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ABSTRACT

BHAVIN THAKAR. SECURE RISCV DESIGN FOR SIDE-CHANNEL
EVALUATION PLATFORM. (Under the direction of DR. FAREENA SAQIB)

In the era of smart technology, IoT technology has been an integral part of the system.

IoT systems are susceptible to many type of attacks such as buffer overflow attack and

execution flow attacks. Information flow tracking is a technique to monitor the control

flow of the program and mitigate the buffer overflow attack.The open source architec-

ture has several applications in design and simulations of security applications such as

Common Evaluation Platform(CEP). CEP is a RISC-V based simulation framework

for side channel analysis to analyze power traces. These application rely on secure

execution, and can have adverse affects if the underlying framework is compromised.

Our research focuses on security of RISC-V architecture and its simulation framework

of security enabled RISC-V design and simulation to enable hardening the design to

be resilient to hardware attacks and capability of run time detection of any attacks.

CEP version 1.2 is based on RISC-V ISA, so focus of this thesis is to develop the

software simulation model of ISA Level Information Flow Tracking on RISC-V ISA

which can be used as a parallel tool to evaluate these new security extension without

the need of the hardware to test it. The steps discussed about Assembler modifica-

tion in this thesis can be used for adding and deploying new instructions within the

ISA. An attack setup is developed to manipulate the return address which results

in the change of program control flow and also demonstrate the security extensions

integrated in the simulation framework to illustrate the security extensions which can

detect the attack at run-time.
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CHAPTER 1: INTRODUCTION

Evolution of smart technology has paved a way to embed smart connectivity sys-

tem in each and every device in recent years. Internet of Things (IOT), being the

backbone of this technology proved to be a framework which allows communication

from one device to another where each device acts as a data node which processes

certain information received from another node or data retrieval from surrounding en-

vironment.IOT Technology is referred as the network of devices communicating with

each other over the internet. According to Global System for Mobile Communication

Association(GSMA), the number of IoT devices are predicted to increase upto 25.2

billion by 2025 which was marked about 10.3 billion in 2018 [1]. Due to its principle

operation of sending and receiving data between nodes and its abundance has man-

aged to attract many attackers to plant an attack to hijack the system. IOT systems

are vulnerable to many attacks out of which control flow integrity is of major concern.

Control Flow integrity is a large family of attacks where the attacker tries to ma-

nipulate the memory address and register values during run-time to gain access to

the system or change the control flow of the program. These attacks are used for by-

passing software security policies or to run malicious code. In IOT embedded system,

when data is transferred from one node to another allows a back door entry for the

attacker to plant the attack, one of which is buffer-overflow attack. Buffer-overflow

attacks occurs when a malicious data node tries to send information which exceeds the

storage capacity of receiving node and then try to manipulate the memory location

which the program is not allowed to access to change the control flow of the system.

There are many schemes which are developed to stop this type of attack out of which

one scheme is Information Flow Tracking(IFT). IFT is a technique that monitors the
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flow of data received by the node and prevent the malicious data to manipulate the

protected memory location.

RISC-V architecture is gaining recognition in last couple of years due to ease to use

tools and big developer community [2]. The main advantage of RISC-V architecture

is its free and open-source nature which attracts the developers from all over the

world to contribute in this free and open-source project. It provides the flexibility to

develop custom ISA by modifying or adding elements to the base ISA. RISC-V has

rich software ecosystem which consists of emulators, simulators, compiler, debuggers

etc. Due to all these advantages, it has encourage security engineers and researchers

to incorporate security policies within the ISA.

The goal of this research is to propose a ISA level Information Flow Tracking

scheme by adding instructions and tag cache module to stop a buffer-overflow at-

tacks. This research focuses on two parts, one of which is to implement Information

Flow Tracking simulation model that correlates to the hardware behaviour to provide

security against buffer-overflow attack and other part is to learn the RISC-V GNU

Toolchain directory structure and modify the toolchain to generate object files with

newly added instructions.

The correlated hardware tool used for evaluation of this design is RISC-V that is

the underlying architecture of Common Evaluation Platform [3]. Common Evaluation

platform provides a set of tools to evaluate custom security extensions. This tool can

be used to verify that the underlining functionality is still maintained even after

modification. The goal of this research is to design the RISC-v based simulation

model that can be used in Common Evaluation Platform to generate the custom ISA

image along with the software simulation model to test the model without the need

of hardware

For the purpose of these research,a simulation model is developed in Spike ISA

Simulator with RISCV ISA(RV64I) following the latest instruction set manual docu-
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ment version-2.2. Changes are made to RISC-V GNU Toolchain to generate software

applications compatible with the modified ISA.

1.1 CONTRIBUTIONS

Specifically, this work makes following contributions:

• Survey of security vulnerabilities of RISC-V core and countermeasure of .

• Describes RISC-V security extensions and development a simulation model of

security enriched RISC-V ISA.

• Information flow tracking integration with the RISC-V architecture

• Presents attack model to testbed to demonstrate buffer overflow and return

address attack.

• Performs successful correlation between security design developed on hardware

with software simulation model

1.2 ORGANIZATION

This document is organized as follows:

Chapter 2 introduces background knowledge and existing works related to topics

involved in this work.

Chapter 3 discusses the proposed framework and review the steps needed to be

carried out to perform experiments on proposed scheme. It also describes the buffer

overflow attack setup with an example code.

