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ABSTRACT 
 

Fernando J. Claudio Rodríguez. GENERATIVE MACHINE LEARNING MODELS 
FOR AIRFLOW PREDICTION OF ARCHITECTURAL SPACES 

(Under the direction of Prof. Jefferson Ellinger) 
 

Computer Fluid Dynamics (CFD) airflow simulations are not used as often in 

architectural settings primarily due to time constraints. The proper use of CFD airflow 

simulations involves a complex setup and run-time process that requires a large amount of 

expertise on the different stages. This study aims to apply existing generative machine 

learning algorithms to compute CFD wind velocity simulations to significantly shorter run 

times while maintaining a relatively high accuracy level. In order to test the proposed 

hypothesis that machine learning can be used as a method to produce rapid and acceptable 

results for airflow CFD simulations in the early design stages, multiple machine learning 

models were created, trained, and tested.  

The evaluation metrics consisted of using different image similarity methods to 

evaluate the accuracy of the images produced by the machine learning model compared to 

their CFD engine counterparts. In addition, run times between the CFD engine and the 

trained machine learning model were recorded and compared. These results obtained 

indicate that GAN application for CFD airflow predictions can produce acceptable results 

showing a significant run time difference of over a minute between the CFD simulation 

and the machine learning model. 
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CHAPTER 1: INTRODUCTION 
 

Over the past couple of decades, buildings have been identified as contributing to 

the negative environmental impacts worldwide [1]. Being responsible for 40% of carbon 

emissions [2], with 56% of all energy use going to air conditioning and ventilation in hot-

humid climates [3]. Although we often rely on mechanical engineers to size conditioning 

systems, architects are directly responsible for the performance of building enclosure 

systems. In order to properly design these, architects must evaluate the current climatic 

context upon which the building will be constructed. Each analysis is developed on a case-

to-case basis, due to each location's different climatic conditions, despite similar tools and 

procedures.  

As energy consumption due to the excessive use of active mechanical systems 

increases, passive cooling strategies, such as cross-ventilation, have become a reliable 

alternative. Natural ventilation can decrease carbon emissions, energy consumption, and 

costs while promoting a healthier lifestyle. However, designing for cross ventilation is no 

easy feat, as it requires architects and designers to study in detail the building context as it 

will affect how the airflow will move across the site. Simultaneously, considering multiple 

factors such as volumetry, window types, and placement to maximize the natural 

ventilation potential.  

Technological advances have simplified and reworked the way architects design, 

from drawing by hand to later drawing on computer drafting software such as AutoCAD 

and BIM (Building Intelligent Modeling). Similar processes have occurred for the methods 

to perform environmental analysis. With the use of different computer software, these 
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processes can be expedited and performed from a single two or three-dimensional model 

inside a computer. As buildings rely increasingly on complex mechanical systems, 

environmental simulations have become more complex, which can be overwhelming to a 

design professional not trained in comprehensive environmental modeling. Consequently, 

the production of models, proper setup, and run-time of these tests has become a rigorous 

and time-consuming process.  

However, these environmental simulations are optional in many locations and not 

required by building codes. Commonly, architects with constant deadlines and time 

constraints choose not to spend their time running these simulations, as many have 

identified that "design time is usually quite short and anything adding to that is an 

obstacle.". [4]. Additionally, most design offices do not have the resources or time to 

explore these problems.  

The lack of guidance to understand which parameters are significant for the 

simulation confuses its users,  as simulations do not provide a method for designers to 

confirm and ensure that the obtained simulation results are accurate and valuable. The 

purpose of generating these models is to provide helpful information, to inform the 

building's design, rather than get the most accurate results—subsequently the lack of 

performance guidelines on the comprehension of the numerical outputs. Making simulation 

results harder to interpret and, in some cases intimidating for architects [5]. Due to the lack 

of quality assurance, time constraints, and performance guidelines, it is uncommon for 

architects and designers to incorporate these testing simulations within their workflow. 

Due to improvements in the creations of user-friendly tools, architecture firms are 

increasingly implementing daylight, radiation, glare, and energy simulations into their 
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workflows. These tools rely on efficient, straightforward, and well-documented engines 

that produce data graphically and legibly. Wind and natural ventilation studies, on the other 

hand, are much more complicated due to exponentially increasing mathematical 

calculations required to simulate the interaction between airflow and the defined enclosure.  

In recent years data has become one of the large's byproducts in history and has 

revolutionized how we use information. New methods are being developed to manage the 

increasing size of data sets. A solution to automize the data management process has been 

incorporating artificial intelligence, specifically, the use of machine learning algorithms. 

The reliance on these algorithms is significant as computers can now learn from these 

increasing data sets and perform multiple functions from complex mathematical 

calculations to image generation.  

