
ENABLING ACCELERATOR-SOC CO-DESIGN USING RISC-V CHIPYARD
FRAMEWORK

by

Shruthi K Muchandi

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2020

Approved by:

Dr. Hamed Tabkhi

Dr. Fareena Saqib

Dr. Ronald Sass



ii

c©2020
Shruthi K Muchandi

ALL RIGHTS RESERVED



iii

ABSTRACT

SHRUTHI K MUCHANDI. Enabling accelerator-SoC co-design using RISC-V
Chipyard framework. (Under the direction of DR. HAMED TABKHI)

The rise in transistor cost in conjunction with the slowdown of Moore’s law has

increased the demand for scalable SoC (System-on-Chip) based frameworks. The

opportunity provided by reconfigurable and extensible full-system frameworks opens

up a wide domain in research and academia for architecture exploration and cus-

tomization. Additionally, with today’s enormous increase in applications of machine

learning, specifically deep learning at the edge which requires flexible real-time cogni-

tive processing, inclines us to have efficient architectures with conflicting combination

of high-performance and low-power utilization. This leads us to have scalable, latency

aware domain-specific architectures.

However, accelerator design and optimization are often done in isolation consider-

ing the best possible constraints. This results in system integration becoming much

more complicated due to the non-ideal performance differences. Therefore, this work

focuses on enabling a design space exploration platform for processor accelerator co-

design in order to achieve the best possible performance on the targeted systems.

This work presents parameterizable system support for any streaming, data-hungry

accelerators using Chipyard, an open-sourced, extensible, RISC-V based, agile, full-

system hardware design and evaluation framework developed by University of Califor-

nia, Berkeley. With this work’s RISC-LCAW (RISC-V Loosely-Coupled Accelerator

Wrapper) contribution, we try to ease the manual effort and engineering behind the

accelerator system integration by proving an accelerator integration socket in Chip-

yard framework. This wrapper template is designed with a focus on data-hungry,

streaming, loosely-coupled hardware accelerators.

Also, we enable the co-design support for AWARE-DNN accelerator, developed
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in TeCSAR (Transformative Computer Systems and Architecture Research Lab) at

University of North Carolina at Charlotte by using RISC-LCAW to integrate with

the RISC-V based Rocket Chip SoC system. This integration benefits the accelerator

configurability and optimizability by providing the system integration interpretation.

AWARE-DNN accelerator offers an automated, re-configurable workflow for gener-

ating application specific architectures based on the inherent data-flow of targeted

application and user specified real-time requirements. This combination fuels the ex-

pandability to explore the vital domains of power, latency and performance for the

targeted system. Furthermore, some of the possible system-level effects on the accel-

erator latency and throughput are elevated compared to optimizing the accelerator

in isolation. We evaluate this integration using Verilator RTL simulator for three

sizes of convolution networks and see that the end-to-end latency of RISC-AWARE

compared to standalone AWARE-DNN accelerator is 1.7× for 64×64×3, 2.6× for

32×32×3 and 1.2× for 11×11×3 image size.
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CHAPTER 1: INTRODUCTION

An SoC is a single substrate electronic system which integrates all the hardware

components and software functionalities achieving high performance and reliability at

low power and area. This quality increases the demand for having SoCs in mobile and

edge computing markets. Open-sourced, customizable SoC frameworks are favored

enormously in the research and academia, as they push the boundaries of customiza-

tion and experimentation. One of the best available resources is the RISC-V based

Chipyard framework[1]. This agile based SoC generator framework offers full-system

flexibility to customize hardware and the corresponding software functionalities. It

offers a one stop approach for building our own custom chips.

With the slowdown of Moore’s law and Dennard scaling, domain-specific archi-

tectures are considered the new golden age of computer architecture[2]. This class

of architectures enables us to tailor the hardware design with respect to a specific

domain of applications. They are not completely similar to ASICs as they are not

completely specific for a single application, but they aim for a discipline of applica-

tions. It is already a proven fact that the performance benefits for those targeted

applications is massive compared to running them on general-purpose computers.

Neural Networks are human-brain inspired algorithms for which development and

applications picked up at a rapid pace from the past decade. Availability of huge

amounts of data, advances in dedicated, efficient and powerful hardware and vast de-

velopment in algorithms was the major influence for the AI inspired trend. Recently

Deep Neural Networks (DNNs) have found wide spread usage in many emerging smart

applications. This has been seen to be especially true for applications involving com-

puter vision, speech recognition, robotics, image processing and so on. As show in
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[3, 4], the performance of deep learning based approaches increases significantly with

increments in data size. These applications command scalable, real-time processing,

which generally comes with high computational complexity cost at lower power and

high-performance metrics. Hence, efficient system architecture design for DNNs is an

important step towards enabling deployment of these architectures in the domain of

real-time edge intelligence. SoCs are one of the most widely used platforms for oper-

ating these architectures for providing high-performance and reliability at low power

domains[5, 6]. SoC architects manage to tailor the complete system architecture for

targeted applications based on the algorithm behavior, core, hardware accelerators

and interconnect configurations to produce an efficient and reliable end product.

1.1 Motivation

SoC based designs are one of the best approaches for balancing area, power, and

throughput as well as providing an organized platform for hardware-software co-

design. With the increasing demand for high-performance and low power computing,

the number of hardware accelerators deployed in mobile and server systems is huge.

However most accelerators are designed and optimized in isolation as an IP block

which gives a deceptive interpretation of the overall performance measure for the

complete system. Generally, hardware IPs are interfaced to the system as an input-

output device on a system bus which uses a DMA interface for communication while

the control is managed by the host core. This leave the integration pretty straightfor-

ward, but the estimated performance gain might not be the same as it was with the

standalone accelerator optimizations due to overheads from data movement, memory

coherency management, and bus contention. To integrate a hardware accelerator in

a multi-core heterogeneous system presents even more challenges. Ideally, the system

has to be designed in a way that balances the compute throughput with the memory

interface bandwidth. Hence, a co-designing approach for Soc based accelerators would

provide more authentic view on the performance insights. This thesis is motivated
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by this idea and puts effort in providing an easier co-design platform for the targeted

system and hardware accelerator.

Additionally, having a parameterizable full-system generator and evaluation frame-

work is a huge opportunity for the current academia, industry and research com-

munities due to enabling the exploration of various architecture design possibilities.