Chapter 4 provides the results of each and every stage and demonstrates the dif-

ference in execution result between traditional RISC-V architecture and IFT based

RISC-V architecture.

Finally, conclusion and future scope of this research is presented in Chapter 5.



CHAPTER 2: BACKGROUND

2.1 RISC-V ARCHITECTURE

RISC-V is an open source community project. It was started in the year 2010 by

researchers at University of California at Berkeley. Its basic goal was to create a free

and open-source ISA. The base Instruction set specification defines 32-bit and 64-bit

address space variants while 128-bit variant is under development[2] [4] [5]. RISC-

V base ISA consists of only base integer instruction set. There are other extensions

available that can be combined with the base integer instruction set as per the purpose

of operation. The extensions are Multiply and Division(M), Atomic Instructions(A),

Floating Instruction(F), Double Precision Floating Point Instruction(D), Control and

Status Register(Zicsr), Instruction-Fetch Fence(Zifencei), General purpose ISA(G)

etc. There are various ISAs available in the market such as ARM, x86, MIPS etc.

The biggest difference between this ISAs and RISC-V ISA is the cost and flexible of

modification. RISC-V architecture is free and open-source ISA[2]. The authors of

RISC-V Reader: An Open Architecture Atlas [6] has defined 7 metrics on which as

ISA can be described. They are as follows:

1) Cost: Cost can be defined by the yield of processors on a single wafer. It can

be concluded that smaller the die, higher the yield and thus reducing the cost of

manufacturing a processor.It becomes very important for ISA designers to make a

ISA as simple as possible to shrink the size of processors. RISC-V is a much simpler

ISA than ARM ISA. The size of die for RISC-V Rocket Processor is 0.22mm2 whereas

it is ox53mm2 for ARM-32 Cortex A5 processor. Therefore, cost of manufacturing

is less for RISC-V ISA. In RISC-V, Register x0 is dedicated to 0, only one data

addressing mode, no conditional execution, no complex stack instructions whereas
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for ARM ISA contains conditional instruction execution. Complex Data Addressing

modes.

2) Simplicity: Simplicity can be defined as the measure of complexity of instruction

to execute a single operation. Simpler instruction design reduces the cost and time

required for designing and verification. It also reduces the cost of documentation and

also reduces the difficulty for customers to understand and develop their software

applications.

3) Performance: Performance is an important factor when it is compared with

the cost of manufacturing of a chip, performance can be defined as amount of time

required by a processor to perform an operation. Even if simple ISA might execute

more instructions per program than a complex ISA, it can make up for it by having

a faster clock cycle. For example for CoreMark benchmark[6] the performance of

BOOM implementation of RISC-V is 14.26 secs/program whereas ARM-32 Cortex

A9 processor takes approximately 18.15 secs/program.

4) Isolation of Architecture from Implementation: Due to RISC-V’s free li-

cense and open source nature, it allows machine language programmer to modify or

add instructions in the ISA. This helps programmers to write correct code along with

optimizing the performance of execution. For example ARM and MIPS ISA have

Multiple Load/ Store instructions which cannot be modified. These instructions can

improve performance for single instruction pipeline design but lack performance for

multiple instruction issue pipelines.

5) Room for Growth: With the end of Moore’s Law, the only route to major

performance-cost improvements is to add instructions for specific areas such as deep

learning, augmented reality and graphics. For this, it is important for the ISA to

reserve opcode space for future improvements.

6) Program Size: The only known downside to RISC-V is its larger program size

than its competing ISAs. This increases the required area on the chip required for the
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program’s memory. This also results is more instruction cache misses. Based on the

author’s analysis, [6] RISC-V32 is 6-9% larger in code size than the x86 architecture.

7) Ease of Programming, compiling and linking: RISC-V features a very sim-

ple design and an extensive software ecosystem. Thanks to its open availability and

strong community support, many researchers have been able to carry out their re-

search on RISC-V. At most, all the instruction in RISCV takes one clock for each

instruction. This reduces the burden on the system and facilitates its use in develop-

ing and optimizing the code as required.

2.1.1 RISC-V DEVELOPMENTS

RISC-V’s Open Source flexibility has made it an increasingly powerful and popular

chip architecture for big companies like Seagate and Western Digital Corp, Alibaba,

along with government initiatives backed by the U.S. militaryâs Defence Advanced

Research Projects Agency (DARPA) [7]. NVIDIA used RISC-V architecture in its

graphics processing unit GPU) chips,even while working to acquire Arm’s proprietary

Arm Holdings architecture. Intel can also help accelerate the adoption of RISC-

V through its expanding foundry activity that aims to manufacture chips for other

enterprises based on x86, ARM or RISC-V architectures. In 2019, Alibaba reported

that it had developed the XuanTie 910 processor based on the RISC-V architecture

through its semiconductor subsidiary Pingtou Ge. It have also helped many startups

to design custom chips without the expensive licensing fees required to use proprietary

chip architectures.

