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ABSTRACT

XIANZHE CHEN. Essays in investments and asset allocation. (Under the direction
of DR. WEIDONG TIAN)

This dissertation consists of three topics in investments and asset allocation. The

first chapter studies the dynamics of macro factors and their application in asset

allocation. Five meaningful economic factors are extracted from hundreds of eco-

nomic series and dynamic structural models are constructed and estimated by using

Bayesian techniques in conjunction with MCMC sampler. We find that these macro

factors are able to capture important economic trends and systematic components of

equity return variation and shed a light on the evolution of macro economy. Further-

more, the dynamic asset allocation based on macro factors could produce significant

systematically out-of-sample economic gains. In addition, these macro factors could

serve as the transmission channels of monetary policy so that investors could incor-

porate their views into portfolio construction and test the effects on various scenarios

from a forward-looking perspective. Moreover, the impulse response analysis reveals

appealing indications of the trajectories of asset future returns under monetary pol-

icy shocks, which could be informative and valuable for both central bankers and

practical investors.

Consistent financial performance is the key element to success in asset management.

In chapter 2, we construct a dynamic wealth constraint to represent the consistent

performance, which takes into account the entire historical records as a benchmark.

A general optimal policy is characterized so that the wealth could always stay at or



iv

above this benchmark and a closed-form solution is obtained for a special case. Several

implications are also discussed and it is recommended that this consistent performance

constraint could be an appealing tool to be implemented in a volatile market. We

further investigate its practical implications in chapter 3 and demonstrate that the

portfolio wealth under this consistent performance strategy could exhibit an upward

trend over time and has several remarkable features, such as capital-protection and

low volatility which could make it valuable to practical investors.
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CHAPTER 1: MACRO FACTORS, DYNAMIC ASSET ALLOCATION AND
MONETARY POLICY

I. Introduction

Macroeconomics has long featured two general views: it has weak predictive power

for equity returns and little use for asset allocators (Chan, et al. 1998, Shanken and

Weinstein 2006). Intuitively, it is natural to think the asset returns should vary with

the changing economic environment. Such a disconnect between aggregate macroeco-

nomic information and asset returns looks puzzled to both academic researchers and

practical investors. However, to identify which variables could capture the systematic

components of equity return variation and be the main drivers of equity movements

is crucial to both academic scholars and practitioners. Therefore, in the past decades,

numerous research attempts to identify the variables driving equity returns (Chen et

al. 1986, Ferson and Harvey 1991, Chan, et al. 1998, Shanken and Weinstein 2006).

Given a number of papers claiming that the historical mean has done well at fore-

casting the equity premium, Welch and Goyal (2008) conduct a comprehensive em-

pirical study on the equity premium prediction and show that most models with

variables suggested by the academic literature to be good predictors actually predict

poorly out-of-sample. They suggest that the forecasting ability is seriously impaired

by model uncertainty and instability.1 There are three possible reasons leading to

1The original data time period covers up to 2005, and the time range is updated in 2013, as
shown in the authors’ website: http://www.hec.unil.ch/agoyal/. It seems that the conclusion still
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their conclusions. One possible reason is that the base models tested in Welch and

Goyal (2008) are linear and static. In other words, the models with predictors of

good in-sample predictive ability may not perform well to predict out-of-sample in a

linear and static framework. Lettau et al. (2008) find a strong relationship between

the macroeconomic risk and stock market movements in a dynamic regime switching

setting. Intuitively, the asset returns should vary with the changing environment,

suggesting a time-varying relationship.2 Recent research shows that fixed coefficient

predictive models are almost dominated by time-varying coefficient models. These

time-varying characteristics are found to be statistically and economically significant

to improve return predictability and out-of-sample portfolio forecasting (Dangl and

Halling 2012, Johannes et al. 2014).

The second possible reason is that the effect of parameter uncertainty is ignored

in their analysis. Numerous research show that the estimation risk or uncertainty

about the parameters has a profound effect on the return prediction (Avramov 2002,

Cremers 2002) and portfolio construction in the sense that the regression coefficients

may look weak by the usual statistical measures but could exert influential effects on

portfolio decisions (Kandel and Stambaugh 1996, Barberis 2000, Xia 2001, Brandt et

al. 2005).

holds up to 2013.
2The closely watched nonfarm job data on Friday, 04/03/2015 showed that the growth in nonfarm

payrolls slowed in March to a seasonally adjusted 126,000, the weakest hiring in 15 months which
was catching the rest of slumping indicators in recent months, such as consumer spending, capital
investment, and manufacturing output. In normal circumstances, the sudden downturn in hiring
should cause the stock to go south, that is, a positive relationship, as it may imply that the recovery
was not robust. However, after a long weekend to digest it, the investors brushed off the disappointing
jobs report and pushed the Dow Industrials higher ending back in positive territory for the year,
suggesting a negative relationship instead.
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The third reason could be that individual predictors may not contain sufficient

information content to generate significant systematic economic values. In fact, a lot

of variables that researchers scrutinize really don’t matter that much. For example,

the future of GDP growth almost has no correlation to the real stock returns over

the subsequent decade. Or even we could predict the interest rate dynamics in the

future, the market reaction could be another story. For instance, if the interest rate

jumps due to the increasing inflation, then it might be a bad news for stocks; or

if the interest rate jumps due to the real economic growth, then the stock market

might welcome it. Also, if the profit margin falls due to the rising material costs,

then it could send a bad signal to the market; or if the profit margin falls because

of the increasing wages, then the market might like it as it leads to higher consumer

spending and thereby more corporate revenue. Intuitively, markets seem too complex

to reduce to one predictive metric, so relying on any single predictor is not going

to work, which implies that we need take into account a wide range of information

contents to understand the economy status and improve forecasting accuracy.

In order to enhance the forecasting ability, there are two common approaches to

improve the accuracy of forecasts in the literature. One is to combine forecasting

results from a number of individual predictive models (Rapach et al. 2010) and the

other is to extract significant information from a large number of series into a small

number of factors (Stock and Watson 2002, Bernanke and Boivin 2003, Bernanke et

al. 2005). These two methods actually have similar implications, that is, we need

a wide range of information set to be able to produce significant predictions. The

rationale could be understood in two fold. On one hand, the textbook definitions
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may not be clearly described by specific economic variables. For instance, a vague

concept like economic activity could not be fully demonstrated by a couple of time

series. On the other hand, a single indicator may not draw a complete picture and

could send a misleading message.3 In fact, in the real world hundreds of economic

variables are not only regularly monitored by central bankers in their policy-making

processes (Bernanke and Boivin 2003, Greenspan 2004, Yellen 20144), but also closely

watched by practical investors.5

Therefore, to answer the question whether macro matters in asset allocation, we

adopt a dynamic factor model with meaningful economic factors extracted from hun-

3The employment report on 05/02/2014 showed that the unemployment rate dropped to 6.3%
which was a bit higher than that at the beginning of financial crisis in 2008. Textbooks indicate that
the Fed should react ahead of time to raise interest rate. But the inflation has maintained below 2%
for straight 23 months and the labor-force participation rate was only at a three-decade low of 62.8%.
The reduced unemployment rate and participation rate actually implied a shrinking pool of American
workers who were seeking for jobs. Therefore, the Dow Jones Industrial Average initially rose 61
points after the report was released, but eventually fell 45.98 points after the market figured out the
real implications of the report. Additionally, there are many factors that could influence inflation
and the Phillips curve, which implies the negative relationship between a falling unemployment
rate and rising wages, forms the backbone of economic models. However, the fact is that the core
inflation excluding food and energy prices was up 2% on April 2012 as the unemployment rate was
8.2%, and the core inflation has fallen to 1.2% since then but the unemployment has also fallen to
5.1%, implying a positive relationship. One possible reason could be the increasing globalization
and meltdown of commodity market that could exert a downward pressure on the U.S. import price
and thereby the domestic inflation.

4The Fed chairwomen Janet Yellen delivered a statement about the labor market at the 2014
Jackson Hole Economic Policy Symposium: ”Our assessments of the degree of slack must be based
on a wide range of variables and will require difficult judgements about the cyclical and structural
influences in the labor market”(Wall Street Journal, 08/25/2014) and the Fed Vice Chairman Stanley
Fischer answered the question of ”What do you do if unemployment continues to fall, but inflation
doesn’t move or goes down because of what’s happening in the rest of the world? Can you let things
run a little bit longer in this abnormal state of very low interest rates?” in the interview at the WSJ
CEO Council gathering: ” We can do that, and if the inflation is really heading south, we will have
to do that. We said we’re data-driven and if that’s where the data drives us, that’s what we will do”
(Wall Street Journal, 12/09/2014).

5On 06/02/2014, the Institute for Supply Management (ISM) initially reported the ISM Manu-
facturing Index as 53.2 in May and revised the index to 55.4 one hour and half later due to a software
error. Accordingly, traders’ reactions ranged from mild surprise to a relief, therefore the Dow Jones
Industrial Average fell as much as 35 points following the release of the initial factory data, and
then surged 30 points after the revision. The market sentiment soon settled down and Dow closed
up 26.46 points.
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dreds of series with Bayesian estimation which naturally takes into account parameter

uncertainty problem in a time-varying environment in order to mitigate the effects

of these three potential issues discussed above on our analysis. Intuitively, this time-

varying framework could bring more flexibility to the model in order to closely capture

fluctuations and dynamics of the driving forces, although less mathematically precise,

and let the data tell us what the real world may look like instead of making hypothesis

about how the world should work. Furthermore, this flexibility can connect portfo-

lio theory, monetary policy and macroeconomics to answer many practical questions.

Specifically, by incorporating model flexibility and harnessing a wide range of data,

we could examine many aspects of portfolio choice, i.e., the economic forces driving

asset returns, investors’ slant on future economic trend, the effects of monetary policy

on portfolio construction and so on.

Factor models are widely used in portfolio selection area to represent the latent

forces that drives the asset price dynamics, such as Aguilar and West (2000), Chib

et al. (2006) and Han (2006). One limitation of the latent factors is that it is not

easy to understand the economic implications of the unobserved factors and the other

limitation is that the ordering of the variables plays an important role in estimating

the loading matrix due to the triangular identification restriction imposed in the

latent factor models. In other words, different orderings of variables could yield

different estimates and thus lead to different conclusions, and it is not clear about

the exact effects of ordering on the estimation so far. By contrast, in this paper, we

implement a two-step estimation procedure: in the first step, we extract significant

information content from blocks of macroeconomic series with closely related variables
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in one block and assign them with meaningful economic representations, and then use

Bayesian techniques embedded in the MCMC sampler to estimate parameters in the

second step. The explicit representation of factors could help us better understand

the dynamics of the underlying driving forces that can move the asset prices and

at the same time avoid the estimation issue involved in the latent factor models.

Furthermore, the central bankers often continue to debate and search for clues from

the trajectories of economic activity, labor market, and inflation on the rate-hike or

rate-drop timing, sometimes the officials have to filter a range of conflicting signals

before making a decision on the rate-hike or rate-drop timing6, and a time-varying

correlation among the major drivers of economy is provided in this paper, which is

absent in the previous literature and might shed a light on the timing of monetary

policy for the regulators.

In comparison to Stock and Watson (2002) and Bernanke et al. (2005) in which

several general principal components are extracted from a number of series, we fur-

ther categorize a large number of series into several representative blocks assigned

with meaningful economic implications and then estimate model parameters based

on these economic factors. Ludvigson and Ng (2007) summarize a large number of

economic information in three factors, i.e., volatility, risk premium and real factors,

which could contain important information content that not included in commonly

used predictor variables and their specifications can exhibit stable and statistically

significant out-of-sample forecasting power. In this paper, we find that these five

6The academics seems not to provide a clear direction as well, i.e., Harvard professors Martin Feld-
stein and Lawrence Summers, who have been the economic advisers for republicans and democrats,
respectively, argued for and against a rate-hike in September in the competing newspaper opinion
columns (03/30/2015 Wall Street Journal and 02/08/2015 Washington Post).
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fundamental factors are able to capture significant economic trends in a variety of

aspects of economic activities and systematic components of equity return dynamics,

and dynamic asset allocation based on these factors could generate systematically

significant out-of-sample economic gains. Specifically, the global minimum volatility

strategy looks appealing and could generate significant out-of-sample economic gains

and higher Sharpe ratio than the buy-and-hold strategy for different model frame-

works. Setting a reasonable target value plays an important role on the portfolio

performance for minimum volatility strategy with target return and maximum return

strategy with target volatility. In addition, the time horizon in general has a negative

effect on the portfolio performance in the sense that the quarterly rebalancing port-

folios underperform the monthly rebalancing portfolios, which is consistent with the

conclusion of Ang and Bekaert (2007) and Boudoukh et al. (2008).

After the recent 2008 financial crisis, due to the fragile and unstable economic re-

covery, central banks around the world often intervene the real economy by adjusting

their monetary policies, i.e., raising or reducing interest rate. This essentially create

an ”administrative” market in which asset prices are at least partly influenced by the

central bank’s policy, in addition to the normal market forces. From the perspective

of investors, as they rebalance their portfolio positions, instead of just looking at past

returns and risk, they should also look ahead of time and take into account the most

significant future events that can dramatically influence their current strategies and

positions, such as the rising interest rate. But the traditional studies in asset alloca-

tion literature are based on examining the past asset returns and volatility dynamics

and then constructing portfolio weights, such as the classic mean-variance portfo-
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lio selection by Markowitz (1952) and the intertemporal consumption and portfolio

choice by Merton (1971). Few research takes into account investor’s subjective judge-

ment and conjecture about future possible events and investigates the corresponding

effects. Black and Litterman (1991) incorporate investor’s views with market equi-

librium into their portfolio construction and the so-called Black-Litterman model has

been widely used in practice (Goldman Sachs 1998). Hence, in this paper, we take

into account the effect of monetary policy on our portfolio construction and conduct

impulse response analysis for the effect of monetary policy on the equity returns. We

find that the dynamic factor models with time-varying coefficients are able to reveal

appealing indications about the future trajectories of equity returns, which could be

informative and valuable for both policy makers and practical investors.

The reminder of the paper is organized as follows. Section 2 introduces the macro

factors, presents their main characteristics and discusses their economic implications.

We study the dynamic asset allocation based on macro factors for different trading

strategies and investigate the monthly and quarterly rebalancing portfolio perfor-

mance by using a variety of performance measures in Section 3. In Section 4, we

examine the effects of monetary policy shocks on asset returns under different model

specifications. Section 5 concludes.

II. Macroeconomic Factors

Factor model has tremendous intuitive appeal to model asset returns and been

extensively studied in the literature including the famous arbitrage pricing theory

(APT). The intuition is that the asset returns can be decomposed into some sys-
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tematic components and an idiosyncratic component. The systematic components or

factors cause the asset returns to be correlated and the idiosyncratic components are

assumed to be uncorrelated across assets.

Let ri,t denote the asset returns observed at time t for asset i = 1, . . . , n and fj,t

denote the risk factor j observed at time t for j = 1, . . . , k, then we could represent

the multi-factor asset pricing model as follows

ri,t = βi0,t + Σk
j=1βij,tfj,t + εi,t (1)

where the idiosyncratic risk εi,t ∼ (0, σ2
i,t). However, the dynamics of βij,t and σ2

i,t

is, in general, unspecified in the asset pricing theory literature. A variety of static

and linear models has been tested in the literature and shows poor out-of-sample

performance (Chan et al. 1998, Shanken and Weinstein 2006, Welch and Goyal 2008).

By allowing for dynamic loading and stochastic volatility, we wonder whether a time-

varying environment could reveal the value of macro factors and produce economic

gains in the asset allocation.

In addition, to incorporate the effects of investor’s view about the monetary policy,

we follow Bernanke et al. (2005) to adopt an augmented factor VAR model for asset

returns within a dynamic framework. Another distinctive feature of our augmented

factor model is that we allow a time-varying covariance structure instead of a constant

covariance setting (Bollerslev 1990) in our model so that we could obtain a time-

varying correlation among these economic factors in order to help us better understand

the dynamic interactions among the driving forces, which is absent in many previous

studies (Aguilar and West 2000, Bernanke et al. 2005, Chib et al. 2006, Han 2006).
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Moreover, in comparison to the dynamic conditional correlation proposed by Engle

(2002) in which the covariance matrix is set to follow a specified linear form, no

assumption is made for the dynamics of covariance matrix in our case.

II.1 Description

There are two ways to treat the factors in the literature. One is to take the

factors as latent variables (Aguilar and West 2000, Chib et al. 2006, Han 2006). One

drawback of the latent factor models is that the factors are viewed as unobserved

variables, implying that they are abstract and hard to understand in an intuitive

and economic way. The other is to select various macro variables as proxy, but the

out-of-sample performance is weak (Chan et al. 1998, Shanken and Weinstein 2006,

Welch and Goyal 2008). Instead of choosing individual variables as predictors, we

extract some significant economic factors from hundreds of time series which could

explicitly represent various aspects of economic activities, and then study their time-

varying interactive relationships. Specifically, we characterize five economic factors

that could be used to represent different dimensions of the economy and viewed as

the driving forces to cause various types of asset dynamics. Below we provide their

economic explanations and the reality representations for these five factors. Data

descriptions are shown in the Appendix.

1) Real economic factor: this factor aims to represent the state of real economic

activity. Sixty three macroeconomic time series are selected in order to capture a

wide range of aspects of economic activity, which includes information from industrial

production across various industries, capacity utilization, a variety of indicators for
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employment, wages, personal consumption, housing starts, imports and exports and

so on.

2) Price factor: this factor aims to represent a wide range of inflation which includes

various types of consumer price index (CPI), producer price index (PPI) and oil price.

Twenty time series are chosen to represent this factor.

3) Interest rate factor: this factor aims to represent the effects of interest rate.

Twenty one series are chosen in this group, which contains bond yields at different

maturities and their spread with respect to the effective federal funds rate. It also

incorporates the economic implications from exchange rates dynamics according to

the interest rate parity theory (IRP).

4) Money and credit factor: this factor aims to represent various transmission chan-

nels of monetary policy that could have profound effects on every sectors of economy.

Thirty two series are chosen in this block, which includes information from mon-

etary base, reserves, demand deposits, savings deposits, consumer and commercial

loans, outstanding credit, treasury and agency securities, and borrowing reserves of

depository institutions.

5) Expectation factor: this factor aims to represent various types of expectations.

Ten expectation series are chosen in this block, which includes production, employ-

ment, inventories, supplier deliveries, new orders and future inflations from NAPM

and other surveys. Jones and Tuzel (2013) find significant implications of new orders

and shipments to predict equity returns.

In this paper, we only consider one monetary instrument, that is, the effective

federal funds rate. But our model setting and estimation procedures are feasible to
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incorporate other types of monetary policies as well.

II.2 Econometric Framework

Let rt = (r1t, . . . , rnt)
′

denote a vector of returns for n assets which follow the

dynamic factor vector autoregressive model (DFVAR) as follows

rt = Λf
t ft + Λz

t zt + εt

:= BtYt + εt (2)

where Λf
t ∈ Rn×k denotes the loading coefficient for factors ft and Λz

t ∈ Rn×l denotes

the loading coefficient for monetary instrument zt, and Bt ∈ Rn×m, Y
′
t = (f

′
t , z

′
t)

with ft ∈ Rk denoting the fundamental factors and zt ∈ Rl denoting the monetary

instruments, where m = k + l. Let bi ∈ Rm denotes i-th the row elements of loading

Bi., which follows a random walk process as follows

bi,t = bi,t−1 + ui,bt (3)

The idiosyncratic noises follow a multivariate normal distribution with stochastic

volatilities as εt ∼ Nn(0, Ht) with Ht ∼ diag(eh1t , . . . , ehnt) and the log-volatilities

follow a random walk process

hi,t = hi,t−1 + ui,ht (4)

where ui,ht ∼ N(0,Σi,h) for i = 1, . . . , n. The factor equations of Yt follow a time-

varying VAR(p) model with time-varying covariance as follows

Yt = C0t + C1tYt−1 + C2tYt−2 + · · ·+ CptYt−p + υt (5)
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where p ≥ 1;m ≥ 2, Yt, C0t ∈ Rm and Cit ∈ Rm×m for i = 1, 2, . . . , p and t =

1, 2, . . . , T . We could transfer equation (5) to the following vector notation

Yt = CtYt−1 + υt

= (Y ′t−1 ⊗ Im)vec(Ct) + υt

:= y
′

t−1βt + υt (6)

where Ct = (C0t, C1t, . . . , Cpt) ∈ Rm×(mp+1), Yt−1 = (1, Y
′
t−1, Y

′
t−2, . . . , Y

′
t−p)

′ ∈ Rmp+1,

yt−1 ∈ R(m2p+m)×m and βt = vec(Ct) ∈ Rm2p+m. Here vec(·) denotes the column-

stacking operator and ⊗ denotes the Kronecker product.

In this paper, we assume that υt ∼ N(0,Ωt) with a time-varying covariance matrix

Ωt ∈ Rm×m. By following Cogley and Sargent (2005)and Primiceri (2005), we could

decompose the covariance matrix into

AtΩtA
′

t = ΣtΣ
′

t (7)

or equivalently,

Ωt = A−1t ΣtΣ
′

t(A
′

t)
−1 (8)

where Σt = diag(eσ1t/2, eσ2t/2, . . . , eσmt/2) is the diagonal matrix and At is a lower

triangular matrix with units on the main diagonal shown as follows

At =



1 0 · · · 0

α21,t 1
. . .

...

...
. . . . . . 0

αm1,t · · · αm,m−1,t 1


(9)
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Thus, the factor equation (6) can be rewritten as

Yt = y
′

t−1βt + A−1t Σtuyt (10)

and the coefficients follow a random walk as follows

βt = βt−1 + uβt (11)

αt = αt−1 + uαt (12)

σt = σt−1 + uσt (13)

and the noise in the random walk are assumed to be jointly normally distributed with

variance as follows

V = var



uyt

ubt

uβt

uαt

uσt

uht



=



I 0 0 0 0 0

0 Σb 0 0 0 0

0 0 Σβ 0 0 0

0 0 0 Σα 0 0

0 0 0 0 Σσ 0

0 0 0 0 0 Σh



. (14)

In order to keep our model parsimony and computation efficient, we adopt the ran-

dom walk process for the volatility evolution process, but the random walk assump-

tion could be extended to a standard three-parameter (µ, φ, σ) stochastic volatility

process, i.e., ht − µ = φ(ht−1 − µ) + σηt.
7 Although under the random walk pro-

7To estimate (µ, φ, σ), a Metropolis-hastings algorithm (Chib and Greenberg 1995) is needed
with a multivariate-t as the proposal distribution. The mode of the likelihood function is commonly
chosen as the mean of multivariate-t and the inverse of the negative Hessian matrix of the likelihood
function is selected as the covariance of the multivariate-t. This process is time-consuming as it
involves in an optimization procedure and estimation of a Hessian matrix. The loading φ is highly
persistent in our data, between 0.95 to 1.00, thus for simplicity, we adopt the random walk setting.
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cess assumption, our model still includes a large number of parameters and latent

variables. For example, for n assets with k macroeconomic factors and l monetary

instruments, we have n(k + l) parameters in loading matrix B and n parameters in

Σh. For a p-lag VAR model, we have m2p + m parameters in Σβ and m(m − 1)/2

parameters in Σα and m parameters in Σσ. On the other hand, we would have

(T −1)[n+(m2p+m)+m(m−1)/2+m] latent state variables. Therefore, for n = 10

assets with k = 5 factors augmented by l = 1 monetary policy under T = 284 and

p = 3 lags, we would have 205 parameters and 41,035 unobserved state variables.

II.3 Data

Two data sets are investigated in this paper. We first study a monthly data set

of 10 sectors from S&P 500 index. The 10 sectors that include 1) industrial, 2)

Consumer discretionary, 3) Information technology, 4) Financial, 5) Materials, 6)

Telecom, 7) Health care, 8) Consumer staple, 9) Energy, and 10) Utility are collected

from Bloomberg ranging from 09/1989 to 05/2013. We collect 147 macroeconomic

time series from Federal Reserve Bank of St. Louis during the same time period

and transform these series according to the format described in the Appendix. A

simulation study is present in the Appendix as well in order to show that our algorithm

is efficient and fairly robust to capture the data dynamics.

We estimate the dynamic loading model with stochastic volatility in equation (2)

with 3-lag and run 30,000 iterations after discarding the initial 3,000 burn-in samples.

The posterior estimates seem satisfactory.8 We also test 6-lag model, which presents

8The sample autocorrelations are quite low after five hundred draws and the sample draws look
stable, which indicates that the proposed sampling approach seems efficient to draw samples with low
autocorrelation. And the mean of inefficiency factors (IFs) for all hyperparameters in variance matrix



16

similar qualitative feature but need much more computational resources. Thus, the

empirical analysis is based on 3-lag model in this section.

