M= 109
0.8

The expected behaviors of the three body systems are summarized in the following table.
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Table 2: This table gives the expected behavior for each three body system.

System Expected Behavior
3 Body Centauri Completely Chaotic
Sun-Earth-Moon Small Elliptical Orbit and Regular Elliptical Orbit
Sun-Earth-Jupiter Two Regular Elliptical Orbits
Sun-Jupiter-Saturn Two Regular Elliptical Orbits
Sun-Venus-Mercury | One Rapid Elliptical Orbit and One Regular Elliptical Orbit
Random 3 Oscillating Patterns
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4 RESULTS

In the previous sections, a number of symplectic integration techniques and sample
systems were developed to run N-body simulations. In this section, the results of the
evolutions will be presented. The first section will cover the Python implementation of the
BDF method for developing reference systems. Then the code for implementing symplectic
integrators for the two and three body systems will be developed and a method will be
described for calculating error between the reference and symplectic trajectories. After the
code is introduced, the specific evolutions for varying time steps over a fixed time interval
using all four symplectic integrators will be presented. After the evolutions are presented,
the error calculations will be given. Once the fixed interval evolutions are completed, a short
study of a select system with a select integrator will be conducted on a long-time interval.
This long-time evolution is done with the purpose of showing the strength of symplectic
integrators in long-time galactic evolutions when compared to tradition BDF methods for

the same problem.

4.1 Implementation

The first step in presenting the results of this research is to present the computer imple-
mentation of the BDF methods and symplectic integrators. This will be done by detailing
the exact process and functionality of the programs written to accomplish the evolutions us-
ing BDF methods and symplectic integrators. After the BDF implementation is discussed,
the reference systems will be given for all of the two and three body sample systems. After
the implementation of symplectic integrators is discussed, the symplectic evolutions will be
presented for each two and three body system using fifty, three hundred, five hundred, one

thousand, and five thousand steps for each of the four symplectic integrators.
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4.1.1 BDF Methods

The first step in presenting the results of this research is to present the computer imple-
mentation of all the methods being used beginning with the BDF methods used to generate
the reference systems. As discussed previously, for short-time simulations like the majority
of those used in this research, BDF methods are sufficient to evolve these systems with
decent accuracy. Rather than writing code to handle implementation of the BDF methods,
this research will make use of the scipy.integrate.odeint method included in the scipy pack-
age for Python. From the documentation of the method, this method in Python makes use
of the 6th order BDF method discussed previously. To use this method, an array holding the
relevant differential equations, an array holding the initial conditions, an array holding the
time steps, and the relevant constant values are all passed to the method. It then performs
the BDF calculations discussed in a previous section to evolve a stiff system of ordinary
differential equations. There is only one relevant method to write to allow this program
to work and that is a method to calculate and return the relevant derivatives defining the
equations of motion for the system. This is done by directly calculating the scaled differ-
ential equations that were discussed previously. The returned value from this function is
the array that is passed to the scipy.integrate.odeint method as the system of differential
equations to be solved. Now the reference systems for each two and three body problem

generated using the sixth order BDF method are given by:
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Figure 3: These are the two body reference systems generated using the 6th order BDF
method. In order starting in the top left, they are: 2 Body Centauri, Sun-Earth, Farth-

Moon, Jupiter-Io, Random 1, and Random 2.
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Figure 4: These are the three body reference systems generated using the 6th order BDF
method. In order starting in the top left, they are: 3 Body Centauri, Sun-Earth-Moon,

Sun-Mercury-Venus, Sun-Earth-Jupiter, Sun-Jupiter-Saturn, and Random.

These images give the reference evolution of each of the two and three body sample
systems. The reader should note the wide variety of system types. Many of the two body

systems share elliptical orbits, but have different mass conditions as discussed previously.
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Many of the three body systems display drastically different behaviors. Each of these sys-
tems represents a unique challenge for the symplectic integration techniques. It should also
be noted that several of the systems (Sun-Earth-Moon, Sun-Venus-Mercury, and Jupiter-Io)
have reference systems which differ significantly from the other systems being used. These
systems will be covered in more detail in the section covering error calculations. For the
remainder of these systems,; their symplectic evolutions and their errors from these reference

systems will be discussed in the next two sections.