This study aims to apply existing generative machine learning algorithms to 

compute CFD wind velocity simulations to significantly shorter run times while 

maintaining a relatively high accuracy level. These generative algorithms aim to provide 

faster run times for CFD simulations than traditional simulation processes and obtain 

relatively accurate results. The upcoming sections will cover the different concepts 

required for applying both of these fields, exploring different methodologies for creating 

an efficient data set to train a generative machine learning model. Finally, establishing a 

set of metrics to evaluate the efficiency of the machine learning model results and 

comparing them with actual wind velocity simulation.  

This study's long-term goals are to continue developing the integration of these 

technologies with the architecture profession. This integration will allow architects to 

extend the exploration period during those initial conceptual design states due to the ability 
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to make mass changes easier. These developments will help promote the use of cross 

ventilation and the incorporation of CFD models within the design workflow.  
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CHAPTER 2: BACKGROUND 
 

As diverse topics from architecture and machine learning will be covered 

throughout this study, this chapter explains a general overview of these, ranging from 

natural ventilation implementation to understand basic cross ventilation strategies and wind 

comfort criteria. This section also explores the evolution from wind tunnel testing (WTT) 

to the use of computer fluid dynamics (CFD). Lastly, it will cover basic concepts of the 

functionality of machine learning algorithms, deep learning, and generative adversarial 

networks (GAN).  

Section 2.1 – Natural Ventilation & Wind Comfort Criteria: 

Natural ventilation consists of moving air from an external source to an indoor 

space due to the changes in pressure without any mechanical system. Its usage has many 

purposes, from air quality control to passively cooling an interior space. Although there 

are multiple methods for it to be applied to a building, there are three predominant 

approaches. Wind-driven cross-ventilation consists of providing apertures at opposite ends 

of the interior space, providing an entry and exit point. Stacked ventilation consists of 

drawing cool air at lower sections of the building and exhausting the warm indoor air at 

Figure 1: Natural Ventilation Strategies: (Left) Cross Ventilation, (Middle) Stacked Ventilation, (Right) Single Sided 
Ventilation [8] 
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higher apertures. Lastly is single-sided ventilation, which provides a local ventilation 

alternative in single spaces [6]. 

There are currently multiple criteria and standards for evaluating the wind 

conditions at a pedestrian level of comfort and determining their favorability. There are 

three primary standard criteria, these being Lawson, Davenport, and NEN 8100. These 

criteria account for a range of activities and include a threshold value of the wind speed 

and the maximum allowable limits for those threshold values [7]. The NEN 8100 method 

is one of the most recent standards to be developed, and it accounts for the activities 

performed and provides a grade of comfort related to the wind speed [8]. 

Section 2.2 – Wind Tunnels: 

 Wind Tunnels are tunnel-shaped machines used for producing an airstream to study 

its movement and effects on different models, ranging from aircraft to buildings. Closed-

circuit and open circuit are the two main types of wind tunnels. This study will focus more 

on the open-circuit type, as it is the most used in architecture. These tunnels contain a fan 

on one end which will draw air into the tunnel, and pass across the model and release the 

air on the other end. Models usually contain a set of sensors to measure both pressure and 

Table 1: Criteria for wind comfort and danger in NEN 8100, after Willemsen and Wisse (2007) [10] 
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velocity across the model. Smoke is used, in some cases, to visualize the airflow movement 

inside the models. [9] 

 

Figure 2: Basic components of an open-circuit wind tunnel [9] 

Section 2.3 – Computer Fluid Dynamics: 

 Computer Fluid Dynamics (CFD) is a combination of multiple fields to simulate 

various fluids' flow. Although its beginning was in the early 1970s, it is not until a decade 

later that it began to set the base for some of the modern analysis used today, more 

specifically the incorporation of Navier-Stokes equations (N-S equations) [10]. These are 

partial differential equations that describe the flow of incompressible fluids such as water 

and air. [11]. In architecture, these are used in scenarios to examine natural ventilation, 

infiltration, and dispersion of air contaminants. The process consists of generating a 

geometric model and divide it into a cell grid, which helps define the precision level from 

which the airflow will be examined [5]. After inputting a set of criteria, such as wind 

velocity and temperature, the simulation will calculate the desired geometry's airflow. CFD 
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simulations can also help solve many other criteria, but simulations will focus mainly on 

wind velocity (U) values for this study.  

Section 2.4 – CFD Setup Process: 

 Typically, to set up and run CFD simulations, the process comprises three main 

stages: pre-processing,  solver, and post-processing. The first stage of pre-processing 

consists of generating the two or three-dimensional geometry for which the identified fluid 

will be applied. After generating the desired geometry, it is subdivided into a mesh, a 

collection of vertices, edges, and faces. Lastly, defining the fluid material properties, flow 

physics model, and boundary conditions. [12].  

 The solver stage consists of using the previously stipulated parameters and sending 

them to the solver to identify and perform all the equations and mathematical calculations 

required for the identified conditions. Once the simulation is solved, its results are stored 

for further stages. The post-processing stage consists of generating visualizations based on 

the solver's results to understand better and interpret the numerical values [13].   