In addition, for the asset allocation study, we estimate both the 10-sector data set

and a larger data set of 22 industry groups classified by Global Industry Classification

Standard (GICS)9 from Bloomberg ranging from 09/1989 to 05/2013. The 22 indus-

try groups consists of 1) Automobiles and Components, 2) Consumer Durables and

Apparel, 3) Consumer Services, 4) Media, 5) Retailing, 6) Food and Staples Retail-

ing, 7) Food Beverage and Tobacco, 8) Household and Personal Products, 9) Energy,

10) Banks, 11) Diversified Financials, 12) Insurance, 13) Health Care Equipment and

Services, 14) Pharmaceuticals, Biotechnology and Life, 15) Capital Goods, 16) Com-

mercial and Professional Services, 17) Transportation, 18) Software and Services, 19)

Technology Hardware and Equipment, 20) Materials, 21) Telecommunication Ser-

vices, 22) Utilities.

II.4 Stochastic Volatility of Macro Factors

We first study the stochastic volatility of macro factors. Figure 3 demonstrates

the stochastic volatility for the five economic factors in equation (6). From February

1994 to February 1995, the Fed began to raise the federal funds rate in 7 steps from

3% to 6% since the economy started to expand in late 1993 and the zero real federal

funds rate was not needed any more. On one hand, we could observe that there was

(14) is 13.08, the median of IFs is 16.43, and the minimum value of IFs is 0.91, the maximum value
of IFs is 129.23, and the 10th percentile IFs is 1.06 and the 90th percentile IFs is 13.71. Considering
the large number of parameters and to keep the draft concise, complete estimates results including
sample autocorrelation function, sample draws, and posterior densities are not present in the draft
and are available upon request.

9The GICS classification system consists of 24 industry groups, but the Real Estate industry data
is discontinued after 08/2002 and the Semiconductors and Semiconductor Equipment industry level
2 data is not available, hence we conduct empirical study based on 22 industry groups.
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an upward shock in the volatility of interest rate factor, on the other hand, there was

little shock in the volatility of price factor, which was consistent with the fact that

the inflation showed little tendency to accelerate and remained between 2.5% and 3%

during the same time period.

Because of the advances in computer and information technology and the improved

productivity growth from 1996 to 1999, this period was characterized with an opti-

mism of future income prospects, we could see an upward shock in the volatility of

real activity factor and expectation factor. The federal funds rate was held at 5.25%

until 1997, so shock to interest rate factor quickly declined in that period, and it was

cut by 75 basis points in the aftermath of the 1998 Russian debt default and then

reversed the 75 basis points in 1999, thus there was an upward shock to the volatility

of interest rate factor from 1998 to 1999. And the core CPI ranged between 2% and

2.5% during the entire period.

During the 2001 internet bubble, the Fed started to loosen the monetary policy

and the federal funds rate was cut from 6.25% to 1.75% in 2001 and it was kept

going down in 2002 and 2003 to 1% at a slower rate. There was a sharp spike in

the volatility of the money and credit factor in the aftermath of the dotcom bubble.

The Fed started to increase federal funds rate in June 2004 gradually until June 2006

when the rate reached the plateau of 5.25%, and the core CPI approached to 3% but

with more volatile due to the rapid increase in energy prices. Then the fund rate

was quickly cut to near zero during the 2008 housing bubble,10 thus we could clearly

10Taylor (2007) argued that since the period of low interest rate policy kept from 2003 to 2004
was too low and for too long, it fueled to the housing boom and bust, and eventually destabilized
the U.S. economy.
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observe that there was a drastic shock to interest rate factor, price factor and money

and credit factor during that time period.

The stochastic volatility of real activity factor kept increasing from 2001 to 2009,

and the volatility of expectation factor also kept rising from 2009 to 2011, one possible

explanation about the expectation factor volatility could be that due to the increas-

ing globalization and competition from abroad, the volatility of forecasting becomes

larger. The fund rates has been kept to near zero since 2008 to stimulate business in-

vestment, encourage consumption and improve the job market, and we could observe

an upward trend in the volatility of real activity factor and price factor after 2011,

indicating the slow recovery of economy. Overall, these macro factors look reasonable

and satisfactory to capture significant economic trends from a variety of aspects of

real economy over time.

II.5 Dynamic Interactions Among Macro Factors

The magnitude of shock for each macro factor could be represented in the stochas-

tic volatility measure. Furthermore, it’s also interesting and informative to see the

direction of the simultaneous movements among macro factors in order to better un-

derstand how the economy evolve over time. Therefore, the time-varying correlation

among macroeconomic factors is shown in Figure 4. The first row presents the time-

varying correlation between the real activity factor and other factors. In general, real

factor has negative relationship with other factors. Specifically, the negative relation-

ship between real activity factor and price factor was diminishing after 1999. In other

words, this weak relationship indicates that the real activity shock has little effect on
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inflation shock after 1999, which could be justified by the recent fact that the stock

markets hit record highs with continuously growing firms’ earnings but with lower

than expected inflation target of 2%.

The correlation between real factor and interest rate factor was negative at most of

time except the time period from 2004 to 2005, in which the Fed started to raise funds

rate. The negative relationship implies that the inflation was not the big concern for

the Fed so that a positive shock in real factor was accompanied with negative shock

in interest rate factor, justifying that the Fed’s credibility for low inflation. On the

other hand, the positive correlation from 2004 and 2005 indicates that inflation was

the concern for the Fed, which may reflect the Taylor’s opinion that the funds rate

was kept too low for too long from 2003 to 2004. An intuitive way to understand

the dynamic relationship is that a negative correlation implies that the main task

of interest rate factor is to stimulate economy and a positive relationship indicates

attempts to control inflation. There was a downward trend for the correlation between

real factor and money and credit factor from 1994 to 2006, indicating a strengthening

relationship between them, and an upward trend for the correlation between real

factor and expectation factor during the same time period, implying a weakening

relationship between them. The negative correlation suggests that a positive shock to

the real economy would be accompanied with a negative shock to money and credit

factor and expectation factor.

The second row of Figure 4 describes the dynamic correlation between price factor

and other factors. Interestingly, there was a positive correlation between price factor

and interest rate factor before 2010, which indicates that the Fed’s credibility of keep-
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ing low inflation, however, this relationship has been broken since 2010, which implies

that to stimulate the economy was the main concern of the Fed so that a positive

shock to price factor was accompanied with a negative shock to interest rate factor.

The negative correlation between price factor and money and credit factor implies

that the money and credit factor could be used to offset the inflation pressure. There

was also a downward trend for the correlation between price factor and expectation

factor from 1994 to 2006, suggesting that the market was quite concerned about the

future inflation pressure. The time-varying effects of macroeconomic factors on price

factor could shed a light on the headache problem of weak inflation for central bankers,

suggesting that we need look at a wide range of factors and investigate their dynamic

strengthening or offsetting relationships in order to solve the low inflation problem.

Before 2008, the correlation between interest rate factor and money credit factor

stays negative, which is consistent with the concept that to reduce the money and

credit circulating in the market, we should increase interest rate. However, this

rule has been broken since 2008 and this correlation is approaching to a positive

zone because of the Fed’s quantitative easing policy and zero interest rate policy,

implying the relatively healthy economics of United States in comparison to other

global markets so that a positive shock to the interest rate factor is companied with

a positive shock to money and credit factor, which is consistent with the recent

phenomenon that global capital flows into U.S. market because of the improved U.S.

economy and anticipated higher interest rate.

There was a downward trend in the correlation between interest rate factor and

expectation factor from 1994 to 2006, and a negative correlation from 1998 to 2011



21

indicates that a positive shock in the interest rate would lead to a negative market

expectation about future economic activity, but the view reversed after 2011. It could

be understood that on one hand, a negative shock to interest rate was to stimulate

the economy from 1998 to 2011, leading to a positive shock to the market view, on

the other hand, a positive shock in interest rate was to control the potential future

inflation pressure after 2011, leading to a favorable shock to the market expectation.

The correlation between money and credit factor and expectation factor was negative

before 2004 and positive afterwards. There were two sharp spikes in the correlation,

i.e., one negative spike occurred at 2002 and the other positive spike occurred at

2009, and the timing of the spikes were consistent with the stochastic volatility for

money and credit factor shown in Figure 3. This relationship could be understood

that before 2004, to keep low inflation was the main concern so that a positive shock

to the money and credit factor would lead to a negative shock to the future market

expectation, on the other hand, after 2004, to stimulate the economy was the main

issue so that a positive shock to the money and credit would lead to a positive shock

to the future market perspective.

III. Asset Allocation Based on Macro Factors

In this section, we investigate the out-of-sampling performance of asset allocation

based on macroeconomic factors. We study three representative and intuitive models

with constant loadings as follows.11 The first model can be thought as the macro

11Snyder (2008) show that it requires at least 1011 particles for a 200-dimensional state and
Bengtsson et al. (2008) show that the maximum of weights associated with the sample approach to
unity as the sample size and dimension go to infinity. The dynamic loading factor DFVAR model
(2) contains 205 states and requires substantial computational resources, thus we adopt the models
with constant loadings for our asset allocation study, although the model with dynamic loadings



22

factors follow a Gaussian distribution with stochastic volatility process which implies

that the macro factors are generated from random shocks and uncorrelated over time.

It’s denoted as FVAR0 and shown as follows.

rt = Bft + εt

ft = Σtuft (15)

The second model can be viewed as the macro factors follow a VAR(1) model with

stochastic volatility process and denoted as FVAR1, indicating that macro factors are

autocorrelated and the past status could affect their future dynamics, i.e.,

rt = Bft + εt

ft = Cft−1 + Σtuft (16)

Note that the above two settings assume that macro factors are uncorrelated with

each other, but intuitively, these factors could affect each other, i.e., the interest

rate factor can influence money and credit factor, and money and credit factor can

affect real economic factor, and these simultaneous interactions among factors are

fundamental and natural. Therefore, we investigate the third model by taking into

account these simultaneous interactions among the underneath driving forces, which

is new to the literature based on author’s knowledge. It’s denoted as FVAR2 and

reveals much better impulse response than the constant loading model.
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shown as follows

rt = Bft + εt

ft = Cft−1 + A−1t Σtuft (17)

where C is the constant loading, At refers to the lower triangular matrix in equa-

tion (9), εt ∼ N(0, Ht) and Ht = diag(eh1t , . . . , ehnt) with a random walk vector as

following

ht = ht−1 + uht (18)

and uft is a standard multivariate Gaussian distribution and Σt = diag(eσ1t/2, . . . , eσkt/2)

with a random walk vector as following

σt = σt−1 + uσt (19)

III.1 Investor’s Preferences

The investors could rebalance their asset allocations according to a variety of

objective functions, i.e. maximum expected utility, minimum volatility, and maxi-

mum expected return by using the predictive expected returns and covariances. Let

µt+1|t = E[rt+1|Ft] and Σt+1|t = E[(rt+1 − µt+1|t)(rt+1 − µt+1|t)
′ |Ft] denote the condi-

tional mean and covariance of future asset returns rt+1 based on current information

set Ft. The conditional covariance for constant loading and stochastic volatility model
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can be found according to conditional variance formula as follows

Σt+1|t = var(rt+1|Ft,Γ∗)

= E[var(rt+1|Ft+1)|Ft,Γ∗] + var[E(rt+1|Ft+1)|Ft,Γ∗]

=

∫
H(ht+1)dπ(ht+1|Ft,Γ∗) +BΣ(ft+1|Ft,Γ∗)B′

=
1

M

M∑
i=1

H(h
(i)
t+1) +BΣ(f

(i)
t+1)B

′ (20)

where Γ∗ denotes the estimated parameters and π(ht+1|Ft,Γ∗) denotes the predictive

distribution of ht+1 and Σt(ft+1|Ft,Γ∗) denotes the covariance of predictive distri-

bution ft+1 under estimated parameters. The integral can be estimated by Monte

Carlo simulation, where h
(i)
t+1 and f

(i)
t+1 are the sample draws from the joint predictive

distribution which is generated from the Chapman-Kolmogorov equation as follows

π(ft+1, ht+1|Ft,Γ∗) =

∫
π(ft+1, ht+1|ft, ht,Ft,Γ∗)π(ft, ht|Ft,Γ∗)dftdht

The filtering samples could be obtained by using auxiliary particle filter described in

the Appendix and thus the predictive draws can be found by using their transition

dynamics.

Accordingly, the conditional mean for the constant loading model can be calculated

as follows

µt+1|t = E[rt+1|Ft,Γ∗]

= E[E[(rt+1|Ft+1)]|Ft,Γ∗]

=
1

M

M∑
i=1

Bf
(i)
t+1 (21)
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We consider four types of preferences under asset allocation framework with differ-

ent constraints: 1) mean-variance objective, i.e.,

max
ωt

µt+1 −
γ

2
σ2
t+1 (22)

where µt+1 = ω
′
tµt+1|t + (1 − ω′t1)rf , σ

2
t+1 = ω

′
tΣt+1|tωt, ωt is a vector of weights in

n risky assets, γ is the risk-aversion coefficient and rf is the risk-free rate. So the

optimal weights are

ω∗t =
1

γ
Σ−1t+1|t(µt+1|t − 1rf )

In addition, we also consider the no-shorting constraint, i.e., ω∗t ≥ 0 and leverage

constraints, i.e., −1 ≤ ω∗i,t ≤ 2, that is, there are boundaries on the short and leverage

positions. We implement the genetic algorithm to solve the constrained optimization

problem.12

2) global minimum volatility objective, i.e.,

min
ωt

ω′tΣt+1|tωt (23)

with ω′t1 = 1 and note that we assume no risk-free asset is available, thus we could

obtain the optimal weights

ω∗t =
Σ−1t+1|t1

1′Σ−1t+1|t1

12The commonly used gradient type searching algorithm only produces suboptimal solutions,
because it tends to get trapped in local optima instead of a global optimum when confronted with
complex optimization problems. We use a random type search algorithm called genetic algorithm
(GA) to search for the optimal portfolio weights under constraints. GA utilizes the idea from biology
to mimic the evolution process of organisms that survive and flourish in a changing environment.
Interested readers could refer to the book review of Goldberg (1989).
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In addition, we also investigate the cases of no-shorting constraint and leverage con-

straints imposed on mean-variance framework. Note that for global optima, the sum

of weights should be close to one, indicating a nearly zero cash position.

3) minimum volatility given certain level of conditional expected return (Fleming

et al. 2001 and Fleming et al. 2003), i.e.,

min
ωt

1

2
ω
′

tΣt+1|tωt (24)

s.t. ω
′
tµt+1|t + (1 − ω

′
t1)rf = µ∗, where µ∗ is the target expected return. Thus we

could have the following optimal weights

ω∗t =
(µ∗ − rf )Σ−1t+1|t(µt+1|t − 1rf )

(µt+1|t − 1rf )
′Σ−1t+1|t(µt+1|t − 1rf )

4) maximum expected return given certain level of conditional volatility, i.e.,

max
ωt

ω
′

tµt+1|t + (1− ω′t1)rf (25)

s.t. ω
′
tΣt+1|tωt = (σ∗)2 where σ∗ is the target volatility. Hence we could obtain the

following optimal weights

ω∗t =
Σ−1t+1|t(µt+1|t − 1rf )σ

∗√
(µt+1|t − 1rf )

′Σ−1t+1|t(µt+1|t − 1rf )

III.2 Multi-period Forecasting

We could also conduct multi-period forecasting by using particle filtering. For

example, for the s-day ahead return

rst+s =
s∑
j=1

rt+j|Ft,Γ∗ (26)
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Assuming the independence of the future returns, we could find the s-day ahead

predictive conditional covariance as follows

Ψs
t+s|t =

s∑
j=1

Ψt+j|Ft,Γ∗ (27)

where Ψt+j = 1
M

∑M
i=1Ht(h

(i)
t+j) + BΣt(f

(i)
t+j)B

′ and h
(i)
t+j, f

(i)
t+j are the sample draws

from the predictive density that are propagated from the particles h
(i)
t , f

(i)
t . Also, we

could find the s-day ahead expected return as follows

µst+s|t =
s∑
j=1

E[rt+j|Ft,Γ∗] (28)

where E[rt+j|Ft,Γ∗] = 1
M

∑M
i=1Bf

(i)
t+j.

III.3 Portfolio Performance Measures

In order to measure the portfolio performance, we use Sharpe ratio, worst draw-

down, risk-adjusted abnormal return, performance fee and beat rate to investigate the

out-of-sample performance of various strategies from a variety of perspectives. Sharpe

ratio is the most commonly used measure and defined as SR = (µp − rf )/σp, where

µp is the realized portfolio return, σp is the standard deviation of the realized portfo-

lio returns and rf is the constant risk-free rate. Moreover, to quantify the economic

gains related to the Sharpe ratio, we use the M2 measure defined by Modigliani and

Modigliani (1997) to compute the risk-adjusted abnormal return (M2) in the sense

that the abnormal return obtained by the dynamic strategy as if it has the same risk
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as the buy-and-hold strategy. Specifically, it is defined as follows

M2 =
σbh
σp

(µp − rf )− (µbh − rf )

= σbh(SRp − SRbh) (29)

From the perspective of an allocator, he may want to know how much performance

fee he has to pay in order to switch from a buy-and-hold strategy, i.e., holding a

passive index, to a dynamic strategy. By following Fleming et al. (2001), we need to

find a constant Φ so that the average utility of a dynamic strategy should be equal

to that of the buy-and-hold strategy, i.e.,

1

T
ΣT−1
t=0

[
(Rdp,t+1 − Φ)− γ

2(1 + γ)
(Rdp,t+1 − Φ)2

]
=

1

T
ΣT−1
t=0

[
Rbh,t+1 −

γ

2(1 + γ)
R2
bh,t+1

]

where Rdp,t+1 represents the realized gross returns of a dynamic strategy and Rbh,t+1

denotes the gross return of the buy-and-hold strategy, and γ is the investor’s relative

risk aversion coefficient and set to be 6 in the paper.

In addition to use the standard deviation of the portfolio returns to measure the

variation of portfolio returns, the worst drawdown is also used to measure the largest

loss of the dynamic strategy could occur. Furthermore, instead of one extreme per-

formance measure, we also consider the beat rate to check how often the dynamic

strategies could beat the buy-and-hold strategy. The beat rate (BR) measure is de-

fined as the percentage of time periods in which the gross return of the dynamic

strategy could beat that of the buy-and-hold strategy, i.e.

BRdp =
ΣT
t=1I(GRdp,t > GRbh,t)

T
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where GRdp,t denotes the gross return of dynamic strategy at time t and GRbh,t

denotes the gross return of buy-and-hold strategy at time t, and I(·) is the indicator

function with value of 1 if the argument is true and 0 otherwise.

III.4 Out-of-sample Empirical Analysis

We first consider the model FVAR0 in equation (15) in which the macro factors are

assumed to follow a Gaussian distribution. Table 1 shows the monthly rebalancing

out-of-sample portfolio performance, which implies that except the global minimum

volatility strategy, the other dynamic strategies do not perform well. Specifically,

under mean-variance framework, the MV0 model with no constraints generate no

excess returns, so do the MV2 model with leverage constraints. The MV1 model with

no-shorting constraints could not outperform the buy-and-hold strategy, although the

standard deviation is lower than that of the buy-and-hold strategy. The cause of low

volatility is because MV1 tends to hold cash most of time and invest lightly in the

risky assets. In addition, the mean-variance framework doesn’t perform well in other

settings, i.e., FVAR1 and FVAR2 as well, which is consistent with the consensus that

the mean-variance strategy tends to generate extreme values and doesn’t work well

in the practice, thus we leave out the discussions of mean-variance strategy in this

paper.

It is interesting to see that the global minimum strategies with or without con-

straints could generate better annualized return than the buy-and-hold strategy with

less annualized volatility. Thus, the global minimum strategies are able to generate

higher Sharpe ratio and positive abnormal returns and performance fees. On the
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other hand, the minimum volatility with target return strategy does not work at all

in the sense that the portfolio is completely wiped out. In addition, the maximum

return strategy with target volatility do not work well as well.

Table 2 shows the quarterly rebalancing out-of-sample portfolio performance, im-

plying similar results as monthly rebalancing outcomes. These results indicate that

the setting in which the factors follow a Gaussian distribution probably is not a good

fit to describe the dynamics of underneath driving factors for portfolio construction

except global minimum volatility strategy. The reason that global minimum volatility

strategy works is because to implement the model FVAR0 does not involve estimat-

ing predictive mean so that it can actually generate similar returns as FVAR1 and

FVAR2 frameworks. In other words, the portfolio construction based on volatility

strategy by using macro factors indeed could capture the asset dynamics and be able

to generate significant out-of-sample economic gains.

We then investigate the FVAR1 model in equation (16) in which the macro factors

follow VAR(1) process for the 10-sector data set. Table 3 reports the out-of-sample

portfolio performance for monthly rebalancing strategies. In general, the global min-

imum strategy looks attractive with significant out-of-sample annualized return and

lower volatility than the buy-and-hold strategy, thereby leading to higher Sharpe ra-

tio and positive abnormal returns and performance fees. The minimum volatility

strategy with target return seems to underperform the buy-and-hold strategy. Specif-

ically, as the target return increases, the strategy generates more volatile outputs as

shown in Figure 5 and Figure 6. Especially as the target return is equal to 4%, the

portfolio generates extreme weights in order to reach the expected target so that it
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turns out to obtain unfavorable realized return. As to the maximum return strategy

with target volatility, the Sharpe ratio is higher than buy-and-hold strategy when the

target volatility is equal to 1% or 2%. As the target volatility rises to 4%, the Sharpe

ratio falls and annualized return becomes more volatile. Therefore, these outcomes

imply that it’s crucial to set a reasonable target range for either minimum volatility

or maximum return strategies for portfolio construction.

To investigate the horizon effect on the portfolio choice, we also investigate the

performance of quarterly rebalancing strategies. Table 4 summarizes the portfolio

performance. It seems that the global minimum volatility strategy still works well

under quarterly rebalancing frequency. Figure 7 and Figure 8 shows the annualized

return and volatility, respectively. It shows that the performance of minimum volatil-

ity strategy with target return and maximum return strategy with target volatility

significantly deteriorates and is almost dominated by the buy-and-hold strategy. Es-

pecially for minimum volatility strategy with target return, as the target return is

equal to 4%, the portfolio is completely wiped out. These results indicate that asset

allocators should pay attention to the rebalancing frequency since it could have a

profound effect on the portfolio performance.

Then we investigate FVAR2 model in which the macro factors follow a VAR(1) with

simultaneous interactions among factors based on 10-sector data set. Table 5 sum-

marizes the monthly rebalancing portfolio outcomes. The global minimum volatility

strategies in the FVAR2 model can generate better outcomes than the FVAR1 model.

Specifically, the GMV0 model with no constraint tends to generate higher annualized

return than the buy-and-hold strategy but with lower volatility and worst drawdown.
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Figure 12 shows that the annualized return of GMV0 is quite close to that of the

buy-and-hold strategy of S&P 500 index, but the annualized volatility is smaller than

that of buy-and-hold strategy as shown in Figure 13, and both risk-adjusted return

and performance fee are positive. To have a deeper understanding about how the

strategy works, we look into the portfolio weights distribution in 10 sectors for global

minimum strategy shown in Figure 9. It shows that the GMV0 is increasing the

position in consumer staples and health care sectors and building short positions in

consumer discretionary and energy sectors, implying a long-short strategy, that is,

the long positions in some of the defensive sectors and short positions in some of

the cyclic sectors. And the GMV1 strategy takes no-shorting positions with lower

weight in cyclic sectors, while the GMV2 strategy with boundary shorting and lever-

age constraints tends to heavily invest in industrial sector and build short positions

in consumer discretionary and energy sectors. Note that the cash position is close to

zero, indicating that the global optima are obtained since there is no risk-free asset

for global minimum strategy.

Figure 10 presents the weight distribution for minimum volatility strategy with

target return. The low volatility for MVOL0 actually indicates that this strategy

tends to hold a large amount of cash over time and invest a small position in risky

assets so that the Sharpe ratio could be as high a 1.27. As the target return rises

to 4%, it shows that this strategy tends to generate extreme weights and take high

leverage positions, and thereby volatile annualized return and volatility shown in

Figure 12 and Figure 13. From Figure 11, the maximum return model MR0 with

target volatility of 1% also tends to hold cash over time in order to maintain low
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level volatility. The MR1 model with target volatility of 2% starts to invest more in

risky assets and keep modest level of cash, which demonstrates an appealing feature

that it could generate close annualized return to buy-and-hold strategy but maintain

a lower level of volatility than the buy-and-hold strategy shown from Figure 13. If

the target volatility increases to 4% in MR2 model, the Sharpe ratio, risk-adjusted

return, and performance fee all decline, suggesting that to set a reasonable volatility

target and maintain certain level of cash could have a significant effect on the portfolio

performance.