4.1.2 General Symplectic Integration

The next step in presenting the results of this research is to present the implementation
of the symplectic integrators. As no Python packages have general implementation for
symplectic integration, the task is more difficult. The code will require the use of two
unique methods. The first method that needs to be written is the step function that will
perform the evolution for each time step. This is done by passing the initial positions,
velocities, masses, time step size, a coefficient matrix defined in the section on symplectic
integrators and an acceleration function to the method. The step method then creates a list
of coefficients that will be iterated over in parallel. Then for each coefficient, it updates the
velocities using an acceleration function derived from the particle particle method discussed
in [34] and then updates the positions using the updated velocities. The second method to
implement is a method to do the integration over every time step. To do this, a method is
given the initial positions, velocities, masses, an acceleration function, a coefficient matrix,
and an array holding every time step to calculate the approximation at. The method simply
uses the stepping function at every time step and stores the values before returning the final
trajectory. For purposes of this research, the methods used are not written to make use of an
arbitrary N-body system. A program with the modification to accept a general position and

velocity matrix for any N-body system was written but was found to perform significantly
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slower than the methods using individual vectors for each initial condition of each body.
Now the symplectic evolutions for each of the two and three body systems are presented
using each of the four integrators with fifty steps, three hundred steps, five hundred steps,
one thousand steps, and five thousand steps. The images are grouped by step size with each

of the four integrators being presented with the same step size simultaneously.

Figure 5: These are the 50 step symplectic integrations for the 2 body systems. They are
in groups of four from top to bottom with each row giving a different system. From left to
right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to the
system. From top to bottom, the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon,
Jupiter-Io, Random 1, and Random 2.
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From these images, it is clear that fifty steps along the eight unit time reference interval
is not sufficient to accurately evolve the two body systems. The two body Centauri system,
the Jupiter-Io system, and both randomly generated systems explode immediately. They
do not attempt to follow the orbits that were discussed when the systems were introduced.
The Sun-Earth and Earth-Moon systems attempt to rotate, but do not follow the regular
elliptical orbits that are expected. The lack of convergence to the solution for any of the
sample systems here will be discussed more when the error profiles for these integrations are
given. The important note for this step size is that a shorter step size is needed to approach

convergence.
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Figure 6: These are the 300 step symplectic integrations for the 2 body systems. They are
in groups of four from top to bottom with each row giving a different system. From left to
right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to the
system. From top to bottom, the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon,
Jupiter-Io, Random 1, and Random 2.

From these images, it becomes clear that systems experiencing extremely stable orbits
are beginning to converge to stable elliptical orbits. The Sun-Earth and Earth-Moon systems
are already approaching stable elliptical orbits. However, the other four systems are still
exploding or orbiting in wild patterns. This means that for a general N-body problem, a

step size of At = .02667 is not sufficient to accurately evolve the systems. However, as
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was discussed earlier, adaptive algorithms are commonplace today in numerical integration.
This means that for a general N-body problem, an adaptive algorithm could be coded to
use a step size this short for stable elliptical orbits like those displayed in the Sun-Earth

and Earth-Moon system.

Figure 7: These are the 500 step symplectic integrations for the 2 body systems. They are
in groups of four from top to bottom with each row giving a different system. From left to
right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to the
system. From top to bottom, the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon,
Jupiter-lo, Random 1, and Random 2.

