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ABSTRACT

JINGYI SHI. Toward complete knowledge of healthcare datasets: extraction,
modeling, and representation. (Under the direction of DR. YAORONG GE)

In the era of big data, identifying the right dataset for analysis has been a se-

vere challenge in data science. Especially in health data science, datasets are fre-

quently complex and have restricted access, thus requiring sufficient time, energy,

and background knowledge for users to understand, select, and begin analysis. The

complexity largely toughens the development of health data science, and we believe

it is important to make significant efforts to improve dataset identification processes.

Recognizing the challenge, we believe that to provide complete knowledge of health-

care datasets would offer a solution that facilitates dataset identification to a great

extent. As with a catalog of books in a library where people can find the desired

book easily, with a complete knowledge of datasets, users are expected to quickly

identify the most relevant and high-quality datasets for their research purposes. To-

ward this goal, we start with providing both content and quality level knowledge

that is sufficiently comprehensive to cover the needs of a certain group of users—

health data science novices. Specifically, we systematically examined the needs of the

target users, extracted knowledge that was tailored to these needs, established quan-

tifiable measurements for data quality (a Publication-based Popularity Index (PPI)

and an Association-based intrinsic Quality Index (AQI)), and developed a healthcare

Dataset Information Resource (DIR) framework to efficiently represent knowledge for

datasets. The results from user studies indicate that the solution is promising.

This dissertation utilizes the three-article format, which includes six chapters.

Aside from the introduction and the conclusion chapters, the middle four chapters

represent four publications that contribute to the ultimate goal of complete knowl-

edge, including both system and method developments.
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CHAPTER 1: INTRODUCTION

1.1 Overview

With the development of computing, storage, and network technologies, the era

of big data has arrived and has brought both opportunities and challenges. Data

science—leveraging statistics, computer science, and domain knowledge to extract

insights from data—has benefited scientific research in a variety of fields. This is

especially true for health data science, which generates data-driven solutions to com-

plicated real-world health-related problems. An increasing number of data scientists

have promoted better patient care and have helped save patients’ lives by analyz-

ing healthcare datasets. However, with both the number of and the complexity of

healthcare datasets increasing, data scientists have encountered difficulty in acquiring

adequate knowledge to assist a solid understanding of these datasets and to select the

right dataset for data analysis. Unlike datasets in other disciplines, usually health-

care data are originally collected from a variety of devices, for diverse purposes, and

with specific designs. This makes healthcare datasets even more complex than others.

Therefore, we believe that identifying the right dataset for analysis has been a se-

vere challenge in health data science and providing complete knowledge of healthcare

datasets for data scientists should be a solution to the challenge and an ultimate goal

of the health data science community. In progress toward this ultimate goal, data

scientists can better take advantage of the existing data to solve problems.

Discovering the right dataset is essential to obtain the right insights. To select a

right dataset and start data analysis, it requires significant time, energy, and funda-

mental knowledge to locate candidate datasets among numerous healthcare datasets,

to learn the datasets, to realize their quality toward successful analysis, and to select
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relevant features as well as proper analytical methods. Challenges are even more

pronounced for beginning learners of data science. Becoming aware of these difficul-

ties, the data science community has made efforts to integrate information from a

wide range of dataset resources to facilitate dataset identification. Google released a

Dataset Search [1] engine in 2018, which provides organized descriptions of datasets

for all domains. For health-related data, a few platforms have been developed, in-

cluding HealthData.gov [2] for government healthcare datasets, data.CDC.gov [3]

for governmental disease control and prevention data, and DataMed.org [4] by the

bioCADDIE project [5] for biomedical datasets and repositories. However, most of

the current integration systems contain shallow information for healthcare datasets

instead of knowledge, and none of them targets a specific user population. With-

out a knowledge-level representation and user-oriented design, the existing systems

can hardly ease the difficult dataset identification process and answer sophisticated

questions. Meanwhile, knowledge about the quality of healthcare datasets is rarely

discussed and delivered in the context of dataset identification, even though it is crit-

ically essential toward successful data analysis. Groups of researchers have studied

characters of Electronic Health Record (EHR) data quality for decades. For example,

EHR data quality has been categorized into completeness, correctness, concordance,

plausibility, and currency by [6] in 2013, harmonized into conformance, complete-

ness, and plausibility by [7] in 2016, and classified into completeness, consistency,

credibility, and timeliness by [8] in 2018. However, these EHR data quality studies

have not reached a consensus on dimensions and definitions, while other types of

healthcare data are seldom considered. Moreover, current studies discuss quality at

a conceptual level but lack quantified measurements that are ready-to-use to assist a

straight-forward dataset quality evaluation.

Recognizing these shortcomings, we are endeavoring to push toward the goal of

complete knowledge of healthcare datasets by filling gaps in the field. Therefore,
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we aim to provide knowledge about datasets that is sufficiently comprehensive to a

targeted sub-group of data scientists. Particularly, we focus on the special knowledge,

in both content and quality levels, needed by health data science novices and on

developing effective methods to extract, to model, and to represent this knowledge of

healthcare datasets.

This dissertation is structured in the three-article format, which includes six chap-

ters. Aside from this introduction and the conclusion chapters, the middle four chap-

ters represent four publications, including both system and method developments.

Chapter 2 (paper 1) describes the development of a healthcare Dataset Information

Resource (DIR) framework, which represents tailored knowledge for novices based

on Semantic Web technologies [9] and enables the ability to answer sophisticated

questions. Chapter 3 (paper 2) illustrates a quality measurement in an explicit per-

spective, that is a Publication-based Popularity Index (PPI) that can quantifiably

evaluate the overall usefulness of a dataset. Chapter 4 (paper 3) proposes an entropic

feature selection method that is designed specifically for health data challenges, and

Chapter 5 (paper 4) describes another quality measurement (an Association-based in-

trinsic Quality Index (AQI)) in an implicit perspective based on the proposed feature

selection method.

1.2 Overview of Paper 1: Development of the Healthcare Dataset Information

Resource (DIR)

It is important for data scientists to have a good understanding of the availability

of relevant datasets as well as the content, structure, and existing analyses of these

datasets. While a number of efforts are underway to integrate the large amount and

variety of datasets, there is a lack of information resources that focus on the specific

learning needs of some targeted audiences. To address this gap, we have developed

a semantic DIR framework to specifically address the challenges of entry-level data

scientists in learning to identify, understand, and analyze major datasets with an
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initial focus on healthcare. The DIR does not contain actual data from the datasets

but aims to provide comprehensive knowledge about the datasets and their analyses.

The framework leverages Semantic Web technologies and the W3C Dataset De-

scription Standard [10] for knowledge integration and representation and includes

natural language processing (NLP)-based methods to enable knowledge extraction

and question answering. The prototype DIR implementation comprises four major

components—dataset metadata and related knowledge, search modules, question an-

swering for frequently asked questions, and blogs. Furthermore, the DIR currently

includes information on 12 commonly used large and complex healthcare datasets.

The initial usage evaluation based on health informatics novices indicates that the

DIR is helpful and beginner-friendly. Further development of both content and func-

tion levels is underway.

1.3 Overview of Paper 2: the Publication-Based Popularity Index (PPI)

Data are critical in this age of big data and machine learning. Due to their inherent

complexity, health-related data are unique in that the datasets are usually acquired

for specific purposes and with special designs. As an increasing number of healthcare

datasets become available, of which many are public, choosing a quality dataset that

is suitable for specific research inquiries is becoming a challenging question for health

informatics researchers, especially the learners of this field. On the other hand, from

the data provider’s perspective, it is important to identify features of datasets that

make some datasets more valuable than others in order to improve the design and

acquisition of future datasets. To address these questions, we need to develop formal

mechanisms to measure the goodness of datasets according to certain criteria.

In this study, we propose one way of measuring the value of healthcare datasets

that is based on how often the datasets are used and reported by researchers, which

we call the PPI. In this article, we describe the design of the PPI and discuss its prop-

erties. We demonstrate the utility of the PPI by ranking 14 representative healthcare
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datasets and believe that the PPI can enable an overall ranking of all healthcare

datasets; thus, it provides an important dimension to sort search results for dataset

integration systems as well as a starting point for identifying and examining the de-

sign of the most valuable healthcare datasets so that features of these datasets can

inform future designs.

1.4 Overview of Paper 3: the Proposed Entropic Feature Selection Method

Health data are generally complex in type and small in sample size. Such domain-

specific challenges make it difficult to capture information reliably and to contribute

further to the issue of generalization. To assist the analytics of healthcare datasets,

we develop a feature selection method based on the concept of Coverage Adjusted

Standardized Mutual Information (CASMI). The main advantages of the proposed

method are: 1) it selects features more efficiently with the help of an improved entropy

estimator, particularly when the sample size is small, and 2) it automatically learns

the number of features to be selected based on the information from sample data.

Additionally, the proposed method handles feature redundancy from the perspective

of joint-distribution. This method focuses on non-ordinal data, while it works with

numerical data with an appropriate binning method. A simulation study comparing

the proposed method to six widely cited feature selection methods shows that the

proposed method performs better when measured by the Information Recovery Ratio,

particularly when the sample size is small. Moreover, the proposed method establishes

the foundation of the AQI.

1.5 Overview of Paper 4: the Association-Based Intrinsic Quality Index (AQI)

As the number and source of health-related datasets continue to grow significantly,

identification of datasets that are most appropriate for a research question is becoming

ever more important for the field of health data analytics. The complexity of health-

related data further exacerbates the challenge in dataset identification as it requires
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significant efforts to understand a dataset before recognizing its appropriateness and

quality to the research purpose. While the appropriateness of a dataset is largely a

function of data semantics and research questions, we hypothesize that the quality

of the dataset can be assessed by some intrinsic properties of the features in the

dataset, and these properties are common across all datasets. Moreover, we believe

that a good understanding of the usefulness of features in datasets is important to

not only data analysts but also data providers because it will help them improve the

design and acquisition of datasets in the future.

In this study, we propose one way of measuring the intrinsic quality of healthcare

datasets that is based on the degree of association among attributes (features and

outcomes) in a dataset, which we call the AQI. In this article, we describe the design

of the AQI and discuss its properties. We demonstrate the utility of the AQI by a

user study and results from two pairs of real healthcare datasets. We believe that the

AQI can help assess the intrinsic quality of healthcare datasets and thus provide an

important metric to assist dataset identification for researchers and a perspective for

identifying and examining the design of the most valuable healthcare datasets so that

features of these datasets can inform future designs. Furthermore, we argue that the

AQI can also help researchers discover research opportunities within a given dataset.



CHAPTER 2: DEVELOPMENT OF A HEALTHCARE DATASET

INFORMATION RESOURCE (DIR) BASED ON SEMANTIC WEB

2.1 Background

Healthcare data is rapidly growing in the era of big data. An increasing number

of researchers are leveraging these datasets to improve the quality of patient care.

However, challenges caused by a variety of purposes, designs, and techniques when

health data were originally collected boost the complexity and diversity of healthcare

datasets. For health data analysis, it requires significant time, energy, and fundamen-

tal knowledge to identify, understand, and choose the right datasets. The challenges

for students and researchers who have little experience are even more pronounced.

A number of online data resources, such as HealthData.gov [1], Data.CDC.gov [2],

and Society of General Internal Medicine (SGIM) Research Dataset Compendium [3],

integrate basic information for public datasets, which help new investigators choose

datasets to a certain extent. However, the simple descriptions in these portals are

hardly adequate for them to identify a suitable dataset to delve into. Simple search

functions, such as a keywords search, provided by most of the resources cannot han-

dle more complex and less concrete questions that typical novices have, such as find-

ing existing analytical methods that are suitable for analyzing a particular dataset.

Meanwhile, proprietary datasets, often having limited information in these portals,

are even harder to understand and analyze.

Noticing these shortcomings, emerging research projects are attempting to build

structured dataset information resources that address the challenge of dataset discov-

ery and accessibility. For example, the Stanford University School of Medicine estab-

lished the Center for Expanded Data Annotation and Retrieval (CEDAR) project in
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2015 to facilitate researchers’ standard use of metadata by developing an authoring-

friendly computational ecosystem for metadata development, evaluation, use, and

refinement [4]. By 2017, they had developed a CEDAR Workbench, which was an

ontology-assisted tool to help scientific experiment metadata authoring [5]. Mean-

while, the University of California at San Diego is leading the development of a

data discovery index system, the biomedical and healthCAre Data Discovery Index

Ecosystem (bioCADDIE) [6], to index data that are stored elsewhere to facilitate

data integration tasks that adopt content standards and high-level schema. A pro-

totype biomedical data search engine, DataMed [7], under the bioCADDIE project,

has included metadata extracted from multiple biomedical data repositories, such as

the Cambridge Crystallographic Data Centre (CCDC) and U.S. National Center for

Biotechnology Information (NCBI)’s BioProject. Similar to what PubMed (a free

search engine that comprises more than 28 million citations from multiple literature

databases and resources) has done for the biomedical literature, DataMed aims to

make a comparable contribution for biomedical data.

However, the current attempts, focusing on integrating and searching datasets and

dataset information, often lack consideration of the learning needs of specific target

user populations. Particularly, there is no resource specifically designed to address the

needs of health informatics students and novice researchers. Their learning curve is

considerably steep when they explore datasets using existing resources. We believe the

lack of a healthcare dataset information resource that brings information from various

resources together to address the unique needs and questions from these learners is

an important gap in health informatics development.

To bridge the gap, we have developed the Dataset Information Resource (DIR)

framework, specifically aimed at helping entry-level health informatics students and

researchers. For these novices, the challenges are different from established researchers.

It is not the discovery of datasets that is important. Rather, the importance lies in
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the surveying of the landscape of existing datasets and the identification of a proper

dataset from the set of common datasets for a given problem. Additionally, the

understanding of the dataset and related analytical methods is critically important.

The DIR framework does not contain actual data from the datasets. Instead, it is a

specialized knowledge base that provides comprehensive knowledge and answers so-

phisticated questions about noteworthy datasets that address the needs of beginning

learners. Besides common information about datasets, such as descriptions, we focus

more on knowledge needed by novices, such as analytical methods that datasets can

utilize. In this case, novices can quickly obtain a solid understanding through con-

crete cases. Moreover, we provide dataset blogs in the DIR so that users can easily

start data analysis by following sample codes and instructions.

For a flexible, meaningful, and robust knowledge representation, we leveraged Se-

mantic Web [8] technologies. Meanwhile, we incorporated the W3C Dataset De-

scription Profile standard [9] developed by the Semantic Web Health Care and Life

Sciences (HCLS) interest group to ensure that the metadata delivered are well defined

and organized. The current DIR prototype focuses on 12 representative datasets in

healthcare, including both public and proprietary datasets. The prototype is pub-

lished and accessible via https://cci-hit.uncc.edu/dir/.

2.2 Methods

The DIR framework is based on Semantic Web technologies. Building on them,

we developed methods to extract knowledge from the datasets as well as existing

research articles that had analyzed these datasets. We also developed a question-

answering module that answered novice questions that had been posted on the web.

In the following sections, we briefly describe the Semantic Web first and then describe

the system design, major components, knowledge representation and extraction, and

dataset learning of the DIR framework.
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2.2.1 Semantic Web

The Semantic Web is an extension that adds semantics and logic to the well-known

World Wide Web (WWW). In the traditional web pages, entities, such as concepts,

are dispersed in the text. They are not clearly identified and their relationships

are not explicitly represented. In contrast to traditional web pages, the Semantic

Web enhances the regular web by coding and linking important concepts. Therefore,

it makes semantics behind data understandable not only to human beings but also

to machines. The Semantic Web is based on the Resource Description Framework

(RDF) [10]. To link entities, RDF provides a straightforward syntax for describing

resources, which is called “triple”. An RDF triple contains three components—the

subject, predicate, and the object, where the predicate represents the relationship

between the subject and the object. To query the linked entities, a query language,

SPARQL Protocol and RDF Query Language (SPARQL) [11], is designed, which

is the key to reasoning. With the support of these techniques, a number of RDF-

based resource frameworks have already been developed that show the power of the

Semantic Web, such as DBpedia [12] and the Neuroscience Information Framework

(NIF) [13].

2.2.2 DIR Framework Overview

The proposed architecture of the DIR system is shown in Figure 2.1. It consists

of three major components: 1) knowledge representation (requires the ability to rep-

resent metadata in a flexible, extendable, and reusable way to meet and surpass

the FAIR Data Principles [14]), 2) question answering (delivers exact knowledge to

novices), and 3) metadata extraction (extracts metadata tailored to novices from a

large number of diverse dataset resources). With these components, the system can

integrate and represent knowledge from scattered datasets, allow flexible research

questions, and provide precise answers at a suitable level of comprehension.
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Figure 2.1: Proposed architecture of DIR system.

The DIR prototype is built on top of the open-sourced Semantic MediaWiki (SMW)

platform [15] for knowledge representation and question answering. SMW, which

tightly couples traditional web pages with an RDF representation to capture es-

sential knowledge, is an extension of MediaWiki (MW) [16] (see Figure 2.2). Ad-

ditionally, MW is well-known as the foundation of Wikipedia, whose English site

contains 5,605,853 articles. Therefore, advantages of MW—such as stability facing

massive content and heavy traffic—and advantages of SMW—including the embed-

ded functionality to represent RDF triples by using properties, classes, and semantic

forms—can be fully leveraged. Once the knowledge of diverse datasets is extracted,

SMW provides a platform for representation and a SPARQL-like mechanism for the

semantic query.



12

Figure 2.2: Infrastructure of DIR prototype.

2.2.3 Knowledge Representation in DIR

To represent dataset metadata in a standard manner that is findable, accessible,

interoperable, and reusable, we adopt the W3C Dataset Description Profile [9] as the

basis of a metadata description model. This profile categorizes dataset metadata in

three levels: summary, version, and distribution (see Figure 2.3). The summary level

is the highest-level description of datasets for the most common information that is

independent of specific versions, such as titles, publishers, and homepage links. The

version level, as an intermediary of summary and distribution levels, captures version-

specific metadata, such as version identifiers and issue dates. The distribution level

describes specific forms of a specific version. It includes the most detailed information

and guidance, such as data items and links to achieve data. In the DIR prototype, each

level of a dataset is a page. Since a dataset can have multiple versions and each version

may have various forms, each dataset is described by at least three pages—a summary

level (the entrance), at least one version level, and at least one distribution level. For

each level, the W3C profile defines a set of suggested data elements, properties, and

ranges. The properties that describe datasets are all selected from existing ontologies,

such as the Provenance Authoring and Versioning ontology (pav) [17], Data CATalog
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vocabulary (dcat) [18], and the CItation Typing Ontology (cito) [19]. Since levels

depend on each other, several specific properties are defined to link different level

pages of a dataset, such as pav:hasCurrentVersion (links the summary level to the

version level) and dcat:distribution (links the version level to the distribution level).