Then we study the horizon effect on FVAR2 model. Figure 14 shows the port-

folio weights distribution for global minimum volatility strategy. In comparison to

the monthly rebalancing global minimum strategy, the quarterly rebalancing strategy

tends to become conservative in the sense that both long and short positions decrease

in the magnitude. On the one hand, the quarterly rebalancing minimum volatility

strategy with target return leads to more extreme weights shown in Figure 15 in com-

parison to the monthly rebalancing strategy, and on the other hand, the quarterly

rebalancing maximum return strategy with target volatility generates less extreme

weights shown in Figure 16 in comparison to the monthly rebalancing strategy. Intu-

itively, if the asset allocator looks at longer horizon, then he would confront with more

uncertainties, therefore, to achieve the expected target return, the strategy tends to

generate more aggressive weights, while to reach the expected target volatility, the

strategy has more room to generate relatively less aggressive weights as shown in

Figure 17 and Figure 18.

In addition, we also investigate a larger data set consisting of 22 industry groups.
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Table 7 summarizes the monthly rebalancing. Similar to the 10-sector data set, the

global minimum volatility strategy based on 22-industry data set could also gener-

ate higher annualized return with lower annualized volatility shown in Figure 19 and

Figure 20 and thereby higher Shape ratio and positive abnormal returns and perfor-

mance fees. Also, to set a reasonable target value is crucial for the performance of

minimum volatility strategy with target return and maximum return strategy with

target volatility. Table 8 demonstrates that the time horizon has a negative effect

on the portfolio performance. Figure 21 and Figure 22 show that the quarterly re-

balancing global minimum volatility strategy still works although the performance

is inferior to the monthly rebalancing strategy, but the minimum volatility strategy

with target return and maximum return strategy with target volatility underperform

the buy-and-hold strategy.

We then study the monthly rebalancing portfolio performance for FVAR2 model

based on 22-industry data set shown in Table 9. Similar to the outcomes of FVAR2

model based on 10-sector data set, the global minimum volatility strategy works as

shown in Figure 23 and Figure 24, and target range is sensitive to the performance

of minimum volatility strategy and maximum return strategy. Table 10 presents the

quarterly rebalancing portfolio performance based on 22-industry data set. Figure 25

and Figure 26 show the annualized return and annualized volatility, respectively. Also,

it indicates that in general, the portfolio performance deteriorates under quarterly

rebalancing frequency.

Some existing studies claim that long-horizon return predictability is much better

than the short-horizon predictability. However, Ang and Bekaert (2007) show that
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dividend yield only has short-horizon predictive power and Boudoukh et al. (2008)

argue that long-horizon return predictability is largely an illusion arises simply from

the mechanical growth in a model’s R2 statistic with the estimated horizon length.

In this paper, we find that in general the long-horizon out-of-sample portfolio per-

formance is inferior to the short-horizon portfolio performance. Overall, based on

the empirical studies of different data sets, the macro factors indeed could provide

important meaningful information content which could shed a light on the systematic

components of equity return dynamics, and the dynamic asset allocation based on

these macro factors could generate systematically significant out-of-sample economic

gains.

IV. Implications of Monetary Shocks

History might be not a perfect predictor, especially for the current era in which

stocks are heavily dependent on the Fed support of holding the interest rates at a

very low level for over last five years, which is unprecedented. Many believe that the

Fed’s efforts to inject money into the financial markets are the prime driver of the bull

market. As the Fed wound down the quantitative easing program and started to raise

interest rate last December and is heading into interest-rate-hike cycle in the next a

couple of years. The crucial question is by how much and when will the Fed raises

rates, and what the market’s reaction will be. Thus, it would be informative and

valuable to investigate how the financial market reacts under those monetary shocks.

Therefore, we conduct an impulse response analysis in order to shed a light on the

dynamics of the financial market reactions, which could be valuable to both policy
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decision makers and practical investors, i.e., Maio (2014) implement some trading

strategies to produce significant economic gains based on the Fed Funds Rate (FFR).

IV.1 Monetary Shocks on S&P 500 Sectors

Intuitively, these macro factors could be thought as the transmission channels of

monetary policy to affect asset returns. We follow Bernanke, Boivin, and Eliasz

(2005) and standardize the monetary policy shock to correspond to 25-basis-point

innovation in the federal funds rate. We specifically look at two time spots. One is

as the Fed raises key short-term rate a quarter point on 06/30/2004 and the other is

as the Fed cut the interest rate by half of a percentage point on 09/18/2007 to 4.75%

in a bold acknowledgement that the central bank is concerned about the mortgage

meltdown. We first look at the impulse response of FVAR1 model with constant

loadings as the Fed starts to increase interest rate shown in Figure 27, the responses

over next 12 months for ten financial sectors are almost flat and close to zero, implying

that the constant loading model may not fit to reflect expected mean in the return

variations. As the Fed cuts interest rate, the constant loading model demonstrates

similar patterns shown in Figure 28.

We then test the dynamic loading model DFVAR in equation (2). Figure 29 shows

the responses of ten financial sector returns over next 12 months as the Fed starts

to increase interest rate. We could observe that the impulse responses seem to cap-

ture the long-term trend and curvature of sector realized returns. Interestingly, the

response could reveal appealing indications of the future return trajectories of indus-

trial, consumer discretionary, financial, consumer staples and utilities sectors. As the
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Fed cuts the interest rate, the responses of cyclic sectors seem to follow the realized

return trajectory and the responses of healthcare, utility, and telecom sectors in the

defensive group also reveal appealing trajectories of future return trend.

V. Concluding Remarks

It is interesting and thought provoking for academics to produce empirical models

that could capture the dynamics of equity returns and provide economic insights to

help investors for their practical portfolio construction.13 In this paper, We attempt

to provide a dynamic factor framework including meaningful economic information

content to shed a light on the evolution of macro economy through a handful of

factors. Five macro factors are extracted from hundreds of series and dynamic asset

allocation constructed on these macro factors could produce systematically significant

out-of-sample economic gains. Furthermore, these macro factors could serve as the

transmission channels of monetary policy so that investors could incorporate their

views in the portfolio construction and test the effects in various scenarios from a

forward-looking perspective, which could be informative and valuable for both policy

makers and practical investors.

13For example, financial data often contains heavy tail and jump. A recent algorithm has been
developed to estimate a hybrid model including constant and dynamic loading, stochastic volatility,
heavy tail and jump (see Appendix F). Such dynamic structural model could be tested in the future.
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Figure 1: The figure in Panel A depicts the simulated series and stochastic volatility.
The figure in Panel B depicts the sample autocorrelation function, sample draws and
posterior densities for simulated data.



39

0 50 100 150 200
−5

0

5

10

15

99% confidence interval of α
1t

 

 
Posterior mean of α

1t

True value of α
1t

0 50 100 150 200
−3

−2

−1

0

1

2

99% confidence interval of α
2t

 

 
Posterior mean of α

2t

True value of α
2t

0 50 100 150 200
−10

−8

−6

−4

−2

0

99% confidence interval of h
t

 

 

Posterior mean of h
t

True value of h
t

Figure 2: This figure shows the estimation results of α1t, α2t and ht for the simulated
data. The gray area represents the 99% confidence interval. The solid line denotes
the true value of the state variable and the dashes line denotes the posterior mean.
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Figure 3: The figure depicts the posterior mean of stochastic volatility for macroeco-
nomic factors under model DFVAR (2) with dynamic loadings and stochastic volatil-
ity.
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Figure 4: The figure depicts the time-varying correlation among macroeconomic fac-
tors under model DFVAR (2) with dynamic loadings and stochastic volatility.



42

1991 1996 2001 2006 2011 2016
−0.05

0

0.05

0.1

0.15
Annualized return for global minimum volatility strategy

 

 
SP500
GMV0
GMV1
GMV2

1991 1996 2001 2006 2011 2016
−0.3

−0.2

−0.1

0

0.1

0.2
Annualized return for minimum volatility strategy

 

 

SP500
MVOL0
MVOL1
MVOL2

1991 1996 2001 2006 2011 2016
−0.1

−0.05

0

0.05

0.1

0.15
Annualized return for maxrimum return strategy

 

 

SP500
MR0
MR1
MR2

Figure 5: This figure shows the annualized return for three types of monthly rebal-
ancing strategies under model FVAR1 for 10-sector data set. SP500 denotes the S&P
500 index. GMV0 is the global minimum volatility model without constraints, GMV1
is the global minimum volatility model with no-shorting constraint, and GMV2 is the
global minimum volatility model with leverage constraint. MVOL0 denotes the min-
imum volatility model with target return of 0.5%, MVOL1 denotes the minimum
volatility model with target return of 1%, MVOL2 denotes the minimum volatility
model with target return of 4%. MR0 denotes the maximum return model with target
volatility of 1%, MR1 denotes the maximum return model with target volatility of
2%, MR2 denotes the maximum return model with target volatility of 4%.
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Figure 6: This figure shows the annualized volatility for three types of monthly rebal-
ancing strategies under model FVAR1 for 10-sector data set. SP500 denotes the S&P
500 index. GMV0 is the global minimum volatility model without constraints, GMV1
is the global minimum volatility model with no-shorting constraint, and GMV2 is the
global minimum volatility model with leverage constraint. MVOL0 denotes the min-
imum volatility model with target return of 0.5%, MVOL1 denotes the minimum
volatility model with target return of 1%, MVOL2 denotes the minimum volatility
model with target return of 4%. MR0 denotes the maximum return model with target
volatility of 1%, MR1 denotes the maximum return model with target volatility of
2%, MR2 denotes the maximum return model with target volatility of 4%.
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Figure 7: This figure shows the annualized return for three types of quarterly rebal-
ancing strategies under model FVAR1 for 10-sector data set. SP500 denotes the S&P
500 index. GMV0 is the global minimum volatility model without constraints, GMV1
is the global minimum volatility model with no-shorting constraint, and GMV2 is the
global minimum volatility model with leverage constraint. MVOL0 denotes the min-
imum volatility model with target return of 0.5%, MVOL1 denotes the minimum
volatility model with target return of 1%, MVOL2 denotes the minimum volatility
model with target return of 4%. MR0 denotes the maximum return model with target
volatility of 1%, MR1 denotes the maximum return model with target volatility of
2%, MR2 denotes the maximum return model with target volatility of 4%.



45

1991 1996 2001 2006 2011
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24
Annualized volatility for global minimum volatility strategy

 

 
SP500
GMV0
GMV1
GMV2

1991 1996 2001 2006 2011
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Annualized volatility for minimum volatility strategy

 

 
SP500
MVOL0
MVOL1

1991 1996 2001 2006 2011
0

0.05

0.1

0.15

0.2

0.25
Annualized volatility for maxrimum return strategy

 

 
SP500
MR0
MR1
MR2

Figure 8: This figure shows the annualized volatility for three types of quarterly
rebalancing strategies under model FVAR1 for 10-sector data set. SP500 denotes the
S&P 500 index. GMV0 is the global minimum volatility model without constraints,
GMV1 is the global minimum volatility model with no-shorting constraint, and GMV2
is the global minimum volatility model with leverage constraint. MVOL0 denotes the
minimum volatility model with target return of 0.5%, MVOL1 denotes the minimum
volatility model with target return of 1%, MVOL2 denotes the minimum volatility
model with target return of 4%. MR0 denotes the maximum return model with target
volatility of 1%, MR1 denotes the maximum return model with target volatility of
2%, MR2 denotes the maximum return model with target volatility of 4%.
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Figure 9: This figure shows the portfolio weights under model FVAR2 for monthly
rebalancing global minimum volatility strategy based on 10-sector data set. GMV0
denotes the global minimum volatility strategy without any constraints, GMV1 de-
notes the global minimum volatility strategy with no-shorting constraint, and GMV2
denotes the global minimum volatility strategy with leverage constraints. Note that
there is no risk-free asset available for global minimum volatility strategy so that the
cash position should be close to zero.
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Figure 10: This figure shows the portfolio weights under model FVAR2 for monthly re-
balancing minimum volatility with target return strategy based on 10-sector data set.
MVOL0 denotes the minimum volatility model with target return of 0.5%, MVOL1
denotes the minimum volatility model with target return of 1%, MVOL2 denotes the
minimum volatility model with target return of 4%.



48

1990 1995 2000 2005 2010 2015
−1

0

1

2
Industrial

1990 1995 2000 2005 2010 2015
−1.5

−1

−0.5

0

0.5

1
Technology

1990 1995 2000 2005 2010 2015
−0.5

0

0.5

1
Consumer Discretionary

1990 1995 2000 2005 2010 2015
−0.5

0

0.5

1
Energy

1990 1995 2000 2005 2010 2015
−1

−0.5

0

0.5

1
Financial

1990 1995 2000 2005 2010 2015
−0.6

−0.4

−0.2

0

0.2

0.4
Materials

 

 

MR0
MR1
MR2

1990 1995 2000 2005 2010 2015
−2

0

2

4
Cash

1990 1995 2000 2005 2010 2015
−1

−0.5

0

0.5

1

1.5
Consumer Staples

1990 1995 2000 2005 2010 2015
−1.5

−1

−0.5

0

0.5

1
Health Care

1990 1995 2000 2005 2010 2015
−1

−0.5

0

0.5

1
Utility

1990 1995 2000 2005 2010 2015
−1

−0.5

0

0.5

1
Telecom

Figure 11: This figure shows the portfolio weights under model FVAR2 for monthly
rebalancing maximum expected return with target volatility strategy based on 10-
sector data set. MR0 denotes the maximum return model with target volatility of
1%, MR1 denotes the maximum return model with target volatility of 2%, MR2
denotes the maximum return model with target volatility of 4%.
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Figure 12: This figure shows the annualized return for three types of monthly rebal-
ancing strategies under model FVAR2 based on 10-sector data set. SP500 denotes
the S&P 500 index. GMV0 is the global minimum volatility model without con-
straints, GMV1 is the global minimum volatility model with no-shorting constraint,
and GMV2 is the global minimum volatility model with leverage constraint. MVOL0
denotes the minimum volatility model with target return of 0.5%, MVOL1 denotes the
minimum volatility model with target return of 1%, MVOL2 denotes the minimum
volatility model with target return of 4%. MR0 denotes the maximum return model
with target volatility of 1%, MR1 denotes the maximum return model with target
volatility of 2%, MR2 denotes the maximum return model with target volatility of
4%.
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Figure 13: This figure shows the annualized volatility for three types of monthly re-
balancing strategies under model FVAR2 based on 10-sector data set. SP500 denotes
the S&P 500 index. GMV0 is the global minimum volatility model without con-
straints, GMV1 is the global minimum volatility model with no-shorting constraint,
and GMV2 is the global minimum volatility model with leverage constraint. MVOL0
denotes the minimum volatility model with target return of 0.5%, MVOL1 denotes the
minimum volatility model with target return of 1%, MVOL2 denotes the minimum
volatility model with target return of 4%. MR0 denotes the maximum return model
with target volatility of 1%, MR1 denotes the maximum return model with target
volatility of 2%, MR2 denotes the maximum return model with target volatility of
4%.
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Figure 14: This figure shows the portfolio weights under model FVAR2 for quarterly
rebalancing global minimum volatility strategy based on 10-sector data set. GMV0
denotes the global minimum volatility strategy without any constraints, GMV1 de-
notes the global minimum volatility strategy with no-shorting constraint, and GMV2
denotes the global minimum volatility strategy with leverage constraints. Note that
there is no risk-free asset available for global minimum volatility strategy so that the
cash position should be close to zero.
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Figure 15: This figure shows the portfolio weights under model FVAR2 for quar-
terly rebalancing minimum volatility with target return strategy based on 10-sector
data set. MVOL0 denotes the minimum volatility model with target return of 0.5%,
MVOL1 denotes the minimum volatility model with target return of 1%, MVOL2
denotes the minimum volatility model with target return of 4%.
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Figure 16: This figure shows the portfolio weights under model FVAR2 for quarterly
rebalancing maximum expected return with target volatility strategy based on 10-
sector data set. MR0 denotes the maximum return model with target volatility of
1%, MR1 denotes the maximum return model with target volatility of 2%, MR2
denotes the maximum return model with target volatility of 4%.
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Figure 17: This figure shows the annualized return for three types of quarterly rebal-
ancing strategies under model FVAR2 based on 10-sector data set. SP500 denotes
the S&P 500 index. GMV0 is the global minimum volatility model without con-
straints, GMV1 is the global minimum volatility model with no-shorting constraint,
and GMV2 is the global minimum volatility model with leverage constraint. MVOL0
denotes the minimum volatility model with target return of 0.5%, MVOL1 denotes the
minimum volatility model with target return of 1%, MVOL2 denotes the minimum
volatility model with target return of 4%. MR0 denotes the maximum return model
with target volatility of 1%, MR1 denotes the maximum return model with target
volatility of 2%, MR2 denotes the maximum return model with target volatility of
4%.
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Figure 18: This figure shows the annualized volatility for three types of quarterly re-
balancing strategies under model FVAR2 based on 10-sector data set. SP500 denotes
the S&P 500 index. GMV0 is the global minimum volatility model without con-
straints, GMV1 is the global minimum volatility model with no-shorting constraint,
and GMV2 is the global minimum volatility model with leverage constraint. MVOL0
denotes the minimum volatility model with target return of 0.5%, MVOL1 denotes the
minimum volatility model with target return of 1%, MVOL2 denotes the minimum
volatility model with target return of 4%. MR0 denotes the maximum return model
with target volatility of 1%, MR1 denotes the maximum return model with target
volatility of 2%, MR2 denotes the maximum return model with target volatility of
4%.
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Figure 19: This figure shows the annualized return for three types of monthly rebal-
ancing strategies under model FVAR1 for 22-industry data set. SP500 denotes the
S&P 500 index. GMV0 is the global minimum volatility model without constraints,
GMV1 is the global minimum volatility model with no-shorting constraint, and GMV2
is the global minimum volatility model with leverage constraint. MVOL0 denotes the
minimum volatility model with target return of 0.5%, MVOL1 denotes the minimum
volatility model with target return of 1%, MVOL2 denotes the minimum volatility
model with target return of 4%. MR0 denotes the maximum return model with target
volatility of 1%, MR1 denotes the maximum return model with target volatility of
2%, MR2 denotes the maximum return model with target volatility of 4%.
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Figure 20: This figure shows the annualized volatility for three types of monthly re-
balancing strategies under model FVAR1 for 22-industry data set. SP500 denotes the
S&P 500 index. GMV0 is the global minimum volatility model without constraints,
GMV1 is the global minimum volatility model with no-shorting constraint, and GMV2
is the global minimum volatility model with leverage constraint. MVOL0 denotes the
minimum volatility model with target return of 0.5%, MVOL1 denotes the minimum
volatility model with target return of 1%, MVOL2 denotes the minimum volatility
model with target return of 4%. MR0 denotes the maximum return model with target
volatility of 1%, MR1 denotes the maximum return model with target volatility of
2%, MR2 denotes the maximum return model with target volatility of 4%.
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Figure 21: This figure shows the annualized return for three types of quarterly rebal-
ancing strategies under model FVAR1 for 22-industry data set. SP500 denotes the
S&P 500 index. GMV0 is the global minimum volatility model without constraints,
GMV1 is the global minimum volatility model with no-shorting constraint, and GMV2
is the global minimum volatility model with leverage constraint. MVOL0 denotes the
minimum volatility model with target return of 0.5%, MVOL1 denotes the minimum
volatility model with target return of 1%, MVOL2 denotes the minimum volatility
model with target return of 4%. MR0 denotes the maximum return model with target
volatility of 1%, MR1 denotes the maximum return model with target volatility of
2%, MR2 denotes the maximum return model with target volatility of 4%.



59

1991 1996 2001 2006 2011
0.1

0.15

0.2

0.25

0.3

0.35
Annualized volatility for global minimum volatility strategy

 

 
SP500
GMV0
GMV1
GMV2

1991 1996 2001 2006 2011
0

0.05

0.1

0.15

0.2

0.25
Annualized volatility for minimum volatility strategy

 

 
SP500
MVOL0
MVOL1

1991 1996 2001 2006 2011
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Annualized volatility for maxrimum return strategy

 

 
SP500
MR0
MR1
MR2

Figure 22: This figure shows the annualized volatility for three types of quarterly
rebalancing strategies under model FVAR1 for 22-industry data set. SP500 denotes
the S&P 500 index. GMV0 is the global minimum volatility model without con-
straints, GMV1 is the global minimum volatility model with no-shorting constraint,
and GMV2 is the global minimum volatility model with leverage constraint. MVOL0
denotes the minimum volatility model with target return of 0.5%, MVOL1 denotes the
minimum volatility model with target return of 1%, MVOL2 denotes the minimum
volatility model with target return of 4%. MR0 denotes the maximum return model
with target volatility of 1%, MR1 denotes the maximum return model with target
volatility of 2%, MR2 denotes the maximum return model with target volatility of
4%.
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Figure 23: This figure shows the annualized return for three types of monthly rebal-
ancing strategies under model FVAR2 based on 22-industry data set. SP500 denotes
the S&P 500 index. GMV0 is the global minimum volatility model without con-
straints, GMV1 is the global minimum volatility model with no-shorting constraint,
and GMV2 is the global minimum volatility model with leverage constraint. MVOL0
denotes the minimum volatility model with target return of 0.5%, MVOL1 denotes the
minimum volatility model with target return of 1%, MVOL2 denotes the minimum
volatility model with target return of 4%. MR0 denotes the maximum return model
with target volatility of 1%, MR1 denotes the maximum return model with target
volatility of 2%, MR2 denotes the maximum return model with target volatility of
4%.
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Figure 24: This figure shows the annualized volatility for three types of monthly rebal-
ancing strategies under model FVAR2 based on 22-industry data set. SP500 denotes
the S&P 500 index. GMV0 is the global minimum volatility model without con-
straints, GMV1 is the global minimum volatility model with no-shorting constraint,
and GMV2 is the global minimum volatility model with leverage constraint. MVOL0
denotes the minimum volatility model with target return of 0.5%, MVOL1 denotes the
minimum volatility model with target return of 1%, MVOL2 denotes the minimum
volatility model with target return of 4%. MR0 denotes the maximum return model
with target volatility of 1%, MR1 denotes the maximum return model with target
volatility of 2%, MR2 denotes the maximum return model with target volatility of
4%.
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Figure 25: This figure shows the annualized return for three types of quarterly rebal-
ancing strategies under model FVAR2 based on 22-industry data set. SP500 denotes
the S&P 500 index. GMV0 is the global minimum volatility model without con-
straints, GMV1 is the global minimum volatility model with no-shorting constraint,
and GMV2 is the global minimum volatility model with leverage constraint. MVOL0
denotes the minimum volatility model with target return of 0.5%, MVOL1 denotes the
minimum volatility model with target return of 1%, MVOL2 denotes the minimum
volatility model with target return of 4%. MR0 denotes the maximum return model
with target volatility of 1%, MR1 denotes the maximum return model with target
volatility of 2%, MR2 denotes the maximum return model with target volatility of
4%.
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Figure 26: This figure shows the annualized volatility for three types of quarterly
rebalancing strategies under model FVAR2 based on 22-industry data set. SP500
denotes the S&P 500 index. GMV0 is the global minimum volatility model without
constraints, GMV1 is the global minimum volatility model with no-shorting con-
straint, and GMV2 is the global minimum volatility model with leverage constraint.
MVOL0 denotes the minimum volatility model with target return of 0.5%, MVOL1
denotes the minimum volatility model with target return of 1%, MVOL2 denotes
the minimum volatility model with target return of 4%. MR0 denotes the maximum
return model with target volatility of 1%, MR1 denotes the maximum return model
with target volatility of 2%, MR2 denotes the maximum return model with target
volatility of 4%.
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Figure 27: This figure shows the next 12 months impulse response of constant loading
with stochastic volatility model FVAR1 for ten sectors on 06/2004 as the Fed starts to
increase interest rate by a quarter point. Note that the impulse response is recorded
in percentage returns.
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Figure 28: This figure shows the next 12 months impulse response of constant loading
with stochastic volatility model FVAR1 for ten sectors on 09/2007 as the Fed cut
interest rate by half point since June 2003. Note that the impulse response is recorded
in percentage returns.
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Figure 29: This figure shows the next 12 months impulse response of dynamic loading
with stochastic volatility model DFVAR in (2) for ten sectors on 06/2004 as the Fed
starts to increase interest rate by a quarter point. Note that the impulse response is
recorded in percentage returns.
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Figure 30: This figure shows the next 12 months impulse response of dynamic loading
with stochastic volatility model DFVAR in (2) for ten sectors on 09/2007 as the Fed
cut interest rate by half point since June 2003. Note that the impulse response is
recorded in percentage returns.
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Table 1: Monthly rebalancing portfolio performance under model FVAR0

This table reports the monthly rebalancing out-of-sample portfolio performance of model

(15) for 10-sector data set, that is, when the factors follow a Gaussian distribution with

stochastic volatility process. µ denotes the annualized return, σ denotes the annualized

standard deviation, SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes

the worst drawdown, Φ denotes the annualized performance fee, and notation ”-” implies

that the portfolio wealth is completely wiped out. BH represents the buy-and-hold strat-

egy for holding the S&P 500 index. Under mean-variance framework, MV0 is the model

(22) with risk-aversion coefficient of 6 without any constraints, MV1 is the model with

no-shorting constraint, and MV2 is the model with leverage constraints. Under global min-

imum volatility framework, GMV0 is the model (23) without any constraint, GMV1 is the

model with no-shoring constraint, and GMV2 is the model with leverage constraints. Under

minimum volatility setting, MVOL0 is the model (24) with target expected return of 0.5%,

MVOL1 is the model with target expected return of 1% and MVOL2 is the model with

target expected return of 4%. Under maximum return setting, MR0 is the model (25) with

target volatility of 1%, MR1 is the model with target volatility of 2%, and MR2 is the model

with target volatility of 4%.