Although specific software can perform all three stages, common practice consists 

of generating the three-dimensional models in software such as Rhinoceros 3D or Revit. 

Use these to edit and convert them into the appropriate format to be imported into another 

software. The second software prepares all the required conditions. It runs the solver, which 

in many cases, the results need to be exported to another software such as ANSYS CFD-

Post or ParaView to visualize the obtained results.  

 Although this three-stage process appears very straightforward, it presents a large 

set of challenges, as it is prone to errors, either while exporting the models between 
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programs or improperly setting the parameters for the solver. Therefore, just running a 

simple simulation can be very laborious and time-consuming, not to mention the expertise 

required for each stage.  

Section 2.5 – Coupled vs. Decoupled Approach: 

 In the use of CFD simulations, there are two main approaches to simulating airflow 

in relationship to buildings, and these are coupled and decoupled. As its names suggest, 

the coupled approach involves connecting the outdoor and indoor airflow in a single model. 

The counterpart is the decoupled model, which only involves analyzing indoor or outdoor 

environments [14]. As studies suggest ([15],[16],[17]), the use of the coupled model is the 

optimal approach when it comes to cross-ventilation CFD studies, as it takes into account 

how the pressure of the building envelope will be affected by the presence of the opening. 

Section 2.6 – Machine Learning: 

 There are multiple sciences to be applied in computation; artificial intelligence is 

one of them. However, within artificial intelligence, there is a subset called machine 

learning, which has the quest to teach computers to perform a series of tasks without being 

explicitly programmed for them. This method comprises three key components, first, is the 

data set from which the model will learn during its training process. Particularly the format 

Figure 3: (a) Coupled and (b) decoupled approach for analysis of wind-induced cross-
ventilation of buildings. [14] 
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of these can range from all kinds of data types. The secondary component is the features, 

telling the machine the essential factors to be aware of. Lastly is the algorithm, which 

provides a particular method to solve the problem. Currently, there are different algorithms 

to solve similar problems. These can vary in their accuracy and speed, depending on the 

problem at hand [18].  

 As there are different kinds of algorithms, there are also multiple ways to teach or 

use a machine to help solve problems. As described in Python Machine Learning by 

Raschka & Mirjalili, this consists of three methods, supervised, unsupervised, and 

reinforcement learning. The supervised machine learning model is trained with a dataset 

containing labeled information. Its outcomes are known, allowing the model to receive new 

unlabeled data as input to make predictions. In reinforcement learning, the model generates 

a "reward signal," which in comparison to supervised learning is not the correct answer but 

a comparison of how well the performed action relates to the reward function. Lastly, there 

is no labeled or structure data in unsupervised learning as opposed to either of the previous 

two alternatives. It is up to the machine to use specific techniques to find patterns and 

relationships within the data [19]. This study will use supervised machine learning to 

improve CFD analysis run times to generate predictions on new architectural models to 

predict the airflow movement.  

Section 2.7 – Deep Learning & Artificial Neural Networks (ANN): 

 Deep learning is a subfield of machine learning inspired by the structure of the 

human brain. This structure is better known as an artificial neural network comprised of 

three main layers: input, hidden, and output. These layers are composed of a series of 

neurons, the core entity for the neural network, that process the information and transfer 
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them from one layer to another through channels [20]. Each neuron contains a set number 

called a bias, which gets applied to an active function. Its results determine if the neuron 

gets activated and passes its value down the network. This process continues until results 

are passes into the output layer. Although this system is efficient in dealing with 

unstructured data, it requires a considerable amount to produce valuable results. With more 

data, the longer these models require to be trained appropriately [21].  

Section 2.8 – Generative Adversarial Networks (GAN): 

 Generative Adversarial Networks (GAN) uses generative modeling in combination 

with convolutional neural networks. The final purpose of GAN is to generate new data 

predictions from nothing. The network is composed of two models, the generator and the 

discriminator. The first generate new examples, while the second tries to identify whether 

the generator's examples are real or fake in a "zero-sum game" [22]. This kind of model's 

primary data type is images, although other types have been used, such as music. Both 

networks are trained in an alternating state during the training process until the 

discriminator model cannot tell the difference between real and fake images created by the 

Figure 4: Diagram of an Artificial Neural Network 
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generator [23].  This study will be beneficial as it will generate new predictive 

visualizations for the new input models based on the trained data set.  

 

 

Figure 5: GAN Training Framework [21] 
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CHAPTER 3: LITERATURE REVIEW 
 

This section aims to discuss existing examples that have optimized environmental 

simulations by either reducing their setup or run times—exploring the use of cloud-based 

computing in relationship to CFD simulations. Including other recent studies that 

incorporate the use of machine learning algorithms within daylight and airflow simulations. 

All to discover the common themes, debates, and gaps on approaching these algorithms 

within either daylight or airflow simulations.  