From these images, it is clear that stable evolutions of the Sun-Earth and Earth-Moon
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systems have been reached for the symplectic integrators. The difference in evolution shape
is minimal between the three hundred step integrations and the five hundred step integra-
tions, but as is evident in the error graphs presented in the next section, the symplectic
integrators are continuing to improve as the step size decreases for the systems which are
already stable for longer time steps. For the symplectic schemes that are not the symplectic
Euler method, the second randomly generated system is also beginning to converge. The
two body Centauri system and the first randomly generated system are also beginning to
display structure in the system. This indicates that the step size is approaching a value that
will allow the systems to converge to the reference systems. However, the Jupiter-Io system
is continuing to explode suggesting that this step size is not sufficient for arbitrary N-body
systems. This can give additional guidance for future development of a general adaptive

algorithm for arbitrary N-body systems and symplectic scheme.
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Figure 8: These are the 1000 step symplectic integrations for the 2 body systems. They are
in groups of four from top to bottom with each row giving a different system. From left to
right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to the
system. From top to bottom, the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon,
Jupiter-lo, Random 1, and Random 2.

In these evolutions, the stability of the Sun-Earth and Earth-Moon systems are again
verified which offers additional evidence that a suitable step size has been reached for these
systems. Additionally, the two body Centauri system and the second randomly generated
system are both beginning to converge. The Jupiter-lIo system still displays instability in

its orbit but has begun to display elliptical motion which is a strong improvement from
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the previous step sizes. The first randomly generated system is also displaying a much
clearer structure, but does not display the expected behavior from the reference system.
This means that this step size is enough to approximate many of these two body systems,

but it is not going to be sufficient to approximate an arbitrary N-body problem.

5 [of
D -

Figure 9: These are the 5000 step symplectic integrations for the 2 body systems. They are
in groups of four from top to bottom with each row giving a different system. From left to
right in each row, the images give the Fuler, Verlet, Ruth, and Neri methods applied to the
system. From top to bottom, the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon,
Jupiter-lo, Random 1, and Random 2.
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From these images, all six two body systems have begun to converge to the reference
systems generated by the BDF method. This indicates that for these two body problems
and for systems with similar orbital structures, a step size of At = .0016 is sufficient to
approach accurate evolutions. However, the rapid rotations in the first randomly generated
system are still causing issues suggesting that very high accelerations require much shorter
time steps to converge to the true orbits of the system. The convergence for the other five
systems, however, offer evidence for the development of an adaptive algorithm that this
time step is sufficient to accurately track orbits for the stable, low-acceleration trajectories
that are common in gravitational systems.

The convergent step for each integrator on each of the two body problems is summarized

in the following table.
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Table 3: This table summarizes the orders of accuracy and convergent step sizes for each
integration method on each system.

System | Integrator | Accuracy | Steps Needed
Euler O(A?) 1000
2 Body Verlet O(A?) 1000
Centauri Ruth O(A#®) 5000
Neri | O(At) 1000
Euler O(At) 300
Sun- Verlet O(A#?) 300
Earth Ruth O(A#?) 300
Neri O(AtY) 300
Euler O(At) 300
Earth- Verlet O(A#?) 300
Moon Ruth O(A?) 300
Neri O(Ath) 300
Euler O(At) 5000
Jupiter- Verlet O(At?) 5000
To Ruth | O(A#) 5000
Neri O(Ath) 5000
Euler O(At) 5000
Random Verlet O(A1?) 5000
1 Ruth | O(A#) 5000
Neri O(Ath 5000
Euler O(A?) 1000
Random Verlet O(At?) 500
2 Ruth | O(A#) 500
Neri O(Ath) 500
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Figure 10: These are the 50 step symplectic integrations for the 3 body systems. They are
in groups of four from top to bottom with each row giving a different system. From left
to right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to
the system. From top to bottom, the systems are the 3 Body Centauri, Sun-Earth-Jupiter,
Sun-Jupiter-Saturn, and Random.

In the fifty step evolutions for the three body problems, similar behavior is observed
for two of the four systems analyzed in this section as was observed for the two body
problems. The three body Centauri system and the randomly generated three body system
both explode for this long of a time step suggesting that it is not sufficient to accurately
track the trajectories for these random motions. However, the Sun-Jupiter-Saturn system
is already convergent to the reference system for this time step. This is because Jupiter and
Saturn are very far away from the primary body in the system and as a result have very
low accelerations. Additionally, in the Sun-Earth-Jupiter system, Jupiter is still convergent
for this time step. This offers additional evidence that low acceleration objects in an N-
body system are able to be accurately tracked by longer time steps which continues to

build evidence of using calculated acceleration as a means to build an adaptive algorithm
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for general symplectic integration. It also offers evidence that instability in the orbit of
one secondary body caused by an insufficient time step will not cause the orbit of another

secondary object to suffer significantly.

