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ABSTRACT

YETONG ZHOU. Local Spatial Quantile Estimation of Multivariate Functional-coefficient
Regression Models. (Under the direction of DR. JIANCHENG JIANG)

Quantile regression (QR) has been widely studied in statistics and econometrics. However,

there is no much work on nonlinear QR for vector time series. Therefore, we propose a local

spatial QR method to estimate the functional-coefficient matrices of multivariate time series.

We propose a local spatial quantile regression estimator (LSQR) using spatial QR and local

smoothing. To improve the performance, we propose a weighted composite LSQR estimator

(WCLSQR) which uses the idea of weighted composite QR. We establish the asymptotic

normality of the proposed estimators, which is further used to select an optimal bandwidth

and optimal weights for the estimation. Furthermore, to achieve computational efficiency, we

propose a smoothed spatial QR which simplifies and accelerates the minimization problem

in the spatial QR. Based on the smoothed spatial QR, we propose the smoothed LSQR and

WCLSQR estimators using the same techniques as LSQR and WCLSQR. By establishing

the asymptotic normality of the proposed estimators, we show that the estimators using

the smoothed spatial QR can achieve comparable performance with a proper choice of the

smoothing parameter while consuming much less computing resources. Simulation study of

the proposed estimators demonstrates good finite sample performance and computational

efficiency. Real-world applications are also demonstrated.
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CHAPTER 1: INTRODUCTION

Quantile regression (QR) was introduced by Koenker and Bassett (1978) and has become

an important statistical tool for estimation and inference. Compared to mean regression, QR

portrays the stochastic relationship between random variables better and with more accuracy

than mean regression (Chaudhuri, Doksum, Samariv, 1997; Koenker, 2005) and provides

more robust and consequently more efficient estimates than mean regression when the error

is non-normal (Koenker and Bassett, 1978; Koenker and Zhao, 1996). These advantages

have stimulated a tremendous amount of works on QR in statistics and econometrics.

There exists a rich literature on QR in the analysis of time series, examples include, but

are not limited to Koul and Saleh (1995), Davis and Dunsmuir (1997), Jiang, Zhao and Hui

(2001), Peng and Yao (2003). However, most of these works are devoted to univariate cases.

For nonlinear vector time series, the maximum likelihood or least squares estimation have

been extensively studied, see, for example, Bollerslev (1990), Engle and Kroner (1995), Chen

and Tsay (1993), Pan and Yao (2008), and references therein. However, there is no much

work on nonlinear vector time series for QR.

The first major difficulty in the analysis of vector time series with QR is the definition of

a multivariate quantile. However, a solution is given by Chaudhuri (1996) and Koltchinskii

(1997), who proposed a compelling form of multivariate quantiles based on the L1 norm,

namely the spatial quantiles. The spatial quantile provides an appealing multivariate exten-

sion of univariate quantiles and generates a useful volume functional based on spatial central

regions of increasing size. As stressed in Serfling (2004), it has some appealing features: the

equivariance and outlyingness with respect to shift and the orthogonal and homogeneous

scale transformations. This gives us a tool and motivates us to work on the spatial QR for

vector time series data.
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For vector time series data, one should generally use multivariate models. Although uni-

variate models for each time series may be employed, they are not able to capture the

relationship among different time series and may not be efficient. Since nonlinear features

widely exist in each time series (Tong and Lim, 1980; Tong, 1983; Chen and Tsay, 1993;

Yao and Tong, 1995; Tsay, 1998; Fan and Yao, 2003), it is important to model the nonlinear

features using non-parametric vector time series models, which requires little prior infor-

mation on the model structure and may provide an insight into further parametric fitting.

However, a fully non-parametric method suffers from the "curse of dimensionality" in multi-

variate cases when the dimension is high. In this dissertation, we consider the multivariate

functional-coefficient model (1.1) proposed by Jiang (2014), for modeling nonlinear vector

time series data. This model allows us to apply non-parametric techniques to explore the

nonlinear effect and avoids the "curse of dimensionality". The model is given by

yt = c(zt−d) +

p∑
i=1

φi(zt−d)yt−i +

q∑
j=1

βj(zt−d)xt−j + εt, (1.1)

where yt = (y1t, · · · , ykt)′ is a k-dimensional time series, xt = (x1t, · · · , xvt)′ is v-dimensional

exogenous variable, zt is the threshold variable, c(·) is k × 1 functional vector, φi(·)’s are

k × k functional matrices, and βi(·)’s are k × v functional matrices, for i = 1, . . . , p. The

innovations εt = σ(zt−d)ut and ut is a sequence of serially uncorrelated random vectors with

possible infinite variance and unknown distribution. The threshold variable zt is assumed to

be stationary and has a continuous distribution.

Model (1.1) is a generalization of the threshold model in Tsay (1998) and functional

coefficient models in Chen and Tsay (1993), Hastie and Tibshirani (1993), Fan and Zhang

(1999), Cai, Fan and Yao (2000), and Huang and Shen (2004). Without specifying the error

distribution, model (1.1) can be estimated by local least squares method, see Jiang (2014). In

this dissertation we focus on quantile estimation of the model, which is robust and efficient.

In particular, when there is no exogenous variable (q = 0), we allow for infinite variance

of the innovation ut. The proposed local spatial QR estimators admit no close form, so
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it is challenging to establish asymptotic properties for the proposed methodology. Besides,

due to the non-differentiability of the spatial quantile loss function and the complexity of

our model, minimization in the spatial QR is expensive and difficult. We further propose a

smoothed spatial QR which simplifies and accelerates the computation. Efforts have been

made to solve the associated difficulties.

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce the

proposed local spatial QR (LSQR) and its weighted composite version. Then, we establish

the asymptotic normality of the proposed estimators, where optimal weights and bandwidth

selection are considered based on theoretical results. In Chapter 3, we propose the smoothed

spatial QR. By establishing the sampling properties of the proposed method, we show that

the estimators using the smoothed spatial QR can achieve comparable performance. The

choice of optimal parameters are also discussed. In Chapter 4, we conduct simulations to

evaluate the performance of the proposed methodology. In Chapter 5, real-world applica-

tions are demonstrated to illustrate the application of our proposed estimation procedure.

Concluding remarks are presented in Chapter 6. Proofs of the main results are given in the

appendix.



CHAPTER 2: LOCAL SPATIAL QUANTILE REGRESSION (LSQR)

In this chapter, we introduce the local spatial quantile estimation for model (1.1). To

do so, we first review the spatial quantile and then extend it using the idea of local linear

smoothing.

2.1 Review of Spatial QR

Since the seminal work of Koenker and Bassett (1978), the univariate QR has been a

very useful tool in statistics and econometrics. For multivariate models, a variety of ad hoc

notions of multivariate quantiles have been formulated, but there is no definitive multivariate

generalization. Here, we focus on the spatial quantiles, introduced by Chaudhuri (1996) and

Koltchinskii (1997) which pose several appealing features.

According to Chaudhuri (1996) and Koltchinskii (1997), given a sample {zi}ni=1 of a random

vector z in Rk, the u-th spatial quantiles are defined as

α̂(u) = arg min
α∈Rk

n∑
i=1

{||zi −α||+ uT (zi −α)}, (2.1)

where u ∈ Bk = {u| ||u|| < 1,u ∈ Rk} and || · || is the Euclidean norm. For k = 1, the

solution to (2.1) reduces to the sample τ -th quantile (τ = (1+u)/2) based on the real-valued

observations zi’s. Let Qu(t) = ||t||+ < u, t >, where < ·, · > is the Euclidean inner product.

Then, (2.1) can be rewritten as

α̂(u) = arg min
α∈Rk

n∑
i=1

Qu(zi −α).
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Define the u-th quantile of the distribution of z as

α(u) = arg min
α∈Rk

E[Qu(z−α)−Qu(z)].

Chaudhuri (1996) showed that
√
n(α̂(u)−α(u)) is asymptotically normal with mean 0.

Given the estimate α̂(·), one can develop some multivariate descriptive statistics. For

example, we can estimate the multivariate mean of z by the trimmed mean
∫
S
α̂(u) µ(du),

where µ(·) is an appropriate chosen probability measure on unit ball Bk and S = {u|u ∈

Rk, ||u|| ≤ r} for r ∈ (0, 1). The idea can be extended to multivariate regression settings.

Consider the multivariate linear model,

yi = βxi + εi, i = 1, 2, . . . , n, (2.2)

where yi is a k × 1 vector, β is a k × v matrix of unknown parameters, and xi is a v × 1

vector of covariates without the intercept. It is straightforward to extend the above spatial

quantile notion by defining the u-th spatial regression quantiles as

(β̂(u), ε̂u) = argmin
β,ε

n∑
i=1

Qu(yi − βxi − εu), (2.3)

where εu is the u-th quantile of ε. Then, for any u ∈ Bk, β̂(u) is a consistent estimate for

β. When u = 0, it reduces to the spatial median regression in Bai, Chen, Miao and Rao

(1990). For the univariate response case with k = 1, the above spatial QR is equivalent to the

one introduced by Koenker and Bassett (1978). By using a transformation retransformation

procedure as in Chaudhuri (1996), Chakraborty and Chaudhuri (1998), and Chakraborty

(2003), an affine equivariant spatial QR estimation can be constructed.

2.2 Local Spatial QR

Let X∗t = vec(yt−1, . . . ,yt−p, xt−1, . . . , xt−q), an m × 1 vector with m = pk + qv, Xt =

(1,X∗Tt )T , Φ2(z) = (Φ1(z), . . . ,Φp(z),β1(z), . . . ,βq(z)), and Φ∗(z) = (c(z),Φ2(z)). Then,
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model (1.1) can be written as

yt = Φ∗(zt−d)Xt + εt, (2.4)

where Φ∗(·) is a k×(m+1) matrix-valued function. Given zt−d, we define the u-th conditional

quantile of εt as

qu(zt−d) = arg min
q
E[Qu(εt − q)−Qu(εt)|zt−d].

Denote ψu(y) = ∂Qu(y)/∂y = y/||y||+ u for y 6= 0, then

E[ψu(εt − qu(zt−d))|zt−d] = 0.

As the first entry of Xt is 1, model (2.4) is equivalent to

yt = Φ(zt−d; u)(zt−d)Xt + [εt − qu(zt−d)], (2.5)

where Φ(z; u) = Φ∗(z) + (qu(z), 0, . . . , 0). Also, since the conditional quantile qu(zt−d) is

not specified, the first column of Φ∗(z), namely z(z), is not identifiable.

For any zt−d in the neighborhood of z0, using the Taylor expansion, we have

Φ(zt−d; u) ≈ Φ(z0; u) + Φ′(z0; u)(zt−d − z0) ≡ A + B(zt−d − z0),

where Φ′(z; u) = ∂Φ(z; u)/∂z. In view of (2.3), applying the local linear approximation and

the spatial QR for model (2.5), we minimize

n∑
t=s′+1

Qu(yt − [A + B(zt−d − z0)]Xt)K(
zt−d − z0

h
) (2.6)

over A and B, where s′ = max(p, q). Let the resulting minimizers be (Â, B̂). Then,

(Φ(z0; u),Φ′(z0; u)) is estimated by (Â, B̂), which is also denoted by (Φ̂(z0; u), Φ̂
′
(z0; u)) to

emphasize dependence on u and z0.
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Let Φ1(z; u) = c(z) + qu(z). Then Φ(z; u) = [Φ1(z; u),Φ2(z)]. Partition Φ̂(z0; u) into

[Φ̂1(z0; u), Φ̂2(z0; u)], where Φ̂1(z0; u) is the first column of Φ̂(z0; u). Then

[Φ̂1(z0; u), Φ̂2(z0; u)] are the estimators of [Φ1(z0; u),Φ2(z0)], respectively.