Section 2.1 – Optimization in environmental simulation: 

 Digital simulations have been present in the architecture profession since the 

beginning of the 1980s. However, CFD simulations expressly have been severely limited 

by the development of computer hardware. The large computers, high maintenance, 

physical space consumption, and quickly outdated technologies did not appeal to small and 

medium-sized firms [24]. However, with the successful commercialization in 1999 of 

Cloud Computing by Salesforce [25], it became a game-changing course for CFD 

simulations. Cloud-Based Computing platforms helped to reduce simulation times as well 

as improve workflow integrations significantly. Since no physical hardware was required 

and only a monthly fee was required, this began to make the use of CFD simulation more 

attractive as it did not require any update, maintenance, or physical space consumption. 

 Some of the benefits mentioned using cloud systems contain another set of benefits, 

such as little to no preparation time. As these platforms become easier to adapt to for 

newcomers, it addresses the lack of environmental metrics and guidelines. They provide a 

series of guided tutorials, a user-friendly interface, a smaller learning curve, and a robust 
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support network of interdisciplinary online support that can get help if needed. An example 

of this is the online-based platform called SimScale, which allows users to perform 

simulations from fluid dynamics to heat transfer. This platform allows users to export their 

models from their modeling program of choices, such as Rhinoceros, Revit, or Sketchup, 

and upload them to the cloud platform.  

Although not related to CFD simulations, another platform widely accepted by the 

design industry is called COVE.TOOL. This platform presents its users with tools to 

perform energy, cost, daylight, and design automation studies within the design workflow, 

allowing users to iterate through multiple ideas in less time.  

Section 2.2 – Architecture & Machine Learning: 

The use of cloud-based systems has become a primary alternative to substitute 

traditional in-house CFD simulations due to their decreased run times. However, there are 

a series of upcoming alternatives that involve using different machine learning algorithms 

that significantly reduce the required simulation setup and analysis time. These include 

artificial neural networks (ANN) and generative adversarial networks (GAN) applied to 

daylight and airflow simulations. 

Regarding the use of ANN, work has been performed for both daylight and airflow 

simulations. Kacper Radziszewski & Marta Waczyńska (2018) [26] focused on creating a 

tool to replicate simulation-based results for daylighting.  Their data set was comprised of 

small office spaces and used supervised machine learning to train their neural network. The 

outcome of these simulations was the use of mean daylight factor (DF), daylight autonomy 

(DA), and daylight glare probability (DGP). Results were compared with traditional 



15 
  

simulations, indicating an astounding improvement in time ratio and value differences. 

Their results indicated differences as low as 0.15 in mean daylight factor and computing 

time ratio of 32.16 (DA), 2.88 (DF), and 16.72 (DGP).   

On the other hand, Chao Ding & Khee Poh Lam (2019) explored the use of coupled 

models at primarily high-density cities to identify potential cross-ventilation situations 

[27]. This project addresses variables such as window-wall ratio, wind direction, relative 

sinuosity, height variation, and urban form, generating around 1840 design scenarios. Due 

to the simulation's geometrical complexity, these large urban environments, integrating the 

coupled models' approach, can take up to hours or even days to develop predictions. 

However, with the incorporation of these algorithms, it can allow for near real-time 

predictions, thanks to the data-driven model. CIOI is a function of 6 key design parameters 

that allow for integrating indoor and outdoor environments. More specifically (urban 

density (UD), height variation (HV), relative sinuosity, wind direction (WD), target 

building height (TBH), and opening-to-wall ratio (OWR) [27]. Unlike some other CFD 

machine learning approaches, this contains the most complex deployment and considers 

many variables for a proper simulation.  

Figure 6: Detailed set of chosen office models, comparison of simulation and Artificial Neural Networks results and 
computation time [24] 
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As opposed to Kacper Radziszewski & Marta Waczyńska or Chao Ding & Khee 

Poh Lam, the previously mentioned projects used ANN, a group called Layout5 used a 

more holistic approach by applying GAN. Layout5 developed a "real-time daylight 

prediction pipeline." [28]. For this project, the tools consisted of Rhinoceros 3D, 

Grasshopper 3D, Ladybug Tools, and the deep learning library, pyTorch. This application 

takes a two-dimensional floor plan as input with labeled features, such as walls, windows, 

and doors, which pass through the machine learning model and, as a result, produces a 

daylight prediction heatmap for that configuration. This program's setup begins with 

generating the training data set, setting up the cycleGAN environment alongside the 

pix2pix algorithm implementation in pyTorch. Subsequently, the implementation would 

use the newly created data to train the model and prepare it for new inputs. After setting up 

the machine learning component, using Grasshopper, they created an interface in which 

Figure 7 : Combination of 1,840 possible design scenarios [25] 
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the user's selected inputs would pass through the model returning the output in seconds. 

The application provides a more straightforward strategy as training the models would not 

require understanding any physics or mathematical equations used in previous simulation 

software. In GAN's case, the machine learning would only need a set of images of the 

simulation heatmap outputs. Based on those, it would be trained to understand a series of 

patterns and later generate a new prediction based on those previous experiences.  