Figure 11: These are the 300 step symplectic integrations for the 3 body systems. They
are in groups of four from top to bottom with each row giving a different system. From left
to right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to
the system. From top to bottom, the systems are the 3 Body Centauri, Sun-Earth-Jupiter,
Sun-Jupiter-Saturn, and Random.

In these systems, the convergence to the reference system seen in the fifty step inte-
grations holds for the Sun-Jupiter-Saturn system giving firm evidence that the step sizes
used were sufficient to accurately evolve these systems. The Earth in the Sun-Earth-Jupiter
system is now also displaying a stable elliptical orbit as expected, which suggests that mod-
erate acceleration elliptical orbits can be tracked by a step size of At = .02667. Notably, the
trajectory of the Earth begins to converge for the same step size as in the Sun-Earth two
body problem. However, the two highly chaotic systems of the three body Centauri sys-

tem and the randomly generated three body system continue to display divergent behavior.
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This suggests that this step size is not sufficient to evolve arbitrary N-body problems. It
is important to note, however, that at this time step both of the more chaotic systems are
beginning to display some structure which suggests the integrators are insufficient at this

time step rather than unable to evolve the systems entirely.

Figure 12: These are the 500 step symplectic integrations for the 3 body systems. They
are in groups of four from top to bottom with each row giving a different system. From left
to right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to
the system. From top to bottom, the systems are the 3 Body Centauri, Sun-Earth-Jupiter,
Sun-Jupiter-Saturn, and Random.

For these five hundred step integrations and the two remaining step sizes, the Sun-Earth-
Jupiter and Sun-Jupiter-Saturn systems remain stable with slightly improving error as will
be discussed in the next section of this paper. However, the three body Centauri system and
the randomly generated three body system are still exploding. This means that this step
size is still insufficient to evolve highly chaotic N-body problems. It is important to note,
however, that in the randomly generated system, the objects are beginning to converge.

The divergence occurs once the system begins to narrow before flaring as in the reference
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system. This point corresponds to a high acceleration point in the system. This suggests
that the divergence at this time step is related to the issue of high accelerations which has

been observed throughout this section.

Figure 13: These are the 1000 step symplectic integrations for the 3 body systems. They
are in groups of four from top to bottom with each row giving a different system. From left
to right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to
the system. From top to bottom, the systems are the 3 Body Centauri, Sun-Earth-Jupiter,
Sun-Jupiter-Saturn, and Random.

For the time step of At = .008, the two stable systems continue to have low error. The
three body Centauri system and the randomly generated three body system also continue
to display structure for some integrators. The important note for these integrations is the
significant difference between the low order integrators and the high order integrators. For
example, at this time step, the Euler method is still highly divergent and explodes rapidly.
However, the Neri method displays strong indications of converging to the reference system
for this time step. This is evidence of why higher order methods are preferred to low order

methods when evolving arbitrary N-body systems even when they suffer at long step sizes.
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As discussed in the results of the two body systems, the low order integrators can converge
for longer time steps in stable systems. However, the high order methods are far better at
handling arbitrary problems. Given that galactic systems are described by billions of bodies
over hundreds of millions of years, this ability to predict chaotic behavior with a smaller
time step is more important than being able to predict stable behavior with a smaller time

step.

Figure 14: These are the 5000 step symplectic integrations for the 3 body systems. They
are in groups of four from top to bottom with each row giving a different system. From left
to right in each row, the images give the Euler, Verlet, Ruth, and Neri methods applied to
the system. From top to bottom, the systems are the 3 Body Centauri, Sun-Earth-Jupiter,
Sun-Jupiter-Saturn, and Random.