RISC-V Chipyard is one of the most successful open-source agile full-system design

and evaluation frameworks. However, while the hardware accelerator integration

support is well-defined, the integration into the system generator platform requires

a great manual engineering effort. In order to increase the productivity of custom

accelerator integration, having a generic hardware wrapper would be very beneficial

and time saving.

1.2 Contributions

1. Through this thesis contribution we provide a better understanding of different

accelerator coupling approaches and interfaces supported in RISC-V based Rocket

Chip system. Also, we present a system-level integration diagram for Rocket Chip

which shows possible types of accelerator coupling.

2. In order to ease the manual effort and engineering behind the accelerator sys-

tem integration in RISC-V Chipyard framework, we design RISC-LCAW (RISC-V

Loosely-Coupled Accelerator Wrapper). This wrapper provides a template to inte-

grate any streaming, data-hungry custom accelerators with the parameterizable and

extensible RISC-V hardware ecosystem. We limit our scope of accelerators to stream-

ing loosely coupled accelerators. Along with the accelerator controller template, we

also provide support for DMA interface and clock-crossing through the wrapper de-

sign.

3. We present a RISC-AWARE design, in which we provide system co-design plat-

form and design-space exploration flexibility for AWARE-DNN accelerator. AWARE-

DNN is a latency-aware, real-time configurable deep neural network architecture
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framework. We integrate this hardware accelerator to the RISC-V Rocket Chip SoC

and elevate some system-level effects on the hardware accelerator performance.

1.3 Thesis Outline

The outline of this thesis document is as follows. The background and related

work needed for this study is reviewed in Chapter 2. Along with briefing over deep

learning and neural networks, this chapter mainly discusses the open-sourced RISC-V

ecosystem and the AWARE-DNN accelerator. We additionally include references to

some related works for this domain. Chapter 3 presents our first two contributions,

which detail on providing a systematic understanding about the RISC-V hardware

system’s extensibility and RISC-LCAW design. Chapter 4 details on RISC-AWARE

design which is to enable system co-design support for AWARE-DNN accelerator

and also elevates some system-level effects on the hardware accelerator performance.

In Chapter 5, we present our experimental setup and compare the performance of

AWARE-DNN accelerator in system and standalone settings. Next, we conclude the

thesis and discuss some interesting future exploration possibilities in Chapter 6.



CHAPTER 2: BACKGROUND AND RELATED WORK

In this chapter, we briefly overview the RISC-V Chipyard framework, deep learning

and neural networks, and the AWARE-DNN accelerator. Additionally, we also discuss

the related contributions in the research community.

2.1 RISC-V Chipyard Framework

Chipyard is an open-source, RISC-V based, SoC generator system developed and

maintained by the Berkeley Architecture Research Group at the University of Cali-

fornia, Berkeley. It supports agile development for full-system hardware design and

evaluation. Chipyard is based on a huge composition of tools, libraries of generators

and supports various flows as shown in Figure2.1. It contains Scala based tools and

libraries like FIRRTL[7], Treadle[8], and ChiselTesters to support a generator-based

architecture design developed in Chisel using Scala programming language primitives.

Due to this, currently it is seen as a one-stop solution for custom architecture design

and exploration.

Figure 2.1: Chipyard Framework Overview

Chisel[9] is an open-source hardware construction language developed to support
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parameterizable generator based hardware designs. It is embedded in Scala which

adds support for high level Object-Oriented and functional primitives. When the

Chisel code is ready to be compiled, it uses SBT for building the source code. Since

Chisel is derived from Scala it is considered to be a library within Scala and hence uses

the same build tool for compiling the source code. The next step is hardware design

elaboration where Chisel tries to construct a circuit based on the code, supported pa-

rameters, library functions and configurations. Once the elaboration is successful, the

generator produces a FIRRTL output which is an intermediate representation of the

circuit source code. FIRRTL is used to translate Chisel-based source files to Verilog

representation. It again goes through various steps which optimize the design and

finally outputs the Verilog file which can be used for running a simulation or FPGA

implementation. Also, as mentioned in [10] FIRRTL leverages reusabilty by enabling

RTL customization for the underlying complexity. Chipyard also supports Treadle,

which is a circuit simulator which executes FIRRTL directly. Additionally, for testing

Chisel-based designs, Chisel Testers is supported by Chipyard. Chisel Testers makes

use of Scala APIs for DUT interaction and works with multiple backends such as

Treadle and Verilator.

The RTL generators in Chipyard framework are designed using Chisel which is

a mix of meta-programming and standard RTL. Normally, hardware designs using

standard RTL are a single instance of the design emitted my generator. However,

due to the meta-programming and parameterization support, the generator design is

capable of integrating complex hardware in an automated format. It is capable of

generating complex RISC-V based SoCs[11], including in-order and out-of-order[12]

processors, uncore components, vector co-processors and hardware accelerators. The

framework not only includes the initial complex designs but also allows flexible ex-

tensions to support user-specific customizations for any system component. Along

with this, it leverages agile end-to-end computer architecture research with a single
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re-usable toolchain by providing a tool-base for automated VLSI flow[13] and also

development of custom target software workloads[14] for bare-metal and linux based

systems, to run on FPGA accelerated cloud simulators[15, 16, 17] or software RTL

simulators like Verilator[18] or VCS. Due to its strong assembly of tools and libraries

which ease the developer to customize the architecture design and integration as per

the user needs, Chipyard is currently gaining popularity across the globe in industry

and academia.

Figure 2.2: Rocket Chip SoC generator system
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2.1.1 Rocket Chip generator

The Rocket Chip generator is a RISC-V SoC generator which was developed at

University of California, Berkeley and supported by SiFive. Rocket Chip can be con-

figured to have customizable inorder or out-of-order cores, heterogeneous or homoge-

neous core configurations, and additional extensibility through accelerators. Rocket

Chip can also be extended at a software-level with ISA extensions to support co-

processor functionality. The SoC generator system supports two types of system

interconnect protocols, TileLink and AMBA. This generator system is tile-based and

hence each core can be customized individually if needed. The Chipyard documenta-

tion covers about configuring the SoC based on custom needs in higher detail.

In the Figure 2.2, each block is developed as a Chisel RTL library which can be

automatically imported and customized in our hardware designs. The tile includes

the system core, optional L1 caches, page table walker and tile bus which is an internal

interconnect. Rocket Chip system supports various configurable interfaces to leverage

the SoC design experience. It has a system bus which connects the uncore to the tiles.