This also reflects in the security sector. Security has been a major concern of RISC-

V and developing security applications with the architecture’s flexibility has led to

various advancements and programs[8]. In 2021, U.S. Defense Advanced Research

Program Agency(DARPA) program called Security Integrate Through Hardware and

Firmware(SSITH), University of Michigan demonstrated their new RISC-V processor

called Morpheus. Around 580 cybersecurity researchers spent 13000 hours trying to
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break into this processor, but they all failed. Morpheus consists of ensembles of mov-

ing target defenses(EMTDs) mechanism which is hardware support that randomizes

the undefined variables along with the churn mechanism that rerandomizes this values

to protect it from probing. [9]

2.1.2 RISC-V INSTRUCTION FORMATS

Figure 2.1: RISC-V Instructions format

Figure 2.2 shows the six base instructions format of RISC-V architecture. R-type

for register-register operation, I-types for short immediate and loads, S-type for stores,

B-type for conditional branches, U-type for long immediates and J-type for uncondi-

tional jumps [5] [6]. Each instruction in RISC-V architecture is 32 bit long except for

Compressed Extension(RV32C, RV64C) which compresses 32 bit instructions into 16

bit long. As there are only six instruction formats and each 32 bit long simplifies the

instruction decoding and hence increasing simplicity and reduces cost-performance.

In comparison to x86 architecture, RISC-V ISA has three operands, rather than

sharing the same field for source and destination register. In figure 2.2 rd stands for

destination register, rs stands for source register, funct stands for function and imm
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stands for immediate value. funct7 + funct3 combined with opcode describe what

operation to perform.

2.1.3 CALLING CONVENTION

Figure 2.2: General stages for executing a function

Figure 2.3 describes the general stages when a function call is made. To obtain

fast execution performance, it is important to keep all the variable in the registers

to avoid going to memory frequently to save or restore these registers. Fortunately,

RISC-V has enough registers to store variable in register hence reducing the time to

save or restore them. It contains temporary registers to store the temporary values

used for computation of a instruction and saved register to store the result between

function and store important result during execution of the function. Each register in

RISC-V architecture is classified in two parts: preserved and not preserved. Figure

2.3 lists the RISC-V application binary interface(ABI) names of registers with their
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classification [6].

Figure 2.3: Assembler mnemonics for RISC-V integer registers

2.2 SECURITY VULNERABILITIES OF RISC-V ARCHITECTURE

In the field of computer security, a vulnerability is the weakness that can be tapped

by the attacker to trespass into privileged areas of computer system. RISC-V is also

susceptible to many vulnerabilities such as buffer overflow, fault injection on return

address etc. The RISC-V based Common Evaluation Platform being used to build a

secure architecture are also prone to this type of attack.

2.2.1 BUFFER OVERFLOW ATTACK

In computer system, stack memory plays an important role in providing a mech-

anism that allows system’s memory to be used as a temporary storage for the in-

coming information. It consists of certain important protected information which is

responsible for keeping a track of function which a program is executing along with

its parameters, return address after the function has completed execution and base

pointer. The one form of buffer overflow attack is to target the return address on the

stack to hijack the control flow of the system [10]. To understand more in detail, it is
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important to look at memory structure of a computer system. The figure 2.1 shows

an example of memory structure concentrating on stack memory structure and other

elements of the memory

Figure 2.4: Memory Structure of a Computer System

Memory structure includes components such as kernel space, stack , heap, data and

text. In RISC-V base architecture, stack grows downwards and heap grow upwards.

Whenever a new program is loaded by the CPU, it starts creating a stack frame. A

buffer of specific size is added to the stack frame to temporary store the incoming

data for processing. A buffer is usually created by the initialization of array in the

function. The return address is also stored on the stack frame which has the address

to return after the function has completed its execution. Buffer grows in index from

low address to high address. The attacker uses this principle to cause segmentation

fault by exceeding the set storage limit of the buffer and hence trespassing the limit

to modify the return address to execute malicious code or to modify the execution
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flow of the program.

Hence, it is important to monitor the information during run time and stop the

execution if the return address is manipulated to avoid buffer-overflow attack.

2.2.2 Fault Injection on Return Address

Return address manipulation is the most common type of run-time attack [11]. It

is done to change the control flow of the program. There are various hardware and

software ways to perform this attack.The most common way to perform these attack

is to cause buffer overflow attack to invade the protected data stored on the stack.

This protected also contains the return address which tell the program to return after

the successful execution of the function. The attacker modifies the return address

stored on the guarded memory location stored on the stack. This result in change in

the program flow which an intruder can use to bypass a security extension or run the

malicious code on the system.

2.3 SECURITY COUNTERMEASURE OF RISC-V ARCHITECTURE

There are various countermeasure developed on the RISC-V architecture against

buffer overflow attack at various level of operations. Morpheus chip developed at

University of Michigan [9] uses Address space layout randomization(ASLR) policy to

avoid buffer overflow attack. This policy randomizes the protected address stored

on the stack after every program execution. This policy provides a higher accuracy

against these type of attacks but the effectiveness of this policy it compromised by

multiple constraints such as size of virtual address space, fragmentation problems,

power consumption and compatibility [12] [13]. Information flow tracking is the an-

other technique used against buffer overflow attack[14]. In this thesis, we explore

the Information flow tracking technique and it’s implementation on different levels

of granularity. We also propose a ISA level information flow tracking on RISC-V

architecture as security countermeasure against buffer overflow attack.
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2.3.1 INFORMATION FLOW TRACKING

Information Flow Tracking has been a promising and effective analysis technique

in security applications of determining the information leakage and detecting the

malicious untrusted security applications by determining the information leakage and

detecting the malicious untrusted data at run-time. Based on the static verification

during the design phase or dynamic checking at the runtime, different IFT approaches

have been implemented. The precision of the IFT logic determines the different levels

of abstraction such as gate level information flow tracking, register transfer level

information flow tracking, language based information flow tracking and dynamic

information flow tracking.