In the final integrations on the three body systems, the idea that higher order integrators
are needed to evolve chaotic systems is reinforced. In the three body Centauri system, the
Ruth and Neri methods are starting to track the motion that is observed in the reference
system. This suggests that the two high order integrators are beginning to converge to the

reference system in this case. However, in the very high acceleration orbits present in the
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randomly generated three body system, none of the integrators are accurately tracking the
orbits of all three bodies past the point where the system reaches its highest accelerations.
This, again, reinforces the idea that high accelerations cause the symplectic integrators to
struggle. However, with a much shorter time step, the symplectic integrations do converge
to the reference system. In trials, they were found to approach convergence at least for a
time step of At = .000016. This means that additional work is needed to ensure stability
in arbitrary N-body problems.

A summary of the convergent step count for each integrator on each three body system

is given in the following table.
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Table 4: This table summarizes the orders of accuracy and rates of convergence for integrator
on each of the 3 body systems given.

System | Integrator | Accuracy Steps Needed
Euler O(A?) 5000
3 Body Verlet O(A#?) 5000
Centauri Ruth O(A#?) 5000
Neti | O(A#) 5000
S Euler O(At) Underflow
Earth Verlet O(A#?) Underflow
Moon Ruth O(A#?) Underflow
Neri O(At) Underflow
Sun. Euler O(At) 50/300
Earth. Verlet O(A#?) 50/300
Janiter Ruth | O(A#) 50/300
Neti | O(A#) 50,/300
S Euler O(At) 50
Jupiter- Verlet O(At?) 50
e Ruth | O(A#) 50
Neri O(AtY) 50
Sun. Euler O(At) Underflow
Vonts. Verlet O(A#?) Underflow
Mercury Ruth O(A#?) Underflow
Neri O(AtY) Underflow
Euler O(At) | Does Not Converge
Random Verlet O(At?) | Does Not Converge
3 Ruth O(A#®) | Does Not Converge
Neri O(At*) | Does Not Converge
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4.2 FError Calculations

The third step in presenting results of this research is to give the implementation for the
two types of error calculations used. Fortunately, for vectors and matrices, Python has the
numpy.linalg.norm method in the numpy library. This method accepts a general matrix or
vector and an order argument. In then returns a norm corresponding to the order argument
given. To find the largest error between the symplectic evolution and the reference evolution
of each system, the infinity norm is used on the vector of point wise errors at each time step.
The point wise errors are calculated using the 2-norm of the difference of the position vectors
of the symplectic and reference trajectories at the same point in time. The infinity norm
then returns the largest of these values. To find the distance from the reference trajectory
to the symplectic trajectory, the 2-norm of the point wise error vector is taken. This gives
the overall distance of the entire symplectic path to the reference path. Here the errors are
given for each symplectic integrator with each of the given step sizes over the short-time

interval grouped in the same way as the results of the symplectic integrations.
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Figure 15: These are the errors for the 50 step symplectic integrations for the 2 body systems
taken with respect to the reference systems. They are in groups of four from top to bottom
with each row giving a different system. From left to right in each row, the images give
the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon, Jupiter-lo, Random 1, and
Random 2.

As was discussed briefly in the previous section, short time steps are needed to drive
symplectic integrators to convergence. In the previous section, it was observed that the 50

step integrations were unable to adequately evolve any of the two body systems. Most of

the systems immediately exploded with the bodies moving directly away from each other.
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The systems that did not exhibit that behavior experienced chaotic motion in the secondary
body of the system. These behaviors are reflected in the error calculations for the fifty step
integrations on the two body systems. For the Sun-Earth and the Earth-Moon systems,
the secondary body oscillates in error suggesting the symplectic integrator is not resulting
in system collapse, but is not accurately predicting the evolution either. In the other four
systems, the error explodes rapidly suggesting that the bodies of the system are flying away
from the reference orbits constantly. This is exactly the behavior that was observed in the

previous section when the evolutions were given.



61

Figure 16: These are the errors for the 300 step symplectic integrations for the 2 body
systems taken with respect to the reference systems. They are in groups of four from top to
bottom with each row giving a different system. From left to right in each row, the images
give the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon, Jupiter-lo, Random 1, and
Random 2.