The DIR framework further extends the W3C Dataset Description Profile stan-

dard to incorporate properties that represent specific knowledge needed to address

the learning needs of health informatics novices. Figure 2.3 presents the extended

properties in bold font, and Table 2.1 illustrates the detailed extension. As shown

in Table 2.1, four major types of knowledge are currently extended: descriptive in-

formation, publication-related metadata, detailed data elements, and blogs. Among

publication-related metadata, the Publication-based Popularity Index (PPI) is a spe-

cial property used to compare and rank datasets (see Chapter 3). Blogs of each

dataset are unique and important metadata in the DIR and elaborate on concrete

instructions, sample codes, and results that guide an easy start for practice. These

blogs targeting novices are written by experienced dataset users, so direct support is

strongly provided.
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Figure 2.3: Schema of extended W3C dataset description profile.

2.2.4 Datasets in Current DIR Prototype

The current implementation of the DIR includes 12 representative datasets in

healthcare, of which 3 datasets—Healthcare Cost and Utilization Project (HCUP)

[20], Truven Health MarketScan (MarketScan) [21], and Medical Information Mart

for Intensive Care (MIMIC) [22]—are retained from the previous DIR version [23];

nine others are selected from working group notes discussed by domain experts at the

UNC Charlotte Health Informatics and Outcomes Research Academy [24]. The nine

extended datasets are National Health and Nutrition Examination Survey (NHANES)

[25], SEER-Medicare Linked Database (SEER-Medicare) [26], National Longitudinal

Study of Adolescent to Adult Health (Add Health) [27], Minimum Data Set (MDS)

[28], Clinical Practice Research Datalink (CPRD) [29], The Health Improvement Net-

work (THIN) [30], Premier Healthcare Database (Premier) [31], Clinformatics Data

Mart (Clinformatics) [32], and Humedica NorthStar (Humedica) [33].

There are several reasons to choose these datasets. To verify the universality of

DIR knowledge representation, they cover most types of healthcare datasets, includ-
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ing claims data (SEER-Medicare, CPRD, MarketScan, Premier, and Clinformatics),

electronic medical records (MDS and THIN), hospital data (SEER-Medicare, HCUP,

MIMIC, and Humedica), laboratory data (Clinformatics), surveys (NHANES and

Add Health), and contextual data (Add Health).

Additionally, these datasets are all large and complex datasets in healthcare, of

which four (SEER-Medicare, Add Health, and Clinformatics) even include multiple

types listed in the prior paragraph. Most of them have a large number of subjects.

For example, HCUP includes the largest collection of longitudinal hospital care data

in the United States, and MarketScan consists of nearly 240,000,000 patients’ fully

integrated, de-identified, individual-level healthcare claims data. In addition to the

large amount of data, the diversity of data and the complexity of the structure make

novices more difficult to understand and begin to analyze the datasets. For example,

MIMIC contains not only numeric and textual data stored in tabular forms, such

as lab results and electronic documentation but also graphical data that are stored

separately, such as bedside monitor trends and waveforms. Adopting these graphical

signals requires not only a deep understanding of data themselves but also sufficient

computer skills to convert them into analyzable data and adequate knowledge to

decide analytical methods.

Moreover, these datasets are all widely used in healthcare data analytics. A large

number of research articles have been published based on these datasets. By searching

in PubMed Central (PMC) [34]—an authoritative electronic archive of free full-text

biomedical and life sciences journal articles supported by U.S. National Institutes

of Health’s National Library of Medicine (NIH/NLM)—the most studied dataset,

NHANES, was mentioned in 37,485 articles, while the least discussed dataset among

them, Humedica, was mentioned in up to 22 articles. On average, each dataset

contributes to more than 4,000 publications in PMC.

Finally, these datasets are representative of both public and proprietary datasets.
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Among the 12 datasets, two of them (NHANES and MIMIC) are public for research

purposes, nine of them (SEER-Medicare, HCUP, MDS, CPRD, MarketScan, THIN,

Premier, Clinformatics, and Humedica) are proprietary, and one dataset (Add Health)

provides both public- and contractual-use data. In novices’ perspectives, complex

proprietary datasets are even more challenging than public datasets because they have

difficulty retrieving information elsewhere to help them build up a good understanding

accurately and quickly.

In the current implementation, we manually extracted most of the metadata from

dataset documentations and semi-automatically extracted metadata about analytical

methods from publications. The extracted metadata was first stored in the RDF

triple format in Excel spreadsheets and imported into MW, using a Python script

that converts spreadsheets to MW importable XML files. To ensure the accuracy of

manually extracted metadata, a team of health informatics research assistants was

formed to review and correct these metadata iteratively.

2.2.5 Extraction of Analytical Methods from Publications

Data analytical methods that have been successfully applied to datasets are impor-

tant knowledge for data science learners. To deliver this knowledge, we developed a

semi-automatic method to extract various analytical methods that had been used in

published articles that analyzed the specific datasets in the DIR. For this task, we first

developed an ontology of data analytical methods, Method Ontology (MethodOntol-

ogy.owl [35]), which extended an existing ontology. Based on the Method Ontology,

we developed a rule-based Named Entity Recognition (NER) pipeline to extract in-

stances of analytical methods reported in selected publications.

We used PMC as the data resource and downloaded full-text articles that men-

tioned the 12 datasets, using the keyword identification method in Section 3.3.2. In

total, 48,282 PDF-format publications were obtained. The publication number of

each dataset is shown in Table 2.2. To preprocess these publications, we developed
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a pre-processor, written in the Bash command and Python programming language,

which included three major steps: (1) converted PDF files to plain text; (2) excluded

proceedings and articles that only cited a dataset without analyzing it; and (3) se-

lected relevant content by removing reference sections. After preprocessing, 25,201

publications remained.

Table 2.2: Publication numbers of 12 datasets.

Dataset

# of # for method #
PDF-format extraction that
articles in after analyzing
PMC preprocessing datasets

NHANES 37,485 16,213 10,674
SEER-Medicare 2,569 2,276 1,627
Add Health 1,881 1,477 1,028

HCUP 1,785 1,398 993
MDS 1,337 1,053 584
CPRD 1,014 735 477

MarketScan 985 920 614
THIN 733 678 434
MIMIC 237 206 152
Premier 165 158 95

Clinformatics 69 65 49
Humedica 22 22 9
Total 48,282 25,201 16,736

The Method Ontology describes data analytical methods, which include all ma-

jor machine learning, data mining, and statistical methods. This ontology extends

the Data Mining Knowledge Base (DMKB.owl) of the Data Mining OPtimization

Ontology (DMOP version 5.4), which was originally designed to support informed

decision-making in the data mining (DM) process [36]. The DMKB.owl describes

instances of DMOP concepts, including individual algorithms in popular data min-

ing software, such as RapidMiner and Weka. For the method extraction purpose,

the Method Ontology extended it by adding and linking new methods, which were

extracted in a training set of dataset publications, and synonyms of all method in-

stances. Figure 2.4 shows the structure of major method classes and a few examples

of extended instances in the Method Ontology.
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Figure 2.4: Structure of major method classes and some examples of extended in-
stances in Method Ontology. Extended elements are shown in dashed boxes.

A rule-based NER was carried out in the Clinical Language Annotation, Model-

ing, and Processing Toolkit (CLAMP) [37]—a Natural Language Processing (NLP)

software—and was handled by a pipeline that included a sentence detector, a to-

kenizer, and a dictionary lookup component. The input to this pipeline included

the preprocessed publications as well as a method dictionary with semantic labels

generated from the Method Ontology. After all potential method entities in the pub-

lications were extracted, a post-processor was developed to refine these entities and to

combine synonyms for further metadata representation. As a result, method entities

were extracted and were represented on summary level pages of the datasets. Assume

that a publication that analyzed a dataset mentioned at least one analytical method

in the full text. In that case, more than half (16,736 out of 25,201) of the preprocessed

publications would have analyzed these datasets. According to the publications, the

most frequently used methods for the 12 datasets, as well as proportions of publica-

tions that utilized the corresponding method, are shown in Table 2.3. Among these

methods, logistic regression, mentioned in 4,229 publications, was the most frequently
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used (see Figure 2.5).

We evaluated the pre-processor and the method extraction steps separately. The

results showed that the 95% confidence interval of the pre-processor’s accuracy was

[92.26%, 99.39%], and the precision and recall of the analytical method extraction

were 93.82% and 90.53%, respectively.

2.2.6 Dataset Learning and Question Answering

Once the dataset knowledge is extracted and represented, the direct way to query

the knowledge is to write SPARQL-like queries in the semantic search mechanism

provided by SMW. While this direct method is powerful, it requires an understand-

ing of the Semantic Web and SPARQL, which is clearly burdensome to novices. Our

current approach to addressing this issue is to offer a simplistic question-answering

functionality by identifying the most popular questions that novices ask and providing

ready-to-use queries. We created a parameterized question page for each representa-

tive question, where users can simply input words and click the Run Query button

to obtain precise answers. The list of current parameterized question pages is shown

in Table 2.4.

For example, if users are curious about which datasets can successfully utilize the

Support Vector Machine, they can simply visit the “Which datasets can I apply the

method to” question page, choose or type in “Support Vector Machine,” and click

the Run Query button to obtain “Answer: NHANES, CPRD, THIN, HCUP, MDS,

MIMIC.” The dataset result is in order based on the PPI recommendation. In this

example, the query below has already been embedded in the question page template:

Answer:

{{#ask:

[[Category:Summary Level]]

[[Methods in publications::{{{method|}}}]]

|sort=PPI

|order=desc

}}.
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As another example, if users need to investigate large datasets that have more

than 1,000,000 subjects, they can refer to the parameterized question page—“Which

datasets have more than a specific number of subjects”—that includes the following

query:

{{#ask:

[[Category:Summary Level]]

[[-Dct:isVersionOf::<q>

[[Category:Version Level]]

[[Subject number::>={{{subject_number|}}}]]

</q>]]

|sort=PPI

|order=desc

}}.

To determine the most popular questions that novices ask, we analyzed a variety of

resources, including a publication that guides novices to conduct high-value dataset

analysis [38], questions labeled as “dataset” on question-and-answer sites (e.g., Quora

[39] and Stack Exchange [40]), and opinions from health informatics novices through

interviews.
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Figure 2.5: The most frequently used methods in publications of 12 datasets.
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Table 2.3: Ten most frequently used methods to analyze each dataset.

Dataset Methods

NHANES

EM Algorithm Neural Network Model Wilcoxon Signed-Rank Test Poisson Regression Chi-Squared Test
29.55% 19.63% 16.69% 15.02% 14.85%

Kruskal-Wallis Test Logistic Regression Log-Rank Test Linear Regression T-Test
14.32% 12.56% 12.17% 10.04% 8.51%

SEER-
Medicare

Chi-Squared Test Logistic Regression Cox Regression Log-Rank Test Survival Analysis
54.52% 50.83% 39.64% 17.46% 14.87%
T-Test Regression Model Kaplan-Meier Survival Estimates Linear Regression Propensity Score Matching
11.12% 10.45% 9.34% 8.85% 7.01%

Add Health

Logistic Regression Chi-Squared Test Linear Regression Regression Model Principal Component Analysis
50.00% 33.17% 13.13% 9.82% 8.07%
ANOVA Poisson Regression T-Test Propensity Score Matching Cox Regression
7.49% 5.74% 5.06% 3.40% 3.40%

HCUP

Logistic Regression Chi-Squared Test Linear Regression T-Test Regression Model
57.91% 48.44% 20.24% 18.03% 15.61%
ANOVA Poisson Regression Cox Regression Mann-Whitney U Test Bootstrap
9.87% 9.06% 7.45% 7.35% 4.23%

MDS

Logistic Regression Chi-Squared Test Linear Regression Regression Model T-Test
42.12% 39.73% 17.29% 14.90% 13.53%
ANOVA Cox Regression Mann-Whitney U Test Bootstrap Survival Analysis
13.18% 9.93% 7.19% 4.11% 3.77%

CPRD

Logistic Regression Cox Regression Chi-Squared Test Poisson Regression Propensity Score Matching
42.35% 31.03% 18.87% 12.37% 10.48%

Linear Regression Regression Model Survival Analysis T-Test Kaplan-Meier Survival Estimates
9.85% 8.60% 6.08% 5.66% 4.61%

MarketScan

Chi-Squared Test Logistic Regression Cox Regression T-Test Poisson Regression
47.88% 43.32% 19.22% 12.87% 12.21%

Propensity Score Matching Linear Regression Regression Model ANOVA Fisher’s Exact Test
10.91% 9.93% 9.77% 6.68% 5.86%

THIN

Logistic Regression Cox Regression Chi-Squared Test Poisson Regression Regression Model
37.33% 26.04% 23.27% 12.44% 9.91%

Inverse Probability Weighting Linear Regression T-Test Survival Analysis Propensity Score Matching
8.99% 8.53% 8.06% 6.91% 6.68%

MIMIC

Logistic Regression Chi-Squared Test T-Test Mann-Whitney U Test Regression Model
45.39% 20.39% 17.76% 15.79% 14.47%

Support Vector Machine Linear Regression Cox Regression Kolmogorov-Smirnov Test K-Nearest Neighbors
14.47% 11.84% 11.18% 9.87% 9.21%

Premier

Chi-Squared Test K-Means Decision Tree Model Logistic Regression Propensity Score Matching
41.05% 38.95% 27.37% 21.05% 14.74%

Kruskal-Wallis Test Linear Discriminant Analysis Regression Model Linear Regression T-Test
13.68% 11.58% 11.58% 8.42% 8.42%

Clinformatics

Linear Regression Bootstrap Regression Model Kruskal-Wallis Test Chi-Squared Test
44.90% 28.57% 20.41% 14.29% 12.24%
F-Test Cox Regression Logistic Regression ANOVA Survival Analysis
12.24% 10.20% 10.20% 8.16% 6.12%

Humedica

Chi-Squared Test Logistic Regression Bootstrap Fisher’s Exact Test Cox Regression
33.33% 22.22% 22.22% 22.22% 11.11%
T-Test Linear Regression Propensity Score Matching Survival Analysis Ensemble Learning
11.11% 11.11% 11.11% 11.11% 11.11%

Table 2.4: Eighteen parameterized question pages in current DIR.

Data-Driven Questions Which datasets include some specific information/data elements?
Which datasets have more than a specific number of subjects?

Method-Driven Questions Which datasets can I apply a specific method to?

Introduction Questions

What does a dataset talk about?
How to get a specific dataset?
What are the methods that publications used with a specific dataset?
What are the publications using a specific dataset?
Is a specific dataset open to the public?
How many subjects are there in a specific dataset?
How many tables are there in a specific dataset?
What are the different tables/files in a database?
What are the data elements in a specific dataset?
What are the patient types that a specific dataset handles?
How frequently are data updated in a dataset?
How many times is a dataset cited?
Who reports the data in a specific dataset?
What is the geographic area of a dataset?
What is the full name of a dataset?
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2.3 Results and Discussion

A prototype of the DIR has been developed and released. It is accessible via

https://cci-hit.uncc.edu/dir/. The current DIR homepage is shown in Figure 2.6.

Built on the foundation of the Semantic Web and the extended W3C dataset de-

scription profile, we have provided knowledge about 12 representative datasets in

healthcare—NHANES, SEER-Medicare, Add Health, HCUP, MDS, CPRD, Mar-

ketScan, THIN, MIMIC, Premier, Clinformatics, and Humedica—and five blogs. To

facilitate novices’ question answering, 18 ready-to-use questions (Table 2.4) have been

provided. In addition, the more powerful semantic search function is available for

users who are familiar with SPARQL. To ease usability, a tutorial and a support page

with an issue tracker and a feedback form are also provided.

Figure 2.6: Current DIR homepage.

At the time of this paper’s submission, the DIR prototype contained 264 pages.

The average page loading time was 1.44 seconds. The current approach to add a

new dataset includes both manual metadata extractions (from documentations with
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team review-based quality check) and semi-automatic knowledge extractions (from

publications using NLP technologies). To add a new dataset, the current approach

takes approximately one day, in general, for manual extractions and a few minutes

for semi-automatically extracting analytical methods, excluding the time to collect

publications.

We have conducted a survey and collected feedback from 15 target users who were

novices in healthcare data research. Of the target users, 40% had a background in

health informatics, and 86.7% had a background in data analytics. We asked the

subjects to compare Google, DIR, and other resources in seven use cases and also

asked for general comments. The survey results indicated that 73.3% of users, on

average, preferred the DIR in these use cases. Significantly, 100% of them preferred

the DIR in the case of finding datasets that included a particular data element; 93.3%

preferred the DIR when they wanted to adopt a specific analytical method; and 86.7%

preferred the DIR in the case of discovering large-enough datasets, such as a dataset

that had more than 1,000,000 subjects. In terms of more general knowledge, users

tended to rely on broader resources. For example, only 60% of users chose the DIR

when they were looking for basic descriptions of a dataset or tutorials about gaining

access, while others felt more comfortable on searching in Google, browsing the official

website, or using both DIR and other resources simultaneously. Overall, the DIR

obtained a score of 86.7% in helpfulness, 83.8% in ease of discovering datasets, 82.9%

in ease of question answering, and 82.9% in the scale of meeting users’ expectations

about healthcare dataset information resources.

According to comments in survey responses, users highlighted the advantages of

the DIR as targeted and novice-friendly. As some users commented: “It filters out

the irrelevant information and is more structural"; “Beginner-friendly. Information is

exhibit[ed] clearly to the user"; and “Sample questions and semantic search are very

useful for researchers to find the right dataset or information, or we can say it looks
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more intelligent than other search engine[s] like [G]oogle."