Gate level Information flow tracking(GLIFT) has precise tracking rules for the set

of universal gates with shadow logic [15]. Though it provides a formal basis for a

system’s root of trust with a compositional approach, it results in a computationally

complex design for shadow logic functions with a high number of inputs and does

not scale with design size.The gate level design focuses on a specific security critical

module and the Datapath of the module to be executed is tracked. The inputs and

outputs of the entire module are tainted and a shadow logic library for the tainted

gates is implemented. The security policies are matched with tainted information for

all the gates under test. The output of the tainted gates will be affected if there is

an arbitrary change in the inputs that affect the output. The shadow logic function

is implemented for all the gates and the output of the original module will yield a

true value if the output is not affected by any tainted input and a false value if the

tainted input and a false value if the tainted inputs affect the original logic.

Register transfer level (RTL) tracking is based on propagation rules with RTL

expressions [16]. It enables verification of information at an early stage, at a higher

level of abstraction and directly in RTL code. Although the verification is done on

the early stage, it tradeoffs with IFT precision. The authors suggested that RTLIFT
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is 5x faster than gate level IFT and it also minimizes the efforts required for designing

Register Transfer Level IFT technique the gate level IFT [16].

Language-based IFT achieves a dynamic access-control mechanism with communi-

cation channels. It uses a software approach which focuses on security goals rather

than protecting confidentiality by controlling the information flow[17].

The next approach is Dynamic Information Flow Tracking(DIFT). Dynamic Infor-

mation Flow Tracking includes both hardware and software-based implementations

depending on the architecture of the system and focused on the control as well as

non-control-data attacks[18] [19]. Most of the implementations can be used to detect

buffer overflow attacks, format string Attacks along with various memory corruption

attacks. The DIFT mechanism flow in order to monitor and track the Untrusted data

start by allocating a tag to the malicious channels and marks it as spurious. During

program execution, the tag propagation unit keeps track of the information flow gen-

erated by the spurious data[20]. Finally, a tag checking unit detects the unsafe data

by matching it with the security policies implemented for each untrusted channel and

raises a security exception. The idea of DIFT is to tag certain inputs or data with

some metadata known as tags and then propagating these tags as the program exe-

cutes to know the information flow of the program. The metadata can be represented

by one bit: either trusted or untrusted or it can be represented by a data structure.

To achieve this idea of tags, a different memory is associated in DIFT which can be

called as tag memory or shadow memory. It contains the collection of tags and also

the relationship between this tags and memory addresses that own them.

The proposed IFT technique is based on Dynamic Information Flow Tracking im-

plemented on ISA level. ISA is usually defined as the interface between hardware and

software. ISA acts as an interface between hardware and software. ISA consists of a

set of instructions which defines the operation hardware should perform and contains

the parameters on which instruction is to be executed. The ISA level approach allows
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us to add instructions to interact directly with the hardware to perform an operation.

As it is overlaid between hardware and software, it makes it possible to leverage the

advantage to execute a security policy with high accuracy and less overhead delay.

2.4 SOFTWARE ECOSYSTEM OF RISC-V ARCHITECTURE

RISC-V architecture has a rich software ecosystem which consists of simulators,

emulators, compilers, debuggers etc [2].The software toolchain for RISC-V supports

GCC and Clang/LLVM compilers along with various benchmark environments [21].

Many simulators for RISC-V have been developed and the most common simulator

which is used as a reference model for RISC-V ISA is the Spike simulator [22].

2.4.1 RISC-V GNU TOOLCHAIN

Toolchain is collection of tools combined for the purpose of software development of

a processor. RISCV toolchain consists of tools such as Binutils, DejaGnu, GCC, GDB,

GLIBC, Newlib. Binutils consists two sets of important tools such as assembler and

linker. The assembler processes assembly language programs to produce relocatable

machine code. Library files and other object files must be linked together with the

relocatable machine code produced by the assembler. The role of the linker is to link

these multiple files together. Commands included in binutils are as (assembler), ld

(linker), gprof (profiler), objcopy, objdump, addr2line, etc. DejaGnu is a framework

for testing other programs. Its purpose is to provide a single front end for all tests.

The GNU Compiler Collection (GCC) is a set of compilers used in Linux systems.

Normally GCC is responsible for pre-processing, and compilation the source code

that can be used by assembler to carry-out its operation. GNU Debugger (GDB) is

the debugging tool that comes with the GNU toolchain. It is a programmer friendly

tool, that is used to understand the flow of program by running it line by line to

understand its operation. The GNU C Library (GLIBC) provides the cores libraries

for GNU/ Linux systems. Some of might include open, read, write, malloc, printf,
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getaddrinfo, dlopen, crypt, login, exit. Newlib is the standard library that provided

minimalistic core libraries, intended for the used for embedded systems. Figure 2.5

shows different stages of program execution from source code to executable machine

code along with its tools responsible for each block declared in the toolchain

Figure 2.5: Different stages of program execution

2.4.1.1 ASSEMBLER MODIFICATION

RISCV is an open-source architecture. There are some steps that need to be

carried out to add a new instruction in GNU assembler of RISCV toolchain. Firstly,

we must declare the instruction with respect to its instruction format to generate

matching and masking address value for the instruction. Secondly, we declare the

instruction corresponding to the matching address and master address. Lastly, we

must describe the instruction length, operands and functionality and processor info

of that instruction.