Lastly, the work by Dr. Timur Dogan, Patrick Kastner, Remy Mermelstein, et al.  

named Eddy3D focuses on "airflow and microclimate simulations for Rhinoceros and 

Grasshopper." [29]. This project uses all the tools mentioned in the work of Layout5, in 

addition to applying cylindrical and box-shaped simulation environments. They used a 

similar workflow of feeding the machine learning model an input image and returning an 

output with a heatmap of the simulation results, in this case, focusing on urban ventilation 

potential and outdoor comfort . By incorporating the use of machine learning algorithms 

simply and effectively, it ends up lowering the learning curve for architects to use CFD 

simulations. The last two projects presented are still work in progress and are currently 

 

Figure 8: Comparison between input image (left), simulated results from actual simulation (center) and predicted 
results from machine learning model (right) [26] 
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open source. However, Dogan and Layout 5 are becoming pioneers in developing and 

integrating multiple environmental simulations into the architectural workflow more 

seamlessly and quickly.  

Section 2.3 – Common Themes, Debates & Gaps: 

 Across the list of identified precedents, these present a series of common themes 

that have helped set the foundation blocks for this research. Primarily is the pursuit of 

improving the simulation and setup times in CFD simulations for architects to use, either 

with GAN or ANN. The use of these algorithms has proven to reduce analysis time by 

fractions of a second. Although many of these precedents hold a similar goal, there are 

specific key differences in selecting the best approach. As for the software used to 

implement these systems, Rhinoceros & Grasshopper appear to be the most used in 

architecture education and practice. As these are standard tools used by architects, this can 

help provide smoother workflow integrations for the design community.  

 

Figure 9: Machine Learning Development for Eddy3D using GAN & Pix2Pix [29] 
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 ANN can be used more to integrate the different mathematical equations necessary 

to predict CFD simulations accurately. However, although this appears to be the proper 

way to incorporate machine learning algorithms into these kinds of simulations, they still 

hold the problem with the "lack of performance guidelines." Although it increases the 

accuracy of the prediction, more variables still increase the percentages of providing a 

wrong setup, increasing the learning curve.  

Incorporating GAN appears to be a more popular option due to the more 

straightforward and less mathematical approach to the problem. This method mainly 

consists of generating a data set of images for the desired simulation output, in the case of 

CFD, which would be airflow movement. Use this data set to train the machine learning 

model to generate new predictions. This method would appeal more to the architectural 

profession as it is visually engaging. Also, using these kinds of algorithms appears to 

require less computational knowledge and is easier to deploy correctly. However, due to 

this solely based on images, the data set quality is a crucial step. Another discrepancy is 

the use of coupled vs. decoupled approach. Although it has been identified in some of the 

precedents that most of the CFD simulations are implemented in a decoupled exterior 

approach. However, the previous section of this study identified the inefficiency of the 

decoupled method compared to coupled methods.  

Based on a thorough literature review, the author has identified an opportunity to 

develop machine learning CFD simulations to integrate into architectural practice 

successfully. To achieve this, multiple elements would be integrated from some of the 

precedents. There is a need to incorporate more coupled approach CFD model predictions 

for architects that do quick results and promotes exploration during those initial design 
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stages. To achieve its goals, the application must incorporate simple features to allow 

quick-rapid prototyping that gives architects a clear understanding of the models' airflow 

and pressure changes.   
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CHAPTER 4: METHODOLOGY 
 

 As an approach to the set of problems previously stipulated, this section will explore 

the use of supervised machine learning algorithms in combination with coupled airflow 

CFD analysis in architectural buildings. The process consists of three major steps: creating 

the data set, training the machine learning model, and evaluating the trained model results.  

The data set would be comprised of images. The used geometry was generated using 

parametric software, which would later pass through the CFD engine. For this study, only 

cross ventilation was studied on a two-dimensional plane. The engine to run the airflow 

simulations used in this study was Butterfly, a plug-in for Grasshopper from the Ladybug 

Tools set developed by  Mostapha Sadeghipour [30]. This tool runs CFD simulations using 

OpenFOAM. When making this study, OpenFOAM was the most validated open-source 

engine for running advanced simulations [30]. The machine learning model was based on 

the Pix2PixHD framework developed by NVIDIA, which runs using the pyTorch library 

[31]. After obtaining the resulting images, these were compared alongside the butterfly 

engine results.  

Section 3.1 - Data Set Creation: 

Creating the data set consists of three major stages: form generation, simulation 

run, and post-processing. These steps have been performed in a combination of Rhinoceros, 

Grasshopper, and OpenFOAM. The form generation step is made inside Grasshopper, 

beginning with the generation of a 3.3m x 3.3m square for the base plan, offsetting 0.1m 

walls on all sides and extruding 2m in height. After the generation of the walls, panoramic 

windows were created, which were later subdivided into three sections, providing 12 
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windows for this scenario. To limit the number of possible variations, these were reduced 

to combinations that contained between two and four windows. As a result, this leads to a 

total of 781 possible variations. Based on the selected combination, these were extruded 

and cut out of the walls. Finally, a horizontal plane was created at the building's mid-height 

to perform the analysis. Another applied constant was the wind speed at 4.5m/s and its 

direction, coming from the south. 