Front bus acts as a master to the system bus and connects optional master devices

to the system. There is a memory bus which provides the memory system interface.

It connects the optional L2 banks or the broadcast hub to the main memory or

DRAM. The system also supports control and periphery buses which are for memory

mapped IO devices. Control bus was designed for devices internal to the Rocket Chip

system. Mostly, SiFive developed core-complex devices like programmable interrupt

controllers, debug units, bootrom, etc. go here. The periphery bus as the name

suggest interfaces the external peripheral devices to the system.

2.2 Deep Learning and Neural Networks

Deep learning is a technique used by machine learning algorithms for computers to

learn and predict various application demands such as image classification, action de-
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tection, and speech recognition. At a basic level, Deep learning imitates the behavior

of neurons in human brain by stacking multiple layers, but with simpler single neuron

dynamics. With this technique the machine learns to filter inputs at various layers

and finally comes to a conclusion or output about the inputs. Each successive layer is

inputted with the output of previous layer which as a whole processes the input and

constructs a composite representation of it. Though various factors like activation,

weights and transfer function[19] play a role, when considering a simple example of

image prediction, the flow is the following: the input pixel matrix, which is provided

to the first layer where the construction of pixel happens. The next layers filter for

edges with the following layer beginning to represent certain low level shapes. This

process continues by increasing the abstractions until a final output is produced.

Figure 2.3: Deep learning Training and Inference phases

As shown in Figure2.3, deep learning happens in two phases, training and infer-

ence. As the names suggest, the network is trained to achieve a desired task by

feeding in loads of data. It is mostly compute-intensive, and the weights are actually

adjusted in this phase of learning. Training phase again occurs in two phases, forward-

propagation and back-propagation. In forward-propagation, the input is loaded into

the initial layer and it is propagated until an output is produced. The output is

then compared with the expected output using a cost function and the performance



10

is evaluated. The same process is repeated by back-propagation, where the data in

feed back into the initial layer with the aim to reduce the cost function by changing

the weights. This way until optimum weights are calculated the training continues

and the model is ready for inference or testing. In the inference phase there is only

forward propagation of data and the output produced is the final prediction result.

2.3 AWARE-DNN Accelerator

AWARE-DNN[20]is an architecture compiler framework developed in TeCSAR, at

University of North Caroline at Charlotte. It is an application-specific hardware ac-

celerator which is developed using a manually optimized architecture template. This

framework is built using Chisel hardware construction language. The Chisel hard-

ware construction language can leverage modularity and utilize libraries of Composite

Blocks. The accelerator is built on the following function blocks:

• Convolution Processing Engine: It is the computation unit of AWARE

DNN. It consist of two Sub modules:

MAC-Engine: It handles computation and driven by 2D line buffer with

extension to 1D line buffer [20] and accesses weigh according to the line Buffer’s

control signal.

Tensor Buffer: It is Fused-Computational Unit and has an extension to 2D

line Buffer. It can be thought of fused convolutional processing Unit. The layer’s

degree of channel parallelism indicates the number of tensor buffer required.

• Aggregation Units: It handles the aggregation of multiple CPE. Every CPE is

constructed at the granularity of single channel. The results will be accumulated

and then passes to the next processing element.

• RELUs: It handles the non-linear activation found in DNNs. It compares input

to zero and outputs to max. This required for summation of every channel for

individual convolution window.
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• Pooling Processing Units: It is a final atomic function unit. It accelerates

the max pool operation on streaming feature map.

• Multi-Dimensional Aggregation Processing Engine (MDAPE): The fu-

sion of tensor buffer results in channel aggregation units to work at the granu-

larity of single row instead of single pixel.

Figure 2.4: An abstraction of a full architecture Instance

Figure 2.4 shows an abstract view of a full architecture instance. Each layer in this

architecture is mapped to an individual pipeline and each stage buffer sized for small

section of FM tile. After enough data is accumulated, the current stage will begin

feeding to the next stage in a producer consumer fashion. This is called as temporal

layer parallelism (layer pipelining). This minimizes inter-layer data movement but

puts memory hierarchy for weight storage. Due to which a special memory hierarchy

is required to exploit the parallelism. The available parallelism shows which can be

parallelism can be exploited to get the design needs are given below:

• Convolution parallelism : The convolution operation is done by single MAC

unit. If the FM source is extended it becomes a sliding window operation. This

creates data dependencies which must be maintained. AWARE DNN benefit

from this data extension through buffer pipelining.

• Kernel parallelism : AWARE-DNN uses array of convolutional processing
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elements in repeated fashion to compute all the kernels of the particular layer

simultaneously. This operation need weights and feature map.

• Channel parallelism: Due to the nature of DNNs, the channel parallelism

of the layer is determined by kernel parallelism of the previous layer. The

AWARE-DNN takes advantage of this in the form of channel buffering.

2.4 Related Work

The concept of specialized hardware accelerators being integrated to the processor

was prominent from 1980 when Intel announced the release of Intel C8087 FPU[21].

However, it resumed interest around 2002 when the frequency scaling for smaller

integrated chip sizes became an issue causing a stall in single-thread processor perfor-

mance. From then on till today, special-purpose accelerators are still in use with mas-

sive demand. One of the early accelerator for graphics is Sony Emotion Engine[22],

which was designed for gaming and graphics workloads. Then emerged GPGPUs[23]

which were capable of high memory-intensive and graphics and non-graphics work-

loads. This flexibility increased the demand for these processing units to the most.

FPGAs also made their entry in the early 2000s and showed massive performance

increase compared to CPUs on some workloads.

Currently most studies on accelerators focuses on the performance and energy ef-

ficiency that accelerators can provide in comparison to general purpose processors

[24, 25, 26]. But, interesting examples of the studies which consider the system-

level implications are shown in [27, 28], which focuses on software level support for

loosely-coupled accelerators. But this study limits by not considering a wider range

of accelerator models and applications, while also neglecting the memory-hierarchy

interference effects. Also this work makes effort using a coherent cache to attach

accelerators to the PCIe bus and removing the need for device drivers. This is a

could be a suitable approach for workloads which are accelerated off-chip due to area,
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off-chip communication needs or even to support reconfigurability (FPGA based ac-

celerator). However, though current works on accelerators are mainly focused on

optimizing design for performance and energy efficiency considering the accelerator

standalone environment, this work[29] nicely showcases the need for co-designing the

accelerator in system environment. In the work, the authors analyze the effects of

on-chip communication and accelerator invocation overheads on different accelera-

tors based on processor coupling and communication with memory. They present

a quantitative comparison of high-throughput accelerator designs like Fast Fourier

Transforms, AES, etc. following various coupling designs like tight coupling behind a

CPU, loose out-of-core coupling with DMA to the Last Level Cache, and loose out-of-

core coupling with DMA to DRAM and conclude that for workloads with non-trivial

data sizes are best served by loosely-coupled accelerators with customized, private

memory blocks.