2.3 Weighted Composite Local Spatial QR

Weighted composite quantile regression (WCQR) was initially studied by Koenker (1984)

for classical linear models, and was later extended by Zou and Yuan (2008), Bradic, Fan

and Jiang (2011), and Jiang, Jiang and Song (2012), using the penalized WCQR for model

selection in the context of univariate parametric models. Here, we extend WCQR using the

idea of local smoothing for the multivariate functional-coefficient model.

Consider J different quantiles, uj ∈ Bk, j = 1, . . . , J . For each uj and any zt−d in the

neighborhood of z0, we have

Φ1(zt−d; uj) ≈ Φ1(z0; uj) + Φ′1(z0; uj)(zt−d − z0) ≡ cuj + duj(zt−d − z0)

Φ2(zt−d) ≈ Φ2(z0) + Φ′2(z0)(zt−d − z0) ≡ A2 + B2(zt−d − z0)

Then, by equation (2.5),

εt − quj(zt−d) = yt − φ(zt−d)Xt

≈ yt − [cuj + duj(zt−d − z0)]− [A2 + B2(zt−d − z0)]X∗t
(2.7)

For simplicity of exposition, we introduce new notations θ = [θ11, . . . ,θ1J ,θ2], where θ1j =

[cuj , hduj ], and θ2 = [A2, hB2]. Let W1t,h = [1, h−1(zt−d − z0)]T , and W2t,h = W1t,h ⊗X∗t ,

where ⊗ denotes the Kronecker product. It follows that

yt − [cuj + duj(zt−d − z0)]− [A2 + B2(zt−d − z0)]X∗t

= yt − θ1jW1t,h − θ2W2t,h

= yt − θ[ej ⊗W1t,h,W2t,h]
T ,

(2.8)
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where ej is a J × 1 vector with the jth component as 1 and the rest as 0.

Denote (2.8) as ξjt(θ). Using the idea of WCQR, the weighted composite local spatial QR

(WCLSQR) estimator θ̂ can be obtained by minimizing

Ln(θ;ω) ≡
J∑
j=1

ωj

n∑
t=s′+1

Quj(ξ
j
t(θ))K(

zt−d − z0
h

) (2.9)

over θ, where ω = (ω1, · · · , ωJ)T is a vector of positive weights. Denote the resulting

minimizer by θ̂ = [ĉu1 , hd̂u1 , . . . , Â2, hB̂2]. Then [Â2, hB̂2] estimates [Φ2
′(z0),Φ2(z0)].

2.4 Sampling Properties

In this section, we establish asymptotic properties of the proposed estimators. Since the

resulting estimators admit no close form, asymptotic normality is challenging to obtain. We

will establish Bahadur’s representation of the proposed estimators, which then lead to their

asymptotic normality.

To facilitate presentations, we relegate conditions, supplementary lemmas and proofs of

theorems to the appendices. To present the theorems, the following notations are needed.

Let γ̂ =
√
nh[Â − Φ(z0; u), h(B̂ − Φ′(z0; u)] and ζ̂2 =

√
nh[Â2 − Φ(z0), h(B̂2 − Φ′(z0)].

For i = 0, 1, 2, let µi =
∫
uiK(u) du and νi =

∫
uiK2(u) du. Also,

s =

µ2

µ3

 ,S =

µ0 µ1

µ1 µ2

 ,V =

ν0 ν1

ν1 ν2

 ,
M(z0) = E[XtX

T
t |zt−d = z0], Nu(z0) = E[ψu(εt − qu(zt−d)){ψu(εt − qu(zt−d))}T |zt−d = z0],

Du(z0) = E[Ψu(εt − qu(zt−d))|zt−d = z0], Wt,h = [1, h−1(zt−d − z0)]T ⊗Xt, where ψu(y) =

∂Qu(y)/∂y, Ψu(y) = ∂2Qu(y)/∂y∂yT .

Theorem 2.1. Suppose conditions (A1)-(A6) hold. If nh→∞, h→ 0 and nh5 = O(1) as



9

n→∞, then we have the following Bahadur representation:

vec(γ̂)−
√
nhBn(z0; u) = f−1(z0)(S⊗M(z0)⊗Du(z0))

−1Zn + op(1),

where Bn(z0; u) = 1
2
h2(S−1s)⊗ vec(Φ′′(z0; u)), and

Zn =
1√
nh

n∑
t=s′+1

[Wt,h ⊗ψ(εt − qu(zt−d))]K(
zt−d − z0

h
).

Theorem 2.1 is also useful for making inference, including hypothesis testing, but this is

out of the scope of the current study. The next theorem follows from Theorem 2.1.

Theorem 2.2. Suppose conditions in Theorem 2.1 hold. Then

√
nh

{(
vec(Â−Φ(z0; u))

vec{h(B̂−Φ′(z0; u))}

)
−Bn(z0; u)

}
d−→ N (0,Ω(z0)),

where Ω(z0) = f−1(z0)(S
−1VS−1)⊗M−1(z0)⊗ (D−1u (z0)Nu(z0)D

−1
u (z0)).

It is straightforward from Theorem 2.2 that

√
nh[vec(Φ̂(z0; u)− Φ(z0; u))− bn(z0; u)]

d−→ N (0,σ2(z0; u)),

where bn(z0; u) = 1
2
h2

µ22−µ1µ3
µ0µ2−µ21

vec(Φ′′(z0; u)) and

σ2(z0; u) = f−1(z0)
µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2
(µ0µ2 − µ2

1)
2

M−1(z0)⊗ [D−1u (z0)Nu(z0)D
−1
u (z0)].

The asymptotic bias bn(z0; u) is the same as that of the least squares estimator for Φ(z0)

(see Jiang 2014). This property is also shared by the univariate local M-estimation in Fan

and Jiang (2000).
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Remark. From Theorem 2.2, the asymptotic mean square error is

AMSE(vec(Φ̂(z0; u))) =
1

4
h4(

µ2
2 − µ1µ3

µ0µ2 − µ2
1

)2||vec(Φ′′(z0; u))||2 +
1

nh
tr(σ2(z0; u)),

where tr(·) is the trace function. When K(·) is chosen as a symmetrical kernel, µ0 = 1,

µ1 = 0 and ν1 = 0. It follows that

AMSE(vec(Φ̂(z0; u))) =
1

4
h4µ2

2||vec(Φ′′(z0; u))||2

+
1

nh
ν0f

−1(z0)tr(M
−1(z0)⊗ [D−1u (z0)Nu(z0)D

−1
u (z0)]), (2.10)

and the pointwise optimal bandwidth minimizing (2.10) is given by

hopt = n−1/5
{
ν0tr(M

−1(z0)⊗ [D−1u (z0)Nu(z0)D
−1
u (z0)])

µ2
2||vec(Φ′′(z0; u))||2f(z0)

}1/5

.

Using the above formula, we employ a bandwidth selection procedure by multi-fold cross-

validation and the average mean squared error criterion introduced in Jiang (2014).

• Step 1. Choose two integers, the fold sizem and the fold number Q, such that n > mQ.

A common choice is m = [0.1n], Q = 4.

• Step 2. Divide the data {Xt,yt, zt−d}nt=1 into Q + 1 subsets following the time order.

The first subset has n−mQ observations and each of the rest has m observations.

• Step 3. For each of the rest Q subsets, compute the mean squared error

AMSq(hn) = m−1
∑n−qm+m

t=n−qm+1 ||yt − Φ̂q(zt−d)Xt||2, where Φ̂q is estimated using the

sample {Xt,yt, zt−d}n−qmt=1 with the bandwidth hn{n/(n− qm)}1/5. Choose hn to min-

imize AMS(hn) = Q−1
∑Q

q=1AMSq(hn).

Usually boundary points have larger bandwidth than the interior points. Therefore we allow

a variable bandwidth hn(z) depending on zt−d. Let hn depend on the density of zt−d through

hn = c{f̂(z)}−1/5n−1/5 and minimize AMS(hn) over c, where f̂(·) is the kernel density



11

estimate of fz(·), given as f̂(z) = (nh1)
−1∑n

t=1K((zt − z)/h1). Here, we take K as the

Gaussian density kernel and set h1 = 1.06szn
−1/5 by the rule of thumb, where sz is the

sample standard deviation of {zt−d}nt=1.

In the remainder of this section, we establish the Bahadur representation of the WCLSQR

estimator, which is used to derive the asymptotic normality of the estimator.

Theorem 2.3. Suppose the conditions (A1)-(A6) hold. For positive weights {ωj}Jj=1, there

is a unique minimizer θ̂ of Ln(θ;ω). If nh→∞, h→ 0, and nh5 = O(1) as n→∞, then

we have the following Bahadur representation:

vec(ζ̂2)−
√
nhBn2(z0) = f−1(z0)(S⊗M∗(z0)⊗D(z0;ω))−1Zn(ω) + op(1),

where Bn2(z0) = 1
2
h2(S−1s)⊗ vec(Φ′′2(z0)), M∗(z0) = var[X∗t |zt−d = z0],

D(z0;ω) =
∑J

j=1 ωjDuj(z0), Zn(ω) =
∑J

j=1wj[Zn2j − (I2⊗µ∗(z0)⊗ Ik)Zn1j], with µ∗(z0) =

E(X∗t |zt−d = z0) and Znij = 1√
nh

∑n
t=s′+1[Wit,h ⊗ψuj

(εt − quj(zt−d))]K( zt−d−z0
h

).

Theorem 2.4. Suppose conditions in Theorem 2.3 hold. Then

√
nh

{(
vec(Â2 −Φ(z0))

vec{h(B̂2 −Φ′(z0))}

)
−Bn2(z0)

}
d−→ N (0,Ω2(z0;ω))

where Ω2(z0;ω) = f−1(z0)(S
−1VS−1)⊗M∗−1(z0)⊗(D−1(z0;ω)N(z0;ω)D−1(z0;ω)), N(z0;ω) =∑J

j,l=1wjwlNuj ,ul with Nuj ,ul = E[ψuj
(εt − qu(zt−d)){ψul

(εt − qul(zt−d))}T |zt−d = z0].

For the WCLSQR estimator, the asymptotic bias does not depend on ω; the asymptotic

variance depends on ω through Ω2(z0;ω) and it is invariant to the scale of ω. By minimizing

the asymptotic variance, the optimal ω is given by

ω+ = arg min
ω

det{D−1(z0;ω)N(z0;ω)D−1(z0;ω)}

subject to ωj ≥ 0, ||ω|| = 1. This optimization problem has no closed form solution, but it
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can be solved numerically.



CHAPTER 3: LSQR WITH SMOOTHED LOSS FUNCTIONS

3.1 Smooth Loss Functions for Spatial Quantiles

In this section, we introduce the smoothed spatial QR and then combine it with local linear

smoothing to estimate model (1.1). It is a challenging task to run the spatial QR as it does not

have a closed form solution and lacks differentiability at zero. The complexity of multivariate

data adds to this difficulty. By smoothing the loss function of the spatial quantile, we propose

the smoothed spatial QR which simplifies and accelerates the minimization problem in the

spatial QR.

We first illustrate the idea with the simplest case. For univariant data {zi}ni=1, the u-th

quantile is defined as α(u) = arg min
α

∑n
i=1Qu(zi − α), where u ∈ [0, 1] and

Qu(t) = |t|+ ut.

Noting that |t| is non-differentiable at zero, we replace |t| with a smooth function within a

small neighborhood of zero, denoted as [−δ, δ]. Here smooth is defined as C2-continuous, i.e.

this function has continuous second derivatives. If the combined function is C2-continuous at

±δ, then it is C2-continuous for t ∈ R. With this way of smoothing, the resulting function,

denoted as Qu,δ(·), is only different from Qu(·) within [−δ, δ], and δ is a controlling parameter.