Monthly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.44 15.03 0.33 -18.56

Mean-variance strategy
MV0 -1.29 13.64 -0.13 -19.39 -691 -555 40.28
MV1 3.20 3.89 0.69 -12.26 541 316 39.93
MV2 -1.00 13.45 -0.11 -19.33 -661 -512 40.28

Global minimum volatility strategy
GMV0 6.84 11.65 0.54 -12.76 316 360 48.06
GMV1 6.47 13.38 0.45 -17.66 180 217 47.70
GMV2 7.60 12.16 0.58 -13.09 376 400 48.76

Minimum volatility strategy
MVOL0 - - - - - - 42.05
MVOL1 - - - - - - 39.58
MVOL2 - - - - - - 41.34

Maximum return strategy
MR0 1.58 4.87 0.22 -3.57 -165 138 40.28
MR1 -0.30 9.69 -0.08 -7.48 -616 -223 40.28
MR2 -4.63 19.35 -0.27 -15.29 -902 -1385 43.11
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Table 2: Quarterly rebalancing portfolio performance under model FVAR0

This table reports the quarterly rebalancing out-of-sample portfolio performance of model

(15) for 10-sector data set, that is, when the factors follow a Gaussian distribution with

stochastic volatility process. µ denotes the annualized return, σ denotes the annualized

standard deviation, SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes

the worst drawdown, Φ denotes the annualized performance fee, and notation ”-” implies

that the portfolio wealth is completely wiped out. BH represents the buy-and-hold strat-

egy for holding the S&P 500 index. Under mean-variance framework, MV0 is the model

(22) with risk-aversion coefficient of 6 without any constraints, MV1 is the model with

no-shorting constraint, and MV2 is the model with leverage constraints. Under global min-

imum volatility framework, GMV0 is the model (23) without any constraint, GMV1 is the

model with no-shoring constraint, and GMV2 is the model with leverage constraints. Under

minimum volatility setting, MVOL0 is the model (24) with target expected return of 0.5%,

MVOL1 is the model with target expected return of 1% and MVOL2 is the model with

target expected return of 4%. Under maximum return setting, MR0 is the model (25) with

target volatility of 1%, MR1 is the model with target volatility of 2%, and MR2 is the model

with target volatility of 4%.

Quarterly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.64 14.32 0.36 -26.87

Mean-variance strategy
MV0 1.77 4.95 0.26 -5.82 -143 75 39.78
MV1 3.68 1.58 2.02 -1.87 2377 317 38.71
MV2 1.77 4.93 0.26 -5.79 -1432 76 39.78

Global minimum volatility strategy
GMV0 6.04 11.96 0.46 -18.29 143 220 49.46
GMV1 5.97 12.86 0.43 -23.22 100 148 44.09
GMV2 6.06 12.17 0.46 -17.97 143 212 48.39

Minimum volatility strategy
MVOL0 - - - - - - 40.86
MVOL1 - - - - - - 40.86
MVOL2 - - - - - - 43.01

Maximum return strategy
MR0 2.59 2.87 0.73 -1.60 530 192 39.78
MR1 1.82 5.51 0.24 -4.00 -172 56 39.78
MR2 0.06 10.96 -0.04 -9.22 -573 -360 37.63
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Table 3: Monthly rebalancing portfolio performance under model FVAR1

This table reports the monthly rebalancing out-of-sample portfolio performance of model

(16) for 10-sector data set, that is, when the factors follow a VAR(1) with stochastic volatil-

ity process. µ denotes the annualized return, σ denotes the annualized standard deviation,

SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes the worst drawdown,

M2 denotes the risk-adjusted abnormal return, Φ denotes the annualized performance fee,

and BR denotes the beat rate. BH represents the buy-and-hold strategy for holding the

S&P 500 index. Under global minimum volatility framework, GMV0 is the model (23)

without any constraint, GMV1 is the model with no-shorting constraint, and GMV2 is the

model with leverage constraints. Under minimum volatility setting, MVOL0 is the model

(24) with target expected return of 0.5%, MVOL1 is the model with target expected return

of 1% and MVOL2 is the model with target expected return of 4%. Under maximum return

setting, MR0 is the model (25) with target volatility of 1%, MR1 is the model with target

volatility of 2%, and MR2 is the model with target volatility of 4%.

Monthly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.44 15.03 0.33 -18.56

Global minimum volatility strategy
GMV0 6.59 12.00 0.51 -14.34 270 317 48.06
GMV1 5.79 13.20 0.40 -15.46 105 166 46.29
GMV2 5.19 12.89 0.36 -17.61 45 129 47.35

Minimum volatility strategy
MVOL0 3.90 3.40 1.00 -9.71 1007 391 41.70
MVOL1 4.76 8.29 0.51 -21.31 271 332 43.46
MVOL2 -0.51 40.35 -0.03 -90.94 -541 -4383 47.00

Maximum return strategy
MR0 4.59 4.99 0.82 -3.93 736 424 44.17
MR1 5.66 9.98 0.52 -8.19 285 340 43.46
MR2 7.06 19.97 0.33 -16.72 0 -302 46.64



71

Table 4: Quarterly rebalancing portfolio performance under model FVAR1

This table reports the quarterly rebalancing out-of-sample portfolio performance of model

(16) for 10-sector data set, that is, when the factors follow a VAR(1) with stochastic volatil-

ity process. µ denotes the annualized return, σ denotes the annualized standard deviation,

SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes the worst drawdown,

M2 denotes the risk-adjusted abnormal return, Φ denotes the annualized performance fee,

BR denotes the beat rate, and notation ”-” implies that the portfolio wealth is completely

wiped out. BH represents the buy-and-hold strategy for holding the S&P 500 index. Under

global minimum volatility framework, GMV0 is the model without any constraint, GMV1

is the model with no-shorting constraint, and GMV2 is the model with leverage constraints.

Under minimum volatility setting, MVOL0 is the model with target expected return of

0.5%, MVOL1 is the model with target expected return of 1% and MVOL2 is the model

with target expected return of 4%. Under maximum return setting, MR0 is the model with

target volatility of 1%, MR1 is the model with target volatility of 2%, and MR2 is the model

with target volatility of 4%. N/A denotes a feasible solution couldn’t be found.

Quarterly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.64 14.32 0.36 -26.87

Global minimum volatility strategy
GMV0 5.74 12.54 0.42 -21.14 86 151 44.09
GMV1 5.92 13.27 0.41 -23.93 72 112 48.39
GMV2 5.81 12.53 0.42 -21.48 86 158 43.01

Minimum volatility strategy
MVOL0 5.02 16.61 0.27 -36.02 -129 -496 40.86
MVOL1 3.23 37.85 0.07 -72.48 -415 N/A 46.24
MVOL2 - - - - - - -

Maximum return strategy
MR0 2.82 2.89 0.80 -2.21 630 216 38.71
MR1 2.26 5.63 0.31 -5.68 -72 100 40.86
MR2 0.92 11.25 0.04 -12.61 -458 -285 39.78
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Table 5: Monthly rebalancing portfolio performance under model FVAR2

This table reports the monthly rebalancing out-of-sample portfolio performance of model

(17) for 10-sector data set, that is, when the factors follow a VAR(1) with simultaneous

interactions among factors. µ denotes the annualized return, σ denotes the annualized

standard deviation, SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes the

worst drawdown, M2 denotes the risk-adjusted abnormal return, Φ denotes the annualized

performance fee, and BR denotes the beat rate. BH represents the buy-and-hold strategy

for holding the S&P 500 index. Under global minimum volatility framework, GMV0 is the

model (23) without any constraint, GMV1 is the model with no-shorting constraint, and

GMV2 is the model with leverage constraints. Under minimum volatility setting, MVOL0

is the model (24) with target expected return of 0.5%, MVOL1 is the model with target

expected return of 1% and MVOL2 is the model with target expected return of 4%. Under

maximum return setting, MR0 is the model (25) with target volatility of 1%, MR1 is the

model with target volatility of 2%, and MR2 is the model with target volatility of 4%.

Monthly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.44 15.03 0.33 -18.56

Global minimum volatility strategy
GMV0 6.60 11.33 0.54 -13.20 316 356 47.35
GMV1 6.29 12.68 0.46 -13.87 195 246 47.00
GMV2 6.53 12.15 0.50 -14.48 256 301 47.35

Minimum volatility strategy
MVOL0 3.97 2.73 1.27 -6.27 1413 409 41.34
MVOL1 5.33 6.79 0.71 -14.12 571 442 44.17
MVOL2 9.00 33.31 0.26 -61.18 -105 -2133 43.46

Maximum return strategy
MR0 4.40 4.50 0.86 -4.17 797 417 45.23
MR1 5.33 8.97 0.54 -8.35 316 356 44.88
MR2 6.58 17.94 0.34 -16.69 15 -143 46.64
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Table 6: Quarterly rebalancing portfolio performance under model FVAR2

This table reports the quarterly rebalancing out-of-sample portfolio performance of model

(17) for 10-sector data set, that is, when the factors follow a VAR(1) with simultaneous

interactions among factors. µ denotes the annualized return, σ denotes the annualized

standard deviation, SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes the

worst drawdown, M2 denotes the risk-adjusted abnormal return, Φ denotes the annualized

performance fee, BR denotes the beat rate, and notation ”-” implies that the portfolio

wealth is completely wiped out. BH represents the buy-and-hold strategy for holding the

S&P 500 index. Under global minimum volatility framework, GMV0 is the model without

any constraint, GMV1 is the model with no-shorting constraint, and GMV2 is the model

with leverage constraints. Under minimum volatility setting, MVOL0 is the model with

target expected return of 0.5%, MVOL1 is the model with target expected return of 1% and

MVOL2 is the model with target expected return of 4%. Under maximum return setting,

MR0 is the model with target volatility of 1%, MR1 is the model with target volatility of

2%, and MR2 is the model with target volatility of 4%.

Quarterly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.64 14.32 0.36 -26.87

Global minimum volatility strategy
GMV0 5.80 12.41 0.43 -19.04 100 162 44.09
GMV1 5.56 13.69 0.37 -27.85 14 46 50.54
GMV2 5.77 12.10 0.44 -19.98 115 179 46.24

Minimum volatility strategy
MVOL0 1.54 8.41 0.12 -18.02 -344 -89 39.78
MVOL1 -2.54 19.51 -0.16 -39.57 -745 -1390 40.86
MVOL2 - - - - - - -

Maximum return strategy
MR0 2.47 2.69 0.73 -1.89 530 183 38.71
MR1 1.59 5.09 0.21 -4.85 -215 46 41.94
MR2 -0.35 10.07 -0.08 -11.07 -630 -349 39.78
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Table 7: Monthly rebalancing portfolio performance under model FVAR1

This table reports the monthly rebalancing out-of-sample portfolio performance of model

(16) for 22-industry data set, that is, when the factors follow a VAR(1) with stochastic

volatility process. µ denotes the annualized return, σ denotes the annualized standard de-

viation, SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes the worst

drawdown, M2 denotes the risk-adjusted abnormal return, Φ denotes the annualized per-

formance fee, and BR denotes the beat rate. BH represents the buy-and-hold strategy for

holding the S&P 500 index. Under global minimum volatility framework, GMV0 is the

model (23) without any constraint, GMV1 is the model with no-shorting constraint, and

GMV2 is the model with leverage constraints. Under minimum volatility setting, MVOL0

is the model (24) with target expected return of 0.5%, MVOL1 is the model with target

expected return of 1% and MVOL2 is the model with target expected return of 4%. Under

maximum return setting, MR0 is the model (25) with target volatility of 1%, MR1 is the

model with target volatility of 2%, and MR2 is the model with target volatility of 4%.

Monthly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.44 15.03 0.33 -18.56

Global minimum volatility strategy
GMV0 6.25 11.58 0.50 -11.49 256 310 45.58
GMV1 6.88 14.27 0.45 -17.33 180 192 48.06
GMV2 5.88 11.96 0.45 -13.16 180 252 45.23

Minimum volatility strategy
MVOL0 3.82 2.05 1.62 -2.32 1939 402 40.99
MVOL1 5.03 5.23 0.87 -5.70 812 460 43.11
MVOL2 9.51 27.08 0.33 -26.01 0 -1001 44.88

Maximum return strategy
MR0 5.27 5.45 0.88 -5.35 827 477 43.11
MR1 7.00 10.83 0.60 -10.70 406 420 46.29
MR2 9.60 21.64 0.42 -21.41 135 -254 46.29
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Table 8: Quarterly rebalancing portfolio performance under model FVAR1

This table reports the quarterly rebalancing out-of-sample portfolio performance of model

(16) for 22-industry data set, that is, when the factors follow a VAR(1) with stochastic

volatility process. µ denotes the annualized return, σ denotes the annualized standard de-

viation, SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes the worst

drawdown, M2 denotes the risk-adjusted abnormal return, Φ denotes the annualized per-

formance fee, BR denotes the beat rate, and notation ”-” implies that the portfolio wealth

is completely wiped out. BH represents the buy-and-hold strategy for holding the S&P

500 index. Under global minimum volatility framework, GMV0 is the model without any

constraint, GMV1 is the model with no-shorting constraint, and GMV2 is the model with

leverage constraints. Under minimum volatility setting, MVOL0 is the model with tar-

get expected return of 0.5%, MVOL1 is the model with target expected return of 1% and

MVOL2 is the model with target expected return of 4%. Under maximum return setting,

MR0 is the model with target volatility of 1%, MR1 is the model with target volatility of

2%, and MR2 is the model with target volatility of 4%. N/A denotes a feasible solution

couldn’t be found.

Quarterly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.64 14.32 0.36 -26.87

Global minimum volatility strategy
GMV0 5.74 12.34 0.43 -20.29 100 165 44.09
GMV1 6.17 14.12 0.40 -24.87 57 70 48.39
GMV2 5.07 12.91 0.35 -20.73 -14 64 46.24

Minimum volatility strategy
MVOL0 4.85 4.51 0.96 -3.93 859 380 39.78
MVOL1 5.43 11.42 0.43 -11.68 100 141 45.16
MVOL2 -1.89 56.31 -0.04 -61.61 -573 N/A 43.01

Maximum return strategy
MR0 2.90 3.20 0.75 -2.40 558 221 41.94
MR1 2.40 6.29 0.30 -6.05 -86 97 43.01
MR2 1.10 12.62 0.05 -13.35 -444 -348 40.86
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Table 9: Monthly rebalancing portfolio performance under model FVAR2

This table reports the monthly rebalancing out-of-sample portfolio performance of model

(17) for 22-industry data set, that is, when the factors follow a VAR(1) with simultaneous

interactions among factors. µ denotes the annualized return, σ denotes the annualized

standard deviation, SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes the

worst drawdown, M2 denotes the risk-adjusted abnormal return, Φ denotes the annualized

performance fee, and BR denotes the beat rate. BH represents the buy-and-hold strategy

for holding the S&P 500 index. Under global minimum volatility framework, GMV0 is the

model (23) without any constraint, GMV1 is the model with no-shorting constraint, and

GMV2 is the model with leverage constraints. Under minimum volatility setting, MVOL0

is the model (24) with target expected return of 0.5%, MVOL1 is the model with target

expected return of 1% and MVOL2 is the model with target expected return of 4%. Under

maximum return setting, MR0 is the model (25) with target volatility of 1%, MR1 is the

model with target volatility of 2%, and MR2 is the model with target volatility of 4%.

Monthly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.44 15.03 0.33 -18.56

Global minimum volatility strategy
GMV0 6.71 11.14 0.56 -10.48 346 377 47.35
GMV1 5.60 14.45 0.35 -16.99 30 60 47.35
GMV2 5.85 11.62 0.46 -12.04 195 269 46.29

Minimum volatility strategy
MVOL0 4.14 2.34 1.56 -1.81 1849 430 41.70
MVOL1 5.08 5.54 0.83 -4.55 752 456 43.11
MVOL2 8.31 26.35 0.30 -23.76 -45 -1014 43.82

Maximum return strategy
MR0 4.45 4.72 0.84 -4.31 767 418 43.46
MR1 5.42 9.41 0.52 -8.91 286 345 44.88
MR2 6.67 18.82 0.33 -18.47 0 -219 47.00
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Table 10: Quarterly rebalancing portfolio performance under model FVAR2

This table reports the quarterly rebalancing out-of-sample portfolio performance of model

(17) for 22-industry data set, that is, when the factors follow a VAR(1) with simultaneous

interactions among factors. µ denotes the annualized return, σ denotes the annualized

standard deviation, SR denotes the Sharpe ratio with risk-free rate of 0.5%, DD denotes the

worst drawdown, M2 denotes the risk-adjusted abnormal return, Φ denotes the annualized

performance fee, BR denotes the beat rate, and notation ”-” implies that the portfolio

wealth is completely wiped out. BH represents the buy-and-hold strategy for holding the

S&P 500 index. Under global minimum volatility framework, GMV0 is the model without

any constraint, GMV1 is the model with no-shorting constraint, and GMV2 is the model

with leverage constraints. Under minimum volatility setting, MVOL0 is the model with

target expected return of 0.5%, MVOL1 is the model with target expected return of 1% and

MVOL2 is the model with target expected return of 4%. Under maximum return setting,

MR0 is the model with target volatility of 1%, MR1 is the model with target volatility of

2%, and MR2 is the model with target volatility of 4%.

Quarterly Rebalance

Model µ(%) σ(%) SR DD(%) M2(bp) Φ(bp) BR(%)
BH 5.64 14.32 0.36 -26.87

Global minimum volatility strategy
GMV0 4.90 11.68 0.38 -18.74 29 88 44.09
GMV1 5.00 13.74 0.33 -21.95 -43 -44 43.01
GMV2 4.72 12.03 0.35 -19.07 -14 49 46.24

Minimum volatility strategy
MVOL0 2.52 6.51 0.31 -18.39 -72 104 39.78
MVOL1 0.87 14.82 0.03 -40.30 -473 -527 45.16
MVOL2 - - - - - - -

Maximum return strategy
MR0 2.38 3.11 0.61 -2.21 358 173 40.86
MR1 1.39 5.95 0.15 -5.80 -301 11 41.94
MR2 -0.83 11.77 -0.11 -12.97 -673 -480 44.09



CHAPTER 2: OPTIMAL PORTFOLIO CHOICE AND CONSISTENT
PERFORMANCE

I. Introduction

In a volatile market environment, successive adverse price movements and poor dy-

namic risk management systems can lead to substantial financial losses. In practice,

a roller coaster financial performance could induce fund withdrawals and discourage

potential investors. Many investors start to recognize the value of consistent per-

formance and fund industry awards consistently well-performed funds, such as the

Lipper Fund Award which highlights funds that have excelled in delivering consis-

tently strong risk-adjusted performance. Therefore, consistent performance is the key

element to success in asset management.14

A fund that performs well in one year may not show up in the five-year top listing

or top performers in the past five years may turn out to be the worst in the next year.

This implies that it is not very rewarding to rely on the analysis of historical returns

over a single time instant. Instead, one should consider the historical performance over

a long horizon and assign relative weights to the performance at different time points

in order to better represent the true status of the fund performance and management

skills.

14As John C. Bogle addresses it, ”There is an important role that past performance can play in
helping you to make your fund selections. While you should disregard a single aggregate number
showing a fund’s past long-term return, you can learn a great deal by studying the nature of its past
return. Above all, look for consistency.” (Excerpted from Common Sense on Mutual Funds by John
C. Bogle, page 96.)
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This paper examines portfolio choice problem with consistent performance require-

ment by imposing an endogenous wealth constraint, namely the consistent perfor-

mance constraint, which claims that the current wealth never falls below a weighted

average its historical positions from time zero to the present time. A weaker version of

this constraint ensures that the investment return in any investment period is greater

than a fixed number. We derive a general optimal policy and obtain a closed-form

policy in a special case in which the optimal policy turns out to be the portfolio insur-

ance strategy that has been studied extensively.15 The intuition of the solution under

the consistent performance constraint is similar and straightforward: the investors

use the benchmark as a capital reserve and invest a proportion of the cushion on the

capital market, and thus the consistent performance is obtained.

There are three notable features for this consistent performance constraint. Firstly,

it takes the entire historical path into account to build a subsistent level of portfolio

wealth. By its very construction, the subsistent level highlights the cumulative invest-

ment performance over time instead of one particular extreme performance incurred

at a certain time instant, such as the maximum drawdown constraint (See Grossman

and Zhou (1993), Magdon-Ismai and Atiya (2004), and Pospisil and Vecer (2010)).

Moreover, this constraint is dynamic and endogenous in comparison to other fixed

exogenous constraints, i.e. Giacinto et al. (2011) and focuses on the consistency of

wealth compared with the study of intolerance of declining consumption by Dybvig

15For instance, Black and Perold (1992), El Karoui and Jeanblanc-Picque (1998) and El Karoui,
Jeanblanc-Picque and Lacoste (2005) examine the optimal portfolio choice problem under a deter-
ministic wealth benchmark. For the portfolio choice problem with constraints, both the maximum
drawdown and the leverage constraints (Grossman and Vila (1992)) lead to portfolio insurance
strategies.
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(1995) and Riedel (2009).

Secondly, the consistent performance constraint is strictly imposed in the sense that

the wealth could stay at or above the consistent benchmark almost surely, which is

in stark contrast to the probability-type constraint such as beating a benchmark in a

confidence interval (see Boyle and Tian (2007, 2009), Cuoco, He and Isaenko (2008)).

It is also known that the probability type constraint on the wealth often leads to a

large position in the risky asset and can incur drastic losses in some extreme cases.

Cuoco and Liu (2006) present a VaR-based analysis for bank capital. As shown in the

recent financial crisis period 2007-2008, the bank capital calculated by a probability-

based risk measure is not sufficient to cover the losses incurred under certain extreme

adverse market conditions and can lead to severe financial and social consequences.

Thirdly, we find an interesting virtual function f in the general optimal policy in

which the optimal policy looks very close to the classic intertemporal portfolio choice

policy. One only need to replace the relative risk aversion of a Bernoulli function in

the traditional Merton’ case with the relative risk aversion of this virtual function

f in the consistent performance constraint case. This virtual function internalizes

the wealth constraint and implicitly describes investor’s risk aversion, and thus can

provide valuable insights about the status of investor’s investment behavior.

The rest of the paper is organized as follows. Section 2 presents a continuous-time

representative-agent economy in which a long-lived investor chooses the consumption-

investment strategy under a consistent performance constraint. In Section 3 we derive

a general optimal policy under this constraint, obtain a closed-form optimal policy in

a special case, and then further investigate its features and implications. Section 4
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concludes this paper and all proofs are presented in the Appendix.

II. The Economic Setting

Consider a representative agent with initial wealthW0 at time zero and the following

investment opportunities: one is the risk-free asset with constant return rdt over time

period [t, t+ dt], the other is a risky asset that has a rate of return µdt+ σdz(t) over

time period [t, t+dt], where z(t) is a one-dimensional standard Brownian motion. We

assume that µ > r, c(t) is the consumption rate at time t, ω(t) is the fraction of the

wealth that is invested in the risky asset. W (t) is the agent’s wealth at time t and

governed by

dW (t) = rW (t)dt+ ω(t)W (t) [(µ− r)dt+ σdz(t)]− c(t)dt. (30)

The expected utility of consumption is defined as

E0

∫ ∞
0

e−ρtu(c(t))dt

where ρ > 0 is the pure rate of time preference and the function u(x) is the felic-

ity function. We consider an optimal dynamic investment and consumption policy

in which the admissible policies {c(t), ω(t) : t ≥ 0} are required to satisfy: (i) the

consumption and investment decisions are adapted; (ii) c(t) ≥ 0, a.s. and the cu-

mulative consumption is finite over any finite horizon, i.e.,
∫ t
0
c(s)ds < ∞, a.s.; (iii)

W (t) ≥ 0, a.s.; and (iv) W (t) ≥ M(t), a.s., for all time t, where M(t) is defined as

the weighted average of the whole past wealth path {W (s) : 0 ≤ s ≤ t} as follows.