Before getting to the second stage, it is important to mention that these simulations 

can be performed at different grid densities, severely affecting performance and accuracy. 

Multiple variations were studied using the same model to identify the optimal number, 

evaluating both accuracy and run time. Five densities were evaluated ranging from 1.0, 0.5, 

0.3, 0.2 to 0.1 meters. Based on the obtained results, 0.2 was determined to be the best 

alternative as it provided results far more accurate than the coarse alternatives and similar 

to the finer ones. Run times resulted in an average of 64 seconds per simulation for the 0.2 

density, while the finer 0.1 density had an average of 206 seconds.  

The second phase, the simulation run stage, is performed in two steps, recipe 

generation and execution. Once all these final iterations are generated, it then passes 

through the butterfly engine, which will write a specific recipe for the OpenFOAM engine 

to understand the required steps to run the simulation stored on an external folder. After 

all, the desired recipes are written for all the possible combinations, using an automated 

batch python script inside the OpenFOAM terminal to automatically run all the 

simulations, one at a time, which automatically runs the next one after the first one is 

finished.  
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Grid Density Min (seconds) Max (seconds) Average (seconds) 

0.1 206 257 219 

0.2 59 72 64 

0.3 17 27 19 

0.5 9 12 10 

1 5 14 7 

 

Table 2: Grid Density Time Comparison 

 

  

 

Figure 10: Grid density variations 
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     The third stage is post-processing, performed inside Rhinoceros and 

Grasshopper. This stage consisted of reloading the original three-dimensional model 

identified in the simulation name and loading the butterfly recipe back into the 

Grasshopper, which contained the visualized simulation results. Once both were loaded, a 

2048px x 2048px image was captured of the building's plan view alongside the airflow 

simulation results and stored in an external folder. These will be the inputted data for the 

machine learning model. Besides the CFD map images, an image without the simulation 

outcome was also captured to serve as a base input.  

After all the data was collected, it was split into two groups, testing, and training. 

This division was done at an 80/20 ratio (training, testing) to use the same dataset to train 

and test the model without generating an additional data set. The purpose of using an 80/20 

Figure 11: Post Processing Visualization results within Rhinoceros / Grasshopper 
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ratio as opposed to a 60/40 was to provide the machine learning model with a larger data 

set to train as it increases the model's accuracy.  

Section 3.2 - Machine Learning & Training: 

 For the machine learning model, the Pix2PixHD by NVIDIA was used as a base. 

This framework uses the CycleGAN technique, which automatically trains the image-to-

image translation models without using paired examples—instead of using a collection of 

images, having a source and a target, which do not need to be related. Multiple models 

were trained during this stage to identify how manipulating hyperparameters would affect 

the model's efficiency when predicting airflow patterns.  

The training parameters were the following: the data set contained no labels, epoch 

checkpoints saved in increments of five, images were not cropped or resized, images were 

flipped, and loaded at a resolution of 512px by 512px. Two discriminators were used to 

reduce the possibility of overfitting. The main parameter altered was the batch size, tested 

in 1, 3, and 5 variations. In addition, the dataset was modified by adding additional padding 

to the images. After setting these parameters, the models began training with a mixture of 

using Google's Colab and local resources. All models were trained for 100 epochs and took 

an average of eight hours to reach the 100-epoch mark.  

Section 3.3 – Data Evaluation 

 As other machine learning models are trained with a loss function until 

convergence, evaluating GAN's results is not straightforward [32]. Given that no objective 

loss function is used to train the GAN generator, there are no objective assets to measure 

its development and progress. As a result, given that GAN's are image-based, the best 



26 
  

method to determine their efficiency is a visual inspection. As visual inspections can be 

subjective, therefore a more objective visual approach was used. 

 This approach consists of measuring the similarity between the image produced by 

the GAN model and the one produced by the Butterfly engine. These images were 

compared using two techniques within a python script using the PIL and cv2 image 

libraries. The ORB (Oriented FAST and Rotated BRIEF) feature matching technique 

identifies different characteristics within the images to compare them. This method was 

selected compared to others as it is open source, requires less computational cost [33].   

In addition to this method, images were evaluated by the use of structural similarity 

(SSIM), which compares images on three main metrics: luminance, contrast, and structure 

[34] [35]. This process takes a more holistic approach by evaluating images by looking at 

a group of pixels instead of a pixel to pixel-based to determine their similarity, similar to 

how humans would perceive images. Both evaluation methods return a number from 1 to 

 

Figure 12: ORB Feature Detection Example [33] 
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-1, the highest indicting the most resemblance between the images and lower indicating the 

latest difference between the images. As these metrics evaluate images differently, the 

average from both image similarity evaluation methods was calculated to obtain an 

objective result. These methods were applied at different training stages of each model to 

examine their learning process and how each of the different parameters affected its 

learning curve.  