The choice of the function to substitute is flexible. As we naturally require the function to

be symmetric and C2-continuous δ, a convenient choice is y(t) = at4 + bt2 + c, where a, b

and c are constants. Then the smoothed loss function Qu,δ(·) can be written explicitly as

Qu,δ(t) =


at4 + bt2 + c+ ut, t ∈ (−δ, δ)

Qu(t), otherwise.
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Denote the first derivative of Q(·) as ψ(·) and the second derivative as Ψ(·). Given the

condition that Qu,δ(t) is C2-continuous, a linear system of a, b and c can be constructed.

After calculation, we obtain that a = −1/(8δ3), b = 3/(4δ), c = 3δ/8 respectively. Figure

3.1 shows the graphs of Qu(t), Qu,δ(t) and their first and second derivatives on the same

axes. With δ = 0.2, it is seen that the check of Qu(t) at zero is smoothed within [−0.2, 0.2];

the jump of ψu(t) and the non-existing point of Ψu(t) disappear, which make the smoothed

loss function Qu,δ(t) C
2-continuous.
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Figure 3.1: The three graphs show the original and smoothed spatial quantile loss function,
their first and second derivatives, respectively, with the blue lines representing Qu(t), ψu(t),
Ψu(t), and the red lines representing Qu,δ(t), ψu,δ(t), Ψu,δ(t). Here u = 0.25, δ = 0.2.

We extend this idea to the multivariate case. In the definition of the spatial quantile

proposed by Chaudhuri (1996) and Koltchinskii (1997), the u-th quantile of {zi}ni=1 in Rk is

α̂(u) = arg min
α∈Rk

n∑
i=1

Qu(zi −α),
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where Qu(t) = ||t||+ < u, t > and u ∈ Bk = {u|u ∈ Rk, ||u|| < 1}. With the same idea

from univariate case, for k > 2, we look for a smooth function to replace ||t|| within Bδ(0),

where Bδ(0) is a small ball centered at 0 with radius δ. As the isotropy and C2-continuity

are required, borrowing a similar form from the univariate case, we choose the substitute for

||t|| within Bδ(0) as the function in the form of z(t) = a(t′t)2 +b(t′t)+c. The C2-continuity

of the resulting function is not that trivial as the univariate case. For the sake of simplicity,

we introduce the following theorem and leave the detailed proof to Appendix C.

Theorem 3.1. Define Qu,δ(t) as

Qu,δ(t) =


a(t′t)2 + b(t′t) + c+ u′t, t ∈ Bδ(0)

Qu(t), otherwise,

where t ∈ Rk, u ∈ Bk = {u|u ∈ Rk, ||u|| < 1}, δ is a constant and Bδ(0) = {t|t ∈ Rk, ||t|| <

δ}. If a = −1/(8δ3), b = 3/(4δ), and c = 3δ/8, then Qu,δ(t) is C2-continuous for t ∈ Rk.

Denoting the gradient of Q(·) as ψ(·), and the hessian matrix as Ψ(·), Figure 3.2 shows

the spatial quantile loss function Qu(t), the first component of its gradient ψu(t), the first

entry of its hessian matrix Ψu(t) and their smoothed versions Qu,δ(t), ψu,δ(t), Ψu,δ(t) for

k = 2, u = [0, 0]′ and δ = 0.25. It is seen that in the three graphs on the right, the inverted

cone at the bottom of Qu(t) is replaced by a smoothed surface within the sphere of radius

0.25; the jump along x-axis of ψu(t) and the non-existing point of Ψu(t) are also smoothed.

With the smoothed loss function Qu,δ(·) at hand, we can derive the smoothed LSQR and

WCLSQR estimators for model (2.5).
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Figure 3.2: The left three graphs show the 2-D loss function Qu(t), the first component of its
gradient ψu(t), and the first entry of its hessian matrix Ψu(t) respectively, while the right
three graphs show their smoothed versions with δ = 0.25.
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3.2 Local Spatial Estimators with Smoothed Loss Functions

In this section, we derive the smoothed LSQR and WCLSQR estimators for model (2.5).

Using the same notations from Chapter 2,

Φ(zt−d; u) ≈ Φ(z0; u) + Φ′(z0; u)(zt−d − z0) ≡ A + B(zt−d − z0).

In view of (2.6), with the local linear approximation and the smoothed QR, we minimize

n∑
t=s′+1

Qu,δ(yt − [A + B(zt−d − z0)]Xt)K(
zt−d − z0

h
) (3.1)

over A and B. The resulting minimizers, denoted as (Ã, B̃) estimate (Φ(z0; u),Φ′(z0; u)).

(Ã, B̃) is also denoted by (Φ̃(z0; u), Φ̃
′
(z0; u)) to emphasize dependence on u and z0. Parti-

tion Φ̃(z0; u) into [Φ̃1(z0; u), Φ̃2(z0; u)], where Φ̃1(z0; u) is the first column of Φ̃(z0; u). Then

[Φ̃1(z0; u), Φ̃2(z0; u)] are the estimators of [Φ1(z0; u),Φ2(z0)], respectively. As will be shown

in Theorem 3.3, Φ̃(z0; u) is a biased estimator of Φ(z0; u) while the bias can be controlled

by the smoothing parameter δ.

Similarly, with θ and ξjt(θ) defined in Chapter 2, the smoothed WCLSQR estimator is

defined by minimizing

Ln(θ;ω) ≡
J∑
j=1

ωj

n∑
t=s′+1

Quj ,δ(ξ
j
t(θ))K(

zt−d − z0
h

) (3.2)

over θ, where ω = (ω1, · · · , ωJ)T is a vector of positive weights. Denote the resulting

minimizer by θ̃ = [c̃u1 , hd̃u1 , . . . , Ã2, hB̃2]. Then [Ã2, hB̃2] estimates [Φ2
′(z0),Φ2(z0)]. In

the next section, we establish the asymptotic normality of the proposed estimators.

3.3 Sampling Properties

In this section, we will establish the Bahadur representations and the asymptotic normal-

ity of the proposed estimators. Detailed proofs of the following theorems are provided in
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Appendix C.

The following additional notations are needed throughout the theorems and the proofs.

Let γ̃ =
√
nh[Ã−Φ(z0; u), h(B̃−Φ′(z0; u)] and ζ̃ =

√
nh[Ã2 −Φ(z0; u), h(B̃2 −Φ′(z0; u)].

For i = 0, 1, 2, µi =
∫
uiK(u) du and νi =

∫
uiK2(u) du. Also, let s0 = (µ0, µ1)

T , µ(z0) =

E[Xt|zt−d = z0] and nu,δ(z0) = E[ψu,δ(εt − qu(zt−d)) − ψu(εt − qu(zt−d))|zt−d = z0], where

ψu,δ(y) = ∂Qu,δ(y)/∂y, Ψu,δ(y) = ∂2Qu,δ(y)/∂y∂yT .

Theorem 3.2. Suppose the conditions (A1) to (A6) holds. If h → 0, δ → 0, nh → ∞,

δknh→∞, nh5 = O(1), and δ2knh = O(1) as n→∞, then we have the following Bahadur

representation:

vec(γ̃)−
√
nhBn,δ(z0; u) = f−1(z0)(S⊗M(z0)⊗Du(z0))

−1Zn + op(1),

where Bn,δ(z0; u) = S−1s0 ⊗ [M(z0)
−1µ(z0)⊗Du(z0)

−1nu,δ(z0)](1 + op(1))

+h2

2
S−1s⊗vec(Φ′′(z0; u))(1+op(1)), Zn(u) = 1√

nh

∑n
t=s′+1[Wt,h⊗ψu(εt−qu(zt−d))]K( zt−d−z0

h
).

The above result is similar to the Bahadur representation of the LSQR estimator in Theo-

rem 2.1 with an additional term for bias caused by the difference between the smoothed loss

function and the original one. From Theorem 3.2, the asymptotic normality of the estimator

is easy to get.

Theorem 3.3. Suppose conditions in Theorem 3.2 hold. Then

√
nh

{(
vec(Ã−Φ(z0; u))

vec(h(B̃−Φ′(z0; u)))

)
−Bn,δ(z0; u)

}
d−→ N (0,Ω(z0)),

where Ω(z0) = f−1(z0)(S
−1VS−1)⊗M−1(z0)⊗ (D−1u (z0)Nu(z0)D

−1
u (z0)).

It is straightforward from Theorem 3.3 that

√
nh[vec(Φ̃(z0; u)−Φ(z0; u))− bn,δ(z0; u)]

d−→ N (0,σ2
2(z0; u)),
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where

bn,δ(z0; u) = M(z0)
−1µ(z0)⊗Du(z0)

−1nu,δ(z0) +
1

2
h2
µ2
2 − µ1µ3

µ0µ2 − µ2
1

vec(Φ′′(z0; u))

and

σ2
2(z0; u) = f−1(z0)

µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2
(µ0µ2 − µ2

1)
2

M−1(z0)⊗ [D−1u (z0)Nu(z0)D
−1
u (z0)].

Remark. Note that, as ψu,δ(·) is only different from ψu(·) in a small ball centered at 0

with radius δ, then

||nu,δ(z0)||2 = ||E[ψu,δ(εt − qu(zt−d))−ψu(εt − qu(zt−d))|zt−d = z0]||2

≤ cδ2k supx∈Bδ(0)||ψu,δ(x)−ψu(x)||2.

Thus, sup ||nu,δ(z0)||2 = cδ(z0)δ
2k. From Theorem 3.3, we can calculate the supremum of the

asymptotic mean square error

supAMSE(vec(Ã)) = 2cδ(z0)δ
2k||M(z0)

−1µ(z0)⊗Du,δ(z0)
−1jk||2

+
1

2
h4(

µ2
2 − µ1µ3

µ0µ2 − µ2
1

)2||vec(Φ′′(z0; u))||2 +
1

nh
tr(σ2

2(z0; u)),

where jk is a k × 1 unit vector with the same direction as nu,δ(z0) and tr(·) is the trace

function. If K(·) is a symmetrical kernel, we have µ0 = 1, µ1 = 0 and ν1 = 0. Then

supAMSE(vec(Ã)) =2cδ(z0)δ
2k||M(z0)

−1µ(z0)⊗Du,δ(z0)
−1jk||2

+
1

2
h4µ2

2||vec(Φ′′(z0; u))||2

+
1

nh
ν0f

−1(z0)tr(M
−1(z0)⊗ [D−1u,δ(z0)Nu(z0)D

−1
u,δ(z0)]).

(3.3)
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To minimize (3.3), the optimal bandwidth is given as

hopt = n−1/5

{
ν0tr(M

−1(z0)⊗ [D−1u,δ(z0)Nu(z0)D
−1
u,δ(z0)])

2µ2
2||vec(Φ′′(z0; u))||2f(z0)

}1/5

.

The obtained optimal bandwidth has a similar form to the one derived in Section 2.4.

Thus the bandwidth selection procedure introduced in Section 2.4 can be easily extended to

smoothed LSQR. With h = cn−1/5, one can choose δ that satisfies δk � n−2/5 to make the

first term of (3.3) neglectable to the rest two terms. As δknh→∞ is required by Theorems

3.2 and 3.3, δ should also satisfy δk � n−4/5. With such choice of δ, the LSQR estimator

with smoothed loss functions can achieve a comparable accuracy as LSQR.