One other interesting work which elevates the system-level effects on the accelerator

is [30]. This work presents system-level analysis of the effects of cache-coherence

models, accelerator-accelerator interference and processor-accelerator interference for

loosely coupled accelerators. They use Embedded Scalable Platform for designing

and programming the SoC with different configurations and run it on FPGA based

platform. They conclude non-coherent memory model is the most effective approach

for accelerators with large workloads. Also they conclude that that the accelerator

speedup must be evaluated in a full-system context considering the interaction with

all system components.

Though the above mentioned works are similar to the path of our work which

is to provide a co-design environment for hardware accelerators and system cores,

however, the previous work[29] is conducted using functional and cycle-accurate sim-

ulation environment[31, 32] to elevate the effects of system parameters on accelerator

performance and not on providing a customizable processor accelerator co-design en-
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vironment. Closely, in this [30] study, they used Embedded Scalable Platform for

design and programming but framework but is not as extensible as RISC-V Chipyard

agile framwork. In this thesis, we try to build a system interface wrapper for hardware

accelerators in a well-built, extensible environment.

RISC-V Chipyard environment provides access to pre-built parameterizable system

RTL blocks which are ready to use but lacks deep enough usage documentation for be-

ginners to begin their integrations. However, because of the super-flexible full-system

agile framework, there are many contributions which mainly utilize the open-source

ISA extensibilty. Works like [33, 34, 35] are accelerators which are targeted for tightly-

coupled integration design and hence work by ISA level extensions since they are either

vector, systolic array based or encryption accelerators which require close interface

with the processor design. One recent related work is FireSim-NVDLA[36], in which

they integrated Nvidia Deep Learning Accelerator into FireSim[15]. FireSim is an

FPGA-accelerated full-system simulator, which runs on the Amazon cloud FPGAs

developed in the Berkeley Architecture Research Group at University of California

at Berkeley. FireSim works on target design based cycle-simulation which is derived

from the open-source RISC-V based Rocket Chip SoC [4]. In this integration, the

NVDLA accelerator is decoupled from the DRAM controller of the host FPGA and

to add a realistic memory model with last level cache and DRAM to the simulation

environment for performance analysis. Also, through this integration they focused on

analyzing the memory interference between the core and accelerator and performance

benefits of having a shared last level cache.



CHAPTER 3: UNDERSTANDING ACCELERATORS COUPLING IN RISC-V
ECOSYSTEM

RISC-V is an open-source development platform which has been gaining high-

demand because of its open instruction set and the ability to customize a product

that could be tailored to the needs of targeted workload. However, due the lack

of proper documentation and the report of updates, keeping up with development

environment is a huge challenge. This could possibly hinder the process of agile hard-

ware development. Hence, this contribution is dedicated for the understanding and

categorizing of different accelerator coupling types supported in RISC-V ecosystem.

The flow of this chapter is as follows, initially different system interfaces supported

in Rocket Chip are overviewed. Then, detailed description of accelerator coupling

types supported for Rocket Chip system is provided.

3.1 Rocket Chip interfaces overview

In the Figure 3.1, the interfaces inside the tiles, processor core to L1 caches is

connected using the tile bus, which is the local bus. And the tiles are connected to

the rest of the system via system bus, which is again interconnected to front bus,

peripheral bus and control bus. Front bus, which masters the system bus is used

for devices which would want to access the memory directly as a master without

the processor core interference. Periphery and control buses are used for memory-

mapped devices which are mastered by system bus. Optionally, these bus frequencies

and widths can be configured. Rocket Chip SoC generator system libraries have

flexibility to also integrate the AXI base devices through special converters. The

system memory is connected to the on chip using the memory bus which is again

connected to the system bus. The loosely-coupled accelerators integrated into this
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SoC system have flexibility to configure the DMA to last level cache or DRAM if

there is no last level cache in the design. Control bus is specified for memory-mapped

devices internal to the Rocket Chip SoC system whereas Periphery bus is defined

for external device integration into the SoC system as a peripheral or input-output

device.

3.2 Reformalizing existing system concepts in RISC-V ecosystem

Accelerators are dedicated hardware units used to improve the performance of the

targeted application. However, the choice of processor integration type has a funda-

mental effect on the accelerator design considerations and vice-versa. The accelerators

are widely differentiated into tightly and loosely coupled based on their integration

with processor. Below is the detailed description about them.
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Figure 3.1: Rocket Chip accelerator coupling types

• Tightly-coupled accelerators: Tightly-coupled accelerators are closely con-

trolled by the processor, meaning they are dedicated to the targeted processor
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are cannot be portable across various system cores. With the core directly

controlling the accelerator, they have either low or no invocation overheads.

However, they an be further classified based on the processor’s local resources

being shared like private caches, register file and pipeline.Also for these accel-

erators, the local memory is either transparent to the core or the accelerator

shares the host memory and register file. Two major subdivisions in this are

type of coupling are:

ISA Extension: This type of integration basically extends the processor

pipeline with special functional units which share almost all the resources with

the processors. Generally, these specialized units execute applications which

follow single instruction multiple data like workloads. Some examples are vector

and encryption based units which work using instructions which are not a part of

host processor ISA. This type of coupling could basically limits the accelerator

design because of the area and limited amount of storage elements. In Rocket

Chip, these accelerator units are integrated inside the host processor core. The

support for this type of accelerator extension in RISC-V ecosystem is easy

because of its open ISA which could be tailored to the custom needs. However,

for the scope of industry, this type of extension would not be preferable as the

customized vendor specific devices have a closed ISA restrictions.

Co-processor: These accelerators optionally share some resources with the

host processor but communicates using a dedicated interface. These accelera-

tors perform complex tasks compared to ISA extended units and hence cannot

be integrated on the processor pipeline. They use a special interface for com-

munication and optionally for data transfer which is activated through special

instructions. For data transfer, these accelerators can use a DMA or load-store

bus transactions.