The major goal of Assembler Modification is to extend the ISA for a number of

instruction set extension. This section shows the directory tree of required file to

add instructions in RISC-V ISA. All the following steps will be concentrated on

RISC-V ISA but the changes can also be transferable to other architecture as well.
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The first important step before modify the toolchain is to classify the instruction

format and associate it with an opcode and function value to help the assembler to

generate correct machine code. After the instruction format is generated, create the

appropriate masking and matching code.

Figure 2.6: Directory Structure for Assembler Modification

Figure 2.6 shows the directory structure required for Assembler modification. To

add a new instruction in the assembler, there are three major steps such as initial-

izing the masking address and matching address along with it’s declaration with the

mnemonic, declaration of field format of instruction and generate the disassembly

code. Each step is briefly described below:

1) The first step is to add the computed Match address and Mask address and

intialize the new instruction with this computed match and mask addresses. This

can be done by declaring match and mask address globally in riscv-opc.h and declare

the instruction using function DECLARE_INSN. This instruction is responsible for

mapping match and masking address with the instruction.

2) Modify the riscv-opc.c to add the instruction to the riscv_opcodes structure

which contains all of the instruction available in the RISC-V architecture. Figure 2.7

shows the field format to add the instruction in riscv_opcode structure.
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Figure 2.7: Field Format to add instruction

Name: It represents mnemonic name of the instruction.

Xlen: It will be 32 if the instruction only belongs to RV32 , 64 for RV64 and 0 for

both.

Instruction class: This determine the instruction which describes the instruction for-

mat.

Instruction operands: Defines the operands of the instruction.

Match and Mask address: Connect the Masking and Matching address with Mne-

nomic name of instruction.

Match Opcode: RISC-V generic match_opcode function uses the logic : encoding &

MASK == MATCH.It helps to mask the opcode.

Pinfo: It determines the process information which is used to describing the instruc-

tion.

After Declaring the instruction in the toolchain rebuild the toolchain . Next step

is to add modules in a ISA.

2.4.2 SPIKE ISA SIMULATOR

Spike ISA simulator is used to test the modification of ISA on software level. Spike

ISA directory tree is divided in different modules. Each module is responsible to

simulate a block of architecture. It contains blocks such as Memory Management

Unit(MMU), Trap Unit, Encoding and Decoding Unit, Processor Unit etc. It is easy

to add blocks in the Spike Simulator by adding functions within the simulation block.

2.5 COMMON EVALUATION PLATFORM

The RISC-V based Common Evaluation Platform (CEP) is vulnerable to the above

mentioned security vulnerabilities that can affect the accuracy of the simulation model
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and thus can corrupt the design flow of side channel resilient IP design. In this

work we design security extensions that enable secure execution of instructions run

time checking of any such attacks as discussed earlier[23]. The security extensions

verification and integration is a tedious time consuming and require several iterations

of testing on the hardware. We design a simulation model of verifying the security

properties with the extended security enriched instructions and datapaths in the

simulation model for fast verification process. We create a software simulation model

that highly correlates with the working of hardware image.generated.



CHAPTER 3: PROPOSED SCHEME AND EXPERIMENTAL SETUP

3.1 PROPOSED SCHEME

The propose technique focuses on preventing memory corruption and protects the

return address from software attacks. The control data flow integrity with tagged bits

ensures that the return address matches the corresponding address after the context

switching which prevents an adversary from hijacking the return addresses. The tag-

based analysis is flexible in tracking the record of the data with minimal overhead if

a single bit is used as a tag. Compiler-based modification is done to add the security

policies and to assist with the additional new instructions added to the architecture.

Stack and data protection by tracking and detecting the tagged data eliminates

software attacks which focuses on the return address [24]. In the tagged mechanism,

labels are associated with the address of the data that are received from the untrusted

source. With minimal hardware overhead, the tag mechanism is implemented by

using a 1-bit tag to the data address [25]. When a program is executed during run

time the tag mechanism assigns the tag bits to the spurious data through the tag

propagation module. The tag propagation module assigns tags by using the new

custom instructions implemented in the ISA architecture to store and check the tag

bits. The tag bits are stored in the tag cache which reduced the dedicated memory

assigned for storing the tag bits.

The RISC-V Rocket core is modified to incorporate the security features both

in the ISA level and on the toolchain to detect and eliminate the buffer overflow

and string format attacks. At the ISA level, the tag module consists of all the tag

management units and the translated compiler modifications are developed in RISC-V

GNU. Design verification and validation is performed on the RISC-V Spike Simulator.
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This model focusses on the stack protection and the return address stored on the stack.

The security policy functions are used check for the tag bits from the return address

and the untrusted data source. An exception is raised when the framework detects a

mismatch in the tag bit of the return and data address indicating a software attack

has occurred.