Theorem 3.4. Suppose the conditions (A1)-(A6) hold. If h → 0, δ → 0, nh → ∞,

δknh→∞, nh5 = O(1), and δ2knh = O(1) as n→∞, then we have the following Bahadur

representation:

vec(ζ̃2)−
√
nhBn2(z0) = f−1(z0)(S⊗M∗(z0)⊗D(z0;ω))−1Zn(ω) + op(1),

where Bn2(z0) = 1
2
h2(S−1s)⊗ vec(Φ′′2(z0)), M∗(z0) = var[X∗t |zt−d = z0],

D(z0;ω) =
∑J

j=1 ωjDuj ,δ(z0), Zn(ω) =
∑J

j=1wj[Zn2j−(I2⊗µ∗(z0)⊗Ik)Zn1j], with µ∗(z0) =

E(X∗t |zt−d = z0) and Znij = 1√
nh

∑n
t=s′+1[Wit,h ⊗ψuj

(εt − quj(zt−d))]K( zt−d−z0
h

).

Theorem 3.5. Suppose conditions in Theorem 3.4 hold. Then

√
nh

{(
vec(Ã2 −Φ(z0))

vec{h(B̃2 −Φ′(z0))}

)
−Bn2(z0)

}
d−→ N (0,Ω2(z0;ω)),

where Ω2(z0;ω) = f−1(z0)(S
−1VS−1)⊗M∗−1(z0)⊗ (D−1(z0;ω)N(z0;ω)D−1(z0;ω)),

N(z0;ω) =
∑J

j,l=1wjwlNuj ,ul with Nuj ,ul = E[ψuj
(εt−qu(zt−d)){ψul

(εt−qul(zt−d))}T |zt−d =

z0].

Since the coefficients of {yt−i}, {xt−j} of model 1.1 are not related to quantiles, then ζ̃2
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has the same asymptotic properties as ζ̂2. Also, the method to select optimal weights for

WCLSQR can be extended to smoothed WCLSQR without modifications.



CHAPTER 4: SIMULATIONS

In this section, we conduct numerical simulations to evaluate the performance of the

proposed methodology. We consider the following two-dimensional EXPAR model:

yt = Φ1(zt−1)yt−1 + Φ2(zt−1)yt−2 + εt,

where yt = (yt,1, yt,2)
′, εt = (εt,1, εt,2)

′, zt is a uniform process on [0, 1]. The coefficient

matrices are given by

Φk(z) =

Φk,11(z) Φk,12(z)

Φk,21(z) Φk,22(z)


for k = 1, 2, where

Φk,11(z) = Φk,22(z) = 0.01 + (0.3 + 0.9z) exp(−3.9z2)

and

Φk,12(z) = Φk,21(z) = −0.04 + (−0.7 + 4.3z) exp(−6.9z2).

For εt, We consider the following three types of errors:

(i) εt follows a bivariate normal distribution with mean µ = (0, 0)′ and covariance matrix

Σ =

[
1.0 0.5

0.5 1.0

]
.

(ii) εt follows a bivariate t−distribution with 3 degrees of freedom and covariance matrix

Σ =

[
1.0 0.5

0.5 1.0

]
.

(iii) 95% of data points follow a a bivariate normal distribution with mean µ = (0, 0)′ and
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covariance matrix Σ =

[
1.0 0.0

0.0 1.0

]
. The rest 5% follow normal distribution with mean

µ = (0, 0)′ and covariance matrix Σ =

25.0 0.0

0.0 25.0


Example 1. For comparison, we test the proposed LSQR estimator, WCLSQR esti-

mator and the least squares local linear smoother (Jiang 2014) on three different types of

innovations. For each type, we run 500 simulations of sample size 500.

The other settings for the simulations are as follows. For LSQR, u is set as (0, 0)′, equiv-

alent to the median for univariate data. For WCLSQR, seven quantiles U = [ui]
7
i=1 are

selected along a line as [−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75] · [sin(π/3), cos(π/3)]′. Optimal

bandwidth h(z) and weights w(z) are selected locally at z using the procedure introduced

in Section 2.4.

Tables 4.1-4.3 displays the bias and standard deviations of the estimator for Φk,11(z) at

z = 0.5. As expected, for standard normal error, the least square estimator still has the

smallest standard deviation, while for t-distribution and mixed normal distribution with

outliers, both LSQR and WCLSQR estimators outperform the least squares estimator.

Table 4.1: Summary results of the least square, LSQR, WCLSQR estimates on data (i).

bias std

Least Square -1.02E-02 7.38E-02

LSQR -1.29E-02 8.63E-02

WCLSQR -1.14E-02 7.85E-02
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Table 4.2: Summary results of the least squares, LSQR, WCLSQR estimates on data (ii).

bias std

Least Square -1.37E-03 7.01E-02

LSQR 2.91E-06 5.72E-02

WCLSQR 6.35E-04 5.69E-02

Table 4.3: Summary results of the least squares, LSQR, WCLSQR estimates on data (iii).

bias std

Least Square -8.97E-03 6.09E-02

LSQR -5.62E-03 5.74E-02

WCLSQR -6.89E-03 5.42E-02

Example 2. We first compare the proposed smoothed LSQR to LSQR with the fixed

bandwidth h and the fixed smooth parameter δ. We run 500 simulations of sample size n =

1000 on data (i). Here u is set as (0, 0)′, h is fixed as n−1/5 = 0.2512 and δ = n−3/10 = 0.1259

for illustration purpose. For z ∈ [0, 1], as boundary points usually require larger bandwidth,

we only run the test on the interior points from 0.3 to 0.7.

Denote (Φ̂11, Φ̂12) as the LSQR estimators of (Φ11,Φ12), and (Φ̃11, Φ̃12) as the smoothed

LSQR estimators of (Φ11,Φ12). Tables 4.4-4.6 display the bias and standard deviations of the

two estimation methods and their difference. We observe that for k = 2, with δ satisfying

n−4/5 � δk � n−2/5, the difference between the bias of the smoothed LSQR estimator and

the LSQR estimator is rather small.
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Table 4.4: Bias and standard deviation of smoothed LSQR estimates with h = 0.2512,
δ = 0.1259.

z0 bias of Φ̃11 std of Φ̃11 bias of Φ̃12 std of Φ̃12

0.3 -1.89E-02 5.89E-02 -9.80E-02 5.40E-02

0.4 -1.22E-02 5.87E-02 -6.15E-02 5.43E-02

0.5 -4.50E-03 5.94E-02 -1.44E-02 5.80E-02

0.6 2.81E-03 5.82E-02 1.54E-02 5.84E-02

0.7 6.16E-03 5.52E-02 2.26E-02 5.69E-02

Table 4.5: Bias and standard deviation of LSQR estimates with h = 0.2512.

z0 bias of Φ̂11 std of Φ̂11 bias of Φ̂12 std of Φ̂12

0.3 -1.89E-02 5.90E-02 -9.80E-02 5.43E-02

0.4 -1.22E-02 5.90E-02 -6.15E-02 5.44E-02

0.5 -4.55E-03 5.93E-02 -1.43E-02 5.82E-02

0.6 2.91E-03 5.83E-02 1.57E-02 5.87E-02

0.7 6.20E-03 5.53E-02 2.28E-02 5.71E-02

Table 4.6: Comparison of smoothed LSQR and LSQR estimates.

z0 ∆bias of Φ11 ∆std of Φ11 ∆bias of Φ12 ∆std of Φ12

0.3 -3.50E-05 -1.13E-04 -4.18E-07 -2.86E-04

0.4 5.46E-06 -2.79E-04 -2.10E-05 -6.92E-05

0.5 -4.08E-05 6.90E-05 4.82E-05 -2.11E-04

0.6 -9.72E-05 -1.54E-04 -2.27E-04 -3.42E-04

0.7 -4.11E-05 -1.13E-04 -2.01E-04 -2.10E-04

We also compare the smoothed WCLSQR estimator and the WCLSQR estimator using the

optimal bandwidth and weights selection procedure. Simulation of a sample size n = 1000



27

on data (i) is replicated 500 times. The spatial quantiles U are the same as in Example 1.

As illustrated in Section 3.3, the choice of δ does not affect the optimal bandwidth selection.

For z0 = 0, 0.1, . . . , 1, after the optimal bandwidth h(z0) is selected, we set δ = h(z0)n
−1/10.

Denote (Φ̂11(ω), Φ̂12(ω)) as the WCLSQR estimators of (Φ11,Φ12), and (Φ̃11(ω), Φ̃12(ω)) as

the smoothed WCLSQR estimators of (Φ11,Φ12). Tables 4.7-4.9 report the simulation results.

It is seen that the smoothed WCLSQR achieves similar performance as the WCLSQR, while

for 500 groups of simulation, the smoothed WCLSQR consumes 11 hours 50 minutes, much

less than the WCLSQR, which consumes 22 hrs 09 minutes.

Table 4.7: Bias and standard deviation of smoothed WCLSQR estimates with optimal band-
widths and weights.

z0 bias of Φ̃11(ω) std of Φ̃11(ω) bias of Φ̃12(ω) std of Φ̃12(ω)

0 2.59E-02 1.91E-01 3.75E-02 1.84E-01

0.1 -5.15E-03 8.59E-02 -1.22E-02 8.50E-02

0.2 -8.45E-03 8.24E-02 -4.17E-02 8.75E-02

0.3 -4.39E-03 8.58E-02 -4.09E-02 8.51E-02

0.4 -1.52E-03 7.76E-02 -2.73E-02 7.91E-02

0.5 -3.53E-03 7.27E-02 -7.37E-03 7.24E-02

0.6 -2.35E-03 7.10E-02 9.40E-03 7.79E-02

0.7 6.95E-03 7.33E-02 2.32E-02 8.36E-02

0.8 8.64E-03 6.65E-02 1.90E-02 6.80E-02

0.9 2.89E-03 7.83E-02 8.18E-03 7.47E-02

1 -1.41E-02 1.82E-01 -1.35E-02 1.87E-01
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Table 4.8: Bias and standard deviation of WCLSQR estimates with optimal bandwidths and
weights.

z0 bias of Φ̃11(ω) std of Φ̃11(ω) bias of Φ̃12(ω) std of Φ̃12(ω)

0 2.29E-02 1.96E-01 3.27E-02 1.89E-01

0.1 -4.64E-03 8.50E-02 -1.23E-02 8.32E-02

0.2 -9.44E-03 8.02E-02 -3.94E-02 8.64E-02

0.3 -5.13E-03 8.18E-02 -4.24E-02 7.86E-02

0.4 -2.01E-03 7.67E-02 -2.58E-02 7.95E-02

0.5 -3.05E-03 7.28E-02 -8.21E-03 7.66E-02

0.6 -2.44E-03 7.04E-02 8.22E-03 7.73E-02

0.7 7.46E-03 7.51E-02 2.05E-02 8.19E-02

0.8 8.83E-03 6.87E-02 1.82E-02 7.02E-02

0.9 4.43E-03 8.04E-02 8.77E-03 7.72E-02

1 -1.62E-02 1.92E-01 -1.50E-02 1.87E-01
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Table 4.9: Comparison of smoothed WCLSQR and WCLSQR estimates.

z0 ∆bias of Φ11 ∆std of Φ11 ∆bias of Φ12 ∆std of Φ12

0 2.97E-03 -5.25E-03 4.78E-03 -4.42E-03

0.1 5.18E-04 8.17E-04 -1.35E-04 1.76E-03

0.2 -9.84E-04 2.22E-03 2.25E-03 1.16E-03

0.3 -7.39E-04 4.00E-03 -1.46E-03 6.50E-03

0.4 -4.97E-04 8.35E-04 1.48E-03 -3.73E-04

0.5 4.77E-04 -1.40E-04 -8.43E-04 -4.17E-03

0.6 -8.62E-05 6.02E-04 1.18E-03 6.54E-04

0.7 -5.08E-04 -1.79E-03 2.64E-03 1.62E-03

0.8 -1.93E-04 -2.22E-03 8.04E-04 -2.17E-03

0.9 -1.54E-03 -2.14E-03 -5.90E-04 -2.54E-03

1 -2.11E-03 -9.19E-03 -1.54E-03 5.06E-04



CHAPTER 5: REAL EXAMPLES

5.1 Iceland River Flows

In this section, we study the vector time series consisting of two daily river flow series

of Iceland using the proposed methodology. The data was analyzed in Tong, Thanoon and