In context of Rocket Chip system, the co-processor is integrated inside the pro-
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cessor tile, shown at top left portion in Figure 3.1. This type of integration

uses a special interface called Rocket Custom Co-processor (ROCC) interface.

Further, this interface has two dedicated sub-interfaces, one for core communi-

cation and the other for memory communication. The ROCC ‘command’ inter-

face is used to communicate and also request data from the accelerator. And

the ‘mem’ interface for accessing the memory. However, the ROCC interface

is provided with other sub-interface dedicated for data cache access. Each of

these sub-interfaces follow ready-valid interface protocol internally which assure

the hand-shaking mechanism while communication. This ready-valid interface

is implemented using Chisel ‘Decoupled’ interface.

• Loosely-coupled accelerators: Loosely-coupled accelerators have their local

memory ranges mapped in the system memory and they communicate with the

core using these mapped registers. For applications with huge workload size, the

processor might limit the accelerator’s achievable speed when integrated tightly.

Hence, by decoupling the high-throughput accelerators from processor cores,

the accelerator can be customized to include specialized multi-port datapaths,

private-local memories and gain most of the speedup. These accelerators are

configured using software device-drivers similar to a peripheral or device on

system bus in a SoC. In Rocket Chip system, these accelerators are coupled as

a slave device on system bus. For integrating as a device, they have a special

bus which is mastered by system bus called the peripheral bus. All the external

IPs or devices are attached to processor core via this bus interface.

However, these accelerators differ based on the memory communications. Dif-

ferent types of these are described below:

Memory copy based accelerators: Memory copy based accelerators

transfer data by performing a memory to memory copies. This type of data
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transfer is similar to the memcpy() function provided by glibc. Basically, this

function moves data using SIMD registers. However, in Rocket Chip system,

there is support for memory copy co-processor which works in the similar way

as load-store in vector or SIMD functional units. This co-processor has access

to the CPU’s page table walker and thus can perform its own virtual memory

translations.

DMA based accelerators: For this type of coupling, data transfer can be

done using DMA mechanism. Typically DMA interfaces can either access last

level cache or DRAM. In this type of communication, CPU has to flushes all

data from private caches and invalidate the region used to store the accelerator

output data. Then it sends a DMA requests to the DMA engine and begins the

transfer. Consequently, the accelerator starts execution either when it receives

all the data or starts execution and streams in the data. After computing is

done it outputs the data back to DRAM via DMA. The CPU can access the

accelerator output in DRAM correctly as it invalidated that device memory

region from its private caches. In the context of implementing this in Rocket

Chip system, they can have the DMA interface nodes attached onto the front

bus, which masters the system bus and provides direct access to the memory.

In Figure 3.1, we show this type of coupling in context of isolated master device

and also a slave peripheral with DMA engine for data communication.



CHAPTER 4: RISC-V LOOSELY-COUPLED ACCELERATOR WRAPPER
(RISC-LCAW) DESIGN

This chapter provides a detailed design implementation of RISC-LCAW (RISC-V

Loosely-Coupled Accelerator Wrapper). The flow of the chapter is as follows, first, the

high level design of RISC-LCAW is over-viewed then the design of internal modules

in the wrapper are explained.

4.1 RISC-LCAW Overview

The expanding RISC-V ecosystem provides support for various processor imple-

mentations like Rocket and BOOM and SoC generation frameworks like Rocket Chip

and Embedded Scalable Platform. However, though accelerator interfaces or sockets

are designed and are currently in use, to understand and utilize the benefits of such

a huge framework on its own is painful and time taking. Ideally, having a defined

accelerator wrapper for easy integration would reduced the time and manual effort for

engineering the interface wrapper. In this thesis, we design a RISC-V Rocket Chip

SoC system interface wrapper for loosely-coupled accelerators. We are limiting this

work to target the data hungry, streaming accelerators which are currently in wide

demand. In this section, we will be going through the design implementation details

of the wrapper.

The Figure 4.1 shows the block diagram of the RISC-LCAW design. The main

modules of the wrapper are Controller, DMA Engine and Input Buffer. Controller

manages the accelerator interface and DMA and communicates to the processor core

using the memory-mapped registers. The DMA Engine is responsible for reading and

writing data to the memory (last-level cache or main memory) directly using the front

bus. Input Buffer is an on-chip buffer used to store the data streamed by the DMA.
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Figure 4.1: RISC-LCAW Design

Additionally, it is designed to support the clock domain crossing from system clock

to accelerator clock. The accelerator eventually reads the data from the Input Buffer

either in a streaming way, where the buffer size can be optimized but has to manage

the data rate, or it can wait until the buffer gets full. In the next sub-sections, each

module is described in detailed with the interfaces and design flow.

4.2 Controller Design

The wrapper contains a Controller module which manages the complete accelerator

interface. The Figure 4.2 describes the controller flow. The module initiates the

DMA transfer request to the DMA Engine when the processor core updates the

DMAREQ register with the appropriate transaction start address, size and type. This

module is also responsible to update the status of the accelerator to the processor

core. When the DMA request type is read, it is serviced using the appropriate DMA
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Read Controller, and when the data.valid is high, the controller enables the Input

Buffer write signal. When the input buffer is not empty, the accelerator input_en

signal is configured to start reading the data either once all the data is loaded by

the DMA into the buffer or can be customized to read streaming from the buffer.

Additionally, this buffer implements an asynchronous queue which can help in crossing

clock domains from the system clock to customized accelerator clock. However, once

the accelerator finishes its computation, the output and done signals are outputted

to the Controller which configures a DMA Write request by requesting the processor

for bus grant. Once the processor updates the corresponding control registers, the

Controller initiates the DMA Write to begin.



23

4.3 Direct Memory Access Interface Design

DMA as the name suggest is a feature of computer systems which facilitates direct

memory access to certain hardware subsystems, without the involvement of the pro-

cessor core. With DMA, the processor can continue with its operations without the

need to wait for the transaction to complete. It has to just initiates the transfer and

can continue with its execution and can update all the registers accordingly when it

receives an interrupt from the DMA controller that the operation is done. This fea-

ture would be beneficial any time that the CPU cannot keep up with the data transfer

rate, or when the CPU needs to overlap the computation and access while waiting for

a slow data transfer. Without DMA, the CPU generally uses programmed input/out-

put, where it is typically waiting for the entire duration of the data transfer operation,

and is thus wasting all the cycles to perform other work. DMA transactions can be

streaming or memory-to-memory. In the latter, the DMA is responsible for moving

data within memory. DMA operates as a bus master, meaning it doesnot require the

processor involvement for accesing system memory. However, correct measures must

be taken to put the processor into a hold condition to avoid bus contention. There are

three modes of DMA operations, burst mode, cycle stealing mode and transparent

mode. We limit our design to support burst mode.