In the previous section, the most important note that was made about the three hundred
step integrations was that low acceleration orbits such as the ones in the Sun-Earth and

Earth-Moon system had already begun to converge. That observation is confirmed in these

error graphs. For the systems which had begun to display convergent behavior, the errors
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are not climbing linearly as they do in the systems with high acceleration. They do rise
over time, but that is due to the steadily increasing error of the BDF method as is discussed
elsewhere in this paper. An important note is that the errors oscillate according to where
the body is in its orbit, but the symplectic integrators are accurately evolving the most

stable orbits for this step size.
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Figure 17: These are the errors for the 500 step symplectic integrations for the 2 body
systems taken with respect to the reference systems. They are in groups of four from top to
bottom with each row giving a different system. From left to right in each row, the images
give the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon, Jupiter-lo, Random 1, and
Random 2.

In the previous section, the orbits developed by the symplectic integration schemes for
the two body systems appears consistent as the time step is reduced for the systems that

become convergent at an early time step. However, the error graphs show that error is still

reducing as the time step is shortened. This behavior is expected for numeric integration.
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The error graphs give here also still indicate an exploding behavior for the systems with

high accelerations like the Jupiter-Io system and the first randomly generated system.
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Figure 18: These are the errors for the 1000 step symplectic integrations for the 2 body
systems taken with respect to the reference systems. They are in groups of four from top to
bottom with each row giving a different system. From left to right in each row, the images
give the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon, Jupiter-lo, Random 1, and
Random 2.

For the systems which converge at longer time steps, these error graphs continue to

indicate improvement in the integrators. However, at the time step At = .008, the error
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graph now indicates stability in the Jupiter-lo system and the first randomly generated two
body system as was discussed in the previous section. Rather than climbing linearly as with
the shorter time steps, the error graphs oscillate in a fashion similar to the other two body
systems. While the oscillations are more chaotic due to the high accelerations, the error

graphs clearly indicate that these systems are beginning to converge.
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Figure 19: These are the errors for the 5000 step symplectic integrations for the 2 body
systems taken with respect to the reference systems. They are in groups of four from top to
bottom with each row giving a different system. From left to right in each row, the images
give the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 2 Body Centauri, Sun-Earth, Earth-Moon, Jupiter-lo, Random 1, and
Random 2.

For the shortest time step considered in this paper, the error functions are clearly in-
dicating convergence and structure for all six two body problems. The Jupiter-lo system
continues to display some instability for the Neri method implementation, but the other

three methods all accurately evolve the system. Additionally, the other five systems have
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continued to reduce their errors at every time step as the step size has decreased which is
expected. The errors for these systems are primarily below a value of 0.05 reference units

which indicates strong convergence to the reference system.

Figure 20: These are the errors for the 50 step symplectic integrations for the 3 body systems
taken with respect to the reference systems. They are in groups of four from top to bottom
with each row giving a different system. From left to right in each row, the images give
the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom, the
systems are the 3 Body Centauri, Sun-Earth-Jupiter, Sun-Jupiter-Saturn, and Random.

In the previous section, it was mentioned that long time steps were acceptable to evolve
the three body systems with very low accelerations, but the other systems needed much
shorter time steps to approach the true trajectories of the bodies in the system. The
error graphs presented here clearly support that statement. While the errors are still fairly
high for the systems with stable, low acceleration elliptical orbits, the Sun-Earth-Jupiter
and the Sun-Jupiter-Saturn system display clear structure in their error graphs already.
Additionally, it was mentioned throughout the previous analysis of the integrations that

the randomly generated system evolves accurately at the beginning and then diverges as
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the accelerations increase. This behavior was difficult to observe from the plots of the
trajectories themselves, but it is easily observed here. In the error functions for the randomly
generated system, the error remains low before spiking at some point in time. This point in
time corresponds to the point when the trajectories of all three bodies pass very near each
other before flaring outward in the reference system. These error graphs then also support

that high accelerations cause the symplectic integrators to fail as was previously discussed.