Gudmundsson (1985) as two individual time series using the threshold model and Tsay

(1998) using the threshold multivariate model. Modeling the dynamics of the river flows

can be quite complicated as they involve many factors, such as evaporation, transpiration,

underground sources, and melting snow. However, for use of simulation and prediction, it

is worth exploring a relatively simpler model to identify the relationship between the river

flow and some meteorological variables that are easy to acquire. Following Tong, Thanoon

and Gudmundsson (1985) and Tsay (1998), we consider the exogenous variables as lagged

values of daily precipitation, measured in millimeters (mm), denoted as {xt−j}qj=1, and the

lagged value of temperature, measure in degrees Celsius (°C), denoted as zt−d. Two daily

river flow series, measured in m3s−1, are from the Jökulsá Eystri River and Vatnsdalsá

River from 1972 to 1974, denoted as yt = (y1t, y2t)
′. The data are downloaded from the

R package: Time Series Data Library. In Figure 5.1, the time plot of two river flow series

shows strong evidence of nonlinear features, such as sharp rises and slow declines. Thus, it

is reasonable to employ a nonlinear model. Tsay (1998) selected the contemporaneous value

of daily temperature zt as the threshold variable. As an extension to this, we assume that

the coefficients of lagged values of the river flows and exogenous variables depend on zt−d,

and we consider the following model

yt = c(zt−d) +

p∑
i=1

φi(zt−d)yt−i +

q∑
i=1

βi(zt−d)xt−i + εt. (5.1)
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Figure 5.1: The right figure shows the time plot of the daily river flow from the Jökulsá
Eystri River, with the red line representing actual values and blue lines representing its
median estimates. The left figure shows the time plot of the daily river flow from Vatnsdalsá
River.
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Using the average prediction error criterion (APE), we select the lagged order p = 5,

q = 3 and d = 4, although the results indicate that model (5.1) is not that sensitive to the

selection of the lagged order. Tsay (1998) also found that the autoregressive order, ranging

from AR(4) to AR(22) is not a significant factor. This is reasonable as we only have a very

limited number of exogenous variables, and some factors affecting the river flow may be

contained in the past observations. It is seen in Figure 5.1 that the median estimates well

capture the non-linearity of the data, which show that the temperature, as an important

role affecting the snow melting, can explain much of the non-linearity. Figures 5.2 - 5.3 show

the median estimates of the functional coefficients of xt−1, xt−2, xt−3, zt−4 with respect to y1t

and y2t. By modeling the coefficients as functions of the temperature, it is evident that the

relation between the river flows and other meteorological variables have patterns that vary

with seasonal changes, as the two regime threshold model fails to reveal. It is also worth

pointing out that, although the residuals have no strong serial correlations, residuals are

relatively larger in the regime where zt−4 > 0, which indicate the possibility of improving

the model by bringing in more meteorological variables.
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Figure 5.2: LSQR estimates of the coefficients of xt−1, xt−2, xt−3, zt−4 with respect to y1t.

Figure 5.3: LSQR estimates of the coefficients of xt−1, xt−2, xt−3, zt−4 with respect to y2t.
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5.2 U.S. Interest Rates

The risk-free interest rates implied by the returns of bonds play a fundamental role in the

financial modeling. In this example, we consider the series consisting of monthly yields of

three-month U.S. treasury bills (T-bill) and three-year treasury notes (T-note), representing

the short-term and intermediate-term interest rates. The data, consisting of 409 observations

from January 1959 to February 1993, was studied by Tsay (1998) with the multivariate

threshold model and Jiang (2014) with model (1.1) using the least square estimation.

Denote the series of treasury bills and treasury bonds by Y1t and Y2t, and let sit = log(Yit).

We use the logarithmic returns as yt = (y1t, y2t)
′, where yit = sit − si,t−1. Let xt = s1t − s2t

be the spread between the logarithmic interest rates, which indicates the status of the U.S.

economy. Following Tsay (1998) and Jiang (2014), we use the three-month average of xt as

the threshold variable,

z1 = x1, z2 = (x1 + x2)/2, zt = (xt + xt−1 + xt−2)/3.

We fit the data to the following model by LSQR with u = (0, 0)′,

yt = c(zt−d) + γ(zt−d)ut−1 +
7∑
i=1

φi(zt−d)yt−i + εt, (5.2)

where ut−1 = θ′St + 0.3984, θ = (1,−1.1151)′ and St = (s1t, s2t)
′. Here the co-integration is

identified by Engle & Granger Test (1987). To save space, we only demonstrate the LSQR

estimates of the functional coefficient matrix of the first autoregressive term φ1 in Figure 5.4.

The LSQR estimates show similar patterns as the least squares estimates in Figure 4, Jiang

(2014), with narrower confidence intervals. It is seen in Figure 5.4 that the relation of the

returns of T-bill and T-note evolve with the economic status: as zt−4 increases, indicating

better economic status, the return of the T-bill is decreasing and the return of the T-note

is increasing, and vice versa. This trend is expected as the market would favor the longer
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term securities under better economic situations. Figure 5.5 shows the LSQR estimates of

the functional coefficient matrix φ1 with high, low and median quantiles are the same, which

validates the model set up.

Figure 5.4: LSQR estimates of the functional coefficient matrix φ1. In each graph, the
solid line is the estimated function and the dash lines are the limits of the 95% pointwise
confidence intervals.

Figure 5.5: LSQR estimates of the functional coefficient matrix φ1 with high, low and median
quantiles. The black solid line is the median estimates; the blue star and triangle markers
represent low and high quantile estimates.



CHAPTER 6: DISCUSSION

In this dissertation, we propose a local spatial QR method to estimate the functional-

coefficient matrices of multivariate time series. We first propose the local spatial QR es-

timator by running spatial QR and local smoothing. Then we propose a weighted com-

posite LSQR estimator using the idea of weighted composite QR for better performance.

The asymptotic normality of the proposed estimators are established. We also consider

the procedures to select the optimal bandwidth and the optimal weights for the estima-

tion. Furthermore, to achieve computational efficiency, we propose a smoothed spatial QR

which simplifies and accelerates the minimization problem in the spatial QR. Based on the

smoothed spatial QR, we introduce the smoothed LSQR and WCLSQR estimators for the

multivariate functional-coefficient model. By establishing the sampling properties of the pro-

posed estimators, we show that the estimators using the smoothed spatial QR can achieve

comparable performance with a proper choice of the smoothing parameter while consuming

less computing resources. Simulation study of the proposed estimators demonstrates good

finite sample performance and computational efficiency. We also analyze the Iceland river

flow data and U.S. interest rate data to show the applicability of our method to real data.

Our future work may include the hypothesis testing on the significance of coefficients

for LSQR and WCLSQR method. Moreover, a full procedure for model selection may be

considered. Both topics have important applications and completes our method, yet are

challenging due to the complexity of the multivariate functional-coefficient model.
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APPENDIX A: CONDITIONS

(A1) The marginal density f(z) of the stationary process {zt} is bounded away from 0 and

is continuous at z = z0.

(A2) The functions c(·), φi(·) and βi(·) have continuous second derivatives at z = z0.

(A3) The kernel function K(t) is continuous with bounded support [−1, 1]. Further, the

functions t3K(t) and t3K ′(t) are bounded and
∫
t4K(t) dt <∞.

(A4) Error term εt has an absolutely continuous distribution g(x) on Rk with k ≥ 2.

(A5) E[XtX
T
t |zt−d = z0] <∞ and E[||Ψu(εt − qu(zt−d)||2|zt−d = z0] <∞.

(A6) Matrix M(z) is continuous and invertible at z = z0.

The above conditions are standard. Condition (A4) ensures that the conditional quantile

function uniquely exists. It is worthwhile to point out that, if there is no AR part in model

1.1, Condition (A5) is satisfied even when at has infinite variance.
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APPENDIX B: PROOFS of THEOREMS IN CHAPTER 2

Notations

For convenience, we use the following notations throughout the proofs. Let γ̂ =
√
nh[Â−

Φ(z0; u), h(B̂−Φ′(z0; u)] and ζ̂ = (ζ̂11, . . . , ζ̂1J , ζ̂2), where ζ̂1j =
√
nh[ĉuj−Φ1(z0; uj), h(d̂uj−

Φ′1(z0; uj)] and ζ̂2 =
√
nh[Â2 −Φ2(z0; u), h(B̂2 −Φ′2(z0; u)].

Define the remainders of the local linear approximation

R(zt−d; u) = Φ(zt−d; u)−Φ(z0; u)−Φ′(z0; u)(zt−d − z0),

R1(zt−d; uj) = Φ1(zt−d; uj)−Φ1(z0; uj)−Φ′1(z0; uj)(zt−d − z0),

R2(zt−d) = Φ2(zt−d)−Φ2(z0)−Φ′2(z0)(zt−d − z0).

Let ηut = εt − qu(zt−d) + R(zt−d; u)Xt and η
uj
t = εt − qu(zt−d) + R1(zt−d; uj) + R2(zt−d)X

∗
t .

Lemma B.1. For any quadratic function g(x) = xTAx + bTx + c, where A is a p × p

positive definite matrix, b is a p× 1 vector and c is a constant, we have

(i) g(x) achieves the minimum value g(x0) = c− 1
4
bTA−1b at x0 = −1

2
A−1b;

(ii) g(x) = (x− x0)
TA(x− x0) + g(x0).

Proof of Lemma B.1. Routine.

Lemma B.2. Let ξn = {vec(γ)}T 1√
nh

∑n
t=s′+1[Wt,h ⊗ ψu(η

u
t )]K( zt−d−z0

h
). Suppose Condi-

tion A holds. Then

ξn = {vec(γ)}TZn(u)+
h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT⊗M(z0)]}+op(
√
nh5).
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Proof of Lemma B.2. Rewrite ξn as

ξn =
1√
nh
{vec(γ)}T

n∑
t=s′+1

[Wt,h ⊗ψu(εt − qu(zt−d)]K(
zt−d − z0

h
)

+
1√
nh
{vec(γ)}T

n∑
t=s′+1

[Wt,h ⊗ {ψu(η
u
t )−ψu(εt − qu(zt−d))}]K(

zt−d − z0
h

)

≡ξn1 + ξn2.

(B.1)

By Taylor’s expansion, R(zt−d; u) = 1
2
Φ′′(ξt−d; u)(zt−d− z0)2, where ξt−d is between zt−d and

z0 and independent of u. Then

ξn2 =
1√
nh
{vec(γ)}T

n∑
t=s′+1

[Wt,h ⊗ {Ψu(εt − qu(zt−d))
h2

2
Φ′′(ξt−d; u)Xt}]K(2)(

zt−d − z0
h

)

+
1√
nh
{vec(γ)}T

n∑
t=s′+1

[Wt,h ⊗ {χt,u
h2

2
Φ′′(ξt−d; u)Xt}]K(2)(

zt−d − z0
h

)

≡ξn21 + ξn22,

whereK(j)(x) = xjK(x) and χt,u = ψu(η
u
t )−ψu(εt−qu(zt−d))−Ψu(εt−qu(zt−d))R(zt−d; u)Xt.

Applying the identity, vec(abT ) = b⊗ a for any column vectors a and b, we obtain that

Wt,h ⊗ {Ψu(εt − qu(zt−d))Φ
′′(ξt−d; u)Xt}

= vec{Ψu(εt − qu(zt−d))Φ
′′(ξt−d; u)XtW

T
t,h}

= vec{Ψu(εt − qu(zt−d))Φ
′′(ξt−d; u)[(1,

zt−d − z0
h

)⊗XtX
T
t ]}.