In addition to comparing the image similarity between the image produced by the 

GAN model and the one produced by the Butterfly engine, run times were evaluated. To 

properly evaluate run times, custom python scripts were created to record the machine 

learning model and the CFD engine run times. As computer hardware can significantly 

impact the speed of these simulations, the same computer was used for both tests. The 

computer used for testing contains the following specification: 12 core Ryzen 3900XT, 32 

GB of RAM, and 8GB of dedicated GPU memory.  

  

 

Figure 13: The Structural Similarity Measurement System [34] 
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CHAPTER 5: RESULTS AND DISCUSSION 
 

 After generating the data set and training the machine learning models, evaluated 

results tested the proposed hypothesis of using GAN to obtain relatively accurate results 

for CFD airflow simulations. Multiple models were tested at different training intervals to 

observe how their training progressed. After identifying the most effective model, this one 

was tested using a different floor plan layout to observe how the model would react to 

completely unknown images and compare it with the initial data set.  

5.1 Initial & Padded Data Set:  

 In order to evaluate the previously explained methodology, a test was conducted, 

consisting of a single square floor plan layout, modifying only the window configurations, 

using a data set of 624 images to train the machine learning model for 100 epochs. After 

finishing the training phase, the model was tested using 15 unknown images. To the naked 

eye, images would appear almost identical. However, after evaluating the structural 

similarity, the images average around 95% compared to their CFD simulation counterparts. 

When evaluating run times. the traditional CFD simulations took an average of 62 seconds 

Figure 14: Initial Dataset Training Results at Epoch 5 
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to complete, while its machine learning model took an average of 0.2 seconds. These results 

present a clear indication of the efficiency of GAN to generate images. The images 

produced indicated that these kinds of machine learning models can be applied to CFD 

airflow simulations while still maintaining a relatively high level of accuracy. However, 

these results presented a problem with the speed at which the model was learning to 

produce accurate results.  Even within the first couple of epochs, the model produced 

substantially accurate results, raising questions of the efficiency of the data set or the 

hyperparameters used.  

 After evaluating these concerns, it was identified that the model had memorized 

specific pixels of the images from the data set, causing rapid and accurate results. These 

images all contained the floor plan centered, which helped the model predefine its location 

in further iterations. Even after flipping the images, they presented no significant change 

Figure 15: Initial Dataset Test Result with Different Floor Plan Layout 



30 
  

in the training set, given them being symmetrical.  This hypothesis was confirmed by 

inputting a different set of floor plans to the model, which produced unsatisfactory and 

inaccurate results. These results showed how the model tried to generate the square floor 

plan in the exact location, and all the walls would be of the same thickness.  

In order to correct this issue, a new dataset was created based on the initial data set. 

This new data set consisted of adding padding around the existing images to change the 

scales of the floor plans while maintaining the same square aspect ratio. This shift helped 

avoid having the floor plan always centered on the image and at the same scale, providing 

an additional level of complexity for the model to predict.   

 

As a next step, three different models were trained for 100 epochs using 624 images 

of this new data set, changing their batch size to observe how it would affect the training 

process of the models. Batch size refers to the number of images the model will use during 

its training in each iteration or epoch. The batch sizes used were 1, 3, and 5. None of the 

presented hardware had the capabilities to incorporate larger batch sizes. After training all 

Figure 16: (Left) Initial Dataset Image / (Right) Padded Dataset Image 
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these models, they were tested at different epoch checkpoints to see the development of the 

images as the model continued training. The set training checkpoints selected were 5, 25, 

50, 75, and 100 epochs. The purpose of choosing these intervals was to examine the model 

at four different stages of its training. The number 5 checkpoint was selected to compare 

the models learning results with the initial data set model. For these testing, the previous 

two similarity methods were applied (ORB &  SSIM), in addition to their run times.  

5.2 Padded Data Set Results:  

  As a result of the training of the different machine learning models, visually, all 

models began their training producing similar results. The model with a batch size of 1, 

however, showed a slightly sharper image. However, after passing the 25 epoch mark, all 

three models began to produce images with an average of 90 percent similarity with the 

original CFD images, producing relatively accurate results. The model with a batch size of 

3 produced the most accurate and consistent results at the end of the training phase, 

followed by the model with a batch size of 1, and lastly, the model with a batch size of 5. 

This last model appeared to have trouble predicting images even after the 100 epoch mark. 

One of the images obtained one of the lowest scores of 79 percent similarity when 

compared against their CFD counterpart.  