The Load/Store architecture dedicates to copying The data in the memory. Loads

are encoded in the I-type Format and stores are S-type format. Thus, the RISC-V

core is Modified by adding a new Load/Store instructions which are Used to provide

security checks for the 1-bit tag with matching The return addresses. Based on the

load and store encoding Specified in the RISC-V core the new instructions are added:

• In the load instruction encoding: LDTCHECK

• In the store instruction encoding: SDTCHECK

Figure 2.8 shows the Load/Store Instruction format where the red highlighted fields

(funct3 and opcode) are modified for the new instructions to specify the operations to

be performed. When the data from an untrusted source is received the SDTCHECK

will set the tag bit to 1 and LDTCHECK is used for loading the data word and

checking if the tag bit is 0 or 1.

Figure 3.1: Load/Store Instruction format of RISC-V Architecture

The CSR address convention which provides accessibility for error checking by
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using the large CSR space is used to check the read/write compatibility of the custom

instructions with the tag bit where the loaded tag bit and the expected tag bit in the

instruction match, if not it raises an exception. A separate Tag cache module consists

of all the tag management mechanisms with tag initialization, tag propagation, and

tag checking modules. This module reduces the overhead of physically adding a one-

bit tag to the memory. When a one-bit tag is added to the instruction this module

fetches the tag and store it in the tag cache with its own tag cache mapping which

reduces a significant amount of overhead in the architecture. The tag cache acts as

a cache simulator for the tags and this is used to validate the return addresses and

the memory access of the untrusted data. Figure 2.9 shows the E31 core RISC-V

architecture with the added IFT Tag module.

Figure 3.2: E31 Core RISC-V Architecture with Tag Module

The tag for each memory data is directly mapped and stored in the tag cache by

virtual address spacing and lookup tables are used for mapping. During program
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execution, the tag initialization module assigns the tag bits to the data for the new

instructions added and the tag propagation module tracks the flow of the data and

the return addresses of each data from the new instructions. Finally, the tag check

module is used to compare the tag bits of the new instructions and if there is a

return address miss-match it raises a security exception. This detects the return

address modification attacks when an adversary tries to modify the return address

by function call and context switching.

When sensitive data is sent from an untrusted source the tag module initials the tag

mechanism using the new instructions with load and store request similar to lowRISC

[26]. The L1 data cache holds the data with the tag value for both read and write

request and the tag module checks for a mismatch condition based on the tag bits.

The IFT framework is tested on the Spike simulator by implementing a buffer

overflow attack program. The new instructions are used with the stack operations

where the return address is saved. Tag bits are assigned to the return address and

the data to be stored on the stack. When the buffer overflow attack occurs the return

address is checked for the tag value and if itâs the same it executes the program.

If there is a mismatch an exception is raised, and the program execution is stopped

by eliminating buffer overflow attack. The newly added SDTCHECK is used to

assign a tag bit for the return address and the LDTCHECK is used to the check

the tag corresponding the return address in the tag cache. For IFT the program

raises an exception and stops without returning to the main function using the new

instructions when there is a tag mismatch thus eliminating buffer overflow attacks.

This framework protects the stack by using the customized instructions where the

new return address compromised by an adversary is not loaded on the stack.

3.2 EXPERIMENTAL SETUP

Experimental setup includes shell commands to download and install prerequisite

packages, RISC-V GNU Toolchain and Spike ISA Simulator, steps to add instruction



23

in the toolchain, add tag memory module is Spike ISA simulator, write test codes for

simulating buffer overflow attack. We used Ubuntu 20.04 virtual machine installed

on Oracle VirtualBox with 30 GB of memory space allocated. All the software are

installed in this virtual machine.

3.3 RISC-V GNU TOOLCHAIN INSTALLATION PROCESS

Step 1: Open a new terminal and download the prerequisite using the following com-

mand:

$ sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev

libmpfr-dev libgmp-dev gawk git build-essential bison flex texinfo gperf libtool patchutils

bc zlib1g-dev libexpat-dev

Step 2: Download the RISC-V GNU Toolchain from RISC-V official git repository

using the following command. Use this command to download the latest version of

RISC-V ISA published on the master branch

$ git clone –recursive https://github.com/riscv/riscv-gnu-toolchain

Step 3: To build the toolchain get inside the downloaded RISC-V toolchain directory

and run the following command. By default the installation binaries are set to RV64C

use –arch flag to use different RISC-V ISA architecture.

$ cd riscv-gnu-toolchain

$ ./configure –prefix=/opt/riscv

–prefix flag points out the installed directory. You can change installation directory

but make sure that the directory entered has read and write permissions.

Step 4: After configuring the build binaries use the make command to create a RISC-

V toolchain image in the prefixed directory. The command is as follows :

$ make It will take around 30 to 45 minutes depending on computer’s configura-

tion.

Step 5: Set an installation path and add the path to the environment variable per-

manently. To do so , type:
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$ sudo gedit /etc/environment

Add your path in the file .For example. :/opt/riscv/bin and save it. Step 6: Check

if the path is properly added in environment variable by using this command:

$ echo $PATH

If you see your RISC-V installation path, it is permanently added to environment

variable. If not repeat step 5 and Step 6: Test the installation using the following

command. This command shows the RISC-V compile version if installed correctly.

$ riscv64-unknown-elf-gcc -v

3.4 SPIKE ISA Simulator Installation Process

To continue with installation, make sure Toolchain is properly installed and to know

the installation path of RISC-V GNU Toolchain.