However, the DIR clearly has several limitations in this initial phase. (1) The cur-

rent DIR prototype still relies on manual extractions in part, which is time-consuming

and labor-intensive for DIR developers during dataset extending. This limitation has

two possible ways to be improved. One refers to the entity linking and typing topic

that is intensely discussed in Semantic Web conferences, such as the Open Knowl-

edge Extraction Challenge (OKE) [41] at the European Semantic Web Conference

(ESWC). The other way, mentioned by the CEDAR project, involves promoting an

authoring-friendly ecosystem in the healthcare dataset community and encouraging

researchers to contribute open metadata. (2) Currently, we do not differentiate sub-

classes of analytical methods, that is, the statistical methods, such as Chi-Square

Test, are listed together with machine learning methods, such as Ensemble Learn-

ing. Further classification of methods based on the Method Ontology will be needed

to address more detailed user questions. (3) As one user commented in the survey:

“For now, finding a question is not that hard. However, if the question set becomes

larger, then I think it can cause a problem. Somehow you need to facilitate this

part," which reveals that preparing query-embedded question-answering pages can

only be a temporary solution. When the system is expanded, a real natural language

question-answering functionality should be implemented. Actually, question answer-

ing is a stand-alone topic in the Semantic Web community and has been discussed

over decades in conferences (e.g., the open challenge on Question Answering over

Linked Data (QALD) [42] at ESWC) and publications (e.g., [43][44][45][46][47]). (4)

As another user mentioned in the survey: “I’m not sure if researchers will trust the in-

formation on DIR." Rely on simple quality check approaches is one of the limitations.

To ensure quality and to gain user trust, a systematic quality assurance method needs

to be developed and reported.
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2.4 Conclusions and Future Work

We conclude that it is feasible to develop a DIR that provides value for entry-level

health informatics students and researchers. Knowledge about datasets is effectively

represented in Semantic Web technologies. At this stage, the DIR has already been

able to provide comprehensive and relevant knowledge of 12 important healthcare

datasets, which is expected to improve health informatics novices’ ability to learn

data analysis using suitable datasets.

In contrast to bioinformatics datasets, of which most data elements have already

been represented in RDF at the knowledge level, the DIR will continue focusing on

the healthcare datasets that are usually at a lower level granularity.

Further development is underway to improve efficiency, accuracy, and scalabil-

ity. Suitable directions for expansion include two levels: content and function. The

content level adds more healthcare datasets, identifies more types of knowledge for

target users, and involves a systematic quality assurance method to ensure the qual-

ity of metadata. The function level includes developing a natural language-based

question-answering component, more automated methods to extract knowledge, in-

telligent functionalities to compare similar datasets, and collaborative features, such

as discussion forums that allow users to help each other and suggest new content.
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CHAPTER 3: A PUBLICATION-BASED POPULARITY INDEX (PPI) FOR

HEALTHCARE DATASET RANKING

3.1 Introduction

In the big data era, healthcare as one of the largest and fastest-growing industries

has experienced a data explosion. An increasing number of datasets are emerging

rapidly due to the adoption of electronic platforms in hospitals, insurance companies,

and surrounding facilities. Taking advantage of these datasets, more researchers are

leveraging health informatics and data analytics to promote medical science devel-

opment and improve patient care. Healthcare datasets are usually complex, diverse,

and hard to understand. To facilitate researchers in dataset discovery, a number of

websites and data portals, such as HealthData.gov managed by U.S. Department of

Health and Human Services and DataMed.org supported by the National Institutes of

Health (NIH), have integrated basic metadata (e.g., descriptions, formats, and landing

pages) of millions of datasets. In addition, we have developed a semantic Dataset In-

formation Resource (DIR) to address the special needs for health informatics novices

in learning and selecting datasets [1]. The DIR represents tailored metadata (e.g.,

analytical methods that can be utilized on a dataset) and provides parameterized

question answering functionality. Although these efforts can help dataset discovery

to a certain extent, choosing a quality dataset that is suitable for specific research

inquiries are still challenging for researchers.

Obviously, data quality is one of the most important features of a dataset. It is

the foundation of valid and reliable research findings. However, no known websites or

data portals have taken data quality into account, which is largely due to the difficulty

in measuring quality. To attempt to address issues in data quality for secondary use,
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researchers have studied this specific area for more than a decade. To the best of

our knowledge, almost all existing data quality research focuses on the Electronic

Health Record (EHR) data (e.g., [2][3][4][5]) but rarely on other types, such as survey

data (e.g., the National Health and Nutrition Examination Survey (NHANES)) and

administrative claims data (e.g., the MarketScan dataset) that account for a large

portion of research. For a better EHR data quality assessment, studies have tried to

harmonize terms, methods, and practices in a conceptual way, which provides good

guidance to empirically evaluate the quality. However, there is still a lack of consistent

definition and categorization of quality dimensions. For example, while [2] organized

data quality in three categories—conformance, completeness, and plausibility—[5]

classified data quality as data accuracy, completeness, consistency, credibility, and

timeliness. Aside from the inconsistency, the measurements of these dimensions are

qualitative, which are not suitable to precisely compare a large number of candidate

datasets. Additionally, intrinsic quality dimensions are more often discussed while

other extrinsic dimensions of datasets, such as data accessibility, are equally important

for researchers but lack consideration [2].

Therefore, we believe that a quantified method to comprehensively measure both

intrinsic quality and extrinsic value properties for all kinds of healthcare datasets will

be an important tool for researchers during the dataset selection. Moreover, because

the acquisition of healthcare datasets are costly and time-consuming, the ability to

identify valuable datasets and analyze salient design features of these datasets will

also be significant for data providers to improve future healthcare datasets.

In this article, we propose one way of measuring the value of healthcare datasets

from the perspective of popularity. We define a dataset as popular if it has been suc-

cessfully analyzed by numerous researchers and an increasing number of researchers

continue to analyze it. One of the best ways to identify successful analyses is to

refer to the publications that have analyzed the dataset. Unlike traditional quality
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dimensions, popularity of a dataset naturally reflects its intrinsic quality dimensions

(especially plausibility and timeliness) and extrinsic value dimensions (including data

accessibility and system availability) because to successfully obtain publishable re-

sults from a dataset depends on almost all dimensions indispensably. Therefore, we

believe that a dataset with higher popularity is likely to be more valuable in general.

In order to identify datasets with higher popularity, there are two intuitive ap-

proaches. One is to simply count the number of related publications in a specific time

period. However, this approach ignores the trend, which particularly indicates data

quality and research opportunity over time. The other approach is to observe the

histograms showing the relationship between years and numbers of publications. For

example, Fig. 3.1 is a histogram of the National Longitudinal Study of Adolescent to

Adult Health (Add Health) dataset, showing the publication numbers indexed annu-

ally by PubMed, which is the most authoritative medical literature search engine in

the U.S. The publication of this dataset was first indexed by PubMed in 1998. Fig. 3.2

shows the histogram for the SEER-Medicare Linked Database (SEER-Medicare) since

1998. However, there are two obvious drawbacks to this approach: 1) Researchers

can only subjectively observe the trends from figures without a measurement. 2) It

is hard to compare both trends and numbers simultaneously across datasets (e.g.,

comparing Add Health to SEER-Medicare). Both of the drawbacks are even more

noticeable when researchers have a large number of candidate datasets.

For these reasons, we have developed a Publication-based Popularity Index (PPI)

that takes both the number of publications that have analyzed a dataset and the trend

of analyzing the dataset into account in order to quantitatively evaluate and compare

the goodness of healthcare datasets. As a result, researchers can eventually establish

a ranking of their candidate datasets to support the dataset selection process, and

data providers can identify the most valuable datasets for future dataset designs.



34

Figure 3.1: Add Health publications by year histogram drawn by PubMed.gov.

Figure 3.2: SEER-Medicare publications by year histogram drawn by PubMed.gov.

In this article, we define the PPI and discuss its properties in Section 3.2. In Section

3.3, we elaborate on our data source that consists of 14 representative healthcare

datasets and present a method to identify publications that have analyzed these

datasets. In Section 3.4, we rank the 14 representative datasets using the PPI and

discuss the results. In Section 3.5, we summarize our contributions.

3.2 PPI for Healthcare Datasets

As popularity is a time-dependent measurement, let N equal the number of years

that users want to consider. We define the PPI of a dataset for the past N years as:

PPI =


P̄ · exp

(
ln |ln |β|| β|β|

)
for |β| > e

P̄ for |β| ≤ e

, (3.1)
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where

P̄ =
1

N

N∑
i=1

Pi,

average number of publications that have analyzed the

dataset in the past N years, where N is a user selection

feature,

Pi =number of publications that have analyzed the dataset

in i-th-to-last year,

β =slope of the simple linear regression model y = α + βx,

e = lim
n→∞

(
1 +

1

n

)n
≈ 2.71828.

In the simple linear regression model, {y} = {Pi sorted by year}, and {x} =

{calendar years}. For example, when N = 5, {y} = {number of publications in 2013,

..., number of publications in 2017}, and {x} = {2013, 2014, 2015, 2016, 2017}.

The PPI has two properties.

First, the PPI is monotone increasing in P̄ and in β. The monotonicity in P̄ is

obvious. It is monotone in β because the PPI can be simplified as:

PPI =


P̄ ln β for β > e

P̄ for − e ≤ β ≤ e

P̄ / ln(−β) for β < −e

;

therefore,

∂PPI/∂β =


P̄ /β > 0 for β > e

0 for − e ≤ β ≤ e

−P̄ /β(ln(−β))2 > 0 for β < −e

.
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Second, the range of the PPI is [0,∞). It is always positive as long as P̄ 6= 0. If

P̄ = 0, which means that no publication has analyzed the dataset during the selected

period, then PPI = 0. This makes perfect sense because the absence of publications

means that the dataset is unpopular.

The design of the PPI takes both the average number of publications (P̄ ) and

the trend (β) into account. P̄ can be viewed as a base, while the trend can make

a heavy impact on the index. To restrict the impact of the trend and regard P̄

as a more important factor, β has been balanced by logarithms. If an increasing

trend is significant, i.e., β � e, then exp
(

ln |ln |β|| β|β|
)
� 1. That is, the trend

gives a boost to P̄ (e.g., PPI = P̄ · 3 when β = 20.1). The higher the beta, the

stronger the boosting. If a decreasing trend is significant, i.e., β � −e, then 0 <

exp
(

ln |ln |β|| β|β|
)
� 1. That is, the trend reduces the value of the PPI from the

base, P̄ (e.g., PPI = P̄ · 0.3 when β = −28.0). If the trend is insignificant, i.e.,

|β| ≤ e, then P̄ itself will be the index. Note that with |β| ≤ e, the difference, on

average, between the numbers of publications in any two consecutive years during the

selected period is less than three (e < 3).

Under this design, suppose we have two datasets, A and B, with corresponding

indices PPIA and PPIB. If PPIA > PPIB, then either one of the following two

statements is true:

• There are more publications that have analyzed dataset A during the selected

period than that of dataset B, and the trend of analyzing dataset B does not

show a significant advantage over that of dataset A. In other words, P̄A > P̄B

and βB 6� βA.

• The number of publications that have analyzed dataset A is no more than that

of dataset B, but the trend of analyzing dataset A shows a significant advantage

over that of dataset B. In other words, P̄A ≤ P̄B and βA � βB.
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To calculate the PPI, we need to fit the simple linear regression model y = α+ βx

to estimate β (i.e., to obtain β̂). Generally, we can use the least squares (LS) method

to fit the model. Using this method, we assume that each of the calendar years has

the same level of impact on popularity. However, some users may prefer to assign

different weights to different years. It can be achieved by using the weighted least

squares (WLS) method, which allows another user selection feature, the weight. For

example, users can set the weights for recent five years as 1/15, 2/15, 3/15, 4/15, and

5/15. The latest year has the highest weight. As an advantage, weights allow the PPI

calculated by β̂WLS to pay more attention to more recent years so that it increases

the accuracy of the measurement when users especially care about the timeliness of

popularity. Without preferred weights, the WLS method is simply reduced to the LS

method. The results and discussion in Section 3.4 further illustrate the advantages

of using the WLS.

To summarize, the PPI is defined in (3.1). In addition, two user selection features

are allowed: 1) N, the number of years that the PPI takes into account, and 2) weight,

the level of the impact that each year makes on the PPI.

3.3 Data Source and Method to Identify Publicaitons

Our data source consists of 14 representative healthcare datasets. To implement

the PPI on these datasets, we present a method to identify publications that have

analyzed a specific dataset in this section.

3.3.1 Data Source

We selected healthcare datasets from two sources: 1) Three representatives of

both public and proprietary datasets in the DIR: Healthcare Cost Utilization Project

(HCUP), MarketScan, and Medical Information Mart for Intensive Care (MIMIC).

2) Thirteen representative datasets selected from working group notes discussed by

domain experts at the UNC Charlotte Health Informatics and Outcomes Research



38

Academy [6]: Humedica NorthStar (Humedica), Cliniformatics Data Mart (Clini-

formatics), MedMining, Premier Healthcare Database (Premier), Clinical Practice

Research Datalink (CPRD), MarketScan, The Health Improvement Network (THIN),

RealHealthData, Long-Term Care Minimum Data Set (MDS), HCUP, SEER-Medicare,

Add Health, and NHANES. As MarketScan and HCUP were involved in both the DIR

and the group notes, 14 representative datasets were finally involved (listed in Table

3.1).

3.3.2 Method to Identify Publicaitons

To identify publications that have analyzed a dataset, we used the PubMed search

engine, which consisted of more than 27 million citations for biomedical literature from

MEDLINE, life science journals, and books. We assumed that a publication utilized

a dataset as the data source if and only if it mentioned at least one of the dataset

keywords (e.g., full names and abbreviations) in either the title or the abstract. That

is, we could make “dataset keyword”[tiab] ([tiab] was the same as [Title/Abstract])

queries to obtain all possible publications that have analyzed a dataset in PubMed.

However, identifying dataset keywords for searching was actually the most chal-

lenging step in the implementation because the search results were likely to encounter

over- and under-matching. Over-matching meant that publications mentioning the

keywords but not analyzing the corresponding dataset were returned in the search re-

sults. For example, when we queried “CPRD”[tiab] for the Clinical Practice Research

Datalink, the results falsely included publications discussing the Chronic Parenchy-

mal Renal Disease whose abbreviation was also CPRD. Under-matching happened

when not all corresponding publications were returned, and it was usually because

keywords were missing. For example, all possible keywords of MIMIC included not

only the current full name (i.e., Medical Information Mart for Intensive Care) but

also its previous full name (i.e., Multiparameter Intelligent Monitoring in Intensive

Care).
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Thus, we have created a generic method to identify keywords for each dataset

to prevent over-matching and under-matching. Fig. 3.3 shows the workflow. Six

remarks help readers understand the workflow.

Figure 3.3: Method to identify dataset keywords. Superscripts refer to remarks.

• Remark 1: Using all “possible” keywords prevents under-matching.

• Remark 2: To clarify what “inclusive” means, let’s take HCUP as an example.

“HCUP” and “the HCUP database” are inclusive keywords because “HCUP”

is contained in “the HCUP database.” Only the shorter one (i.e., “HCUP”)

between them needs to be included when searching because of the absorption

law (i.e., A ∧ (A ∨B) ≡ A).
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• Remark 3: PubMed does not allow stop words when field descriptors (e.g.,

[tiab]) are used. A list of stop words for PubMed is in [7]. An example of split-

ting keywords is: “Medical Information Mart for Intensive Care”[tiab] becomes

(“Medical Information Mart”[tiab] AND “Intensive Care”[tiab]).

• Remark 4: By selecting 35, if all of the 35 publications refer to the dataset,

the 95% confidence interval of the proportion of publications that refer to the

dataset in the corresponding search results is [90%, 100%]. In other words, we

are 95% confident that at least 90% of all the corresponding search results refer

to the dataset.

This number can be adjusted to obtain a different accuracy level. For example,

if the number becomes 20 and all of the 20 publications refer to the dataset,

then one will be 95% confident that at least 83.16% of the search results refer

to the dataset. If the number is 50 and all of the 50 publications refer to the

dataset, then one will be 95% confident that at least 92.89% of the search results

refer to the dataset.

• Remark 5: If the total number of search results is less than 35, then one can

manually check all the search results to obtain a precise accuracy level. For

example, if there are only 24 search results under the temporary keywords, and

all of them refer to the dataset, then the temporary keywords are the final

keywords with 100% accuracy.

• Remark 6: An example of modifying keywords is: “CPRD”[tiab] becomes “CPRD

Database”[tiab].

• Remark 7: If one indeed cannot further improve the temporary keywords to

pass the random selection test, the workflow can be stopped by producing im-

perfect keywords of the dataset. In such a situation, the accuracy level needs

to be calculated accordingly by using exact binomial confidence intervals. For
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example, if one randomly select 35 publications from the search results and find

that 34 out of the 35 refer to the dataset, then one will be 95% confident that

the proportion of publications that refer to the dataset in the search results is

between 85.08% and 99.93%.

3.4 Results and Discussion

In this section, we demonstrate the utility of the PPI by ranking the 14 represen-

tative healthcare datasets and discuss the results.

Using the method in Fig. 3.3, final keywords of the 14 datasets are listed in Table

3.1.

Let N = 5 in the PPI. We obtained the numbers of publications from the years 2013

to 2017, respectively, by addingAND (“201x/01/01”[EPDAT] : “201x/12/31”[EPDAT])

to the PubMed queries. For example, to obtain the number of publications that ana-

lyzed HCUP in 2013, we made the following query: “HCUP”[tiab] OR “Healthcare Cost

Utilization Project”[tiab] AND (“2013/01/01”[EPDAT] : “2013/12/31”[EPDAT]). Here,

[EPDAT ] refers to electronic dates of publications, which are more timely than print

dates (i.e., [PPDAT]).

There were two reasons that we set N = 5 instead of a larger number: 1) The PPI

is the index of popularity. A dataset that was widely used years ago but has not been

used often recently should not be defined as popular. That said, we should focus on

only the information of recent years in terms of popularity. 2) A popular dataset can

be new. It does not make sense to find numbers of publications over a long period

because the majority of the numbers will be zero.

By querying PubMed, we obtained the data in Table 3.2.



42

Table 3.1: Final keywords of 14 representative datasets in PubMed queries.