Hence, by Condition (A1) and (A2),

E

{
[Wt,h ⊗ {Ψu(εt − qu(zt−d))

h2

2
Φ′′(ξt−d; u)Xt}]K(2)(

zt−d − z0
h

)

}
= E

{
vec{Ψu(εt − qu(zt−d))Φ

′′(ξt−d; u)[(1,
zt−d − z0

h
)⊗XtX

T
t ]}K(2)(

zt−d − z0
h

)

}
= hf(z0)vec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}(1 + o(1))
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and

E(ξn21) =
h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}(1 + o(1)).

Note that under Condition (A5), var(ξn21) = O(h4). Then ξn21 = Op(
√
nh5). Similarly, we

can show that ξn22 = op(
√
nh5). It follows that

ξn2 = ξn21(1+o(1)) =
h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}+op(
√
nh5).

As ξn1 = {vec(γ)}TZn(u), by (B.1), we complete the proof.

Lemma B.3. Suppose Condition A holds. Then Zn(u) = 1√
nh

∑n
t=s′+1[Wt,h ⊗ ψu(εt −

qu(zt−d))]K( zt−d−z0
h

) has

(i) E[Zn(u)] = 0 and V ar[Zn(u)] = f(z0)(V ⊗M(z0))⊗Nu(z0)(1 + o(1));

(ii) Zn(u) is asymptotically normal with mean 0 and variance of f(z0)(V⊗M(z0))⊗Nu(z0).

Proof Lemma B.3. Since E[ψu(εt − qu(zt−d))|zt−d] = 0, by taking iterative expectations, it

is easy to obtain E[Zn(u)] = 0.

By (A⊗B)(C⊗D) = (AC)⊗ (BD),

W⊗2
t,h =

 1 h−1(zt−d − z0)

h−1(zt−d − z0) h−2(zt−d − z0)2

⊗ (XtX
T
t ),

where A⊗2 = AAT . Similarly,

E[Zn(u)] =
1

nh

n∑
t=s′+1

E[W⊗2
t,h ⊗ψu(εt − qu(zt−d))

⊗2K(
zt−d − z0

h
)]

= f(z0)(V ⊗M(z0))⊗Nu(z0)(1 + o(1))

Then by the martingale central limit theorem, Zn(u) is asymptotically normal with mean 0
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and variance of f(z0)(V ⊗M(z0))⊗Nu(z0).

Proof of Theorem 2.1. Since

yt − [Â + B̂(zt−d − z0)]Xt = yt − [A + B(zt−d − z0)]Xt

− [Â−A + (B̂−B)(zt−d − z0)]Xt

= ηut −
1√
nh
γ̂Wt,h,

the objective function (2.6) can be written as

n∑
t=s′+1

Qu(η
u
t −

1√
nh
γWt,h)K(

zt−d − z0
h

).

Therefore, minimizing (2.6) over A, B is equivalent to minimizing

n∑
t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

). (B.2)

over γ. In the following part we approximate (B.2) by a quadratic function. To this end, we

define

Vn,t =

{
Qu(η

u
t −

1√
nh
γWt,h)−Qu(η

u
t ) +

1√
nh
{vec(γ)}T [Wt,h ⊗ψu(η

u
t )]

}
K(

zt−d − z0
h

).

Since Qu(η
u
t − λ 1√

nh
γWt,h)−Qu(η

u
t ) is a convex function of λ, the gradient of the function

in λ, − 1√
nh
{vec(γ)}T [Wt,h ⊗ ψu(η

u
t − λ 1√

nh
γWt,h)] is non-decreasing in λ. Then simple

geometry leads to

0 ≤ Vn,t ≤−
1√
nh
{vec(γ)}T [Wt,h ⊗ψu(η

u
t −

1√
nh
γWt,h)]K(

zt−d − z0
h

)

+
1√
nh
{vec(γ)}T [Wt,h ⊗ψu(η

u
t )]K(

zt−d − z0
h

) ≡ V ∗n,t.
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For ||vec(γ)|| ≤M ,

V ∗n,t = − 1√
nh
{vec(γ)}T

{
Wt,h ⊗ [ψu(η

u
t −

1√
nh
γWt,h)−ψu(η

u
t )]

}
K(

zt−d − z0
h

)

converges to zero almost surely as n→∞. Let ηn ≡
∑n

t=s′+1 V
2
n,t. Since ψu is bounded,

E(ηn) ≤
n∑

t=s′+1

E[V ∗2n,t ] = O(1)E

[
||Wt,h||2

1

h
K2(

zt−d − z0
h

)

]
<∞

. By the Lebesgue dominated convergence theorem, E(ηn) =
∑n

t=s′+1E[V 2
n,t]→ 0. Then, by

the Chebyshev’s inequality,

n∑
t=s′+1

Vn,t = E(
n∑

t=s′+1

Vn,t) +Op({var(
n∑

t=s′+1

Vn,t)}1/2)

= (n− s′)E(Vn,t) + op(1).

(B.3)

By the definition of Vn,t and Taylor’s expansion at γ = 0, we have

E(Vn,t) =

1

2nh
{vec(γ)}TE

{
(Wt,h ⊗ Ik)Ψ(εt − qu(zt−d))(Wt,h ⊗ Ik)

TK(
zt−d − z0

h
)

}
vec(γ)(1+o(1)).

Using the identity for conforming matrices (A⊗B)(C⊗D) = (AC)⊗ (BD), we have

(Wt,h ⊗ Ik)Ψ(εt − qu(zt−d))(Wt,h ⊗ Ik)
T = (Wt,hW

T
t,h)⊗Ψ(εt − qu(zt−d)).

Then

E(Vn,t) =

1

2nh
{vec(γ)}TE

{
(Wt,hW

T
t,h)⊗Ψ(εt − qu(zt−d))K(

zt−d − z0
h

)

}
vec(γ)(1 + o(1)).
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Simple algebra leads to Wt,hW
T
t,h = Sn ⊗XtX

T
t , where

Sn =

 1 h−1(zt−d − z0)

h−1(zt−d − z0) h−2(zt−d − z0)2

 .
Taking iterative expectation, we obtain that

E(Vn,t) =
1

2n
f(z0){vec(γ)}T ((S⊗M(z0))⊗Du(z0))vec(γ)(1 + o(1)).

This, combined with (B.3), yields that

n∑
t=s′+1

Vn,t =
1

2
f(z0){vec(γ)}T ((S⊗M(z0))⊗Du(z0))vec(γ) + op(1). (B.4)

By Lemma B.2 and the definition of Vn,t, we have

n∑
t=s′+1

Vn,t =
n∑

t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

)

+
h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}

+ {vec(γ)}TZn(u) + op(
√
nh5)

(B.5)

Combine (B.4) and (B.5) leads to the following quadratic approximation

n∑
t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

) = Gn(γ) + op(1), (B.6)

where nh5 = O(1) and

Gn(γ) =
1

2
f(z0){vec(γ)}T ((S⊗M(z0))⊗Du(z0))vec(γ)

− h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]} − {vec(γ)}TZn(u)

is a quadratic function of vec(γ). Since the left-hand side of (B.6) is convex, by Lemma 3 of
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Niemiro (1992), (B.6) holds uniformly for ||vec(γ)|| ≤M . That is, for any ε > 0 andM > 0,

when n is large, with probability at least 1− ε, we have

sup
||vec(γ)||≤M

|
n∑

t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

)−Gn(γ)| < ε. (B.7)

For function Gn(γ), applying Lemma B.1 with

A =
1

2
f(z0)((S⊗M(z0))⊗Du(z0)),

b = −h
2

2

√
nhf(z0)vec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]} −Zn(u),

and c = 0, we get the minimizer, vec(γ0) = −1
2
A−1b, of Gn(γ). Let K =

√
2λ−1min(A), where

λ−1min(A) is the smallest eigenvalue of A. Since A is positive definite, K <∞. Consider the

ball centered at vec(γ0),

Oγ = {γ : ||vec(γ)− vec(γ0)|| ≤ K
√
ε}.

For any γ on the surface the ball Oγ, by Lemma B.1 (ii), we have

Gn(γ) ≥ (K
√
ε)2λmin(A) +Gn(γ0) = 2ε+Gn(γ0). (B.8)

By (B.7), it is seen that

n∑
t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

) < Gn(γ) + ε.

By (B.7) and (B.8), for any γ on the surface of Oγ,

n∑
t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

) > Gn(γ)− ε ≥ Gn(γ0) + ε.
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Therefore, the minimum of the convex function (B.2) must be achieved at the interior of the

ball Oγ. This amounts to

||vec(γ̂)− vec(γ0)|| ≤ K
√
ε

or equivalently

vec(γ̂)− f−1(z0)(S⊗M(z0)⊗Du(z0))
−1

×
{
h2

2

√
nhf(z0)vec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}+ Zn(u)

}
= op(1) (B.9)

By the identity vec(AXB) = (BT ⊗A)vecX, we have

(S⊗M(z0)⊗Du(z0))
−1vec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}

= vec{Φ′′(z0; u)(sTS−1)⊗ Im}

= vec{(S−1sT )⊗Φ′′(z0; u)}

= (S−1sT )⊗ vec(Φ′′(z0; u)).

Then (B.9) is equivalent to

vec(γ̂)−
√
nhBn(z0; u) = f−1(z0)(S⊗M(z0)⊗Du(z0))

−1Zn + op(1),

which completes the proof of the theorem.

Proof of Theorem 2.2. By Lemma B.3, the variance matrix of f−1(z0)(S⊗M(z0)⊗Du(z0))
−1Zn

is

Ω(z0) = f−1(z0)(S⊗M(z0)⊗Du(z0))
−1(V ⊗M(z0)⊗Nu(z0))(S⊗M(z0)⊗Du(z0))

−1.
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Applying (A⊗B)(C⊗D) = (AC)⊗ (BD), we establish that

Ω(z0) = f−1(z0)(S
−1VS−1)⊗M−1(z0)⊗ (D−1u (z0)Nu(z0)D

−1
u (z0)).

This, together with Theorem 2.1 and Lemma B.3, completes the proof of the theorem.

Proof of Theorem 2.3. Using similar arguments from Theorem 2.1, we can complete the

proof. Here we just sketch the proof for saving space.

With new notations ζ, minimizing (2.9) is equivalent to minimizing

J∑
j=1

ωj

n∑
t=s′+1

[Quj(η
uj
t −

1√
nh
ζ1jW1t,h −

1√
nh
ζ2W2t,h)−Quj(η

uj
t )]K(

zt−d − z0
h

) (B.10)

Define

Vn,t2 =
J∑
j=1

ωj

{
Quj(η

uj
t −

1√
nh
ζ1jW1t,h −

1√
nh
ζ2W2t,h)−Quj(η

uj
t )

+
1√
nh

(
vec(ζ1j)

vec(ζ2)

)T[(W1t,h

W2t,h

)
⊗ψuj

(η
uj
t )
]}
K(

zt−d − z0
h

).

With the same argument as between (B.2) and (B.4), we obtain that

Vn,t2 =
1

2
f(z0)

J∑
j=1

ωj

[
{vec(ζ1j)}TS⊗Duj(z0)vec(ζ1j)

+ {vec(ζ2)}TS⊗M∗(z0)⊗Duj(z0)vec(ζ2)

+ {vec(ζ2)}TS⊗ µ∗(z0)⊗Duj(z0)vec(ζ2)
]

+ op(1).