M(t) = M0e
−at + b

∫ t

0

e−a(t−s)W (s)ds (31)
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where a ≥ 0, b ≥ 0. We assume that b ≤ r + a and 0 ≤ M0 ≤ W0. This assump-

tion ensures that the set of admissible policies is non-empty and is proved in the

Proposition 1.

Among these admissible conditions, (i) - (iii) are standard conditions to remove the

doubling arbitrage opportunity (Dybvig and Huang (1988)). The last condition (iv)

is the consistent performance constraint on the wealth.16 It states that the current

wealth W (t) is not allowed to fall below an exponential weighted average of wealth

from time zero to the current time with a constant multiplier.

In equation (31), parameter a denotes the subjective time preference. As time

goes, the recent performance has a higher weight than the remote performance. In

one extreme case as a =∞, this constraint is equivalent to Wt ≥ 0 for all time t. In

the other extreme case as a = 0, M(t) = M0 + b
∫ t
0
W (s)ds is an equally weighted

average of the past wealth, that is, the performance at different past time instants

has the same effect on the wealth benchmark. At any time instant, the greater value

of parameter a, the less weight assigned to the performance and vice versa.

Parameter b denotes the effect of the cumulative historical performance. As b = 0,

the subsistent level, M(t) = M0e
−at, is deterministic, which implies a guaranteed

return rate from time 0 to time t. As b > 0, the equation (31) represents a dynamic

stochastic benchmark and describes the cumulative effect of the entire historical per-

formance on the current investment strategy.17

16In its discrete-time version, this constraint can be written as W (t) ≥M0e
−at + bW (1)e−a(t−1) +

· · ·+bW (t−1)e−a. In particular, W (t)/W (t−1) ≥ be−a for all time t. That is the reason we use the
terminology ”consistent performance”. The constraint (31) takes into account the whole performance
path instead of one period performance.

17Dynamic deterministic benchmark for the portfolio wealth has been studied in El Karoui and
Jeanblanc-Picque (1998), and El Karoui, Jeanblanc-Picque and Lacoste (2005). It has been shown
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This consistent performance constraint can also be seen as a moderate drawdown

control. Grossman and Zhou (1993) study the maximum drawdown constraint, i.e.

W (t) ≥ αmax0≤s≤tWs,∀t. Obviously, the maximum drawdown constraint focuses on

the extreme historical performance, while the condition (iv) emphasizes a moderate

subsistent and consistent performance. To be precise, let Wmax = max0≤s≤tWs and

Wmin = min0≤s≤tWs, then as a 6= 0, equation (31) implies

M0e
−at +

b

a
(1− e−at)Wmin ≤Mt ≤M0e

−at +
b

a
(1− e−at)Wmax. (32)

From equation (32), we can observe that the subsistent benchmark level is between

the maximum and minimum wealth level over time. From the perspective of risk

management, as a 6= 0, we can rewrite M(t) as

M(t) = M0e
−at + b

{
W (t)−W0e

−at

a
− 1

a

∫ t

0

e−a(t−s)dW (s)

}
, (33)

where dW represents the instantaneous wealth profit or loss. Then, as a > b, the

constraint (iv) can be reformulated as

W (t) ≥ aM0 − bW0

a− b
e−at − b

a− b

∫ t

0

e−a(t−s)dW (s). (34)

As a < b, the constraint (iv) can be represented as

W (t) ≤ bW0 − aM0

b− a
e−at +

b

b− a

∫ t

0

e−a(t−s)dW (s). (35)

As a = b, the constraint (iv) implies that W0−M0 ≥ −
∫ t
0
easdW (s). From equations

(34) and (35), the consistent dynamic constraint indicates that the current wealth

that, under the dynamic deterministic constraint Wt ≥ Lt, the optimal strategy is equivalent to a
Merton’s optimal portfolio plus an American-type put option on Merton’s optimal portfolio. See
also Grossman and Zhou (1996) when Lt is a constant.



84

falls in a range with lower and upper bounds, depending on the parameter values of

a and b.

From the perspective of asset management, portfolio manager’s performance is

often tracked over time by his supervisor in practice. The managed portfolio would

incur gains or losses at different time instants due to the future investment uncertainty.

Thus, the constraint (iv) could offer an appealing benchmark to monitor the portfolio

performance and be implemented as an investment strategy for practitioners as well.

In this paper, the optimal admissible policy {c(t), ω(t)} and the associated derived

utility are defined by

J(W0,M0) ≡ sup
c(t),ω(t)

E0

∫ ∞
0

e−ρtu(c(t))dt (36)

and it is assumed that u(c) = cγ

γ
, γ < 1, γ 6= 0. 18

III. A General Optimal Policy

This section solves the general optimal policy under the consistent performance

constraint. By using the solution of a nonlinear ordinary differential equation as

an auxiliary function, we present the optimal policy explicitly. Moreover, we find a

closed-form optimal policy under the consistent performance constraint in a special

case and further investigate its properties and demonstrate its implications.

Proposition 1 It is assumed that (b−a)γ−ρ < 0, then there exists a unique optimal

18Note that when γ → 0, the felicity function is reduced to be the log-utility. Since the log utility
is not homogeneous, the two-argument value function cannot be reduced to one-argument function,
hence the PDE could not be transformed to the associated ODE. More technique details are shown
in the Appendix.
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consumption and trading strategy, where {C∗(t), ω∗(t)} is given by

C∗(t) = M(t)f ′(u)1/(γ−1) (37)

and

ω∗(t) = −µ− r
σ2

f ′(u)

uf ′′(u)
(38)

where u = W (t)
M(t)

, and the auxiliary function f(u) satisfies the following nonlinear

ordinary differential equation with u ∈ [1,∞)

− 1

2

(µ− r)2

σ2

[f
′
(u)]2

f ′′(u)
+ [(bu−a)γ−ρ]f(u)+f

′
(u)u[r− (bu−a)]+

1− γ
γ

[f
′
(u)]

γ
γ−1 = 0

(39)

subject to the following boundary conditions:

f(1) =
[a+ r − b)]γ

γ(ρ− (b− a)γ)
, (40)

f
′
(1) = (a+ r − b)γ−1. (41)

It is noted that we need condition b ≤ a + r to ensure the existence of optimal

policy, e.g. equation (G-15) in the appendix. Thus, a + r is the upper bound of

parameter b. Furthermore, we could find a closed-form optimal policy as b = a + r,

which is demonstrated by the following corollary.

Proposition 2 As b = a + r, let f(u) = hγ−1

γ
(u − 1)γ ≥ 0 since for nonnegative

consumption, the value function J(W,M) = Mγf(u) ≥ 0, where

h ≡ 1

1− γ

(
ρ+ aγ − γ(µ− r)2

2(1− γ)σ2

)
≥ 0, (42)
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Then there exists a unique optimal policy such that

c∗(t) = h (W (t)−M(t)) , (43)

and

ω∗(t)W (t) = m (W (t)−M(t)) (44)

where m ≡ µ−r
(1−γ)σ2 > 0 and the corresponding derived value function is

J(W (t),M(t)) =
hγ−1

γ
(W (t)−M(t))γ . (45)

This Proposition implies that to meet the consistent performance requirement, the

agent first builds a capital cushion, W (t) −M(t), invests m fraction of this cushion

into risky asset and consumes a constant percentage h of the cushion, and finally

put the remaining amount W (t) − (h + m)(W (t) − M(t)) into the risk-free asset.

This optimal strategy is similar to the one in other contexts, such as the constant

proportional portfolio insurance in Black and Perold (1992), the drawdown constraint

in Grossman and Zhou (1993), the ratcheting constraint in Dybvig (1995), and the

portfolio insurance in Grossman and Zhou (1996).

Note that as b = a+r, f
′(u)

f ′′(u)
= u−1

γ−1 , so limu→1
f ′(u)
f ′′(u)

= 0. At the boundary in the gen-

eral case, we have C∗(t) = M(t)(f ′(1))
1

γ−1 = 0 since γ < 1 and ω∗ = − µ−r
σ2(γ−1)

f ′(1)
f ′′(1)

=

0, which also match the optimal policy of special case, e.g. equations (43) and (44)

in the Proposition 2.

It is interesting to observe that the general optimal policy looks very close to the

Merton’s optimal policy. For example, one only need to replace the relative risk

aversion of Bernoulli utility in the Merton’s optimal weight policy with the relative
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risk aversion of endogenous function f(u) in the optimal weight policy in the gen-

eral case. Intuitively, this virtual function f(u) represents the investor’s tolerance of

wealth drawdown magnitude, i.e. the variable u denotes the ratio of current wealth

of subsistent wealth level, implying the potential wealth change magnitude. Further-

more, the first derivative and second derivative of f(u) indicates the changing speed

and accelerating speed of wealth tolerance change, which implicitly describes investor’

relative risk aversion. In other words, the virtual function f(u) could internalize the

wealth constraint and provide valuable information to disclose investor’s relative risk

aversion.

From the perspective of optimal consumption policy, let Wm(t) be the optimal

wealth and cm(t) be the optimal consumption rate in Merton’s model, and then the

wealth and consumption dynamics can be described by

dWm(t)

Wm(t)
=

[
r − ρ
1− γ

+
(2− γ)(µ− r)2

2(1− γ)2σ2

]
dt+mσdz(t) (46)

and

cm(t) =
1

1− γ

(
ρ− rγ − γ(µ− r)2

2(1− γ)σ2

)
Wm(t). (47)

Comparing equation (43) with equation (47), when the utility displays less risk aver-

sion than logarithmic utility (γ < 0), the agent consumes more in no consistent

performance case, while when the utility displays more risk aversion than logarithmic

utility (γ > 0), then the agent consumes more in consistent performance case. This

observation suggests that as the agent becomes more risk averse and worries about the

consistency of his portfolio wealth, he consumes more with the consistent constraint,
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but less without the consistent constraint and postpones to realize his utility.

Let Mm be the corresponding subsistent level by equation (31) in Merton’s model,

then Mm is a combination of the so called Yor’s process and a geometrical Brownian

motion. Thus, there are always positive probabilities such that Wm(t) < Mm(t).

(See Yor (1992) and Panel A in Figure 1.) We can observe from Panel A in Figure

1 that there are always positive probabilities such that the wealth falls below the

consistent performance benchmark in Merton’s model, while as illustrated in the Panel

B of Figure 1, the optimal wealth stays above the consistent performance constraint

almost surely. Furthermore, the optimal wealth demonstrates an upward trend in

the consistent performance case. An explicit characterization of Wt, as shown by

Proposition 4 below, explains the reason clearly why the consistent performance is

preserved almost surely. We will demonstrates theoretically that subsistent level has

a positive growth rate in Proposition 4. Hence, the optimal portfolio generates an

upward trend.

For comparison purposes, we also plot the maximum drawdown benchmark for non-

consistent performance case and consistent performance case in Panel C and Panel

D, respectively. As depicted in Panel C, there are positive probabilities such that

the maximum drawdown benchmark is violated. On the other hand, the maximum

drawdown benchmark is largely satisfied in Panel D. The intuition is that the consis-

tent performance constraint captures the whole historical wealth path and can avoid

drastic wealth change in a short time period.

In the general case, however, the function f(u) has to be solved numerically. We

can reformulate the second-order initial value differential equation as a system of two
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first-order equations as follows

f ′(u) = y, (48)

y′(u) =
(µ− r)2

2σ2
y2
[
[(bu− a)γ − ρ]f(u) + yu(a+ r − bu) +

1− γ
γ

y
γ
γ−1

]−1
.(49)

The Runge-Kutta method of order 4 can be used to solve this system of first-order

equations efficiently. The numerical value for each parameter satisfies the conditions

of b < r + a and (b− a)γ − ρ < 0.

In Figure 32, Panel A shows that as the ratio u of wealth to its subsistent level

rises, the weight in risky asset increases. The reason is that as capital cushion becomes

larger, it can protect the higher position in the risky asset from potential loss in order

to ensure the wealth can always be greater than its consistent performance benchmark,

thus the investor tends to invest larger portion in risky assets. This finding is also

consistent with the one of special case in which a larger capital cushion indicates a

greater weight in risky assets. The effect of the parameter a on the weight in the risky

asset is mixed in the general situation, as depicted in the Panel A of Figure 32. Panel

B of Figure 32 demonstrates similar patterns for different risk-free rate environments

r as parameter a is fixed.

The following proposition gives an upper bound for the instantaneous wealth return

rate when the wealth is fairly close to the benchmark in the general case.

Proposition 3 As the consistent performance benchmark approaches to the wealth,

the instantaneous expected return of wealth converges to b− a. Precisely,

lim
ut→1

E
[
dW (t)
W (t)

]
dt

= b− a.
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By Proposition 3, the instantaneous expected return converges to b − a when the

consistent performance benchmark approaches the wealth. As b is bounded by a+ r,

the limit of the expected return is bounded by the risk-free rate. Therefore, the

instantaneous expected portfolio return is bounded by the risk-free rate (consistent

with the arbitrage-free principle).

III.1 The Cost of Consistent Performance Constraint

We next examine the cost of consistent performance constraint on the investor’s

derived utility. The derived utility under consistent performance constraint is given

by equation (45) and the capital cushion dynamics is described by equation (54).

The derived utility for Merton’s model is written as Jm(Wm(t)) = hγ−1
m

γ
W γ
m(t), where

hm = 1
1−γ

(
ρ− rγ − γ(µ−r)2

2(1−γ)σ2

)
> 0.

By straightforward derivation, we can obtain

J(W (t),M(t))

Jm(Wm(t))
=

(
h

hm

)γ−1(
W (t)−M(t)

Wm(t)

)γ
=

(
h

hm

)γ−1((
1− M(0)

W (0)

)
e(n−nm)t

)γ
(50)

where nm = r−ρ
1−γ + (2−γ)(µ−r)2

2(1−γ)2σ2 is the expected return for Merton’s model. Clearly,

J(W (t),M(t)) < Jm(Wm(t)).

When the investor’s utility displays more risk aversion than logarithmic utility

(0 < γ < 1), if parameter a increases, then h increases, so by equation (50) the ratio(
h
hm

)γ−1
decreases. Moreover, if a increases, then n decreases, hence the product((

1− M(0)
W (0)

)
e(n−nm)t

)γ
decreases. Therefore, the utility ratio J(W (t),M(t))

Jm(Wm(t))
decreases.

In other words, the cost of consistent performance constraint is reduced as a increases.
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Similarly, as γ < 0, if a increases, the cost of consistent performance constraint also

increases. Overall, as investor tends to be more risk-averse, higher value of parameter

a (less cushion) could reduce the cost of constraint; as investor tends to be less risk-

averse, higher value of parameter a could increase the cost of constraint.

III.2 Optimal Wealth Process and Subsistent Level

The following proposition characterizes explicitly the dynamics of optimal wealth

and the corresponding consistent performance benchmark.

Proposition 4 Assume that W0 > M0 > 0 and a geometrical Brownian motion is

given as

Y (t) ≡ Y (0)exp

{(
n− m2σ2

2

)
t+mσz(t)

}
, Y (0) = W0 −M0.

Then the optimal wealth W ∗(t) is given by

W ∗(t) = M0e
rt + Y (t) + (r + a)

∫ t

0

er(t−s)Y (s)ds. (51)

The consistent performance benchmark is expressed as

M∗(t) = M0e
rt + (r + a)

∫ t

0

er(t−s)Y (s)ds. (52)

According to Proposition 4, the optimal wealth is equivalent to a combination of

three components: the initial benchmark with a growth rate of risk-free rate r, capital

cushion, and a proportion of the cumulative capital cushion with a growth rate of risk-

free rate r. Proposition 4 clearly shows that the consistent performance condition is

satisfied almost surely and indicates a remarkable point: the endogenous subsistent
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level is always upward. Specifically, for any time t1 < t2, equation (52) implies that

M∗(t2) = M∗(t1)e
r(t2−t1) + (r + a)

∫ t2

t1

er(t2−s)Y (s)ds > M∗(t1)e
r(t2−t1). (53)

and the growth rate of the subsistent level must be greater than the risk-free rate.

Therefore, the portfolio wealth demonstrates an upward trend under the consistent

performance constraint.

III.3 Probability Distribution of Drawdown Ratio

According to Proposition 2, the dynamics for the capital cushion can be obtained

as follows,

W (s)−M(s) = (W (t)−M(t))exp

{(
n− m2σ2

2

)
(s− t) +mσ(z(s)− z(t))

}
, (54)

where n ≡ − ρ+a
1−γ + (2−γ)(µ−r)2

2(1−γ)2σ2 and s > t. From equation (54), the capital cushion fol-

lows a geometrical Brownian motion with expected return n. Furthermore, as long as

the W0 > M0, the wealth is as great as the consistent performance benchmark almost

surely. If at any particular time, the portfolio wealth is identical to the consistent

benchmark, say, W (t) = M(t), then the optimal strategy is to put all wealth into the

risk-free asset. Moreover, if n < m2σ2

2
, then W (t) −M(t) → 0, a.s. as t → ∞. In

other words, the wealth converges to the consistent benchmark almost surely. Thus,

it is reasonable to assume that n ≥ m2σ2

2
. As a matter of fact, a stronger condition,

n > r + m2σ2, is required to ensure the existence of a stationary distribution, which

is shown in Proposition 5 below.

In order to examine the optimal portfolio under the consistence performance con-

straint in details, we first derive the stationary probability distribution for the draw-
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down ratio, and then present the optimal wealth dynamics explicitly. Let ϕ(t) =

W (t)
Y (t)

= W (t)
W (t)−M(t)

denote the drawdown ratio, the ratio of the total wealth to the

capital cushion, and ψ(t) = M(t)
W (t)

be the ratio of the subsistent level over the current

wealth, and then ϕ(t) and ψ(t) can be represented by the following relationship

ψ(t) =
ϕ(t)− 1

ϕ(t)
.

The stationary probability distributions for both ϕ(t) and ψ(t) can be obtained by

the following proposition.

Proposition 5 From Proposition 2 and it is assumed that

n− r −m2σ2 > 0. (55)

Then ϕ(t) has a stationary probability distribution with density

pϕ = κ(ϕ− 1)
2(r−n)
m2σ2 e−

2(a+r)

m2σ2
1

ϕ−1 , 1 < ϕ <∞ (56)

where

κ−1 =

[
m2σ2

2(a+ r)

] 2(n−r−m2σ2)

m2σ2
+1

Γ

[
2(n− r −m2σ2)

m2σ2
+ 1

]
(57)

and Γ(·) is the gamma function. The expected mean of ϕ(t) is a constant that is

expressed as

E[ϕ] =
a+ n−m2σ2

n−m2σ2 − r
. (58)

The stationary density function of ψ is obtained as

pψ = pϕ(ψ)
dϕ

dψ
= κψ

2(r−n)
m2σ2 (1− ψ)

2(n−r−m2σ2)

m2σ2 e
− 2(a+r)

m2ψ2
1−ψ
ψ . (59)

The expected drawdown ratio E[ϕ] = a+r
n−m2σ2−r + 1 shows that the expected draw-



94

down ratio increases as parameter a increases, implying that the subsistent level rises

and the cushion becomes thinner as parameter a increases. Thus, there is less amount

of wealth to invest in the risky assets, leading to less expected return. This observa-

tion also matches the implication of Proposition 3, that is, the instantaneous expected

return decreases as parameter a increases.

From the perspective of constraint cost discussed in section 3.1, as investor becomes

more risk averse, he seeks an investment strategy to keep most value of his wealth and

tends to invest smaller amount of his wealth in the risky assets, implying the thinner

cushion and higher drawdown ratio, that is, higher value of a. Since the consistent

performance constraint matches this investor’s intention of keeping his wealth safe,

the cost of consistent constraint is reduced as parameter a increases. This observation

aligns with the implication of the constraint cost discussed in section 3.1 as well.

We could also represent the wealth dynamics and calculate its moments in terms of

the probability distribution of drawdown ratio. By Proposition 2 and equation (30),

the optimal wealth movement can be described by

dW (t)

W (t)
= [r + (n+ a)(1− ψ)] dt+mσ(1− ψ)dz(t). (60)

Then, we could obtain

E [dW (t)/W (t)]

dt
= n+ a+ r − (n+ a)

∫ 1

0

ψpψdψ (61)

and

V ar [dW (t)/W (t)]

dt
= (mσ)2

∫ 1

0

(1− ψ)2pψdψ. (62)
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IV. Conclusion

This paper solves an optimal portfolio choice problem under a consistent perfor-

mance constraint. This consistent performance constraint represents a ”dynamic con-

sistent return” which would be attractive in a volatile financial market and have rich

practical implications. A remarkable feature of this constraint is to take the entire

past return records into account, instead of focusing on the performance at a specific

time instant. In particular, the investment return over any time period is greater

than a fixed benchmark return under this constraint.

It is noteworthy to compare the consistent performance constraint with the moving

average strategy implemented in the technical analysis. Moving average crossover or

other geometrical shapes in historical price charts are often employed exogenously

to infer the buying or selling signals of risky assets. Zhou and Zhu (2009) examine

the optimal portfolio choice among exogenous moving average trading strategies on

the underlying risky assets. This paper solves the optimal portfolio choice problem

under an endogenous consistent performance constraint, hence it would be appealing

to investigate whether those technical analysis rules are optimal in the setting of

portfolio selection under this constraint.
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Panel D
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Figure 31: The figure in Panel A depicts wealth process and the consistent per-
formance benchmark in Merton’s model. Parameters are: µ = 0.07, σ = 0.2, r =
0.5%, ρ = 0.25, γ = 0.8, and W0 = 1. The consistent performance benchmark pa-
rameters are chosen as M0 = 0.4, a = 0.01, b = r + a = 0.015. Wealth W (t) is
characterized by equation (46) and the consistent performance benchmark M(t) is
calculated by equation (H-2). The figure in Panel B depicts the optimal wealth and
the consistent performance benchmark. Both optimal wealth W (t) and the consis-
tent performance benchmark M(t) are characterized by Proposition 4. The figures in
Panel C and Panel D depict the Merton’s wealth process and optimal wealth process
with maximum drawdown benchmark αmax0≤s≤tWt, where α = 80%, respectively.
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Figure 32: The figure in Panel A depicts the position in risky assets versus the ratio of
wealth to the consistent performance benchmark for different values of parameter a.
The parameters used in this example are chosen as µ = 0.08, σ2 = 0.1, r = 0.5%, ρ =
0.035, γ = 0.8, b = 0.03, with a = 0.03 and 0.04, respectively. The figure in Panel
B depicts the position in risky assets versus the ratio of wealth to the consistent
performance benchmark for different values of parameter r. The parameters used in
this example are: µ = 0.08, σ2 = 0.1, ρ = 0.035, γ = 0.8, a = 0.03, b = 0.03, with
r = 0.5% and 1%, respectively.



CHAPTER 3: WHAT MATTERS MOST? IT’S THE CONSISTENCY!

I. Introduction

What matters most in asset management? It’s not delivering high returns in a

short time period. Instead, it’s about generating stable returns consistently over time

including both expanding and contracting economy. It is not unusual to hear about

the stories of the rise and fall of star funds in the past several decades. Investors

gradually appreciate the value of consistent performance in the long run instead of

chasing short-term pleasure. As John C. Bogle addresses it: There is an important

role that past performance can play in helping you to make your fund selections.

While you should disregard a single aggregate number showing a fund’s past long-term

return, you can learn a great deal by studying the nature of its past return. Above all,

look for consistency. (Bogle, 1999).

How to implement an investment strategy to obtain a consistent performance?

In Chapter 2, we propose a consistent performance strategy in an optimal portfolio

choice setting. The key ingredient in this consistent performance strategy is a so

called ”consistent performance constraint”, that is, wt ≥ mt for all time t, where wt

is the wealth at time t and mt is a moving average of the wealth path from starting

date to current date t. The consistent performance strategy is the optimal one among

all alternatives given the consistent benchmark constraint. There are three notable
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features by following the consistent performance strategy: (1) The investors could

achieve a consistently stable return of portfolio wealth, more precisely, wt+1/wt ≥ c

for all time t and c is a positive constant number; (2)mt+1/mt > r for all time t and r is

a constant risk-free interest rate. Both features demonstrate the“upward”trend of the

wealth portfolio. Moreover, (2) ensures that the growth rate of the benchmark beats

the interest rate; (3) This strategy demonstrates a capital protection and low volatility

oriented investment philosophy, which could have rich implications for various types

of asset management funds, i.e., pension funds, endowment funds, mutual funds and

so on.