Step 1: Open a new terminal and create a temporary environment variable pointing

toolchain prefixed path.

$ export RISCV=/opt/riscv

Step 2: Download the prerequisites using the following command:

$ sudo apt-get install autoconf automake autotools-dev curl libmpc-dev libmpfr-dev

libgmp-dev libusb-1.0-0-dev gawk build-essential bison flex texinfo gperf libtool patchutils

bc zlib1g-dev device-tree-compiler pkg-config libexpat-dev

Step 3: Download the RISC-V Tools from RISC-V official git repository using the

following command:

$ git clone –recursive https://github.com/riscv/riscv-tools

Step 4: Get inside the folder and run the ./build-spike-pk.sh using the following

commands

$ cd riscv-tools

$ ./build-spike-pk.sh

Step 5: To test your installation, create a new C file that prints hello world. Compile

it with RISC-V compiler using following command
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$ riscv64-unknown-elf-gcc hello.c -o hello

Try to run the object file using Spike simulator using the following command. It

should print Hello World

$ spike pk hello

3.5 TOOLCHAIN MODIFICATION

In chapter 2 , we discussed the files which are needed to be modified to add in-

structions. So to modify the opcode library we will add computed Match address

and Mask address in riscv-opc.h and use the declare function to map masking and

matching address with the instruction’s name. The changes are as follows:

#define MATCH_LDCHK0 0x57

#define MASK_LDCHK0 0x707f

#define MATCH_SDSET0 0x2057

#define MASK_SDSET0 0x707f

DECLARE_INSN(ldchk0, MATCH_LDCHK0, MASK_LDCHK0)

The first step is to edit the riscv-opc.c to declare the instruction in riscv_opcode

structure. Changes will be as follows:

"ldchk0",64,INSN_CLASS_I,"d,o(s)",MATCH_LDCHK0,MASK_LDCHK0,match_opcode,

INSN_DREF|INSN_8_BYTE

"sdset0",64,INSN_CLASS_I,"t,q(s)",MATCH_SDSET0,MASK_SDSET0,match_opcode,

INSN_DREF|INSN_8_BYTE

Next step is to configure the assembler to use the new table enteries. For this, ldchk0

and sdset0 are declared as macros. The reason for declaring it as a macro is that in

RISC-V architecture all the load and store instruction are declared as macros as they

directly load symbols from register. The instructions are as follows:

case M_LDCHK0:
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pcrel_load (rd, rd, imm_expr, "ldchk0",

BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_I);

break;

case M_SDSET0:

pcrel_store (rs2, rs1, imm_expr, "sdset0",

BFD_RELOC_RISCV_PCREL_HI20, BFD_RELOC_RISCV_PCREL_LO12_S);

break;

The final step is to recompile the toolchain. The command is as follows:

$ cd riscv-gnu-toolchain

$ make clean

$ make

3.6 SPIKE SIMULATOR MODIFICATION

To simulate the working of newly added instructions, LDCHECK and SDSET,a

tag module is added in the the RISC-V base ISA with the functions to handle the

setting and checking the tag, In this work. we demonstrate the security capabili-

ties on return address attacks where an adversary can control the targets execution

flow by corrupting the return address in the stack and executing an arbitrary code

on the target. The security policies are described to check the flow of the tag bit

in the tag cache and traversing through the newly added instructions. Figure 3.1

illustrates the security policy pseudocode for the check_tag and store_tag functions.

The check_tag function executes the tag condition for the return address. If there

is a mismatch it raises an exception without returning to the main address. The

store_tag function checks for the untrusted channels and the return address before

procedure calls and assigns a tag bit to it and stores the tag bit on the tag cache.
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Figure 3.3: Pseudocode for Check tag and Store tag functions

The functions are added in mmu.h header file mentioned in the Spike Simulator.

To check Tag , Masking address is decoded and check its entry in tag cache. If the

value corresponding tag bit is 1 the function executes or else it raise an exception.

In store tag function masking address is decoded, if the condition on the untrusted

source, assign tag bit to 1 or else 0 and then store this address in the tag cache. For

demo purposes, we assume that each instruction defined is untrusted.

3.7 DEMONSTRATION OF SECURITY PROPERTIES

3.7.1 ATTACK SETUP

This section discusses about the code to simulate buffer-overflow attack. To sim-

ulate buffer overflow attack we have created a C source code. Figure 3.4 shows the

sample code to simulate buffer overflow attack for testing the modified ISA.
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Figure 3.4: Sample Attack code

In this code, main function calls a vulnerable function which do a string copy

operation and add the data on the stack. In the vulnerable function, a character

buffer is created which has a size 5 but during strcpy function due to undefined

behaviour known as buffer overflow attack, we can bypass the segmentation fault

trap and allow the program to access restricted locations. This can be used to modify

the return address. The argument received to vulnerable function from the main

function has the target function address which can be retrieved by using objdump

tool to disassemble the object file. The instruction for RISC-V toolchain is:

$ riscv64-unknown-elf-objdump -d attack>attack.asm

Through this, we can retrieve the memory address of the function as shown in

Figure 3.2. Location of stored return address on the stack is retrieved by intentionally

causing the buffer overflow attack which will output the return address in the terminal

and based on the input string provided predict the location of return address stored

on the stack.
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Figure 3.5: Disassemble code to find the target address

This modifies the return address stored on the stack and calls a target function

which will print something in the shell, For the given example, the target function

address is 0x010150 and if the attack is failed it will either run into segmentation

fault if the value exceeds the buffer size and if it string value is under the buffer

value. It will print out the statement from the main function. The modification of

return address will result in the change of instruction flow.