Dataset Part of the PubMed Query
HCUP “HCUP”[tiab] OR “Healthcare Cost Utilization

Project”[tiab]
MarketScan “MarketScan”[tiab]
MIMIC (“Medical Information Mart”[tiab] AND “Intensive

Care”[tiab]) OR (“Multiparameter Intelligent
Monitoring”[tiab] AND “Intensive Care”[tiab]) OR
“MIMIC-II”[tiab] OR “MIMIC-III”[tiab]

Humedica “Humedica”[tiab]
Clinformatics “Clinformatics”[tiab]
MedMining “MedMining”[tiab]
Premier “Premier Database”[tiab] OR “Premier

Healthcare”[tiab]
CPRD “CPRD Database”[tiab] OR “Clinical Practice Research

Datalink”[tiab] OR “Clinical Practice Research
Database”[tiab]

THIN “THIN Database”[tiab] OR “Health Improvement
Network”[tiab]

RealHealthData “RealHealthData”[tiab]
MDS “Long-Term Care Minimum Data Set”[tiab] OR

“Minimum Data Set 2.0”[tiab] OR “Minimum Data Set
3.0”[tiab] OR “MDS 2.0”[tiab] OR “MDS 3.0”[tiab] OR
(“Minimum Data Set”[tiab] AND (“Nursing Home”[tiab]
OR “Nursing Homes”[tiab]))

SEER-Medicare “SEER-Medicare”[tiab] OR (“Surveillance
Epidemiology”[tiab] AND “End
Results-Medicare”[tiab])

Add Health (“National Longitudinal Study”[tiab] AND
“Adolescent”[tiab] AND “Adult Health”[tiab]) OR “Add
Health”[tiab]

NHANES (“National Health”[tiab] AND “Nutrition Examination
Survey”[tiab]) OR “NHANES”[tiab] NOT
(“KOREA”[tiab] OR “KOREAN”[tiab])
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Table 3.2: Numbers of publications of 14 representative datasets from 2013 to 2017a.

Dataset 2013 2014 2015 2016 2017
HCUP 24 29 27 42 42

MarketScan 71 105 121 155 200
MIMIC 8 15 24 21 29

Humedica 0 2 8 2 8
Clinformatics 3 1 3 7 19
MedMining 0 1 1 0 0
Premier 5 8 5 14 25
CPRD 51 110 134 166 167
THIN 30 48 45 58 55

RealHealthData 0 0 0 0 0
MDS 41 32 44 38 49

SEER-Medicare 62 102 70 108 72
Add Health 45 40 77 107 93
NHANES 592 551 601 672 640

aNumbers were collected on 01/31/2018.

Figure 3.4: R code used to calculate PPIs and related attributes for 14 representative
datasets.
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PPIs for the 14 representative datasets have been calculated in R (code see Fig.

3.4) and summarized in Table 3.3. We have also developed an R package for easier

usage and have released it on GitHub (https://github.com/JingyiShi/PPI). In Table

3.3, the datasets are ranked by PPILS. β̂LSs are estimated slopes calculated by the

LS method, and β̂WLSs are estimated slopes calculated by the WLS method with the

weights 1/15, 2/15, 3/15, 4/15, and 5/15 for the years 2013 to 2017. PPILSs are PPIs

calculated using β̂LSs and PPIWLSs are PPIs calculated using β̂WLSs. All numbers in

this table have been rounded to one decimal digit.

Table 3.3: Dataset ranking by PPILS and related attributes.

Rank Dataset P̄ β̂LS β̂WLS PPILS PPIWLS

1 NHANES 611.2 21.7 23.4 1880.9 1926.2
2 MarketScan 130.4 30.8 32.5 446.9 454.0
3 CPRD 125.6 28.8 24.2 422.1 400.1
4 Add Health 72.4 16.3 15.2 202.1 197.2
5 THIN 47.2 6.0 4.9 84.6 74.9
6 SEER-Medicare 82.8 0.0 0.0 82.8 82.8
7 HCUP 32.8 4.9 5.2 52.1 54.1
8 MDS 40.8 0.0 3.1 40.8 46.7
9 MIMIC 19.4 4.8 4.4 30.4 28.6
10 Premier 11.4 4.6 5.8 17.4 20.0
11 Clinformatics 6.6 3.8 5.1 8.8 10.7
12 Humedica 4.0 0.0 0.0 4.0 4.0
13 MedMining 0.4 0.0 0.0 0.4 0.4
14 RealHealthData 0.0 0.0 0.0 0.0 0.0
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Figure 3.5: Numbers of publications that have analyzed MDS and HCUP from 2013
to 2017.

Figure 3.6: Numbers of publications that have analyzed THIN and SEER-Medicare
from 2013 to 2017.
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Figure 3.7: Numbers of publications that have analyzed SEER-Medicare and Add
Health from 2013 to 2017.

Figure 3.8: Numbers of publications that have analyzed MarketScan and NHANES
from 2013 to 2017.
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From Table 3.3, it is interesting to note that P̄ of MDS is higher than that of HCUP;

however, the PPI (using both methods) of MDS is lower than that of HCUP. This

reveals the advantage of the PPI, which takes not only the number of publications but

also the trend into account. Fig. 3.5 shows the number of publications that analyzed

MDS and HCUP in each year from 2013 to 2017. As we can see in both Table 3.3

and Fig. 3.5, there is a much stronger increasing trend for HCUP than for MDS,

while their average numbers of publications are close. Therefore, we believe that it is

correct to conclude that HCUP has been more popular than MDS in recent years. In

contrast, if one focuses on only the number of publications, it will lead to the opposite

conclusion. The opposing results can also be found when comparing THIN to SEER-

Medicare (see Fig. 3.6) and SEER-Medicare to Add Health (see Fig. 3.7). Further,

it is interesting to compare MarketScan to NHANES. As we can see in Fig. 3.8, the

increasing trend for MarketScan is much stronger than for NHANES. Nevertheless,

the PPI results still indicate that NHANES is more popular. This is obviously true

because the number of publications of NHANES dominates that of MarketScan. This

reveals another advantage of the PPI—it takes the trend into account, but it balances

so well that the number of publications still plays an important role.
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Figure 3.9: Comparison of LS and WLS methods on THIN.

Using the WLS versus the LS method can influence the rank to a certain extent.

For example, it changes the ranks of THIN and SEER-Medicare in Table 3.3. That is,

PPILS of THIN is higher than that of SEER-Medicare, but PPIWLS of THIN is lower

than that of SEER-Medicare. As β̂LS of THIN is 6.0, and β̂WLS of it is 4.9, the trend

boosting for THIN is weaker when using the WLS method, which makes a difference

in the ranking. Furthermore, Fig. 3.9 shows the advantage of using the WLS method

in a clearer way. In Fig. 3.9, the slope of the WLS line decreases, compared to the LS

line, because of the weak increment of the publication numbers of THIN in the most

recent years. As we can see in Fig. 3.6, SEER-Medicare seems to be more popular

because the increasing trend for both of them are not significant in the most recent

years, but SEER-Medicare has a significantly higher number of publications.

Note that in Table 3.3, RealHealthData receives zero PPI values. According to
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the design of the PPI, zero means the least popularity. Although there were some

researchers analyzing RealHealthData, no related publications have been indexed by

PubMed. Indeed, according to the RealHealthData website, all the publications it

posted were abstracts and workshop discussions (as of 05/07/2018). The absence

of conference and journal papers can indicate that no significant research has been

conducted by analyzing RealHealthData. Hence, there was no evidence to verify the

value of RealHealthData. In this regard, we believe that the PPI, as a measurement

to indicate goodness, should be zero.

Table 3.4: Numbers of publications of 14 representative datasets in 2018a.

Rank Dataset PPILS Number of Publications in 2018a

1 NHANES 1880.9 247
2 MarketScan 446.9 97
3 CPRD 422.1 67
4 Add Health 202.1 26
5 THIN 84.6 22
6 SEER-Medicare 82.8 32
7 HCUP 52.1 13
8 MDS 40.8 16
9 MIMIC 30.4 8
10 Premier 17.4 11
11 Clinformatics 8.8 11
12 Humedica 4.0 0
13 MedMining 0.4 0
14 RealHealthData 0.0 0

aAs of 05/07/2018.

Although ranking methods are difficult to be systematically evaluated (e.g., PageR-

ank [8] and H-index [9]), we still attempt to show the overall performance of the PPI

to a certain extent. We have retrieved the current (as of 05/07/2018) number of

publications that have analyzed each of the 14 representative datasets in 2018. These

data are summarized in Table 3.4, where the 14 representative datasets are ranked by

their corresponding PPIs from Table 3.3. The results in Table 3.4 indicate that the
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PPI provides a legitimate ranking in terms of popularity because the ranking by the

number of publications in 2018 is almost identical to that by the PPI. As can be seen,

there is a surge in the SEER-Medicare. From its publication numbers in Table 3.2 and

Table 3.4, it is interesting to notice that there is a plausible periodic trend that the

number of publications surges every other year (in 2014, 2016, and 2018 (to-date)).

However, we did not use time series analysis because it may cause an overfitting issue.

Additionally, the rankings for MDS and MIMIC are slightly different. Nevertheless,

this is possible because the PPI provides a legitimate ranking of popularity instead

of a definite ranking of the future number of publications.

We note that the current method for identifying publications that have analyzed

a dataset can be further improved. We intend to leverage text mining and machine

learning methods to reduce manual work in future work. In addition, other reasons

rather than goodness might affect popularity of a dataset. For example, a dataset that

covers a more prevalent disease is probably used more often. Therefore, an analysis of

dataset coverage is encouraged in the future to help researchers understand features

of popularity.

3.5 Conclusions and Future Work

We have developed the Publication-based Popularity Index (PPI), which provides

an overall quantitative ranking of all types of healthcare datasets. The PPI incorpo-

rates the quantity of successful analyses and the trend simultaneously. According to

the design of the PPI, users can easily identify the high-quality datasets with out-

standing research value and make an objective comparison among similar datasets.

We evaluated and ranked 14 representative healthcare datasets based on the PPI,

and the final results were promising. We believe that the PPI provides one important

measurement of the value of healthcare datasets that is currently lacking. In the fu-

ture, the PPI can be used to provide an overall ranking of all healthcare datasets for

all types of dataset integration systems to sort search results. This ranking can also be
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used as a starting point for identifying and examining the design of the most valuable

healthcare datasets so that features of these datasets can inform future designs.
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CHAPTER 4: AN ENTROPIC FEATURE SELECTION METHOD IN

PERSPECTIVE OF TURING’S FORMULA

4.1 Introduction

Inspired by the recent advancement in Big Data, health informaticians are attempt-

ing to assist health care providers and patients from a data perspective, with the hope

of improving quality of care, detecting diseases earlier, enhancing decision making,

and reducing healthcare costs [1]. In the process, health informaticians have been

confronted with the issue of generalization [2]. Analyzing real health data involves

many practical problems that could contribute to the issue of generalization; for ex-

ample, the unknown amount of information (signal) versus error (noise), the curse

of dimensionality, and the generalizability of models. All these trivial problems boil

down to the essential problem issued by a limited sample. With the limitation of

the sample size, the information from the sample cannot represent the information of

the population to a desirable extent. For this reason, a simple way to address these

trivial problems is to collect a sufficiently large sample, which is unfortunately often

impractical in healthcare because of multiple reasons. For example:

1. The term sufficiently large is relative to the dimensionality of data and the

complexity of feature spaces. Health data are generally large in dimensionality,

particularly when dummy variables (one-hot-encoding) are adopted to represent

enormous categories of complex qualitative features (such as extracted words

from clinical notes). As a result, a dataset with a sample size of 1,000,000 may

not be sufficient, depending on its feature spaces.

2. There may not be sufficient patient cases for a rare disease. Even if there are
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ample potential cases, it may be cost-prohibitive for clinical trials to achieve a

sufficient sample.

Without a sufficiently large sample, dimension reduction becomes a major research

direction in health data analytic as reducing the dimensionality can partly relieve

the issues from a limited sample. These dimension reduction techniques mainly focus

on feature selection and feature projection, where feature selection can be further

applied to the features created by feature projection. In this article, we focus on

feature selection. It has become an important research area, dating back at least

to 1997 [3][4]. Since then, many feature selection methods have been proposed and

well discussed in multiple recent review papers, such as [5], [6], and [7]. To apply

these feature selection methods to health data, domain-specific challenges must be

considered.

Health data can be numerical and categorical. For example, many machine read-

ings (e.g., heart rate, blood pressure, and blood oxygen level) are numerical, while

gene expression data are categorical. A healthcare dataset could contain numerical

data only, categorical data only, or a combination of both data types. The fundamen-

tal distinction between numerical data and categorical data is whether the data space

is ordinal or non-ordinal. As a result, data consisting of only numbers are not nec-

essarily numerical data; for example, gene expression data can be coded to numbers

using dummy variables, but it should be still considered as categorical. When the

data space is ordinal (numerical data only), classical methods—which detect the as-

sociation using ordinal information—are more powerful in capturing the associations

in data. When the data space is non-ordinal (categorical data only), ordinal informa-

tion does not naturally exist; hence, continuing to use classical methods onto coded

data loses their original advantages and has additional estimation issues. Namely,

involving dummy variables increases the dimensionality of data and further exacer-

bates the estimation problem using a limited sample. This particularly happens when
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an involved categorical feature has a complex feature space that requires a tremen-

dous number of dummy variables to represent all the different categories. To deal

with the categorical data, only information-theoretic quantities (e.g., entropy and

mutual information [8]) serve the purpose. When a dataset is a combination of both

data types, it is inconclusive about whether to use classical or information-theoretic

methods. In general, if one believes that the numerical data in the dataset carry

more information than the categorical data, then classical methods can be used. If

one believes the categorical data carry more information, then information-theoretic

methods should be used, and the numerical data should be binned to categorical data.

One should be advised that coding categorical data for classical methods increases di-

mensionality and issues more difficulties in estimation, while binning numerical data

for information-theoretic methods inevitably loses ordinal information. It should also

be noted that, although ordinal information could provide extra information about

associations among the data, the ordinal information could also mislead a person’s

judgment when associations actually exist, but there is no visual pattern among the

data. The way that classical methods work is very similar to our visualization; if

there is a pattern that can be visually observed, then it can also be detected by some

classical methods. However, not all associations among numerical data are visually

observable, in which case, classical methods would fail to detect the associations. On

the other hand, if there is a visual pattern among data, binning the data (losing the

ordinal information) would not necessarily lead to a loss of associations among data;

it depends on the binning methods and performance of the information-theoretic

methods.

Classical feature selection methods include, but are not limited to, Fisher Score

[9], ReliefF [10], Trace Ratio [11], Laplacian Score [12], SPEC [13], lp-regularized

[14], lp,q-regularized [14], Efficient and Robust Feature Selection (REFS) [15], Multi-

Cluster Feature Selection (MCFS) [16], Unsupervised Feature Selection Algorithm
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(UDFS) [17], Nonnegative Discriminative Feature Selection (NDFS) [18], T-score

[19], and LASSO [20]. All these classical feature selection methods require infor-

mation from ordinal spaces, such as moments (e.g., mean and variance) and spa-

cial information (e.g., nearest location and norms). Information-theoretic feature

selection methods include, but are not limit to, Mutual Information Maximisation

(MIM) [21], Mutual Information Feature Selection (MIFS) [22], Joint Mutual Infor-

mation (JMI) [23], minimal Conditional Mutual Information Maximisation (CMIM)

[24][25], Minimum Redundancy Maximal Relevancy (MRMR) [26], Conditional Info-

max Feature Extraction (CIFE) [27], Informative Fragments (IF) [24], Double Input

Symmetrical Relevance (DISR) [28], minimal Normalised Joint Mutual Information

Maximisation (NJMIM) [29], Chi-square Score [30], Gini Index [31], and CFS [32].

All these information-theoretic methods use ordered probabilities, which always exist

in non-ordinal spaces. For example, frequencies, category probabilities (proportions),

Shannon’s entropy, mutual information, and symmetric uncertainty are all functions

of ordered probabilities.

In many cases, all (or most) of the data in a healthcare dataset could be categori-

cal. To analyze the categorical data in such a dataset, information-theoretic feature

selection methods are preferred because they could capture the associations among

features without using dummy variables, where classical methods require dummy

variables that would increase the dimensionality. Most existing information-theoretic

methods use entropy or mutual information (a function of entropy) to measure asso-

ciations among data. Information-theoretic methods that do not use entropy include

Gini Index and Chi-square Score. Gini Index focuses on whether a feature is separ-

ative, but does not indicate probabilistic associations. Chi-square Score relies on the

performance of asymptotic normality on each component, and when there are cate-

gories with low frequencies (e.g., less than 5), the Chi-square Score is very unstable.

However, under a limited sample, we should expect at least a few, if not many, cat-
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egories would have relatively low frequencies. For the existing information-theoretic

methods that use entropy (we call these entropic methods), all of them estimate en-

tropy with the classical maximum likelihood estimator (the plug-in estimator). The

plug-in entropy estimator performs very poorly when the sample size is not suffi-

ciently large [33][34], and we have discussed that the sample size is usually relatively

limited in healthcare datasets. As a result, to use entropic methods in healthcare

data analytics, the estimation of entropy under small samples must be improved.

In addition to estimation based on small samples, the unhelpful association is

another issue with these samples. While the issue of estimation can be addressed

by using a better estimator, the problem of unhelpful association is trickier. The

unhelpful association is partially a result of sample randomness, and it could be

severe when the sample size is small. Suppose there is a healthcare dataset with

multiple features and one outcome, and there is a feature in the dataset that could

distinguish the values of the outcome based on the sample information, then there

are three possible situations:

Situation 1. The feature has abundant real information toward the outcome, and the

real information is well preserved by the sample data.

Situation 2. The feature has abundant real information toward the outcome, but the

real information is not well preserved by the sample data.

Situation 3. The feature has little real information but seems relevant to the outcome

because of randomness in the sample.

The term real information of a feature means the feature-carried information that

could indicate the values of the outcome at the population level. All three situations

are conceptual classifications. At the population level, situation 1 and 2 features

are relevant features, and situation 3 features are irrelevant features. It is clear that

situation 1 features should be selected while situation 3 features should be dropped.