II. The Consistent Performance Strategy (CPS)

To illustrate the consistent performance strategy (see Appendix for its details), we

use a traditional intertemporal asset allocation policy as a benchmark. The tradi-

tional intertemporal asset allocation policy is to consume a constant proportion of

wealth and invest a constant proportion of wealth in an risky asset, i.e., an index or

exchange-trade-fund (ETF). As shown in Panel A of Figure 33, the portfolio wealth

generated from the traditional intertemporal policy has a high likelihood to fall below

the consistent benchmark. In other words, the consistent benchmark constraint is not

satisfied under a traditional portfolio choice setting.

By contrast, the graph in Panel B of Figure 33 shows that the portfolio wealth

following the consistent performance strategy could always stay above the consistent

performance benchmark. The consistent performance strategy is implemented as fol-

lows: an investor first builds a wealth cushion wt−mt, where mt is a weighted average
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of the historical wealth records {ws; 0 ≤ s ≤ t}, invests a constant proportion of this

cushion in the risky asset, consumes another constant proportion of this cushion, and

then puts the remaining amount into a risk-free asset. In addition, the investor has

many options to construct this strategy according to his own investment perception

and risk appetite.

Intuitively, this consistent performance strategy could be viewed as a capital-

protection and steady-growth oriented strategy. To illustrate it, Figure 34 depicts

the trading positions on assets in one possible wealth scenario. Panel A of Figure 34

shows that the traditional investment strategy is to borrow from riskless asset and

invest the proceeds into the risky asset. In the long run, the amount of investment

in risky asset declines over a 30-year span associated with decreasing total portfolio

wealth, as shown in Panel A of Figure 35. The borrowing peak occurs around the sixth

year as the total portfolio value hits record high. Despite the total portfolio wealth

starts to decline, the conventional strategy still suggests borrowing the riskless bond

and invest them in the risky asset. On the other hand, in Panel B of Figure 34, the

consistent performance strategy implies that the investor stops borrowing from risk-

less bond at the early years of the investment horizon and then gradually reduces the

investment in the risky asset although the total portfolio wealth achieves the highest

value around the sixth year.

The dynamic consumption rule is displayed in Figure 35. In Panel A of Figure 35,

the consumption is always a constant proportion of portfolio wealth by construction.

In contrast, as shown in Panel B of Figure 35, the dynamics of portfolio wealth and

consumption rule have different shapes since the agent consumes only a constant
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proportion of the buffer instead of the wealth itself. Note that the wealth buffer

tends to shrink over time as shown in Panel B of Figure 33, implying a larger position

in risky asset and higher spending at the early stage of investing and then a reduced

position in risky asset and less consumption at the later stage of investing. Through

this investment process, the agent always invests and consumes some constant portion

of the capital buffer and then puts the remaining capital into riskless asset. Having

capital buffer is crucial in this strategy in order to reduce future uncertainty and

obtain stable wealth growth and also the key difference from the traditional investing

strategy.

To compare the consistent performance strategy and the traditional strategy in

a more intuitive way we plot the comparisons of consumption and risky investment

position for traditional and consistent strategies, respectively in Figure 36. Panel A

shows the consumption difference between these two strategies. It’s interesting to see

that the consistent performance requirement doesn’t sacrifice investor’s consumption,

but in fact can provide a relatively higher spending budget than the traditional strat-

egy. The stable cash flows from riskless bond investment could make a difference, in

comparison to the aggressive investment in the risky asset from a traditional strategy.

Panel B of Figure 36 can further shed light on the causes: The traditional investment

shorts a large amount of riskless bond and invests them in the risky asset, as the

investment suffers the setbacks, the total portfolio wealth also declines since there is

no other sources to offset the losses, hence the consumption drops accordingly; on the

other hand, the consistent performance strategy instead of putting all money in the

risky asset but constantly invests a certain amount of wealth in the riskless asset to
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generate a steady stream of cash flows for spending.

II.1 Portfolio Performance

We now demonstrate the portfolio performance in terms of its expected return,

variance, Sharpe ratio and leverage. The corresponding parameters calibration is

explained in Appendix. Table 11 reports the expected return, variance, Sharpe ratio

and leverage of the portfolio when the tuning parameter a changes from 0.005 to 0.05.

In the top of Table 11, we study the case as r = 1.817% and in the bottom investigate

the case as r = 1.5%. When r = 1.817%, as shown in Table 11, the expected gross

return moves around 2.016% as a ∈ [0.005, 0.05]. The expected mean of the return

rate tends to decrease as a increases. The intuition is that low value of a leads to a

flatter consistent performance benchmark, so the investor has more freedom to meet

the constraint by investing larger position in risky asset and thereby increasing the

expected return rate of the wealth. Similarly, rising a leads to a decreasing expected

return rate of the wealth and a decreasing variance of the return rate as well.

A remarkable point is that the variance of the return rate drops more significantly

with respect to the expected return rate, as a consequence, the corresponding Sharpe

ratio measure increases. In fact, the Sharpe ratio can be as large as 1.74 when a is

chosen as 0.05. Therefore, the consistent constraint on the wealth indeed improves

the performance of the portfolio return under several portfolio performance measures.

From the perspective of Sharpe ratio measure, the proposed consistent performance

strategy generates a robust ”low risk and high return” trading strategy for a relatively

steeper benchmark curve. If the interest rate drops to r = 1.5%, the risky asset
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becomes more attractive as the risk-free rate is lower. Hence both instantaneous

expected mean rate and variance rate increase associated with increasing Sharpe

ratio.

II.2 Leverage Position

The investment in the risky asset is a constant, k (see Appendix), proportion of

the capital buffer. Thus, the portfolio weight of the total wealth in the risky asset is

αt ≡ k(1 − mt/wt). If k ≤ 1, then 0 < αt < 1. Then there is no short position in

the risky asset and risk-free asset. If the expected return of the risky asset is large

enough, or the volatility is sufficiently low, or the investor is less risk-averse, then the

proportion k can be greater than one, implying a short position. So the weight αt

can be greater than one and the investor has a leverage position by borrowing.

We explain under what conditions the leverage position exists in average, i.e.,

E[αt] > 1, where E[·] denotes the expectation and the associated probability dis-

tribution function is shown in Proposition 5 in Chapter 2. The last column in Table

11 reports the expected value of the weight in risky assets, E[αt] with respect to a in

two different scenarios of interest rate: r = 1.817% and 1.5%. As shown from Table

11, as a increases, E[αt] decreases regardless of the value of interest rate. The intu-

ition is the same as that in the last section. The smaller value of parameter a means

the investor tends to have a larger position in risky investment, that is, E[α] increases

with decreasing a. When the interest rate drops, from r = 1.817% to r = 1.5%, the

risky asset becomes more attractive, so E[αt] increases. Our numerical result reported

in Table 11 supports this intuition. Indeed, as interest rate drops the investor tends
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to borrow cheaper capitals to finance their risky leverage positions.

III. The Implementation of CPS

The consistent performance strategy can be implemented as follows.

Step 1: Calibrate parameters and construct the consistent performance benchmark.

Step 2: Calculate the capital cushion between the current portfolio wealth and bench-

mark.

Step 3: Invest a fixed portion of the capital cushion in the risky assets.

Step 4: Consume a fixed portion of the current capital cushion.

Step 5: Invest the remaining capital in the riskless bond.

Step 6: Go to step 2 for next time period investment.

III.1 The Effect of Parameter a

Panel A of Figure 37 shows that as parameter a increases, the capital cushion

presents a steeper downward trend, implying that the average capital cushion tends

to decrease. The drawdown ratio is defined as the ratio of portfolio wealth to the cap-

ital cushion. A larger drawdown ratio implies a smaller capital cushion and thereby

less investment in risk asset and consumption, and it can be shown that the average

value of drawdown ratio is positively related to the parameter a. Hence, as parameter

a increases, the average drawdown ratio increases, and therefore the capital cushion

drops in average and thereby a steeper downward slope for capital cushion. From

another perspective, a greater value of parameter a, a steeper upward slope for con-

sistent performance benchmark, implying the agent allocates more wealth into riskless

bond. Hence, the choice of parameter a depends on the agent’s individual risk pref-
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erence and his priority of capital safety, and it can be determined in a similar way as

for parameter γ shown in the Appendix.

On the other hand, the consumption portion h increases as a rises presented in the

Appendix. Thus, the overall effect of increasing a on the spending amount is deter-

mined by the tradeoff from decreasing capital cushion and increasing consumption

portion. Panel B of Figure 37 indicates that the effect of increasing consumption

proportion dominates the effect of shrinking capital cushion, that is, as a increases,

the amount of consumption also increases. In other words, the consumption portion

h is more sensitive to parameter a than capital cushion.

Panel A of Figure 38 shows the investment in the risky asset for different values

of a. It can be seen that the graph has a similar pattern as Panel A of Figure 37,

since the proportion to invest in the risky asset is a fixed amount of capital cushion

regardless of parameter a. Thus, as parameter a increases, the investment in risky

asset in average has a steeper downward slope. On the other hand, Panel B of Figure

38 suggests that as a increases, the capital cushion decreases and the investment

amount in risky asset drops, so the amount in riskless bond increases. Therefore, the

parameter a can be intuitively thought as the extent of priority of ”capital-protection”.

A more capital-protection oriented investor may require a higher value of parameter

a.

III.2 The Effect of Volatility

Panel A of Figure 39 shows that as the volatility increases, the average capital

cushion increases in general. Where does the incremental capital cushion go? Panel
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B of Figure 39 shows that the consumption budget increases as volatility rises since the

consumption portion is positively related to the volatility. On the other hand Panel A

of Figure 40 implies that the agents reduces the investment amount in the risky asset.

As the constant investment proportion m in the risky asset is negatively related to

the volatility, but at the same time the risky asset investment is positively correlated

with capital cushion. Hence, the investment amount in risky asset is determined by

the tradeoff from increasing capital cushion and decreasing investment portion. The

graph shows that the effect of decreasing investment portion in risky asset dominates

the effect of increasing capital cushion. In other words, the investment portion in

risky asset is more sensitive to volatility than capital cushion.

Because the incremental consumption only consists of a marginal proportion of the

incremental capital cushion and the investment in risky asset drops, the remaining

incremental capital flows into the riskless bond as demonstrated in Panel B of Figure

40. In other words, the agent under consistent performance constraint chooses the safe

bet and at the same time slightly raises the quote for spending budget, implying that

the joy derived from the realized consumption as to the agent outweighs the potential

gain from the risky investment in front of high uncertainties. Furthermore, it demon-

strates the ”low-volatility” preference feature of the proposed consistent performance

strategy.

III.3 The Effect of Risk Aversion

As Panel A of Figure 41 shown, as the agent becomes more risk-averse, he requires

more capital cushion. The capital cushion depends on the investing opportunities
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and investor’s risk preference. Based on the past 30 years market characteristics, it’s

interesting to see that the investor needs to increase the capital cushion and thereby

puts more portfolio wealth into the risky asset since the risky asset investment portion

m is positively related to the risk-aversion as demonstrated in Panel A of Figure 42.

The consumption amount depends on the combined effect from the consumption

proportion h and capital cushion. Panel B of Figure 41 implies that the agent con-

sumes more as he becomes risk-averse, which is similar to the case of increasing

volatility. On the other hand, as the agent becomes more risk-averse, at the first few

years of the investing horizon he tends to short the riskless bond and later on steadily

invests in the riskless bond. As indicated by Panel B of Figure 42, the upward slope

is steeper as he becomes more risk-averse. This experiment discloses an interesting

implication that based on the past 30 years market characteristics, an investor with

a capital-protection oriented mind needs more participation in the equity market in

order to generate a return that is greater than the risk-free rate.

VI. Conclusion

We introduce a consistent performance strategy that could generate consistently

growing portfolio wealth. An attractive feature of this strategy is its upward growing

trend of the portfolio wealth in spite of good or bad times in the market. Another

distinctive difference of consistent strategy from the traditional investing strategies is

that the consistent strategy saves a capital cushion first and both the investment in

risky asset and consumption activities derive from the capital buffer. Moreover, the

growth rate of this capital buffer is greater than the risk-free rate as well. Overall,
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this consistent performance strategy can be viewed as a capital-protection and low-

volatility oriented investing strategy which could have appealing features and rich

implications for practical investors.
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Figure 33: The figure in Panel A depicts the dynamics of portfolio wealth under
traditional intertemporal policy. The parameters used in this example are chosen as
µ = 6.46%, σ = 18.35%, r = 1.817%, ρ = 0.05, γ = 0.3, a = 0.01. The figure in Panel
B depicts the optimal wealth dynamics under the consistent performance constraint
with the same parameters.
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Figure 34: The figure in Panel A depicts the composition of portfolio wealth under
traditional intertemporal policy. The parameters used in this example are chosen as
µ = 6.46%, σ = 18.35%, r = 1.817%, ρ = 0.05, γ = 0.3, a = 0.01. The figure in Panel
B depicts the composition of portfolio under the consistent performance constraint
with the same parameters.
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Figure 35: The figure in Panel A depicts the dynamics of portfolio wealth and con-
sumption rule under traditional intertemporal policy. The parameters used in this ex-
ample are chosen as µ = 6.46%, σ = 18.35%, r = 1.817%, ρ = 0.05, γ = 0.3, a = 0.01.
The figure in Panel B depicts the dynamics of portfolio wealth and consumption under
the consistent performance constraint with the same parameters.
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Figure 36: The figure in Panel A depicts the comparison of traditional consumption
policy and the optimal consumption policy under consistent performance constraint.
The parameters used in this example are chosen as µ = 6.46%, σ = 18.35%, r =
1.817%, ρ = 0.05, γ = 0.3, a = 0.01. The figure in Panel B depicts the compari-
son of traditional investment policy in the risky asset and the one under consistent
performance constraint with the same parameters.
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Figure 37: The figure in Panel A depicts the capital cushion under the consistent
performance constraint for different values of parameter a. Other parameters used in
this example are chosen as µ = 6.46%, σ = 18.35%, r = 1.817%, ρ = 0.05, γ = 0.3.
The figure in Panel B depicts the optimal consumption policy under the consistent
performance constraint with the same parameters.
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Figure 38: The figure in Panel A depicts optimal risky asset investment policy under
the consistent performance constraint for different values of parameter a. Other pa-
rameters used in this example are chosen as µ = 6.46%, σ = 18.35%, r = 1.817%, ρ =
0.05, γ = 0.3. The figure in Panel B depicts optimal riskless investment policy under
the consistent performance constraint with the same parameters.
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Figure 39: The figure in Panel A depicts the capital cushion under the consistent
performance constraint for different volatility values. Other parameters used in this
example are chosen as µ = 6.46%, r = 1.817%, ρ = 0.05, γ = 0.3, a = 0.01. The figure
in Panel B depicts the optimal consumption policy under the consistent performance
constraint with the same parameters.
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Figure 40: The figure in Panel A depicts optimal risky asset investment policy under
the consistent performance constraint for different volatility values. Other parameters
used in this example are chosen as µ = 6.46%, r = 1.817%, ρ = 0.05, γ = 0.3, a = 0.01.
The figure in Panel B depicts optimal riskless investment policy under the consistent
performance constraint with the same parameters.
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Figure 41: The figure in Panel A depicts the capital cushion under the consistent
performance constraint for different values of parameter γ. Other parameters used in
this example are chosen as µ = 6.46%, σ = 18.35%, r = 1.817%, ρ = 0.05, a = 0.01.
The figure in Panel B depicts the optimal consumption policy under the consistent
performance constraint with the same parameters.
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Figure 42: The figure in Panel A depicts optimal risky asset investment policy under
the consistent performance constraint for different values of parameter γ. Other pa-
rameters used in this example are chosen as µ = 6.46%, σ = 18.35%, r = 1.817%, ρ =
0.05, a = 0.01. The figure in Panel B depicts optimal riskless investment policy under
the consistent performance constraint with the same parameters.
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Table 11: Measures of the portfolio performance under consistent performance con-
straint

This table reports the expected return rate, variance, Sharpe ratio and leverage position

when r = 1.817%, and r = 1.5%, respectively.

r = 1.817%

a Expected return Standard deviation Sharpe ratio Leverage
0.005 2.0168% 0.3105% 0.6434 0.7743
0.010 2.0166% 0.2607% 0.7656 0.6481
0.015 2.0165% 0.2248% 0.8875 0.5574
0.020 2.0165% 0.1974% 1.0103 0.4889
0.025 2.0164% 0.1763% 1.1316 0.4355
0.030 2.0164% 0.1591% 1.2533 0.3925
0.035 2.0164% 0.1450% 1.3754 0.3573
0.040 2.0164% 0.1331% 1.4975 0.3279
0.045 2.0163% 0.1231% 1.6196 0.3030
0.050 2.0163% 0.1144% 1.7417 0.2815

r = 1.5%

a Expected return Standard deviation Sharpe ratio Leverage
0.005 2.0191% 0.7439% 0.6978 2.0118
0.010 2.0182% 0.6248% 0.8295 1.6826
0.015 2.0178% 0.5385% 0.9613 1.4462
0.020 2.0174% 0.4731% 1.0936 1.2681
0.025 2.0172% 0.4219% 1.2258 1.1292
0.030 2.0170% 0.3807% 1.3580 1.0177
0.035 2.0169% 0.3467% 1.4908 0.9263
0.040 2.0168% 0.3185% 1.6227 0.8500
0.045 2.0167% 0.2944% 1.7549 0.7853
0.050 2.0166% 0.2738% 1.8871 0.7297
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APPENDIX A: SIMULATION SMOOTHER

Lower case letters are used to denote column vectors and upper case letters are

used to denote matrices. Conditional on ω = (ω0;ω1; . . . ;ωn), it is supposed that yt

is generated by the following state space model.

yt = Xtβ + Ztαt +Gtut

αt+1 = Wtβ + Ttαt +Htut (A-1)

where α0 = 0. The coefficients matrices may depend on ω and ut are independent

N(0, I) variables.

We first run the Kalman filter for t = 1, 2, . . . , T as follows

et = yt −Xtβ − Ztat

Dt = ZtPtZ
′

t +GtG
′

t

Kt = (TtPtZ
′

t +HtG
′

t)D
−1
t

at+1 = Wtβ + Ttat +Ktet

Pt+1 = TtPtL
′

t +HtJ
′

t

where a1 = W0β, P1 = H0H
′
0, Lt = Tt −KtZt and Jt = Ht −KtGt

Then we set rn = 0 and Un = 0, and assume GtH
′
t = 0. For t = n, n− 1, . . . , 1, we
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run the following procedures

Ct = Ωt − ΩtUtΩt

εt ∼ N(0, Ct)

Vt = ΩtUtLt

rt−1 = Z
′

tD
−1
t et + L

′

trt − V
′

t C
−1
t εt

Ut−1 = Z
′

tD
−1
t Zt + L

′

tUtLt + V
′

t C
−1
t Vt

where Ωt = HtH
′
t and ηt = Ωtrt + εt is a draw from p(Htut|y, ω).
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APPENDIX B: AUXILIARY PARTICLE FILTER

We apply one of sequential Monte Carlo methods, called the auxiliary particle filter

(APF) (Pitt and Shephard (1999) and the the book review of Doucet (2001)), to esti-

mate the predictive density of conditional variance and mean discussed in the above

asset allocation part. Generally speaking, particle filters incorporate the advantages

of sequential feature of Kalman filters and flexibility of MCMC samplers and avoid

some their disadvantages. The essential idea of APF is to use auxiliary indicators

to mark the particles with high conditional likelihood so that the particles that have

very low likelihoods will not be sampled in the second stage and the statistical effi-

ciency of sampling could be improved. A general implementation procedure is shown

as follows. In the empirical analysis, we set M=50,000 and R=500,000. A larger

number of M=100,000 and R=1,000,000 has been tested as well, there is no material

difference in the empirical results.19

1. We first sample the proposal values as follows. Given values {h(1)t−1, α
(1)
t−1, σ

(1)
t−1, Y

(1)
t−1,

. . . , h
(M)
t−1 , α

(M)
t−1 , σ

(M)
t−1 , Y

(M)
t−1 } generated from (ht−1, αt−1, σt−1, Yt−1|Ft−1,Γ∗), we can have

19The program for large number of particles is tested in the supercomputer center at University
of North Carolina - Charlotte as it’s computationally expensive. The command is written in shell
scripts which are submitted to Torque scheduler running in the Portable Batch System (PBS).
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the proposed values as follows

ĥ
∗(g)
t = E(h

(g)
t |h

(g)
t−1)

α̂
∗(g)
t = E(α

(g)
t |α

(g)
t−1)

σ̂
∗(g)
t = E(σ

(g)
t |σ

(g)
t−1)

Ŷ
∗(g)
t = E(Y

(g)
t |Y

(g)
t−1)

ωg = Nn(rt|BŶ ∗(g)t ,Ψt(ĥ
∗(g)
t , Ŷ

∗(g)
t ),Γ∗),

with g=1,. . . ,M, and then sample R times the integers 1,2,. . . ,M with normalized

probability ω̄gt = ωg/
∑M

j=1 ωj. The proposal values usually could be chosen as mean

or mode, here we choose the mean as the proposal value. Let k1, . . . , kR be the sampled

indexes associated with {ĥ∗(k1)t , α̂
∗(k1)
t , σ̂

∗(k1)
t , Ŷ

∗(k1)
t , . . . , ĥ

∗(kR)
t , α̂

∗(kR)
t , σ̂

∗(kR)
t , Ŷ

∗(kR)
t }.

2. For each kg in step 1, we could obtain the propagated values

{h∗(1)t , α
∗(1)
t , σ

∗(1)
t , Y

∗(1)
t , . . . , h

∗(R)
t , α

∗(R)
t , σ

∗(R)
t , Y

∗(R)
t } from

h
∗(g)
j,t = h

(kg)
j,t−1 + σhju

g
hj,t

α
∗(g)
j,t = α

(kg)
j,t−1 + σαju

g
αj,t

σ
∗(g)
j,t = σ

(kg)
j,t−1 + σσju

g
σj,t

Y
∗(g)
t = y

(kg)′

t−1 β
∗(kg)
t + (A

∗(kg)
t )−1Σ

∗(kg)
t ugyt

with g = 1, . . . , R and ughj,t ∼ N(0, 1), ugαj,t ∼ N(0, 1), ugσj,t ∼ N(0, 1), and ugyt ∼

N(0, Im).

3. We then resample

{h∗(1)t , α
∗(1)
t , σ

∗(1)
t , Y

∗(1)
t . . . , h

∗(R)
t , α

∗(R)
t , σ

∗(R)
t , Y

∗(R)
t }
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M times with replacement by using the following probabilities

ω∗g =
Nn(rt|BY ∗(g)t ,Ψt(h

∗(g)
t , Y

∗(g)
t ))

Nn(rt|BŶ ∗(kg)t ,Ψt(ĥ
∗(kg)
t , Ŷ

∗(kg)
t ))

to have the desired filtered sample

{h(1)t , α
(1)
t , σ

(1)
t , Y

(1)
t , . . . , h

(M)
t , α

(M)
t , σ

(M)
t , Y

(M)
t }

from (ht, αt, σt, Yt|Ft,Γ∗).
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APPENDIX C: ESTIMATION PROCEDURES

We conduct a two-step estimation procedure. In the first step, we extract a key

principal component, that is, the representing economic factor, from a block of closely

related time series. The second step is a Bayesian estimation approach. This two-step

estimation method can be viewed as a semiparametric approach, that is, a nonpara-

metric way to uncover the underlying important economic factors in the first step

and then a parametric way to estimate the evolution of factors and corresponding

parameters in the second step.

As a large set of time series are measured on widely differing ranges and units, we

first standardize them in order to avoid the issue of having one variable with large

variance that dominates others and thereby affecting the determination of loading

factors. Principal components are used to extract important information from a large

number of series. The underlying intuition of principal components is to rotate the

original axes so that the axes could align in the directions of maximum variation in

the new coordinates. Thus the majority part of dynamics and the interactions among

variables could be described in a handful components.

In this paper, instead of extracting components from all kinds of series, i.e., Stock

and Watson (2002), Bernanke and Boivin (2003), and Bernanke et al. (2005), we

categorize time series into several representing groups according to their economic

features. We assume that one major representing factor could be used to reflect the

majority of the information content for each segment. One way to check the effect of

the principal component is to look at the percentage of variation explained by the first
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factor. For our case of five factors, the first component is able to account for variation

from 67.27% to 92.96%. Thus, one representing factor assumption seems reasonable.

On the other hand, we could always divide the segment into smaller groups so that

the extracted component could account for larger variation in the smaller group. To

keep model parsimony and easier to understand, we only extract five representing

fundamental factors with reasonable explaining power in our study.