For the proposed IFT system, the disassembled code is edited with the new in-

structions replacing all the load/store instructions to display the protection from this

attack, The design with security enriched instructions are compiled and are made

available to the simulation setup. It is an important thing to note that toolchain

modification is important for this purpose because if the assembler cant recognize the

instruction, it cannot change instructions into its binary format and will throw an

illegal instruction exception.



CHAPTER 4: RESULTS AND SECURITY ANALYSIS

4.1 RESULTS

This section demonstrates the results of attacks on the traditional RISC-V core and

its countermeasure using IFT. Furthermore, software simulation model is correlated

to the hardware model to expedite the security verification model based on RISC-V

GNU toolchain and Spike ISA simulator.

4.1.1 RETURN ADDRESS LOCATION DECRYPTION

The location of return address on the stack can be retrieved by intentionally per-

forming a segmentation fault.It can be done by overflowing the char buffer in the

attack source code. Figure 4.1 shows the attack source which will cause the seg-

mentation fault and information stored on stack after executing the segmentation

fault.
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Figure 4.1: Sample Code to perform attack along with its result on commandline

To cause segmentation fault,a string is passed with size longer than the buffer

value. In the above example code string from A to R is passed which has a string

length greater that the buffer size and hence, causes segmentation fault. In the above

figure ,return address(ra) shows 7271. This hex number is converted into ascii number

which outputs qr. Through this method,return address location stored on the stack

is retrieved. In the above example, qr string is replaced with the target memory

address.

This proves that even though segmentation fault exception exits the running process

and avoid the program to access protected memory location stored on the stack, it
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can still leak many important information.

4.1.2 BUFFER OVERFLOW ATTACK ON CONVENTIONAL RISC-V

ARCHITECTURE

The segmentation fault can be bypassed by executing a buffer overflow attack on

the system as discussed in previous chapter. Figure 4.2 shows the result when the

program is working in normal condition on conventional RISC-V architecture and

Figure 4.3 shows the result of the buffer overflow attack on conventional RISC-V

architecture.

Figure 4.2: Result of Normal Control flow execution

Figure 4.3: Result of Buffer overflow attack execution

The results in the figure above depicts that the program will work correctly during

normal execution where the input data is less than the buffer size limit but due to

undefined behaviour called buffer overflow, which causes a fault injection on return

address which causes the change in control flow of program.

4.1.3 BUFFER OVERFLOW ATTACK ON MODIFIED RISC-V

ARCHITECTURE

In the proposed scheme, RISC-V core is hardened from the buffer overflow and

return address to protect the system from this type of attack by stopping the load

of return address from the stack and raising an exception to terminate the process.

Same steps should be carried as discussed in chapter 3. Figure 4.4 shows the execution

of normal control compiled with the new instructions. Figure 4.5 shows the result of
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Hardware based Information Flow Tracking system to protect the system from buffer

overflow attack.

Figure 4.4: Result of normal control flow execution compiled with new instructions

In figure 4.4 verification of the new instructions which are recognized by the Spike

ISA simulator and assembler generates proper binary formats for those instructions.

Figure 4.5: Result of Hardware based Information Flow Tracking system to protect
the system from buffer overflow attack

Figure 4.5 shows the successful execution of Hardware based Information Flow

Tracking. The important thing to note here is that there is a change in return

address due to buffer overflow, but due to tag checking mechanism the new address

cannot be mapped to the address stored in tag cache, hence the proposed IFT model

identifies the buffer overflow attack and stops the attack by terminating the process.

4.2 SECURITY ANALYSIS

The RISC-V is vulnerable to the security leaks such as buffer overflow, program

counter attacks, fault attacks. The attacker leverages the bit flips or modification to

the return address (RA) of the stack and can compromise the device. The hardware

integration of the security features takes much longer for verification and security
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analysis. The toolchain extension support helps in creating new software features by

adding, modifying instructions and registers developed for our custom ISA inside the

toolchain. Toolchain support provides the flexibility to add new security policies and

develop test codes and software programs to carry out security analysis for the custom

ISA.The proposed simulation model supports the design and verification of security

extensions to the RISC-V processor. The simulation model has extended toolchain

that supports new functions and instructions such as IFT enabled execution and

encryption support.



CHAPTER 5: CONCLUSIONS AND FUTURE GOALS

In this research,we designed a software simulation model of hardware-based In-

formation Flow Tracking framework with Tagged mechanism by assigning a 1-bit

tag to the spurious data address and return address and translated the hardware

architecture-specific extensions to compiler-specific simulation model. This is a novel

contribution to integrate the hardware security to support the architectural integra-

tion for simulation model. The results of the implemented simulation model show

that the framework tracks the tagged address and eliminates the buffer overflow at-

tacks and the results are correlated to the hardware design. This implementation has

minimal performance overhead with better precision logic and higher performance in

terms of verifying the security extensions.

Our future work will concentrate more on checking the resilience of this system to

avoid bypassing this system by any undefined behaviour of the program. We will also

work on calculating the performance overhead of this design.
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