Figure 21: These are the errors for the 300 step symplectic integrations for the 3 body
systems taken with respect to the reference systems. They are in groups of four from top to
bottom with each row giving a different system. From left to right in each row, the images
give the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 3 Body Centauri, Sun-Earth-Jupiter, Sun-Jupiter-Saturn, and Random.
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Figure 22: These are the errors for the 500 step symplectic integrations for the 3 body
systems taken with respect to the reference systems. They are in groups of four from top to
bottom with each row giving a different system. From left to right in each row, the images
give the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 3 Body Centauri, Sun-Earth-Jupiter, Sun-Jupiter-Saturn, and Random.

In the previous section, it was noted that the three hundred and five hundred step
integrations were nearly identical for the systems which approach convergence with the
longest time step. The error functions presented here continue to support that statement.
In these images, it is clear that mesh size is reducing the point wise error of the symplectic
trajectories from the reference trajectories as the step size is reduced. The noteworthy
behavior in the error plots of the three hundred and five hundred step integrations is the
start of convergence in even the three body Centauri system. As was discussed in the
previous section, these step sizes are insufficient to accurately evolve the three body Centauri
system or the randomly generated system; however, it is clear that the three body Centauri
system is extending the time over which the integrations remain accurate before decaying.

Ultimately, the randomly generated system continues to fail at the same point in time due
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to the very high accelerations on all three bodies at that point.
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Figure 23: These are the errors for the 1000 step symplectic integrations for the 3 body
systems taken with respect to the reference systems. They are in groups of four from top to
bottom with each row giving a different system. From left to right in each row, the images
give the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 3 Body Centauri, Sun-Earth-Jupiter, Sun-Jupiter-Saturn, and Random.
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Figure 24: These are the errors for the 5000 step symplectic integrations for the 3 body
systems taken with respect to the reference systems. They are in groups of four from top to
bottom with each row giving a different system. From left to right in each row, the images
give the Euler, Verlet, Ruth, and Neri methods applied to the system. From top to bottom,
the systems are the 3 Body Centauri, Sun-Earth-Jupiter, Sun-Jupiter-Saturn, and Random.

In the previous section, the trajectory plots indicated that the three body Centauri
system was beginning to converge at these time steps, but still did not accurately track
the orbits through the highest acceleration points of the system. For the one thousand
and five thousand step integrations, the error graphs are now displaying a clear oscillating
structure similar to that present in the stable systems. This indicates that the integrations
are attempting to converge (particularly the Ruth and Neri method), but are still struggling
with high acceleration parts of the system. It is also clear that the symplectic integrators
continue to struggle with accurately tracking past high acceleration parts of the orbits in
the randomly generated system. Importantly though, the Ruth and Neri methods both
progress further with the five thousand step integration than the previous step sizes. This

indicates that a shorter step size is accurately advancing the system past high acceleration
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parts of trajectories as is expected. This gives strong evidence that an adaptive algorithm
for symplectic integration is necessary.

Two systems have so far been omitted from the previous results discussions. The Sun-
Earth-Moon system and the Sun-Venus-Mercury system were left out of previous discussions
because of a unique feature that is important to highlight in any numerical research. These
two systems have the largest mass differential of any systems used in this research. As a
result, these systems both experience underflow errors while calculating the accelerations.
The processor used to perform this research has 16 digit machine precision. Both of these
systems fall slightly outside of that value when accelerations are calculated. As a result, the
systems lose the acceleration of the smallest body in the system after a certain number of

time steps and that body is thrown from the system.



73

5000 Step Neri Method Error for the SEM System

@ Objectl  Reference System for the SEM System @ Object1 5000 Step Neri Method SEM System 17500 { — Object 1 Error
2 2
@ Object Object 3 Object 2 Error

—— Object 3 Error
15000

12500

a0 § 000 § 10000
002" . ~
7500
001 -

5000
==

06 5 o 2500
02 04 g 2500
06 02

5000500

oo ™as00, 0
10 00 e Y7500

5000 Step Neri Method Error for the SMV System

1 Reference System for the SMV System @ Obiectl 5000 Step Neri Method SMV System — Object 1 Error

@ Object2 @ Object2 -
@ Objects Object 3 0.020 Object 2 Error
—— Object 3 Error

0015

0010

0.005

0.000

Figure 25: These are the "reference” systems and 5000 step Neri evolutions for the Sun-
Earth-Moon and Sun-Venus-Mercury Systems along with the “error” calculaions for these
two systems.