For situation 2, caution should be exercised. Intuitively, situation 2 features should
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be kept as they are relevant features at the population level. However, as a result

of a limited sample, the information carried by these situation 2 features are very

subtle. There are at least two constitutional problems about the information from

situation 2 features. First, although the feature could distinguish the values of the

outcome based on the sample information, the sample-preserved information possibly

provides only a meager coverage of all the possible values of the feature. As a result,

when there is a new observation (e.g., a new patient), it is very likely that the new

observation’s corresponding label has not been observed by the preserved information,

in which case no outcome information is available to assist prediction based on the

information of such a situation 2 feature. Second, because of the limited sample, the

predictability of the situation 2 features revealed by the sample may not be complete;

hence, it could contribute as an (a) error (noise). For example, based on the sample

information, different values of a situation 2 feature could possibly uniquely determine

a corresponding value of the outcome (particularly when a feature space is complex

while the sample size is small), but this deterministic relationship revealed by a limited

sample is unlikely to be true at the population level. As a result, using this information

in further modelling and prediction would be wrong and could further contribute to

the issue of generalization. Therefore, we suggest omitting situation 2 features. In

addition, one should note that a relevant feature being categorized as situation 2 is

a consequence of a limited sample. All situation 2 features would eventually become

situation 1 when the sample size grows (because more real information would be

revealed). As a summary, under a limited sample, situation 1 features should be

kept, and situation 2 and 3 features should be dropped.

Focusing on the domain-specific challenges from health data, we develop the pro-

posed entropic feature selection method based on the concept of Coverage Adjusted

Standardized Mutual Information (CASMI). The proposed method aims at improv-

ing the performance of estimation and addressing the issue of unhelpful association
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under relatively small samples. The rest of the article is organized as follows. The

concept, intuition, and estimation of CASMI are discussed in Section 4.2. The pro-

posed method is described in detail in Section 4.3 and evaluated by a simulation study

in Section 4.4. A brief discussion is in Section 4.5.

4.2 CASMI and its Estimation

In this section, we introduce the concept, intuition, and estimation of CASMI.

Before we proceed, let us state the notations first.

Let X = {xi; i = 1, · · · , K1} and Y = {yj; j = 1, · · · , K2} be two finite alphabets

with cardinalitiesK1 <∞ andK2 <∞, respectively. Consider the Cartesian product

X × Y with a joint probability distribution p = {pi,j}. Let the two marginal distri-

butions be respectively denoted by px = {pi,·} and py = {p·,j}, where pi,· =
∑

j pi,j

and p·,j =
∑

i pi,j. Assume that pi,· > 0 and p·,j > 0 for all 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2

and that there are K =
∑

i,j 1[pi,j > 0] non-zero entries in {pi,j}. We re-enumerate

these K positive probabilities in one sequence and denote it as {pk; k = 1, · · · , K}.

Let X and Y be random variables following distributions px and py, respectively. For

every pair of i and j, let fi,j be the observed frequency of the random pair (X, Y )

taking value (xi, yj), where i = 1, · · · , K1 and j = 1, · · · , K2, in an iid sample of size

n from X × Y under p, and let p̂i,j = fi,j/n be the corresponding relative frequency.

Consequently, we write p̂ = {p̂k} (i.e., {p̂i,j}), p̂x = {p̂i,·}, and p̂y = {p̂·,j} as the sets

of observed joint and marginal relative frequencies. Shannon’s mutual information

between X and Y is defined as

MI(X, Y ) = H(X) +H(Y )−H(X, Y ), (4.1)

where
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H(X) = −
∑
i

pi,· ln pi,·,

H(Y ) = −
∑
j

p·,j ln p·,j,

H(X, Y ) = −
∑
i

∑
j

pi,j ln pi,j = −
K∑
k=1

pk ln pk.

We define the CASMI as follows:

Definition (CASMI). κ∗, the Coverage Adjusted Standardized Mutual Information

(CASMI) of a feature X to an outcome Y , is defined as

κ∗(X, Y ) = κ(X, Y ) · (1− π0(X)), (4.2)

where

κ(X, Y ) =
MI(X, Y )

H(Y )
, (4.3)

and (1 − π0) is the sample coverage that was first introduced by Good [35] as “the

proportion of the population represented by (the species occurring in) the sample”.

4.2.1 Intuition of CASMI

Many entropic concepts can measure the associations among non-ordinal data; for

example, mutual information (MI), Kullback-Leibler divergence ([36]), conditional

mutual information ([37]), and weighted variants ([38]). Among them, MI is the

fundamental concept as all the other entropic association measurements are developed

based on or equivalent to MI. For this reason, we develop the CASMI starting with

MI. It is well known that MI ≥ 0, and MI(X, Y ) = 0 if and only if X and Y are

independent. However, MI is not bounded from above; hence, using the values of MI

to compare the degrees of dependence among different pairs of random variables is
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inconvenient. Therefore, it is necessary to standardize the mutual information, which

yields to the so-called standardized mutual information (SMI) or normalized variants.

[39] provides several forms of SMI, such as MI/H(X) (also known as information

gain ratio if X is a feature and Y is the outcome), MI/H(Y ), and MI/H(X, Y ).

All these forms of SMI can be proven to be bounded by [0, 1], where 0 stands for

independence between X and Y , and 1 stands differently for different SMIs. For

MI/H(X) (information gain ratio), 1 means that, given the value of Y (outcome),

the value of X (feature) is determinate. For MI/H(Y ), 1 means that, given the

value of X, the value of Y is determinate. For MI/H(X, Y ), 1 means a one-to-one

correspondence between X and Y .

The goal of feature selection is to separate the predictive features from non-predictive

features. In this regard, MI/H(Y ) = 1 is most desirable because MI/H(X) = 1 does

not indicate the predictability of X and MI/H(X, Y ) = 1 is too strong and unneces-

sary. Therefore, we select κ in (4.3) as the SMI in CASMI.

As we have discussed, detecting unhelpful associations under small samples is im-

portant in health data analytics as involving unhelpful associations would bring too

much noise or unnecessary dimensions to model-building or prediction. In other

words, we would like to detect situation 2 and 3 features in a limited sample. The

common characteristics among situation 2 and 3 features is the information revealed

by the limited sample covers little of the total information in the population. For

this reason, we can use sample coverage (1 − π0), the concept introduced by Good,

to detect these features. A feature with high predictability but low sample cover-

age must belong to either situation 2 or 3. In CASMI, we multiply the SMI by the

sample coverage. Under this setting, although features from situations 2 and 3 have

high SMI values, their CASMI scores would be low because of their low sample cover-

ages; hence, these features would not be selected in a greedy selection. On the other

hand, the CASMI score for a situation 1 feature would be high because both SMI and
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the sample coverage are high. As a result, by selecting features greedily, situation 1

features would be selected, while situation 2 and 3 features would be dropped.

The purpose of CASMI is to capture the association between a feature and the

outcome, with a penalized term from the sample coverage, so that features under

situations 2 and 3 would be eliminated. By selecting features under only situation

1, the issue of generalization under small samples is expected to be reduced. (See

Section 4.3 for a discussion on feature redundancy (or feature interaction).)

It may be interesting to note that the CASMI is an information-theoretic quantity

that is related to both the population and the sample. It is neither a parameter nor

a statistic, and it is only observable when both the population and the sample are

known. Next, we introduce its estimation.

4.2.2 Estimation

To estimate κ∗ (CASMI), we need to estimate π0 and κ. π0(X) can be estimated

by Turing’s formula [35]

T1(X) = N1(X)/n, (4.4)

where N1(X) is the number of singletons in the sample. For example, if a sample

of English letters consists of {a, a, a, b, c, c, d, e, e, f}, then the corresponding N1 = 3

(b, d, and f are the three singletons). Discussions on the performance of estimating

π0 by T1 can be found in [39] and [40]. In experimental categorical data, singletons

could possibly indicate the sample size is small. As the sample size grows, the chance

of obtaining a singleton in the sample approaches zero. It may be interesting to

note that using (5.4) to estimate the sample coverage would automatically separates

ID-like features. This is because an ID-like feature is naturally all (or almost all)

singletons and would result in a zero (or very small) estimated sample coverage that

further leads to a zero (or very low) CASMI score; hence, such an ID-like feature

would not be selected.
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Estimating κ(X, Y ) is equivalent to estimating MI(X, Y ) and H(Y ). As we have

discussed, thus far, all the existing entropic information-theoretic methods use the

plug-in estimator of entropy (Ĥ). However, the plug-in entropy estimator has a huge

bias, particularly when sample size is small. [33] showed that the bias of Ĥ is

E(Ĥ)−H = −K − 1

2n
+

1

12n2

(
1−

K∑
k=1

1

pk

)
+O

(
n−3
)
, 1

where n is the sample size and K is the cardinality of the space on which the prob-

ability distribution {pk} lives. Based on the expressions of the bias, it is easy to see

that the plug-in estimator underestimates the real entropy, and the bias approaches

0 as n (sample size) approaches infinity, with a rate of n−1 (power decay). Because of

the power decaying rate, the bias is not small when sample size (n) is relatively low.

To improve the estimation under a small sample, we adopt the following Ĥz [41]

as the estimator of H:

Ĥz =
n−1∑
v=1

1

v

n1+v[n− (1 + v)]!

n!

∑
k

[
p̂k

v−1∏
j=0

(
1− p̂k −

j

n

)]
. (4.5)

Compared to the power decaying bias of Ĥ, Ĥz has an exponentially decaying bias

E(Ĥz)−H = O
(

(1− p∧)n

n

)
,

where p∧ = min{pk > 0}.

To help understand the differences between the power decaying bias and exponen-

tially decaying bias, we conduct a simulation. In the simulation, the real underlying

distribution is pk = k/2001000, where k = 1, 2, . . . , 2000 (i.e., a triangle distribution).

Under this setting, the true entropy H = 7.408005. To compare the two estimators,

we independently generate 10,000 samples following the triangle distribution for each
1We write f = O(g(n)) to denote lim supn→∞ |f(n)/g(n)| <∞.
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of the six sample size settings (i.e., we generate 60,000 random samples in total). The

average values of Ĥ and Ĥz under different sample sizes are summarized in Table 4.1.

Table 4.1: Estimation comparison between Ĥ and Ĥz.

n 100 300 500 1000 1500 2000
avg. of Ĥ 4.56 5.57 6.00 6.51 6.75 6.89
avg. of Ĥz 5.11 6.09 6.49 6.92 7.11 7.21

The calculation shows that Ĥ would consistently underestimate H more than Ĥz.

The underestimation is more severe when the sample size is smaller. Therefore, from a

theoretical perspective, we expect adopting Ĥz in estimating the entropies in CASMI

would provide a better estimation, particularly under small samples. Furthermore, we

expect CASMI would capture the associations among features and the outcome more

accurately under small samples because of the improvement in estimation. Interested

readers can find additional discussions on comparison among more entropy estimators

in [41], and comparison about mutual information estimators using Ĥ and Ĥz in [42].

Consequently, we let

M̂Iz(X, Y ) = Ĥz(X) + Ĥz(Y )− Ĥz(X, Y ), (4.6)

and we estimate κ as

κ̂z(X, Y ) =
M̂Iz(X, Y )

Ĥz(Y )
. (4.7)

As a summary, we estimate κ∗ by the following estimator, which is the scoring

function of the selection stage in the proposed method.

κ̂∗(X, Y ) = κ̂z(X, Y ) · (1− T1(X)), (4.8)

where κ̂z is defined in (4.7) and T1 is defined in (5.4). κ̂∗ adopts an entropy estimator
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with an exponentially decaying bias to improve the performance in estimating κ∗ and

capturing the associations when the sample size is not sufficiently large. Furthermore,

we expect involving the sample coverage would separate and drop situation 2 and 3

features under small samples.

4.3 CASMI Based Feature Selection Method

In this section, we introduce the proposed feature selection method in detail. The

proposed method contains two stages. Before we present the two stages, let us first

discuss data preprocessing.

4.3.1 Data preprocessing

To use the proposed method, all features and the outcome data must be prepro-

cessed to categorical data. Continuous numerical data must be discretized, and there

are numerous discretization methods [43]. While binning continuous features, the es-

timated sample coverage (5.4) should be checked to avoid over-discretization, which

increases the risk of wrongly shifting a feature from situation 1 to situation 2.

If the data are already categorical, one may need to combine some of the categories

to improve the sample coverage, when necessary. When most observations of a feature

are singletons, then the coverage is close to 0, in which case it is difficult to draw any

reliable and generalizable statistical inference. Therefore, for features that may carry

real information but have low sample coverages (below 50%), it is suggested to regroup

them to create repeats and improve coverages. Note that not all features are worth

regrouping; for example, if a feature is the IDs of patients, regrouping should be

avoided as there is no reason to believe an ID can contribute to the outcome. The

proposed method does not select features with low sample coverages; hence, ID-like

features are eliminated automatically.

When a feature contains missing (or invalid) data that cannot be recovered by

the data collector, without deleting the feature, there are several possible remedies,
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such as deleting the observation, making an educated guess, predicting the missing

values, and listing all missing values as NA. While it is the user’s preference on how

to handle the missing data, one should be advised that manipulating (guessing or

predicting) the missing data could create (or enhance) false associations; therefore,

one should be cautious. Assigning all the missing values as NA generally would not

create false associations, but it may reduce the predictive information of the feature.

The performance of each remedy method could vary from situation to situation.

Additional discussions on handling missing data can be found in [44], [45], and [46].

We suggest dealing with the missing data at the beginning of the data preprocessing.

The processed data should contain only categorical features and outcome(s). A

feature with only integer values could be considered as categorical as long as the

sample coverage is satisfactory.

4.3.2 Stage 1: Eliminate Independent Features

In this stage, we eliminate the features that are believed to be independent of the

outcome based on a statistical test. This step filters out the features that are very

unlikely to be useful; hence, the computation time for feature selection is reduced.

Suppose there are p features, X1, X2, . . . , Xp, and one outcome, Y , in a dataset.

Note that there could be multiple outcome attributes in a dataset. Because each

outcome attribute has its own related features, when making a feature selection, we

consider one outcome attribute at a time.

In finding independent features, we adopt a chi-squared test of independence using

M̂Iz as the statistic.

Theorem 1. [47] Provided that MI = 0,

χ2 = 2nM̂Iz + (K1 − 1)(K2 − 1)
L→ χ2 ((K1 − 1)(K2 − 1)) , (4.9)

where M̂Iz is defined in (5.3). K1 and K2 are the effective cardinalities of the selected
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feature X and the outcome Y , respectively.2

Compared to Pearson’s chi-squared test of independence, testing independence us-

ing Theorem 1 has more statistical power, particularly when the sample size is small

[47]. We test hypothesis H0 : MI(X, Y ) = 0 against Ha : MI(X, Y ) > 0 between

the outcome and each of the features. At a user-chosen level of significance (α), any

feature whose test decision fails to reject H0 is eliminated at this stage. It is suggested

to let α = 0.10. A smaller α increases the chance of Type-II error (eliminating useful

features); a larger α reduces the ability of the elimination, which results in a longer

selection computation time in the next stage.

Let X1, X2, . . . , Xs denote the s features (out of the p features) that have passed

the test of independence. The other (p − s) features are eliminated at this stage.

Note that the X1, . . . , Xs are temporary notations for features. Namely, the X1 in

{X1, . . . , Xp} := {X}p and the X1 in {X1, . . . , Xs} := {X}s are different if the X1 in

{X}p is eliminated in this stage. Note that we do not consider feature redundancy at

Stage 1. Redundant features could all pass the test of independence as long as they

appear to be relevant to the outcome based on sample data. Feature redundancy

would be considered at Stage 2.

4.3.3 Stage 2: Selection

In this stage, we make a greedy selection among the s remaining features from

Stage 1.

The selection algorithm is:

1. X(1) = arg max
Xi∈{X}s

[κ̂∗(Xi, Y )];

2. X(2) = arg max
Xi∈{X}s\{X(1)}

[
κ̂∗(X(1) ×Xi, Y )

]
;

3. X(3) = arg max
Xi∈{X}s\{X(1),X(2)}

[
κ̂∗(X(1) ×X(2) ×Xi, Y )

]
;

· · ·
2We write L→ to denote convergence in distribution.
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The algorithm stops at time c when κ̂∗(X(1) × · · · × X(c+1), Y ) < κ̂∗(X(1) × · · · ×

X(c), Y ).

To clarify the notations, κ̂∗(X(1) ×Xi, Y ) stands for the estimated CASMI of the

joint feature X(1)×Xi to the outcome Y , and {X}s is the collection of the s remaining

features.

The proposed method handles feature redundancy by considering joint-distributions

among features. Taking X(1) and X(2) as examples, the first step yields the feature

X(1), which is the most relevant feature (measured by the estimated CASMI) to the

outcome. In the second step, we joint the selected X(1) with each of the remaining

(s − 1) features, and we evaluate the estimated CASMIs between each of the joint-

features and the outcome. The joint-feature with the highest estimated CASMI is

selected, which becomes X(2). It should be noted that X(1) and X(2) are neither neces-

sarily independent nor necessarily the least dependent. Selecting X(2) only indicates

that based on the information provided from X(1), X(2) provides the most additional

information about the outcome among the remaining (s − 1) features. In addition,

CASMI is an information-theoretic quantity that does not use ordinal information

of features; therefore, both linear and nonlinear redundancy are captured, evaluated,

and considered.

The proposed algorithm stops when the term max[κ̂∗(·, Y )] starts to decrease. The

features selected by the proposed method are X(1), . . . , X(c).

In some situations, a researcher may want to select a desired number of features

(d) that is different from c. For example, let c = 10, d1 = 6, and d2 = 15. When

c = 10 and d1 = 6, because 6 ≤ 10, we can stop the algorithm at the time 6. When

c = 10 and d2 = 15, because 15 > 10, the user needs to select 5 additional features.

We propose two choices on how to select the additional features.

Choice 1. Keep running the proposed algorithm until time 15.
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Choice 2. Use any other user-preferred feature selection methods to select the 5

additional features.

Choice 2 could be complicated. If the user-preferred feature selection method has

a ranking on the selected features, such as filter methods, then one can find the

additional features by looking for the top 5 features other than the already-selected

10 features. If the user-preferred feature selection method does not have a ranking

among the selected features, one can start by selecting 15 features using the preferred

method, and then check if there are exactly 5 new features in the group compared to

the 10 features selected by the proposed method. If the number of new features in

the group is more than 5, then one needs to reduce the number of selected features,

using the preferred method, until a point that there are exactly 5 new features in the

group, so that the 5 additional features can be determined.