In our design, the main controller module intiates and enables the DMA request.

We use Chisel HDL to design and program this module. We use Chisel’s ‘Decou-

pled’ interface for maintaining the handshake protocal with different modules. Con-

sidering the DMA read operation, as seen in Figure 4.3, the interface has request

valid (dmaReq.valid), transaction address (addr), transaction size (blockSize) which

provide information about the DMA transaction and, request done ready (dmaRe-

qDone.rdy) which is the ready signal from controller on finishing DMA request as

inputs from the controller side to DMA Read controller. And, the request done

(dmaReqDone) and data as outputs. From the memory side, the outputs from the
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Read controller are memory request valid (memReq.valid), transaction address (addr)

and burst size (burstSize). The memory request ready (memReq.rdy), memory re-

sponse valid (memResp.valid) and data are inputs to the DMA Read controller from

the memory end.

In the similar way, the DMA write operation, as seen in Figure 4.4, the interface has

request valid (dmaReq.valid), transaction address (addr), transaction size (blockSize)

and data to be written into memory which provide information about the DMA

transaction and, request done ready (dmaReqDone.rdy) which is the ready signal

from controller on finishing DMA request as inputs from the controller side to DMA

Write controller. And, the request done (dmaReqDone) and data as outputs. From

the memory side, the outputs from the Read controller are memory request valid

(memReq.valid), transaction address (addr) and burst size (burstSize). The memory

request ready (memReq.rdy), memory response valid (memResp.valid) are inputs to

the DMA Write controller from the memory end.

The flow of DMA Read controller is shown in the Figure 4.5. This design is managed

using four states. First, ‘INIT’ state at which the DMA is idle waiting for a valid

request. When dmaReq.valid is enabled, the state transitions to ‘REQ’ where, this

controller sends a read request to memory. If the memory request is accepted, the
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controller transitions to ‘READ’ state. In this state, the data is read and if no more

transaction bytes are left, the state is moved to ‘DONE’ state orelse, the state is

moved back to ‘REQ’ state to request another burst of data from memory. The burst

size, transaction size are configurable. But the burst size has to be in powers of two.

Similarly, the flow of DMA Write controller is shown in the Figure 4.6. This design

is managed using four states. First, ‘INIT’ state at which the DMA is idle waiting

for a valid request. When dmaReq.valid is enabled, the state transitions to ‘WRITE’

where, this controller sends a write request to memory. If the memory request is

accepted, the controller transitions to ‘RESP’ state. In this state, the write done

completion is received and if no more transaction bytes are left, the state is moved to

‘DONE’ state orelse, the state is moved back to ‘WRITE’ state to request write for

another burst of data in memory. The burst size, transaction size are configurable.

But the burst size has to be in powers of two.

4.4 Input Buffer Design

Input Buffer module is mainly designed to buffer the accelerator input data and en-

able support for safe clock domain crossing between the system clock and accelerator

clock. As seen in the Figure 4.7, the Input Buffer acts as a barrier between the two
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clock domains, write and read. The necessary signals from the write domain are write

enable (wr_en), write data (wr_data) which is the data to cross the domain and the

write clock (wr_clk) to which is the FIFO write operation synchronized. From the

read domain, we have a read enable (rd_en) similar to write enable which is used to

choose the right data. Then we have read clock (rd_clk) and read data (rd_data).

We also have two very important control signals full and empty managed by write

and read clock domains respectively. In general, clock domain crossing is a design

optimization which gets complication in larger systems where the correct timing has

to be maintained. In Chisel environment, due to the implicit clock, implementing

and testing clock domain crossing is a challenge.

Clock domain refers to any sequential logic which is synchronous to a specific

clock. When there is a need for data transfer between two different clock domains

as shown in Figure 4.8, specific conditions have to be maintained. Often in larger

systems, we tends to have different hardware subsystems running at different clocks

for power and efficiency. In those cases, where there are multiple clock domains

involved, the boundary logic for each clock domain has to be defined correctly to
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avoid the condition of meta-stability. Meta-stability is the condition in hardware

circuits when the setup time and hold time of a particular signal are violated causing

instability in the resulting output. This leads to data corruption or timing issues

which would ultimately break the complete system logic making it difficult to debug

and verify. Generally double-flopping technique is used to crossing from slow to fast,

fast to slow in case of single data bit. But for complex cases, asynchronous FIFOs or

queues are the best approach.

In the Figure 4.9, a detailed clock domain crossing implementation is presented.

We have read and write controllers for controlling the read and write pointers and
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data enables. These pointers are synchrnoized between the two domains using the

double flop synchronizers. we also have gray to binary and binary to gray converters

to avoid false full condition with binary pointers. Also, the full and empty condition

signals are generated based on these pointers. In Chisel environment, due to the

support of implicit clock, we need not supply a write clock as the system clock is the

write clock which is supplied implicitly in Rocket Chip SoC system. Al the domain

related signals have to be defined and updated in their respective domains. The FIFO

has to be traced as a barrier by just using the pointers satisfying the correct boundary

conditions, if full do not write to FIFO and if empty do not read from the FIFO.



CHAPTER 5: RISC-AWARE (RISC-V AWARE-DNN INTEGRATION)

In this chapter, we present one example of leveraging RISC-LCAW design for en-

abling a co-design system framework. AWARE-DNN is an application-specific hard-

ware architecture compiler framework developed using Chisel HDL. It takes advantage

of the modular design strategies inherent in Chisel and presents a parameterizable

generator based hardware accelerator design. This accelerator is a data-flow stream-

ing accelerator made to work near sensor, on the edge. By integrating it into RISC-V

Chipyard, it can get the benefits of agile development design framework which also

provides wrappers for various back-end design flows like software-based simulation,

FPGA-accelerated system and VLSI flows.

Also, with the Rocket Chip support, many accelerator design optimizations can be

explored which would allow it to work intelligently (for example adding support for

leveraging multi-resolution neural network design) and possibly improve the design to

support interface to multiple cameras. Additionally, this integration could enhance

the application performance by having it optimized in system environment.

The Figure 5.1 presents the high-level integration block diagram for RISC-AWARE.