The first step is to extract a standard principal component. As shown in equation

(2), the coefficients are in fact unidentified.20 We follow the standard normalization in

principal components literature (see also Bernanke et al. 2005) to make the standard-

ized components as Ĉ =
√
TẐ, where Ẑ are the eigenvectors of the largest eigenvalues

of XX ′ where X is a block of time series from which the economic factor is extracted.

The second step is to estimate the factor evolution equations and model parameters.

let θ = (Σb,Σβ,Σα,Σσ,Σh) denote the hyperparameters. The priors of covariance

diagonal matrix are assumed to be the inverse gamma distribution with reasonable

values, the initial state of various time-varying variables are assumed to be zero, and

the algorithm is fairly robust to the prior specification and initial values. The MCMC

simulation is run for 30,000 iterations after discarding the burn-in 3,000 samples. Our

Gibbs sampling algorithm for the general dynamic model is summarized as follows.

i) Initialize b, h, α, β, σ, θ

ii) Sample b|h, θ

iii) Sample h|b, θ
20Let Λ̂f = ΛfT and f̂t = T−1ft, where T is a k× k nonsingular matrix then {Λ̂f , f̂t} also satisfy

equation (2). Thus we couldn’t distinguish these two solutions.
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iv) Sample β|α, σ, θ

v) Sample α|β, σ, θ

vi) Sample σ|α, β, θ

vii) Sample θ|b, h, α, β, σ

1) Sampling b: Since under the conditional independence of the errors, we could

sample the parameters and log-volatilities series-by-series. In other words, the model

is scalable in both the number of assets n and the number of factors k. As bi,t denotes

the row elements of Bi.,t, we could sample bi,t by using the simulation smoother. If

we treat bi,t = bi as constant coefficient, that is, the return can be represented as

ri,t = b
′
iYi,t + εi,t and the prior distribution for bi ∼ Nm(b0, B0), then we could sample

bi as

bi ∼ Nm(b̄i, B1) (C-1)

where B1 = [B−10 +
∑n

t=1

Yi,tY
′
i,t

ehi,t
]−1 and b̄i = B1[B

−1
0 b0 +

∑n
t=1

Yi,tri,t

ehi,t
].

2) Sampling h: consider

rt −BtYt = r̂∗t (C-2)

and the fact that r̂∗2t could be a very small number, thus we add an offset constant c̄,

i.e., c̄ = 10−6 and approximate the state space form as follows

r̂∗∗t = ht + ηt (C-3)

ht+1 = ht + uht (C-4)

where r̂∗∗i,t = log[(r̂∗i,t)
2 + c̄] and ηi,t = log(ε2i,t) for i = 1, . . . , n. Note that this system

is a linear but non-Gaussian state space form as log(ε2i,t) ∼ logχ2
1. We follow Kim et
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al. (1998) to use seven normal components with component probabilities qj, means

mj − 1.2704 and variances ν2j to match a number of moments of logχ2
1 distribution.

The seven normal components are shown as follows.

ω Pr(ω = j) mj ν2j

1 0.00730 -10.12999 5.79596

2 0.10556 -3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

Note that the covariance of the idiosyncratic noise in the measurement equation is an

identity matrix, so we could estimate the state space system equation by equation.

We first sample indicator sj conditional on r̂∗∗t , h as follows

π(si,t = j|r̂∗∗i,t , hi,t) ∝ qjφ(r̂∗∗i,t |hi,t +mj − 1.2704, ν2j ), j = 1, . . . , 7; i = 1, . . . , T. (C-5)

Then we sample the state h according to the simulation smoother of de Jong and Shep-

hard (1995) which indirectly sample state distribution through the error distribution

instead of directly sampling state distribution such as Carter and Kohn (1994) and

Frühwirth-Schnatter (1994). One of the advantages of simulation smoother is that

it could avoid the degeneracies inherent in state samplers. We run the simulation
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smoother with the corresponding variables to equation (A-1) as follows.

Xtβ = 0

Zt = 1

Gt = (νj, 0)

Wtβ = 0

Tt = 1

Ht = (0,Σ
1/2
hi

)

H0 = (0,Σ
1/2
hi0

) (C-6)

3. Sampling β: consider equation (6), and we could have the factor state space

equations as follows

Yt = y
′

t−1βt + A−1t Σtuyt (C-7)

βt+1 = βt + uβt (C-8)

Thus, we could run the simulation smoother with the corresponding variables to
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equation (A-1) as follows.

Xtβ = 0m

Zt = y
′

t−1

Gt = (A−1t Σt,0m)

Wtβ = 0m

Tt = Im

Ht = (0m,Σ
1/2
β )

H0 = (0m,Σ
1/2
β0 ) (C-9)

4. Sampling α: after sampling β, we could then transfer the state space equations

according to the special lower triangular trait of matrix At as follows

Ŷt = K̂tαt + Σtuyt (C-10)

αt+1 = αt + uαt (C-11)

where Ŷt = Yt − y
′
t−1βt and

K̂t =



0 0 0 0 · · · 0

−Ŷ1t 0 0 0 · · · 0

0 −Ŷ1t −Ŷ2t 0 · · · 0

0 0 0 −Ŷ1t · · ·
...

...
. . . 0 · · · 0

0 · · · 0 −Ŷ1t · · · −Ŷm−1,t



(C-12)

Hence, we could run the simulation smoother with the corresponding variables to
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equation (A-1) as follows.

Xtβ = 0m

Zt = K̂t

Gt = (Σt,0m)

Wtβ = 0m

Tt = Im

Ht = (0m,Σ
1/2
α )

H0 = (0m,Σ
1/2
α0

) (C-13)

5) Sampling σ: as for the stochastic volatility σ, we could transfer the state space

equations as follows

Ŷ ∗t = σt + εt (C-14)

σt+1 = σt + uσt (C-15)

where Ŷ ∗t = log[At(Yt − y
′
t−1βt) + c̄]2 and εi,t = logχ2

1. Similarly, we can follow the

previous step 2 to use the seven normal components to approximate the logχ2
1 and

run the simulation smoother equation by equation to estimate σi,t for i = 1, . . . ,m as
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follows

Xtβ = 0

Zt = 1

Gt = (νj, 0)

Wtβ = 0

Tt = 1

Ht = (0,Σ1/2
σi

)

H0 = (0,Σ1/2
σi0

) (C-16)

6) Sampling the hyperparameters θ: Since the hyperparameters of the model are

the diagonal blocks, we use the standard conjugate inverse gamma distribution to

sample the conditional posterior distribution for each block of variance.
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APPENDIX D: SIMULATION STUDY

We run a simulation study for an univariate series to examine the effectiveness of

our estimation procedure, which could be directly applied to multivariate series since

the procedure is scalable in the number of assets. Suppose an univariate time series

rt can be simulated as follows

rt = f
′

BB + fααt + εt

where fB = (fB1, fB2)
′

is a vector of two factors with constant loading B = (B1, B2)
′,

while fα = (fα1 , fα2)
′

is a vector of two factors with dynamic loading αt = (α1t, α2t)

such that

αt = αt−1 + νt,

where νt ∼ N(0,Σα) for t = 1, . . . , n, and εt ∼ N(0, eht) such that

ht = ht−1 + ut,

where ut ∼ N(0, σ2
h) for t = 1, . . . , n.

Note that this model setting includes both time-varying loading and stochastic

volatility features. If we treat αt = α, i.e., the constant loading, then this model can

be seen as a constant loading with stochastic volatility model. Furthermore, if we set

εt ∼ N(0, σ2), that is, a constant volatility, then we could also obtain the combination

of constant loading with constant volatility, and time-varying loading with constant

volatility accordingly. The factors are generated from uniform distribution as fB ∼

U(−0.5, 0.5) and fα ∼ U(−0.5, 0.5) and the true parameters are specified as B =
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(3,−0.1)
′
, α0 = (−2,−2)

′
, h0 = −5, Σα = diag(0.4, 0.05), σh = 0.2, where diag

denotes the diagonal matrix with the numbers in the main diagonal. The simulated

series with n = 200 are shown in the Panel A of Figure 1.

By following the estimation procedure described in the appendix, after discarding

the initial burn-in 3, 000 samples, we then draw 30, 000 samples with prior such as

B ∼ N(0, 5 ∗ I2), Σα ∼ IW (2, 20 ∗ I2), σ2
h ∼ IG(2, 0.02), where I2 refers to the iden-

tity matrix with two dimensions, IW refers to the inverse Wishart distribution, and

IG refers to the inverse Gamma distribution. The sample autocorrelation function,

sample draws, and the posterior densities are shown in the Panel B of Figure 1, from

which we could observe that the sample autocorrelations are quite low after 300 draws

and the sample draws look stable, suggesting that the estimates seem satisfactory.

We also summarize the the estimation results in Table 12, in which the IF de-

notes the inefficiency factor which is the inverse of the relative numerical efficiency

(Geweke 1992). It is defined as 1 + 2
∑∞

s=1 ρs, where ρs represents the s-th sample

autocorrelation. Suppose n1 uncorrelated samples is required to obtain a reasonable

posterior estimate and the inefficiency factor is equal to n2, then we need to run the

MCMC for at least n1 ∗ n2 times to get the satisfactory posterior estimate. From the

estimated results, we could see that the posterior means are quite close to the true

values and the inefficiency factors are quite low. Although the IF for σh is around 135,

total 30,000 samples would generate about 220 uncorrelated samples, which would be

sufficient to produce a satisfactory estimate.

Figure 2 depicts the estimation outcomes and the 99% confidence interval for the

state variables. From the plot, we could observe that the trajectory of the posterior
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Table 12: This table summarizes the estimation results for the simulated data.

Parameter True Mean Std. dev 99% Interval IF
B1 3 2.9615 0.0537 [2.8526,3.0639] 10.50
B2 -0.1 -0.1718 0.0552 [-0.2802,-0.0636] 8.35
Σ11 0.4 0.3752 0.0859 [0.2282,0.5639] 27.37
Σ22 0.05 0.0297 0.0117 [0.0127,0.0581] 34.69
σh 0.2 0.2280 0.0825 [0.1053,0.4190] 135.56

mean could closely catch up with the true processes of the state variables and the

99% confidence interval can fully contain the trajectories of the true state variables.

Overall, the estimation procedure we implemented is efficient and effective to track

both static and dynamic variables in a structural setting, and all empirical analysis

in this paper is based on the estimation procedure we discussed previously.
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APPENDIX E: DATA DESCRIPTION

Transformation code: 0 - no transformation; 1 - first difference; 2 - logarithm; 3 -

first difference of logarithm

Real Economic Factor

# Mnemonic Description T-Code

1 INDPRO Indu. Prod. Index 3

2 IPMAN Indu. Prod.: Manufacturing 3

3 IPCONGD Indu. Prod.: Consumer Goods 3

4 IPMAT Indu. Prod.: Materials 3

5 IPMINE Indu. Prod.: Mining 3

6 IPBUSEQ Indu. Prod.: Business Equipment 3

7 IPUTIL Indu. Prod.: Electric and Gas Util. 3

8 IPDMAN Indu. Prod.: Durable Manufacturing 3

9 IPNMAN Indu. Prod.: Nondurable Manu. 3

10 IPDCONGD Indu. Prod.: Dur. Consumer Goods 3
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# Mnemonic Description T-Code

11 IPNCONGD Indu. Prod.: Nondur. Consu. Goods 3

12 IPDMAT Indu. Prod.: Dur. Materials 3

13 IPNMAT Indu. Prod.: Nondur. Materials 3

14 IPFINAL Indu. Prod.: Final Products 3

15 MCUMFN Cap. Util.: Manu. (%) 0

16 TCU Cap. Util.: Total Industry (%) 0

17 CE Civilian Employment 3

18 CIVPART Civi. Lab. Force Parti. Rate (%) 0

19 EMRATIO Civi. Employment-Popu. Ratio (%) 0

20 UNRATE Civi. Unemployment Rate (%) 0

21 UEMPMEAN Ave. (Mean) Duration of Unempl. 0

22 UEMPLT5 Civi. Unempl. - Less Than 5 Weeks 0

23 UEMP5TO14 Civi. Unempl. for 5 - 14 Weeks 0

24 UEMP15T26 Civi. Unempl. for 15 - 26 Weeks 0

25 UEMP27OV Civi. Unempl. for 27 Weeks and Over 0

26 UEMP15OV Civi. Unempl. for 15 Weeks and Over 0

27 CEU All Employees: Total Private 3

28 PAYEMS All Empl.: Total Nonfarm 3

29 USPRIV All Empl.: Tot. Private Ind. 3

30 MANEMP All Empl.: Manu. 3

31 USCONS All Empl.: Constr. 3
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# Mnemonic Description T-Code

32 USGOVT All Employees: Government 3

33 DMANEMP All Empl.: Dura. Goods 3

34 USGOOD All Empl.: Goods-Producing Indu. 3

35 USFIRE All Empl.: Financial Acti. 3

36 USTRADE All Empl.: Retail Trade 3

37 USWTRADE All Empl.: Wholesale Trade 3

38 USEHS All Empl.: Edu. and Health Serv. 3

39 SRVPRD All Empl.: Serv.-Providing Indu. 3

40 USINFO All Empl.: Info. Services 3

41 NDMANEMP All Empl.: Nondur. Goods 3

42 USPBS All Empl.: Profe. and Busi. Serv. 3

43 USLAH All Empl.: Leisure and Hosp. 3

44 USMINE All Empl.: Mining and Logging 3

45 USSERV All Empl.: Other Services 3

46 USTPU All Empl.: Trade, Transp. and Uti. 3

47 AHEM Ave. Hourly Earnings: Manu. 0

48 AHECONS Ave. Hourly Earnings: Constr. 0

49 AWHMAN Ave. Weekly Hours: Manu. 0

50 AWOTMAN Ave. Weekly Overtime Hours: Manu. 0

51 PI Personal Income 3

52 DSPI Real Disposable Personal Income 3
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# Mnemonic Description T-Code

53 PCE Personal Consump. Expen. 3

54 PCEDG Personal Consump. Expen.: Dur. Goods 3

55 PCEND Personal Consump. Expen.: Nondur. Goods 3

56 PCES Personal Consump. Expen.: Ser. 3

57 HOUST Hous. St.: Tot.: New Pri. Owned Hous. 2

58 HOUSTNE Hous. St. in Northeast Census Region 2

59 HOUSTMW Hous. St. in Midwest Census Region 2

60 HOUSTS Hous. St. in South Census Region 2

61 HOUSTW Hous. St. in West Census Region 2

62 IR Import (End Use): All Commodities 3

63 IQ Export (End Use): All Commodities 3
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Price Factor

# Mnemonic Description T-Code

64 PCEPI Pers. Consump. Exp.: Chain Price Index 3

65 CPIAUCSL CPI for All Urb. Consu.: All Items 3

66 CPIAPPSL CPI for All Urb. Consu.: Apparel 3

67 CPITRNSL CPI for All Urb. Consu.: Transp. 3

68 CPIMEDSL CPI for All Urb. Consu.: Med. Care 3

69 CUSRSAC CPI for All Urb. Consu.: Commodities 3

70 CUSRSAS CPI for All Urb. Consu.: Services 3

71 CUSRSAD CPI for All Urb. Consu.: Durables 3

72 CPIULFSL CPI for All Urb. Consu.: All-Food 3

73 CUSRSALS CPI for All Urb. Consu.: All-Shelter 3

74 CUSRSALM CPI for All Urb. Consu.: All-Med. Care 3

75 PPIACO Producer Price Index: All Commodities 3

76 PPIFGS PPI: Finished Goods 3

77 PPIFCF PPI: Finished Consu. Foods 3

78 PPIFCG PPI: Finished Consu. Goods 3

79 PFCGEF PPI: Finished Consu. Goods Excl. Foods 3

80 PPICPE PPI: Finished Goods: Capital Equipment 3

81 PPIITM PPI: Interme. Materials: Suppl. and Compo. 3

82 PPICRM PPI: Crude Materials for Further Proce. 3

83 OILPRICE Spot Oil Price: West Texas Interme. 3
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Interest Rate Factor

# Mnemonic Description T-Code

84 TB3MS 3-Month T Bill: Sec. Market Rate 0

85 TB6MS 6-Month T Bill: Sec. Market Rate 0

86 GS1 1-Year T Constant Maturity Rate 0

87 GS3 3-Year T Constant Maturity Rate 0

88 GS5 5-Year T Constant Maturity Rate 0

89 GS10 10-Year T Constant Maturity Rate 0

90 AAA Moody’s Seas. Aaa Corp. Bond Yield 0

91 BAA Moody’s Seas. Baa Corp. Bond Yield 0

92 STB3FF Spread TB3MS - FEDFUNDS 0

93 STB6FF Spread TB6MS - FEDFUNDS 0

94 SGS1FF Spread GS1 - FEDFUNDS 0

95 SGS3FF Spread GS3 - FEDFUNDS 0

96 SGS5FF Spread GS5 - FEDFUNDS 0

97 SGS10FF Spread GS10 - FEDFUNDS 0

98 SAAAFF Spread AAA - FEDFUNDS 0

99 SBAAFF Spread BAA - FEDFUNDS 0

100 MPRIME Bank Prime Loan Rate 0

101 EXJPUS Japan/U.S. Foreign Ex. Rate 3

102 EXCAUS Canada/U.S. Foreign Ex. Rate 3

103 EXSZUS Swiss/U.S. Foreign Ex. Rate 3

104 EXUSUK U.S./U.K. Foreign Ex. Rate 3
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Money and Credit Factor

# Mnemonic Description T-Code

105 M1 M1 Money Stock 3

106 CURRENCY Currency Component of M1 3

107 M2 M2 Money Stock 3

108 MBCURRCIR Mone. Base: Curr. in Circu. 3

109 BOGAMBSL Mone. Base, Adj. Cha. in Res. Req. 3

110 CURRCIR Currency in Circulation 3

111 TOTRESNS Tot. Res. of Depo. Ins. 3

112 RESBALNS Tot. Res. Bal. with Fed. Res. banks 3

113 TRARR Total Res., Adj. Changes in Res. Req. 3

114 REQRESNS Required Res. of Depo. Inst. 3

115 NONBORRES Res. of Depo. Inst., Nonborrowed 3

116 EXCSRESNS Excess Res. of Depo. Inst. 3

117 BOGNONBR Non-Borrowed Res. of Depo. Inst. 3

118 TCDSL Tot. Checkable Deposits 3

119 USGDCB U.S. Gov. Demand Depo. at Comme. Banks 3

120 USGVDDNS U.S. Gov. Demand Depo. Note Bal.-Tot. 3

121 DEMDEPSL Demand Depo. at Comme. Banks 3

122 STDCBSL Small Time Depo. at Comme. Banks 3

123 SVGCBSL Savings Depo. at Comme. Banks 3

124 STDSL Small Time Deposits - Total 3
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# Mnemonic Description T-Code

125 SAVINGSL Savings Deposits - Total 3

126 OTHSEC Other Secu. at Comme. Banks 3

127 CONSUMER Consumer Loans at Comme. Banks 3

128 BUSLOANS Comme. and Indu. L., Comme. Banks 3

129 REALLN Real Estate Loans at Comm. Banks 3

130 TOTALSL Tot. Consu. Cre. Own. Secu., Outst. 3

131 NONREVSL Tot. Nonrev. Cre. Own. Secu., Outst. 3

132 LOANS Lo. and Leas. in Bank Cre., Comme. Banks 3

133 USGSEC Treas. and Agen. Secu. at Comme. Banks 3

134 INVEST Secu. in Bank Cre. at Comme. Banks 3

135 NFORBRES Net Free or Borr. Res. of Depo. Inst. 1

136 BORROW Tot. Borro. of Dep. Inst. from Fed. Res. 3
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Expectation Factor

# Mnemonic Description T-Code

137 MICH Univ. of Mich. Inf. Expec. (%) 0

138 PMI ISM Manu.: PMI Compo. Index (%) 0

139 NAPMNOI ISM Manu.: New Orders Index (%) 0

140 NAPMEI ISM Manu.: Employment Index (%) 0

141 NAPMII ISM Manu.: Inventories Index (%) 0

142 NAPMPI ISM Manu.: Production Index (%) 0

143 NAPMSDI ISM Manu.: Suppl. Deli. Index (%) 0

144 NAPMPRI ISM Manu.: Prices Index (%) 0

145 NAPMEXI ISM Manu.: New Exp. Orders Index (%) 0

146 NAPMIMP ISM Manu.: Imports Index (%) 0

Monetary Instrument

# Mnemonic Description T-Code

147 FEDFUNDS Effective Federal Funds Rate 0
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APPENDIX F: A HYBRID MODEL

We run a simulation study for an univariate series to demonstrate the effectiveness

of our algorithm, which could be directly extended to multivariate framework and

the estimation algorithms are shown next. Assume an univariate time series yt with

constant and dynamic loading, stochastic volatility, time-varying jump, and heavy

tail has the following structure.

yt = x
′

tβ + ztαt + ktqt + ut (F-1)

αt = αt−1 + ξt

ht = ht−1 + ηt

where xt = (x1t, x2t)
′ is a vector of two variables with constant loading β, zt = (z1t, z2t)

is a vector of two factors with dynamic loading αt and ξt ∼ N(0,Σα), kt refers to the

time-varying jump magnitude as a jump occurs, i.e., ψt ≡ log(1+kt) ∼ N(−0.5δ2, δ2)

(Anderson et al., 2002) and qt is a Bernoulli random variable with parameter κ such

that P (qt = 1) = κ and P (qt = 0) = 1 − κ, which refers to the jump intensity.

ut = λ
− 1

2
t εt refers to the heavy tail where λt follows i.i.d. Gamma(ν/2, ν/2) and

εt ∼ N(0, eht) with ηt ∼ N(0, σ2
h).

Note that this structural dynamic model contains hybrid stylized facts in financial

data, i.e., stochastic volatility, jumps, and heavy tails. It can also been seen as

a discretization of the popular Lévy process with jumps model used in continuous

finance literature (Duffie et al., 2000 and Eraker et al., 2003). Other types of model

with desired features can be selected accordingly as a subset of this model, i.e., a
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model with constant loading, stochastic volatility and jumps or a model with dynamic

loading, constant volatility and heavy tail.

Time series are generated from the uniform distributions such as xt ∼ U(−0.5, 0.5)

and zt ∼ U(−0.5, 0.5) and the true parameters are specified as β = (1,−0.3)
′
, α0 =

(−0.5,−0.5)
′
, h0 = −7, Σα = diag(0.02, 0.04), σh = 0.15, where diag denotes the

diagonal matrix with the numbers in the main diagonal, δ = 0.04, κ = 0.03 and

ν = 12. The simulated series with n = 200 are shown in the Panel A of Figure 43.

By following the estimation procedure described next, after discarding the initial

burn-in 3, 000 samples, we then draw 30, 000 samples with prior such as B ∼ N(0, 5∗

I2), Σα ∼ IW (2, 20 ∗ I2), σ2
h ∼ IG(2, 0.02), where I2 refers to the identity matrix

with two dimensions, IW refers to the inverse Wishart distribution, and IG refers

to the inverse Gamma distribution, and ν0 = 8, δ0 = 0.01, κ0 = 0.01. The sample

autocorrelation function, sample draws, and the posterior densities are shown in the

Panel B of Figure 43, from which we could observe that the sample autocorrelations

are quite low after 300 draws and the sample draws look stable, suggesting that the

estimates seem satisfactory.

We also summarize the the estimation results in Table 13, in which the IF denotes

the inefficiency factor which is the inverse of the relative numerical efficiency (Geweke

1992).

Figure 44 depicts the estimation outcomes and the 99% confidence interval for the

state variables. From the plot, we could observe that the trajectory of the posterior

mean could closely catch up with the true processes of the state variables and the

99% confidence interval can fully contain the trajectories of the true state variables.
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Table 13: Estimation results summary for the simulated data including heavy tail
and jump.

Parameter True Mean Std. dev 99% Interval IF
β1 0.1 0.0969 0.0246 [0.0485,0.1452] 10.12
β2 -0.3 -0.2816 0.0241 [-0.3287,-0.2342] 6.40
Σ11 0.02 0.0297 0.0072 [0.0183,0.0459] 11.87
Σ22 0.04 0.0374 0.0088 [0.0230,0.0576] 16.91
σh 0.15 0.1274 0.0483 [0.0629,0.2461] 117.18
δ 0.04 0.0253 0.0286 [0.0008,0.0925] 1.65
κ 0.03 0.0347 0.0234 [0.0045,0.0925] 6.64
ν 12 12.4953 2.6423 [7.8672,18.1819] 17.19

Overall, the estimation procedure we implemented is efficient and effective to track

both static and dynamic variables in a structural setting.

The estimation steps are shown as follows.

1) Initialize ν, λt, qt, and ht

2) Sample constant loading β by using the standard normal distribution and αt by

using the simulation smoother.