After the two stages, the proposed method is completed. The performance of the

proposed method is evaluated in the following section.

4.4 Simulations

In this section, we provide a simulation study to evaluate the performance of the

proposed feature selection method. We first discuss the evaluation metric and then

introduce the simulation setup and results.

4.4.1 Evaluation Metric

The proposed feature selection method selects only relevant features but does not

provide an associated model or classifier. In evaluating such a feature selection

method, there are two possible approaches [48]. The first approach is to embed

a classifier and compare the accuracy of the classification process based on a real

dataset. The results obtained with this approach are difficult to generalize as they

depend on the specific classifier used in the comparison. The second approach is

based on a scenario defined by an initial set of features and a relation between these
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features and the outcome. Under this situation, a feature selection method could

be evaluated by the truth. Focusing on the evaluation of the selected features, we

adopt the second approach to evaluate the proposed feature selection method based

on the truth. Under this approach, there are several strategies. One can calculate

the percentage (success rate) of all relevant features that are selected. For example,

let us consider an outcome T that is relevant to three features F1, F2, and F3, where

F1 contributes the most information (variability) of T , F2 contributes the second

most, and F3 contributes the least. Also, there is an irrelevant feature F4 in the

dataset. Suppose there are four different selection results: S1 = {F1}, S2 = {F1, F4},

S3 = {F2, F4}, and S4 = {F3, F4}. Evaluating their performances using the success

rate would achieve the same result (33.3% or 1/3) for all of them as they all identify

one correct feature out of the three. The success rate is simple to calculate because

the ground truth is known, and it works well when we focus on the number of cor-

rectly selected features or if we assume all the relevant features contribute evenly to

the outcome. However, under the restriction of a limited sample, it may be more

important to select the group of features that could jointly and efficiently provide the

most information instead of selecting all relevant features regardless of the degrees of

relevance and redundancy. Although ignoring low relevant or vastly redundant fea-

tures may lose information, dropping them would further reduce the dimensionality

and benefit the estimation. This can be considered as a trade off between estima-

tion (dimensionality) and information: the more information, the more difficult the

estimation. When the estimation is overly difficult, the results could be biased and

hardly generalizable.

Because the success rate does not take the degrees of relevance and redundancy

into consideration, we introduce the following evaluation metric to measure the ratio

of the relevant information from the joint of selected features to the total relevant

information from the joint of all the relevant features using mutual information.
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Definition 1 (Information Recovery Ratio (IRR)).

IRR =
MI(Xselected, Y )

MI(Xrelevant, Y )
, (4.10)

where Xselected is the random variable that follows the joint-distribution of the selected

features, and Xrelevant is the random variable that follows the joint-distribution of all

the features on which Y depends.

The IRR is not calculable in real datasets because 1) there is no knowledge on

which features are relevant to the outcome, and 2) the true underlying distributions

and associations (including redundancy) of the features and outcomes in real data

are unknown. Given the setup of a simulation, we have all the knowledge; hence, the

IRR for any group of selected features is calculable.

The IRR represents the percentage of relevant information in the joint of selected

features. It considers feature redundancy by evaluating the mutual information be-

tween the joint-feature and the outcome. The range of the IRR is [0, 1]. If no relevant

features are selected, the IRR is 0. If all the features in the dataset are selected regard-

less of relevance, the IRR is 1 for certain; therefore, when comparing the performance

using the IRR, the number of selected features must be controlled. When the number

of selected features from different methods are the same, a larger IRR means the

joint of the selected features contains more relevant information; hence, the method

is more efficient in dimension reduction. The efficiency of a feature selection method

is desirable, particularly under small samples.

To make a comparison between the IRR and the success rate, both evaluate the

performance of feature selection methods only when the ground truth is known. The

success rate focuses on the ratio of the number of relevant features selected to the

total number of relevant features, while the IRR focuses on the ratio of the relevant

information in the joint of the selected features to the total relevant information.
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4.4.2 Simulation Setup

A good evaluation scenario must include a representative set of features, containing

relevant, redundant, and irrelevant ones [48]. In the simulation, we generate ten X

variables (X1, . . . , X10) and one outcome (Y ). Among these variables, X1, X2, X3, X4

(or X6), and X5 are relevant features; X6 (or X4) is a redundant feature; X7, X8, X9,

and X10 are irrelevant features. The detailed settings are as follows.

Y = X1 +X2 +X3
3 − 0.5 ·X2

4 + |X5|+X6 + ε, (4.11)

where
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X1 =− 3.5 · 1[Z1 < −3]− 1.4 · 1[−3 ≤ Z1 ≤ −0.5]

+ 1[0.5 ≤ Z1 ≤ 3] + 2.2 · 1[Z1 > 3],

X2 =− 5 · 1[Pois1 = 0]− 3 · 1[Pois1 = 1]

+ 2.4 · 1[Pois1 = 3 or 4] + 5.4 · 1[Pois1 ≥ 5],

X3 =− 2 · 1[U1 ≤ −0.6]− 1[−0.6 < U1 < −0.2]

+ 1[0.2 < U1 < 0.6] + 2 · 1[U1 ≥ 0.6],

X4 =(B1 − 2) · 1[B1 6= 4] + 5 · 1[B1 = 4],

X5 =− 2.5 · 1[Z2 < −0.5]− 2 · 1[−0.5 ≤ Z2 ≤ −0.2]

+ 1.7 · 1[−0.2 ≤ Z2 ≤ 0.2] + 2 · 1[0.2 ≤ Z2 ≤ 0.6]

+ 4 · 1[Z2 > 0.6],

X6 =X4,

X7 =(Pois2 − 2) · 1[Pois2 < 2] + 2 · 1[Pois2 ≥ 2],

X8 =− 2 · 1[U2 ≤ −0.6]− 1[−0.6 < U2 < −0.2]

+ 1[0.2 < U2 < 0.6] + 2 · 1[U2 ≥ 0.6],

X9 =B2 − 1.2,

X10 =− 2 · 1[Z3 < −1.5]− 1.5 · 1[−1.5 ≤ Z3 ≤ −0.7]

+ 1.5 · 1[0.7 ≤ Z3 ≤ 1.5] + 2 · 1[Z3 > 1.5],

ε =− 1[U3 ≤
1

3
] + 1[U3 ≥

2

3
],
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and

Z1, Z2, Z3 ∼N(0, 1),

Pois1, Pois2 ∼Poisson(2),

B1 ∼Binomial(4, 0.1),

B2 ∼Binomial(6, 0.2),

U1, U2 ∼Uniform(−1, 1),

U3 ∼Uniform(0, 1).

Usually, a simulation setup should include varieties to justify the challenges in

real world data. Namely, it is often desirable to have complex feature spaces and

complicated relationships among the features and the outcome. However, the above

simulation setup is not complicated for the following reasons.

1. The purpose of this simulation is to evaluate the performance of the proposed

method, particularly when the sample size is relatively small. The complexity

of the feature spaces and the relationships among the features and the outcome

would determine the threshold of what constitutes a sufficiently large sample.

As they are not complex, we sample with smaller sizes to evaluate the perfor-

mances in simulation. This is fair to all feature selection methods in comparison

as they select features based on the same sample data with the same sample

size.

2. The proposed feature selection method is one of the entropic methods. In the

simulation, we would compare the performance of the proposed method to only

other entropic methods because of the domain-specific challenges discussed in

Section 4.1. During the simulation, we assign numerical values to the X vari-

ables so that we can generate the value of the outcome Y based on a model.
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But entropic methods do not use the ordinal information from the numerical

data as the inputs of the entropic methods are the frequencies of different num-

bers. Therefore, involving a complicated model (linear or nonlinear) does not

affect the entropic methods because they regard the numbers as labels without

ordinal information. However, complicating the model could make the outcome

variable Y more complex and result in a higher threshold of a sufficiently large

sample, which does not affect the comparison and evaluation among different

methods, as discussed previously.

3. In calculating IRR, we need the two joint-distributions, Xselected×Y and Xrelevant×

Y . To obtain the true joint-distributions, we have to enumerate the combina-

tions among all possible values of the selected relevant features and of all the rel-

evant features with their probabilities, respectively. Complicating the relevant

X variables would make the calculation of the joint-distributions unnecessarily

complex.

Note that the major benefit of a simple simulation setup is the ease in calculating

the true joint-distributions, which are components of the IRR. In real world data,

we do not need such calculations as the true joint-distributions and the IRR are not

calculable. Hence, when applying the proposed method on real world high dimensional

and complex data, the main calculation is just the estimated CASMI, which is not a

problem.

With the simulation setup, one can consider that we create a dataset for evaluation.

In this case, we know the ground truth that the features X1, X2, X3, X4 (or X6), and

X5 should be selected. We would evaluate the performances by calculating the IRRs

for features selected by different methods.
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4.4.3 Simulation Results

In the simulation, we compare the IRR of the proposed feature selection method to

the IRRs of six widely cited entropic feature selection methods: MIM, JMI, CMIM,

MRMR, DISR, and NJMIM.

These six entropic methods all require users to set the number of features to be

selected, while the proposed method can automatically decide the most appropriate

number of features based on data. As we must control the number of selected features

to validate the comparison of IRRs, we use the number of selected features from the

proposed method as the number of features to be selected in the six entropic methods

in each iteration. It should be noted that we are not claiming the number of features

determined by the proposed method is correct. We set them to be the same only for

the purpose of validating the comparison. As a matter of fact, the relevant features

would not be entirely selected until the sample size is sufficiently large, and the

threshold of a sufficiently large sample varies from method to method.

For each sample size N in {50, 100, 150, . . . , 2750, 2800}, we re-generate the entire

dataset 10,000 times and calculate the average IRRs of each method. The average

IRR results are plotted in Figure 4.1.
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Figure 4.1: The average IRRs for seven methods, where CASMI refers to the proposed
method. The proposed method is the most efficient method when sample size is
limited. In the simulation, the threshold of a sufficiently large sample for the proposed
method is approximately N = 1500, which is the smallest among all methods. The
vertical index is the IRR, not the success rate. An IRR of 0.8 means 80% of the
total mutual information has been accounted for by the selected features. It does not
mean 80% of relevant features are selected. The proposed method does not select all
relevant features when the sample size is small because some relevant features are in
situation 2 under a limited sample; hence, they are not selected. As the sample size
grows, all situation 2 features eventually become situation 1 features.

Based on the results, we can see that the average IRR of the proposed method

is consistently higher than or equivalent to all the other methods. This is because

under the restriction of a limited sample, the proposed method has a much smaller

estimation bias so that it captures the associations among features and the outcome

more accurately than the existing methods that estimate with the plug-in estimators.

Table 4.2 presents the 95% confidence intervals for IRRs based on features selected by
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different methods under different sample sizes. Based on the table, we can roughly

rank the proposed methods and the six methods as follows: CASMI > DISR >

NJMIM > MRMR > MIM ∼ CMIM > JMI.

Meanwhile, we recorded the average computation time of the proposed method

when implementing feature selection in R. The plot of results is shown in Figure 4.2.

The computation time when N = 50 was 0.03 seconds; the time when N = 2800 was

1.97 seconds; the longest time during the simulation was 3.37 seconds.
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Figure 4.2: The average computation time of the proposed method when implement-
ing feature selection in R.

Based on the simulation result in Figure 4.1, different methods achieve 1 (in av-

erage IRRs) at different sample sizes. One should realize that the threshold of a

sufficiently large sample greatly depends on the probability spaces of the underly-

ing associated features and the outcome. The probability spaces of real datasets are

generally significantly more complicated than that of the simulation. Consequently,
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in reality, particularly in health data, the majority of samples should be considered

small; hence, the efficiency of a feature selection method is very important.

The simulation codes are available at [49]. The proposed feature selection method

using CASMI are implemented in the R package at [50].

4.5 Discussion

In this article, we have proposed a new entropic feature selection method based on

CASMI. Compared to existing methods, the proposed method has two unique advan-

tages: 1) it is very efficient as the joint of selected features provides the most relevant

information compared to features selected by other methods, particularly when the

sample size is relatively small, and 2) it automatically learns the number of features

to be selected from data. The proposed method handles feature redundancy from

the perspective of joint-distributions. Although we initially developed the proposed

method for the domain-specific challenges in healthcare, the proposed method can be

used in many other areas where there is an issue of limited sample.

The proposed method is an entropic information-theoretic method. It aims at as-

sisting data analytics on non-ordinal spaces. However, the proposed method can also

be used on numerical data with an appropriate binning technique. Furthermore, using

the proposed method on binned numerical data could discover different information

as the entropic method looks at the data from a non-ordinal perspective.

In detecting unhelpful associations (situation 2 and 3 features), we implement an

adjustment from the sample coverage. The level of this adjustment can be modified

by users. For example, users can replace the scoring function of the proposed method

by CASMI* with a tuning parameter (u) as follows:

κ∗(X, Y ) = κ(X, Y ) · (1− π0(X))u,
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and estimate it by

κ̂∗(X, Y ) = κ̂z(X, Y ) · (1− T1(X))u,

where u is any fixed positive number. The u can be considered as a parameter to

determine the requirement for a feature to qualify situation 1. A larger u stands for a

heavier penalty from the sample coverage; hence, a feature needs to contain more real

information to be categorized to situation 1. A smaller u stands for a less penalty from

the sample coverage; hence, a feature with less real information could be categorized

to situation 1. However, users should be cautious when using a small u because it

may mistakenly classify an irrelevant feature (situation 3) to situation 1, and further

exacerbates the issue of generalization. We suggest to begin the proposed feature

selection method with u = 1. After completing feature selection, if a user desires to

select more or less features, the user could re-run the proposed method with a smaller

or larger u, respectively, and keep modifying the value of u until satisfactory.

The proposed method only selects features but does not provide a classifier; how-

ever, to draw inferences on outcomes, a classifier is needed. To this end, additional

techniques are required, such as machine learning (e.g., regressions and random for-

est). Into the future, it may be interesting to explore 1) methods that can distinguish

features under situation 2 and 3 when the sample size is small; and 2) the possibilities

of extending the proposed method to tree-based algorithms (e.g., random forest) to

help determine which leaves and branches should be omitted. In addition, it may be

interesting to investigate the performance of existing entropic methods if we use the

Ĥz, instead of Ĥ, to estimate the entropies in their score functions.
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Table 4.2: The 95% Confidence Intervals for IRRs based on features selected by
different methods under different sample sizes.

n CASMI CI MIM CI JMI CI CMIM CI MRMR CI DISR CI NJMIM CI
50 [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40] [0, 0.40]
100 [0.21, 0.57] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40]
150 [0.26, 0.62] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40]
200 [0.32, 0.62] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40] [0.21, 0.40]
250 [0.37, 0.62] [0.40, 0.40] [0.21, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.21, 0.40]
300 [0.37, 0.62] [0.40, 0.40] [0.21, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40]
350 [0.37, 0.81] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40]
400 [0.37, 0.81] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40]
450 [0.62, 0.81] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40]
500 [0.81, 0.81] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.40] [0.40, 0.57]
550 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57]
600 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57]
650 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57]
700 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57]
750 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57]
800 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57]
850 [0.81, 0.81] [0.40, 0.57] [0.40, 0.40] [0.40, 0.57] [0.40, 0.57] [0.40, 0.57] [0.57, 0.57]
900 [0.81, 0.81] [0.40, 0.62] [0.40, 0.40] [0.40, 0.62] [0.40, 0.81] [0.40, 0.57] [0.57, 0.57]
950 [0.81, 0.81] [0.57, 0.81] [0.40, 0.40] [0.57, 0.81] [0.57, 0.81] [0.57, 0.57] [0.57, 0.57]
1000 [0.81, 0.81] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.57]
1050 [0.81, 0.81] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.57]
1100 [0.81, 0.81] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.57]
1150 [0.81, 0.81] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1200 [0.81, 1] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1250 [0.81, 1] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1300 [0.81, 1] [0.57, 0.81] [0.40, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1350 [0.81, 1] [0.57, 0.81] [0.57, 0.57] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81] [0.57, 0.81]
1400 [0.81, 1] [0.81, 0.81] [0.57, 0.57] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 0.81]
1450 [0.81, 1] [0.81, 0.81] [0.57, 0.57] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 0.81]
1500 [1, 1] [0.81, 0.81] [0.57, 0.57] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 0.81]
1550 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 1]
1600 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 1]
1650 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.57, 1]
1700 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [0.81, 1] [0.81, 1]
1750 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 0.81] [1, 1] [0.81, 1]
1800 [1, 1] [0.81, 0.81] [0.57, 0.81] [0.81, 0.81] [0.81, 1] [1, 1] [0.81, 1]
1850 [1, 1] [0.81, 1] [0.57, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
1900 [1, 1] [0.81, 1] [0.57, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
1950 [1, 1] [0.81, 1] [0.57, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2000 [1, 1] [0.81, 1] [0.57, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2050 [1, 1] [0.81, 1] [0.81, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2100 [1, 1] [0.81, 1] [0.81, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2150 [1, 1] [0.81, 1] [0.81, 0.81] [0.81, 1] [0.81, 1] [1, 1] [0.81, 1]
2200 [1, 1] [0.81, 1] [0.81, 0.81] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2250 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2300 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2350 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2400 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2450 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2500 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1]
2550 [1, 1] [0.81, 1] [0.81, 1] [0.81, 1] [1, 1] [1, 1] [1, 1]
2600 [1, 1] [1, 1] [0.81, 1] [1, 1] [1, 1] [1, 1] [1, 1]
2650 [1, 1] [1, 1] [0.81, 1] [1, 1] [1, 1] [1, 1] [1, 1]
2700 [1, 1] [1, 1] [0.81, 1] [1, 1] [1, 1] [1, 1] [1, 1]
2750 [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
2800 [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1] [1, 1]
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CHAPTER 5: AN ASSOCIATION-BASED INTRINSIC QUALITY INDEX FOR

HEALTHCARE DATASET RANKING

5.1 Introduction

With the increasing ease of collecting, managing, and sharing data, a large num-

ber of datasets have been available for analytics. Particularly in healthcare, one

of the world’s largest and fastest-growing industries, emerging datasets have been

rapidly generated from electronic health records (EHRs), practice management sys-

tems, insurance organizations, clinical trials, and public surveys. These datasets bring

opportunities for researchers to assist healthcare providers and patients in improv-

ing health care quality and reducing cost. Meanwhile, the data explosion introduces

significant challenges in discovering and identifying a suitable dataset for a specified

research target. Healthcare datasets are generally complex and diverse. Searching for

a suitable healthcare dataset requires many efforts because it takes time to access,

set up, and fully understand datasets. As a result, assistance in healthcare dataset

identification is needed.