This diagram can be explained efficiently by sectioning it as various steps involved in

hardware-level integration with Rocket Chip. The following sections describe RISC-

AWARE integration as a bottom-up approach or like a cake-pattern, starting with

plugging accelerator into the RISC-LCAW template.

5.1 Customizing RISC-LCAW with AWARE-DNN

As discussed previously in Section 4.1 about the Figure 4.1, any custom device can

be plugged into as a black box by port-mapping the accelerator device ports to the

respective signals inside the wrapper template. Additionally, one important system-
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Figure 5.1: AWARE Integration

level customization we implemented for AWARE-DNN integration is to enable the

support for a deterministic data access rate for

it needs to access the data at a specific frequency to maintain the flops per second

between each layer. To implement this functionality, we used counters to begin the

data transfer into the accelerator at a specific frequency. We could customize the

DMA burst size and the targeted memory model for DMA (last-level cache or DRAM)

to check the system-level parameterization effects on accelerator performance.

As an overall description about AWARE-DNN integration into the RISC-LCAW,

the AWARE-DNN wrapper has two nodes for system interaction, one is the periphery

bus node for communicating with the processor and the other is the front bus node,

which allows AWARE-DNN to bus master for memory accesses. The functionalities

of Controller, DMA Engine and Input Buffer are previously discussed in sub-sections

4.2, 4.3, 4.4 respectively.

We use the tabulated memory-mapped control and status registers for proces-

sor AWARE-DNN accelerator communication. We have a 64-bit DMAREQ register
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Table 5.1: Control and Status memory-mapped registers.
CONTROL AND STATUS REGS SIZE (bits) ADDRESS

DMAREQ (Size, Address, Type) 64 (63:50,49:2,1:0) 0x2000
STATUS 2 0x2008

INTR/DONE 1 0x200C

which is managed by the processor. The processor initializes it with the appropriate

data which includes the DMA request type, memory address and data size or trans-

action size. Also there is a ‘STATUS’ register which is updated by the accelerator

controller. It is currently designed to shows four states, namely DMA Request, DMA

Request done, accelerator startup and accelerator done. Additionally, it also has an

interrupt register ‘INTR’ which is updated by the accelerator controller when the

accelerator is done computing. And this interrupt the simulation.

5.2 Integrating AWARE-DNN Wrapper into Rocket Chip SoC system

As shown in Figure 5.1, the AWARE-DNN wrapper is integrated into the Rocket

Chip SoC system via different bus interfaces. As mentioned in the previous section,

there are two nodes for AWARE-DNN to communicate with the SoC, front node and

periphery node. These nodes are interfaced to the respective buses. In Chipyard

environment this can be done as follows using the Chisel based RTL generators in

the Rocket Chip SoC system.

Listing 5.1: Plugging the wrapper to SoC

trait HasPeripheryAWARE {this: BaseSubsystem =>

implicit val p: Parameters

private val address = 0x2000 //base address of accelerator

private val portName = "aware"

val aware = LazyModule(new aware(ControlParams(address ,

pbus.beatBytes ))(p))

//hook aware controller to periphery bus

pbus.toVariableWidthSlave(Some(portName )) { aware.control.node }
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//hook dma nodes (reader and writer) to front bus

fbus.fromPort(Some("DMA"))() :=* aware.dmanode

}

Once the wrapper is completely designed, we need to attach it up to our SoC.

Rocket Chip accomplishes this using the cake pattern. This basically involves placing

code inside traits and plugging the accelerator nodes to the interface buses. The Chisel

code for plugging the AWARE DNN to RISC-V Rocket Chip is shown in Listing 5.1.

The nodes aware and DMA are hooked to periphery bus and front bus respectively.

The base address and the port width have to included as parameters to the aware

controller node.

After interfacing the accelerator to the SoC system, we need to create a top file

with the bus interfaces for the accelerator to mix our traits into the system as a whole.

Listing 5.2 shows the source code for creating a top file for AWARE DNN accelerator.

Here we basically instantiate the accelerator and wrap it into a top module.

Listing 5.2: Adding the design into Top file

// SK: AWARE -Integration: Start: TopWithAWARE

class TopWithAWARE(implicit p: Parameters) extends Top

with HasPeripheryAWARE {

override lazy val module = new TopWithAWAREModule(this)

}

class TopWithAWAREModule(l: TopWithAWARE) extends TopModule(l)

with HasPeripheryAWAREModuleImp

//SK: End: TopWithAWARE

After wrapping the accelerator into a top file, we need to create a configuration class

for our accelerator in order to be able to include it in any system configurations. For

that we need to extend the main ‘Config’ class and create our accelerator configuration

as shown in Listing 5.3.
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Listing 5.3: Creating AWARE DNN accelerator configuration

//SK: AWARE -Integration: Start Default: WithAWARETop

class WithAWARETop extends Config ((site , here , up) => {

case BuildTop => (clock: Clock , reset: Bool , p: Parameters) =>

Module(LazyModule(new TopWithAWARE ()(p)). module)

})

//End Default: WithAWARETop

Once we create the configuration class for our accelerator, we can customize our

SoC design by using different Chisel RTL design libraries for different system units

as shown in Listing 5.4. The complete SoC configuration considered for this study is

tabulated in 6.1. However, with the parameterization support of Rocket Chip, we have

the flexibility to customize our SoC to a high-end server system or resource-efficient

edge system.

Listing 5.4: Configuring the SoC

//SK: AWARE -Integration: Start: AWARERocketConfig

class AWARERocketConfig extends Config(

// use aware top

new WithAWARETop ++

// use default bootrom

new WithBootROM ++

// use Sifive L2 cache

new freechips.rocketchip.subsystem.WithInclusiveCache ++

// single rocket -core

new freechips.rocketchip.subsystem.WithNBigCores (1) ++

// "base" rocketchip system

new freechips.rocketchip.system.BaseConfig)

//End: AWARERocketConfig



CHAPTER 6: SYSTEM SIMULATION AND PERFORMANCE ANALYSIS

6.1 Simulation platform setup

For conducting our experiments we are using verilator software RTL simulator[18].

Verilator is an open-sourced LGPL-Licensed simulator maintained by Veripool. Chip-

yard framework has support to this simulator. It works by simulating the verilog RTL.

For our simulation, the top level system design verilog file generated from the Chisel

source code is simulated. The complete system under simulation is run at 500MHz

which is managed by the verilator testbench file. The testbench file is by default

designed in the Chipyard platform.