(B.11)

Similar to (B.6), if nh5 = O(1), (B.10) can be approximated by the quadratic function

Gn2(ζ) = Gn21 +Gn22 −
J∑
j=1

ωj[{vec(ζ1j)}TZn1j + {vec(ζ2)}TZn2j],
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where

Gn21 =
1

2
f(z0)

J∑
j=1

ωj

[
{vec(ζ1j)}TS⊗Duj(z0)vec(ζ1j)

+ {vec(ζ2)}TS⊗M∗(z0)⊗Duj(z0)vec(ζ2)

+ {vec(ζ2)}TS⊗ µ∗(z0)⊗Duj(z0)vec(ζ2)
]
,

and

Gn22 =
h2

2

√
nhf(z0)

J∑
j=1

ωj

{
{vec(ζ1j)}T

[
vec{Duj(z0)Φ

′′
1(z0)s

T}

+ vec{Duj(z0)Φ
′′
2(z0)[s

T ⊗ µ∗(z0)]}
]

+ {vec(ζ2)}T
[
vec{Duj(z0)Φ

′′
1(z0)[s

T ⊗ µ∗(z0)]}

+ vec{Duj(z0)Φ
′′
2(z0)[s

T ⊗M∗(z0)]}
]}
.

By finding the minimizer of Gn2(ζ), it can be shown that

vec(ζ̂2)−
√
nhBn2(z0) = f−1(z0)(S⊗M∗(z0)⊗D(z0;ω))−1Zn(ω) + op(1), (B.12)

where Bn2(z0) = 1
2
h2(S−1s)⊗ vec(Φ′′2(z0; u)).

Proof of Theorem 2.4. Note that

cov(Znj,Znl) = f(z0)V ⊗M∗(z0)⊗Nuj ,ul(z0) + o(1),
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where Nuj ,ul(z0) = E[ψuj
(εt − quj(zt−d))ψ

T
ul

(εt − qul(zt−d))|zt−d = z0]. It follow that

var(Zn) =
J∑

j,l=1

ωjωl cov(Znj,Znl)

= f(z0)V ⊗M∗(z0)⊗
J∑

j,l=1

ωjωlNuj ,ul(z0) + o(1).

(B.13)

Using the Slutsky theorem and (B.12)-(B.13), we obtain the asymptotic variance of vec(ζ̂2)

Ω2(z0;ω) = f−1(z0)(S
−1VS−1)⊗M∗−1(z0)⊗ (D−1(z0;ω)N(z0;ω)D−1(z0;ω)).
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APPENDIX C: PROOFS of THEOREMS IN CHAPTER 3

Notation

Except the notations from Appendix B, the following notations are needed throughout

the proofs. Let γ̃ =
√
nh[Ã − Φ(z0; u), h(B̃ − Φ′(z0; u)] and ζ̃ = (ζ̃11, . . . , ζ̃1J , ζ̃2), where

ζ̃1j =
√
nh[c̃uj −Φ1(z0; uj), h(d̃uj −Φ′1(z0; uj)] and ζ̃2 =

√
nh[Ã2 −Φ2(z0), h(B̃2 −Φ′2(z0)].

By the definition (3.1), γ̃ = arg min
γ

Ln(γ), where

Ln(γ) =
n∑

t=s′+1

Qu,δ(η
u
t −

1√
nh
γWt,h)K(

zt−d − z0
h

).

And ζ̃ = arg min
γ

Ln(ζ;ω), as defined in (3.2), where

Ln(ζ;ω) ≡
J∑
j=1

ωj

n∑
t=s′+1

Quj ,δ(η
uj
t −

1√
nh
ζ1jW1t,h −

1√
nh
ζ2W2t,h)K(

zt−d − z0
h

).

Lemma C.1. L′n(0) = −
∑n

t=s′+1
1√
nh

Wt,h⊗ψu,δ(η
u
t )K( zt−d−z0

h
). Suppose condition A holds

and δknh→∞, then

L′n(0) = −Zn(u)−
√
nhf(z0)s0 ⊗ µ(z0)⊗ nu,δ(z0)

− h2

2

√
nhf(z0)vec(Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]) +op(δ
k
√
nh) + op(

√
nh5).

Proof of Lemma C.1. L′n(0) can be written as

L′n(0) = −
n∑

t=s′+1

1√
nh

Wt,h ⊗ψu,δ(η
u
t )K(

zt−d − z0
h

)

= − {
n∑

t=s′+1

1√
nh

Wt,h ⊗ψu,δ(εt − qu(zt−d))K(
zt−d − z0

h
)

+
n∑

t=s′+1

1√
nh

Wt,h ⊗ [ψu,δ(η
u
t )−ψu,δ(εt − qu(zt−d))]K(

zt−d − z0
h

)}

= − {ϑ1 + ϑ2}.

(C.1)



53

For the first term,

ϑ1 =
n∑

t=s′+1

1√
nh

Wt,h ⊗ψu(εt − qu(zt−d))K(
zt−d − z0

h
)

+
n∑

t=s′+1

1√
nh

Wt,h ⊗ [ψu,δ(εt − qu(zt−d))−ψu(εt − qu(zt−d))]K(
zt−d − z0

h
)

= Zn(u) + ϑ11.

(C.2)

Denote nu,δ(z0) = E[ψu,δ(εt−qu(zt−d))−ψu(εt−qu(zt−d))|zt−d = z0], µ(z0) = E[Xt|zt−d =

z0], µi =
∫
uiK(u) du, s0 = (1, µ1)

T . By taking iterative expectations, we have

E(ϑ11) =
√
nhf(z0)s0 ⊗ µ(z0)⊗ nu,δ(z0).

Note that, by the definition of ψu,δ(·),

nu,δ(z0) =

∫
x∈Rk

[ψu,δ(x)−ψu(x)]gz0(x) dx =

∫
x∈Bδ

[ψu,δ(x)−ψu(x)]gz0(x) dx = O(δk),

(C.3)

where Bδ is a k-dimensional ball centered at 0 with radius δ, gz0(·) is the conditional density

function of εt − qu(zt−d) under zt−d = z0. Under conditions (A2) and (A4),

E(ϑ11) = O(δk
√
nh).

Similarly we can obtain that V ar(ϑ11) = O(δk). By Chebyshev’s theorem,

ϑ11 = E(ϑ11) +Op({var(ϑ11)}1/2) = E(ϑ11) +Op(δ
k/2) = E(ϑ11) + op(δ

k
√
nh).
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Hence

ϑ11 =
√
nhf(z0)s0 ⊗ µ(z0)⊗ nu,δ(z0) + op(δ

k
√
nh). (C.4)

For the second term, we have ηut = εt − qu(zt−d) + R(zt−d; u)Xt and R(zt−d; u) =

1
2
Φ′′(z∗; u)(zt−d − z0)2, where z∗ is between zt−d and z0. Let K(j)(x) = xjK(x) and χt,u,δ =

ψu,δ(η
u
t )−ψu,δ(εt − qu(zt−d))−Ψu,δ(εt − qu(zt−d))R(zt−d; u)Xt. Then

ϑ2 =
n∑

t=s′+1

1√
nh

Wt,h ⊗ [ψu,δ(η
u
t )−ψu,δ(εt − qu(zt−d))]K(

zt−d − z0
h

)

=
n∑

t=s′+1

1√
nh

Wt,h ⊗ [Ψu,δ(εt − qu(zt−d))
1

2
Φ′′(z∗; u)(zt−d − z0)2Xt]K(

zt−d − z0
h

)

+
n∑

t=s′+1

1√
nh

Wt,h ⊗ [χt,u,δ
1

2
Φ′′(z∗; u)(zt−d − z0)2Xt]K(

zt−d − z0
h

)

=
n∑

t=s′+1

1√
nh

Wt,h ⊗ [Ψu,δ(εt − qu(zt−d))
h2

2
Φ′′(z∗; u)Xt]K

(2)(
zt−d − z0

h
)

+
n∑

t=s′+1

1√
nh

Wt,h ⊗ [χt,u,δ
h2

2
Φ′′(z∗; u)Xt]K

(2)(
zt−d − z0

h
)

= ϑ21 + ϑ22.

By vec(ABT ) = B⊗A,

ϑ21 =
n∑

t=s′+1

1√
nh
vec(Ψu,δ(εt − qu(zt−d))

h2

2
Φ′′(z∗; u)XtW

T
t,h)K

(2)(
zt−d − z0

h
)

=
n∑

t=s′+1

1√
nh
vec(Ψu,δ(εt − qu(zt−d))

h2

2
Φ′′(z∗; u)[(1,

zt−d − z0
h

)⊗XtX
T
t ])K(2)(

zt−d − z0
h

).

By similar arguments for (C.3), it can be obtained that

E[Ψu,δ(εt−qu(zt−d))|zt−d = z0] = E[Ψu(εt−qu(zt−d))|zt−d = z0](1+o(1)) = Du(z0)(1+o(1)).

Denoting s = (µ2, µ3)
T and M(z0) = E[XtX

T
t |zt−d = z0], along with conditions (A1)-(A2),
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we have

E(vec(Ψu,δ(εt − qu(zt−d))
h2

2
Φ′′(z∗; u)[(1,

zt−d − z0
h

)⊗XtX
T
t ])K(2)(

zt−d − z0
h

))

= hf(z0)vec(Du(z0)Φ
′′(z0; u)[sT ⊗M(z0)])(1 + o(1)).

Hence,

E(ϑ21) =
h2

2

√
nhf(z0)vec(Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)])(1 + o(1)).

And under condition (A5), var(ϑ21) = O(h4). Hence ϑ21 = Op(
√
nh5). Since E[χt,u,δ|zt−d =

z0] = o(h2), similarly we have E(ϑ22) = o(
√
nh5) and var(ϑ22) = o(h4). Then ϑ22 =

op(
√
nh5) and

ϑ2 = ϑ21(1 + op(1)) =
h2

2

√
nhf(z0)vec(Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]) + op(
√
nh5).

By above we complete the proof the lemma.

Lemma C.2. L′′n(0) =
∑n

t=s′+1 ξ
′ T
t Ψu,δ(η

u
t )ξ
′
tK( zt−d−z0

h
). Suppose condition A hold, then

L′′n(0) = f(z0)S⊗M(z0)⊗Du(z0)(1 + op(1)).

Proof of Lemma C.2. Plug in ξ′t = − 1√
nh

WT
t,h ⊗ Ik,

L′′n(0) =
1

nh

n∑
t=s′+1

Wt,h ⊗ IkΨu,δ(η
u
t )W

T
t,h ⊗ IkK(

zt−d − z0
h

).

By (A⊗B)(C⊗D) = (AC)⊗ (BD),

L′′n(0) =
1

nh

n∑
t=s′+1

Wt,hW
T
t,h ⊗Ψu,δ(η

u
t )K(

zt−d − z0
h

)

=
1

nh

n∑
t=s′+1

Sn ⊗ (XtX
T
t )⊗Ψu,δ(η

u
t )K(

zt−d − z0
h

),
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where

Sn =

 1 h−1(zt−d − z0)

h−1(zt−d − z0) h−2(zt−d − z0)2

 .
With similar techniques in the proof of Lemma C.1, L′′n(0) can be rewritten as

L′′n(0) =
1

nh

n∑
t=s′+1

Sn ⊗ (XtX
T
t )⊗Ψu(εt − qu(zt−d))K(

zt−d − z0
h

)

+
1

nh

n∑
t=s′+1

Sn ⊗ (XtX
T
t )⊗ [Ψu,δ(εt − qu(zt−d))−Ψu(εt − qu(zt−d))]K(

zt−d − z0
h

)

+
1

nh

n∑
t=s′+1

Sn ⊗ (XtX
T
t )⊗ [Ψu,δ(η

u
t )−Ψu,δ(εt − qu(zt−d))]K(

zt−d − z0
h

)

≡ τ1 + τ2 + τ3.

Taking iterative expectations, we have

E[τ1] = f(z0)S⊗M(z0)⊗Du(z0).

And since V ar[τ1] = O((nh)−1), by Chebyshev’s theorem,

τ1 = f(z0)S⊗M(z0)⊗Du(z0)(1 + op(1)).