In these images it can be seen that the system with the largest mass difference throws
its small body out faster than the other. Notably, the moon flies directly out of the system
immediately with no acceleration being calculated. Venus in the Sun-Venus-Mercury system,
however, is thrown out in a wide spiral. It is clear that the integrator was attempting to
properly calculate the accelerations for both of these systems from this example. The
underflow error present in these two systems is a reminder to make use of proper technology
in addition to proper numerical integration techniques. On a system with more floating
point precision than the one used for this research, these systems would evolve normally

with elliptical orbits for both secondary bodies in each system.

4.3 Long Time Evolutions

As the final analysis of this research, the four symplectic integration methods will be
evolved on a select system. This system will again be evolved using the sixth order BDF

methods. However, given the long time evolution of these systems, the expectation for



4

the BDF method is that it will significantly diverge from the true evolution of the system.
To allow an accurate comparison of symplectic method to the BDF method for long time
integration, a system with regular and predictable orbits must be used. This section will
make use the two body Centauri system. Here the time step will be fixed to At = .0016
which is equivalent to the five thousand step integration on the short time interval used
in the previous results. Instead of evolving the system for eight reference time units, the
system will be evolved for forty-eight reference time units. In the point wise error plots,
the expected behavior is a gradually increasing error between the symplectic evolution and
BDF evolution. This increasing error comes from the construction of the BDF method as

was shown through the example of the explicit Euler method.
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Figure 26: These images give a comparison of long time evolutions of symplectic integrators
using a At = 0.0016 reference units time step. These images compare the decay of the BDF
method with the same time step as the systems are evolved for longer periods of time. The
first row of images gives the CEN2 long time evolutions for each integrator. The second
row gives the ”"error” compared to the BDF evolution.

From these images, it is clear that the error in the positions of both bodies is gradually
increasing as the time interval of the evolution is increased. This demonstrates the lack of
adequacy of the BDF methods in evolving the N-body problem over very long time intervals.
As was discussed earlier, to accurately evolve a galactic system over even a single period
of the stars furthest from its center would take an evolution of hundreds of millions of
reference time units. The sixth order BDF method is already showing failing accuracy at

only forty-eight reference time units with only two bodies. If it had to run for forty-eight
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million reference time units on billions of objects, its increasing error would be fatal to
any accurate model of an N-body problem. This fatal flaw in the BDF methods is what
inspires further research into the numerical integration techniques which can accurately

evolve N-body systems over long-time intervals.
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5 CONCLUSION

Throughout this paper, the history and construction of the N-body problem has been
developed and several numerical integration techniques for evolving systems of ordinary
differential equations were explored. By analyzing a variety of time steps for the symplectic
integration methods discussed in this paper over a variety of different initial conditions, it
was determined that high accelerations cause failure in the approximations of these tech-
niques. It was also found that for low acceleration trajectories such as those present in the
Sun-Jupiter-Saturn system, a very long time step is sufficient to accurately track an ob-
ject. These two facts give strong evidence of the need for developing an adaptive algorithm
based on time step accelerations to accurately use general symplectic algorithms to evolve
arbitrary N-body systems. Additionally, through an analysis of errors in the trajectories, it
was determined that the symplectic methods are able to accurately evolve the trajectories
considered in this paper so long as the time step is sufficiently small. A short discussion was
also given on the ineffectiveness of using classical BDF methods to numerically integrate
arbitrary N-body problems. Even for the two body Centauri system, the BDF method used
in this paper diverges significantly for long time intervals. This indicates a need for sym-
plectic algorithms which maintain stability over very long intervals when evolving galactic

systems while exploring the N-body problem and dark matter.
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