Aiming at facilitating dataset identification, Google released a Dataset Search [1]

engine in 2018, which provides organized information of datasets and a keyword

search function. Meanwhile, Google has promoted schema.org, a metadata stan-

dard, to encourage people to upload structured metadata of new datasets. A few

platforms targeting the same goal for specific domains have been developed as well,

including the Neuroscience Information Framework (NIF) for neuroscience data and

resources [2], HealthData.gov for government healthcare datasets [3], DataMed.org

for biomedical datasets and repositories [4], and the Dataset Information Resource

(DIR) framework for healthcare datasets [5]. These platforms introduce standards
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of dataset structure and help researchers understand contents in datasets. Moreover,

some of these platforms provide functions that allow researchers to search for rele-

vant contents; for example, keyword search functions in almost all platforms, filtering

in HealthData.org and DataMed.org, and formal language querying and questions

answering-like modules in DIR. The matching results can be sorted by relevance

(nearly all platforms), data collection time (e.g., HealthData.gov), and alphabetic

order (e.g., HealthData.gov).

With the help of these platforms, researchers can quickly find healthcare datasets

related to their research purposes. In most situations, there are multiple relevant

healthcare datasets. For example, suppose a group of researchers are interested in

the causes of breast cancer, then all healthcare datasets that contain the attribute of

breast cancer history can be relevant to the research purpose. Among these datasets,

the researchers would need to make a decision about which datasets to use for their

specific research. One natural criterion for such decisions is some measure of quality.

In other words, they need to choose the dataset with the most potential for produc-

ing the most valid analytic results. Numerous studies have attempted to evaluate

such quality. For example, EHR data quality has been categorized into completeness,

correctness, concordance, plausibility, and currency in 2013 [6], conformance, com-

pleteness, and plausibility in 2016 [7], and completeness, consistency, credibility, and

timeliness in 2018 [8], while such concept harmonization is limited for other types of

healthcare datasets. These qualitative measurements provide information on quality

from different perspectives, but researchers have to judge each dataset individually

and subjectively. These measures are also not conducive for comparing among mul-

tiple datasets.

To help make a comparison, several ranking indexes have been developed to rank

healthcare datasets based on publication citations, such as the U-index [9] and the

Publication-based Popularity Index (PPI) [10]. These methods provide scores of pop-
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ularity and focus on extrinsic quality. However, in some situations, intrinsic quality

may be more valuable. For example, a healthcare dataset could have high intrinsic

quality but is less-analyzed because the data were collected recently. Such datasets

are hard to discover when measured using popularity; nevertheless, these recent qual-

ity healthcare datasets are more promising toward new insights and deserve more

attention than those well studied popular datasets. Therefore, we believe that an

index to measure the intrinsic quality of healthcare datasets is needed.

The intrinsic quality of a healthcare dataset has multiple perspectives; for example,

as we mentioned earlier, the correctness, credibility, and completeness. For a health

data scientist who is searching for a healthcare dataset with high intrinsic quality, the

ultimate desire from the dataset is the potential to obtain valid results (productivity).

Noticing that while a healthcare dataset could contain more than one potential out-

come attribute for different research purposes, and for each individual study, there is

usually only one outcome at a time, we begin with the situation of only one possible

outcome variable in the dataset, and we discuss the extension to situations of multiple

potential outcomes in Section 5.5. When there is only one outcome variable, and to

obtain valid results, there must be relevant features in the dataset. If all features

carry little association to the outcome, then almost no valid results can be obtained

despite what efforts are spent. Therefore, we desire to find a measurement (score) of

the association between features and the outcome in a dataset to indicate the intrinsic

quality, such that the higher the score, the stronger the association and the better

the intrinsic quality.

Nevertheless, measuring the association among attributes (features and outcomes)

in healthcare datasets is not a simple task. Some health data are continuous or

discrete (ordinal), and some are categorical (non-ordinal). Usually, correlation coef-

ficients (CC) (e.g., Pearson correlation coefficient) are used to measure the associ-

ation among ordinal data, and information-theoretic quantities (ITQ) (e.g., mutual
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information and information gain ratio) are used to measure the association among

non-ordinal data. While neither CCs nor ITQs could evaluate the association among

both ordinal and non-ordinal data, healthcare datasets are often mixtures of the two

data types. A naive approach could be using CCs for the ordinal features and ITQs

for the non-ordinal features, in a single dataset. However, this does not solve the is-

sue because the outcome is either ordinal or non-ordinal; if it is ordinal, ITQs cannot

measure the association between non-ordinal features and the ordinal outcome, and

if it is non-ordinal, CCs cannot measure the association between ordinal features and

the non-ordinal outcome.

For non-ordinal data, the absence of metric blocks the transformation from non-

ordinal to ordinal. While for ordinal data, a discretization (or binning) that drops

the metric information could transform the data from ordinal to non-ordinal. Al-

though binning ordinal data loses some metric information, this does not mean a loss

of association. The dropped metric information from binning could help prediction;

however, instead of building a classifier or making a prediction, we desire only to

measure the degree of association to indicate the intrinsic quality. If there is a lin-

ear correlation from the metric space among the data, binning them transforms the

linear relationship to a non-ordinal association, which could be captured by ITQs, as

well. Furthermore, binning ordinal health data and evaluating the association using

ITQs could be more accurate compared to using CCs because numerous associations

are nonlinear while most CCs could capture linear associations only. Therefore, in

evaluating the association among both types of data, we suggest binning the ordinal

health data and using ITQs to measure the association.

Using a score to evaluate the association between features and the outcome is

very similar to the spirit of feature selection, specifically filter methods. Majority of

existing filter feature selection methods use ITQs to measure the association, such

as Mutual Information Maximization (MIM) [11], Joint Mutual Information (JMI)
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[12], and Coverage Adjusted Standardized Mutual Information (CASMI) [13]. In

evaluating the intrinsic quality of a healthcare dataset other than selecting features,

there are two pitfalls: redundancy and inflation. In a healthcare dataset, a number

of features could be redundant. Because stacking redundant features does not help

improve the intrinsic quality, this issue must be addressed. The problem of inflation

occurs if the score does not decrease when introducing an irrelevant feature. One can

consider R-square in regression analysis to understand the issue of inflation (R-square

never decreases when adding regression variables). Many healthcare datasets, such as

claims data, are often collected without a specific research question in mind; hence,

there may be a lot of irrelevant features to the targeting outcome. As a result, if the

issue of inflation is not addressed, the score would become misleading as it has been

inflated by the irrelevant features.

Majority of existing filter feature selection methods either ignore feature redun-

dancy (e.g., MIM) or have the issue of inflation (e.g., MIM and JMI). To address

the two issues in quantifying data quality, we design the proposed Association-based

intrinsic Quality Index (AQI) based on the CASMI, which considers both issues. Ini-

tially, the AQI is expected to help in comparing and ranking multiple healthcare

datasets in perspective of intrinsic quality. Additionally, the AQI could be used for

discovering research opportunities in a given dataset. The rest of the article is or-

ganized as follows. The estimated CASMI and the design of the proposed AQI are

described in Section 5.2. Data sources for an AQI usage demonstration and a user

study are introduced in Section 5.3. The results of the user study and AQI limita-

tions are discussed in Section 5.4. Finally, we make a conclusion and clarify AQI

usage scenarios in Section 5.5.

5.2 AQI for Healthcare Datasets

In this section, we introduce the CASMI first and then the design of the AQI for

comparisons of healthcare datasets.
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Introduced by [13], the CASMI is a score that can measure the general association

between features and the outcome. We state the definition of the estimated CASMI

in Definition 2.

Definition 2 (Estimated CASMI with tuning parameter u). κ̂∗, the estimated Cover-

age Adjusted Standardized Mutual Information (CASMI) of a feature X to an outcome

Y , with a tuning parameter u, is defined as

κ̂∗(X, Y ) = κ̂z(X, Y ) · (1− T1(X))u, (5.1)

where

κ̂z(X, Y ) =
M̂Iz(X, Y )

Ĥz(Y )
, (5.2)

Ĥz(·) =

n−1∑
v=1

1

v

n1+v[n− (1 + v)]!

n!

∑
k

[
p̂k

v−1∏
j=0

(
1− p̂k −

j

n

)]
,

M̂Iz(X, Y ) = Ĥz(X) + Ĥz(Y )− Ĥz(X, Y ); (5.3)

1− T1(X) = 1−N1(X)/n, (5.4)

N1(X) is the number of singletons in the data of X, and n is the sample size. In

(5.1), u is a tuning parameter that can be customized.

The tuning parameter, u, in the CASMI controls the level of penalty from a low

sample coverage. Sample coverage means the proportion of the observed categories

in population. For a feature, a low sample coverage suggests less reliable information

in the feature, and thus its association with the outcome is questionable and deserves
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a penalty. In the CASMI, the larger the u value, the heavier the penalty. Moreover,

when n is large, u should be small because the issues of low sample coverage are not

severe in a relatively large sample (dataset). In other words, u should be a decreasing

function of n. For this reason, we set u = 1/(ln lnn) for the AQI.

The feature selection method using the CASMI in [13] includes a screening test to

filter out irrelevant features at first. We state the test in Theorem 2 as we also add

it to reduce the calculation time of the AQI. The screening test is proven in [14].

Theorem 2. If the real mutual information is zero, then

χ2 = 2nM̂Iz + (K1 − 1)(K2 − 1)
L→ χ2 ((K1 − 1)(K2 − 1)) , (5.5)

where M̂Iz is defined in (5.3). K1 and K2 are the effective cardinalities of the feature

X and the outcome Y , respectively.1

The AQI is developed based on the CASMI with the tuning parameter u =

1/(ln lnn), where n is the number of observations in a healthcare dataset. In cal-

culating the AQI of a dataset for a specified outcome (Y ), the steps are:

1. Preprocess all attributes (features and the outcome) in the dataset to categorical.

2. Use (5.5) to test if mutual information (MI) between each of the features and the

outcome (Y ) in the dataset is 0 against MI > 0 at α = 0.20, and let {X}s be

the collection of all features that reject the null hypothesis in the tests. In other

words, {X}s contains features that are associated with the outcome, according to

the test.

3. i. X(1) = arg max
Xi∈{X}s

[κ̂∗(Xi, Y )];

ii. X(2) = arg max
Xi∈{X}s\{X(1)}

[
κ̂∗(X(1) ×Xi, Y )

]
;

1We write L→ to denote convergence in distribution.
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iii. X(3) = arg max
Xi∈{X}s\{X(1),X(2)}

[
κ̂∗(X(1) ×X(2) ×Xi, Y )

]
;

· · ·

This stops at time c when κ̂∗(X(1)×· · ·×X(c+1), Y ) < κ̂∗(X(1)×· · ·×X(c), Y );

hence, κ̂∗(X(1)× · · · ×X(c), Y ) is the final score of the estimated CASMI, and

we denote it as κ̂∗0. Alternatively, it also stops when there is no additional

features in {X}s.

4. The AQI for the dataset when Y is the outcome is

AQI =
100

1− ln κ̂
∗1/e
0

. (5.6)

Before explaining these steps, we clarify the notations. κ̂∗(X(1)×Xi, Y ) stands for

the κ̂∗ of the joint feature X(1) ×Xi to the outcome Y .

In step 1, all ordinal features and the outcome in the dataset must be binned to non-

ordinal. The reason for the discretization has been discussed in Section 5.1. There

are different approaches to bin ordinal attributes, which are discussed in [15]. While

binning ordinal data, the estimated sample coverage (5.4) should be checked to avoid

over-discretization, which unnecessarily reduces the AQI. If the data are already non-

ordinal, one may need to combine some of the categories for some features to improve

their sample coverages. Including sample coverage to evaluate associations among

attributes in a dataset reduces the risk of a falsely high AQI for two reasons. First,

ID-like features in a dataset could provide a significant association to the outcome,

while such an association is manipulated and unhelpful. Second, non-ID features,

particularly continuous features, could seem associated to the outcome if they are

excessively discretized. Under an extreme situation, a feature with all singletons (the

finest discretization) is a surjection onto the outcome, regardless of the degree of

relevance. While a relevant feature could naturally be all singletons in a dataset, we

suggest reasonably binning the feature to avert the suspicion from the surjection. We



94

suggest users control the estimated sample coverage for each potential relevant feature

at 50% and above (if possible) to allow it to contribute to the AQI, and obviously

irrelevant features (e.g., IDs) should not be regrouped. User should be aware that

the AQI is likely to change with the corresponding binning method. As demonstrated

at the end of Section 5.4, the oscillation of AQIs from different binning methods is

not severe as long as the binning methods and sample coverages are reasonable. In

summary, an appropriate binning method is sufficient, and it is unnecessary to strive

for the best one.

When a feature contains missing data, there are several remedy options. For ex-

ample, one can delete the observation, make an educated guess, predict the missing

values, or list all missing values as NA. The appropriateness of each remedy option

could vary from situation to situation. While it is the user’s preference on how to

handle the missing data, one should be cautious because manipulating (guessing or

predicting) the missing data may create false associations that wrongly increase the

AQI. Assigning all the missing values as NA generally would not create false associa-

tions, but it might cause an underestimation of the AQI for the dataset. Additional

discussions on handling missing data can be found in [16], [17], and [18]. We suggest

processing the missing data before discretization.

In step 2, the screening test is performed to filter out features that are not associated

with the targeting outcome. This helps reduce the calculation time because healthcare

datasets are generally collected without a specific research goal. For this reason, when

an attribute Y is selected to be the outcome in a healthcare dataset, many features

in the dataset may not be associated with the chosen outcome attribute. After the

screening test, we obtain a collection of features {X}s that are believed to be relevant

to the outcome, and we later calculate the AQI for the dataset to the outcome Y based

on {X}s. For the screening test between each feature and the outcome, K1 is the

number of categories in the preprocessed feature, and K2 is the number of categories
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in the preprocessed outcome. If a feature or outcome is naturally non-ordinal with

satisfactory estimated sample coverage that does not need a regrouping, in which

case the K1 or (and) K2 could be unknown, then the Ks can be estimated with the

number of categories in the corresponding sample data.

In step 3, we calculate the best score of the estimated CASMI based on the relevant

features {X}s. This is the core step where the issues of redundancy and inflation are

handled. The issue of feature redundancy is addressed by adopting joint-distributions

between features. Namely, we first find the X(1) with highest κ̂∗ among {X}s. We

use the notation X(1) because we leave X1 as the notation for the first feature in

{X}s. X(1) is considered to be the most relevant feature to the outcome. After X(1)

is selected, we joint the X(1) with each feature in {X}s\{X(1)} to obtain (s − 1)

joint-features, and then we calculate κ̂∗ between each of the joint-feature and the

outcome. From the (s − 1) κ̂∗s, we pick the highest one to determine X(2). In this

way, given X(1), the X(2) provides the most additional information to the outcome.

By induction, X(3) provides the most additional information given X(1) and X(2), . . . ;

all the features selected later are based on the amount of the additional information.

Therefore, the issue of redundancy is addressed because redundant information among

multiple features are counted only once, and the redundant features would not have

duplicate contributions to the AQI.

For the issue of inflation, the calculation of κ̂∗ contains a penalized term from the

number of singletons. Note that, when calculating κ̂∗ for joint-features, the number

of singletons is counted in the joint-space but not in the original feature space. For

example, suppose there is a dataset with only five observations and two features X1

and X2, and let X1 = {1, 1, 2, 2, 3} and X2 = {1, 1, 1, 3, 3}. There is one singleton

in X1 and no singleton in X2; however, X1 × X2 = {(1, 1), (1, 1), (2, 1), (2, 3), (3, 3)}

contains three singletons. Adding an additional feature to the joint almost certainly

increases the number of singletons. If there are too many singletons in the space of
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joint-features, then there is a risk of over-fitting; hence, we include a penalized term

based on the number of singletons to enforce a balance between extra information

and the risk of over-fitting. A feature could contribute to the AQI only if the extra

information brought by the feature is more valuable than the extra risk of over-fitting,

and this is the reason it stops at time c.

In step 4, the AQI is a scaled κ̂∗0 from step 3. The reason for scaling is because, in

most cases, κ̂∗0s tend to be small values (e.g., κ̂∗0 < 0.5), from which differences among

datasets are not well represented. After scaling, the range of the AQI is [0,100]. A

higher AQI means a higher κ̂∗0, which indicates a stronger association between the

features and the outcome, hence a quality healthcare dataset. To help understand

the calculation of the AQI, we summarize the process in Fig. 5.1.
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Figure 5.1: Algorithm for AQI calculation.
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5.3 Data Source for AQI Usage Demonstration

To propose a preliminary result and help users understand the usage of the AQI,

we demonstrate the utility of the AQI by comparing two pairs of datasets from UCI

dataset repository [19]. Moreover, we conducted a survey based on the pairs, which

we discuss in Section 5.4.

Among the two pairs, the first is about a diagnostic of breast cancer. The possi-

ble outcome responses in each of the two datasets are benign or malignant. These

datasets were originally obtained from the University of Wisconsin Hospitals, Madi-

son from Dr. William H. Wolberg [20]. The first dataset was titled Wisconsin Breast

Cancer Database (WBCD) [21], and the second one was titled Wisconsin Diagnostic

Breast Cancer (WDBC) [22]. For the WBCD, there are 698 patient records with

11 attributes, including the outcome. Calculating the AQI for the WBCD does not

require data prepocessing as all attributes are categorical (or discrete). After calcula-

tion, the AQI score is 95.5785. For the WDBC, there are 568 patient records with 32

attributes, including the outcome. Calculating the AQI for the WDBC requires data

prepocessing on some of the attributes. For each continuous feature in the WDBC,

we binned it to five categories with equal width based on the range of continuous

values represented in the data. Note that the equal-width binning method is only the

method we chose as a demonstration in the example. In practice, one needs to con-

sider both outliers and the distribution of data (if available) when selecting a binning

method. As a result, the AQI score of the WDBC is 93.87177.