For the second term, using similar arguments for (C.3), we have τ2 = Op(δ
k) = op(τ1).

As ηut − (εt − qu(zt−d)) = 1
2
Φ′′(z∗; u)(zt−d − z0)

2Xt = O(h2), thus τ3 = Op(h
2) = op(τ1).

Combining above,

L′′n(0) = f(z0)S⊗M(z0)⊗Du(z0)(1 + op(1)).
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Proof of Theorem 3.2. Let ξt = ηut − 1√
nh
γWt,h. By vec(AXB) = (BT ⊗A)vec(X), we have

vec(ξt) = vec(ηut )−
1√
nh

(WT
t,h ⊗ Ik)vec(γ)

and

ξ′t =
∂ξt

∂vec(γ)
= − 1√

nh
WT

t,h ⊗ Ik.

Then,

L′n(γ) =
∂Ln(γ)

∂vec(γ)
=

n∑
t=s′+1

ξ′Tt ψu,δ(η
u
t −

1√
nh
γWt,h)K(

zt−d − z0
h

),

and

L′′n(γ) =
∂2Ln(γ)

∂vec(γ)∂{vec(γ)}T
=

n∑
t=s′+1

ξ′ Tt Ψu,δ(η
u
t −

1√
nh
γWt,h)ξ

′
tK(

zt−d − z0
h

).

By Taylor expansion at 0,

L′n(γ̂) = L′n(0) + L′′n(0)(vec(γ̂)− 0) + o(γ̂).

Noting that by definition L′n(γ̂) = 0, with Lemma C.1 and Lemma C.2, we obtain

vec(γ̂) = −L
′
n(0)

L′′n(0)
(1 + o(1))

= f−1(z0)(S⊗M(z0)⊗Du(z0))
−1Zn(u) +

√
nhBn,δ + op(1),

where

Bn,δ = f−1(z0)(S⊗M(z0)⊗Du(z0))
−1{f(z0)s0 ⊗ µ(z0)⊗ nu,δ(z0)

+
h2

2
f(z0)vec(Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)])}

= κ1 + κ2.
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For the first term,

κ1 = (S⊗M(z0)⊗Du(z0))
−1s0 ⊗ µ(z0)⊗ nu,δ(z0)

= S−1 ⊗M(z0)
−1 ⊗Du(z0)

−1s0 ⊗ µ(z0)⊗ nu,δ(z0)

= S−1s0 ⊗ [(M(z0)
−1µ(z0))⊗ (Du(z0)

−1nu,δ(z0))].

For the second term, by vec(AXB) = BT ⊗A vec(X),

κ2 = f−1(z0)(S⊗M(z0)⊗Du(z0))
−1h

2

2
f(z0)

vec(Du(z0)Φ
′′(z0; u)[sT ⊗M(z0)])

=
h2

2
S−1 ⊗M−1(z0)⊗D−1u (z0)s⊗M(z0)⊗D−1u (z0)vec(Φ

′′(z0; u))

=
h2

2
S−1s⊗ [M−1(z0)⊗D−1u (z0)M(z0)⊗D−1u (z0)]vec(Φ

′′(z0; u))

=
h2

2
S−1s⊗ vec(Φ′′(z0; u)).

This complete the proof of Theorem 3.2.

Proof of Theorem 3.3. Using Theorem 3.2 and Lemma B.3, it follows from matrices algebra

that

Ω(z0) = f−1(z0)(S⊗M(z0)⊗Du(z0))
−1(V ⊗M(z0)⊗Nu(z0))(S⊗M(z0)⊗Du(z0))

−1

= f−1(z0)(S
−1VS−1)⊗M−1(z0)⊗D−1u (z0)Nu(z0)D

−1
u (z0).

This, combined with Theorem 3.2 and Lemma B.3, completes the proof the theorem.

Proof of Theorem 3.4. Let ξt(ζ1j, ζ2) = η
uj
t − 1√

nh
ζ1jW1t,h − 1√

nh
ζ2W2t,h. Define the first

order derivative with respective to vec(ζ) of Ln(ζ;ω) as L′n(ζ;ω) and the second order
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derivative as L′′n(ζ;ω). Then,

L′n(ζ;ω) =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′t(ζ1j, ζ2)}Tψuj ,δ
(ξt(ζ1j, ζ2))K(

zt−d − z0
h

),

and

L′′n(ζ;ω) =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′t(ζ1j, ζ2)}TΨuj ,δ(ξt(ζ1j, ζ2))ξ
′
t(ζ1j, ζ2)K(

zt−d − z0
h

),

where

ξ′t(ζ1j, ζ2) =
∂ξt(ζ1j, ζ2)

∂vec(ζ)
= − 1√

nh
(eTj ⊗WT

1t,h,W
T
2t,h)⊗ Ik,

ej is a J × 1 vector with the j-th component being 1 and the remaining components being

0, Ik is a k×k identity matrix. As ξ′t(ζ1j, ζ2) does not depend on ζ, it can be written as ξ′tj.

For L′′n(0;ω), we have

L′′n(0;ω) =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}TΨuj ,δ(η
uj
t )ξ′tjK(

zt−d − z0
h

)

=
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}TΨuj ,δ(εt − quj(zt−d))ξ
′
tjK(

zt−d − z0
h

)

+
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}T
[
Ψuj ,δ(η

uj
t )−Ψuj ,δ(εt − quj(zt−d))

]
ξ′tjK(

zt−d − z0
h

)

≡ L′′n1 + L′′n2.

With similar arguments in the proof of Lemma C.2, it can be shown that

L′′n(0;ω) = f(z0)
J∑
j=1

ωjTj ⊗Duj(z0)(1 + op(1)),

where

Tj =

 e⊗2j ⊗ S ej ⊗ S⊗ {µ∗}T

eTj ⊗ S⊗ µ∗ S⊗ E[X∗tX
∗T
t |zt−d = z0]

 .
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Denote W =
∑J

j=1 ωjTj ⊗Duj(z0), we have

(L′′n(0;ω))−1 = f−1(z0)W
−1(1 + op(1)),

where W−1 =

[
W11 W12

W21 W22

]
is the inverse of W, with

W21 = −
J∑
j=1

eTj ⊗ S−1 ⊗ {(M∗(z0))
−1µ∗} ⊗ {D(z0;ω)}−1

and W22 = {S⊗M∗(z0)⊗D(z0;ω)}−1. Tedious calculations are skipped here to save space.

Similar to (C.1) and (C.2), L′n(0;ω) can be decomposed to

L′n(0;ω) = L′n1 + L′n2 + L′n3,

where

L′n1 =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}Tψuj
(εt − quj(zt−d))K(

zt−d − z0
h

),

L′n2 =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}T [ψuj ,δ
(εt − quj(zt−d))−ψuj

(εt − quj(zt−d))]K(
zt−d − z0

h
),

L′n3 =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}T [ψuj ,δ
(η
uj

t )−ψuj ,δ
(εt − quj(zt−d))]K(

zt−d − z0
h

).

Using an arugument similar to that for Lemma C.1, we obtain that L′n1 = [L11,L12]T (1 +

op(1)), where

L11 = − 1√
nh

J∑
j=1

ωj

n∑
t=s′+1

ej ⊗W1t,h ⊗ψuj
(εt − quj(zt−d))K(

zt−d − z0
h

),

L12 = − 1√
nh

J∑
j=1

ωj

n∑
t=s′+1

W2t,h ⊗ψuj
(εt − quj(zt−d))K(

zt−d − z0
h

),
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and L′n2 = [L21,L22]T (1 + op(1)), where

L21 = −
√
nhf(z0)

J∑
j=1

ωjej ⊗ s0 ⊗ nuj ,δ(z0),

L22 = −
√
nhf(z0)

J∑
j=1

ωjs0 ⊗ µ∗ ⊗ nuj ,δ(z0),

and L′n3 = [L31,L32]T (1 + op(1)), where

L31 = −h
2

2

√
nhf(z0)

J∑
j=1

ωjej⊗
[
vec(Duj(z0)(z0)Φ

′′
1(z0)s

T )+vec{Duj(z0)(z0)Φ
′′
2(z0)(s

T⊗µ∗)}
]
,

L32 = − h2

2

√
nhf(z0)

J∑
j=1

ωj
[
vec(Duj(z0)(z0)Φ

′′
1(z0)(s

T ⊗ µ∗T ))

+ vec{Duj(z0)(z0)Φ
′′
2(z0)(s

T ⊗ E[X∗tX
∗T
t |zt−d = z0])}

]
.

Then the (J + 1)th block component of (L′′n(0;ω))−1L′n(0;ω) is

3∑
l=1

(W21Ll1 + W22Ll2) = {−f−1(z0)(S⊗M∗(z0)⊗D(z0;ω))−1Zn(ω)

− 1

2
h2
√
nh(S−1s)⊗ vec(Φ′′2(z0)}(1 + op(1)),

where Zn(ω) =
∑J

j=1wj[Zn2j − (I2 ⊗ µ∗(z0) ⊗ Ik)Zn1j] and Znij = 1√
nh

∑n
t=s′+1[Wit,h ⊗

ψuj
(εt − quj(zt−d))]K( zt−d−z0

h
). This completes the proof of the theorem.

Proof of Theorem 3.5. Using the same notations from the proof of Theorem 3.4 and by
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taking iterative iterative expectations, we have E(L′n1 = 0 and

var(L′n1) = E
{ J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}Tψuj
(εt − quj(zt−d))K(

zt−d − z0
h

)

·
J∑
l=1

ωl

n∑
s=s′+1

[ψul
(εs − qul(zs−d))]

Tξ′slK(
zs−d − z0

h
)
}

= E
{ J∑
j,l=1

ωjωl

n∑
t=s′+1

{ξ′tj}Tψuj
(εt − quj(zt−d))[ψul

(εt − qul(zt−d))]
Tξ′tlK

2(
zt−d − z0

h
)
}
.

With the similar arguments in the proof of Lemma C.2, we obtain that

var(L′n1) = f(z0)W
∗(1 + op(1)),

where

W∗ =
J∑

j,l=1

ωjωl

[
eje

T
l ⊗V ej ⊗V ⊗ µ∗T

eTl ⊗V ⊗ µ∗ V ⊗ E[X∗X∗T |zt−d = z0]

]
⊗Nuj ,ul ,

and Nuj ,ul = E[ψuj
(εt− qu(zt−d)){ψul

(εt− qul(zt−d))}T |zt−d = z0]. Then by the martingale

central limit theorem, L′n1 is asymptotically normal with mean 0 and covariance matrix

f(z0)W
∗. Hence, by the Slutsky theorem, (L′′n(0;ω))−1L′n1 is asymptotically normal with

mean 0 and covariance matrix f−1(z0)W−1W∗(W−1)T . This, combined with Theorem 3.4

completes the proof.

Proof of Theorem 3.1. As a(t′t)2 + b(t′t) + c+ u′t and Qu(t) are C2-continuous respectively

in Bδ(0) and Rk/Bδ(0), denoting a(t′t)2 + b(t′t) + c + u′t as zu(t) it suffices to show that

zu(t) = Qu(t), ∂zu(t)/∂t = ∂Qu(t)/∂t and ∂2zu(t)/∂ttT = ∂2Qu(t)/∂ttT for all t with

||t|| = δ. With simple algebra, the above three equations can be written as


a(t′t)2 + b(t′t) + c =

√
t′t,

4a(t′t)t + 2bt = t√
t′t
,

[4a(t′t) + 2b]Ik + 8a(tt′) = 1√
t′t

Ik − 1
(t′t)3/2

(tt′).
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Note t′t = δ2, to match the coefficients of the left and right sides, we have


aδ4 + bδ2 + c = δ

4aδ2 + 2b = 1
δ

8a = − 1
δ3
.

Solving the above linear system completes the proof of the theorem.