3) Sample mixture distribution indicator st as follows

P (st|y∗t , ht) ∝ P (st)N(y∗t |ht + µst , ν
2
st) (F-2)

where µst and ν2st are the corresponding mean and variance of the mixture component

at time t.

4) Then we could sample the volatility states {ht} by using simulation smoother.

5) (5.a) Sample ν|λ as follows: the conditional posterior distribution of ν is given

by

π(ν|λ) ∝ π(ν)
(ν
2
)
nν
2

[Γ(ν
2
)]n

n∏
t=1

λ
ν
2
t e
− ν

2

∑n
t=1 λt (F-3)
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And let `(ν) = log π(ν|λ) and apply Taylor second order expansion to `(ν) at ν̂ as

follows

`(ν) ≈ `(ν̂) + `′(ν̂)(ν − ν̂) +
1

2
`′′(ν̂)(ν − ν̂)2 ≡ h(ν) (F-4)

where ν̂ is the mode of the conditional posterior density, `′(ν̂) and `′′(ν̂) are the first

and second derivative of `(ν) evaluated at ν = ν̂. We sample ν from N(µν , σ
2
ν),

where µν = ν̂−`′(ν̂)/`′′(ν̂) and σ2
ν = −1/`′′(ν̂), and then apply a Metropolis-Hastings

algorithm.

(5.b) Sample λt|yt, ht, βt, ψt, qt, ν as follows

λt|yt, ht, βt, ψt, qt, ν ∼ Gamma

(
ν + 1

2
,
ν + (yt − x

′
tβt − (eψt − 1)qt)

2/eht

2

)
(F-5)

6) (6.a) Sample qt|yt, ht, βt, ν, κ as follows

P (qt = 1|y, ht, β, ν, κ) ∝ κft(yt|x
′

tβt + kt, e
ht , ν) (F-6)

P (qt = 0|y, ht, β, ν, κ) ∝ (1− κ)ft(yt|x
′

tβt, e
ht , ν) (F-7)

where ft(·) denotes univariate-t probability density function.

(6.b) Sample κ|qt as follows

κ|qt ∼ Beta(nk1 + n1, nk0 + n0) (F-8)

where nk1 denotes the prior value of jump indicator of 1, nk0 denotes the prior value

of jump indicator of 0, n0 is the count of qt = 0, and n1 = n − n0 is the count of

q1 = 1.

7) By following similar procedures in step 5, we could sample jump magnitude

parameter δ, and then sample the jump magnitude ψt as follows: if qt = 0, draw ψt



155

from N(− δ2

2
, δ2); and if qt = 1, draw ψt from N(ψµ, ψσ2), where ψσ2 = 1

δ2
+

λtq2t
eht

and

ψµ = 1
ψσ2

(−1
2

+ ytqtλt
eht

).

8) Repeat from step 2 to step 7.
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Figure 43: The figure in Panel A depicts the simulated series and stochastic volatility.
The figure in Panel B depicts the sample autocorrelation function, sample draws and
posterior densities for simulated data
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Figure 44: This figure shows the estimation results of α1t, α2t and ht for the simulated
data. The gray area represents the 99% confidence interval. The solid line denotes
the true value of the state variable and the dashes line denotes the posterior mean.
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APPENDIX G: CHAPTER 2 PROOFS

Before proving Proposition 1, we need the following lemma whose proof is evident

and omitted.

Lemma 1 The value function J(W,M) is homogeneous degree of γ, that is, for all

nonnegative constant k > 0, we can obtain J(kW, kM) = kγJ(W,M).

Proof of Proposition 1.

Suppose there exists a candidate value function Ĵ(W,M) which solves the bellman

equation such that

0 = −ρĴ + sup
c(t),ω(t)

{C
γ(t)

γ
+ [ω(t)(µ− r)W (t) + rW (t)− C(t)] ĴW

+ [bW (t)− aM(t)]ĴM +
1

2
ω2σ2W 2ĴWW}. (G-1)

Define an infinitesimal generator Lα as follows

LαĴ = [ω(t)(µ− r)W (t) + rW (t)− C(t)] ĴW + [bW (t)− aM(t)]ĴM +
1

2
ω2σ2W 2ĴWW

(G-2)

where α = {c, ω} is a control policy in the set of admissible trading strategies A.

Then equation (G-1) can be expressed as

0 = −ρĴ + sup
α∈A
{C

γ(t)

γ
+ LαĴ} (G-3)

Applying Itô’s formula to e−ρtĴ(W,M) between 0 and T , we can obtain

E[e−ρT Ĵ(WT ,MT )] = Ĵ(W,M) + E
[∫ T

0

e−ρu[Lαu Ĵ(Wu,Mu)− ρĴ(Wu,Mu)]du

]
≤ Ĵ(W,M)− E

[∫ T

0

e−ρu
Cγ(u)

γ
du

]
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The inequality comes from equation (G-3). By sending T to infinity and applying the

transversality condition, the dominated convergence theorem yields

Ĵ(W,M) ≥ E
[∫ ∞

0

e−ρt
Cγ(t)

γ
dt

]
,∀α ∈ A (G-4)

Hence, we have Ĵ(W,M) ≥ J(W,M).

By last lemma, we can define Ĵ(W,M) = Mγf(u), where u = W
M

. Then the first

order condition can give a policy α̂ = {ĉ, ω̂}, where {ĉ, ω̂} are shown in the equation

(37) and (38), respectively. By plugging this policy, we can obtain the following

nonlinear ODE in terms of f(u) as

− 1

2

(µ− r)2

σ2

[f
′
(u)]2

f ′′(u)
+[(bu−a)γ−ρ]f(u)+f

′
(u)u[r− (bu−a)]+

1− γ
γ

[f
′
(u)]

γ
γ−1 = 0.

(G-5)

which is the equation (39). Thus, we can have

ρĴ − Lα̂Ĵ − Ĉγ

γ
= 0 (G-6)

By repeating the above arguments, from equation (G-6), we can have

E[e−ρT Ĵ(WT ,MT )] = Ĵ(W,M)− E

[∫ T

0

e−ρu
Ĉγ(u)

γ
du

]
(G-7)

By sending T to infinity and applying the transversality condition, we can obtain

Ĵ(W,M) = Ĵ α̂(W,M) ≤ J(W,M) (G-8)

Therefore, Ĵ(W,M) = J(W,M) = J α̂(W,M). This completes the verification proof.

To finish the proof we then characterize the boundary conditions at u = 1, that is

W (t) = M(t),∀t.
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Consider a small time period [t, t+ h], we have

M(t+ h) = M0e
−a(t+h) + b

∫ t

0

e−a(t+h−s)W (s)ds+ b

∫ t+h

t

e−a(t+h−s)W (s)ds

= Mte
−ah + b

∫ t+h

t

e−a(t+h−s)W (s)ds. (G-9)

By using the integration by parts, we have

∫ t+h

t

easW (s)ds =
1

a

∫ t+h

t

W (s)deas =
1

a

[
ea(t+h)W (t+ h)− eatW (t)−

∫ t+h

t

easdW (s)

]
.

Therefore, we have

M(t+ h) = M(t)e−ah +
b

a
W (t+ h)− b

a
e−ahW (t)− b

a
e−a(t+h)

∫ t+h

t

easdW (s).

The boundary condition W (t) = M(t) holds for all t, by equation (54), thus we

plug W (t+ h) = M(t+ h) in the last equation and obtain

(a− b)
a

[W (t+ h)− e−ahW (t)] = − b
a
e−a(t+h)

∫ t+h

t

easdW (s)

which leads to

b− a
b

[
ea(t+h)W (t+ h)− eatW (t)

]
=

∫ t+h

t

easdW (s).

Therefore, we have

b− a
αb

(∫ t+h

t

aeasW (s)ds+

∫ t+h

t

easdW (s)

)
=

∫ t+h

t

easdW (s),

and then

b− a
b

∫ t+h

t

aeasW (s)ds =
a

b

∫ t+h

t

easdW (s).
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By using the process of W (t) in the last equation, we obtain

(b− a)

∫ t+h

t

easW (s)ds =

∫ t+h

t

eas ([(µ− r)ω(s) + r]W (s)− C(s)) ds+

∫ t+h

t

easσω(s)W (s)dz(s)

and then

∫ t+h

t

eas ([(b− a)− (µ− r)ω(s)− r]W (s) + C(s)) ds =

∫ t+h

t

easσω(s)W (s)dz(s).

(G-10)

The left side of equation (G-10) has a finite quadratic variation while the right side

is a local martingale, then both sides have to be zero. Hence,

[(b− a)− (µ− r)ω(s)− r]W (s) + C(s) = 0. (G-11)

Therefore,

ω(s) =
1

µ− r

[
(b− a)− r +

C(s)

W (s)

]
. (G-12)

Plug in ω(s) into equation (30), we have

dW (t) = (b− a)W (t)dt+ σω(t)W (t)dz(t). (G-13)

From equation (31), we have

dM(t) = (bW (t)− aM(t))dt.

Plug in W (t) = M(t), we have

dW (t) = (bW (t)− aW (t)) dt.

Thus, we obtain

dW (t) = (b− a)W (t)dt (G-14)
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Compare equation (G-13) with equation (G-14), the diffusion term in equation (G-

13) should be zero, that is, ω(t) = 0. From equation (G-14), the wealth process is

W (t) = W (0)e(b−a)t.

By equation (G-12), the consumption process is as follows

C(t) = (a+ r − b)W (t) = (a+ r − b)W (0)e(b−a)t. (G-15)

As C(t) ≥ 0, then b ≤ b∗. Then we have shown that b must be bounded by r + a to

guarantee the existence of optimal policy. Also, note that there is no randomness in

the consumption process, thus the objective function is deterministic as

J(W (0)) =

∫ ∞
0

e−ρt
Cγ

γ
dt =

(W (0)(a+ r − b))γ

γ

∫ ∞
0

e((b−a)γ−ρ)tdt

=
(W (0)(a+ r − b))γ

γ(ρ− (b− a)γ)

in which the integral exists as (b− a)γ − ρ < 0.

By J(W (0)) = M(0)γf(u) and W (0) = M(0), we obtain the boundary condition

as u = 1,

f(1) =
W γ

0

Mγ
0

(a+ r − b)γ

γ(ρ− (b− a)γ)
=

[a+ r − b]γ

γ(ρ− (b− a)γ)
.

Recall J(W,M) = Mγf(W
M

), we can also represent the value function as J(M,u) =

Mγf(u). Then we can have Ju = Mγf
′
(u) and JW = ∂J

∂u
du
dW

= Mγf
′
(u) 1

M
= Cγ−1(t).

Therefore, we can obtain

f
′
(u) = M1−γCγ−1(t).
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As u = 1, we haveW (t) = W (0)e(b−a)t and the consumption equation at the boundary,

we finally derive the first order derivative at the boundary as

f
′
(1) = M1−γ(t)(a+ r − b)γ−1W γ−1(t)

=

(
W (t)

M(t)

)γ−1
(a+ r − b)γ−1

= (a+ r − b)γ−1.

This completes the proof. �

Proof of Proposition 3.

Plugging the optimal policy into equation (30), we could obtain the wealth process

W (t) as

dW (t) =

[
−
(
µ− r
σ

)2
f ′(ut)

utf
′′(ut)

W (t) + rW (t)−Mf ′(ut)
1/(γ−1)

]
dt−µ− r

σ
W (t)

f ′(ut)

utf
′′(ut)

dz(t).

(G-16)

where ut = W (t)
M(t)

.

From equation (G-16), we could derive

dW (t)

W (t)
=

[
−
(
µ− r
σ

)2
f ′(ut)

utf
′′(ut)

+ r − 1

ut
f ′(ut)

1/(γ−1)

]
dt− µ− r

σ

f ′(ut)

utf
′′(ut)

dz(t)

(G-17)

Therefore,

E
[
dW (t)
W (t)

]
dt

=

[
−
(
µ− r
σ

)2
f ′(ut)

utf
′′(ut)

+ r − 1

ut
f ′(ut)

1/(γ−1)

]
.
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By using the boundary conditions and equation (39), we have limu↓1 f
′′(u) =∞. As

ut → 1, we can obtain

lim
ut→1

E
[
dW (t)
W (t)

]
dt

= r − f ′(1)
1

γ−1

Then by the first derivative boundary condition in Proposition 1, we have

lim
ut→1

E
[
dW (t)
W (t)

]
dt

= b− a.

This completes the proof. �

Proof of Proposition 4:

The proof employs a duality technique developed in Schroder and Skiadas (2002),

Proposition 1. Define

Ŵ (t) = W (t)− bM ′
t(W ), (G-18)

where

M ′
t(W ) =

M0

b
e−at +

∫ t

0

e−a(t−s)Wsds. (G-19)

with M ′
0(W ) = M0

b
. Introduce a dual parameter system as â

b̂

 =

 a− b

b

⇔
 a

b

 =

 â− b̂

b̂

 (G-20)

From equation (G-19), we can have dM ′
t(W ) = [Wt − aM ′

t(W )]dt, from the dual

parameter system (G-20), by plugging equation (G-18), we can obtain

dM ′
t(W ) = [Ŵt − âM ′

t(W )]dt (G-21)
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Define

M̂
′

t (Ŵ ) =
M0

b̂
e−ât +

∫ t

0

e−â(t−s)Ŵsds (G-22)

with M̂0
′(Ŵ ) = M0

b̂
. From equation (G-22), we could find that

dM̂t
′(Ŵ ) = [Ŵt − âM̂t

′(Ŵ )]dt (G-23)

Since M̂
′
0(Ŵ ) = M0

b̂
= M0

b
= M

′
0(W ), M̂

′
t (Ŵ ) = M

′
t (W ) is the unique solution to

the ordinary differential equation dx = [Ŵ (t)− âx]dt, with x0 = M0

b
. Therefore from

equation (G-18), we can obtain

W (t) = Ŵ (t) + bM
′

t (W ) = Ŵ (t) + b̂M̂
′

t (Ŵ )

= Ŵ (t) +M0e
−ât + b̂

∫ t

0

e−â(t−s)Ŵsds

= Ŵ (t) +M0e
−(a−b)t + b

∫ t

0

e−(a−b)(t−s)Ŵsds

By Proposition 3 and its proof, Ŵ (t) = Y (t) is a geometrical Brownian motion and

W (t) = W ∗(t) (the optimal wealth), then we obtain the optimal wealth process in

equation (51) and the corresponding consistent performance benchmark process in

equation (52). This completes the proof. �

Proof of Proposition 5:

Let ϕ(t) = W (t)
Y (t)

= W (t)
W (t)−M(t)

∈ [1,∞), then by

dY (t)

Y (t)
= ndt+mσdz(t)

and Proposition 4, we have

dW (t)

Y (t)
=

(
a+ n+ r

W (t)

Y (t)

)
dt+mσdz(t).



166

Then we derive the diffusion equation for ϕ(t) as

dϕ(t) = [ϕ(t)(m2σ2 − n+ r)−m2σ2 + a+ n]dt+mσ(1− ϕ(t))dz(t). (G-24)

The forward equation for the density pϕ is

1

2

∂

∂ϕ2
((1−ϕ)2m2σ2pϕ)− ∂

∂ϕ

{
[ϕ(m2σ2 − n+ r)−m2σ2 + a+ n]pϕ

}
=
∂pϕ
∂t

. (G-25)

Since this forward equation belongs to the class of forward equations (Wong(1964)),

for ϕ ∈ [1,∞), the stationary distribution of pϕ(ϕ) exists and is the solution of the

Pearson equation

1

2

∂

∂ϕ
((1− ϕ)2m2σ2pϕ)− [ϕ(m2σ2 − n+ r)−m2σ2 + a+ n]pϕ = 0 (G-26)

which can be reduced to the first-order ordinary differential equation (ODE) as

dpϕ
dϕ

=

[
2(r − n)

m2σ2

ϕ

(1− ϕ)2
+

2(a+ n)

m2σ2

1

(1− σ)2

]
pϕ.

The solution to this first-order ODE is equation (56) with the constant k which is

subject to the normalization ∫ ∞
1

pϕdϕ = 1 (G-27)

and the constant k can be expressed in terms of a gamma function in equation (57).

Then the density function of pψ can be obtained correspondingly by transforming

variable. Since we have

1

2

∂

∂ϕ2
((1− ϕ)2m2σ2pϕ) = −(1− ϕ)pϕm

2σ2 +
1

2
(1− ϕ)2m2σ2dpϕ

dϕ
.
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Then the Pearson equation (G-26) can be reduced to

1

2
(1− ϕ)2m2σ2dpϕ

dϕ
− [ϕ(r − n) + a+ n]pϕ = 0. (G-28)

Integrating equation (G-28) over [1,∞), we can have

1

2
m2σ2[(1− ϕ)2pϕ]∞1 +

∫ ∞
1

m2σ2pϕ(1− ϕ)dϕ− (r − n)E[ϕ] = a+ n. (G-29)

Inspecting first term of equation (G-29), (ϕ− 1)2pϕ → 0 as ϕ→∞ under condition

(55). Also, we can write

(ϕ− 1)2pϕ = κe−
2

m2σ2
[(n−r−m2σ2)ln(ϕ−1)+ a+r

ϕ−1 ].

As ϕ → 1, 1
ϕ−1 converges to ∞ quicker than ln(ϕ − 1) approaches to −∞, hence

equation (G-29) can be reduced to

m2σ2 −m2σ2E[ϕ]− (r − n)E[ϕ] = a+ n.

That is,

E[ϕ] =
a+ n−m2σ2

n−m2σ2 − r
.

This completes the proof. �
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APPENDIX H: MODEL DESCRIPTION

The complete model and derivation of the solution are given in Chapter 2 in which a

general optimal policy is characterized and an analytical solution is presented. A brief

introduction of the model and economic setting is sketched as follows. An investor

with initial wealth w0 confronts with the investment opportunities: constant return

rdt in risk-free asset and varying return (of a risky asset) µdt + σdz(t) over time

period [t, t+dt], where z(t) is a one-dimensional standard Brownian motion. Assume

that µ > r, the agent’s wealth wt is governed by

dwt = rwtdt+ αtwt [(µ− r)dt+ σdz(t)]− ctdt. (H-1)

where ct is the consumption rate at time t and αt is the fraction of the wealth invested

in the risky asset.

The agent wants to choose the optimal consumption and risky asset investment pol-

icy {ct, αt} in order to maximize his long-horizon utility as supct,αt E0

∫∞
0
e−ρtu(ct)dt

subject to: (i) the consumption and investment decisions are adapted; (ii) ct ≥ 0, a.s.

and the cumulative consumption is finite over any finite horizon, i.e.,
∫ t
0
csds <∞, a.s.;

(iii) wt ≥ 0, a.e.; and (iv) wt ≥ mt, a.e., for all time t, where mt is defined as the

weighted average of the whole past wealth path {ws : 0 ≤ s ≤ t} as follows.

mt = m0e
−at + b

∫ t

0

e−a(t−s)wsds (H-2)

where a > 0, b ≥ 0. To ensure the existence of available policies we assume that

b ≤ r + a.
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Numbers a and b are the tuning parameters in implementing the consistent perfor-

mance strategy. Recent performance has a higher impact on current time’s strategy

than remote performance does. Parameter a captures the time sensitiveness regard-

ing to historical performance. Parameter b denotes the effect of the entire historical

performance on the benchmark mt.

Based on our knowledge, the condition (iv) is the consistent performance constraint

which is new to the literature; but to develop trading strategy relies on some moving

average quantities has a long history in technical analysis. In essence, the consistent

performance constraint states that the current wealth always stay at or above its his-

torical weighted average values up to a multiplier. The subsistent level mt highlights

the cumulative investment performance over time instead of a particular extreme per-

formance incurred at a particular time, i.e., the maximum drawdown constraint in

Grossman and Zhou (1993). This consistent performance constraint also resembles

the ratcheting constraint of consumption studied in Dybvig (1999) and habit con-

sumption in Constantinides (1990); however, this presented consistent performance

constraint focus on the wealth and the subsistent wealth level is a weighted average

of past wealth.

A discrete-version of the consistent performance contract is

mt = m0e
−at + bw1e

−a(t−1) + · · ·+ bwt−1e
−a. (H-3)

Hence, the consistent performance constraint ensures that wt/wt−1 ≥ c ≡ be−a, a

stable return consistently. We should notice that wt ≥ mt is much stronger than the

stable return consistently, because it focus on wealth - dollar amount, in addition to
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return.

For simplicity, we now assume b = r + a and ρ + aγ − γ(µ−r)2
2(1−γ)σ2 ≥ 0. Then, a is

the tuning parameter in this strategy. The optimal consistent performance strategy

is given by (Proposition 2 in Chapter 2)

ct = h (wt −mt) , (H-4)

and

αtwt = k (wt −mt) (H-5)

where k ≡ µ−r
(1−γ)σ2 > 0 and h ≡ 1

1−γ

(
ρ+ aγ − γ(µ−r)2

2(1−γ)σ2

)
≥ 0. This optimal policy

suggests that in order to meet the consistent performance requirement, the agent

first saves a capital buffer, wt −mt, invests m fraction of this buffer in a risky asset,

consumes a constant percentage h of the buffer, and then puts the remaining amount

wt − (h + m)(wt − mt) into a risk-free asset. This strategy is similar to the one

in constant proportional portfolio insurance studied in Black and Perold (1992), the

drawdown constaint in Grossman and Zhou (1993), and the ratcheting constraint in

Dybvig (1995).

It can be shown that (see Proposition 4), for all t and s,

1

s
log

mt+s

mt

> r, (H-6)

which, in turn, yields, mt/mt−1 > r for all t. Hence, the growth rate of the benchmark

mt beats the risk-free interest rate.

A traditional intertemporal asset allocation policy refers to the optimal strategy

without the consistent performance constraint. As shown in Merton (1971), the con-
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stant portion of the wealth to be consumed is 1
1−γ

(
ρ− rγ − γ(µ−r)2

2(1−γ)σ2

)
, and the con-

stant portion of the wealth to be invested in the risky asset is still k.
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APPENDIX I: PARAMETER CALIBRATION

We use the past 30 years data in our study. The daily data set of S&P 500 from

1983 to 2012 is used to estimate the market average return and volatility. We can

obtain the average daily return of 0.04%, which is equivalent to monthly return of

0.78% (assume 21 trading days per month) or annual return of 9.40%, and the average

daily volatility of 1.16%, which is equivalent to monthly volatility of 5.30% or yearly

volatility of 18.35%. These estimates are similar with most empirical results. The

CPI data set is obtained from the Federal Reserve Bank of Minneapolis and estimated

to be 2.94% from 1983 to 2012. The 1-year constant maturity T-bill data set is

obtained from the Board of Governors of the Federal Reserve System and estimated

to be 4.757% from 1983 to 2012. Hence the inflation adjusted annual market return

is 6.46% and the inflation adjusted 1-year T-bill rate is 1.817%. The per capital

real consumption data is collected from Federal Reserve Bank of St. Louis and we

could obtain the annual consumption growth E(dc/c)
dt

= 0.0208 and the variance of

consumption growth var(dc/c)
dt

= (0.0357)2. Referring to Chapter 2, we could have

n = 0.0208 and mσ = 0.0357 and the condition n − r − m2σ2 = 0.001355 > 0 is

satisfied.

To estimate the pure rate of time discount ρ and the risk-aversion coefficient γ,

we refer to Dybvig (1999) and proceed as follows. The procedure to obtain the risk-

aversion coefficient is equivalent to ask the question: What percentage increase in

consumption would be as attractive as a 70% chance of no increase and a 30% chance

of 100% increase? It is to solve the equation u[(1 + x)c] = 0.7u(c) + 0.3u(2c), where
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u(c) is the felicity function. Suppose this year’s budget is $10 million and there is a

30% chance of increasing to $20 million and a 70% chance of having the same budget,

the agent feels this option is as attractive as having a budget of $12.5 million for sure.

Then we could solve the equation as follows.

12.5γ

γ
= 0.7

10γ

γ
+ 0.3

20γ

γ
(H-1)

By using some numerical methods to solve the nonlinear equation such as Newton

and secant methods, we can find the risk-aversion coefficient γ = 0.2927.

Next, to estimate the pure rate of time preference ρ, we can ask the question:

What percentage of increase in consumption both this and next year would be as

attractive as a 10% increase in next year only? This parameter implies the extent

to postpone your increasing consumption for exchanging a smooth consumption over

time. Suppose you are indifference between the case of consuming $10.48 million

during this and next year and the case of consuming $10 million this year and $11

million next year. We could solve for ρ from the following equation.

10.48γ

γ
+ e−ρ

10.48γ

γ
=

10γ

γ
+ e−ρ

11γ

γ
(H-2)

By using the previous calculated γ value of 0.2927, we can obtain ρ = 0.0459 which

belongs to the reasonable estimate range from 0.01 and 0.05. The strategy is updated

monthly by using above estimated values.
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