Table 6.1: System characteristics used for study.
System Parameter Details

Processor Core 64bit- Rocket core (Inorder 5-stage)
Instruction Caches 16KB, 4-way, 64-sets, block size 64B

Data Cache 16kB, 4-way, 64-sets, block size 64B
Shared L2 512 kB, 8-way, 1024-sets, block size 64B

External Memory 256 MB, single-ported
Simulator Frequency 500MHz
Accelerator Frequency 125MHz

We use the SoC system setup tabulated in 6.1 as a baseline system for evaluating the

performance differences with AWARE-DNN accelerator integrated into the system.

We use a 64-bit, 5-stage inorder core, defaulted as Rocket core in Rocket Chip SoC

generator system. The L1 instruction and data caches are both 4-way associate

and 16-kilobytes sized. The cacheline size is by default 64-bytes. Additionally, we

configured to include a L2 inclusive cache which is 8-way associative and 512-kilobytes

sized. For the external memory support we use AXI-based DRAM of 256-megabytes

size. The accelerator is configured to work at 125MHz.
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Table 6.2: AWARE-DNN Configuration (parameters are defined for each layer
Parameter 11×11×3 32×32×3 64×64×3
RowSize 11,9,7,3 32,10,8,2 64,12,4,2
FilterSize 3,3,3,3 5,3,5,2 9,3,3,2
Stride 1,1,2,3 3,1,3,1 5,3,1,1

Out_size 9,7,3,1 10,8,2,1 12,4,2,1
KernNum 4,1,4,4 1,1,4,4 1,1,1,4
KernelPar 1,4,1,1 4,4,1,1 4,4,4,1
ChanPar 1,3,4,1 1,4,4,1 1,4,4,4

ChanBuffer 3,4,1,4 3,1,1,4 3,1,1,1
ConvPar 1,1,1,1 5,1,1,1 9,1,1,1
WaitTime 31,10,40,11 2,17,10,34 4,29,11,12

Along with the system simulation setup, we also configured the AWARE-DNN

architecture compiler framework to generate accelerators with different network pa-

rameters. As tabulated in 6.2, we consider three different accelerator networks with

11×11×3 as baseline model, 64×64×3, modeled with Tiny-ImageNet configuration

and 32×32×3, modeled with Mist network configuration for evaluating RISC-AWARE

integration.

6.2 System Performance Analysis

In order to test the RISC-LCAW template and evaluate RISC-AWARE integration,

we conducted tests with different image resolutions and compared the performance

with the standalone accelerator performance. The main performance metric con-

sidered in this analysis is end-to-end latency which is the time taken to load the

entire data set into the accelerator. Generally, this is equal to the latency required to

load the first image as latencies for loading the remaining images is overlapped with

computation.

As the baseline setup, accelerator network with image resolution 11×11×3 is con-

sidered and the DMA burst size is made to be cacheline size which is 64bytes. The

parameters for accelerator setup are listed in 6.2 and for system setup, as mentioned

in 6.1. For the initial evaluation, the baseline setup of system and accelerator is con-

sidered and as seen in Figure 6.1, the end-to-end latency for 11×11×3 resolution is
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increased by 1.2×.

Figure 6.1: Accelerator end-to-end latency for different image resolutions in stan-
dalone and co-design environment

Then the test using baseline system configuration with varying accelerator networks

with different image resolutions is conducted. The results show that with increase in

data sizes and frames per second, we see an increase in accelerator end-to-end latency.

For 64×64×3 resolution the accelerator end-to-end latency is increased by 1.7× and

for 32×32×3 it is increased by 2.6×.

Additionally, tests are conducted with different burst sizes to explore the system-

level effect on the accelerator. As presented in Figure 6.2a, the end-to-end latency

seems to decrease with increasing DMA burst sizes. Furthermore, we present latency

overhead for varying burst sizes and observe that for all networks, the system with

256bytes burst size performed better compared to the default burst size (64bytes).
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(a) Comparison of accelerator end-to-end latency
with varying burst sizes

(b) Latency overhead with varying burst sizes with
respect to standalone accelerator

Figure 6.2: Comparison of accelerator end-to-end latencies for different image reso-
lutions



CHAPTER 7: CONCLUSIONS AND FUTURE WORK

This research provides a better understanding of different accelerator coupling ap-

proaches and interfaces by re-formalizing the existing system concepts in RISC-V

ecosystem. Also a system-level integration diagram for Rocket Chip which shows

possible types of accelerator coupling is presented. Additionally, we provide RISC-

LCAW(RISC-V Loosely-Coupled Accelerator Wrapper) template as an accelerator

socket for integrating loosely-coupled accelerator into Rocket Chip system. However,

the scope of the wrapper support is limited for streaming, data-hungry accelerators.

With this wrapper design we reduce the manual effort and engineering behind the

processor accelerator integration for Rocket Chip. Along with the accelerator wrap-

per controller, the support for DMA and clock-crossing through the wrapper design

is provided.

Furthermore, this work presents RISC-AWARE design, through which we provide

system co-design platform and design-space exploration flexibility for AWARE-DNN

accelerator. AWARE-DNN is a latency-aware, real-time configurable deep neural

network architecture framework. We integrate this hardware accelerator to the Rocket

Chip and elevate some system-level effects on the hardware accelerator performance.

Experiments were conducted to compare the end-to-end latency of the accelerator

with system and standalone. Considering the baseline setup (with image resolution

11×11×3 and default system parameters), the results show that there is an increase

in the end-to-end latency by 1.2× the standalone accelerator latency. And for the

networks with image size 64×64×3, the accelerator end-to-end latency is increased by

1.7× and for 32×32×3 it is increased by 2.6×. Additionally, in this work we explore

the effects of DMA burst size on RISCV-AWARE and see a decrease in the end-to-end
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latency when compare to the default burst size of 64 bytes.

7.1 Future Work

Currently, the RISC-LCAW is designed targeting streaming, data-hungry based

architectures. As a future implementation, this work can be extended to include sup-

port for other loosely-coupled accelerators with private, high-bandwidth, multi-ported

memories. Also, the co-designing platform currently supports single-core processor

system, the wrapper framework could be extended to provide support for heteroge-

neous multi-core system platforms and various other possible system-level effects on

accelerators can be explored. In addition, implementing full-system accelerator in-

tegration simulation can be explored which requires development of software-based

device-drivers.
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