The second pair of datasets is about a prognostic of breast cancer. The possible

outcome responses in each of the two datasets are whether there are recurrence-

events of breast cancer (labeled as recurrence-events or no-recurrence-events). The

first dataset was titled Breast Cancer Data (BCD) [23]. It was provided by M. Zwitter

and M. Soklic and originally obtained from the University Medical Centre, Institute of

Oncology, Ljubljana, Yugoslavia. The second dataset was titled Wisconsin Prognostic
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Breast Cancer (WPBC) [24], which was also originally obtained from the University

of Wisconsin. The BCD contains 285 patient records with 10 attributes, including

the outcome; the WPBC contains 197 patient records with 35 attributes, including

the outcome. Calculating the AQI for the BCD does not require data prepocessing as

all attributes are categorical (or discrete), while calculating the AQI for the WPBC

requires data prepocessing on some of the attributes. For each continuous feature in

the WPBC, we binned it to five categories with equal width, as well. After calculation,

the AQI score for the BCD and the WPBC are 70.92659 and 80.84716, respectively.

The scores of the two pairs are summarized in Table 5.1.

Table 5.1: AQI scores in demonstration.

Pair # Dataset Titles AQI Scores
1 WBCD 95.5785
1 WDBC 93.87177
2 BCD 70.92659
2 WPBC 80.84716

5.4 Results and Discussion

To help dataset comparisons and ranking, we have developed the AQI to quantify

intrinsic quality in an association perspective for healthcare datasets. The steps to

calculate the AQI are summarized in Fig. 5.1. In addition, we have developed R

pakcage CASMI [25], in which function AQI.score provides the calculation. Users

could directly input preprocessed data (as discussed in Section 5.2) into the function

and obtain a corresponding AQI score.

To study the helpfulness and limitations of the AQI, we conducted a survey based

on the two pairs of datasets discussed in Section 5.3. We asked participants to select

a better dataset from each pair for analysis and to state reasons. At first, we did not

provide any information other than datasets themselves. After participants made a

decision, we then provided the calculated AQI scores and asked them to select again.

We invited ten participants to response, of whom nine had background in data science
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and analytics. Particularly, three out of nine studied in health informatics. None of

the participants were familiar with these datasets.

For the first pair, before providing the AQIs, the choices from the ten participants

were quite evenly distributed: three selected the WBCD, three selected the WDBC,

and four said they would randomly pick one. Their reasons to make such selections

were various. For example, someone selected the WBCD because “[its] sample size

is larger," some people selected the WDBC because of “[m]ore attributes and [the]

slightly balanced class," and people who chose to randomly pick one attempted “[t]o

have an unbiased review". The average confident level of their selections was 5.8/10,

which was moderate. With the knowledge that the AQI score of WBCD is 95.5785

and of WDBC is 93.87177, six of the participants selected the WBCD, two selected

the WDBC, one responded that “I am struggling,” and the final user wanted to consult

domain experts. The reason of selecting WBCD was mainly because of the higher

score, while the major reason of still selecting WDBC was that, “[w]ith comparable

score[s], [users] prefer to stick to [their] original choice." The average confidence of

the selections improved from 5.8/10 to 7/10.

For the second pair of datasets, before providing the AQIs, the choices from the ten

participants were also quite evenly distributed: three selected the BCD, four selected

the WPBC, and the remaining three randomly picked one. The average confident

level of their selections was 5.6/10. With the knowledge that the AQI score of the

BCD is 70.92659, and of the WPBC is 80.84716, only one participant selected the

BCD, while the remaining nine all selected the WPBC. The reason for selecting BCD

was because the participant “do n[o]t want a dataset with too high dimension but

low [number of ]instances," while the reason of selecting WPBC was that its score

was much higher. The average confidence of the selections improved from 5.6/10 to

6.4/10.

At the end of the survey, the participants rated the overall helpfulness of the AQI
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at 6.4/10, which is acceptable but not exceptional. The major reason of low ratings is

that participants do not understand the logic and validity of the AQI, and they have

doubts when relying on it. Six participants said that the AQI improved their speed

of selecting a dataset, while the remaining four were not sure. Promisingly, seven

users believed that the AQI improved the confidence of their decisions. From their

views, advantages of the AQI included that it is “[q]uantitative, standardized, easy to

use," and “a quick measure to exclude low quality data”, which “saves time and energy

to select data,” especially when “the indexes are significantly different.” In terms of

limitations, the participants commented that “[it is n]ot widely used yet,” “it [i]s only

one aspect of data quality,” and it “maybe lead to mistake when the difference among

scores is pretty small.”

As a summary of the survey, the responses from participants indicated that the

AQI could increase confidence and speed when selecting datasets. However, efforts

are needed to help users understand the underlying theoric support and the usage

scenarios, so that users could ultimately trust and take all advantages of the AQI.

In addition, users should be guided that the AQI measures only one aspect of data

quality. It is an index that helps users rapidly compare association-based quality

among datasets, while other aspects, such as timeliness, should also be considered,

depending on specific research purposes.

It should be noted that, while an AQI of 100 means absolutely the best and a zero

AQI means absolutely the worst, the values in between them should be interpreted

carefully. The purpose of the AQI is to compare different healthcare datasets. In this

regard, the datasets with higher AQIs are absolutely more preferable than the others.

Nevertheless, if these datasets contain ordinal features, then the AQIs undoubtedly

depend on the appropriateness of the discretization on these ordinal features. There-

fore, when comparing datasets using the AQI, one should take the performance of

binning methods into consideration. Extra caution should be exercised when one



102

would like to interpret the AQI of a single dataset without a competitor. The AQI

score should not be interpreted linearly or as a percentage. For example, the inter-

pretation of an AQI of 60 is not clear, and the number 60 is useful only when there

is another AQI for a comparison dataset. Therefore, there is no standard (threshold)

on which values of the AQI could be considered as good or poor.

To briefly investigate the impact from different binning methods to the AQI, we

calculate the AQIs for WDBC and WPBC with various binning settings. As we have

discussed in Section 5.2, AQI scores change with binning methods. However, based

on the results in Table 5.2, the changes in AQIs are relatively small when there is no

excessive discretization (less than 15 bins in the example). This suggests the AQI is

relatively robust under reasonable binning settings.

Table 5.2: AQI scores under different binning settings.

bins 3 5 10 15 20
WDBC 94.12464 93.87177 94.03538 93.00716 93.15479
WPBC 81.02628 80.84716 80.2148 76.85335 78.77477

5.5 Conclusion and Future Work

We have proposed the AQI to quantify intrinsic quality of healthcare datasets from

an association perspective to help dataset identification. An AQI score indicates the

degree of association (both linear and nonlinear) between features and the targeting

outcome in a dataset. While the AQI does not suggest an underlying model, it helps

researchers understand the research potential of healthcare datasets without a time-

consuming, rigorous, and detailed analysis. In addition, the AQI is helpful in not only

healthcare but also other areas that need dataset comparison assistance. Calculation

of AQI is implemented in R package CASMI [25]. The AQI is designed to capture

associations among non-ordinal data, and continuous data need to be preprocessed

to categorical. It should be noted that an AQI score of a dataset is not unique as

it depends on binning methods, when there are ordinal features, and is associated
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with the targeting outcome in the dataset. If the outcome changes to a different

attribute, the AQI score changes (almost surely). Specifically, because the AQI is a

measurement of intrinsic quality for a dataset with a specific targeting outcome, one

could calculate AQIs for all possible outcomes and use their average, median, or other

measurements to represent the overall intrinsic quality of a dataset.

The brief investigation using real datasets (Table 5.2) suggests that the AQI is

relatively robust under reasonable binning settings. Therefore, to achieve a relatively

accurate AQI does not require a perfect discretization. While a quality discretization

absolutely results in a more accurate AQI, it could require domain specific knowledge.

For this reason, we suggest dataset providers calculate and publish AQIs for popular

outcomes in their datasets to help researchers quickly understand the intrinsic quality

and research potential. Moreover, the binning methods used by the providers on

different attributes could also help researchers further understand the background

knowledge of data. Finally, data providers could also identify and examine the design

of the related datasets with higher AQIs, and features in these datasets could help

the providers improve future designs.

Aside from dataset comparisons and ranking, the AQI could also be used to discover

research opportunities in a given dataset. Some researchers may have access to a large

dataset without a specific research goal and are willing to recognize any research

opportunities in the dataset. Without the AQI, these researchers have to keep trying

almost randomly until they make discoveries. Moreover, if there are ordinal data in

the dataset, usually only linear relationships are examined during the trials because

nonlinear relationships are generally difficult to capture. With the help of the AQI,

researchers could calculate the AQI for each potential outcome attribute in the dataset

to evaluate corresponding possibility toward valid results, a perspective of intrinsic

quality. Although they have to discretize ordinal data to calculate the AQI, such

discretization needs to be conducted only once for each dataset (unless they would
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like to re-perform the discretization with a different binning method to improve the

performance). After AQIs of the potential outcome attributes in the dataset are

calculated, they could determine a research direction from the possible outcomes

with higher AQIs, because an outcome with a higher AQI has a stronger association

with features and a brighter potential toward valid results. We summarize the usage

of comparing datasets and exploring research opportunities in Fig. 5.2.
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Figure 5.2: Two usage scenarios of AQI.
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Future research could explore theoretical interpretations for values of AQI in-

between 0 and 100. With an interpretation, thresholds could be determined to help

further understand intrinsic quality of a dataset. Also, researchers could investigate

performances of different options in evaluating the overall intrinsic quality of a dataset

without a specific outcome; for example, the mean and median of the AQIs calculated

with respect to each possible outcome attribute. In addition, research on quantifying

other perspectives of intrinsic quality is needed to further assist dataset identification.



Chapter 5 Reference List

[1] “Google dataset search.” https://toolbox.google.com/datasetsearch.

[2] D. Gardner, H. Akil, G. A. Ascoli, D. M. Bowden, W. Bug, D. E. Donohue,
D. H. Goldberg, B. Grafstein, J. S. Grethe, A. Gupta, et al., “The neuroscience
information framework: a data and knowledge environment for neuroscience,”
Neuroinformatics, vol. 6, no. 3, pp. 149–160, 2008.

[3] “Healthdata.gov.” https://www.healthdata.gov/.

[4] L. Ohno-Machado, S.-A. Sansone, G. Alter, I. Fore, J. Grethe, H. Xu,
A. Gonzalez-Beltran, P. Rocca-Serra, A. E. Gururaj, E. Bell, et al., “Finding
useful data across multiple biomedical data repositories using datamed,” Nature
genetics, vol. 49, no. 6, p. 816, 2017.

[5] J. Shi, M. Zheng, L. Yao, and Y. Ge, “Developing a healthcare dataset infor-
mation resource (dir) based on semantic web,” BMC medical genomics, vol. 11,
no. 5, p. 102, 2018.

[6] N. G. Weiskopf and C. Weng, “Methods and dimensions of electronic health
record data quality assessment: enabling reuse for clinical research,” Journal of
the American Medical Informatics Association, vol. 20, no. 1, pp. 144–151, 2013.

[7] M. G. Kahn, T. J. Callahan, J. Barnard, A. E. Bauck, J. Brown, B. N. Davidson,
H. Estiri, C. Goerg, E. Holve, S. G. Johnson, et al., “A harmonized data quality
assessment terminology and framework for the secondary use of electronic health
record data,” Egems, vol. 4, no. 1, 2016.

[8] S. L. Feder, “Data quality in electronic health records research: Quality domains
and assessment methods,” Western journal of nursing research, vol. 40, no. 5,
pp. 753–766, 2018.

[9] A. Callahan, R. Winnenburg, and N. H. Shah, “U-index, a dataset and an impact
metric for informatics tools and databases,” Scientific data, vol. 5, p. 180043,
2018.

[10] J. Shi, M. Zheng, L. Yao, and Y. Ge, “A publication-based popularity index
(ppi) for healthcare dataset ranking,” in 2018 IEEE International Conference on
Healthcare Informatics (ICHI), pp. 247–254, IEEE, 2018.

[11] D. D. Lewis, “Feature selection and feature extraction for text categorization,”
in Proceedings of the workshop on Speech and Natural Language, pp. 212–217,
Association for Computational Linguistics, 1992.

https://toolbox.google.com/datasetsearch
https://www.healthdata.gov/


108

[12] H. H. Yang and J. Moody, “Data visualization and feature selection: New al-
gorithms for nongaussian data,” in Advances in Neural Information Processing
Systems, pp. 687–693, 2000.

[13] J. Shi, J. Zhang, and Y. Ge, “An entropic feature selection method in perspective
of Turing formula,” arXiv e-prints, p. arXiv:1902.07115, Feb 2019.

[14] J. Zhang and C. Chen, “On ‘a mutual information estimator with exponen-
tially decaying bias’ by zhang and zheng,” Statistical applications in genetics
and molecular biology, vol. 17, no. 2, 2018.

[15] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsupervised dis-
cretization of continuous features,” in Machine Learning Proceedings 1995,
pp. 194–202, Elsevier, 1995.

[16] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3, pp. 581–
592, 1976.

[17] R. J. Little, R. D’agostino, M. L. Cohen, K. Dickersin, S. S. Emerson, J. T.
Farrar, C. Frangakis, J. W. Hogan, G. Molenberghs, S. A. Murphy, et al., “The
prevention and treatment of missing data in clinical trials,” New England Journal
of Medicine, vol. 367, no. 14, pp. 1355–1360, 2012.

[18] H. Kang, “The prevention and handling of the missing data,” Korean journal of
anesthesiology, vol. 64, no. 5, pp. 402–406, 2013.

[19] M. Lichman, “UCI machine learning repository.” https://archive.ics.uci.
edu/ml/datasets.html, 2013.

[20] O. L. Mangasarian and W. H. Wolberg, “Cancer diagnosis via linear program-
ming,” tech. rep., University of Wisconsin-Madison Department of Computer
Sciences, 1990.

[21] “breast-cancer-wisconsin.data, breast-cancer-wisconsin.names.”
https://archive.ics.uci.edu/ml/machine-learning-databases/
breast-cancer-wisconsin/.

[22] “wdbc.data, wdbc.names.” https://archive.ics.uci.edu/ml/
machine-learning-databases/breast-cancer-wisconsin/.

[23] “breast-cancer.data, breast-cancer.names.” https://archive.ics.uci.edu/
ml/machine-learning-databases/breast-cancer/.

[24] “wpbc.data, wpbc.names.” https://archive.ics.uci.edu/ml/
machine-learning-databases/breast-cancer-wisconsin/.

[25] J. Shi, “Casmi r package.” https://github.com/JingyiShi/CASMI, 2019.

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
https://github.com/JingyiShi/CASMI


CHAPTER 6: CONCLUSIONS

In the big data era, we believe that dataset identification becomes a severe challenge

in health data science, and providing complete knowledge of datasets should be an

ultimate goal to address this challenge. As with a catalog of books in a library where

people can find the desired book easily, with complete knowledge of datasets, users

are expected to identify the right datasets quickly. In this dissertation, we describe

several contributions toward the ultimate goal of complete knowledge, including both

system and method developments about knowledge in both content and quality levels.

Particularly, we systematically examined the needs of dataset knowledge for a target

group of users (health data science novices), extracted content level knowledge from

documentation and publications both automatically and manually, created methods

(PPI and AQI) to quantify quality of datasets in two different perspectives, and

developed a DIR framework to efficiently represent knowledge based on Semantic

Web technologies and the extended W3C standard.

As a result, the current DIR prototype includes metadata and related knowledge

of selected representative datasets in healthcare and provides both keyword and se-

mantic search modules as well as the question answering function for frequently asked

questions. The prototype is released on https://cci-hit.uncc.edu/dir. In addition, in

terms of the two quality quantification methods—PPI and AQI—we not only elabo-

rate on the detailed algorithms in the corresponding chapters but also developed R

packages for users to calculate the scores easily. The R package for PPI is available via

https://github.com/JingyiShi/PPI, while the package for AQI and its fundamental

feature selection method can be accessed via https://github.com/JingyiShi/CASMI.

While the developed system and methods can already benefit the target user popu-
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lation in the dataset identification process to a certain extent, there are several major

limitations. First, in this initial phase of the DIR, the current prototype still partly

relies on manual knowledge extraction, which is time-consuming and labor-intensive

for further dataset extension. Second, the current question answering component is

based on a pre-defined question pool, while a question answering functionality based

on the real natural language would be more user-friendly. Third, quality assurance

for both content- and quality-level knowledge has not yet been systematically stud-

ied. Particularly, the current content-level knowledge in DIR was only assured by a

team-based review, and the quality measurement methods were assured theoretically.

Fourth, both PPI and AQI have limitations to certain types of datasets. For example,

PPI could be unfair to new datasets that are recently released, and AQI could be used

to compare datasets only when they have clear outcomes. Fifth, the existing pieces

of knowledge in content and quality levels are still far from covering the full needs

of users. Additional elements and perspectives of knowledge are required toward the

ultimate goal of complete knowledge.

Recognizing these limitations, we summarize major future directions as follows.

First, dataset knowledge should be extended. This includes discovering more per-

spectives of knowledge other than content and quality, studying more aspects of

content relevancy and quality, examining knowledge for broader user populations,

involving more datasets, and providing a wider range of metadata. Second, the func-

tionality of the DIR as an efficient knowledge representation framework should be

improved. This involves 1) providing a real natural language question answering

component, which requires further studies on the separate topic: question answer-

ing over Semantic Web (e.g., conferences of Question Answering over Linked Data

(QALD) [11] at the European Semantic Web Conference (ESWC) and publications,

such as [12][13][14][15][16]); 2) developing a pipeline that can automatically extract

dataset metadata, which refers to other topics on named entity recognition, linking,
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and typing (e.g., studies from the Open Knowledge Extraction Challenge (OKE) [17]

at the ESWC); and 3) establishing collaborative features, such as a discussion forum

that allows users to suggest new content. Finally, we should create approaches to

assure the quality of the represented knowledge. To achieve a complete knowledge

of healthcare datasets, significant additional effort is required from the data science

community.
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