 These machine learning models were tested using a set of five images. The images 

were similar as they used the same square floor plan with different window combinations 

and different image compositions. A large gap was observed regarding run times when 

comparing the machine learning models with the CFD engine. It took on average 60 

seconds to perform an analysis on the CFD engine. In contrast, the machine learning 

models performed their prediction on an average of 0.12 seconds, accounting for a 
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difference 600 times faster than the CFD engine when presented similar data. However, 

this difference is to be expected, as similar results were observed in the work of Layout 5 

and Kacper Radziszewski & Marta Waczyńska in their daylight analysis. However, in all 

the tests, when observing run times, it indicated that the first image to go through the 

machine learning model takes on average 1.38 seconds compared to the other ones. It takes 

that time to generate the models and prepare the neural network. After the first image, the 

following run times were of fractions of a second. Observing these results, the model with 

a batch size of 3 proved to be the most effective for this task due to producing the most 

accurate and consistent results. Nonetheless, this emphasizes the efficiency of machine 

learning models and supports the arguments made in this study to help designers obtain 

relatively accurate CFD airflow predictions in less time. 

Figure 17: Epoch & Batch Size Graph in Comparison in Relation to Image Similarity 



33 
  

 

Figure 18 : Epoch & Batch Size Training Comparison 

Figure 19: Run Time Comparison Between CFD Simulations and GAN 
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5.3 Rectangular Floor Plan Typology Test & Results:  

 As with these machine learning models, they will eventually be exposed to 

unknown data and generate predictions based on their trained data. Based on the results 

from the previous tests, the model with the best performance was the one with a batch size 

of 3. This model, alongside the original model trained with the initial data set, was exposed 

to a rectangular floor plan to test their efficiency when presented with different data. Five 

different window combinations were selected on a rectangular floor plan to provide 

different scenarios for this test. Given that the original model was not trained on images 

that contained padding as the second model, both were tested with a set of five images with 

padding and without padding. 

 As a result of this test, the original machine learning model performed poorly, as it 

could not generate satisfactory results of the airflow pattern for the rectangular floor plans. 

However, it performed marginally better when presented the non-padded images, as in this 

case, even though the airflow patterns are unclear, a floor plan layout was defined. The 

machine learning model trained on the padded images outperformed by a large margin the 

Figure 20: Example of Rectangular floor plan (Left) Padded Image / (Right) Non-Padded Image 
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original model. It produced relatively accurate results of the airflow patterns on both the 

padded and non-padded images. When comparing the generated images with their 

simulation counterparts, the original model obtained an average of 39% image similarity 

compared to the padded model with an average of 79%, indicating a difference of 40%.  

 

Figure 22: Initial & Padded Machine Learning Model for Rectangular Plan Image Similarity Comparison 

Figure 21: Test Results of Rectangular Floor Plan on Both Initial and Padded Machine Learning Model 
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CHAPTER 6: CONCLUSION & FUTURE WORK 
 

The test result obtained in this research indicates that GAN application for CFD 

airflow predictions can produce acceptable results for designers to allow them to advance 

their design process through an alternate method with marginal time differences compared 

to traditional CFD simulations. Results show a significant run time difference of an average 

of 60 seconds between the CFD simulation and the machine learning model. The GAN 

models generated predictions 600 times faster on both similar and unknown data, 

generating relatively accurate results with a range between 79 to 95 percent image 

similarity with the CFD simulation output. While seconds to a minute difference might not 

appear significant, minutes can grow exponentially to hours and even days when 

performing complex CFD simulations. Therefore, these time differences indicate a 

significant cut in run times. However, as with most machine learning models, the data set 

is a crucial element for the successful performance of the models.  

When observing both coupled and decoupled approaches for GAN, the coupled 

model presents an easier path for training. Focusing on exterior airflow simulations, the 

GAN model would only need to detect filled shapes, which might require a smaller data 

set to train and produce accurate results. On the other hand, decoupled models require both 

a clear boundary and apertures, increasing the complexity as more boundary forms begin 

to be introduced, requiring an even larger data set to property train the models and obtain 

accurate results.  

Alternating different hyperparameters, such as adding more discriminators or 

increasing the batch size, might help produce more accurate results when using a larger 



37 
  

data set. However, one of the major factors for a successful GAN model is the data set used 

for training.  As observed in this study, the padded data set provided more varied and 

diverse information when compared to the initial data set—resulting in a 40% increase in 

image similarity to the actual CFD simulation, even when tested with unknown floor plan 

layouts. The variations referred to do not only account for the floor plan and window 

configurations themselves but also image composition—alternating parameters such as 

floor plan location, scale, and orientation within the image itself. 

This project aims to expand the floor plan typologies to more complex forms and 

window configurations for future work. Alternatively, this research aims to explore other 

machine learning algorithms such as linear regression and other ANN and compare them 

alongside GAN to identify the most efficient machine learning algorithm for the desired 

CFD airflow simulation. The long-term goal is to convert the trained machine learning 

model into a Grasshopper and Dynamo plug-In. After implementing the plug-in, user 

studies would be conducted with architects to observe how this system would help them 

within their design workflow and implement them within their practice. This study is a 

small starting point for the application of GAN for CFD simulations. The current goal is to 

provide additional insight for future researchers to continue developing the use of GAN for 

different CFD simulations and incorporate them into architectural workflows.  
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